
Provably Post-Quantum Secure Messaging with Strong

Compromise Resilience and Immediate Decryption

Cas Cremers and Mang Zhao

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Full version v1.0
October 28, 2022

Abstract

Recent years have seen many advances in provably secure messaging protocols, both in features
and detailed security proofs. However, some important areas of the design space have not yet been
explored.

In this work we design the first provably secure protocol that at the same time achieves (i) strong
resilience against fine-grained compromise, (ii) post-quantum security, and (iii) immediate decryption
with constant-size overhead. Besides these main design goals, we prove that our protocol achieves
even stronger security than protocols previously conjectured to be in this space. Finally, we introduce
a novel definition of offline deniability suitable for our setting, and prove that our protocol meets it,
notably when combined with a post-quantum initial key exchange.

We use game-based security notions to be able to prove post-quantum and strong compromise
resilience. At a technical level, we build on the SM protocol and security notion from [1], but the
security properties that we aim for require a different proof approach. Our work shows how these
properties can be simultaneously achieved, and our temporal healing and offline deniability notions
are of independent interest.

1

Contents

1 Introduction 3

2 Background and Related Work 5
2.1 Instant Messaging Protocols and Immediate Decryption 5
2.2 Offline Deniability and Post-Quantum Security . 6

3 Extended Secure Messaging 6
3.1 Syntax . 7
3.2 Strong Security Properties . 8
3.3 Security Model . 8
3.4 eSM Security and its Core Properties . 12

4 Extended Secure Messaging Scheme 15
4.1 The eSM Construction . 15
4.2 Security Conclusion and Concrete Instantiation . 19

5 Offline Deniability 19

A Review on messaging protocols with various optimal security 23

B Review of ACD19 and TR protocols 24

C Comparison of our eSM construction with ACD19, ACD19-PK, and TR 24

D Review on DAKE scheme and the game-based deniability 26
D.1 The DAKE scheme . 26
D.2 The game-based offline deniability experiment . 27

E Preliminaries 27
E.1 Key Encapsulation Mechanisms . 27
E.2 Digital Signature . 28
E.3 Authenticated Encryption . 29
E.4 Pseudorandom Generators and Pseudorandom Functions 30

F Security Modularization 31

G Proof of Theorems and Lemmas 32
G.1 Our Lemmas . 32
G.2 Proof of Lemma 1 . 33
G.3 Proof of Lemma 2 . 38
G.4 Proof of Lemma 3 . 40
G.5 Proof of Lemma 4 . 48
G.6 Proof of Theorem 2 . 53

2

1 Introduction

Driven by the global uptake of the Signal protocol, which has been widely deployed in many messaging
applications worldwide by virtue of its high efficiency and strong security guarantees, there have been
many advances in the theory and design of messaging protocols with desirable efficiency and security
properties during the last decade. We highlight three of these properties.

(i) Immediate Decryption with Constant-Size Overhead: This property, which is essential for
practical messaging apps and was formally studied by Alwen et al. [1], requires that the recipients can
decrypt every message at the time of arrival, irrespective of the arrival of prior messages. Conventional
messaging solutions reuse a static encryption/decryption key pair during the communications. However,
the leakage of the private decryption key indicates the loss of privacy of all messages in the past and/or
future. Common modern secure messaging solutions obtain strong security guarantees by making their
encryption keys dependent in some way on all previously sent messages. However, in realistic messaging
settings, messages can arrive out-of-order or may be lost forever. If message n arrives before message
n− 1, it cannot be decrypted until message n− 1 arrives; and if it never arrives, communications become
stuck. In theory, this can be naively solved by appending all previous ciphertexts to the next message
sent. In practice, this naive solution is unusable, as practical applications require constant-size overhead
for messages. The Signal protocol is a pioneer example in the domain of messaging with strong security.

(ii) Post-Quantum Security: To anticipate potential future quantum attackers, post-quantum secure
instantiations are particularly desirable for practical protocol designs. Conceptually, the Signal protocol
defines the initial Extended Triple-Diffie-Hellman (X3DH) asynchronous key exchange [2] and the Double
Ratchet (DR) [3] for the subsequent message exchanges. Because both of these building blocks depend
on Diffie-Hellman constructions, the original Signal protocol can only be proven secure against classical
attackers. To date, practical post-quantum secure replacements for Diffie-Hellman are still the subject of
active research: While some effort has gone into PQ secure key exchanges, such as CSIDH [4], the study
of which is still not mature, much effort has gone into so-called Key Encapsulation Mechanisms (KEMs),
for which practical instantiations now are available and well-studied.

Building on KEMs, Brendel et al. [5] proposed a PQ replacement SPQR of X3DH; Alwen et al. [1]
proposed a PQ-compatible generalization SM of DR.

In addition to the salient security properties of the DR and SM protocols, stronger security guarantees
are provably achievable. For instance, Alwen et al. [1] notice that the SM protocol design lacks resilience
against fine-grained state compromise:

(iii) Resilience against fine-grained state compromise: the compromise of senders’ and recipients’
state does not cause the loss of privacy and authenticity, respectively. Modern secure messaging protocols
like Signal [6] have been fundamentally designed to be resilient against state compromise: The DR or SM
protocol heals the state from compromise after a back-and-forth interaction, i.e., PCS. However, such
state compromise resilience is very coarse: corruption of the state of either party in a conversation will
cause the loss of both privacy and authenticity, since the privacy and authenticity of messages depend on
a symmetric secret that is present in both parties’ states. It is however possible to achieve the stronger
notion of resilience against fine-grained compromise by breaking this symmetry: in the literature, a number
of “optimal-secure” protocols [7]–[10] have been proposed that provably achieve such resilience against
fine-grained compromise.

Perhaps surprisingly, while each of the above properties have been studied in isolation, there currently
exists no provably secure protocol that simultaneously offers the above three desirable properties. In this
work, address the challenges of developing the first security model and provably secure protocol to meet
all three properties.

Challenges: While the original Signal protocol and its PQ secure extension do not provide resilience
against fine-grained state compromise, the “optimal-secure” protocols [7]–[10] all lack immediate decryption
with constant-size overhead. Recently, [11] proposed a novel TR construction that provides immediate
decryption with constant-size overhead and slightly stronger security than SM. However, the TR protocol
provides neither PQ security nor resilience against fine-grained state compromise. The only candidate
that was conjectured to meet above three properties simultaneously is the PKSM protocol by Alwen et

3

al [1], which is an extension of the modularized SM protocol [1]. Unfortunately, no proof is given for the
informally claimed properties of the PKSM protocol.

In practice, developing such a provably secure protocol is a very challenging task. On the one hand,
the concrete security model of the protocol is undefined. In particular, it is still unknown what exact
security can be pursued by PKSM or similar protocols. On the other hand, while the SM protocol is
composed of three independent building blocks that respectively serve for secret exchange, state update,
and message encryption, and its security proof methodology relies on the security of each building block,
the actual PKSM protocol extends SM by additionally employing asymmetric primitives, whose keys are
sampled during the secret exchange phase and then re-used at the time of message encryption. Compared
to SM, the underlying building blocks of PKSM are more intertwined, and as a result the the modularized
proof methodology of SM cannot directly be applied to PKSM.

We summarize the situation for related provably secure protocols in Figure 1. In this paper, we propose
the first protocol that provably satisfies these three properties.

Protocols with
PQ Security

Protocols with
Resilience against

Fine-Grained
Compromise

Protocols with
Immediate Decryption

with Constant-size Overhead

TR [11]

This work

Optimal-secure
protocols

[7], [8], [10]

Optimal-secure
protocol [9]

SM [1]

Figure 1: Comparison between this work and other existing protocols with provable security properties w.r.t.
(i) immediate decryption with constant-size overhead, (ii) post-quantum security, and (iii) resilience against
fine-grained state compromise.

Furthermore, we prove that our protocol also satisfies two other strong guarantees:

(iv) Resilience against Fine-Grained Key Compromise: the privacy of an existing conversation
does not solely depend on the messages exchanged in the conversation. The original Signal protocol satisfies
a similar privacy recovery property but only for new conversations. Note that the X3DH key establishment
uses the combination of public/private keys with different lifetimes, i.e., long-term, medium-term, and
one-time. Even if all previous keys are compromised, the privacy of new conversations can still be recovered,
if the honest recipients upload their new medium-term keys. In particular, even stronger security can
be obtained if the long-term private keys are stored on the hardware secure module (HSM). However,
to the best of our knowledge, all keys in the existing conversations in all protocols in the literature are
only updated depending on the frequency of the interaction but irrespective of the time period. Directly
after the compromise of the recipients’ state, the security of the first (and the following continuously sent)
messages is broken.

(v) Offline Deniability: a judge cannot decide whether an honest user has participated in a conversation
even when other participants try to frame them. Vatandas et al. [12] first prove the offline deniability of
X3DH in a simulation-based model and then extend the security conclusion to the full Signal protocol.
Interestingly, Brendel et al. [5] prove the offline deniability of the PQ-secure replacement SPQR of X3DH
in a novel game-based model, which captures different and incomparable security guarantees compared to
the simulation-based model. To date, game-based offline deniability was neither defined nor analyzed for
any PQ-secure full messaging protocols in the literature, including the combination of SPQR and SM.

Contributions. Our main contribution is to propose the first provably PQ-secure messaging protocol
with immediate decryption, constant-size overhead, and stronger security guarantees such as better
resilience against fine-grained state and key compromise. To this end, we introduce a related new strong

4

security notion called Extended-Secure-Messaging (eSM). We show that the eSM notion covers above
strong security requirements and prove that our protocol meets it.

Furthermore, to show that our protocol is a suitable PQ-secure candidate for the DR in deniable
protocols such as Signal, we extend the game-based definition from SPQR [5] to the multi-stage setting.
We prove that the combination of our eSM-secure protocol and SPQR (currently the only provably secure
PQ-asynchronous key establishment), is offline deniable.

Overview. We give background and related work in Section 2. We propose our new eSM syntax and
security notion in Section 3. We propose our concrete protocol that is provably eSM-secure in Section 4,
and show its offline-deniability when combined with SPQR in Section 5.

We provide the full proofs of our theorems in the supplementary materials.

2 Background and Related Work

2.1 Instant Messaging Protocols and Immediate Decryption

The Signal protocol provably offers strong security guarantees, such as forward secrecy and post-compromise
security [6], [13], and offline deniability [12]. Moreover, Signal has several features that are critical for
large-scale real-world deployment, such as message-loss resilience and immediate decryption. Roughly
speaking, message-loss resilience and immediate decryption enable the receiver to decrypt a legitimate
message immediately after it is received, even when some messages arrive out-of-order or are permanently
lost by the network. Notably, the Signal protocol provides the above properties with constant-size
overhead.

The core Signal protocol consists of two components: the Extended Triple-Diffie-Hellman (X3DH)
initial key exchange and the Double Ratchet (DR) for subsequent message transmissions. Alwen et al. [1]
introduce the notion of Secure Messaging (SM), which is a syntax and associated security notion that
generalizes the security of Signal’s DR. The SM protocols introduce a new concept of epoch to describe
how many interactions in the communication channel have been processed by either party. Alwen et al.
also provide a concrete instantiation and prove that it is SM-secure. This instantiation is not explicitly
named in [1]: in this work, we will refer to their SM-secure construction as ACD19. A potential concern
with ACD19 is that the symmetric encryption-decryption keys for all but the first messages inside each
epoch are deterministically derived from the state shared by both parties. The corruption of the shared
state of either party immediately compromises the subsequent messages inside the current epoch. To
mitigate the impact of the state exposure, Alwen et al. [1] also briefly introduce a second security notion
for secure messaging, called PKSM, and a corresponding construction, which we call ACD19-PK. At a very
high level, ACD19-PK extends ACD19 by additionally employing public key encryption (PKE) and digital
signature (DS) schemes. At the beginning of each epoch, the sender in ACD19-PK additionally samples
two key pairs: the one from PKE for decrypting messages in the next epoch, and the other from DS for
signing messages two epochs later. Inside each epoch, the sender additionally encrypts the ciphertext of
SM protocol by using PKE under the recipient’s public key, followed by signing the ciphertext of PKE
and the newly sampled public keys under its own current DS private signing key. Intuitively, ACD19-PK
provides the improved resilience against the state compromise, since the attacker can neither recover the
ciphertext of SM protocol (and further the real message) from the ciphertext of PKE without knowing the
recipient’s decryption key nor forge a valid ciphertext without knowing the sender’s signing key. However,
the main focus of [1] are SM and ACD19: for ACD19-PK, neither a formal security model nor a concrete
proof is given; thus, its additional security is essentially conjectured.

In a parallel line of research, several messaging protocols have been proposed to meet various game-
based strong or even “optimal” security [7]–[10], [14], [15]. Although they follow different ratcheting
frameworks aiming at various flavors of security, none of them provides immediate decryption with
constant-size overhead, due to their key-updatable or state-updatable structure. We in particular review
the designs that meet various “optimal” security in Supplementary Material A.

There are also some protocols that aim at simulation-based security, such as [11], [16], [17]. [16] proves
a component in SM in the simulation-based model. In [11], [17] new constructions are proposed and proven
the respective new simulation-based model. The Triple Ratchet (TR) protocol in [11] is “a minimalistic
modification to the DR” with the same bandwidth. Unfortunately, the concrete instantiations of DR and
TR use of Diffie-Hellman exchanges and therefore can only be proven secure against classical attackers.
Notably, it was shown that security against adaptive corruptions in the standard simulation-based model
is impossible when the key is shorter than the plaintext [18]. Thus, the simulation-based model seems

5

unsuitable for the security analysis where the attacker has strong adaptive corruption capabilities and
quantum computational power.

We review ACD19 and TR in Supplementary Material B. We provide comparison of our model with the
SM model and FTR in Section 3.3 and of our protocol with ACD19, ACD19-PK, and TR in Supplementary
Material C.

2.2 Offline Deniability and Post-Quantum Security

The property of offline deniability prevents a judge from deciding whether an honest user has participated
in a conversation even when other participants try to frame them. Historically, offline deniability for the
authenticated key exchange (AKE) was first defined by Di Raimondo et al. [19] in the simulation-based
paradigm. Roughly speaking, the simulation-based offline deniability in [19] ensures that an judge holding
no private information of any party cannot distinguish whether a transcript of a AKE conversation is
the interaction between an honest party and an attacker or produced by the attacker itself. Note that
the attacker in this original definition does not necessarily follow the protocol description. Following
this notion, the offline deniability of a series of AKE protocols were analyzed in [12], [19], such as MQV,
HMQV, 3DH, and X3DH.

Afterwards, [12] extended the simulation-based offline deniability to full messaging protocols and
studied the relation to the one of AKE: if the transcript after the AKE solely depends on the initial secret
shared by both parties from AKE, the public keys, and each party’s private inputs, then the full messaging
protocol is offline deniable if the AKE is offline deniable. Remarkably, this shows that the Signal protocol
achieves offline deniability in the simulation-based paradigm.

While the analysis of offline deniability of messaging protocols in the classical setting has been
well-studied, the PQ variant is surprisingly complicated. There are a number of key establishment
protocols [20]–[23] that are potential candidates for PQ security. However, all of their security proofs rely
on either the random oracle model or novel tailored assumptions, which are still not well-studied in the
PQ setting. Hashimoto et al. [24] propose the first PQ secure key establishment but unfortunately have
to assume that every party can pre-upload inexhaustible one-time keys for full asynchronicity. Moreover,
the construction in [24] is proven offline deniable in the conventional simulation-based model against
semi-honest attackers in the PQ setting, which means that attackers honestly follow the protocol. The
main obstacle for applying the proof against malicious classical attackers to the PQ setting is that the
proof requires strong knowledge-type assumptions, for which it is unknown whether they hold against
quantum attackers.

A subsequent work by Brendel et al. [5] proposed a new PQ asynchronous deniable key exchange
(DAKE) protocol, called SPQR, and a new game-based offline deniability notion. Roughly speaking, the
game-based offline deniability in [5] ensures that an judge holding all initial private secret of all parties
cannot distinguish whether a transcript of a DAKE conversation is the interaction between an honest
party and a semi-honest attacker or produced by the attacker itself. Compared to the simulation-based
definition in [19], [5] is weaker in the sense that game-based notions are sometimes considered weaker
than simulation-based ones. However, the game-based definition additionally captures a scenario in the
real life, where the judge may coerce accuser and defendant in the court to give up their secret keys (e.g.,
by law). Brendel et al. prove that SPQR is offline deniable in the game-based paradigm against quantum
(semi-honest) attackers.

To the best of our knowledge, to date there is no definition for the offline deniability of full messaging
protocols in the game-based paradigm, in particular considering an judge has access to all initial private
secret of all parties. Although the combination of the PQ variants of X3DH, such as SPQR, and the PQ
compatible ACD19 or ACD19-PK, does provide the promising privacy and authenticity in the PQ setting,
it is still an open question, what flavors of offline deniability can be obtained for the combined protocols
in the PQ setting.

3 Extended Secure Messaging

In this section we extend the SM scheme [1] to our new eSM scheme and present our stronger eSM-
associated security that strengthens the SM-associated security. We first define our new extended secure
messaging (eSM) scheme in Section 3.1, followed by the expected security properties in Section 3.2. Finally,
we define the associated strong security model (eSM) in Section 3.3 and explain how this model captures
the intended security properties in Section 3.4.

6

Notation: We assume that each algorithm A has a security parameter λ and a public parameter pp
as implicit inputs. In this paper, all algorithms are executed in polynomial time. For any positive integer
n, let [n] := {1, ..., n} denote the set of integers from 1 to n. For a deterministic algorithm A, we write

y ← A(x) for running A with input x and assigning the output to y. Analogously, we write y
$← A(x; r)

for a probabilistic algorithm A using randomness r, which is sometimes omitted when it is irrelevant. We
write J·K for a boolean statement that is either true (denoted by 1) or false (denoted by 0). We define
an event symbol ⊥ that does not belong to any set in this paper. Let (·) and {·} respectively denote an
ordered tuple and an unordered set. Let n++ denote the increment of number n by 1, i.e., n← n+ 1.
We use to denote a value that is irrelevant. We use D to denote a dictionary that stores values for each
index. The initialization of the dictionary is denoted by D[·]← ⊥. In this paper, we use req to indicate
that a (following) condition is required to be true. If the following condition is false, then the algorithm
or oracle containing this keyword is exited and all actions in this invocation are undone.

We recall the relevant cryptographic primitives in Supplementary Material E.

3.1 Syntax

Definition 1. Let ISS denote the space of the initial shared secrets between two parties. An extended
secure messaging (eSM) scheme consists of six algorithms eSM = (IdKGen,PreKGen, eInit-A, eInit-B, eSend,
eRcv), where

• IdKGen outputs an identity public-private key pair (ipk , ik)
$← IdKGen()

• PreKGen outputs a medium-term pre-key pair (prepk , prek)
$← PreKGen()

• eInit-A (resp. eInit-B) inputs an initial shared secret iss ∈ ISS and outputs a state stA ← eInit-A(iss)
(resp. stB ← eInit-B(iss)).

• eSend inputs a state st, a long-term identity public key ipk, a medium-term public prekey prepk,

and a message m, and outputs a new state and a ciphertext (st ′, c)
$← eSend(st , ipk , prepk ,m), and

• eRcv inputs a state st, a long-term identity private key ik, a medium-term private key prek,
and a ciphertext c, and outputs a new state, an epoch number, a message index, and a message
(st ′, t, i,m)← eRcv(st , ik , prek , c).

Our eSM re-uses two important concepts epoch and message index for SM [1].

Epoch. The epoch t is used to describe how many interactions in a two-party communication channel
(aka. session) have been processed. Let tA and tB respectively denote the epoch counters of parties A and
B in a session. Both epoch counters start from 0. If either party P ∈ {A, B} switches the actions, i.e.,
from sending to receiving or from receiving to sending messages, then the corresponding counter tP is
incremented by 1. Throughout this paper, we use even epochs (tA, tB = 0, 2, 4, ...) to denote the scenario
where B acts as the message sender and A acts as the message receiver, and odd epochs in reverse. In each
epoch, the sender can send an arbitrary number of messages in a sequence. The difference between the
two counters tA and tB is never greater than 1, i.e., |tA − tB| ≤ 1.

Message Indices. The message index i identifies the position of a message in each epoch, in particular,
when the messages in a sequence are (possibly) delivered out of order. Notably, the epoch number
t and message index i output by eRcv indicate the position of the decrypted message m during the
communication.

Syntax extensions. Compared to the original SM syntax definition from [1], eSM has two additional
algorithms IdKGen and PreKGen: IdKGen outputs the public-private identity key, which is fixed once
generated, and PreKGen outputs pre-key pairs, which are updated regularly (similar to X3DH).

The eInit-A and eInit-B respectively initialize the session-specific states stA and stB of parties A and B

using the initial shared secret iss ∈ ISS, which is assumed to be produced by a key establishment.
We assume that all the session-specific data is stored at the same security level in the state st, but

that data shared among multiple sessions (such as identity keys and pre-keys) may be stored differently.
In fact, as we will show later in Section 3.4, an eSM scheme can achieve additional privacy guarantees if
the private identity keys (or pre-keys) can be stored in the secure environment on the device, such as
Hardware Security Module (HSM).

7

3.2 Strong Security Properties

The eSM schemes aim at following strong security properties. First, we expect the eSM schemes to
preserve the basic properties of the SM schemes in [1]:

• Correctness: The messages exchanged between two parties are recovered in the correct order, if no
attacker manipulates the underlying transmissions.

• Immediate decryption and message-loss resilience (MLR): Messages must be decrypted to
the correct position as soon as they arrive; the loss of some messages does not prevent subsequent
interaction.

• Forward secrecy (FS): All messages sent and received prior to a session state compromise of
either party (or both) remain secure to an attacker.

• Post-compromise security (PCS): The parties can recover from session state compromise
(assuming each has access to fresh randomness) when the attacker is passive.

Second, our eSM targets the following stronger security properties than SM in [1]. In particular, the
authenticity and privacy in [1] hold only when neither parties’ states are compromised. Instead, we aim
for stronger authenticity and privacy against more fine-grained state compromise.

• Strong authenticity: The attacker cannot modify the messages in transmission or inject new ones,
unless the sender’s session state is compromised.

• Strong privacy: If both parties’ states are uncompromised, the attacker obtains no information
about the messages sent. Assuming both parties have access to fresh randomness, strong privacy also
holds unless the receiver’s session state, private identity key, and private pre-key all are compromised.

• Randomness leakage/failures: While both parties’ session states are uncompromised, all the
security properties above (in particular, including strong authenticity and strong privacy) except
PCS hold even if the attacker completely controls the parties’ local randomness. That is, good
randomness is only required for PCS.

Finally, our eSM schemes also pursue two more novel security properties for the resilience against
fine-grained key compromise:

• State compromise/failures: While the sender’s randomness quality is good and the receiver’s
private identity key or pre-key is not leaked, the privacy of the messages holds even if both parties’
session states are corrupted.

• Periodic privacy recovery (PPR): If the attacker is passive (i.e., does not inject corrupt messages),
the message privacy recovers from the compromise of both parties’ all private information after a
period (assuming each has access to fresh randomness).

The first new property state compromise/failures enables the privacy even under the compromise of
both parties’ session states. We stress that this property has a particular impact for the secure messaging
after an insecure key establishment. For instance, consider that the party B initializes a session with
A using X3DH or SPQR. The leakage of the sender B’s private identity key and ephemeral randomness
implies the compromise of the initial shared secret. The surprise here is that apparently, from the initial
shared secret, the attacker can learn both parties’ session states in every SM scheme, such as ACD19
and ACD19-PK. If B continuously sends messages to A without receiving a reply using DR, ACD19, or
ACD19-PK, all messages in the sequence are leaked, since the attacker can use A’s session state to decrypt
the ciphertexts. An eSM protocol with the “state compromise/failures” property is able to prevent such
an attack.

3.3 Security Model

The Extended Secure Messaging (eSM) security game ExpeSMΠ,△eSM
for an eSM scheme Π with respect to a

parameter △eSM is depicted in Figure 2. We start by explaining the notation.

Notation. For a party P ∈ {A, B}, we use ¬P to denote the partner, i.e., {P,¬P} = {A, B}. For an element

x and a set X, we write X
+← x for adding x into X, i.e., X

+← x⇔ X ← X ∪ {x}. Similarly, we write

X
−← x for removing x from X, i.e., X

−← x⇔ X ← X \ {x}. For a set of tuples X and a variable y, we
use X(y) to denote the subset of X, where each element includes y, i.e., X(y) := {x ∈ X | y ∈ x}. We
sometimes write y ∈ X to denote that there exists a tuple x ∈ X such that y ∈ x, i.e., y ∈ X ⇔ X(y) ̸= ∅.

Trust Model: We assume an authenticated channel between each party and the server for key-update
and -fetch and therefore no forgery of the public identity keys and pre-keys. This is the common treatment
in the security analyses in this domain, e.g. [6], the server is considered to be a bulletin board, where each

8

party can upload their own honest public keys and fetch other parties’ honest public keys. For practical
deployments, we require that the key-upload and key-fetch processes between each party and sever use
fixed bandwidth and are only executed periodically. We omit the discussion on the frequency of the
medium-term pre-keys’ upload and retrieve1. Moreover, we also assume that eSM is natural, which is first
defined for SM in [1, Definition 7].

Definition 2. We say an eSM scheme is natural, if the following holds:
1. the receiver state remains unchanged, if the message output by eRcv is m = ⊥,
2. the values (t, i) output by eRcv can be efficiently computed from c,
3. if eRcv has already accepted an ciphertext corresponding to the position (t, i), the next ciphertext

corresponding to the same position is rejected immediately,
4. a party always rejects ciphertexts corresponding to an epoch in which the party does not act as

receiver, and
5. if a party P accepts a ciphertext corresponding to an epoch t, then t ≤ tP + 1.

Experiment Variables and Predicates. The security experiment ExpeSMΠ,△eSM
includes the following

global variables:
• safeidKA , safeidKB ∈ {true, false}: the boolean values indicating whether the attacker reveals the private
identity keys.

• Lrev
A ,Lrev

B : the lists that record the indices of the pre-keys that are revealed.
• Lcor

A ,Lcor
B : the lists that record the indices of the epochs that are corrupted.

