
Multi-Point HashDH OPRF using Multiplicative Blinding with
Application to Private Set Intersection

Minglang Dong∗∗

Abstract
The privacy set intersection (PSI) protocol with the oblivious pseudorandom function (OPRF)

as the core component is a crucial member of PSI family, and the most efficient PSI protocol at
present also belongs to this category. Based on DDH assumption, Hash Diffie-Hellman (HashDH)
PSI is one of the most classical PSI protocols. Benefiting by its low communication overhead,
it still has tremendous research value today. The OPRF subprotocol beneath the classical DH-
PSI protocol falls into our abstract blind-query-de-blinding OPRF paradigm, while employing the
exponential blinding (Exp-HashDH) method. An alternative method called multiplication blinding
(Mult-HashDH) offers the improvement which the exponential blinding can’t give in performance.
This technique substitutes multiple variable-base exponentiations with fixed-base exponentiations,
and by taking full advantage of this outstanding feature and pre-computation, the computational
efficiency of the client can be at least doubled. However, neither Mult-HashDH OPRF nor Mult-
HashDH PSI can provide a rigorous security proof under the semi-honest model, which makes the
security of this scheme reel from a crisis of confidence. In this paper, the security proof of a modified
Mult-HashDH OPRF protocol is formally given under the semi-honest model, which not only ensures
the security of the scheme but also have no influence on damaging the efficiency of the protocol. Then
along comes a secure HashDH PSI protocol constructed based on it. The experimental comparison
shows that our protocol achieves 2.65−13.20× speedup in running time.
Keywords: OPRF, HashDH OPRF, PSI, DH-PSI, Multiplicative Blinding

1 Introduction
As one of the most fundamental and intriguing primitive employed in cryptographic protocol, Oblivious
Pseudorandom Function (OPRF) is a secure two-party protocol with a formal definition computing a
deterministic functionality f(k, x) = (Λ, Fk(x)), where Fk is a Pseudorandom Function (PRF).

This default definition can be extended into multiple queries variation, and what we focus on in this
paper is non-adaptive seting, which means client must determine all points x1, x2, · · · , xn for multiple
queries as inputs before protocol execution. We call OPRF meeting this seting as multi-point OPRF.

A notable paradigm but easily come to mind is Blind-Query-Unblind paradigm, where the first-round
messages are generated by client blinding its inputs and sending to server, then server performs as an
oracle in PRF definition, i.e. computes Fk on every blinded inputs and returns to client, ultimately
client unblinds received pseudorandom function values to recover Fk on real inputs. We call the OPRF
protocol that falls into the Blind-Query-Unblind paradigm as Blind-Query-Unblin OPRF.

Based on the Decisional Diffie-Hellman (DDH) Assumption, HashDH OPRF is the most canonical and
significant member in this paradigm, which can be classified into two categories, namely HashDH OPRF
using Exponential Blinding(Exp) and HashDH OPRF using Multiplicative Blinding(Mult), occupying
the leading positions in both theory and practice.

The most customary blinding way in HashDH OPRF is exponential blinding(Exp-HashDH OPRF),
which was put forward together with OPRF. Another alternative blinding technique, multiplicative
blinding, is a slight variation of Blind-Query-Unblind OPRF(Mult-HashDH OPRF), providing an excel-
lent performance improvement of client attributing to substituting variable-base exponentiations with
fixed-base exponentiations. For example, in HashDH-PSI protocol on elliptic curve groups, it can re-
place the client’s variable-point multiplication with the fixed-point multiplication and at least doubles
the computation efficiency of the client through precomputation.

∗School of Cyber Science and Technology, Shandong University. Email: minglangdong@icloud.com

1

Although the multiplicative blinding possessing such an thrilling performance, it also has an potential
vulnerability, the lack of provable security in standard OPRF definition under rigid security paradigm for
MPC, which leads to its long being ignored and neglected. The essential reason why this happens is that
the standard OPRF defines the key k as the input of server, so as to achieve stronger privacy protection
of the key k, while in the preceding Mult-HashDH OPRF, the server’s sending gk is equivalent to the
active disclosure of part of the key information. In consideration of distinguisher is dictated to obtain
two parties’s inputs including server’s key k of pseudorandom function, it can trivially distinguish gk

and a uniformly random message, so this message cannot be simulated by the simulator of the corrupted
client.

One exisiting solution [JKX21] is to regard gk as the public key of PRF and append it to two
parties’s inputs separately, which means to amend the OPRF protocol into public-key setting where two
parties jointly compute a functionality f((sk, pk), (x, pk)) = (Λ, Fsk(x)). The biggest problem with this
approach is deviating the standard OPRF definition, resulting in most application scenarios, e.g. Private
Set Intersection (PSI), it is not applicable. The most significant contribution of our paper is to propose a
new Mult-HashDH OPRF protocol, which can be formally proves in standard OPRF definition, so that
can be applied in most applications scenarios such as PSI. On the basis of the original protocol, we first
revises g as a uniformly sampled element by client in the protocol rather than the generator of the group
G, and then employs a relaxed version for server’s security while sufficient for most application scenarios
to give the security proof of Mult-HashDH OPRF in the MPC security definition under the semi-honest
model and the standard OPRF definition, which not only ensures the security of the scheme but also
does not affect the efficiency of the protocol.