• (nA,nB): the counters that count how many pre-keys are generated.
• (tA, tB): the epoch counters.
• (iA, iB): the message index counters.
• trans: a set that records all ciphertexts, which are honestly encrypted but not delivered yet, and their

related information, such as the sender identity, the receiver’s pre-key index, the randomness quality
during the ciphertext generation, the corresponding epoch and message index, and the encrypted
message. See the helping function record for more details.

• allTrans: a set that records all honest encrypted ciphertexts (including both the delivered and
undelivered ones), and their related information.

• chall: a set that records all challenge ciphertexts, which are honestly encrypted but not delivered
yet, and their related information.

• allChall: a set that records all challenge ciphertexts (including both the delivered and undelivered
ones), and their related information.

• comp: a set that records all compromised ciphertexts, which are honestly encrypted but not delivered
yet, and their related information. A compromised ciphertext means that the attacker can trivially
forge a new ciphertext at the same position.

• wincorr, winauth, winpriv ∈ {true, false}: the winning predicate that indicates whether the attacker
wins.

• b ∈ {0, 1}: the challenge bit.
Compared to [1], there are two major differences in the experiment variables. First, our model involves
more variables that are related to the identity keys and pre-keys, which are not included in [1], such as
safeidKP , Lrev

P , and nP, for P ∈ {A, B}. We also import two new sets allTrans and allChall to simplify the
security analysis of the benefits obtained from using the identity keys and pre-keys. Second, we use two
lists Lcor

A and Lcor
B to capture the state corruption of either party instead of using a single counter. While

splitting the single state corruption variable into two helps our model to capture our strong privacy and
strong authentication, using lists but not a counter additionally simplifies the definition of the safe state
predicate, as we will see below.

Moreover, the experiment ExpeSMΠ,△eSM
also includes four predicates as shown in Figure 3. Two of them

are newly defined:
• safepreKP (ind): indicating whether ind-th pre-key of party P is leaked or not. We define it as checking
whether ind is included in the list Lrev

P .
• safe-stP(t): indicating whether the state of party P at epoch t is expected to be safe or not. This
predicate simplifies the definition of safe-chP and safe-injP predicates. We define it as checking
whether any epoch from t to (t −△eSM + 1) is included in the list Lcor

P .
The remaining two predicates were introduced in [1]. However, we define them in a different way in

our model:
1As an example, we can consider a scenario where every party is only allowed to upload and fetch public keys at 12am

every day.

9

• safe-chP(flag, t, ind): indicating whether the privacy of the message sent by P is expected to hold or
not, under the randomness quality flag ∈ {good, bad}, the sending epoch t, and the receiver ¬P’s
pre-key index ind. We define it to be true if and only if any of the following conditions hold:
(a) both parties’ states are safe at epoch t,
(b) the partner ¬P’s state is safe and the randomness quality is flag = good,
(c) the partner ¬P’s identity key is safe and the randomness quality is flag = good, or
(d) the partner ¬P’s pre-key is safe and the randomness quality is flag = good.

• safe-injP(t): indicating whether the authenticity at the party P’s epoch t (i.e., P is expected not to
accept a forged ciphertext corresponding to epoch t) holds or not. We define it to be true if and
only if the partner’s state is safe at epoch t.

Compared to [1], our safe-chP predicates additionally input a randomness quality, a epoch number, and a
pre-key index. While the safe-chP predicate in [1] equals the condition (a), our new conditions (b), (c),
and (d) respectively capture the strong privacy, state compromise/failures, and PPR security properties.
Moreover, our safe-injP additionally inputs an epoch number t.

Our safe requirements are more relaxed and allow to reveal more information than in [1] (even when
removing the usage of identity keys and pre-keys). In particular, if a safe predicate in the SM security
model in [1] is true, then the one in our eSM model is true, but the reserve direction does not always hold.

Helping Functions. To simplify the security experiment definition, we use five helping functions. Four
of them are introduced in [1], but we define some of them in our model with slight differences.

• sam-if -nec(r): If r ̸= ⊥, this function outputs (r, bad) indicating that the randomness is attacker-
controlled. Otherwise, a new random string r is sampled from the space R2 and is output together
with a flag good.
This function is defined identically to the one in [1].

• record(P, type, flag, ind,m, c): A record rec, which includes the party’s identity P, the partner’s
pre-key index ind, the randomness flag flag, the epoch counter tP, the message index counter iP,
the message m, and the ciphertext c, is added into the transcript sets trans and allTrans. If the
safe-injP(tP) predicate is false, then this record is also added into the compromise set comp. If c
is a challenge ciphertext, indicated by whether type = chall, the record rec is also added into the
challenge sets chall and allChall.
Compared to [1], our record rec additionally includes ind and flag to simplify our identity key and
pre-key reveal oracles. Moreover, our record is added to the compromise set only when the safe-injP
predicate is false, which means the partner’s state is corrupted, capturing our strong authenticity.

• ep-mgmt(P, flag, ind): When the party P enters a new epoch as the sender upon the partner’s ind-th
pre-key, the new epoch number is added to the state corruption list if the safe challenge predicate is
false. Then, the epoch counter tP is incremented by 1 and the message index counter i is set to 0.
Due to the different definition of safe-chP predicate, compared to [1], the condition in our ep-mgmt
function additionally captures the impact of strong privacy on PCS.

• delete(t, i): deletes all records that includes (t, i) from the sets trans, chall, and comp.
This function is identical to the one in [1] except for the syntax difference.

We also define a new helping function:
• corruption-update(): checks all records in the allTrans list whether the safe challenge predicates

for the first messages in each epoch (still) hold or not. If it does not hold, then adds the epoch into
the corruption list.

This helping function is invoked in the key-revealing and state-corruption oracles to capture the impact of
the leakage of any secret on the secrecy of the (past) session states.

Experiment Execution and Oracles. The security experiment ExpeSMΠ,△eSM
includes eighteen oracles.

Compared to the model in [1], our ExpeSMΠ,△eSM
security model additionally initializes the safe predicates

for identity keys, the reveal and corruption lists for pre-keys and states, and the pre-key counters at
the beginning of the experiment execution. Then, the attacker is given access to O1 := {NewIdKey-A,
NewIdKey-B,NewPreKey-A,NewPreKey-B} oracles for generating both parties’ identity keys and
at least one pre-keys. The rest of the experiment is similar to the one in [1]. A random initial shared
secret iss is sampled from the space ISS. Then, the session states stA and stB are respectively initialized
by eInit-A and eInit-B of eSM. After initializing the epoch counters and message index counters, and the

2The randomness space R is not specific and depends on the concrete function where the output is expected to be used.
Here, we use R only for simplicity.

10

sets, the winning predicates wincorr and winauth, a challenge bit b is sampled uniformly at random. The
attacker is given access to all oracles and terminates the experiment by outputting a bit b′ for evaluating
the winning condition winpriv. Finally, the experiment outputs all these three winning predicates. In
Figure 2, we only depict the nine oracles with suffix -A for party A. The oracles for party B are defined
analogously. The first eight oracles related to the identity keys and the pre-keys are new in our model.

• NewIdKey-A(r), NewIdKey-B(r): Both oracles can be queried at most once for each identity.
The input random string, which is sampled when necessary, is used to produce a public-private
identity key pair by using IdKGen(r). The corresponding safety flags are set according to whether
the input r = ⊥ or not. The public key is returned.

• NewPreKey-A(r), NewPreKey-B(r): Similar to the oracles above, a public-private pre-key pair
is generated. The corresponding pre-key index is added into the list Lrev

A or Lrev
B if the input r ̸= ⊥.

The public key is returned.
• RevIdKey-A, RevIdKey-B: These oracles simulate the reveal of the identity private key of a
party P ∈ {A, B}. The corresponding safe predicate is set to false. Then, the corruption-update
helping function is invoked to update whether the current and past states are still secure or not.
We require that this oracle invocation does not cause the change of safe challenge predicate for
any record in the all-challenge set allChall. Otherwise, this oracle undoes all actions during this
invocation and exits. This step prevents the attacker from distinguishing the challenge bit by trivially
revealing enough information to decrypt the past challenge ciphertexts.
Then, all records in the transcript set trans, whose safe injection predicate turns to false, are added
into the compromise set comp. This step prevents the attacker from making a trivial forgery by
using the information leaked by the reveal of the identity key.
Finally, the corresponding private identity key is returned.

• RevPreKey-A(n), RevPreKey-B(n): These oracles simulate the reveal of the n-th private pre-
key of a party P. The input n must indicate a valid prekey counter, i.e., n ≤ nP, and is added into
the reveal list Lrev

P . The rest of these oracles are same as above: (1) runs corruption-update,
(2) aborts the oracles if the safe challenge predicates of any record in the allChall set is violated, and
(3) adds all records in the trans set, whose safe injection predicate is violated, into the set comp.
Finally, the corresponding private pre-key is returned.

Compared to [1], the corruption oracles below are defined with huge differences:

• Corrupt-A, Corrupt-B: These oracles simulate the corruption of party P’s session states. First,
the current epoch counter is added into the state corruption list, followed running corruption-update
to update whether this corruption impacts the safety of other session states. Next, we require that
either the chall does not include the record produced by the partner ¬P, which is identical to the
requirement in the SM-security model in [1], or that either of the following two conditions holds: (1)
the flag in the record is good and P’s identity key is safe, or (2) the flag in the record is good and P’s
pre-key corresponding to the pre-key index in the record is safe. If the requirement is not satisfied,
then this oracle undoes all actions during this invocation and exits. This requirement prevents the
attacker from distinguishing the challenge bit by trivially revealing enough information to decrypt
the past challenge ciphertexts.
After that, we add all records rec ∈ trans, which are produced by ¬P at an unsafe epoch t (but not
all epochs as in [1]), into the compromise set comp. We also add all records rec ∈ trans, which are
produced by P at current epoch if the partner’s session at current epoch is not safe. This requirement
prevents the attacker from trivially breaking the strong authenticity by corrupting the sender’s state
and forging the corresponding undelivered messages.
Finally, the session states are returned.

Compared to [1], the corruption oracles in our model can be queried under weaker requirements,
providing the attacker with more information. Moreover, our corruption oracles set fewer records into the
compromise set, which enables the attacker to forge ciphertexts corresponding to more epochs.

The remaining eight oracles are essentially identical to the ones in [1], except for syntax differences.
For instance, sending message makes use of our eSend algorithm of eSM but not the Send algorithm of
SM in [1] and the challenge predicate additionally inputs a flag, as we have already explained.

• Transmit-A(ind,m, r), Transmit-B(ind,m, r): These transmission oracles simulate the real send-
ing execution. The input index ind must not exceed the partner’s current pre-key counter. The
random string r is sampled when necessary. The epoch information is updated if entering a new
epoch. After incrementing the message index, the eSend algorithm is executed using the controlled
or freshly sampled randomness r to transmit the message m upon the partner’s identity key and
ind-th pre-key. After recording the transcript, the ciphertext is returned.

11

• Challenge-A(ind,m0,m1, r), Challenge-B(ind,m0,m1, r): These challenge oracles simulate the
sending execution, where the attacker tries to distinguish the encrypted message m0 or m1. These
oracles are defined similar to the execution of transmission oracles with input (ind,mb, r) for
b ∈ {0, 1} sampled at the beginning of the experiment. The only difference is that the safety
predicate safe-chP(flag, tP, ind) for P ∈ {A, B} must hold and that the input messages m0 and m1 must
have the same length.

• Deliver-A(ind, c), Deliver-B(ind, c): These delivery oracles simulate the receiving execution of a
ciphertext generated by the honest party. This means, there must exist a record (P, ind, t, i,m, c) in
the transcript set trans. The eRcv is invoked. If the output epoch t′, message index i, and decrypted
message m ′ does not match the one in the record, the attacker immediately wins via the predicate
wincorr. If the output is in the challenge set chall, the decrypted message m ′ is set to ⊥ to prevent
the attacker from trivially distinguishing the challenge bit. After updating the epoch counter, the
record is deleted from transcript set, challenge set, and compromise set. This in particular means
that the ciphertext c is considered as a forgery after this delivery. Finally, the output epoch t′, the
message index i′, and the decrypted message m ′ is are returned.

• Inject-A(ind, c), Inject-B(ind, c): These oracles simulate a party P’s receiving execution of a
ciphertext forged by the attacker. The input ind ≤ nP specifies a pre-key for running eRcv and
the input c must be not produced by the partner in the transcript set. We require that eRcv is
invoked under the condition that the safety predicates safe-injP(tA) and safe-injP(tB) both are true.
This requirement is same as the one in [1]. If the decrypted message is not ⊥ and the ciphertext at
the same position is not compromised, the attacker immediately wins via the winauth predicate. The
rest of this oracle is identical to the delivery oracles.

Even without taking the usage of identity keys and pre-keys into account, our security model is strictly
stronger than the one in [1].

Definition 3. An eSM scheme Π is (t, q, qep, qM,△eSM, ϵ)-eSM secure if the below defined advantage for

all attackers against the ExpeSMΠ,△eSM
experiment in Figure 2 in time t is bounded by

AdveSMΠ,△eSM
(A) :=max

(
Pr[ExpeSMΠ,△eSM

(A) = (1, 0, 0)],Pr[ExpeSMΠ,△eSM
(A) = (0, 1, 0)],

|Pr[ExpeSMΠ,△eSM
(A) = (0, 0, 1)]− 1

2
|
)
≤ ϵ,

where q, qep, and qM respectively denote the maximal number of queries A can make, of epochs, and of

each party’s pre-keys in the ExpeSMΠ,△eSM
experiment.

Remark 1. Comparing our eSM to the SM security model is straightforward, but comparing with
simulation-based definitions is much more complex: the argument “game-based secure message definitions
completely different than the simulation-based definition” in [11] holds for the comparison of the model
in [11] with SM as much as for eSM. In some sense, simulation-based models can offer stronger properties
than usual game-based notions. However, the attacker in our eSM model has stronger capabilities than the
one in [11], in two main ways. First, while our eSM models do not restrict the power of attackers, i.e.,
classical or quantum, the model in [11] has to restrict the attacker to be classical, as the security against
adaptive corruptions in the standard simulation-based model is impossible whenever the key is shorter
than the plaintext [18]. Second, [11] claims that their model covers a new minor weaknesses of the DR
protocol if the attacker can make “multiple compromises of a party in a short time interval”. That is, an
attacker who corrupts a sender in the current and the past epochs, can break the privacy of the messages
in the current epoch. We stress this weakness is also captured by our eSM model for △eSM = 2, since
the safe-chP is true if the sender’s randomness flag is good and the safe state predicate of the partner is
true, independent of the corruption of the sender. Moreover, our eSM model allows fine-grained state
compromise, which is not included in [11], i.e., corrupting the sender to break privacy and corrupting the
receiver to break authenticity.

We give the comparison between our construction with ACD19, ACD19-PK, and TR in details later
in Supplementary Material C.

3.4 eSM Security and its Core Properties

Finally, we explain how our eSM security captures all security properties listed in Section 3.2.

• Correctness: No correctness means the encrypted message cannot be recovered correctly and
causes the winning event via Line 64.

12

ExpeSMΠ,△eSM
(A):

1 safeidKA , safeidKB ,LrevA ,LrevB ,LcorA ,LcorB ← ⊥
2 (nA,nB)← (0, 0)
3 ()← AO1 ()
4 req ⊥ /∈ {safeidKA , safeidKB }
5 req nA,nB ≥ 1

6 iss
$← ISS

7 stA ← eInit-A(iss), stB ← eInit-B(iss)
8 (tA, tB), (iA, iB)← (0, 0)
9 trans, chall, comp, allChall, allTrans← ∅

10 b
$← {0, 1}, wincorr,winauth ← false

11 b′
$← AO2 ()

12 winpriv ← Jb = b′K
13 return (wincorr,winauth,winpriv)

NewIdKey-A(r):

14 req safeidKA = ⊥
15 (r, flag)

$← sam-if -nec(r)

16 (ipkA, ikA)
$← IdKGen(r)

17 safeidKA ← Jflag = goodK
18 return ipkA
NewPreKey-A(r):

19 nA++

20 (r, flag)
$← sam-if -nec(r)

21 (prepknA
A , preknA

A)
$← PreKGen(r)

22 if flag = bad : LrevA

+← nA
23 return prepkA
RevIdKey-A:

24 safeidKA ← false
25 corruption-update()
26 foreach (P, ind, flag, t, i,m, c) ∈ allChall
27 req safe-chP(flag, t, ind)
28 foreach (P, t) ∈ trans and ¬safe-inj¬P(t)

29 comp
+← trans(P, t)

30 return ikA
RevPreKey-A(n):

31 req n ≤ nA

32 LrevA

+← n
33 corruption-update()
34 foreach (P, ind, flag, t, i,m, c) ∈ allChall
35 req safe-chP(flag, t, ind)
36 foreach (P, t) ∈ trans and ¬safe-inj¬P(t)

37 comp
+← trans(P, t)

38 return prekn
A

Corrupt-A:

39 LcorA

+← tA
40 corruption-update()

41 req (B, ind, flag) /∈ chall or
(
flag = good and

safeidKA

)
or

(
flag = good and safepreKA (ind)

)
42 foreach (B, t) ∈ trans and ¬safe-stB(t)
43 comp

+← trans(B, t)
44 foreach (A, tA) ∈ trans and ¬safe-stB(tB)
45 comp

+← trans(A, tA)
46 return stA
Transmit-A(ind,m, r):

47 req ind ≤ nB

48 (r, flag)
$← sam-if -nec(r)

49 ep-mgmt(A, flag, ind)
50 iA++

51 (stA, c)
$← eSend(stA, ipkB, prepk

ind
B ,m; r)

52 record(A, norm, flag, ind,m, c)
53 return c

Challenge-A(ind,m0,m1, r):

54 req ind ≤ nB

55 (r, flag)
$← sam-if -nec(r)

56 ep-mgmt(A, flag, ind)
57 req safe-chA(flag, tA, ind) and |m0| = |m1|
58 iA++

59 (stA, c)
$← eSend(stA, ipkB, prepk

ind
B ,mb; r)

60 record(A, chall, flag, ind,mb, c)
61 return c

Deliver-A(c):

62 req (B, ind, t, i,m, c) ∈ trans for some
ind, t, i,m

63 (stA, t′, i′,m′)← eRcv(stA, ikA, prek
ind
A , c)

64 if (t′, i′,m′) ̸= (t, i,m): wincorr ← true
65 if (t, i,m) ∈ chall: m′ ← ⊥
66 tA ← max(tA, t′)
67 delete(t, i)
68 return (t′, i′,m′)

Inject-A(ind, c):

69 req (B, c) /∈ trans and ind ≤ nA
70 req safe-injA(tB) and safe-injA(tA)
71 (stA, t′, i′,m′)← eRcv(stA, ikA, prek

ind
A , c)

72 if m′ ̸= ⊥ and (B, t′, i′) /∈ comp
73 winauth ← true
74 tA ← max(tA, t′)
75 delete(t′, i′)
76 return (t′, i′,m′)

Figure 2: The extended secure messaging experiment ExpeSMΠ,△eSM
for an eSM scheme Π with respect to a parameter

△eSM. O1 := {NewIdKey-A,NewIdKey-B,NewPreKey-A,NewPreKey-B} and O2 denotes all oracles. This
figure only depicts the oracles for A (ending with -A). The oracles for B are defined analogously. We highlighted
the difference to the SM-security game for a SM scheme in [1] with blue color. We give more helping functions
and safe predicates in Figure 3.

13

sam-if -nec(r):

77 flag← bad
78 if r = ⊥
79 r

$←R
80 flag← good
81 return (r, flag)

record(P, type, flag, ind,m, c):

82 rec← (P, ind, flag, tP, iP,m, c)

83 allTrans, trans
+← rec

84 if ¬safe-inj¬P(tP): comp
+← rec

85 if type = chall: allChall, chall
+←

rec

ep-mgmt(P, flag, ind):

86 if (P = A and tP even) or (P = B and tP odd)
87 if ¬safe-chP(flag, tP, ind)
88 LcorP

+← tP + 1
89 tP++, iP ← 0

delete(t, i):

90 rec← (P, ind, flag, t, i,m, c) for some P, ind, flag,m, c

91 trans, chall, comp
−← rec

corruption-update():

92 foreach (P, ind, flag, t, 1,m, c) ∈ allTrans
93 if ¬safe-chP(flag, (t − 1), ind)

94 LcorP

+← t

safepreKP (ind) :⇔ ind /∈ Lrev
P

safe-stP(t) :⇔ t, (t − 1), ..., (t −△eSM + 1) /∈ Lcor
P

safe-chP(flag, t, ind) :⇔
(
safe-stP(t) and safe-st¬P(t)

)
or
(
flag = good and safe-st¬P(t)

)
or
(
flag = good and

safeidK¬P

)
or
(
flag = good and safepreK¬P (ind)

)
safe-injP(t) :⇔ safe-st¬P(t)

Figure 3: The helping functions in extended secure messaging experiment ExpeSMΠ,△eSM
for an eSM scheme Π with

respect to a parameter △eSM. We highlight the difference to the SM-security game for a SM scheme in [1] with
blue color.

• Immediate decryption and message-loss resilience (MLR): No immediate decryption or
message-loss resilience means that some messages cannot be recovered to the correct position from
the delivered ciphertext when the attacker invokes the transmission and delivery oracles in an
arbitrary order, which causes the winning event via Line 64.

• Forward secrecy (FS): Note that the attacker can freely access the corruption oracles if all
challenge ciphertexts have been delivered. No FS means that the attacker can distinguish the
challenge bit from the past encrypted messages and wins via Line 12.

• Post-compromise security (PCS): Note that the states are not leaked to a passive attacker after
the owner sends a reply in a new epoch (i.e., epochs are not added into the state corruption list in
Line 88), assuming fresh randomness and the partner’s uncorrupted state, or identity key or pre-key,
see Line 87.
No PCS indicates that a state at an epoch not in the state corruption lists might still be corrupted,
which causes the lose of other security properties.

• Strong authenticity: The attacker can inject a forged ciphertext (Line 69) that does not correspond
to a compromised ciphertext position (Line 72) if sender’s session state is safe. Recall that a ciphertext
is compromised only when the session state of the sender is unsafe (see Line 28, 36, 42, 45, 84).
No strong authenticity means that the forged ciphertext can be decrypted to a non-⊥ message when
the sender is not corrupted, and further causes the winning of the attacker via Line 73.

• Strong privacy: Note that the challenge ciphertexts must be produced without the violation the
safety predicate safe-ch in Line 57, which means at least one of the following combinations are not
leaked: (1) both parties’ states, (2) the encryption randomness and the receiver’s state, (3) the
encryption randomness and the receiver’s private identity key, or (4) the encryption randomness and
the receiver’s corresponding private pre-key. Moreover, our identity key reveal oracles (RevIdKey-A,
RevIdKey-B), pre-key reveal oracles (RevPreKey-A and RevPreKey-B) oracles, and state
corruption oracles (Corrupt-A and Corrupt-B) also prevent the attacker from knowing all of
the above combinations related to any challenge ciphertext at the same time (see Line 27, 35, 41).
No strong privacy means that the attacker can distinguish the challenge bit even when at least one
of the above four combinations holds, which further causes the winning of the attacker win via
Line 12.

• Randomness leakage/failures: This is ensured by the fact that all of the above properties hold
if the parties’ session states are uncompromised.

14

• State compromise/failures: This is ensured by the strong privacy even when both parties’ state
are corrupted, as explained above.

• Periodic privacy recovery (PPR): Note that the pre-keys can be periodically generated optionally
under fresh randomness. The PPR is ensured by the strong privacy when the sender’s randomness is
good and the receiver’s newly freshly sampled pre-key is safe, as explained above.

Moreover, we can also observe that higher security can be obtained if the device of a party (assume
A) supports a secure environment, such as an HSM. If A’s identity key pair is generated in a secure
environment, the private identity key can be neither manipulated nor predicted by any attacker. This
means that the attacker can only query NewIdKey-A(r) with input r = ⊥ and never query RevIdKey-A
oracle in ExpeSMΠ,△eSM

. Thus, the predicate safeidKA is always true. If the partner B has access to the fresh
randomness, then the privacy of the messages sent from B to A always holds.

4 Extended Secure Messaging Scheme

We present our eSM construction in Section 4.1. In Section 4.2, we prove the eSM security of our eSM
construction and provides concrete instantiations.

4.1 The eSM Construction

Our eSM construction depicted in Figure 4 makes use of KEM = (K.KG,K.Enc,K.Dec), DS = (D.KG,
D.Sign,D.Vrfy), SKE = (S.Enc,S.Dec), and five key derivation functions KDFi for i ∈ [5]. For simplicity,
we assume all symmetric keys in our construction (including the root key rk, the chain key ck, the
unidirectional ratchet key urk, and the message key mk) have the same domain {0, 1}λ. We assume the
key generation randomness spaces of KEM and DS are also {0, 1}λ. The underlying DS and SKE are
assumed to be deterministic. We start with the definition of the state in our eSM construction.

Definition 4. The state in our eSM construction in Figure 4 consists of following variables:
• st.id: the owner of state. In this paper, we have stA.id = A and stB.id = B.
• st.t: the local epoch counter. It starts with 0.
• st.i: the local message index counter. It starts with 0.
• st.rk ∈ {0, 1}λ: the (symmetric) root key. This key is initialized from the initial shared secret and
updated only when entering next epoch. The root key is used to initialize the chain key at the time
of update.

• st.ck0, st.ck1, ... ∈ {0, 1}λ: the (symmetric) chain keys at each epoch. These keys are initialized
at the beginning of each epoch and updated when sending messages. The chain keys are used to
deterministically derive the (one-time symmetric) unidirectional ratchet keys (urk).

• st.nxs ∈ {0, 1}λ: a local NAXOS random string, which is used to improve the randomness when
generating new KEM and DS key pairs.

• st.Dl : the dictionary that stores the maximal number (we also say the length) of the transmissions
in the previous epochs.

• st.prtr: the pre-transcript that is produced at the beginning of each epoch and is attached to the
ciphertext whenever sending messages in the same epoch.

• st.D0
urk , st.D1

urk , ...: the dictionaries that store the (one-time symmetric) unidirectional ratchet keys
urk for each epoch. The urks are used to derive the (one-time symmetric) message keys (mk) for
real message encryption and decryption using SKE.

• (st.ek0, st.dk0), (st.ek1, st.dk1), ...: the (asymmetric) KEM public key pairs. These key pairs are
used to encapsulate and decapsulate the randomness, which (together with the one-time symmetric
unidirectional ratchet key urk) is used to derive the message keys (mk) of SKE.