There is a plain observation that multi-point rOPRF naturally implies PSI protocol, which means
Mult-HashDH OPRF can be automatically applied to classical HashDH-PSI. Therefore, another contri-
butions of our work is that we construct a Mult-HashDH PSI, which is not only as secure as classical
HashDH-PSI and reserves the advantage of low communication, but also possesses a higher computa-
tional efficiency than it. We implemented the protocol in c++ and compared it with the classical DH-PSI
protocol using Bloom filter optimization techniques. The experiment result indicates that our protocol
achieves 2.65−13.20× speedup in running time.

Although the classical DH-PSI is much slower than current state of the art PSI (because the number
of power operations increases linearly with the number of elements), it is still of great value to study
and improve it. Mike Rosulek et al. [RT21] proposed the following reasons: First, communication cost is
more important than computation cost in some cases. For example, Ion et al. [IKN+19] reported their
actual deployment of PSI-like functionality in Google. They chose to deploy Diffie-Hellman PSI, because
”Somewhat surprisingly, for the offline ‘batch computing’ scenarios we consider, communication costs
are far more important than computation. This is especially the case for a secure protocol involving
multiple businesses, where servers cannot be co-located (Wide area network solutions). Networks are
inherently shared, and it is much less expensive to add CPUs to a shared network than to expand network
capacity.” Second, DH-PSI is the cheapest protocol in the case of small set inputs. For example, DH-PSI
is the most efficient choice in balanced scenarios where both sets consist of several hundred elements or
in extremely unbalanced scenarios where the input of one of the largest sets is several thousand elements.

2 Preliminaries
2.1 Pseudorandom Functions
Pseudorandom functions (PRFs) is a family of functions which is indistinguishable from truly random
functions. Formally, it’s defined as follows.
Definition 2.1 (PRFs). Let F : {0, 1}n×{0, 1}l → {0, 1}t be an efficient, keyed function, where the first
argument is called the key and denoted k, and the second argument is called the input to the function.
Consider the set Funcn of all functions mapping n-bit strings to n-bit strings. The adversary D is given
oracle access to some function F . Namely, D has access to outputs of the function F on polynomially
many inputs x1, x2, · · · of its adaptive choices, which we denote as DF . F is a pseudorandom function
if for all probabilistic polynomial-time distinguishers D, there is a negligible function negl such that:∣∣∣Pr[DFk(·)(1n) = 1]− Pr[Df(·)(1n) = 1]

∣∣∣ ≤ negl(n),

2

where the first probability is taken over uniform choice of k ∈ {0, 1}n and the randomness of D, and the
second probability is taken over uniform choice of f ∈ Funcn and the randomness of D.

2.2 Oblivious Pseudorandom Function
Freedman et al. [FIPR05] first formalized the conception of oblivious pseudorandom function (OPRF)
with two versions: strong (standard) OPRF, as opposed to weak (also called relaxed) OPRF, which
does not prevent the client from learning partial information about the key. The strongest definition
of OPRF, which is also the standard definition of OPRF, is a secure two-party protocol with a formal
definition computing a deterministic functionality f(k, x) = (Λ, Fk(x)), where Fk is some pseudorandom
function family.

Definition 2.2 (Strong OPRF). A two-party protocol π is said to be a strong OPRF if there exists
some PRF family Fk, such that π privately realizes the following functionality.

- Inputs: Client holds an evaluation point x; Server holds a key k.

- Outputs: Client outputs Fk(x); Server outputs nothing.

The strong OPRF provides such a strong security level that some natural and efficient OPRF protocols
do not satisfy this strong definition, yet are sufficient for the most applications. So Freedman et al.
proposed a alternative OPRF definition providing a relaxed server’s security at the same time as they
put forward the formalization of strong OPRF.

Definition 2.3 (Relaxed OPRF). A two-party protocol π is said to be a (non-adaptive, 1-time) relaxed
OPRF if there exists some PRF family Fk, such that the following hold.

(Correctness and client’s privacy) These properties remain the same as in Definition 2.2, i.e., using the
functionality f(k, x) = (Λ, Fk(x)).
(Server’s privacy) Consider an augmented protocol π′ in which the input of S consists of m evaluation
points y1, · · · , ym (instead of a key k) and the input of C is an evaluation point x (as in π). Protocol π′

proceeds as follows: (1) S picks a key k at random; (2) S, C invoke π on inputs (k, x); (3) S outputs
(Fk(y1), · · · , Fk(ym)) and C outputs its output in π. We require that the augmented protocol π′ provides
server security with respect to the following randomized functionality f

′ :

- Inputs: Client holds an evaluation point x; Server holds an arbitrary set of evaluation points
(y1, y2, · · · , ym).

- Outputs: Client outputs Fk(x) and server outputs (Fk(y1), · · · , Fk(ym)), where the key k is uni-
formly chosen by the functionality.

Specifically, for any (efficient, malicious) client C
′ attacking π

′ , there is a simulator C
′′ playing the

client’s role in the ideal implementation of f
′ , such that on all inputs (y1, y2, · · · , ym), x), the view of

C
′ concatenated with the output of S in π

′ is computationally indistinguishable from the output of C ′′

concatenated with that of S in the ideal implementation of f ′ .

2.3 Security in MPC for Semi-honest parties
In Secure Multi-Party Computation (MPC), proving security of a protocol always be achieved via the use
of simulation. Generally, we aim to construct an ideal world including a simulator who konws nothing
about the honest party’s input while can successfully simulate the corrupted party’s view concatenated
with two parties’ outputs, so that for any probabilistic polynomial-time distinguisher, the ideal world is
indistinguishable from the real world where the protocol is executed.

Formally, if f(x, y) = (f1(x, y), f2(x, y)) is a probabilistic polynomial-time functionality and π is a
two-party protocol for computing f , where x, y are two parties’s inputs and f1(x, y), f2(x, y) are are two
parties’s outputs respectively. We use viewπ

i to denote the corrupted party i’s view to be compared,
which contains its input, internal random tape and all messages it received, while use outputπ =
(outputπ1 ,output

π
2) to denote the joint outputs in the real protocol’s execution.

3

Definition 2.4. Let f = (f1, f2) be a functionality. We say that π securely computes f in the presence
of static semi-honest adversaries if there exist probabilistic polynomial-time algorithms S1 and S2 such
that

{(S1(1
n, x, f1(x, y)), f(x, y)}x,y,n

c≡ {(viewπ
1 (x, y, n), output

π(x, y, n))}x,y,n,

{(S2(1
n, y, f2(x, y)), f(x, y)}x,y,n

c≡ {(viewπ
2 (x, y, n), output

π(x, y, n))}x,y,n,

where x, y ∈ {0, 1}∗ such that |x| = |y|, and n ∈ N.

Especially, if f is a deterministic polynomial-time functionality, the aforementioned definition can
be compacted into a simpler formulation which contains two requirements: (a) correctness, meaning
that the output of the parties is correct, and (b) privacy, meaning that the view of each party can be
(separately) simulated.

Definition 2.5. (Correctness) There exists a negligible function ϵ such that for every x, y ∈ {0, 1}∗ and
every n,

Pr[outputπ(x, y, n) ̸= f(x, y)] ≤ ϵ(n)

(Privacy) There exist probabilistic-polynomial time S1 and S2 such that

{(S1(1
n, x, f1(x, y))}x,y,n

c≡ {(viewπ
1 (x, y, n)}x,y,n,

{(S2(1
n, y, f2(x, y))}x,y,n

c≡ {(viewπ
2 (x, y, n)}x,y,n,

2.4 Private Set Intersection
Private set intersection (PSI) enables two parties, each holding a private set of elements, to compute the
intersection of the two sets while revealing nothing more than the intersection itself.

The guarantees of PSI are captured in the ideal functionality FPSI defined in Figure 1.

Parameters: Sender S, receiver R, set sizes m,n.
Functionality:

• Obtain inputs X = {x1, · · · , xm} ⊆ {0, 1}∗ from sender S.

• Obtain inputs Y = {y1, · · · , yn} ⊆ {0, 1}∗ from receiver R.

• Give output X ∩ Y to receiver R.

Figure 1: Ideal functionality FPSI for PSI

2.5 Pseudorandom Functions from DDH Assumption
[NPR99] presented a construction of standard pseudorandom functions based on the DDH Assumption

known as HashDH as below.

• Setup(1κ): runs GroupGen(1κ) → (G, g, p), picks a cryptographic hash function H from domain D
to G, outputs pp = (G, g, p,H). pp defines a family of functions from Zp × D to G, which takes
k ∈ Zp and x ∈ D as input and outputs Fk(H(x)) = H(x)k.

• KeyGen(pp): outputs k
R←− Zp.

• Eval(k, x): on input k ∈ Zp and x ∈ D, outputs H(x)k.

Theorem 2.1. Fk(H(x)) is a family of PRF assuming H is a random oracle and the DDH assumption
holds w.r.t. GroupGen(1κ)→ (G, g, p).

4

It’s not so indiscoverable that removing the cryptographic hash function H modeled as random oracle,
the aforementioned standard PRFs construction is sharply degraded to a construction of weak PRFs as
follows.

• Setup(1κ): runs GroupGen(1κ)→ (G, g, p), outputs pp = (G, g, p). pp defines a family of functions
from Zp ×G to G, a.k.a. on input k ∈ Zp and x ∈ G outputs Fk(x) = xk.

• KeyGen(pp): outputs k
R←− Zp.

• Eval(k, x): on input k ∈ Zp and x ∈ D, outputs y ← xk.

Theorem 2.2. Fk(x) is a family of weak pseudorandom functions assuming the hardness the DDH
assumption holds w.r.t. GroupGen(1κ)→ (G, g, p).

3 Multi-Point OPRF from Blind-Query-Unblind Paradigm
Definition 3.1. A two-party protocol π is said to be amenable to the Blind-Query-Unblind Paradigm
in Figure 2 with respect to some functionality F if the following properties hold.

(Correctness) π computes OPRF functionality f(k, (x1, · · · , xn)) = (Λ, (F (k, x1), · · · , F (k, xn)) cor-
rectly. This becomes immediate when the Blind-Unblind transformation possesses function F ’s input
homomorphism as Unblind(F (k,Blind(x, r)), r) = F (x).