• (st.sk-1, st.vk-1), (st.sk0, st.vk0), (st.sk1, st.vk1), ...: the (asymmetric) DS private key pairs. These key
pairs are used to sign and verify the (new) pre-transcript output by eSend3.

Our eSM construction makes use of two auxiliary functions: eSend-Stop and eRcv-Max for practical
memory management. Similar to [1], we only explain the underlying mechanism and omit their concrete
instantiation.

3The superscript of the signing/verification keys are epochs when the DS key pairs are generated and used until the next
key generation two epochs later. Here, we slightly abuse the notation and have st.sk-1 and st.vk-1, which are used only to
sign and verify the next verification key in epoch 1.

15

IdKGen():

1 (ipk , ik)
$← K.KG()

2 return (ipk , ik)

PreKGen():

3 (prepk , prek)
$← K.KG()

4 return (prepk , prek)
eInit-A(iss):

5 stA.nxs ∥ ∥ stA.rk ∥ stA.ck0 ∥ rKEMA ∥ rKEMB ∥ rDS
A ∥ rDS

B ← iss

6 (, stA.dk
0)

$← K.KG(rKEMA), (stA.ek
1,)

$← K.KG(rKEMB)

7 (stA.sk
-1,)

$← D.KG(rDS
A), (, stA.vk

0)
$← D.KG(rDS

B)
8 stA.id ← A, stA.prtr← ⊥, stA.t ← 0, stA.i ← 0, stA.Dl [·]← ⊥, stA.D0

urk [·]← ⊥
9 return stA
eInit-B(iss):

10 ∥ stB.nxs ∥ stB.rk ∥ stB.ck0 ∥ rKEMA ∥ rKEMB ∥ rDS
A ∥ rDS

B ← iss

11 (stB.ek
0,)

$← K.KG(rKEMA), (, stB.dk
1)

$← K.KG(rKEMB)

12 (, stB.vk
-1)

$← D.KG(rDS
A), (stB.sk

0,)
$← D.KG(rDS

B)
13 stB.id ← B, stB.prtr← ⊥, stB.t ← 0, stB.i ← 0, stB.Dl [·]← ⊥
14 return stB
eSend(st, ipk , prepk ,m):

15 (c1, k1)
$← K.Enc(st.ekst.t), (c2, k2)

$← K.Enc(ipk), (c3, k3)
$← K.Enc(prepk)

16 (updar, updur)← KDF1(k1, k2, k3)
17 if (st.id = A and st.t even) or (st.id = B and st.t odd)
18 l← eSend-Stop(st), st.t++, st.i ← 0

19 r
$← {0, 1}λ, (st.nxs, rKEM , rDS)← KDF2(st.nxs, r)

20 (ek, st.dkst.t+1)
$← K.KG(rKEM), (st.skst.t , vk)

$← D.KG(rDS)
21 prtrar ← (l, c1, c2, c3, ek, vk), σar ← D.Sign(st.skst.t−2, prtrar)
22 st.prtr← (prtrar, σar), (st.rk, st.ckst.t)← KDF3(st.rk, upd

ar)
23 (st.ckst.t , urk)← KDF4(st.ck

st.t), mk ← KDF5(urk, upd
ur), c′ ← S.Enc(mk,m)

24 prtrur ← (st.t, st.i, c′, c1, c2, c3), σur ← D.Sign(st.skst.t , prtrur)
25 return (st, (st.prtr, prtrur, σur))
eRcv(st, ik , prek , c):

26 ((prtrar, σar), prtrur, σur)← c, (l, c1, c2, c3, ek, vk)← prtrar ,(t, i, c′, c′1, c
′
2, c

′
3)← prtrur

27 if t ≤ st.t− 2: req st.Dl [t] ̸= ⊥ and i ≤ st.Dl [t]

28 req t ≤ st.t + 1 and
(
(st.id = A and t even) or (st.id = B and t odd)

)
29 if t = st.t + 1
30 req D.Vrfy(st.vkt−2, prtrar, σar)
31 eRcv-Max(st, l), st.Dl [t− 2]← l, st.t++
32 k1 ← K.Dec(st.dkst.t , c1), k2 ← K.Dec(ik , c2), k3 ← K.Dec(prek , c3)
33 (updar,)← KDF1(k1, k2, k3), (st.rk, st.ck

st.t)← KDF3(st.rk, upd
ar)

34 Dst.t
urk [·]← ⊥, st.i ← 0, st.ekst.t+1 ← ek, st.vkst.t ← vk

35 req D.Vrfy(st.vkt , prtrur, σur)
36 k′1 ← K.Dec(st.dkst.t , c′1), k

′
2 ← K.Dec(ik , c′2), k

′
3 ← K.Dec(prek , c′3)

37 (, updur)← KDF1(k′1, k
′
2, k

′
3)

38 while st.i ≤ i: (st.ckst.t , urk)← KDF4(st.ck
st.t), Dst.t

urk [st.i]← urk, st.i++

39 urk ← Dst.t
urk [i], D

st.t
urk [i]← ⊥, mk ← KDF5(urk, upd

ur), m ← S.Dec(mk, c′)
40 return (st, t, i,m)

Figure 4: Our eSM construction. KEM = (K.KG,K.Enc,K.Dec), DS = (D.KG,D.Sign,D.Vrfy), and SKE = (S.Enc,
S.Enc) respectively denote a key encapsulation mechanism, a deterministic digital signature and a deterministic
authenticated encryption schemes. The KDFi for i ∈ [5] denote five independent key derivation functions.

16

• eRcv-Max(st, l): This algorithm is called in eRcv algorithm when the caller switches its role from
message sender in epoch st.t to the message receiver in a new epoch st.t + 1. This algorithm inputs
(the caller’s) state st and a number l and remembers the value l together with the epoch counter
t′ := st.t − 1 locally. Once l messages corresponds to the old epoch t′ are received, the state values

for receiving messages in epoch t′, i.e., st.ckt
′
, st.dkt

′
, st.vkt

′
, st.Dt′

urk , st.Dl [t
′] are erased, i.e., set to

⊥. Moreover, the number how many times the chain key st.ckst.t has been forwarded (i.e., how many
messages have been sent) in the epoch st.t is stored, while the chain key st.ckst.t itself together with
the encryption key st.ekst.t is erased.

• eSend-Stop(st): This algorithm is called in eSend algorithm when the caller switches its role from
the message receiver in epoch st.t to the message sender in a new epoch st.t + 1. This algorithm
inputs (the caller’s) state st and outputs how many messages are sent in the epoch st.t − 1, which is
locally stored during the previous eRcv-Max invocation, denoted by l. The signing key st.skt is also
erased after its signs the next verification key st.vkt+2 later. We write l← eSend-Stop(st).

Following the syntax in Definition 1, our eSM construction consists of six algorithms, each of which is
explained in details below.

IdKGen(): The identity key generation algorithm samples and outputs a public-private KEM key pair.

PreKGen(): The pre-key generation algorithm samples and outputs a public-private KEM key pair.

eInit-A(iss): The A’s extended initialization algorithm inputs an initial shared secret iss ∈ ISS. First, A
parses iss into seven components: the initial NAXOS string stA.nxs , the shared root key stA.rk, the shared
chain key stA.ck

0, and four randomness for A’s and B’s KEM and DS key generation: rKEMA , rKEMB , rDS
A , rDS

B .
Then, A respectively runs K.KG and D.KG on the above randomness and stores stA.dk

0, stA.ek
1, stA.sk

-1,
stA.vk

0, which are respectively generated using rKEMA , rKEMB , rDS
A , and rDS

B . The other values generated in
the meantime are discarded.

Finally, A sets the identity stA.id to A, the local pre-transcript stA.prtr to ⊥, the epoch counter stA.t to
0, the message index stA.i to 0, and initializes the maximal transmission length dictionary Dl and the
unidirectional ratchet dictionary D0

urk , followed by outputting the state stA.

eInit-B(iss): The B’s extended initialization algorithm inputs an initial shared secret iss ∈ ISS and runs
very similar to eInit-A. First, B parses iss into seven components: the initial NAXOS string stB.nxs, the
shared root key stB.rk, the shared chain key stB.ck

0, and four randomness for A’s and B’s KEM and DS key
generation: rKEMA , rKEMB , rDS

A , rDS
B . Then, B respectively runs K.KG and D.KG on the above randomness

and stores stB.ek
0, stB.dk

1, stB.vk
-1, stA.sk

0, which are respectively generated using rKEMA , rKEMB , rDS
A , and

rDS
B . The other values generated in the meantime are discarded. Note that the values stored by B is the
ones discarded by A, and vice versa.

Finally, B sets the identity stB.id to B, the local pre-transcript stB.prtr to ⊥, the epoch counter stB.t to
0, the message index stB.i to 0, and initializes the maximal transmission length dictionary Dl , followed by
outputting the state stB. Note that no unidirectional ratchet dictionary D0

urk is initialized, since B acts as
the sender in the epoch 0.

eSend(st, ipk , prepk ,m): The sending algorithm inputs the (caller’s) state st, the (caller’s partner’s)
public identity key ipk and pre-key prepk , and a message m.

First, the caller runs the encapsulation algorithm of KEM and obtains three ciphertext-key tuples
(c1, k1), (c2, k2), and (c3, k3) respectively using the local key st.ekst.t , and the identity key ipk , and the
pre-key prepk . Next, the caller applies KDF1 to k1, k2, and k3, for deriving two update values updar and
updur.

If the caller switches its role from receiver to sender, i.e. the caller st.id is A and the epoch stA.t is
even or the caller is B and the epoch is odd, it first executes the following so-called asymmetric ratchet
(ar) framework: First, the caller runs eSend-Stop(st) for a value l that counts the sent messages in the
previous epoch, followed by incrementing the epoch counter st.t by 1 and initializing the message index
counter i to 0. Next, the caller samples a random string r, which together with the local NAXOS string
st.nxs is applied to a key derivation function KDF2, in order to produce a new NAXOS string, a KEM key
generation randomness rKEM , which is used to produce a new KEM key pair for receiving messages in
the next epoch, and a DS key generation rDS, which is used to produce a new DS key pair for sending
messages in this epoch. The caller stores the private decapsulation keys and signing keys into the state.

17

Then, the caller signs the pre-transcript for the ar framework prtrar, including the value l, the ciphertext
c1, c2, and c3, the newly sampled encapsulation key ek and the verification key vk, using the signing key
produced two epochs earlier st.skst.t−2 for a signature σar. The pre-transcript prtrar and signature σar are
stored into the state st.prtr. Finally, the caller forwards the ar framework by applying a KDF3 to the root
key st.rk and the update updar for deriving new root key and chain key st.ckst.t .

Then, the caller executes the so-called unidirectional ratchet (ur) framework, no matter whether the ar
framework is executed in this algorithm invocation or not: First, the caller forwards the unidirectional
ratchet chain by applying a KDF4 to the current chain key st.ckst.t for deriving next chain key and a
unidirectional ratchet key urk. Next, the caller applies a KDF5 to the unidirectional ratchet key urk and
the update updur for the message key mk, followed by encrypting the message m by c′ ← S.Enc(mk,m).
Finally, the caller signs the pre-transcript prtrur of the ur framework, including the epoch st.t, the message
index st.i, and the ciphertexts c′, c1, c2, and c3, for a signature σur using the signing key st.skst.t .

This algorithm outputs a new state st and a final ciphertext, which is a tuple of the ar pre-transcript
and signature st.prtr = (prtrar, σar), the ur pre-transcript prtrur, and the signature σur.

eRcv(st, ik , prek , c): The receiving algorithm inputs the (caller’s) state st, the (caller’s) private identity
key ik and pre-key prek , and a ciphertext c, and does the mirror execution of eSend.

First, the caller parses the input ciphertext c into the pre-transcript and signature of ar framework
(prtrar, σar), the unidirectional ratchet pre-transcript prtrur, and the signature σur. Next, the caller further
parses the pre-transcript prtrar into one number l, three ciphertexts c1, c2, and c3, an encapsulation key
ek, and a verification key vk, and parses prtrur into an epoch counter t, a message index counter i, and
four ciphertexts c′, c′1, c

′
2, and c′3.

If the parsed epoch counter indicates a past epoch, i.e., t ≤ st.t − 2, the caller checks whether the
maximal transmission length has been set (and not erased) and whether the parsed message index does
not exceed the corresponding maximal transmission length. Then, the caller checks whether the parsed
epoch counter is valid (by checking whether st.id = A or B if the parsed epoch counter is even or odd)
and in a meaningful range (by checking whether t ≤ st.t + 1). If any check is wrong, the eRcv aborts and
outputs with m = ⊥.

If the parsed epoch counter t is the next epoch, i.e., t = st.t + 1, the caller executes the asymmetric
ratchet framework: The caller first checks whether the signature σar is valid under the verification key
st.vkt−2 and pre-transcript prtrar and aborts if the check fails. Next, the caller invokes eRcv-Max(st, l),
records the transmission length l, and increments the epoch counter. Then, three keys k1, k2, and k3
are respectively decapsulated from c1, c2, and c3 using local keys st.dkst.t , the private identity key ik ,
and pre-key prek . After that, the caller applies KDF1 to above keys for update value updar, which then
together with the root key st.rk is applied to KDF3 for a new root key and chain key st.ckst.t . Finally,
the caller initializes a dictionary Dst.t

urk for storing the unidirectional ratchet keys in this epoch, and the
message counter st.i to 0, and locally stores the encapsulation key for the next epoch and verification key
for this epoch.

Then, the caller executes the unidirectional ratchet framework, no matter whether the ar framework
is executed in this algorithm invocation or not: First, the caller also checks whether the signature σur

is valid under the verification key st.vkt and pre-transcript prtrur. Next, three keys k′1, k
′
2, and k′3 are

respectively decapsulated from c′1, c
′
2, and c′3 using local keys st.dkst.t , the private identity key ik , and

pre-key prek . Then, the caller applies KDF1 to above three keys for the update value updur. After that,
the caller continuously forwards the unidirectional ratchet chain, followed by storing the unidirectional
ratchet keys into the dictionary and incrementing the message index by 1, until the local message index
st.i reaches the parsed message index i. Finally, the caller reads the unidirectional ratchet key urk from
the dictionary corresponding to the parsed message index, followed by erasing it from the dictionary, and
deriving the message key mk by applying KDF5 to urk and the update updur, and finally decrypts the
message m from ciphertext c′ using mk.

This algorithm outputs a new state st, the parsed epoch t, the parsed message index i, as well as the
decrypted message m.

Remark 2. While we use KEM identity key and pre-key pairs for PPR, it is interesting ask whether a
similar “Periodic Authenticity Recovery” (PAR) can also be pursued. There are two candidates for the
primitives: (i) digital signatures: using these may directly violate the offline deniability requirement, to
which we return later in Section 5. (ii)ring signatures (RS) or designated verifier signatures (DVS) as
in [5], [24]: These are not suitable for our goals: On the one hand, they are not standard cryptographic
primitives, the PQ-secure instances of which are still not mature. On the other hand, the PAR provided by
RS or DVS is not as strong as the PPR provided by KEM: While revealing the sender’s private KEM keys

18

does not cause the loss of the privacy, the leakage of either party’s private RS or DVS keys enables an
attacker to impersonate either party against the partner. We leave achieving strong PAR using standard
primitives as future work.

4.2 Security Conclusion and Concrete Instantiation

Theorem 1. Let Π denote our eSM construction in Section 4.1. If the underlying KEM is δKEM-strongly
correct4 and ϵIND-CCA

KEM -secure, DS is δDS-strongly correct and ϵSUF-CMA
DS -secure, SKE is δSKE-strongly correct

and ϵIND-1CCA
SKE -secure, KDF1 is ϵ3prfKDF1

-secure5, KDF2 is ϵdualKDF2
secure, KDF3 is ϵprfKDF3

-secure, KDF4 is ϵprgKDF4
-

secure, KDF5 is ϵdualKDF5
-secure, in time t, then Π is (t, q, qep, qM,△eSM, ϵ)-eSM secure for △eSM = 2, where

ϵ ≤(qep + q)δDS + 3(qep + q)δKEM + qδSKE

+ qepϵ
SUF-CMA
DS + q2epqM(q + 1)ϵIND-CCA

KEM + qep(qM + 2)qϵIND-1CCA
SKE

+ q2epqM(q + 1)ϵ3prfKDF1
+ q2ep(qepq + qep + 1)ϵdualKDF2

+ q2ep(q + 1)ϵprfKDF3

+ qepq(q + 1)ϵprgKDF4
+ qep(qepqMq + qepqM + 2q)ϵdualKDF5

Proof. Our proof is divided into two steps: First, we modularize the eSM security into three simplified
security notations: correctness, privacy, and authenticity, which are defined in Supplementary Material F.
This step is conceptually similar to the approach of [1], but uses slightly different simplified security
notions.

Second, we introduce four lemmas in Supplementary Material G.1. Lemma 1 reduces the eSM security
to the simplified security notions, the full proof of which is given in Supplementary Material G.2. Lemma 2,
3, and 4 respectively proves the simplified correctness, privacy, and authenticity of our eSM construction
in Section 4.1, the full proof of which are given in Supplementary Material G.3, G.4, and G.5. The proof
is concluded by combining the above four lemmas together.

Remark 3. The strong unforgeability SUF-CMA of the underlying DS is required, since in our model and
the SM security model, the attacker can win if the receiver accepts any ciphertext which is not identical to
the one produced by the sender. Thus, if the attacker is able to produce a new signature for the original
payload, then the attacker still wins. However, we can see that such attack does not enable the attacker to
inject any malicious payload and to really interfere with the communication channel. We claim that the
EUF-CMA is sufficient, if we restrict the attacker to win via winauth predicate only when it injects a new
message, i.e., the Line 72 in Figure 2 is replaced by

(
m′ ̸= ⊥ and (B, t′, i′,m′) /∈ comp

)
.

Instantiation: We give the concrete instantiation for both classical and PQ settings. The deterministic
DS can be instantiated with Ed25519 for classical setting, the formal analysis was given in [25], and the
NIST suggested CRYSTALS-Dilithium for the PQ security, which is analyzed in [26]. A generic approach
to instantiating KEM is to encrypt random string using deterministic OW-CCA or merely OW-CPA secure
PKE for strong correctness [27], [28]. The NIST suggested NTRU is also available for IND-CCA security
and strong correctness [29]. The deterministic IND-1CCA secure authenticated encryption SKE can be
instantiated with the Encrypt-then-MAC construction in [30]. The dual or prg-secure KDFi for i ∈ {2, ..., 5}
can be instantiated with HMAC-SHA256 or HKDF. The 3prf-secure KDF1 can be instantiated with the
nested combination of any dual-secure function F, as explained in Supplementary Material E.4. We suggest
to double the security parameter of the symmetric primitives for PQ security.

5 Offline Deniability

As explained in Section 2.2, although the combination of SPQR and one of ACD19, ACD19-PK, or our
eSM, achieve strong privacy and authenticity in the PQ setting, it is still an open question what flavors
of offline deniability can be achieved by the combined protocols in the PQ setting. To address this, we
first extend the game-based offline deniability for asynchronous DAKE [5] to its combination with an eSM
scheme. Then, we prove that the combination of any offline deniable asynchronous DAKE, such as SPQR,

4By strongly correct, we mean that the schemes are conventionally correct for all randomness. See Supplementary
Material E for more details.

5By 3prf security, we mean that a function is indistinguishable from a random function w.r.t any of the three inputs.
See Supplementary Material E.4 for more details.

19

and our eSM construction in Section 4.1, is offline-deniable in our model. We recall the DAKE scheme and
its offline deniability in Supplementary Material D.

Our offline deniability experiment is depicted in Figure 5. The experiment ExpdeniΣ,Π,qP,qM,qS
is param-

eterized by a DAKE scheme Σ, a eSM scheme Π, and the maximal numbers of parties qP, pre-key per
party qM, and total sessions qS. For the notational purpose, we use ipk , ik , prepk , and prek to denote
the public and private keys that are generated by DAKE construction Σ. The keys generated by eSM
construction Π are notated without overline. The difference to the original model in [5, Definition 11],
also see Definition 7 in Supplementary Material D, is highlighted with blue color.

At the beginning of the experiment, a dictionary Dsession, which records the identity of the parties in
each session, and a session counter n with 0 are initialized. Next, long-term identity and medium-term pre-
public/private key pairs of Σ and Π are generated for all qP honest parties and provided to the attacker
(e.g., the judge). A challenge bit b is sampled uniformly at random. The attacker is given repeated access
to two oracles and wins if it can guess the challenge bit.
Session-Start(sid, rid, aid, did, ind) : This oracle inputs a sender identity sid, a receiver identity rid, a accuser

identity aid, a defendant identity did, and a pre-key index ind. This oracle first checks whether
the sender identity and the receiver identity are distinct and whether either the sender is the
accuser and the receiver is the defendant or another way around. Next, the session counter n
is incremented by 1 and the set of the sender identity sid and the receiver identity rid is set to
Dsession[i]. Then, it simulates the honest DAKE execution if the challenge bit is 0 or the accuser is
the sender. Otherwise, it runs the fake algorithm Σ.Fake. In both cases, a key K and a transcript T
are derived. In the end, if the challenge bit is 0, then the oracle honestly runs Π.eInit-A(K) and
Π.eInit-B(K) on the shared key K to produce the state stnsid and stnrid. Otherwise, the oracle runs a

function FakeeInitΠ (K, ipkdid, ik aid,Lprek
aid , sid, rid, aid, did) to produce a fake state stnFake. The transcript

T is returned.
Session-Execute(sid, rid, i, ind,m) : This oracle inputs a sender identity sid, a receiver identity rid, a session

index i, a pre-key index ind, and a message m. This oracle first checks whether the session between
sid and rid has been established by requiring Dsession[i] = {sid, rid}. Next, if the challenge bit is
0, this oracle simulates the honest transmission of message m. Otherwise, this oracle produces a
ciphertext c by running a function FakeeSendΠ on the fake state stiFake, the receiver’s public identity

key ipk rid, pre-key prepk ind
rid , the message m, and sender identity sid, the receiver identity rid, and a

pre-key index ind. In both cases, the ciphertext c is returned.
We stress that our offline deniability model is a significant extension to the one for DAKE in [5]. First,

while both models allow the attacker (e.g. the judge) to obtain the initial private secret of all parties, our
model additionally includes in this the private keys of eSM. Second, while the definition in [5] prevents an
attacker from deciding the challenge bit b given the (output) shared key and the transcript of DAKE key
establishments, our model prevents an attacker from deciding b given the transcript of all conversations,
which includes the one of DAKE and the one of eSM inputting the shared key of DAKE. This extension
follows the idea behind the simulation-based extension of [12]. Third, the accuser in the definition for
DAKE in [5] must be the responder resp (i.e., the receiver rid during the key establishment), since the
Σ.Fake algorithm is only invoked inputting the responder’s private keys and therefore on the responder’s
behalf. In contrast, we also allow the accuser to be the initiator init in the whole conversation, as our
Session-Execute runs the FakeΠ algorithm inputting a Fake state that is independent of the identity of the
accuser or the defendant during the key establishment.

Remark 4. Note that the accuser in the definition for DAKE in [5] must be the responder resp. This
is reasonable for the key establishment as an innocent responder might produce no output, as in SPQR,
in which case all transcript in the session must be produced by the initiator alone. However, we also
have to consider the case where the accuser might be the initiator in the full messaging protocol, as the
innocent responder might produce transcript after the initial key establishment. In our model, we restrict
the behavior of the accuser, who acts as initiator, to be honest during the key establishment phase, see
Line 23. We leave a stronger model without this restriction as future work.

Definition 5. We say the composition of a DAKE scheme Σ and an eSM scheme Π is (t, ϵ, qP, qM, qS)-
deniable, if there exist two functions FakeeInitΠ and FakeeSendΠ such that the below defined advantage for any
attacker A in time t is bounded by

AdvdeniΣ,Π := |ExpdeniΣ,Π,qP,qM,qS
(A)− 1

2
| ≤ ϵ

where qP, qM, and qS respectively denote the maximal number of parties, of pre-key per party, and the total
session in the ExpdeniΣ,Π,qP,qM,qS

in Figure 5.

20

ExpdeniΣ,Π,qP,qM,qS
(A):

1 Dsession[·]← ⊥, n← 0

2 Lall,L
ipk
all ,Lprepkall ← ∅

3 for u ∈ [qP]

4 Lpreku ← ∅
5 Lpreku ← ∅
6 (ipku, iku)

$← Σ.IdKGen()

7 (ipku, iku)
$← Π.IdKGen()

8 Lipkall

+← {ipku}

9 Lall
+← (ipku, iku)

10 Lall
+← (ipku, iku)

11 for ind ∈ [qM]

12 (prepk
ind
u , prek

ind
u)

$← Σ.PreKGen()

13 (prepk ind
u , prek ind

u)
$← Π.PreKGen()

14 Lpreku
+← prek

ind
u , Lprepkall

+← prepk
ind
u

15 Lpreku
+← prek ind

u

16 Lall
+← (prepku, preku)

17 Lall
+← (prepku, preku)

18 b
$← {0, 1}

19 b′
$← AO (Lall)

20 return Jb = b′K

Session-Start(sid, rid, aid, did, ind):

21 req {aid, did} = {sid, rid} and sid ̸= rid
22 n++, Dsession[n]← {sid, rid}
23 if b = 0 or aid = sid
24 πrid.role← resp, πrid.stexec ← running
25 πsid.role← init, πsid.stexec ← running

26 (π′
rid,m)

$← Σ.Run(ik rid,L
prek
rid ,Lipkall ,Lprepkall , πrid, (create, ind))

27 (π′
sid,m

′)
$← Σ.Run(ik sid,L

prek
sid ,Lipkall ,Lprepkall , πsid,m)

28 (K,T)
$← (π′

sid.K, (m,m ′))
29 else

30 (K,T)
$← Σ.Fake(ipk sid, ik rid,L

prek
rid , ind)

31 if b = 0

32 stnsid
$← Π.eInit-B(K), stnrid

$← Π.eInit-A(K)
33 else

34 stnFake
$← FakeeInitΠ (K, ipkdid, ikaid,Lprekaid , sid, rid, aid, did)

35 return T

Session-Execute(sid, rid, i, ind,m):

36 req Dsession[i] = {sid, rid}
37 if b = 0

38 (stisid, c)
$← Π.eSend(stisid, ipk rid, prepk

ind
rid ,m)

39 (stirid, , ,)← Π.eRcv(stirid, ik rid, prek
ind
rid , c)

40 else

41 (stiFake, c)
$← FakeeSendΠ (stiFake, ipk rid, prepk

ind
rid ,m, sid, rid, ind)

42 return c

Figure 5: The offline deniability experiment for an attacker A against the combination of a DAKE scheme Σ and
an eSM scheme Π. We highlight the difference to the offline deniability experiment for DAKE in Definition 7 with
blue color.