In this paper, what we focus on is the case when F is some weak PRF family. Notice F can’t be a
standard PRF because standard pseudorandomness denies input homomorphism. Specifically speaking,
if Fk is some PRF family and satisfies Unblind(Fk(Blind(x, r)), r) = Fk(x), then exists adversary A
querying oracle with inputs {x1, x2 = Blind(x1, r)} with some random r and receiving answers as
{y1, y2}. If Unblind(y2, r) = y1, then A outputs ‘1’, otherwise A outputs ‘0’. Clearly, A breaks the
definition of PRF with advantage 1/2 − negl(n). In contrast, the definition of weak PRF claims the
inputs of oracle are uniformly chosen from D by the challenger instead of adversarially chosen by A,
so A has no chance to query some related points which admits weak PRF possessing some potential
algebraic structure.
(Server’s privacy) The simulator SimR simulates the view of corrupt client which consists of client’s ran-
domness, input, output and received messages, then for any inputs k and {x1, x2, · · · , xn} the simulated
view is indistinguishable from the real execution in the protocol π.
Hybrid0: C’s view in the real protocol.
Hybrid1: Given C’s input {x1, x2, · · · , xn} and output {F (k, x1), F (k, x2), · · · , F (k, xn)}, SimR chooses
the randomness r1, r2, · · · , rn for C, and simulates the received messages with {Blind(F (k, x1), r1),
Blind(F (k, x2), r2), · · · , Blind(F (k, xn)}.

Clearly, SimR’s simulated view in Hybrid1 is identical to C’s real view on the premise correctness holds
as F (xi) = Unblind(F (k,Blind(xi, ri)), ri) deriving Blind(F (xi), ri) = Blind(Unblind(F (k,Blind(xi, ri))
, ri), ri) = F (k,Blind(xi, ri)) = F (k, ai).
(Client’s privacy) The simulator SimS simulates the view of corrupt server which consists of server ran-
domness, input, output and received messages, then for any inputs k and {x1, x2, · · · , xn} the simulated
view is indistinguishable from the real execution in the protocol π.
Hybrid0: S’s view in the real protocol.
Hybrid1: Given S’s input k and no output, SimS simulates the received messages with uniformly sampled
elements u1, · · · , un.

When proving π is secure against corrupted server S, the simulator SimS has to simulate the first
and the only received messages {a1, a2, · · · , an} with no information but the given input k, which has
nothing to do with {a1, a2, · · · , an} at all, so the only strategy SimS can take is to output uniformly
sampled elements, since the only konwledge k is of no use to itself. Therefore, the client’s privacy is
preserved if and only if the messagees {a1, a2, · · · , an} and uniformly sampled elements u1, · · · , un are at
least computationally indistinguishable for any inputs {x1, x2, · · · , xn}, i.e. {a1, a2, · · · , an} is at least
pseudorandom. What needs illustration is that this isn’t equivalent to Blind is a pseudorandom function,

5

since client may preprocess it’s inputs before blinding. If we composite the preprocessing and blinding as
a whole function, denoted as Blind∗ sufficient for Blind∗(xi, ri) = ai, then we can say Blind∗ is at least
a pseudorandom function on the premise that Blind∗’s outputs remain the first messages in protocol
and π preserves the client’s privacy, and vice versa.

In summary, if a protocol π in Figure 2 with respect to some functionality F satisfys F ’s input homo-
morphism and blinding method’s pseudorandom, then it is a protocol in Blind-Query-Unblind Paradigm
securely computing f(k, (x1, · · · , xn)) = (Λ, (F (k, x1), · · · , F (k, xn)). Hereinafter we will pay our spe-
cific attention on constructing a multi-point OPRF protocol from the Blind-Query-Unblind Paradigm,
where client first exploit a cryptographic hash function H modeled as a random oracle to map the inputs
to some domain as the aforementioned input preprocessing and F = Fk is some weak PRF family in
Figure 3.

Server S (k) Client C ({x1, x2, · · · , xn})

Pick r1, r2, · · · , rn uniformly
Set ai

R← Blind(xi, ri)

{a1, a2 . . . , an}

{F (k, a1), . . . , F (k, an)}Compute {F (k, a1), . . . , F (k, an)} Output F (k, xi)← Unblind(F (k, ai), ri)

Figure 2: Blind-Query-Unblind Paradigm

Theorem 3.1. If a two-party protocol π is a Blind-Query-Unblind Paradigm in Figure 3 with respect
to some weak PRF family Fk and H modeled as a random oracle, then π must conforms to the def-
inition of multi-point OPRF, a.k.a. π computes multi-point OPRF functionality f(k, (x1, · · · , xn)) =
(Λ, (F ∗

k (x1), · · · , F ∗
k (xn)), where F ∗

k = Fk ◦ H.

Noticeably, F ∗
k = Fk(H(x)) is standard PRF constructed by mapping the input to G via a crypto-

graphic hash function H first, then apply Fk in a cascade way, yielding a composite function Fk ◦ H.
By leveraging the programmability of H, we can easily reduce the pseudorandomness of the compos-
ite function F ∗

k to the weak pseudorandomness of Fk. In other words, random oracle amplifies weak
pseudorandomness to standard pseudorandomness. Specifically, B be an adversary against the weak
pseudorandomness of Fk. B interacts with an adversary A in the pseudorandomness experiment, with
the aim to determine if B’s’ given oracle is real or random oracle, simulates the random oracle H and
A’s real-or-random oracle as below:

Setup: B initializes two empty table T1,T2 and obtains polynomial many time input-ouput pair from its
own oracle OB denoted as {(y1, z1), (y2, z2), · · · } stored in T2

Random oracle query: For random oracle query ⟨xi⟩ from A, B programs H(xi) := yi, and then stores
the key-value pair (xi, yi) in table T1.
Real-or-random query: Once receiving a query ⟨xi⟩ to oracle OA from A, B looks up T1 and if xi is in
T1, then looks up T2 to find the output zi of its corresponding value yi, sends ⟨zi⟩ as the answer of ⟨xi⟩
to A
Guess: A makes a guess β′ ∈ {0, 1} for β, where ‘0’ indicates real mode and ‘1’ indicates random mode.
B forwards β′ to its own challenger.