Theorem 2. Let Σ denote a DAKE scheme and Π denote our eSM construction in Section 4.1. If Σ is
(t, ϵ, q)-deniable (with respect to any qP, qM) in terms of the Definition 7 , then the composition of Σ and
Π is (t, ϵ, qP, qM, q)-deniable.

We give the proof in Supplementary Material G.6.

References

[1] J. Alwen, S. Coretti, and Y. Dodis, “The Double Ratchet: Security Notions, Proofs, and Mod-
ularization for the Signal Protocol,” in Advances in Cryptology – EUROCRYPT 2019, Springer,
2019.

[2] M. Marlinspike and T. Perrin, The X3DH Key Agreement Protocol, https://signal.org/docs/
specifications/x3dh/, November 2016.

[3] T. Perrin and M. Marlinspike, The Double Ratchet Algorithm, https://signal.org/docs/
specifications/doubleratchet/doubleratchet.pdf, November 2016.

[4] W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes, “CSIDH: An Efficient Post-Quantum
Commutative Group Action,” in Advances in Cryptology – ASIACRYPT 2018, Springer, 2018.

[5] J. Brendel, R. Fiedler, F. Günther, C. Janson, and D. Stebila, Post-quantum Asynchronous Deniable
Key Exchange and the Signal Handshake, Cryptology ePrint Archive, Report 2021/769, https:
//ia.cr/2021/769, 2021.

[6] K. Cohn-Gordon, C. J. F. Cremers, B. Dowling, L. Garratt, and D. Stebila, “A Formal Security
Analysis of the Signal Messaging Protocol,” in EuroS&P, IEEE, 2017.

[7] J. Jaeger and I. Stepanovs, “Optimal Channel Security Against Fine-Grained State Compromise:
The Safety of Messaging,” in Advances in Cryptology – CRYPTO 2018, Springer, 2018.

[8] B. Poettering and P. Rösler, “Towards Bidirectional Ratcheted Key Exchange,” in Advances in
Cryptology – CRYPTO 2018, Springer, 2018.

[9] D. Jost, U. Maurer, and M. Mularczyk, “Efficient Ratcheting: Almost-Optimal Guarantees for
Secure Messaging,” in Advances in Cryptology – EUROCRYPT 2019, Springer, 2019.

21

https://signal.org/docs/specifications/x3dh/
https://signal.org/docs/specifications/x3dh/
https://signal.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://signal.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://ia.cr/2021/769
https://ia.cr/2021/769

[10] F. B. Durak and S. Vaudenay, “Bidirectional Asynchronous Ratcheted Key Agreement with Linear
Complexity,” in Advances in Information and Computer Security, Springer, 2019.

[11] A. Bienstock, J. Fairoze, S. Garg, P. Mukherjee, and S. Raghuraman, A More Complete Analysis of
the Signal Double Ratchet Algorithm, Cryptology ePrint Archive, Paper 2022/355, https://eprint.
iacr.org/2022/355.

[12] N. Vatandas, R. Gennaro, B. Ithurburn, and H. Krawczyk, “On the Cryptographic Deniability of
the Signal Protocol,” in Applied Cryptography and Network Security, Springer, 2020.

[13] K. Cohn-Gordon, C. Cremers, B. Dowling, L. Garratt, and D. Stebila, “A Formal Security Analysis
of the Signal Messaging Protocol,” Journal of Cryptology, vol. 33, no. 4, 2020.

[14] F. Balli, P. Rösler, and S. Vaudenay, “Determining the core primitive for optimally secure ratcheting,”
in International Conference on the Theory and Application of Cryptology and Information Security,
Springer, 2020.

[15] M. Bellare, A. C. Singh, J. Jaeger, M. Nyayapati, and I. Stepanovs, “Ratcheted encryption and key
exchange: The security of messaging,” in Annual International Cryptology Conference, Springer,
2017.

[16] D. Jost, U. Maurer, and M. Mularczyk, “A unified and composable take on ratcheting,” in Theory
of Cryptography Conference, Springer, 2019.

[17] R. Canetti, P. Jain, M. Swanberg, and M. Varia, Universally composable end-to-end secure messaging,
Cryptology ePrint Archive, Paper 2022/376, https://eprint.iacr.org/2022/376, 2022.

[18] J. B. Nielsen, “Separating Random Oracle Proofs from Complexity Theoretic Proofs: The Non-
committing Encryption Case,” in Advances in Cryptology — CRYPTO 2002, Springer Berlin
Heidelberg, 2002.

[19] M. Di Raimondo, R. Gennaro, and H. Krawczyk, “Deniable Authentication and Key Exchange,” in
ACM CCS, ACM, 2006.

[20] N. Unger and I. Goldberg, “Deniable Key Exchanges for Secure Messaging,” in Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security, ser. CCS ’15, ACM,
2015.

[21] N. Unger and I. Goldberg, “Improved strongly deniable authenticated key exchanges for secure
messaging,” Proceedings on Privacy Enhancing Technologies, vol. 2018, no. 1, 2018.

[22] J. Brendel, M. Fischlin, F. Günther, C. Janson, and D. Stebila, “Towards post-quantum security for
Signal’s X3DH handshake,” in International Conference on Selected Areas in Cryptography, Springer,
2020.

[23] S. Dobson and S. D. Galbraith, Post-Quantum Signal Key Agreement with SIDH, Cryptology ePrint
Archive, https://ia.cr/2021/1187, 2021.

[24] K. Hashimoto, S. Katsumata, K. Kwiatkowski, and T. Prest, “An Efficient and Generic Construction
for Signal’s Handshake (X3DH): Post-Quantum, State Leakage Secure, and Deniable,” in Public-Key
Cryptography - PKC 2021, Springer, 2021.

[25] J. Brendel, C. Cremers, D. Jackson, and M. Zhao, “The provable security of Ed25519: theory and
practice,” in 2021 IEEE Symposium on Security and Privacy (S&P), IEEE, 2021.

[26] S. Bai, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and D. Stehlé,
CRYSTALS-Dilithium Algorithm Specifications and Supporting Documentation (Version 3.1), https:
//pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf.

[27] M. Bellare, M. Fischlin, A. O’Neill, and T. Ristenpart, “Deterministic encryption: Definitional equiv-
alences and constructions without random oracles,” in Annual International Cryptology Conference,
Springer, 2008.

[28] D. J. Bernstein and E. Persichetti, Towards KEM unification, Cryptology ePrint Archive, Paper
2018/526, https://eprint.iacr.org/2018/526.

[29] C. Chen, O. Danba, J. Hoffstein, A. Hülsing, J. Rijneveld, J. M. Schanck, P. Schwabe, W. Whyte,
and Z. Zhang, “Algorithm specifications and supporting documentation,” Brown University and
Onboard security company, Wilmington USA, 2019.

[30] M. Bellare and C. Namprempre, “Authenticated encryption: Relations among notions and analysis
of the generic composition paradigm,” in International Conference on the Theory and Application
of Cryptology and Information Security, Springer, 2000.

22

https://eprint.iacr.org/2022/355
https://eprint.iacr.org/2022/355
https://eprint.iacr.org/2022/376
https://ia.cr/2021/1187
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://eprint.iacr.org/2018/526

[31] M. Bellare and A. Lysyanskaya, Symmetric and Dual PRFs from Standard Assumptions: A Generic
Validation of an HMAC Assumption, Cryptology ePrint Archive, Report 2015/1198, https://ia.
cr/2015/1198, 2015.

A Review on messaging protocols with various optimal security

The “optimal” protocols by Jäger and Stepanovs [7] and by Pöttering Rösler [8] and the “sub-optimal”
protocol by Durak and Vaudenay [10] all are post-quantum compatible. The “almost-optimal” protocol by
Jost, Maurer, and Mularczyk [9] only has classically secure instantiation. Technically, they follow different
ratcheting frameworks:

1. “optimal” Jäger-Stepanovs protocol [7]: In the Jäger-Stepanovs protocol, all cryptographic
building blocks except the hash functions, such as PKE and DS, are asymmetric and updatable.
When Alice continuously sends messages to Bob, the next encryption key is deterministically derived
from an encryption key included in the last reply from Bob and all past transcript since the last reply
from Bob. On the one hand, this protocol enjoys high security guarantee against impersonation due
to the asymmetric state. On the other hand, this protocol has no message-loss resilience, namely, if
one message from Alice to Bob is lost, then Bob cannot decrypt subsequent messages anymore. In
particular, no instantiation with constant bandwidth in the post-quantum setting is available.

2. “optimal” Pöttering-Rösler protocol [8]: In the Pöttering-Rösler protocol, both asymmetric
and symmetric primitives, including updatable KEM, DS, MAC are employed. When Alice sends
messages to Bob, she first runs the encapsulations upon the one or more KEM public keys depending
on her behavior. If Alice is sending a reply, then she needs to run the encapsulation upon all
accumulated KEM public keys that are generated and signed by Bob. Otherwise, she only needs one
KEM public key that was generated by herself when sending the previous message. After that, Alice
derives the symmetric key for message encryption from the symmetric state and the encapsulated
keys. This protocol enjoys state healing when continuously sending messages. Any unpredictable
randomness at some point can heal Alice’s state from corruption when she continuously sends
messages. However, this protocol has no message-loss resilience: If one message is lost in the
transmission, the both parties’ symmetric states that are used for key update mismatch. This means,
all subsequent messages cannot be correctly recovered by the recipient.

3. “sub-optimal” Durak-Vaudenay protocol [10]: In contrast to the above two “optimal” ap-
proaches, the Durak-Vaudenay protocol does not employ any key updatable components and has
a substantially better time complexity. When Alice sends messages to Bob, she samples several
fragments of a symmetric key and encrypts them using signcryption with the accumulated sender
keys, where the sender keys are generated either by herself or by Bob depending on whether Alice
is continuously sending messages or sending a reply. The Durak-Vaudenay protocol is similar to
Pöttering-Rösler but is less reliant on the state. Any randomness leakage corrupts the next message.
Moreover, both the message and the receiver key that is used for receiving or sending next message,
are encrypted under the symmetric key. This implies that the protocol does not have message-loss
resilience: If one message is lost in the transmission (from either Alice or Bob), the communication
session is aborted.

4. “almost-optimal” Jost-Maurer-Mularczyk protocol [9]: The Jost-Maurer-Mularczyk protocol
aims at stronger security than what is achieved by Signal, but slightly weaker than optimal security
proposed in Jäger-Stepanovs’ and Pöttering-Rösler’s work, yet its efficiency is closer to that of
Signal. The Jost-Maurer-Mularczyk protocol employs two customized novel schemes: healable
and key-updating encryption (HkuPke) and key-updating signatures (KuSig). When Alice sends
messages to Bob, Alice first samples two DS key pairs, while the one is used by Alice for sending
next continuous message, the other is used by Bob for sending the reply. Next, Alice updates the key
of HkuPke and encrypts the message as well as the private DS signing key for Bob. Then, Alice signs
the transcript and her next DS verification key twice, by using KuSig and DS. Finally, the state is
updated. Note that the sender has to send the next DS signing and verification keys to the partner.
If one message is lost in the transmission (from either Alice or Bob), the receiver can neither verify
the next message from the partner nor send a valid reply to the partner – the communication session
becomes stuck.
Moreover, Jost-Maurer-Mularczyk provides the HkuPke construction by making use of another novel
and customized secretly key-updatable encryption (SkuPke), the only known instantiation of which
relies on the Diffie-Hellman exchange. Thus, no PQ secure instantiation of Jost-Maurer-Mularczyk
protocol is available.

23

https://ia.cr/2015/1198
https://ia.cr/2015/1198

In particular, none of these protocols provide immediate decryption and message-loss resilience with
constant-size overhead.

B Review of ACD19 and TR protocols

In this section, we recall the ACD19 [1] and TR [11] protocols .

1. The ACD19 protocol [1, Section 5.1]: The ACD19 protocol is an instance of the SM scheme
and can be further modularized into three building blocks: the Continuous Key Agreement (CKA),
where the sender exchanges its randomness with the partner; the Forward-Secure Authenticated
Encryption with Associated Data (FS-AEAD), where the sender sends messages to the recipient and
updates the shared state in a deterministic manner, which provides forward secrecy and immediate
decryption; the PRF-PRNG refreshes its inherent shared state by using the randomness of provided
by CKA and initializes a new FS-AEAD thread, which provides the post-compromise security.
The ACD19 protocol is managed according to the epoch, which is used to describe how many
interactions in a two-party communication channel have been processed. The behavior of a party
(assume A) for sending messages is different when A enters a new epoch or not:
(a) When a receiver A switches to sender and sends the first message in a new epoch, A first counts

and remembers how many messages have been sent in the last epoch using the corresponding
FS-AEAD thread, which is then erased. Next, A increments the inherent epoch counter by 1.
Then, A invokes the sending algorithm of the CKA component for exchanging the randomness
with the partner B. The output of CKA algorithm in this epoch is also remembered locally.
Afterwards, A refreshes the shared state using PRF-PRNG and initialize a new FS-AEAD thread
for the new epoch.

(b) Regardless of whether A is sending the first message in a new epoch (after executing the above
step) or sending subsequent messages in the current epoch, A uses the current FS-AEAD thread
for the encrypting real message with associated data: the number of messages sent two epoch
earlier, the output of CKA in this epoch, the current epoch counter.

The receiving process is defined in the reverse way. When a sender (assume B) receives a message
indicating the next epoch, B switches his role to receiver and enters the next epoch by incrementing
the internal epoch counter. Notably, B parses and locally remembers the number of messages sent
two epochs earlier from the received ciphertext and erases the FS-AEAD thread once these messages
arrived at B.
Moreover, several different instantiations of CKA, FS-AEAD, and PRF-PRNG components are also
given in [1].

2. The TR protocol [11, Section 5.1]: The Triple Ratchet (TR) is very close to the ACD19
construction in [1], except for the following two differences:
(a) When a party switches its role from receiver to sender, it does not count and remember how

many messages have been sent in the last epoch. Instead, this step is executed in the receiving
algorithm when a party enters a new epoch and switches its role from sender to receiver.

(b) The underlying CKA component must be instantiated with a customized CKA+ construction,
which provides better privacy against randomness leakage but relies on a non-standard assump-
tion and a random oracle. Note that CKA is a generic building block, while CKA+ is a concrete
instantiation. The other building blocks such as FS-AEAD and PRF-PRNG can be instantiated
with the constructions in [1].

C Comparison of our eSM construction with ACD19, ACD19-PK,
and TR

Although our eSM construction in Section 4.1, the ACD19 and ACD19-PK constructions in [1], and the
TR construction in [11], all satisfy immediate decryption with constant bandwidth consumption, their
designs differ in many details.

Comparison between our eSM construction and ACD19 : The ACD19 protocol in [1, Section
5.1] makes use of three underlying modules: CKA, FS-AEAD, and PRF-PRNG. While the CKA employs
the asymmetric cryptographic primitives, such as KEM or Diffie-Hellman exchange, the FS-AEAD and
PRF-PRNG only employ symmetric cryptographic primitives, such as AEAD, PRF, PRG. In particular, the

24

FS-AEAD deterministically derives the symmetric keys for encrypting messages and decrypting ciphertexts
from the state, which is shared by both parties. Besides, they provide several CKA instantiations and all of
them sample the asymmetric key pairs only using the ephemeral randomness. Moreover, their construction
does not rely on any material outside the session state. Thus, it is easy to see that the leakage of either
state will trigger the loss of the privacy and authenticity.

Compared to the ACD19, our eSM construction has the differences mainly from following three aspects:
First, the asymmetric primitives are used in every sending or receiving execution. In particular, our
construction uses the KEM and DS keys across our asymmetric ratchet (ar) and unidirectional ratchet
(ur) frameworks. Although this stops the further modularization of our eSM construction, the deployment
of the KEM and DS provides better performance in terms of the strong privacy and strong authenticity,
since the leakage of sender’s (resp. receiver’s) state does not indicate the compromise of the decapsulation
key (resp. signing key) and preserves the privacy (resp. authenticity).

Second, our construction makes use of the identity keys and pre-keys, which also provide benefits
in terms of strong privacy, state compromise/failure, and PPR. If the corruption of a device’s full state
without secure environment is not noticed by the owner (which is the common real-world scenario), the
privacy for subsequent messages from the partner is lost until the corruption party sends a reply. The use of
pre-key provides mitigation in this scenario as the pre-key is updated every certain period in the back-end
without the active behavior of the corrupted party. Moreover, if the device has a secure environment
such as an HSM, storing identity keys into the HSM provides even stronger security guarantees, as we
explained in Section 3.4.

Finally, our construction implicitly uses three kinds of NAXOS-like tricks for strong privacy. (1) First,
the symmetric root key together with ephemeral randomness is used for deriving new shared state when
sending the first message in each epoch, this is same as in ACD19. (2) Second, the NAXOS string st.nxs
(in the sender’s state) together with the ephemeral randomness is used for improving the key generation
when sending the first message in each epoch. (3) Third, the unidirectional ratchet keys (derived from the
shared state) together with the ephemeral randomness are used to derive the real message keys. We stress
the second and third NAXOS tricks provide additional benefits to our construction when comparing with
ACD19. On the one hand, bad randomness quality of a party when sending the first message in a new
epoch will cause leakage of the private KEM key in ACD19, but not in our construction. In this case,
the corruption of the partner in the next epoch will cause the loss of privacy in ACD19, but not in our
construction, due to the second NAXOS trick. On the other hand, the message keys are derived from not
only the mere state but also ephemeral randomness. The third NAXOS trick together with the usage of
identity keys and pre-keys provide stronger privacy against state corruption attacks.

As an aside, we observe that the CKA instantiation based on LWE (Frodo) does not provide correctness:
CKA-correctness requires both parties to always output the same key, even if the attacker controls the
randomness. Since LWE based Frodo includes an error that needs to be reconciled during the decapsulation,
the attacker can always pick bad randomness to prevent the correct reconciliation. Instead, our construction
is provably correct in the post-quantum setting, if the underlying KEM satisfies strong correctness, as
explained in Section 4.2.

Comparison between our eSM construction and ACD19-PK : The ACD19-PK construction in
[1, Section 6.2] is given based on their ACD19 construction. The only difference is that the ACD19-PK
additionally employs asymmetric cryptographic primitives PKE and DS. The fresh asymmetric keys for
the following epochs are sampled using ephemeral randomness and locally stored right after the execution
of CKA. After the execution of FS-AEAD, the sender additionally encrypts the ciphertext output by
FS-AEAD using PKE and signs the whole pre-transcript (including the newly generated PKE and DS
public keys, and the ciphertext of PKE) using DS. By importing PKE and DS, the strong privacy and
strong authenticity are guaranteed.

Although their ACD19-PK construction looks very similar to our eSM construction at the first glance,
there do exist many differences. First, our construction employs identity keys and pre-keys outside of the
session states as discussed above. This ensures the strong privacy, state compromise/failure, and periodic
privacy recovery, even when the receiver’s session state is compromised. These properties are not satisfied
by ACD19-PK.

Second, our construction uses three kinds of NAXOS tricks for strong privacy, as explained above. The
second and third NAXOS tricks improve the privacy also of ACD19-PK. Note that ACD19-PK also employs
an asymmetric digital signature scheme. Our second NAXOS trick also provides improved authenticity
comparing with ACD19-PK.

Moreover, ACD19-PK samples PKE and DS key pairs only for the future epochs. In particular, when a

25

party starts to send messages at epoch t, its local state includes both the signing key for epoch t and
the one for epoch t + 2. The state exposure means that the attacker can forge messages for both epochs.
In other words, the recovery from the session state corruption requires at least four epochs. In our eSM
construction, the old signing key will be erased whenever new signing key is generated. This means the
healing of our eSM construction still only needs two epochs.

Finally, while ACD19-PK use the “nested encryption” - encrypting the ciphertext of FS-AEAD using
PKE, our construction opts to use KEM independent of SKE. This reduces much computational effort and
bandwidth, in particular for encrypting large files, which further mitigates the concern in [1, Section 6.1].

Comparison between our eSM construction and TR : The TR construction in [11, Section 5.1] is
very close to the one in ACD19 except for two differences: (1) The FS-Stop function of the underlying
FS-AEAD components is invoked when receiving the first message in a new epoch but not sending. (2) The
underlying CKA component must be instantiated with a new customized CKA+ construction based on a
Diffie-Hellman exchange. The state of CKA+ component does not merely rely on the randomness but also
on the past state. This can be seen as a variant of the NAXOS trick.

Compared to the TR construction, our eSM construction mainly differs in four aspects: First, our
construction employs generic KEMs aiming at post-quantum compatibility, while TR makes use of a
concrete Diffie-Hellman exchange, which is vulnerable to quantum attacks.

Second, while TR and our constructions both use the root key for a NAXOS trick, the NAXOS trick
for improving privacy of the KEM key pairs is different. While TR uses a tailored CKA+ construction
assuming a non-standard StDH and random oracles, our construction uses a local NAXOS string st.nxs
only assuming the dual security of the function KDF2, the generic constructions of which based solely on
standard assumptions are given in [31].

Third, TR and our construction both prevent an attacker from corrupting the receiver in the current
epoch and forging a ciphertext corresponding to the previous epoch to the partner. Note that this
attack is effective against ACD19, as the attacker can in the current epoch corrupt the FS-AEAD thread
corresponding to the previous epoch and use it to encrypt the forged message. Due to the immediate
decryption property, the forged ciphertext must be correctly decrypted. The TR construction prevents
this attack by invoking FS-Stop function when receiving the first message in a new epoch to erase the
chain key for sending in the previous epoch. In contrast, our construction prevents this attack by erasing
both the chain key and the KEM encapsulation key for sending in the old epoch in the eRcv-Max function.

The remaining benefits of our construction in comparison to ACD19 also apply to the comparison with
TR, including strong privacy, strong authenticity, PPR, the resilience to a novel forgery attack.

D Review on DAKE scheme and the game-based deniability

In this section, we recall the DAKE scheme and its game-based offline deniability notion in [5].

D.1 The DAKE scheme

Definition 6. An asynchronous deniable authenticated key exchange protocol is a tuple of algorithms
DAKE = (Σ.IdKGen,Σ.PreKGen,Σ.EpKGen,Σ.Run,Σ.Fake) as defined below.

• (Long-term) identity key generation (ipku, iku)
$← Σ.IdKGen(): outputs the identity pub-

lic/private key pair of a party u.

• (Medium-term) pre-key generation (prepk
ind

u , prek
ind

u)
$← Σ.PreKGen(): outputs the ind-th

public/private key pair of a party u.

• (Ephemeral) key generation (epk
ind

u , ek
ind

u)
$← Σ.EpKGen(): outputs the ind-th public/private key

pair of user u

• Session execution (π′,m ′)
$← Σ.Run(iku,Lprek

u ,Lipk
all ,L

prepk
all , π,m): inputs a party u’s long-term

private key iku, a list of u’s private pre-keys Lprek
u , lists of long-term and medium-term public keys

for all honest parties Lipk
all and Lprepk

all , a session state π, and an incoming message m, and outputs
an updated session state π′ and a (possibly empty) outgoing message m ′. To set up the session
sending the first message, Σ.Run is called with a distinguished message m = create.

• Fake algorithm (K,T)
$← Σ.Fake(ipku, ikv,Lprek

v , ind): inputs one party u’s long-term identity
public key ipku, the other party v’s long-term identity private key ikv, a list of v’s private pre-keys

26

Lprek
v , and an index of party v’s pre-key ind and generates a session key K and a transcript T of a

protocol interaction between them.

The session state π includes following variables (we only recall the ones related to the offline deniability):
• role ∈ {init, resp}: the role of the party. The initiator init and the responder resp indicate the
message sender and receiver in the DAKE, respectively.

• stexec ∈ {⊥, running, accepted, reject}: The status of this session’s execution. The status is initialized
with ⊥ and turns to running when the session starts. The status is set to accept if the DAKE is
executed without errors and reject otherwise.

D.2 The game-based offline deniability experiment

The game-based offline deniability experiment ExpdeniΣ,qP,qM,qS
(A) for a DAKE protocol Σ is depicted in Fig-

ure 6, where qP, qM, and qS respectively denotes the maximal number of parties, of (medium-term) pre-keys
per party, and of total sessions. At the start of this experiment, long-term identity and medium-term pre-
public/private key pairs are generated for all qP honest parties and provided to the attacker6. A random
challenge bit b is fixed for the duration of the experiment. The attacker is given repeated access to a
Session-Start oracle which takes as input two party identifiers sid and rid and a pre-key index ind. If b is 0,
then the Session-Start oracle will generate an honest transcript of an interaction between sid and rid using
the Σ.Run algorithm and each party’s secret keys. If b is 1, then the Session-Start oracle will generate a
simulated transcript of an interaction between sid and rid using the Σ.Fake algorithm. At the end of the
experiment, the attacker outputs a guess b′ of b. The experiment outputs 1 if b′ = b and 0 otherwise.
The attacker’s advantage in the deniability game is the absolute value of the difference between 1

2 and the
probability the experiment outputs 1.

Definition 7. An asynchronous DAKE protocol Σ is (t, ϵ, qS)-deniable (with respect to maximal number
of parties qP and pre-keys per party qM) if for any adversary A with running time at most t and making
at most qS many queries (to its Session-Start oracle), we have that

AdvdeniΣ (A) :=
∣∣Pr[ExpdeniΣ,qP,qM,qS

(A) = 1]− 1

2

∣∣ ≤ ϵ

where ExpdeniΣ,qP,qM,qS
(A) is defined in Figure 6.