Clearly, if A simulates the real oracle for all i ∈ [n], then B simulates the real oracle. If A simulates
the random oracle, then B simulates the random oracle. Thereby, B breaks the weak pseduorandomness
of Fk(·) with the same advantage as A breaks the pseduorandomness of F ∗

k (·).

6

Server S (k) Client C ({x1, x2, · · · , xn})

Pick r1, r2, · · · , rn uniformly
Set ai

R← Blind(H(xi), ri)

{a1, a2 . . . , an}

{Fk(a1), . . . , Fk(an)}Compute {Fk(a1), . . . , Fk(an)} Output Fk(xi)← Unblind(Fk(ai), ri)

Figure 3: multi-point OPRF from Blind-Query-Unblind Paradigm

4 Multi-Point OPRF from two Blindings on DDH Assumption
4.1 Hashed DH multi-point OPRF using Exponential Blinding
In several of applications, the underlying blinding function in Blind-Query-Unblind Paradigm is instan-
tiated with the Hashed Diffie-Hellman (HashDH) construction with r1 = r2 = · · · = rn = r, consistent
with the underlying PRFs:

Fr(x) = H(x)r

where hash functions H is defined as H : {0, 1}∗ → G for a multiplicative group G of prime order q, and
the PRF key r is a random element in Zq. The protocol for the oblivious computation of HashDH PRFs
employing this so-called exponential blinding method, also known as Exp-HashDH, is shown in Figure 4.
Client C sends to server S its input x blinded as ai = (H(xi))

r, for the same randomness r
R← Zq, and

then unblinds the server’s response Fk(ai) = ai
k as Fk(xi) = Fk(ai)

1/r = (ai
k)1/r = (((H(xi))

r)k)1/r =
(H(xi))

k and outputs Fk(xi). It is easy to see that the client’s inputs through blinding is computationally
indistinguishable from random elements in G for server according to the definition of PRF Fk, namely
the client’s privacy in protocol is preserved.

Theorem 4.1. If the DDH Assumption holds and H is a random oracle, then the protocol in Figure 4
securely realizes multi-point OPRF functionality for the PRF family F ∗

k (x) = Fk(H(x)) = H(xk), where
Fk is a weak PRF.

It is evident that the protocol in Figure 4 follows Definition 3.1 since Unblind(Fk(Blind(H(xi), ri)), ri)
= ((H(xi)

r)k)−r = H(xi)
k = Fk(H(x)) and ai = H(xi)

r is a PRF. Combined with Fk(x) = xk is a weak
PRF and H is a random oracle, the protocol conforms to Theorem 3.1, hence is qualify for multi-point
OPRF. The details are listed as following.

4.2 Hashed DH multi-point OPRF using Multiplicative Blinding
An alternative multiplicative blinding technique, denoted Mult-HashDH, is shown in Figure 5. The
protocol is an equivalent of Chaum’s technique for blinding RSA signatures: Given generator g of group
G, the client blinds its input as ai = H(xi) · gri with different randomness ri,then unblinds the server’s
response Fk(ai) = ai

k as Fk(xi) = Fk(ai) · (gk)ri = ai
k · (gk)ri = (H(xi) · gri)k · grik = (H(xi))

k using
the public key gk corresponding to the PRF key k, which is received from server. Since ri is random
elements in Zq, gri is random elements in G, leading multiplicative blinding to be a One-Time Pad in
nature. Therefore, it is easy to see that this blinding hides the client’s inputs with perfect security.

Comparing the computational cost of the two blinding techniques, we discover n variable-base expo-
nentiations are required in both cases for the server. However, for the client, Exp-HashDH requires 2n
variable-base exponentiations for blinding and unblinding, while Mult-HashDH involves n fixed-base ex-
ponentiations for blinding and n variable-base exponentiations for unblinding. In applications the client
could store the public key gk, which allows the latter exponentiations to employ fixed-base optimization,
reducing the client’s total computation to 2n fixed base exponentiations. Given that exponentiation

7

Parameters: group G of order q, generator g of group G, hash function H: {0, 1}l → G.
Input of Sender S: key k ∈ Zq

Input of Client C: X = {x1, x2, · · · , xn} ⊆ {0, 1}l

Server S (k) Client C ({x1, x2, · · · , xn})

Pick r
R← Zq

Set ai ← H(xi)
r

{a1, a2 . . . , an}

{ak1 , ak2 . . . , akn}Compute ak1 , a
k
2 . . . , a

k
n Output Fk(xi) = (aki)

−r = H(xi)
k

Figure 4: Hashed DH multi-point OPRF using Exponential Blinding

with a fixed base gives an efficiency about 6-7 times faster than that with a variable base, Mult-HashDH
becomes at least 1.7 faster than Exp-HashDH and 6x faster if gk is stored at the client and treated as
a fixed base. [JKX21] The concrete contrast of theoretical computational costs between Exp-HashDH
OPRF/PSI and Mult-HashDH OPRF/PSI protocols as Table 1.

Although there is good news for performance in multiplicative blinding, regarding security, things
are not as straightforward. It is almost impossible to prove that Mult-HashDH multi-point OPRF re-
alizes security in the definition of (strong) OPRF functionality, in consideration of the protocol slightly
deviating from multi-point OPRF from Blind-Query-Unblind Paradigm in 3 as the client reserving the
public key gk from server, which actually involves some information about the PRF key k as the server’s
input, and yields that the simulator for corrupted client SimR can’t simulate the message gk with no
konwledge about the PRF key k, which is nevertheless available to the distinguisher as the indices of the
joint distribution. We break the ice in two steps: First, we replace the generator g with a uniformly gen-
erated element h on group G by client C and send to server along with blinding messages a1, a2, · · · , an,
and server still behave as a oracle returning weak PRF value of inputs as before, including hk. We can
thereby view the protocol in Figure 6 as appending a dummy input xn+1 = Λ, and assuming xn+1 is
transformed to an+1 = h after blinding. Since h is uniformly sampled from G, so this minor amendment
doesn’t undermine the (pseudo)randomness of blinding method and maintains the pseudorandomness of
the output of weak PRF Fk(x) = xk as well. Ultimately, the protocol in Figure 6 can perfectlt fit in our
universal paradigm in Figure 3.1, which simplifies our proof substantially; However, there still exists a
problem that in simulating the view of corrupt client the simulator SimR can’t make up message hk by
obtaining its corresponding output on account of its corresponding dummy input. The last resort we use
is the pseudorandomness of hk which built on the distinguisher’s ignorance of PRF key k nevertheless.
So we introduce the concept of relaxed OPRF, loosing up the security of server’s privacy by employing
the augmented points as the server’s inputs instead of k, while placing k on the server’s random tape,
which is invisible for both SimR and distinguisher. In other words, relaxed OPRF doesn’t require so
rigid security for the server’s PRF key k and gives opportunity to send messages covering information
of k to client. Therefore, it can only be certifiable that Mult-HashDH multi-point OPRF meets security
in the definition of relaxed OPRF functionality, which is already adequate for most applications as well.

Theorem 4.2. If the DDH Assumption holds and H is a random oracle, then the protocol in Figure 6
securely realizes multi-point relaxed OPRF functionality for the PRF family F ∗

k (x) = Fk(H(x)) = H(xk),
where Fk is a weak PRF.

(Correctness) Unblind(Fk(Blind(H(xi), ri)), ri) = ((H(xi) · hri)k) · (hk)−ri = H(xi)
k = Fk(H(x)).

(Server’s privacy) In accordance with the definition of server’s privacy in Definition 2.3, the augmented
protocol of Hashed DH multi-point rOPRF using Multiplicative Blinding in Figure 6 is exhibited in the
Figure 7. Then we will construct a simulator SimR simulating the view of corrupt client which consists of

8

client’s randomness, input, output and received messages, so that for any inputs k and {x1, x2, · · · , xn}
the simulated view is indistinguishable from the real execution in the protocol π via a sequence of hybrid
transcripts.
Hybrid0: C’s view in the real protocol.
Hybrid1: Given C’s input {x1, x2, · · · , xn} and output {F ∗

k (x1), F
∗
k (x2), · · · , F ∗

k (xn)}, SimR chooses the
randomness r1, r2, · · · , rn

R← Zq and h
R← G for C, and simulates the received messages with {F ∗

k (x1) ·
hkr1 , F ∗

k (x2) · hkr2 , · · · , F ∗
k (xn) · hkrn , hk} and {H(y1)

k,H(y2)
k . . . ,H(ym)k} with the konwledge of Y

and k.
Clearly, SimR’s simulated view in Hybrid1 is identical to C’s real view because F ∗

k (xi) · hkri =
aki · (hk)−ri · hkri = aki .
Hybrid2: Given C’s input {x1, x2, · · · , xn} and output {F ∗

k (x1), F
∗
k (x2), · · · , F ∗

k (xn)}, SimR chooses the
randomness r1, r2, · · · , rn

R← Zq and h
R← G for C, and simulates the received messages with {F ∗

k (x1) ·
ur1 , F ∗

k (x2) · ur2 , · · · , F ∗
k (xn) · urn , u} and {u1, u2 . . . , um} without the konwledge of Y and k, where

u1, u2, · · · , um, u
R← G.

We argue that the simulated view in Hybrid2 and Hybrid3 are computationally indistinguishable
by reducing it to the weak pseudorandomness of the function Fk(x) = xk. Specifically, suppose the
distinguisher D can successfully distinguishes Hybrid2 and Hybrid3, then we can demonstrate there
exists an simulator S which can easily determine if the given oracle is real or random oracle computing
Fk i.e. break the weak pseudorandomness of Fk, and it simulates the random oracle H and generates D’s
challenge as below:

Setup: Given polynomial many time uniformly random points and relevant outputs denoted as {(s0, t0),
(s1, t1), (s2, t2) · · · (sm, tm)} from real-or-random oracle, S shares the common konwledge with the dis-
tinguisher D, including two parties’ inputs {x1, x2, · · · , xn}, {y1, y2, · · · , ym} as the indices of the joint
distribution, and client’s output {F ∗

k (x1), F
∗
k (x2), · · · , F ∗

k (xn)}.
Simulation: Given C’s input {x1, x2, · · · , xn} and output {F ∗

k (x1), F
∗
k (x2), · · · , F ∗

k (xn)}, S chooses the
randomness r1, r2, · · · , rn

R← Zq and h = s0 for C, and simulates the received messages with {F ∗
k (x1) ·

tr10 , F ∗
k (x2) · tr20 , · · · , F ∗

k (xn) · trn0 , t0} and {t1, t2 . . . , tm}.
Random oracle query: For random oracle query yi ∈ Y from D, S programs H(yi) := si.