ExpdeniΣ,qP,qM,qS
(A):

1 Lall,L
ipk
all ,Lprepkall ← ∅

2 for u ∈ [qP]

3 Lpreku ← ∅
4 (ipku, iku)

$← Σ.IdKGen()

5 Lipkall

+← {ipku}

6 Lall
+← (ipku, iku)

7 for ind ∈ [qM]

8 (prepk
ind
u , prek

ind
u)

$← Σ.PreKGen()

9 Lpreku
+← prek

ind
u , Lprepkall

+← prepk
ind
u

10 Lall
+← (prepku, preku)

11 b
$← {0, 1}

12 b′
$← AO (Lall)

13 return Jb = b′K

Session-Start(sid, rid, ind):

14 if b = 0
15 πrid.role← resp, πrid.stexec ← running
16 πsid.role← init, πsid.stexec ← running

17 (π′
rid,m)

$← Σ.Run(ik rid,L
prek
rid ,Lipkall ,Lprepkall , πrid, (create, ind))

18 (π′
sid,m

′)
$← Σ.Run(ik sid,L

prek
sid ,Lipkall ,Lprepkall , πsid,m)

19 (K,T)
$← (π′

sid.K, (m,m ′))
20 else

21 (K,T)
$← Σ.Fake(ipk sid, ik rid,L

prek
rid , ind)

22 return (K,T)

Figure 6: The offline deniability experiment for an attacker A against a DAKE scheme Σ. The oracle O :=
{Session-Start}.

E Preliminaries

E.1 Key Encapsulation Mechanisms

Definition 8. A key encapsulation mechanism (KEM) scheme over randomness space R and symmetric
key space K is a tuple of algorithms KEM = (K.KG,K.Enc,K.Dec) as defined below.

6The attacker here can be considered as a judge in the real life.

27

• Key Generation (ek, dk)
$← K.KG(pp): takes as input the public parameter pp and outputs a public

encapsulation and private decapsulation key pair (ek, dk) .

• Encapsulation (c, k)
$← K.Enc(ek): takes as input a public key pk and outputs a ciphertext c and a

symmetric key k. We write (c, k)
$← K.Enc(ek; rEncaps) if the random coins rEncaps ∈ R is specified.

• Decapsulation k ← K.Dec(dk, c): takes as input a secret key dk and a ciphertext c and outputs
either a symmetric key k or an error symbol ⊥.

We say a KEM is δ-correct if for every (ek, dk)
$← K.KG(), we have

Pr[k ̸= K.Dec(dk, c) : (c, k)
$← K.Enc(ek)] ≤ δ

In particular, we call a KEM (perfectly) correct if δ = 0.

We say a KEM is δ-strongly correct if for every (ek, dk)
$← K.KG() and every rEncaps ∈ R, we have

Pr[k ̸= K.Dec(dk, c) : (c, k)
$← K.Enc(ek; rEncaps)] ≤ δ

Compared to the conventional correctness, the strong correctness requires that the encapsulate keys
can be correctly recovered for every randomness coins involved during the encapsulation. In particular,
we call a KEM (perfectly) strongly correct if δ = 0.

In terms of the security notions, we recall the standard indistinguishability under chosen plain-
text/ciphertext attacks (IND-CPA/IND-CCA). The IND-CPA security prevents an attacker from distinguish-
ing the encapsulated symmetric key of a challenge ciphertext from a random one. The IND-CCA security
additionally allows the attacker to access a decapsulation oracle.

Definition 9. Let KEM = (K.KG,K.Enc,K.Dec) be a key encapsulation mechanism scheme with symmetric
space K. We say KEM is ϵ-IND-XXX secure for XXX ∈ {CPA,CCA}, if for every (potential quantum)
adversary A , we have

ϵIND-CCA
KEM (A) :=

∣∣∣Pr[ExptIND-XXX
KEM (A) = 1]− 1

2

∣∣∣ ≤ ϵ

where the ExptIND-XXX
KEM (A) experiment is defined in Figure 7.

ExptIND-CPA
KEM (A):

1 b
$← {0, 1}

2 (ek, dk)
$← K.KG()

3 (c⋆, k⋆0)
$← K.Enc(ek)

4 k⋆1
$← K

5 b′
$← A(ek, c⋆, k⋆b)

6 return Jb = b′K

ExptIND-CCA
KEM (A):

1 b
$← {0, 1}

2 (ek, dk)
$← K.KG()

3 (c⋆, k⋆0)
$← K.Enc(ek)

4 k⋆1
$← K

5 b′
$← AODecaps (ek, c⋆, k⋆b)

6 return Jb = b′K

ODecaps(c):

7 if c = c⋆

8 return ⊥
9 k′ ← K.Dec(dk, c)

10 return k′

Figure 7: IND-CPA and IND-CCA experiments for KEM = (K.KG,K.Enc,K.Dec) with symmetric key space K.

E.2 Digital Signature

Definition 10. A digital signature scheme over message spaceM and randomness space R is a tuple of
algorithms DS = (D.KG,D.Sign,D.Vrfy) as defined below.

• Key Generation (vk, sk)
$← D.KG(pp): inputs the public parameter pp and outputs a public

verification and private signing key pair (vk, sk).

• Signing σ
$← D.Sign(sk,m; rSign): inputs a signing key sk and a message m ∈ M and outputs a

signature σ; if the random coins rSign ∈ R is specified.
• Verification true/false ← D.Vrfy(vk,m, σ): inputs a verification key vk, a message m, and a
signature σ and outputs a boolean value either true true or false.

We say a DS is δ-correct if for every (vk, sk)
$← D.KG() and every message m ∈M, we have

Pr[false← D.Vrfy(vk,m,D.Sign(sk,m))] ≤ δ

28

In particular, we call a DS (perfectly) correct if δ = 0.

We say a DS is δ-strongly correct if for every (vk, sk)
$← D.KG(), every message m ∈ M, and every

rSign ∈ R we have
Pr[false← D.Vrfy(vk,m,D.Sign(sk,m; rSign))] ≤ δ

Compared to the conventional correctness, the strong correctness requires that the signed message-
signature pair be correctly verified for every randomness coins involved during the signing. In particular,
we call a DS (perfectly) strongly correct if δ = 0.

In terms of the security notations, we recall the standard (strongly) existential unforgeability against
chosen message attack EUF-CMA and SUF-CMA.

Definition 11. Let DS = (D.KG,D.Sign,K.Dec) be a digital signature scheme with message space M.
We say DS is ϵ-EUF-CMA secure (resp. ϵ-SUF-CMA secure), if for every (potential quantum) adversary
A, we have

ϵEUF-CMA
DS (A) := Pr[ExptEUF-CMA

DS (A) = 1] ≤ ϵ

ϵSUF-CMA
DS (A) := Pr[ExptSUF-CMA

DS (A) = 1] ≤ ϵ

where the experiment ExptEUF-CMA
DS (A) and ExptSUF-CMA

DS (A) are defined in Figure 8.

ExptEUF-CMA
DS (A):

1 L ← ∅
2 (vk, sk)

$← D.KG()

3 (m⋆, σ⋆)
$← AOSign (vk)

4 if m⋆ ∈ L
5 return 0
6 return JD.Vrfy(vk,m⋆, σ⋆)K
OSign(m):

7 σ
$← D.Sign(sk,m)

8 L +← m
9 return σ

ExptSUF-CMA
DS (A):

1 L ← ∅
2 (vk, sk)

$← D.KG()

3 (m⋆, σ⋆)
$← AOSign (vk)

4 if (m⋆, σ⋆) ∈ L
5 return 0
6 return JD.Vrfy(vk,m⋆, σ⋆)K
OSign(m):

7 σ
$← D.Sign(sk,m)

8 L +← (m, σ)
9 return σ

Figure 8: EUF-CMA and SUF-CMA experiments for DS = (D.KG,D.Sign,D.Vrfy).

E.3 Authenticated Encryption

Definition 12. An authenticated encryption (SKE) scheme over message spaceM, randomness space R,
symmetric key space K, and ciphertext space C is a tuple of algorithms SKE = (S.Enc,S.Dec) as defined
below.

• Encryption c
$← S.Enc(k,m; rEnc): takes as input a symmetric key k and a message m and outputs

a ciphertext c. We write c
$← S.Enc(k; rEnc) if the random coins rEnc ∈ R is specified.

• Decryption m ← S.Dec(k, c): takes as input a symmetric key k and a ciphertext c and outputs
either a symmetric key k or an error symbol ⊥.

We say a SKE is δ-correct if for every k
$← K and every message m ∈M, we have

Pr[m ̸= S.Dec(k, S.Enc(k,m))] ≤ δ

In particular, we call a SKE (perfectly) correct if δ = 0.

We say a SKE is δ-correct if for every k
$← K(), every message m ∈M,and every rEnc ∈ R, we have

Pr[m ̸= S.Dec(k, S.Enc(k,m; rEnc))] ≤ δ

Compared to the conventional correctness, the strong correctness requires that the encrypted message
can be correctly recovered for every randomness coins involved during the encryption. In particular, we
call a SKE (perfectly) strongly correct if δ = 0.

In terms of the security notions, we recall the indistinguishability under one-time chosen ciphertext
attacks (IND-1CCA). In this security notion, the attacker is allowed to query the encryption oracle OEnc

at most once. However, the attacker can have access to the decryption oracle ODec with arbitrary times.
In particular, this security notion is achievable even for deterministic SKE.

29

Definition 13. Let SKE = (S.Enc,S.Dec) be an authenticated encryption scheme with ciphertext space C.
We say SKE is ϵ-IND-1CCA secure, if for every (potential quantum) adversary A , we have

ϵIND-1CCA
SKE (A) :=

∣∣∣Pr[ExptIND-1CCA
SKE (A) = 1]− 1

2

∣∣∣ ≤ ϵ

where the ExptIND-1CCA
SKE (A) experiment is defined in Figure 9.

ExptIND-1CCA
SKE (A):

1 b
$← {0, 1}

2 k
$← K()

3 c⋆ ← ⊥
4 b′

$← AOEnc,ODec ()
5 return Jb = b′K

OEnc(m):

1 req c⋆ = ⊥
2 if b = 0

3 c⋆
$← S.Enc(k,m)

4 else

5 c⋆
$← C

6 return c

ODec(c):

7 if c = c⋆ or b = 1
8 return ⊥
9 return S.Dec(k, c)

Figure 9: IND-1CCA experiment for SKE = (S.KG, S.Enc, S.Dec) with ciphertext space C.

E.4 Pseudorandom Generators and Pseudorandom Functions

Definition 14. Let F : R → O denote a function that maps a random string r ∈ R to an output y ∈ O.
We say F is ϵ-prg secure if for any variable X that follows uniform distribution over R and any variable
Y that follows uniform distribution over O, we have

AdvprgF (D) :=
∣∣∣Pr[D(F(X)) = 1]− Pr[D(Y) = 1]

∣∣∣ ≤ ϵ

Definition 15. Let F : K ×M → O be a function that maps a key k ∈ K and a string m ∈ M to an

output y ∈ O. We say F is ϵ-prf-secure if for any k
$← K and any truly random function R :M→O, we

have
AdvprfF (D) :=

∣∣∣Pr[DF(k,·) = 1]− Pr[DR(·) = 1]
∣∣∣ ≤ ϵ

We say PRF is swap-secure if the argument-swapped function ¯PRF(m, k) := PRF(k,m) is prf-secure. We
say PRF is a dual-PRF when it is both prf-secure and swap-secure.

Definition 16. Let m ≥ 2. Let F : K1×...×Km → O be a function that maps m keys ki ∈ Ki for 1 ≤ i ≤ m
to an output y ∈ O. We say F is ϵ-mprf-secure if all of the functions Fi(ki, (k1, ..., ki−1, ki+1, ..., km)) :=
F(k1, ..., km) is prf-secure.

The mprf secure function can be easily construction from dual-secure functions. In this paper, we
makes use of a mprf-secure KDF for m = 3. Below, we present the instantiation and prove the security.

Theorem 3. Let F1 : K1 × K2 → O1 and F2 : O1 × K3 → O2 be two functions. If F1 and F2 both are
ϵ-dual-secure, then the function F′(k1, k2, k3) := F2(F1(k1, k2), k3) is ϵ

′-3prf-secure such that ϵ′ ≤ qϵ, where
q denotes the number of queries by any attacker against 3prf-security of F′.

Proof. We first show that F̄1(k1, (k2, k3)) := F′(k1, k2, k3) = F2(F1(k1, k2), k3) is prf-secure. We prove this
by game hopping. Let q denote the number of queries that an attacker A makes. Let Advi denote the
advantage of A in winning game i.
Game 0. This game is identical to the experiment. And we have that Adv0 := ϵ′

Game 1. In this game, whenever A queries (k2, k3), the challenger samples a random y1 and replaces
F̄1(k1, (k2, k3)) = F2(F1(k1, k2), k3) by F̄1(k1, (k2, k3)) = F2(y1, k3). If the attacker A can distinguish
Game 0 and Game 1, then we can easily construct an attacker that breaks the prf security of F1. Thus,
Adv0 − Adv1 ≤ ϵ.
Game 2. In this game, whenever A queries (k2, k3), the challenger samples a random y1 and replaces
F̄1(k1, (k2, k3)) = F2(y1, k3) by F̄1(k1, (k2, k3)) = y2.

If the attacker A can distinguish Game 0 and Game 1, then we can easily construct an attacker that
breaks the prf security of at least one of q F2. Thus, Adv0 − Adv1 ≤ qϵ.

Now, in Game 2 the challenger always simulates the random function. Thus, A cannot distinguish it,
and we have that ϵ ≤ (q + 1)ϵ.

The analysis for the prf-security of F̄2(k2, (k1, k3)) :=F′(k1, k2, k3) = F2(F1(k1, k2), k3) and F̄3(k3, (k1, k2)) :=
F′(k1, k2, k3) = F2(F1(k1, k2), k3) is similar.

30

F Security Modularization

The analysis for the security of messaging protocols are often very tedious, since both the security model
and the protocols are usually highly complex. Alwen et al. [1] opt to first reduce the SM-security into
several simplified security notions: correctness, privacy, and authenticity. Then, they respectively prove
the individual simplified security of their proposal ACD19. We adopt the similar strategies: we split the
eSM-security into several new simplified security notions and prove the reduction between eSM and the
new simplified security notions.

Correctness: We define our correctness model ExpCORR
Π,△eSM

for an eSM scheme Π with respect to a

parameter △eSM identical to the model ExpeSMΠ,△eSM
with the same parameter △eSM, except for the following

modifications:

1. there are no Challenge-A and Challenge-B oracles
2. the Inject-A and Inject-B are replaced by a reduced injection oracle, which is identical to the

injection oracle except for the following two modifications:
• if the input ciphertext c does not correspond to any position (t′, i′) ∈ comp, Inject-A and
Inject-B immediately returns (t′, i′,⊥)

• the if-clause in Line 72 and 73 are removed

This simplified correctness experiment is defined similar to the one in [1].
Note that the attacker receives no information about the challenge bit, since the challenge oracles are

removed. The attacker cannot win via the predicate winpriv except by randomly guessing. Moreover, the
predicate winauth in the injection oracles is removed. The winauth predicate is never set to true. Intuitively,
the attacker can win the correctness game with non-zero advantage only via wincorr in the Deliver-A
and Deliver-B oracles.

Definition 17. An eSM scheme Π is (t, q, qep, qM,△eSM, ϵ)-CORR secure if the below defined advantage
for any attacker A in time t is bounded by

AdvCORR
Π,△eSM

(A) :=Pr[ExpCORR
Π,△eSM

(A) = (1, 0, 0)] ≤ ϵ,

where q, qep, and qM respectively denote the maximal number of queries A can make, the maximal number

of epochs, and the maximal number of pre-keys of each party in the experiment ExpCORR
Π,△eSM

.

Authenticity: We define our authenticity model ExpAUTHΠ,△eSM
for an eSM scheme Π with respect to a

parameter △eSM identical to the model ExpeSMΠ,△eSM
with the same parameter △eSM, except for the following

modifications:

1. there are no Challenge-A and Challenge-B oracles
2. the winning predicate wincorr is never set to true in the Deliver-A and Deliver-B, i.e., the if-clause

in Line 64 is removed.
3. the attacker has to output an epoch t⋆ at the beginning of the experiment
4. the Inject-A and Inject-B are replaced by a reduced injection oracle (see above) unless the input

ciphertext c corresponds to the epoch t⋆. (Recall that the position including the epoch and message
index is assumed to be efficiently computable from c for natural eSM.)

This simplified authenticity experiment is defined differently from the one in [1], as the attacker has to
output only one epoch t⋆, which indicates the epoch of the forged ciphertext, without outputting another
epoch t⋆L as in [1], which indicating the last corruption event before the t⋆.

Note that the attacker receives no information about the challenge bit, since the challenge oracles are
removed. The attacker cannot win via the predicate winpriv except by randomly guessing. Moreover, the
predicate wincorr in the deliver oracles is removed. The wincorr predicate is never set to true. Intuitively,
the attacker can win the authenticity game with non-zero advantage only via winauth in the Inject-A and
Inject-B oracles for a forged ciphertext corresponding to the epoch t⋆, which is claimed by the attacker
at the beginning of the experiment.

Definition 18. An eSM scheme Π is (t, q, qep, qM,△eSM, ϵ)-AUTH secure if the below defined advantage
for any attacker A in time t is bounded by

AdvAUTHΠ,△eSM
(A) :=Pr[ExpAUTHΠ,△eSM

(A) = (, 1,)] ≤ ϵ,

where q, qep, and qM respectively denote the maximal number of queries A can make, the maximal number

of epochs, and the maximal number of pre-keys of each party in the experiment ExpAUTHΠ,△eSM
.

31

Privacy: We define our privacy model ExpPRIVΠ,△eSM
for an eSM scheme Π with respect to a parameter △eSM

identical to the model ExpeSMΠ,△eSM
with the same parameter △eSM, except for the following modifications:

1. the winning predicate wincorr is never set to true in the Deliver-A and Deliver-B, i.e., the if-clause
in Line 64 is removed.

2. the Inject-A and Inject-B are replaced by a reduced injection oracle (see above).
3. the attacker has to output an epoch t⋆ at the beginning of the experiment.
4. the challenge oracle Challenge-A (resp. Challenge-B) can only be queried if tA = t⋆ (resp.

tB = t⋆)

This simplified privacy experiment is also defined differently from the one in [1], as the attacker has
to output only one epoch, which indicates the epoch of the challenge query, without outputting another
epoch t⋆L as in [1], which indicating the last corruption event before the t⋆.

Note that the predicate wincorr in the deliver oracles and the winauth in the injection oracles are removed.
The wincorr and winauth predicates are never set to true. Intuitively, the attacker can win the privacy game
only via winpriv predicate by distinguishing the challenge bit using the challenge ciphertexts corresponding
to the epoch t⋆, which is claimed by the attacker at the beginning of the experiment.

Definition 19. An eSM scheme Π is (t, q, qep, qM,△eSM, ϵ)-PRIV secure if the below defined advantage
for any attacker A in time t is bounded by

AdvPRIVΠ,△eSM
(A) :=Pr[ExpPRIVΠ,△eSM

(A) = (, , 1)] ≤ ϵ,

where q, qep, and qM respectively denote the maximal number of queries A can make, the maximal number

of epochs, and the maximal number of pre-keys of each party in the experiment ExpPRIVΠ,△eSM
.

G Proof of Theorems and Lemmas

G.1 Our Lemmas

Lemma 1. Let Π be an eSM scheme that is
• (t, q, qep, qM,△eSM, ϵ

CORR
Π)-CORR secure,

• (t, q, qep, qM,△eSM, ϵ
AUTH
Π)-AUTH secure, and

• (t, q, qep, qM,△eSM, ϵ
PRIV
Π)-PRIV secure

Then, it is also (t, q, qep, qM,△eSM, ϵ)-eSM secure, where

ϵ ≤ ϵCORR
eSM + qep(ϵ

AUTH
eSM + ϵPRIVeSM)

Lemma 2. Let Π denote our eSM construction in Section 4.1. If the underlying KEM, DS, and SKE are
respectively δKEM , δDS , δSKE-strongly correct7 in time t, then Π is (t, q, qep, qM,△eSM,Adv

CORR
Π,△eSM

)-CORR
secure for △eSM = 2, such that

AdvCORR
Π,△eSM

≤ (qep + q)δDS + 3(qep + q)δKEM + qδSKE

Lemma 3. Let Π denote our eSM construction in Section 4.1. If the underlying KEM is ϵIND-CCA
KEM -secure,

SKE is ϵIND-1CCA
SKE -secure, KDF1 is ϵ3prfKDF1

-secure8, KDF2 is ϵdualKDF2
secure, KDF3 is ϵprfKDF3

-secure, KDF4 is

ϵprgKDF4
-secure, KDF5 is ϵdualKDF5

-secure, in time t, then Π is (t, q, qep, qM,△eSM,Adv
PRIV
Π,△eSM

)-PRIV secure for
△eSM = 2, such that

AdvPRIVΠ,△eSM
≤qMqepqϵIND-CCA

KEM + qMqϵ
IND-1CCA
SKE + qMqepqϵ

3prf
KDF1

+ q2epqϵ
dual
KDF2

+ qepqϵ
prf
KDF3

+ q2ϵprgKDF4
+ (qMqep + 1)qϵdualKDF5

Lemma 4. Let Π denote our eSM construction in Section 4.1. If the underlying DS is ϵSUF-CMA
DS -secure,

KEM is ϵIND-CCA
KEM -secure, SKE is ϵIND-1CCA

SKE -secure, KDF1 is ϵ3prfKDF1
-secure, KDF2 is ϵdualKDF2

secure, KDF3 is

ϵprfKDF3
-secure, KDF4 is ϵprgKDF4

-secure, KDF5 is ϵdualKDF5
-secure, in time t, then Π is (t, q, qep, qM,△eSM,Adv

AUTH
Π,△eSM

)-
AUTH secure for △eSM = 2, such that

AdvAUTHΠ,△eSM
≤ϵSUF-CMA

DS + qepqMϵ
IND-CCA
KEM + 2qϵIND-1CCA

SKE + qepqMϵ
3prf
KDF1

+ qep(qep + 1)ϵdualKDF2
+ qepϵ

prf
KDF3

+ qϵprgKDF4
+ (qepqM + q)ϵdualKDF5

7By strongly correct, we mean that the schemes are conventionally correct for all randomness. See Supplementary
Material E for more details.

8By 3prf security, we mean that a function is indistinguishable from a random function with respect to any of the three
inputs. See Supplementary Material E.4 for mode details.

32

G.2 Proof of Lemma 1

Proof. The proof is conducted by case distinction. Let A denote an attacker that breaks ExpeSMΠ,△eSM
security

of an eSM scheme Π with respect to the parameter △eSM. Recall that the advantage of A in winning
ExpeSMΠ,△eSM

experiment is defined as:

AdveSMΠ,△eSM
(A) =max

(
Pr[ExpeSMΠ,△eSM

(A) = (1, 0, 0)],

Pr[ExpeSMΠ,△eSM
(A) = (0, 1, 0)],

|Pr[ExpeSMΠ,△eSM
(A) = (0, 0, 1)]− 1

2
|
)

Below, we respectively measure Pr[ExpeSMΠ,△eSM
(A) = (1, 0, 0)], Pr[ExpeSMΠ,△eSM

(A) = (0, 1, 0)], and |Pr[ExpeSMΠ,△eSM
(A) =

(0, 0, 1)]− 1
2 | in the following Case 1, 2, and 3.

Case 1. We compute the probability Pr[ExpeSMΠ,△eSM
(A) = (1, 0, 0)], i.e., A wins via the winning predicate

wincorr by reduction. Namely, if A can win ExpeSMΠ,△eSM
experiment of the eSM construction Π with a

parameter △eSM, then there exists an attacker B1 that breaks simplified CORR security of the eSM
construction Π with the same parameter △eSM. Let C1 denote the challenger in the ExpCORR

Π,△eSM
experiment.

At the beginning, the attacker B1 samples a challenge bit b ∈ {0, 1} uniformly at random. Then, B1
invokes A and answers the queries from A as follows. Note that all safe predicates in eSM and CORR
experiments are identical, B1 can always compute the safe predicates by itself, according to A’s previous
queries.

• NewIdKey-A(r) and NewIdKey-B(r): B1 simply forwards them to C1 followed by forwarding
replies from C1 to A.

• NewPreKey-A(r) and NewPreKey-B(r): B1 simply forwards them to C1 followed by forwarding
replies from C1 to A.

• RevIdKey-A and RevIdKey-B: B1 sets safeidKA or safeidKB (according the invoked oracle) to false
and runs corruption-update(). For each record in the allChall set, B1 then checks whether the safe
challenge predicate for all of the records holds. If one of them is false, B1 undoes the actions in this
query and exists the oracle invocation. In particular, B1 resets the safe identity predicate to true.
Then, the attacker B1 simply forwards the queries to C1 followed by forwarding replies from C1 to A.

• RevPreKey-A(ind) andRevPreKey-B(ind): B1 adds the ind into the pre-key reveal list, according
to the invoked oracle and runs corruption-update(). For each record in the allChall set, B1 then
checks whether the safe challenge predicate for all of the records holds. If one of them is false, B1
undoes the actions in this query and exists the oracle invocation. In particular, B1 removes the
pre-key counter ind from the pre-key reveal list. Then, the attacker B1 simply forwards the queries
to C1 followed by forwarding replies from C1 to A.

• Corrupt-A and Corrupt-B: Let P denote the party, whose session state the attacker is trying
to corrupt. B1 adds the corresponding epoch counter tP into the session state corruption list
Lcor
P and runs corruption-update(). Next, B1 checks whether there exists a record including

(¬P, ind, flag) ∈ chall. If such element does not exist, or, such element exists but either of the
following conditions holds,

– flag = good and safeidKP

– flag = good and safepreKP (ind)
If one of them is false, B1 undoes the actions in this query and exists the oracle invocation. In
particular, B1 removes the epoch counter tP from the session state corruption list. Then, the attacker
B1 simply forwards the queries to C1 followed by forwarding replies from C1 to A.

• Transmit-A(ind,m, r) and Transmit-B(ind,m, r): B1 simply forwards them to C1 followed by
forwarding replies from C1 to A.

• Challenge-A(ind,m0,m1, r) and Challenge-B(ind,m0,m1, r): We first consider the case for
answering Challenge-A(ind,m0,m1, r). The attacker B1 first computes flag = Jr = ⊥K. Namely,
flag = true if and only if r is ⊥. Then, B1 checks whether the predicate safe-chA(flag, tA, ind) is true,
according to A’s previous queries. If the safe predicates is false, or, the input messages m0 and m1

have the distinct length, B1 simply aborts the oracle. Otherwise, B1 queries Transmit-A(ind,mb, r)
to C1 for a ciphertext c. Then, B1 adds the record record(A, ind, flag, tA, iA,mb, c) into its own allChall
and chall. Finally, B1 returns c to A.
The step for answering Challenge-B(ind,m0,m1, r) is similar to above step except that the
functions and variables related to A are replaced by the ones to B and vice versa.