If ti = Fk(si) = ski for i = 0, 1, · · · ,m+1, then S’s simulation is identical to Hybrid1. If ti are random
values, then S’s simulation is identical to Hybrid2. Therefore, D distinguishes Hybrid1 and Hybrid2 with
the same advantage as S breaks the weak pseduorandomness of Fk. In view of Fk is a weak PRF, Hybrid1

and Hybrid2 are computationally indistinguishable, then so as Hybrid0 and Hybrid2, which proves the
server’s privacy.
(Client’s privacy) The simulator SimS simulates the view of corrupt server which consists of server ran-
domness, input, output and received messages, then for any inputs k and {x1, x2, · · · , xn} the simulated
view is indistinguishable from the real execution in the protocol π.
Hybrid0: S’s view in the real protocol.
Hybrid1: Given S’s input k and no output, SimS simulates the received messages with uniformly sampled
elements u1, · · · , un.

In consideration of r1, r2, · · · , rn
R← Zq, hr1 , hr2 , · · · , hrn , h

R← G play the role of One-Time Pad and
above two hybrids are perfect indistinguishable.

Party Basic Operation Exp-HashDH Mult-HashDH Exp-HashDH Multi-HashDH
OPRF OPRF PSI PSI

Server variable-base exponentiation n n 2× n 2× n

Client variable-base exponentiation 2× n – 2× n –
Client fixed-base exponentiation – 2× n – 2× n

Table 1: Theoretical communication costs between Exp-HashDH OPRF/PSI and Mult-HashDH
OPRF/PSI protocols

9

Parameters: group G of order q, generator g of group G, hash function H: {0, 1}l → G.
Input of Sender S: key k ∈ Zq

Input of Client C: X = {x1, x2, · · · , xn} ⊆ {0, 1}l

Server S (k) Client C ({x1, x2, · · · , xn})

gk

Pick r1, r2, · · · , rn
R← Zq

ai = H(xi) · gri
{a1, a2 . . . , an}

{ak1 , ak2 . . . , akn}Compute ak1 , a
k
2 . . . , a

k
n Output Fk(xi) = aki · (gk)−ri = H(xi)

k

Figure 5: Preceding Hashed DH multi-point OPRF using Multiplicative Blinding

Parameters: group G of order q, generator g of group G, hash function H: {0, 1}l → G.
Input of Sender S: key k ∈ Zq

Input of Client C: X = {x1, x2, · · · , xn} ⊆ {0, 1}l

Server S (k) Client C ({x1, x2, · · · , xn, xn+1 = Λ})

Pick r1, r2, · · · , rn
R← Zq

h R← G
ai = H(xi) · hri

{a1, a2 . . . , an, an+1 = h}

{ak1 , ak2 . . . , akn, akn+1 = hk}
Compute ak1 , a

k
2 . . . , a

k
n, a

k
n+1 Output Fk(xi) = aki · (hk)−ri = H(xi)

k

Figure 6: Our improved Hashed DH multi-point rOPRF using Multiplicative Blinding

5 PSI from Multi-Point Relaxed OPRF
A multi-point (non-adaptive, n-time) relaxed OPRF can naturally generate a PSI protocol: Consider a
PSI protocol πpsi in which the inputs of S consists of m elements y1, · · · , ym and the inputs of C consists of
n elements x1, · · · , xn. Protocol πpsi proceeds as follows: (1) S picks a key k at random; (2) S, C invoke a
multi-point (non-adaptive, n-time) relaxed OPRF protocol π on inputs (k, (x1, · · · , xn)) with correspond-
ing augmented protocol π′ computing functionality g((y1, · · · , ym), (x1, · · · , xn)) = ((Fk(y1), · · · , Fk(ym), (Fk(x1), · · · , Fk(xn));
(3) After the execution of multi-point relaxed OPRF, S can calcute the pseudorandom function values
on its inputs, i.e. (Fk(y1), ..., Fk(ym)), while C obtains the PRF values (Fk(x1), ..., Fk(xn)) on its inputs,
sharing the same values when elements are in the intersection. (4) S sends all its PRF values to C,
C compares received values with its own values. If there exists equivalent element, then it is in the
intersection.

Theorem 5.1. If protocol π is a multi-point (non-adaptive, n-time) relaxed OPRF with the augmented
protocol π′ w.r.t. functionality g((y1, · · · , ym), (x1, · · · , xn)) = ((Fk(y1), · · · , Fk(ym), (Fk(x1), · · · , Fk(xn)),
then the above-mentioned protocol securely realizes FPSI in Figure 8.

(Correctness) The above protocol is correct except the case Fk(xi) ∈ B = {Fk(y1), Fk(y2) . . . , Fk(ym)}
while xi /∈ Y , whose probability of occurrence is mn · 2−l.

10

Parameters: group G of order q, generator g of group G, hash function H: {0, 1}l → G.
Input of Sender S: Y = {y1, y2, · · · , ym} ⊆ {0, 1}l

Input of Client C: X = {x1, x2, · · · , xn} ⊆ {0, 1}l

Server S ({y1, y2, · · · , ym}) Client C ({x1, x2, · · · , xn, xn+1 = Λ})

Pick k
R← Zq

Pick r1, r2, · · · , rn
R← Zq

h R← G
ai = H(xi) · hri

{a1, a2 . . . , an, an+1 = h}

{ak1 , ak2 . . . , akn, akn+1 = hk}
Compute ak1 , a

k
2 . . . , a

k
n, a

k
n+1 Output Fk(xi) = aki · (hk)−ri = H(xi)

k

{H(y1)
k,H(y2)

k . . . ,H(ym)k}

Figure 7: the augmented protocol of Hashed DH multi-point rOPRF using Multiplicative Blinding

(Server’s privacy) On the grounds of the definition of rOPRF in Definition 2.3, the server’s privacy of
the augmented protocol of multi-point rOPRF immediately implies the server’s privacy of the composite
protocol PSI.
(Client’s privacy) Without any additional incoming message of server S, the client’s privacy of multi-point
rOPRF immediately implies the client’s privacy of the composite protocol PSI.