33

• Deliver-A(c) and Deliver-B(c): B1 first checks whether there exists an element (t, i, c) ∈ chall
for any t and i. If such element exists, the attacker B1 simply returns (t, i,⊥) to A. Otherwise,
B1 simply forwards the queries to C1, followed by forwarding replies from C1 to A. After that, B1
removes any element including (t, i, c) from the challenge set chall.

• Inject-A(ind, c) and Inject-B(ind, c): B1 simply forwards them to C1 followed by forwarding
replies from C1 to A.

Note that if the attacker A wins via the winning predicate wincorr, the winning predicate winauth in the
Inject-A and Inject-B is never set to true, which implies either m ′ = ⊥ or (B, t′, i′) ∈ comp, where t′

and i′ can be efficiently computed from the input ciphertext c. This means, the reduced injection oracles
are identical to the original injection oracles from A’s view. Moreover, all other oracles are honestly
simulated. This means, B1 wins if and only if A wins. Thus, we have that

Pr[ExpeSMΠ,△eSM
(A) = (1, 0, 0)] ≤ AdvCORR

Π,△eSM
(B1) ≤ ϵCORR

Π

Furthermore, if A runs in time t, so does B1.

Case 2. We compute the probability Pr[ExpeSMΠ,△eSM
(A) = (0, 1, 0)], i.e., A wins via the winning predicate

winauth by reduction.
Namely, if A can win ExpeSMΠ,△eSM

experiment of a eSM construction Π with a parameter △eSM, then
there exists an attacker B2 that breaks simplified AUTH security of the eSM construction Π with the
same parameter △eSM. Let C2 denote the challenger in the ExpAUTHΠ,△eSM

experiment. At the beginning, the
attacker B2 samples a challenge bit b ∈ {0, 1} and an epoch t⋆ ∈ [qep] uniformly at random. Next, B2
sends t⋆ to its challenger C2. Then, B2 invokes A and answers the queries from A as follows. Note that all
safe predicates in eSM and AUTH experiments are identical, B2 can always compute the safe predicates
by itself, according to A’s previous queries.

• NewIdKey-A(r) and NewIdKey-B(r): B2 simply forwards them to C2 followed by forwarding
replies from C2 to A.

• NewPreKey-A(r) and NewPreKey-B(r): B2 simply forwards them to C2 followed by forwarding
replies from C2 to A.

• RevIdKey-A and RevIdKey-B: B2 sets safeidKA or safeidKB (according the invoked oracle) to false
and runs corruption-update(). For each record in the allChall set, B2 then checks whether the safe
challenge predicate for all of the records holds. If one of them is false, B2 undoes the actions in this
query and exists the oracle invocation. In particular, B2 resets the safe identity predicate to true.
Then, the attacker B2 simply forwards the queries to C2 followed by forwarding replies from C2 to A.

• RevPreKey-A(ind) and RevPreKey-B(ind): B2 adds ind into the pre-key reveal list, according
to the invoked oracle and runs corruption-update(). For each record in the allChall set, B2 then
checks whether the safe challenge predicate for all of the records holds. If one of them is false, B2
undoes the actions in this query and exists the oracle invocation. In particular, B2 removes the
pre-key counter ind from the pre-key reveal list. Then, the attacker B2 simply forwards the queries
to C2 followed by forwarding replies from C2 to A.

• Corrupt-A and Corrupt-B: Let P denote the party, whose session state the attacker is trying
to corrupt. B2 adds the corresponding epoch counter tP into the session state corruption list
Lcor
P and runs corruption-update(). Next, B2 checks whether there exists a record including

(¬P, ind, flag) ∈ chall. If such element does not exist, or, such element exists but either of the
following conditions holds,

– flag = good and safeidKP

– flag = good and safepreKP (ind)
If one of them is false, B2 undoes the actions in this query and exists the oracle invocation. In
particular, B2 removes the epoch counter tP from the session state corruption list. Then, the attacker
B2 simply forwards the queries to C2 followed by forwarding replies from C2 to A.

• Transmit-A(ind,m, r) and Transmit-B(ind,m, r): B2 simply forwards them to C2 followed by
forwarding replies from C2 to A.

• Challenge-A(ind,m0,m1, r) and Challenge-B(ind,m0,m1, r): We first consider the case for
answering Challenge-A(ind,m0,m1, r). The attacker B2 first computes flag = Jr = ⊥K. Namely,
flag = true if and only if r is ⊥. Then, B2 checks whether the predicate safe-chA(flag, tA, ind) is true,
according to A’s previous queries. If the safe predicates is false, or, the input messages m0 and m1

have the distinct length, B2 simply aborts the oracle. Otherwise, B2 queries Transmit-A(ind,mb, r)
to C2 for a ciphertext c. Then, B2 adds the record record(A, ind, flag, tA, iA,mb, c) into its own allChall
and chall. Finally, B2 returns c to A.

34

The step for answering Challenge-B(ind,m0,m1, r) is similar to above step except that the
functions and variables related to A are replaced by the ones to B and vice versa.

• Deliver-A(c) and Deliver-B(c): B2 first checks whether there exists an element (t, i, c) ∈ chall
for any t and i. If such element exists, the attacker B2 simply returns (t, i,⊥) to A. Otherwise,
B2 simply forwards the queries to C2, followed by forwarding replies from C2 to A. After that, B2
removes any element including (t, i, c) from the challenge set chall.

• Inject-A(ind, c) and Inject-B(ind, c): B2 simply forwards them to C2 followed by forwarding
replies from C2 to A.

Note that if the attacker A wins via the winning predicate winauth, the winning predicate wincorr in
the Deliver-A(c) and Deliver-B(c) is never set to true. This means, the deliver oracles in CORR
experiment is identical to the original deliver oracles from A’s view. Note also that the winning predicate
winauth is never set to false once it has been set to true.

Assume that attacker B2 guesses the epoch t⋆ correctly, such that A triggers the flip of winauth by
querying Inject-A(ind, c) or Inject-B(ind, c) for a ciphertext c corresponding to epoch t⋆, which happens
with probability 1

qep
. For all previous queries Inject-A(ind, c) and Inject-B(ind, c), where c does not

correspond to the epoch t⋆, the flip of winauth from false to true will not be triggered. In this case, our
reduced injection oracle correctly simulates the behavior of the original injection oracles. For all previous
queries Inject-A(ind, c) and Inject-B(
highlightDifferenceind, ct), where c corresponds to the epoch t⋆, our reduced injection oracle simulates
the identical behavior of the original injection oracles.

Note that all other oracles are honestly simulated. The attacker B2 wins if and only if A wins and the
guess t⋆ is correctly. Note also that the event A wins and the number that B2 guesses are independent.
Thus, we have that

Pr[ExpeSMΠ,△eSM
(A) = (1, 0, 0)] ≤ qepAdv

CORR
Π,△eSM

≤ qepϵ
AUTH
Π

Moreover, if A runs in time t, so does B2.

Case 3. We compute the probability |Pr[ExpeSMΠ,△eSM
(A) = (0, 0, 1)] − 1

2 |, i.e., A wins via the winning

predicate winpriv by hybrid games. Let Gj denote the simulation of Game j.

Game 0. This game is identical to the ExpeSMΠ,△eSM
experiment. Thus, we have that

Pr[G0(A) = (0, 0, 1)] = Pr[ExpeSMΠ,△eSM
(A) = (0, 0, 1)]

Game i (1 ≤ j ≤ qep). This game is identical to Game (j − 1) except the following modifications:
• When the attacker queries Challenge-A(ind,m0,m1, r) at epoch j, the challenger first checks
whether ind ≤ nB and |m0| = |m1| and aborts if the condition does not hold. Then, the challenger
samples a random message m̄ of the length |m0| and runs Challenge-A(ind, m̄, m̄, r) instead of
Challenge-A(m0,m1, r). Finally, the challenger returns the produced ciphertext c to A.

It is easy to observe that in Game qep all challenge ciphertexts are encrypted independent of the
challenge bit. Thus, the attacker A can output the bit b′ only by randomly guessing, which indicates that

Pr[Gqep(A) = (0, 0, 1)] =
1

2

Let E denote the event that the attacker can distinguish any two adjacent hybrid games. We have that

|Pr[Gj−1(A) = (0, 0, 1)]− Pr[Gj(A) = (0, 0, 1)]| ≤ Pr[E]

Moreover, note that the modifications in every hybrid game j is independent of the behavior in hybrid
game (j − 1). Thus, we have that

|Pr[G0(A) = (0, 0, 1)]− Pr[Gqep(A) = (0, 0, 1)]|

≤|
qep∑
j=1

Pr[Gj−1(A) = (0, 0, 1)]− Pr[Gj(A) = (0, 0, 1)]|

≤
qep∑
j=1

|Pr[Gj−1(A) = (0, 0, 1)]− Pr[Gj(A) = (0, 0, 1)]|

≤qep Pr[E]

35

Below, we analyze the probability of the occurrence of the event E by reduction. Namely, if A can
distinguish any two adjacent games Game (j − 1) and Game j, then there exists an attacker B3 that
breaks simplified PRIV security of the eSM construction Π with the same parameter △eSM. Let C3 denote
the challenger in the ExpPRIVΠ,△eSM

experiment. At the beginning, the attacker B3 sends the epoch j to its

challenger C3 and samples a bit b̄ ∈ {0, 1} uniformly at random. Then, B3 invokes A and answers the
queries from A as follows. Note that all safe predicates in Game (j− 1), Game j, and PRIV experiments
are identical, B3 can always compute the safe predicates by itself, according to A’s previous queries.

• NewIdKey-A(r) and NewIdKey-B(r): B3 simply forwards them to C3 followed by forwarding
replies from C3 to A.

• NewPreKey-A(r) and NewPreKey-B(r): B3 simply forwards them to C3 followed by forwarding
replies from C3 to A.

• RevIdKey-A and RevIdKey-B: B3 sets safeidKA or safeidKB (according the invoked oracle) to false
and runs corruption-update(). For each record in the allChall set, B3 then checks whether the safe
challenge predicate for all of the records holds. If one of them is false, B3 undoes the actions in this
query and exists the oracle invocation. In particular, B3 resets the safe identity predicate to true.
Then, the attacker B3 simply forwards the queries to C3 followed by forwarding replies from C3 to A.

• RevPreKey-A(ind) and RevPreKey-B(ind): B3 adds ind into the pre-key reveal list, according
to the invoked oracle and runs corruption-update(). For each record in the allChall set, B3 then
checks whether the safe challenge predicate for all of the records holds. If one of them is false, B3
undoes the actions in this query and exists the oracle invocation. In particular, B3 removes the
pre-key counter ind from the pre-key reveal list. Then, the attacker B3 simply forwards the queries
to C3 followed by forwarding replies from C3 to A.

• Corrupt-A and Corrupt-B: Let P denote the party, whose session state the attacker is trying
to corrupt. B3 adds the corresponding epoch counter tP into the session state corruption list
Lcor
P and runs corruption-update(). Next, B3 checks whether there exists a record including

(¬P, ind, flag) ∈ chall. If such element does not exist, or, such element exists but either of the
following conditions holds,

– flag = good and safeidKP

– flag = good and safepreKP (ind)
If one of them is false, B3 undoes the actions in this query and exists the oracle invocation. In
particular, B3 removes the epoch counter tP from the session state corruption list. Then, the attacker
B3 simply forwards the queries to C3 followed by forwarding replies from C3 to A.

• Transmit-A(ind,m, r) and Transmit-B(ind,m, r): B3 simply forwards them to C3 followed by
forwarding replies from C3 to A.

• Challenge-A(ind,m0,m1, r) and Challenge-B(ind,m0,m1, r): These oracles are answered ac-
cording to one of the following cases. Here, we only explain the behavior for answering Challenge-A
for simplicity. The behavior for answering Challenge-B can be defined analogously.

– [tA < j]: When the attacker A queries Challenge-A(ind,m0,m1, r) at epoch tA < j, the B3
first computes flag← Jr = ⊥K. Next, B3 checks whether safe-chA(flag, tA, ind) = true, ind ≤ nB,
and |m0| = |m1| and aborts if any condition does not hold. Otherwise, B3 samples a random
message m̄ of the length |m0| and queries Transmit-A(ind, m̄, r) for a ciphertext c. Finally,
the B3 adds the record rec = (A, ind, flag, tA, iA, m̄, c) into both allChall and chall, followed by
returning the ciphertext c to A.

– [tA = j]: When the attacker A queries Challenge-A(ind,m0,m1, r) at epoch tA = j, the B3
first computes flag← Jr = ⊥K. Next, B3 checks whether safe-chA(flag, tA, ind) = true, ind ≤ nB,
and |m0| = |m1| and aborts if any condition does not hold. Otherwise, B3 samples a random
message m̄ of the length |m0| and queries Challenge-A(ind,mb̄, m̄, r) for a ciphertext c.
Finally, the B3 adds the record rec = (A, ind, flag, tA, iA, , c) into both allChall and chall, followed
by returning the ciphertext c to A.

– [tA > j]: When the attacker A queries Challenge-A(ind,m0,m1, r) at epoch tA > j, the
B3 first computes flag ← Jr = ⊥K. Next, B3 checks whether safe-chA(flag, tA, ind) = true,
ind ≤ nB, and |m0| = |m1|, and aborts if any condition does not hold. Otherwise, B3 queries
Transmit-A(ind,mb̄, r) for a ciphertext c. Finally, the B3 adds the record rec = (A, ind, flag,
tA, iA,mb̄, c) into both allChall and chall, followed by returning the ciphertext c to A.

• Deliver-A(c) and Deliver-B(c): B3 first checks whether there exists an element (t, i, c) ∈ chall
for any t and i. If such element exists, the attacker B3 simply returns (t, i,⊥) to A. Otherwise,
B3 simply forwards the queries to C3, followed by forwarding replies from C3 to A. After that, B3
removes any element including (t, i, c) from the challenge set chall.

36

• Inject-A(ind, c) and Inject-B(ind, c): B3 simply forwards them to C3 followed by forwarding
replies from C3 to A.

Note that if the attacker A wins via the winning predicate winpriv, the winning predicate wincorr in the
Deliver-A and Deliver-B and winauth in the Inject-A and Inject-B is never set to true. This means,
the deliver oracles and injection oracles in PRIV experiment is identical to the original ones from A’s view.

Note that all other oracles are honestly simulated. If the challenge bit b in the PRIV experiment is 0,
then B3 perfectly simulates Game (j − 1) to A. If the challenge bit b in the PRIV experiment is 1, then
B3 perfectly simulates Game j to A. This means, the attacker B3 wins if and only if A can distinguish
the adjacent hybrid games Game (j − 1) and Game j, which is defined as the occurrence of event E.
Thus, we have that

Pr[E] ≤ AdvPRIVΠ,△eSM
≤ ϵPRIVeSM

Combing the equations above, we have that:

|Pr[ExpeSMΠ,△eSM
(A) = (0, 0, 1)]− 1

2
|

=|Pr[G0(A) = (0, 0, 1)]− Pr[Gqep(A)]|
≤qep Pr[E] ≤ qepϵ

PRIV
eSM

Moreover, if A runs in time t, so does B2.

Conclusion. The proof is concluded by

AdveSMΠ,△eSM
(A) =max

(
Pr[ExpeSMΠ,△eSM

(A) = (1, 0, 0)],

Pr[ExpeSMΠ,△eSM
(A) = (0, 1, 0)],

|Pr[ExpeSMΠ,△eSM
(A) = (0, 0, 1)]− 1

2
|
)

≤max
(
ϵCORR
Π , qepϵ

AUTH
Π , qepϵ

PRIV
Π

)
≤ϵCORR

Π + qep(ϵ
AUTH
Π + ϵPRIVΠ)

37

G.3 Proof of Lemma 2

Proof. The proof is given by a sequence of games. Let Advj denote the attacker A’s advantage in winning
Game j.
Game 0. This game is identical to the ExpCORR

Π,△eSM
. Thus, we have that

Adv0 = AdvCORR
Π,△eSM

Game 1. In this game, if the attacker queries Inject-A(ind, c) and Inject-B(ind, c) with c corresponding
to position (t⋆, i⋆) such that t⋆ ≤ min(tA, tB)− 2, the challenger immediately returns (t⋆, i⋆,⊥).

Note that the oracles are defined symmetric for party A and B. Without the loss of generality, we only
explain the case for Inject-A(ind, c) and t⋆ is even. The case for Inject-B and t⋆ is odd can be given
analogously.

In fact, recall that the eRcv algorithm is executed in Inject-A(ind, c) oracle only if the following
conditions hold

1. (B, c) /∈ trans
2. ind ≤ nA
3. safe-injA(tB) = true and safe-injA(tA) = true which are equivalent to safe-stB(tB) = true and

safe-stB(tA) = true
4. (t⋆, i⋆) ∈ comp, where (t⋆, i⋆) is the position of the input ciphertext c
Recall that (t⋆, i⋆) ∈ comp means that a ciphertext at this position has been produced by a party,

which implies that t⋆ ≤ max(tA, tB). Moreover, a ciphertext is added into comp only when
1. in the Corrupt-A oracle, if safe-st(t⋆) = false holds.
2. in the Corrupt-B oracle at epoch tB = t⋆, which means safe-stB(t

⋆) = false
3. in the Transmit-B oracle, if safe-injA(t

⋆) = safe-stB(t
⋆) = false holds

4. in the RevIdKey-A, RevIdKey-B, RevPreKey-A, RevPreKey-B oracles, if safe-injA(t
⋆) =

safe-stB(t
⋆) = false

In all of the above cases, we know that safe-stB(t
⋆) = false. Note that the conditions safe-stB(tB) = false

and safe-stB(tA) = false must hold at the same time. This means, t⋆ ≤ min(tA, tB)− 2. Thus, Game 0
and Game 1 are identical from the attacker’s view. Thus, we have that

Adv0 = Adv1

In particular, this also means that both parties have already received at least one message in the epoch
t⋆ and have produced the root keys before the Inject-A and Inject-B for ciphertexts corresponding t⋆

are queried.
Game 2. This game is identical to Game 1 except the following modification:

1. Whenever the challenger executes Transmit-A and Transmit-B to enter a new epoch t⋆, the
challenger records the root key rk′ ← st.rk produced during the oracle. When Deliver-A or
Deliver-B is invoked on the first ciphertext that corresponds to the epoch t⋆, the challenger
replaces the derivation of the root key rk by the recorded rk′.

The gap between Game 1 and Game 2 can be analyzed by a sequence of hybrid games, where each
hybrid only replace the root key at one epoch. Note that if the receiver executes the eRcv algorithm for
the first message in a new epoch. The new st.rk is derived only when the output of D.Vrfy in Line 30 is
true, which happens except probability δDS . Note also that the Deliver-A and Deliver-B oracles are
used to simulate the transmission of the original data that were produced. The honest KEM ciphertexts
are delivered to the receiver and will be decrypted using the corresponding private keys in Line 32. All
of them are correctly recovered except probability at most 3δKEM . If both parties’ local root keys are
identical, which is true due to the previous hybrid game, the root keys of both parties in this epoch are
also identical in this hybrid game. Note that there are at most qep epochs. Thus, we have that

Adv1 ≤ Adv2 + qep(δDS + 3δKEM)

Game 3. This game is identical to Game 2 except the following modification:
1. Whenever the challenger executes Transmit-A and Transmit-B, the challenger records the

message key mk
′
← mk produced during the oracle together with the position. When Deliver-A

or Deliver-B is invoked on a ciphertext, the challenger searches the mk at the location of the input

c, followed by replacing the derivation of the message key mk by the recorded mk
′
.

38

This game is similar to Game 2. The only difference is that the challenger runs q hybrid games but
not qep, where q denotes the maximal queries that A can make. Thus, we can easily have that

Adv2 ≤ Adv3 + q(δDS + 3δKEM)

Game 4. This game s identical to Game 3 except the following modification:
1. Whenever the challenger executes Transmit-A(ind,m, r) and Transmit-B(ind,m, r), the chal-

lenger records the message m produced during the oracle together with the position. When
Deliver-A or Deliver-B is invoked on a ciphertext, the challenger searches the message m ′ at
the location of the input c, followed by replacing the recovery of the message m by the recorded m ′.

This game is similar to Game 3. The only difference is that the challenger runs q hybrid games on
the scheme SKE which is deterministic and δSKE-correct. Similarly, we can easily have that

Adv3 ≤ Adv4 + qδSKE

Final Analysis of Game 4: Now, whenever Deliver-A or Deliver-B is delivered, the original
messages are always correctly recovered and output with the correct position, which means the attacker
never wins. Thus, we have that

Adv5 = 0

The following equation concludes the proof.

AdvCORR
Π,△eSM

≤ qep(δDS + 3δKEM) + q(δDS + 3δKEM + δSKE)

= (qep + q)δDS + 3(qep + q)δKEM + qδSKE

39

G.4 Proof of Lemma 3

Proof. The proof is given by a sequence of games. Let Advj denote the attacker A’s advantage in winning
Game j. At the beginning of the experiment, the attacker A outputs a target epoch t⋆, such that it only
queries challenge oracles in this epoch. Without loss of generality, we assume t⋆ is odd, i.e., A is the
message sender. The case for t⋆ is even can be given analogously.
Game 0. This game is identical to the ExpPRIVΠ,△eSM

. Thus, we have that

Adv0 = AdvPRIVΠ,△eSM

Game 1. This game is identical to Game 0 except the following modifications:
1. At the beginning of the game, in addition to the target epoch t⋆, the attacker has to output a target

message index i⋆.
2. The challenge oracle Challenge-A can only be queried for encrypting i⋆-th message (i.e., iA = i⋆−1

before the query and iA = i⋆ after the query) in tA = t⋆ .
We analyze the gap between Game 0 and Game 1 by hybrid games. Note that A can query oracles

at most q times. There are at most q messages can be encrypted in the target epoch.

Game 1.0. This game is identical to Game 0. Thus, we have that

Adv1.0 = Adv0

Game 1.j, 1 ≤ j ≤ q. This game is identical to Game 1.(j − 1) except the following modification:
1. If A sends challenge oracle Challenge-A(ind,m0,m1, r) for encrypting j-th message. The

challenger first checks whether m0 and m1 have the same length and aborts if the condition
does not hold. Then, the challenge samples a random message m̄ of the length m0 and runs
Challenge-A(ind, m̄, m̄, r) instead of Challenge-A(ind,m0,m1, r). Finally, the challenger
returns the produced ciphertext c to A.

It is easy to observe that all challenge ciphertexts are encrypted independent of the challenge bit in
Game 1.q. Thus, the attacker can guess the challenge bit only by randomly guessing in Game 1.q,
which implies that

Adv1.q = 0

Let E denote the event that the attacker A can distinguish any two adjacent hybrid games. Note
that the modification in every hybrid game j is independent of the behavior in hybrid game (j − 1).
Thus, we have that

Adv1.0 = Adv1.0 − Adv1.q ≤ qPr[E]

We compute the probability of the occurrence of the event E by reduction. If A can distinguish any
Game 1.(j − 1) and Game 1.j, then we can construct an attacker B1 that breaks Game 1. The
attacker B1 is executed as follows:
1. When A outputs an epoch t⋆, B outputs (t⋆, j). Meanwhile, B1 samples a random bit b̄ ∈ {0, 1}

uniformly at random.
2. When A queries Challenge-A, B answers according one of the following case:

• [iA < j− 1]: When the attacker queries Challenge-A(ind,m0,m1, r) when iA < j− 1, i.e.,
for encrypting messages before j-th message. B1 first computes flag← Jr = ⊥K. Next B1
checks whether safe-chA(flag, tA, ind), ind ≤ nB, and m0 and m1 have the same length. If
any condition does not hold, B1 simply aborts. Otherwise, B1 samples a random message
m̄ of the length m0 and queries Transmit-A(ind, m̄, r) for a ciphertext c. Finally, B1 adds
the corresponding record into both allChall and chall, followed by returning the ciphertext
c to A.

• [iA = j − 1]: When the attacker queries Challenge-A(ind,m0,m1, r) when iA = j − 1, i.e.,
for encrypting j-th message. B1 first computes flag← Jr = ⊥K. Next B1 checks whether
safe-chA(flag, tA, ind), ind ≤ nB, and m0 and m1 have the same length. If any condition
does not hold, B1 simply aborts. Otherwise, B1 samples a random message m̄ of the
length m0 and queries Challenge-A(ind,mb̄, m̄, r) for a ciphertext c. Finally, B1 adds
the corresponding record into both allChall and chall, followed by returning the ciphertext
c to A.

• [iA > j− 1]: When the attacker queries Challenge-A(ind,m0,m1, r) when iA > j− 1, i.e.,
for encrypting messages after j-th message. B1 first computes flag ← Jr = ⊥K. Next B1
checks whether safe-chA(flag, tA, ind), ind ≤ nB, and m0 and m1 have the same length. If
either condition does not hold, B1 simply aborts. Otherwise, B1 queries Transmit-A(ind,

40

mb̄, r) for a ciphertext c. Finally, B1 adds the corresponding record into both allChall and
chall, followed by returning the ciphertext c to A.

3. To answer all other oracles, B1 first checks whether the safe predicate requirements in individual
oracles hold. If so, B1 simply forward the queries to challenger and returns the reply to A. If
not, B1 simply aborts.

Note that all other oracles are honestly simulated except for Challenge-A. If the challenge bit b
in Game 1 is 0, then B1 perfectly simulates Game 1.(j − 1) to A. If the challenge bit b in Game
1 is 1, then B1 perfectly simulates Game 1.j to A. Thus, if A can distinguish any adjacent two
hybrid games, B1 wins Game 1, which implies Pr[E] ≤ Adv1, and further

Adv0 = Adv1.0 ≤ qPr[E] ≤ qAdv1

Game 2. Let ind⋆ denote the index of prepkB that is used to encrypt i⋆’s message in epoch t⋆. Let flag⋆

denote the random quality in the target challenge oracle. In this game, A wins immediately, if at the end

of experiment safe-stB(t
⋆) =

(
flag⋆ = good and safeidKB

)
=
(
flag⋆ = good and safepreKB (ind⋆)

)
= false.