Parameters: group G of order q, generator g of group G, hash function H: {0, 1}l → G.
Input of Sender S: Y = {y1, y2, · · · , ym} ⊆ {0, 1}l

Input of Client C: X = {x1, x2, · · · , xn} ⊆ {0, 1}l

Server S ({y1, y2, · · · , ym}) Client C ({x1, x2, · · · , xn})

Pick k
R← Zq

rOPRFk
x1, x2, · · · , xn

Fk(x1), Fk(x2), · · · , Fk(xn)

B = {Fk(y1), Fk(y2) . . . , Fk(ym)}
if Fk(xi) ∈ B, then xi ∈ X

⋂
Y

Output X
⋂
Y

Figure 8: PSI from multi-point rOPRF

Optimization: The naive protocol above sending all PRF values to the client and leaving it to figure
out which element is in the intersection is not an efficient approach for client, which requires about O(n2)
compare operations asymptotically. A frequent optimization is to ask the server to hash all its PRF values
in a hash table ahead of time, and then send the hash table to the client. This technique increases the
server’s computational cost for hashing its n elements to hash table, but reduces the client’s computation

11

complexity to O(n) asymptotically. Another optimization for the sake of reducing the communication
cost is to leverage some data structures for member tests, such as Bloom Filter, Cuckoo Filter, by making
the server insert its PRF values into these data structures and send the filter out instead of sending them
straightforward.

6 Performance
We describe details of our implementation and report the performance of the following set operations:
(1) psi: intersection of the sets; (2) card: cardinality of the intersection; (3) card-sum: sum of the
associated values for every item in the intersection with cardinality; (4) psu: union of the sets; (5)
private-ID: a universal identifier for every item in the union. We compare our work with the current
fastest known protocol implementation for each functionality.

6.1 Implementation Details
Our protocols are written in C++ with detailed documentations, which can be found at https://
github.com/yuchen1024/Kunlun/mpc. In consistency with our paper, we implement our protocols in a
modular fashion. We first implement the core mqRPMT protocol, then build various PSO protocols upon
it. Our implementation only relies on the OpenSSL library [?], and it can smoothly run on both Linux
and MacOS. In contrast, most existing PSO programs rely on multiple libraries and require sophisticated
parameters tuning, while sometimes the optimized parameters setting are not explicitly given. Thereby,
even running these programs successfully on the same environment would require tremendous efforts.

PSI
Running time (s) Comm. (MB)

LAN WAN total
212 216 220 212 216 220 212 216 220

Exp-HashDH PSI 5.07 80.89 1296.67 5.27 81.79 1355.42 0.30 4.74 76.60
Mult-HashDH PSI 0.58 6.43 98.259 0.27 4.35 69.60

Table 2: Practical communication cost and running time of two DH PSI protocols, calculated using
computational security � = 128 and statistical security � = 40. Each item has 128-bit length.

References
[FIPR05] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Keyword search and oblivious

pseudorandom functions. In Theory of Cryptography, Second Theory of Cryptography Conference,
TCC 2005, volume 3378 of Lecture Notes in Computer Science, pages 303–324. Springer, 2005.

[IKN+19] Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Mariana Raykova, Shobhit Saxena,
Karn Seth, David Shanahan, and Moti Yung. On deploying secure computing commercially: Private
intersection-sum protocols and their business applications. IACR Cryptol. ePrint Arch., 2019:723,
2019.

[JKX21] Stanisław Jarecki, Hugo Krawczyk, and Jiayu Xu. On the (in)security of the diffie-hellman oblivious
prf with multiplicative blinding. In Juan A. Garay, editor, Public-Key Cryptography – PKC 2021,
pages 380–409, Cham, 2021. Springer International Publishing.

[NPR99] Moni Naor, Benny Pinkas, and Omer Reingold. Distributed pseudo-random functions and kdcs. In
Advances in Cryptology - EUROCRYPT 1999, volume 1592 of Lecture Notes in Computer Science,
pages 327–346. Springer, 1999.

[RT21] Mike Rosulek and Ni Trieu. Compact and malicious private set intersection for small sets. In Pro-
ceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, CCS ’21,
page 1166–1181, New York, NY, USA, 2021. Association for Computing Machinery.

12

https://github.com/yuchen1024/Kunlun/mpc
https://github.com/yuchen1024/Kunlun/mpc

	Introduction
	Preliminaries
	Pseudorandom Functions
	Oblivious Pseudorandom Function
	Security in MPC for Semi-honest parties
	Private Set Intersection
	Pseudorandom Functions from DDH Assumption

	Multi-Point OPRF from Blind-Query-Unblind Paradigm
	Multi-Point OPRF from two Blindings on DDH Assumption
	Hashed DH multi-point OPRF using Exponential Blinding
	Hashed DH multi-point OPRF using Multiplicative Blinding

	PSI from Multi-Point Relaxed OPRF
	Performance
	Implementation Details