Note that before the challenge query, the safe predicate safe-chA(flag, t
⋆, ind⋆) must hold, i.e.,(

safe-stA(t
⋆) and safe-stB(t

⋆)
)
or
(
flag⋆ = good and safe-stB(t

⋆)
)
or
(
flag⋆ = good and safeidKB

)
or(

flag⋆ = good and safepreKB (ind⋆)
)

This means, at least one of the following conditions must hold at the time of query of Challenge-A.
1. safe-stB(t

⋆) = true

2.
(
flag⋆ = good and safeidKB

)
= true

3.
(
flag⋆ = good and safepreKB (ind⋆)

)
= true

When querying identity keys or pre-keys oracles, the oracle aborts if it will triggers the safe challenge
predicate safe-chA(flag

⋆, t⋆, ind⋆) to false. When querying corruption oracles, the violation of safe-stB must

indicate
(
flag⋆ = good and safeidKB

)
or
(
flag⋆ = good and safepreKB (ind⋆)

)
. Thus, at least one of the above

conditions must hold even at the end of experiment
This means, A cannot gain any additional advantage in winning Game 2, which implies that

Adv1 = Adv2

Below, we analyze the advantage Adv2 into three cases, whether
(
flag⋆ = good and safeidKB

)
= true or(

flag⋆ = good and safepreKB (ind⋆)
)
= true or safe-stB(t

⋆) = true holds at the end of the experiment.

Case 1:
(
flag⋆ = good and safeidKB

)
= true.

In this case,
(
flag⋆ = good and safeidKB

)
= true holds at the end of the experiment, thus also holds

at the time of challenge oracle Challenge-A query. We use AdvC1
j to denote A’s advantage in winning

Game j in this case. In the remaining of this case analysis, we focus on the epoch t⋆ and the message
index i⋆.
Game C1.3. This game is identical to Game 2 except the following modification:

1. The challenger additionally samples a random key k′ ∈ K, where K denote the key space of the
underlying KEM.

2. (updar, updur)← KDF1(k1, k2, k3) in Line 16 in Figure 4 is replaced by (updar, updur)← KDF1(k1, k
′, k3)

3. k2 ← K.Dec(ik , c2) in Line 32 in Figure 4 is replaced by k2 ← k′

If A can distinguish Game 2 and Game C1.3, then we can construct an attacker B2 that breaks
IND-CCA security of underlying KEM. The attacker B2 receives a public key pk, a challenge ciphertext c⋆,
and a key k⋆, and simulates the game as follows:

1. A outputs (t⋆, i⋆) at the beginning of the game.
2. When A queries NewIdKey-B(r), checks whether r = ⊥. If r ̸= ⊥, then B2 returns pk to A.
3. When A queries Challenge-A(ind⋆,m0,m1, r) for encrypting i

⋆’s message in the epoch t⋆, B2 aborts
if r ̸= ⊥. Then, B2 honestly runs Challenge-A except replacing (updar, updur)← KDF1(k1, k2, k3)
in Line 16 in Figure 4 by (updar, updur)← KDF1(k1, k

⋆, k3)

41

4. When A queries Deliver-B(c) oracle, where c is output by Challenge-A oracles, B2 honestly
runs the eRcv algorithm except directly using k⋆ at the place of k2 instead of running decapsulation
algorithm.

5. When A queries Inject-B(ind, c) oracle for a pre-key index ind and a ciphertext c, B2 forwards c to
its decapsulation oracle for a key k, followed by use this key in the place of the decapsulated k2 to
run eRcv algorithm.

6. All other oracles are honestly simulated.
Note that if the challenge bit in the IND-CCA security experiment equals 0, then B2 simulates Game 2
to A. If the challenge bit in the IND-CCA security experiment equals 1, then B2 simulates Game C1.3
to A. B2 wins if and only if A can distinguish Game 2 and Game C1.3. Thus, we have that

AdvC1
2 ≤ AdvC1

3 + ϵIND-CCA
KEM

Game C1.4. This game is identical to Game C1.3 except the following modifications:

1. The challenger additionally samples a random update value ũpd
ur
∈ {0, 1}λ

2. mk ← KDF5(urk, upd
ur) in Line 23 and 39 in Figure 4 is replaced by mk ← KDF5(urk, ũpd

ur
)

If A can distinguish Game C1.3 and Game C1.4, then we can construct an attacker B3 that breaks
3prf security of underlying KDF1. Note that the random key k′ is sampled random in Game C1.3. B3
can easily query k1, k3 to its oracle on the second input, and use the reply in the place of (updar, updur).
If the oracle simulates KDF1, then B3 simulates Game C1.3 to A. If the oracle simulates a random
function, then B3 simulates Game C1.4. Thus, we have that

AdvC1
3 ≤ AdvC1

4 + ϵ3prfKDF1

Game C1.5. This game is identical to Game C1.4 except the following modifications:

1. The challenger additionally samples a random message key m̃k ∈ {0, 1}λ

2. c′ ← S.Enc(mk,m) in Line 23 and 39 in Figure 4 is replaced by c′ ← S.Enc(m̃k ,m)
Similar to the game above, if A can distinguish Game C1.4 and Game C1.5, then we can construct

an attacker B4 that breaks swap security of underlying KDF5. Note that the random update value ũpd
ur

is sampled random in Game C1.4. B4 can easily query urk to its oracle and use the reply in the place of
mk. If the oracle simulates KDF5, then B4 simulates Game C1.3 to A. If the oracle simulates a random
function, then B3 simulates Game C1.5. Thus, we have that

AdvC1
4 ≤ AdvC1

5 + ϵswapKDF5
≤ AdvC1

5 + ϵdualKDF5

Game Final Analysis for Case 1: In the end, we compute A’s advantage in winning Game C1.5
by reduction. If A can win Game C1.5, then we can construct an attacker B5 that breaks IND-1CCA
security of the underlying SKE. The reduction is simulated as follows:

1. A outputs (t⋆, i⋆) at the beginning of the game.

2. B samples a random bit b̄
$← {0, 1}.

3. When A queries Challenge-A(ind⋆,m0,m1, r) for encrypting i⋆’s message in the epoch t⋆, B5
aborts if r ̸= ⊥ or m0 and m1 have different length. Next, B5 samples a random message m̄ of length
|m0|.Then, B5 queries its challenger on (m̄,mb̄) and receives a ciphertext c⋆. After that, B5 honestly
runs Challenge-A except replacing c′ ← S.Enc(mk,m) in Line 23 and 39 in Figure 4 by c′ ← c⋆.

4. When A queries Deliver-B(c) oracle such that c includes t⋆, i⋆, and c⋆, B5 honestly simulates
Deliver-B except for outputting m ′ = ⊥.

5. When A queries Inject-B(ind, c) oracle for a pre-key index ind and a ciphertext corresponds to the
position (t⋆, i⋆), B5 forwards c to its decapsulation oracle for a message m ′, followed by outputting
(t⋆, i⋆,m ′)

6. All other oracles are honestly simulated.
Note that if the forgery via Inject-B is accepted, then the attacker cannot win via winpriv predicate since
a natural eSM scheme does not accept two messages at the same position. So, B5 perfectly simulate
Game C1.5 to A and wins if and only if A wins. Thus, we have that

AdvC1
5 ≤ ϵIND-1CCA

SKE

To sum up, we have that

AdvC1
2 ≤ ϵIND-1CCA

SKE + ϵdualKDF5
+ ϵ3prfKDF1

+ ϵIND-CCA
KEM

42

Case 2:
(
flag⋆ = good and safepreKB (ind⋆)

)
= true.

In this case,
(
flag⋆ = good and safepreKB (ind⋆)

)
= true holds at the end of the experiment, thus also

holds at the time of challenge oracle Challenge-A query. We use AdvC2
j to denote A’s advantage in

winning Game j in this case. In the remaining of this case analysis, we focus on the epoch t⋆ and the
message index i⋆.
Game C2.3 In this game, the challenger guesses the index of the pre-key ind⋆ by randomly guessing at
the beginning of the experiment. If the guess is wrong, the challenger aborts and let A immediately win.
Note that there are at most qM in the experiment, the challenger can guess correctly with probability 1

qM
.

Thus, we have that
AdvC2

2 ≤ qMAdv
C2
3

Game C2.4, C2.5, C2.6. These games are defined similar to Game C1.3, C1.4, C1.5. The only
difference is to apply the modification not to B’s identity key but B’s ind⋆-th pre-key. The proof can be
easily given in a similar way and we have that

AdvC2
3 ≤ ϵIND-1CCA

SKE + ϵdualKDF5
+ ϵ3prfKDF1

+ ϵIND-CCA
KEM

To sum up, we have that

AdvC2
2 ≤ qM(ϵ

IND-1CCA
SKE + ϵdualKDF5

+ ϵ3prfKDF1
+ ϵIND-CCA

KEM)

Case 3: safe-stB(t
⋆) = true.

In this case, safe-stB(t
⋆) = true holds at the end of the experiment, thus also holds at the time of challenge

oracle Challenge-A query. We further split this case into two subcases: when A queries the challenge

oracle at Challenge-A for encrypting i⋆’s message at epoch t⋆ whether
(
flag⋆ = good and safe-stB(t

⋆)
)

holds, see Case 3.1, or,
(
safe-stA(t

⋆) and safe-stB(t
⋆)
)
holds, see Case 3.2.

Case 3.1:
(
flag⋆ = good and safe-stB(t

⋆)
)

Game C3.1.3 This game is identical to Game 2 except the following modification:
1. Whenever P ∈ {A, B} is trying to sending the first message in a new epoch t+1 (i.e. P = A if t even and

P = B if t odd) and the execution Lcor
P

+← t+1 in Line 88 in the ep-mgmt helping function in Figure 4

is not triggered, then the challenger replaces r
$← {0, 1}λ, (stP.nxs, rKEM , rDS) ← KDF2(stP.nxs, r)

executed in the following eSend algorithm in Line 19 in Figure 4 by stP.nxs
$← {0, 1}λ, rKEM $← {0, 1}λ,

rDS $← {0, 1}λ.
We analyze A’s advantage in winning Game C3.1.3 by hybrid games.

Game hy.0: This game is identical to Game 2. Thus, we have that

AdvC3.1
2 = Advhy.0

Game hy.j, (1 ≤ j ≤ qep): This game is identical to game Game hy.(j − 1) except that:

1. When entering epoch j from j−1, if the execution Lcor
P

+← j in Line 88 in the ep-mgmt helping
function in Figure 4 is not triggered for P = A if j odd and P = B if j even, then in the following

eSend algorithm, the challenger replaces r
$← {0, 1}λ, (stP.nxs, rKEM , rDS) ← KDF2(stP.nxs, r)

executed in Line 19 in Figure 4 by stP.nxs
$← {0, 1}λ, rKEM $← {0, 1}λ, rDS $← {0, 1}λ.

It is obvious that Game hy.qep is identical to Game C3.1.3. Thus, we have that

AdvC3.1
3 = Advhy.qep

Let E denote the event that A can distinguish any adjacent hybrid games Game hy.(j−1) and Game
hy.j. Note that the modification in every hybrid game is independent of the behavior of the previous
game. Thus, we have that

AdvC3.1
2 − AdvC3.1

3 ≤ qep Pr[E]

Below, we compute the probability of the occurrence of event E by case distinction. Note that the

execution Lcor
P

+← j in Game hy.j indicates that Game hy.(j − 1) is identical to Game hy.j. Below, we

43

only consider the case for that the execution Lcor
P

+← j is not triggered. Note also that Lcor
P

+← j is not
triggered only when safe-chP(flag, j − 1, ind⋆), which further implies that one of the following conditions
must hold: (1) safe-stP(j − 1) or (2) flag = good. Then, we consider each of the two cases.

Case safe-stP(j − 1): First, safe-stP(j− 1) means (j− 1), (j− 2) /∈ Lcor
P . Moreover, (j− 1) /∈ Lcor

P indicates

that (1) the execution Lcor
P

+← (j−2) in Game hy.(j−2) is not triggered, and (2) the state corruption
on P is not invoked during epoch (j−1) and (j−2). According to hybrid game Game hy.(j−2), the
value stP.nxs sampled uniformly at random during sending the first message in epoch (j−2). In other
words, stP.nxs is uniformly at random from the attacker’s view when entering epoch j from (j − 1).

During sending the first message in epoch j, r
$← {0, 1}λ, (stP.nxs, rKEM , rDS) ← KDF2(stP.nxs, r)

is executed in Line 19 in Figure 4. By the prf security of KDF2, it is easy to know that if A can
distinguish Game hy.(j − 1) and Game hy.j, then there must exist an attacker that distinguish
the keyed KDF2 and a random function. Thus, it holds that

Pr[E] ≤ ϵprfKDF2

Case flag = good: This means, the first message in epoch j − 2 is computed using fresh randomness. In

particular, this means, r
$← {0, 1}λ, (stP.nxs, rKEM , rDS)← KDF2(stP.nxs, r) is executed in Line 19

in Figure 4 uses fresh randomness r. It is easy to know that stP.nxs after sending the first message
in epoch (j − 2) is distinguishable from a random string, due to the swap-security of KDF2.
Thus, we have that

Pr[E] ≤ ϵswapKDF2

From above two cases, we know that

Pr[E] ≤ max
(
ϵprfKDF2

+ ϵswapKDF2

)
≤ ϵdualKDF2

To sum up, we have that

AdvC3.1
2 ≤ qep Pr[E] + AdvC3.1

3 ≤ AdvC3.1
3 + qepϵ

dual
KDF2

Game C3.1.5, C3.1.6, C3.1.7. Note that safe-stB(t
⋆) means that t⋆, (t⋆ − 1) /∈ Lcor

B . This implies that
both following conditions must hold:

1. stP.nxs
$← {0, 1}λ, rKEM $← {0, 1}λ, rDS $← {0, 1}λ are executed when B was entering t⋆ − 1.

2. The corruption oracle Corrupt-B is not queried during t⋆ and (t⋆ − 1).
Furthermore, the KEM key pair in stB generated in epoch t⋆ − 1 for A to encrypt messages in t⋆ is not
leaked. Applying a similar game hopping to the KEM key pair in the state, as to the identity key pairs in
Game 1.3, 1.4, 1.5, we can easily have that

AdvC3.1
3 ≤ ϵIND-1CCA

SKE + ϵdualKDF5
+ ϵ3prfKDF1

+ ϵIND-CCA
KEM

Combing the above statements, we have that

AdvC3.1
2 ≤ ϵIND-1CCA

SKE + ϵdualKDF5
+ ϵ3prfKDF1

+ ϵIND-CCA
KEM + qepϵ

dual
KDF2

Case 3.2:
(
safe-stA(t

⋆) and safe-stB(t
⋆)
)

Game C3.2.3 This game is identical to Game 2 except the following modification:
1. Whenever P ∈ {A, B} is trying to sending the first message in a new epoch t + 1 (i.e. P = A if t even

and P = B if t odd) and the execution Lcor
P

+← t+ 1 in Line 88 in the ep-mgmt helping function in
Figure 4 is not triggered, then the challenger replaces (st.rk, st.ckst.t)← KDF3(st.rk, upd

ar) executed

in the following eSend algorithm in Line 22 in Figure 4 by stP.rk
$← {0, 1}λ and st.ckst.t

$← {0, 1}λ,
followed by storing (t + 1, stP.rk, st.ck

t+1, st.prtr).
2. if there exist a locally stored tuple (t′, rk, ck, prtr) and the eRcv is invoked to entering epoch t′ with

ciphertext including prtr, the challenger replaces (st.rk, st.ckst.t)← KDF3(st.rk, upd
ar) executed in

the eRcv algorithm in Line 33 in Figure 4 by st.rk ← rk, st.ckst.t ← ck.
We analyze A’s advantage in winning Game C3.2.3 by hybrid games.

Game hy.0: This game is identical to Game 2. Thus, we have that

AdvC3.2
2 = Advhy.0

44

Game hy.j, (1 ≤ j ≤ qep): This game is identical to game Game hy.(j − 1) except that:
1. When P ∈ {A, B} is trying to send the first message in a new epoch j (i.e. P = A if j odd

and P = B if t even) and the execution Lcor
P

+← j in Line 88 in the ep-mgmt helping function
in Figure 4 is not triggered, then the challenger replaces (st.rk, st.ckj) ← KDF3(st.rk, upd

ar)

executed in the following eSend algorithm in Line 22 in Figure 4 by stP.rk
$← {0, 1}λ and

st.ckj
$← {0, 1}λ, followed by storing (j, stP.rk, st.ck

j , st.prtr).
2. if there exist a locally stored tuple (t′, rk, ck, prtr) and the eRcv is invoked to entering epoch

t′ with ciphertext including prtr, the challenger replaces (st.rk, st.ckj) ← KDF3(st.rk, upd
ar)

executed in the eRcv algorithm in Line 33 in Figure 4 by st.rk ← rk, st.ckj ← ck.

It is obvious that Game hy.qep is identical to Game C3.1.3. Thus, we have that

AdvC3.2
3 = Advhy.qep

Let E denote the event that A can distinguish any adjacent hybrid games Game hy.(j−1) and Game
hy.j. Note that the modification in every hybrid game is independent of the behavior of the previous
game. Thus, we have that

AdvC3.2
2 − AdvC3.2

3 ≤ qep Pr[E]

Below, we compute the probability of the occurrence of event E by case distinction. Note that the

execution Lcor
P

+← j in Game hy.j indicates that Game hy.(j − 1) is identical to Game hy.j. Below, we

only consider the case for that the execution Lcor
P

+← j is not triggered. Note also that Lcor
P

+← j is not
triggered only when safe-chP(flag, j − 1, ind), which further implies that one of the following conditions
must hold:

1.
(
safe-stP(j − 1) and safe-st¬P(j − 1)

)
2.
(
flag = good and safe-st¬P(j − 1)

)
3.
(
flag = good and safeidK¬P

)
4.
(
flag = good and safepreK¬P (ind)

)
Then, we consider each of the four cases:

Case
(
safe-stP(j − 1) and safe-st¬P(j − 1)

)
: Recall that safe-stP(j − 1) and safe-st¬P(j − 1) means (j −

1), (j−2) /∈ Lcor
A ,Lcor

B . This indicates that (1) the execution Lcor
P

+← (j−1) in Game hy.(j−1) is not
triggered, and (2) the state corruption on both party is not invoked during epoch (j−1). (3) the first
message that P receives in the epoch (j − 1) is not forged by the attacker. According to hybrid game
Game hy.(j − 1), the value stP.rk sampled uniformly at random during sending the first message in
epoch (j − 1). In other words, stP.rk is uniformly at random from the attacker’s view when entering
epoch j from (j−1). During sending the first message in epoch j, (st.rk, st.ckj)← KDF3(st.rk, upd

ar)
is executed in the eSend algorithm in Line 22 in Figure 4. By the prf security of KDF3, it is easy to
know that if A can distinguish Game hy.(j − 1) and Game hy.j, then there must exist an attacker
that distinguish the keyed KDF3 and a random function. Thus, it holds that

Pr[E] ≤ ϵprfKDF3

Case
(
flag = good and safe-st¬P(j − 1)

)
: This case can be analyze in the following games. Here, we

only sketch the idea, since they are very similar to Game C3.1.3, Game C1.3, Game C1.4, and
Game C1.5. First, similar to analysis in Game C3.1.3, we know that KEM public key stored in
st[¬P] and will be used by P in epoch j is sampled uniformly at random except probability qepϵ

dual
KDF2

.
Next, similar to Game C1.3, we know that the encapsulated key is indistinguishable from a random
key except probability ϵIND-CCA

KEM due to the IND-CCA security of the underlying KEM. Then, similar
to Game C1.4, we know that the update value updar is indistinguishable from a random string
in {0, 1}λ except probability ϵ3prfKDF1

due to the 3prf security of the KDF1. Finally, similar to Game

C1.5, the root key st.rk and the chain key st.ckj are indistinguishable from random strings except
probability ϵswapKDF5

≤ ϵdualKDF5
due to the swap-security (and the dual-security) of the function KDF5.

Thus, we have that
Pr[E] ≤ qepϵ

dual
KDF2

+ ϵIND-CCA
KEM + ϵ3prfKDF1

+ ϵdualKDF5

Case
(
flag = good and safeidK¬P

)
: This case can be analyze in the following games. Here, we only sketch

the idea, since they are very similar to Game C1.3, Game C1.4, and Game C1.5. First, similar

45

to Game C1.3, we know that the encapsulated key is indistinguishable from a random key except
probability ϵIND-CCA

KEM due to the IND-CCA security of the underlying KEM. Then, similar to Game

C1.4, we know that the update value updar is indistinguishable from a random string in {0, 1}λ
except probability ϵ3prfKDF1

due to the 3prf security of the KDF1. Finally, similar to Game C1.5, the

root key st.rk and the chain key st.ckj are indistinguishable from random strings except probability
ϵswapKDF5

≤ ϵdualKDF5
due to the swap-security (and the dual-security) of the function KDF5. Thus, we have

that
Pr[E] ≤ ϵIND-CCA

KEM + ϵ3prfKDF1
+ ϵdualKDF5

Case
(
flag = good and safe-st¬P(j − 1)

)
: This case can be analyze in the following games. Here, we

only sketch the idea, since they are very similar to Game C2.3, Game C2.4, Game C2.5, and
Game C2.6. First, similar to analysis in Game C2.3, the challenger first guesses the medium-term
pre-key that will be used for sending the first message in epoch j, which can be guessed correctly
with probability at least 1

qM
. Next, similar to Game C2.4, we know that the encapsulated key

is indistinguishable from a random key except probability ϵIND-CCA
KEM due to the IND-CCA security

of the underlying KEM. Then, similar to Game C2.5, we know that the update value updar is
indistinguishable from a random string in {0, 1}λ except probability ϵ3prfKDF1

due to the 3prf security

of the KDF1. Finally, similar to Game C2.6, the root key st.rk and the chain key st.ckj are
indistinguishable from random strings except probability ϵswapKDF5

≤ ϵdualKDF5
due to the swap-security

(and the dual-security) of the function KDF5.
Thus, we have that

Pr[E] ≤ qM(ϵ
IND-CCA
KEM + ϵ3prfKDF1

+ ϵdualKDF5
)

From above two cases, we know that

Pr[E] ≤max
(
ϵprfKDF3

, qepϵ
dual
KDF2

+ ϵIND-CCA
KEM + ϵ3prfKDF1

+ ϵdualKDF5
,

ϵIND-CCA
KEM + ϵ3prfKDF1

+ ϵdualKDF5
, qM(ϵ

IND-CCA
KEM + ϵ3prfKDF1

+ ϵdualKDF5
)
)

≤ max
(
ϵprfKDF3

, qepϵ
dual
KDF2

+ ϵIND-CCA
KEM + ϵ3prfKDF1

+ ϵdualKDF5
,

qM(ϵ
IND-CCA
KEM + ϵ3prfKDF1

+ ϵdualKDF5
)
)

This means, it holds that

AdvC3.2
2 ≤AdvC3.2

3 + qep max
(
ϵprfKDF3

, qepϵ
dual
KDF2

+ ϵIND-CCA
KEM + ϵ3prfKDF1

+ ϵdualKDF5
,

qM(ϵ
IND-CCA
KEM + ϵ3prfKDF1

+ ϵdualKDF5
)
)

Game C3.2.4. This game is identical to Game 3.2.3 except the following modification:
1. For running A’s eSend at t⋆, the execution (st.ckt

⋆

, urk)← KDF4(st.ck
t⋆) in Line 23 in Figure 4 is

replaced by st.ckt
⋆ $← {0, 1}λ, urk $← {0, 1}λ. After that, the challenger stored (st.ckt

⋆

, urk) into a
local list.

2. For running B’s eRcv at t⋆ the execution (st.ckt
⋆

, urk)← KDF4(st.ck
t⋆) in Line 38 is replaced by the

tuple (st.ckt
⋆

, urk) in the local list for the corresponding message index.
The advantage gap of A in winning Game C3.2.3 and Game C3.2.4 can be computed by hybrid

games. Recall that A can query oracles at most q times, the maximum of the message index is q.

Game hy.0: This game is identical to Game C3.2.3. Thus, we have that

AdvC3.2
3 = Advhy.0

Game hy.j, (1 ≤ j ≤ q): This game is identical to game Game hy.(j − 1) except that:

1. For running A’s j-th eSend at t⋆, the execution (st.ckt
⋆

, urk) ← KDF4(st.ck
t⋆) in Line 23 in

Figure 4 is replaced by st.ckt
⋆ $← {0, 1}λ, urk $← {0, 1}λ. After that, the challenger stored

(st.ckt
⋆

, urk) into a local list.
2. For running B’s eRcv on a ciphertext corresponds to the position (t⋆, j), the execution

(st.ckt
⋆

, urk) ← KDF4(st.ck
t⋆) in Line 38 is replaced by the tuple (st.ckt

⋆

, urk) in the local
list for the corresponding message index j.

46

It is obvious that Game hy.q is identical to Game C3.2.4. So, we have that AdvC3.2
4 = Advhy.q. The

gap between every two adjacent hybrid games can be reduced to the prg security of KDF4. Namely, if
the attacker can distinguish Game hy.(j − 1) from Game hy.j, then there must exist an attacker can
distinguish the real KDF4 and a random number generator. Thus, we can easily have that

AdvC3.2
3 ≤ AdvC3.2

4 + qϵprgKDF4

Game C3.2.5. This game is identical to Game C3.2.4 except the following modifications:

1. The challenger additionally samples a random message key m̃k ∈ {0, 1}λ for the position (t⋆, i⋆)

2. c′ ← S.Enc(mk,m) in Line 23 and 39 in Figure 4 is replaced by c′ ← S.Enc(m̃k ,m)
Note that the unidirectional ratchet key urk is sampled random in Game C3.2.4. Similar to the

game Game C1.5, if A can distinguish Game C3.2.4 and Game C3.2.5, then we can construct an
attacker that breaks prf security (and therefore the dual security) of underlying KDF5. Thus, we have that

AdvC3.2
4 ≤ AdvC3.2

5 + ϵprfKDF5
≤ AdvC3.2

5 + ϵdualKDF5

Game Final Analysis for Case C3.2:
Similar to the final analysis for Game C1, if the attacker A can distinguish the challenge bit in Game

C3.2.5, then there exists an attacker that breaks IND-1CCA security of the underlying SKE. Thus, we
can easily have that

AdvC3.2
5 ≤ ϵIND-1CCA

SKE

To sum up, we have that

AdvC3.2
2 ≤qep max

(
ϵprfKDF3

, qepϵ
dual
KDF2

+ ϵIND-CCA
KEM + ϵ3prfKDF1

+ ϵdualKDF5
,

qM(ϵ
IND-CCA
KEM + ϵ3prfKDF1

+ ϵdualKDF5
)
)
+ qϵprgKDF4

+ ϵdualKDF5
+ ϵIND-1CCA

SKE

Combining all statements above, the proof is concluded by

AdvPRIVΠ,△eSM

≤qmax(AdvC1
2 ,AdvC2

2 ,AdvC3.1
2 ,AdvC3.2

2)

≤qmax

(
ϵIND-1CCA
SKE + ϵdualKDF5

+ ϵ3prfKDF1
+ ϵIND-CCA

KEM ,

qM(ϵ
IND-1CCA
SKE + ϵdualKDF5

+ ϵ3prfKDF1
+ ϵIND-CCA

KEM),

ϵIND-1CCA
SKE + ϵdualKDF5

+ ϵ3prfKDF1
+ ϵIND-CCA

KEM + qepϵ
dual
KDF2

,

qep max
(
ϵprfKDF3

, qepϵ
dual
KDF2

+ ϵIND-CCA
KEM + ϵ3prfKDF1

+ ϵdualKDF5
,

qM(ϵ
IND-CCA
KEM + ϵ3prfKDF1

+ ϵdualKDF5
)
)
+ qϵprgKDF4

+ ϵdualKDF5
+ ϵIND-1CCA

SKE

)

≤q

(
qMϵ

IND-1CCA
SKE + qep(ϵ

prf
KDF3

+ qepϵ
dual
KDF2

)+

qMqep(ϵ
IND-CCA
KEM + ϵ3prfKDF1

+ ϵdualKDF5
) + qϵprgKDF4

+ ϵdualKDF5

)
≤qMqepqϵIND-CCA

KEM + qMqϵ
IND-1CCA
SKE + qMqepqϵ

3prf
KDF1

+ q2epqϵ
dual
KDF2

+ qepqϵ
prf
KDF3

+ q2ϵprgKDF4
+ (qMqep + 1)qϵdualKDF5

47

G.5 Proof of Lemma 4

Proof. The proof is given by a sequence of games. Let Advi denote the attacker A’s advantage in winning
Game i. At the beginning of the experiment, the attacker A outputs a target epoch t⋆, such that it
only queries the injection oracles inputting ciphertexts corresponding to in this epoch. Without loss of
generality, we assume t⋆ is even, i.e., A is the message receiver. The case for t⋆ is even can be given
analogously. Note also that the attacker A can immediately win when it successfully triggers the winning
predicate winauth turning form false to true. So, we only consider the case that A successfully forges a
ciphertext only once.
Game 0. This game is identical to the ExpAUTHΠ,△eSM

. Thus, we have that

Adv0 = AdvAUTHΠ,△eSM

Game 1. This game is identical to Game 0 except the following modifications:
1. If the attacker queries Inject-A(ind, c) with c corresponding epoch t⋆ and a message index i⋆ such

that t⋆ ≤ tA − 2 and (B, t⋆, i⋆) /∈ trans, the challenger immediately aborts the oracle and outputs
(t⋆, i,⊥).

Note that a record is not included in the transcript set for the previous epochs, only when
1. this record is delivered
2. no sender has produced any message in the previous epoch t⋆ with message index i⋆

The first case can be easily excluded, since a natural eSM scheme never accepts two messages at the same
position. For the second case, note that B produces messages only with continuous message indices. B
didn’t produce the message with message index i⋆ means that i⋆ exceeds the maximal message length that
B has produced in the epoch t⋆. Since in eSM A has received all maximal message length in all previous
epochs (see Line 31 in Figure 4) and will aborts the eRcv execution if i exceeds the maximal message
length in the corresponding epoch (see Line 27 in Figure 4). This game is identical to Game 0 from A’s
view. Thus, we have that

Adv1 = Adv0

Note that the attacker can win only when it queries Inject-A(ind, c) such that all of the following
conditions hold

1. c corresponds to epoch t⋆

2. (B, c) /∈ trans
3. ind ≤ nA
4. safe-injA(tA) = safe-stB(tA) and safe-injA(tB) = safe-stB(tB)
5. m ′ ̸= ⊥
6. (B, t⋆, i⋆) /∈ comp

where (stA, t
⋆, i⋆,m ′)← eRcv(stA, ikA, prepk

ind
A , c)

In particular, (B, t⋆, i⋆) /∈ comp but (B, t⋆, i⋆) ∈ trans means that
1. safe-stB(t

⋆) = true holds at the time of B sending message corresponding to the position (t⋆, i⋆), and
2. if safe-stB(t

⋆) = false, Corrupt-A cannot be queried
3. If Corrupt-A is queried at epoch t⋆, then Corrupt-B cannot be queried.
4. Corrupt-B can be queried only after the ciphertext corresponding to (t⋆, i⋆) has been honestly

generated.
5. After the leakage of identity keys or pre-keys, safe-stB(t

⋆) = false
So, at most one of Corrupt-A and Corrupt-B at epoch t⋆, but not both.
We separate the analysis for t⋆ ≥ tA − 1, see Case 1, or t⋆ ≤ tA − 2, see Case 2.

Case 1. t⋆ ≥ tA − 1

In this case, the attacker queries Inject-A(ind, c) for some pre-key index ind and ciphertext c under
the condition that safe-stB(tB) = true. This means, tB, (tB − 1) /∈ Lcor

B .
Game C1.2 This game is identical to Game 1 except the following modification:

1. Until epoch t⋆, whenever P ∈ {A, B} is trying to sending the first message in a new epoch t + 1

(i.e. P = A if t even and P = B if t odd) and the execution Lcor
P

+← t + 1 in Line 88 in the

ep-mgmt helping function in Figure 4 is not triggered, then the challenger replaces r
$← {0, 1}λ,

(stP.nxs, r
KEM , rDS) ← KDF2(stP.nxs, r) executed in the following eSend algorithm in Line 19 in

Figure 4 by stP.nxs
$← {0, 1}λ, rKEM $← {0, 1}λ, rDS $← {0, 1}λ.

We analyze A’s advantage in winning Game C1.2 by hybrid games.

48

Game hy.0: This game is identical to Game 1. Thus, we have that

AdvC1.1
1 = Advhy.0

Game hy.j, (1 ≤ j ≤ qep): This game is identical to game Game hy.(j − 1) except that:

1. When entering epoch j from j−1, if the execution Lcor
P

+← j in Line 88 in the ep-mgmt helping
function in Figure 4 is not triggered for P = A if j odd and P = B if j even, then in the following

eSend algorithm, the challenger replaces r
$← {0, 1}λ, (stP.nxs, rKEM , rDS) ← KDF2(stP.nxs, r)

executed in Line 19 in Figure 4 by stP.nxs
$← {0, 1}λ, rKEM $← {0, 1}λ, rDS $← {0, 1}λ.

It is obvious that Game hy.qep is identical to Game C1.2. Thus, we have that

AdvC1
2 = Advhy.qep

Let E denote the event that A can distinguish any adjacent hybrid games Game hy.(j−1) and Game
hy.j. Note that the modification in every hybrid game is independent of the behavior of the previous
game. Thus, we have that

AdvC1
1 − AdvC1

2 ≤ qep Pr[E]

Below, we compute the probability of the occurrence of event E by case distinction. Note that the

execution Lcor
P

+← j in Game hy.j indicates that Game hy.(j − 1) is identical to Game hy.j. Below, we

only consider the case for that the execution Lcor
P

+← j is not triggered. Note also that Lcor
P

+← j is not
triggered only when safe-chP(flag, j − 1, ind) for some pre-key index ind, which further implies that one of
the following conditions must hold: (1) safe-stP(j − 1) or (2) flag = good. Then, we consider each of the
two cases.

Case safe-stP(j − 1): First, safe-stP(j− 1) means (j− 1), (j− 2) /∈ Lcor
P . Moreover, (j− 1) /∈ Lcor

P indicates

that (1) the execution Lcor
P

+← (j−2) in Game hy.(j−2) is not triggered, and (2) the state corruption
on P is not invoked during epoch (j−1) and (j−2). According to hybrid game Game hy.(j−2), the
value stP.nxs sampled uniformly at random during sending the first message in epoch (j−2). In other
words, stP.nxs is uniformly at random from the attacker’s view when entering epoch j from (j − 1).

During sending the first message in epoch j, r
$← {0, 1}λ, (stP.nxs, rKEM , rDS) ← KDF2(stP.nxs, r)

is executed in Line 19 in Figure 4. By the prf security of KDF2, it is easy to know that if A can
distinguish Game hy.(j − 1) and Game hy.j, then there must exist an attacker that distinguish
the keyed KDF2 and a random function. Thus, it holds that

Pr[E] ≤ ϵprfKDF2

Case flag = good: This means, the first message in epoch j − 2 is computed using fresh randomness. In

particular, this means, r
$← {0, 1}λ, (stP.nxs, rKEM , rDS)← KDF2(stP.nxs, r) is executed in Line 19

in Figure 4 uses fresh randomness r. It is easy to know that stP.nxs after sending the first message
in epoch (j − 2) is distinguishable from a random string, due to the swap-security of KDF2.
Thus, we have that

Pr[E] ≤ ϵswapKDF2

From above two cases, we know that

Pr[E] ≤ max
(
ϵprfKDF2

+ ϵswapKDF2

)
≤ ϵdualKDF2

To sum up, we have that

AdvC1
1 ≤ qep Pr[E] + AdvC1

2 ≤ AdvC1
2 + qepϵ

dual
KDF2

Final Analysis for Case C1. Note that tA − 1 ≤ t⋆ and that t⋆ even. Then, there are following seven
cases:

1. tA is even: tA = tB = t⋆

2. tA is odd: t⋆ = tA − 1, tB = tA − 1
3. tA is odd: t⋆ = tA − 1, tB = tA
4. tA is odd: t⋆ = tA − 1, tB = tA + 1
5. tA is odd: t⋆ = tA + 1, tB = tA − 1
6. tA is odd: t⋆ = tA + 1, tB = tA

49

7. tA is odd: t⋆ = tA + 1, tB = tA + 1
In all of above seven cases, t⋆ and tB are not two epochs apart. Moreover, by safe-stB(tA) amd safe-stB(tB),
we know that the A has to forge at least one signature against a pair of uncorrupted and freshly generated
key pair, due to Game C1.2. To make a successful injection query, A has to either keep the pre-transcript
and forge a signature for the pre-transcript or forge a signature for a new pre-transcript, which violates
the SUF-CMA security of the underlying DS scheme. Thus, we can have that

AdvC1
2 ≤ ϵSUF-CMA

DS

To sum up, we have that
AdvC1

1 ≤ ϵSUF-CMA
DS + qepϵ

dual
KDF2

Case 2. t⋆ ≤ tA − 2

In this case, A aims to forge a ciphertext in a past epoch. By Game 1, we know that (t⋆, i⋆) ∈ trans,
where i⋆ denotes the message index corresponding to the forged ciphertext.
Game C2.2 This game is identical to Game 1 except the following modification:

1. The challenger directly outputs (t⋆, i,⊥) for answering any Inject-A(ind, c) if safe-stB(t
⋆) = true,

where (t⋆, i) is the position of c.
Note that safe-stB(t

⋆) = true holds at the time of B sending message corresponding to the position
(t⋆, i⋆) for some i⋆. This means, safe-stB(t

⋆) = true when B was switch from receiver to sender when
entering epoch t⋆. Similar to the analysis in Game C1.2, we know that the signing keys are randomly
sampled except probability at most qepϵ

dual
KDF2

. If safe-stB(t
⋆) = true at the time of any Inject-A query,

the signing key has not been corrupted. Similar to the final analysis of Game C1.2, if A can forge a
ciphertext, then we can construct another attacker that invokes A to break the SUF-CMA security of DS.
Thus, we have that

AdvC2
1 ≤ AdvC2

2 + ϵSUF-CMA
DS + qepϵ

dual
KDF2

In the games below, we assume that safe-stB(t
⋆) = false when A queries Inject-A. Recall that

Corrupt-B can be queried only after the ciphertext corresponding to (t⋆, i⋆) has been honestly generated.
This also means that the unidirectional ratchet key urk for encrypting and decrypting the ciphertext
corresponding position (t⋆, i⋆) has been removed from the state stB. Moreover, if Corrupt-B is queried,
then Corrupt-A cannot be queried.
Game C2.3 This game is identical to Game C2.2 except the following modification:

1. Until epoch t⋆. Whenever P ∈ {A, B} is trying to sending the first message in a new epoch t + 1 (i.e.

P = A if t even and P = B if t odd) and the execution Lcor
P

+← t+1 in Line 88 in the ep-mgmt helping
function in Figure 4 is not triggered, then the challenger replaces (st.rk, st.ckst.t)← KDF3(st.rk, upd

ar)

executed in the following eSend algorithm in Line 22 in Figure 4 by stP.rk
$← {0, 1}λ and st.ckst.t

$←
{0, 1}λ, followed by storing (t + 1, stP.rk, st.ck

t+1, st.prtr).
2. if there exist a locally stored tuple (t′, rk, ck, prtr) and the eRcv is invoked to entering epoch t′ with

ciphertext including prtr, the challenger replaces (st.rk, st.ckst.t)← KDF3(st.rk, upd
ar) executed in

the eRcv algorithm in Line 33 in Figure 4 by st.rk ← rk, st.ckst.t ← ck.
The analysis of this game is identical to Game C3.2.3 in Section G.4. We can easily know that

AdvC2
2 ≤AdvC2

3 + qep max
(
ϵprfKDF3

, qepϵ
dual
KDF2

+ ϵIND-CCA
KEM + ϵ3prfKDF1

+ ϵdualKDF5
,

qM(ϵ
IND-CCA
KEM + ϵ3prfKDF1

+ ϵdualKDF5
)
)

Game C2.4 This game is identical to Game C2.3 except the following modification until Corrupt-B
is invoked:

1. For running A’s eSend at t⋆, the execution (st.ckt
⋆

, urk)← KDF4(st.ck
t⋆) in Line 23 in Figure 4 is

replaced by st.ckt
⋆ $← {0, 1}λ, urk $← {0, 1}λ. After that, the challenger stored (st.ckt

⋆

, urk) into a
local list.

2. For running B’s eRcv at t⋆ the execution (st.ckt
⋆

, urk)← KDF4(st.ck
t⋆) in Line 38 is replaced by the

tuple (st.ckt
⋆

, urk) in the local list for the corresponding message index.
The advantage gap of A in winning Game C3.2.3 and Game C3.2.4 can be computed by hybrid

games and reduced to the prg security of KDF4. Note that A can query at most q, we can easily have that

AdvC2
3 ≤ AdvC2

4 + qϵprgKDF4

50

Game C2.5. In this game, the challenger guesses the message index i⋆ that A wants to attack. Note
that A can query at most q times oracles. The challenger guesses correctly with probability at least 1

q .
Thus, we have that

AdvC2
4 ≤ qAdvC2

5

Game C2.6. This game is identical to Game C2.5 except the following modifications:

1. The challenger additionally samples a random message key m̃k ∈ {0, 1}λ for the position (t⋆, i⋆)
2. If the pre-key index ind equals the one for producing ciphertext at position (t⋆, i⋆) and the KEM

ciphertext are same as produced before, the challenger replaces c′ ← S.Enc(mk,m) in Line 23 and

39 in Figure 4 by c′ ← S.Enc(m̃k ,m). Otherwise, the challenger samples another random key

m̃k
′

∈ {0, 1}λ for decrypting ciphertext at location (t⋆, i⋆).
Note that the unidirectional ratchet key urk is sampled random in Game C2.4. If A can distinguish

Game C2.5 and Game C2.6, then we can construct an attacker that breaks prf security (and therefore
the dual security) of underlying KDF5. Thus, we have that

AdvC2
5 ≤ AdvC2

6 + ϵprfKDF5
≤ AdvC2

6 + ϵdualKDF5

Game C2.7. This game is identical to Game C2.6 except the following modifications:
1. If A queries Inject-A(ind, c) such that

(a) c corresponds to the position (t⋆, i⋆)
(b) ind does not equal the one for producing the ciphertext at position (t⋆, i⋆) or the KEM ciphertexts

included in c do not equal the ones in the original ciphertext at position (t⋆, i⋆)
then the challenger simply returns (t⋆, i⋆,⊥)

The gap between Game C2.6 and Game C2.7 can be reduced to the IND-1CCA security of SKE.
The reduction simulates Game C2.6 honestly except for the Inject-A(ind, c) that is described above.
In this case, the reduction forwards the symmetric key ciphertext to its decryption oracle for a reply m ′.
Then, the reduction returns (t⋆, i⋆,m ′) to A. If the challenge bit is 0, then the reduction simulates Game
C2.6 honestly, otherwise, it simulates Game C2.7. Thus, if A can distinguish Game C2.6 and Game
C2.7, then the reduction can easily distinguish the challenge bit. Thus, we have that

AdvC2
6 ≤ AdvC2

7 + ϵIND-1CCA
SKE

Game C2.8. This game is identical to Game C2.7 except the following modifications:
1. If A queries Inject-A(ind, c) such that

(a) c corresponds to the position (t⋆, i⋆)
(b) ind equals the one for producing the ciphertext at position (t⋆, i⋆) and the KEM ciphertexts

included in c equal the ones in the original ciphertext at position (t⋆, i⋆)
then the challenger simply returns (t⋆, i⋆,⊥)

The gap between Game C2.7 and Game C2.8 can be reduced to the IND-1CCA security of SKE. The
reduction simulates Game C2.7 honestly except for the Transmit-B(ind,m, r) and Inject-A(ind, c)
that is described above.

For the Transmit-B(ind,m, r) query, the reduction forwards m to its encryption oracle for a ciphertext
c′. The rest of this oracle is honestly simulated.

For the Inject-A(ind, c) query, the reduction forwards symmetric key ciphertext in the c to its
decryption oracle for a reply m ′. Then, the reduction returns (t⋆, i⋆,m ′) to A.

If the challenge bit is 0, then the reduction simulates Game C2.7 honestly, otherwise, it simulates
Game C2.8. Thus, if A can distinguish Game C2.7 and Game C2.8, then the reduction can easily
distinguish the challenge bit. Thus, we have that

AdvC2
7 ≤ AdvC2

8 + ϵIND-1CCA
SKE

Final Analysis for Case C2: Note that no matter what kind of Inject-A(ind, c) query A asks, where
c corresponds to the position (t⋆, i⋆) , the challenger always returns (t⋆, i⋆,⊥) immediately, according to
Game C2.7 and Game C2.8. Thus, A can never win and we have that

AdvC2
8 = 0

51

To sum up, we have that

AdvC2
1 ≤ϵSUF-CMA

DS + qepϵ
dual
KDF2

+ qϵprgKDF4
+ q(ϵdualKDF5

+ 2ϵIND-1CCA
SKE)

+ qep max
(
ϵprfKDF3

, qepϵ
dual
KDF2

+ ϵIND-CCA
KEM + ϵ3prfKDF1

+ ϵdualKDF5
,

qM(ϵ
IND-CCA
KEM + ϵ3prfKDF1

+ ϵdualKDF5
)
)

≤ϵSUF-CMA
DS + q(ϵprgKDF4

+ ϵdualKDF5
+ 2ϵIND-1CCA

SKE)

+ qep

(
ϵprfKDF3

+ (qep + 1)ϵdualKDF2
+ qM(ϵ

IND-CCA
KEM + ϵ3prfKDF1

+ ϵdualKDF5
)
)

The following equation concludes the proof.

AdvAUTHΠ,△eSM

≤max(AdvC1
1 ,AdvC2

1)

≤max

(
ϵSUF-CMA
DS + qepϵ

dual
KDF2

, ϵSUF-CMA
DS + q(ϵprgKDF4

+ ϵdualKDF5
+ 2ϵIND-1CCA

SKE)

+ qep

(
ϵprfKDF3

+ (qep + 1)ϵdualKDF2
+ qM(ϵ

IND-CCA
KEM + ϵ3prfKDF1

+ ϵdualKDF5
)
))

≤ϵSUF-CMA
DS + q(ϵprgKDF4

+ ϵdualKDF5
+ 2ϵIND-1CCA

SKE)

+ qep

(
ϵprfKDF3

+ (qep + 1)ϵdualKDF2
+ qM(ϵ

IND-CCA
KEM + ϵ3prfKDF1

+ ϵdualKDF5
)
)

≤ϵSUF-CMA
DS + qepqMϵ

IND-CCA
KEM + 2qϵIND-1CCA

SKE + qepqMϵ
3prf
KDF1

+ qep(qep + 1)ϵdualKDF2

+ qepϵ
prf
KDF3

+ qϵprgKDF4
+ (qepqM + q)ϵdualKDF5

52

G.6 Proof of Theorem 2

Proof. The proof is given by reduction. Namely, if there exists an attacker A that breaks the offline
deniability for the composition of a DAKE scheme Σ and our eSM construction Π in Section 4.1, then we
can always construct an attacker B that breaks the offline deniability of Σ in terms of Definition 7, also
see [5, Definition 11].

We first define the function FakeeInitΠ and the function FakeeSendΠ for our eSM construction Π.

• FakeeInitΠ (K, ipkdid, ik aid,Lprek
aid , sid, rid, aid, did): this algorithm inputs a key K ∈ iss, identity public

keys ipkA and ipkB, a list of private pre-keys Lprek
rid , the sender identity sid, the receiver identity rid,

the accuser identity aid, and the defendant identity did, followed by executing the following steps:

1. stA
$← Π.eInit-A(K)

2. stB
$← Π.eInit-B(K)

3. stFake ←
(
(stA, rid), (stB, sid)

)
4. return stFake

• FakeeSendΠ (stFake, ipk , prepk ,m, sid, rid, ind): this algorithm inputs a fake state stFake, an public identity
key ipk , a public pre-key prepk , a message m, a sender identity sid, a receiver identity rid, and a
pre-key index ind, followed by executing the following steps:

1. Parse
(
(stA, idA), (stB, idB)

)
← stFake

2. if idA = sid, then

(a) (stA, c)
$← Π.eSend(stA, ipk , prepk ,m)

(b) copy all symmetric values in session state stA to session state stB
(c) If stA.t is incremented in the above Π.eSend invocation, then extract the new verification

key vk and new encryption key ek from c, followed by set vk and ek into stB
(d) stFake ← ((stA, idA), (stB, idB))

3. else
(a) (stB, c)

$← Π.eSend(stB, ipk , prepk ,m)
(b) copy all symmetric values in session state stB to session state stA
(c) If stB.t is incremented in the above Π.eSend invocation, then extract the new verification

key vk and new encryption key ek from c, followed by set vk and ek into stA
(d) stFake ← ((stA, idA), (stB, idB))

At the beginning of the experiment, the attacker B inputs a list Lall that includes all public-private
key pairs of Σ from its challenger. Next, B honestly samples the random identity key and pre-key pairs
of Π and sets them into the respective lists as in the ExpdeniΣ,Π,qP,qM,qS

. In particular, all public-private key
pairs are added into the list Lall. B also initializes a empty dictionary Dsession and a counter n to 0. Then,
B sends the list Lall to A.

When A queries Session-Start(sid, rid, aid, did, ind), B first checks whether {sid, rid} = {aid, did} and
sid ̸= rid holds. It either condition does not hold, B simply aborts the oracle. Next, B increments
the counter n, followed by adding {sid, rid} into the dictionary Dsession[n]. Then, B checks whether
aid = sid. If the conditions holds, then B simply honestly runs Σ on the corresponding input and
finally derives a key K ∈ iss and a transcript T . Otherwise, B queries its challenge oracle with the
input (sid, rid, ind) for the key K and the transcript T . After that, B runs the above defined function

FakeeInitΠ (K, ipkdid, ik aid,Lprek
aid , sid, rid, aid, did) for a fake state stnFake. Finally, B returns the transcript to A.

When A queries Session-Execute(sid, rid, i, ind,m), B simply simulates Session-Execute as if the bit
b = 1.

At the end of the experiment, when A outputs a bit b′, B then forwards it to its challenger.
Note that our FakeeInitΠ algorithm perfectly simulates the process of running Π.eInit-A and Π.eInit-B.

Moreover, we consider two cases for the queries to the Session-Execute oracle:
1. If the sender identity sid in the Session-Execute oracle query is idA. Note that when a party receives

a message from the partner in our eSM construction Π, it only passively updates the symmetric
state, and optionally update the verification key and encryption key from the partner. In this case,
our FakeeSendΠ algorithm perfectly simulates the case that idA sends messages to idB.

2. If the sender identity sid in the Session-Execute oracle query is idB. In this case, similar to the
analysis above, our FakeeSendΠ algorithm also perfectly simulates the case that idB sends messages to
idA.

To sum up, in both cases B perfectly simulates ExpdeniΣ,Π,qP,qM,qS
to A. Thus, B wins if and only if A

wins. Obviously, the number of sessions at least as many as the number of challenge oracles that B queries.
And A and B runs in the approximately same time, which concludes the proof.

53

	Introduction
	Background and Related Work
	Instant Messaging Protocols and Immediate Decryption
	Offline Deniability and Post-Quantum Security

	Extended Secure Messaging
	Syntax
	Strong Security Properties
	Security Model
	eSM Security and its Core Properties

	Extended Secure Messaging Scheme
	The eSM Construction
	Security Conclusion and Concrete Instantiation

	Offline Deniability
	Review on messaging protocols with various optimal security
	Review of ACD19 and TR protocols
	Comparison of our eSM construction with ACD19, ACD19-PK, and TR
	Review on DAKE scheme and the game-based deniability
	The DAKE scheme
	The game-based offline deniability experiment

	Preliminaries
	Key Encapsulation Mechanisms
	Digital Signature
	Authenticated Encryption
	Pseudorandom Generators and Pseudorandom Functions

	Security Modularization
	Proof of Theorems and Lemmas
	Our Lemmas
	Proof of thm:From Simplified Security To SMS Security
	Proof of thm:eSM-simpified correctness
	Proof of thm:eSM-simpified privacy
	Proof of thm:eSM-simpified authenticity
	Proof of Theorem 2

