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Abstract. Non-interactive zero-knowledge proofs of knowledge (NIZK-
PoK) serve as a key building block in many important cryptographic con-
structions. Achieving universally composable NIZKPoK secure against
adaptive corruptions was a long-standing open problem, recently solved
by Canetti, Sarkar, and Wang (Asiacrypt’22). This sole known con-
struction requires heavy cryptographic machinery such as correlation-
intractable hash functions, and is not ready for use in practice. In this
paper, we give constructions of adaptively secure universally composable
NIZKPoK in the global random-oracle model; we consider both the pro-
grammable and the non-programmable versions of the model. For many
practical NIZK proof systems, our constructions incur only a polyloga-
rithmic slowdown factor compared to stand-alone security.
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1 Introduction

An adaptive adversary attacking a cryptographic protocol can decide on the fly
which protocol participant(s) it wants to corrupt. As a result, the adversary gains
access to the memory of a device that is currently running, or has previously
run, the protocol. In the event that the adversary does not corrupt a party,
the protocol must protect this party’s security. Achieving security from such
adaptive corruptions is a notoriously difficult problem.

Non-interactive zero-knowledge proofs of knowledge (NIZKPoK) are an im-
portant building block in cryptographic constructions. For example, NIZKPoK
allow honest protocol participants to prove they have formatted their protocol
messages correctly, and catch any adversary who is trying to deviate maliciously
from a protocol specification. This technique transforms protocols secure in the
“honest-but-curious” model (in which protocol participants are guaranteed to
act according to the protocol) into those secure in the more realistic “malicious”
model (in which the adversary can issue adaptive corruptions and execute arbi-
trary code). NIZKPoK that are safe to deploy in such a complex cryptographic
system must have composable security : they must maintain security properties
when composed concurrently with other protocols.

Thus, constructing a non-interactive zero-knowledge proof system that can
withstand adaptive corruptions in the universal composition (UC) framework
of Canetti [14] is a natural and well-motivated problem. Obtaining adaptive
and composable NIZKPoK was a long-standing open problem until, in a paper
to appear in Asiacrypt’22, Canetti, Sarkar, and Wang [19] developed a com-
piler that leverages UC non-interactive commitments, Camenisch and Damg̊ard’s
commitment-based straight-line extractor [5], and a correlation intractable hash
function to obtain adaptive UC NIZKPoK from standard assumptions. In par-
ticular, Canetti et al. consider Σ-protocols in the FNICOM model, which assumes
the first message of the Σ-protocol is a UC non-interactive commitment, instan-
tiated using equivocal commitments and CCA-2 secure public-key encryption
with oblivious ciphertext sampling. Camenisch and Damg̊ard’s extractor adds
an additional O(λ) “commit-and-open” operations for security parameter λ, and
correlation intractable hash functions typically rely on heavy-weight primitives
like fully homomorphic encryption or indistinguishability obfuscation.

In this paper, we show how to obtain efficient and adaptive UC NIZKPoK
from any Σ-protocol with a natural adaptivity property in the global random-
oracle model. For most practicalΣ-protocols—i.e. those on the cusp of widespread
adoption in practice—our construction does not require any additional crypto-
graphic machinery; rather, it is as efficient as the Σ-protocol under the random-
ized Fischlin transform [24,26], which creates a multiplicative overhead for the
prover that is only superlogarithmic in λ. By treating the random oracle (RO) as
a global subroutine in the universal composition with global subroutines (UCGS)
model [1], our adaptive NIZKPoK retain composability even when the global RO
is shared among different sessions and protocols, as is likely in practice.
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Adaptive Σ-protocols. A standard Σ-protocol [23] is a three-move, public coin
zero-knowledge proof system over a binary NP relation R, where statements x
are proven to be in the language LR using a “witness” w such that (x,w) ∈ R.
The ‘three-move” form of a Σ-protocol is defined as follows: a prover P sends a
verifier V a first message com, V sends P a uniformly random challenge chl, P
responds with a value res, and V decides whether or not to “accept” (output
1) based on the proof transcript (x, com, chl, res). The “zero-knowledge proof
system” piece of the definition implies three properties: completeness, special
honest-verifier zero-knowledge (SHVZK), and special soundness (SS). The com-
pleteness property says that if P forms a proof using the three-move form on
input (x,w) ∈ R, then V always accepts. The SHVZK property states there
must exist a simulator algorithm SimProve that, on input the statement and
the challenge in advance, can produce a proof that looks statistically close to
that of a “real” prover without using a witness. Finally, the SS property implies
an extractor algorithm Extract that can compute a witness w from any two
proofs of a statement x with the same first message but different challenges.

P is a probabilistic Turing machine, and its random coins r determine the
value of the first message com. This randomness is the crux of the zero-knowledge
property—it is the only information hidden from the adversary during the SHVZK
experiment. In the adaptive SHVZK experiment, the adversary can corrupt P
after P has already issued proofs, revealing the entirety of P ’s random tape. We
therefore consider an “adaptive”Σ-protocol to be one that has an additional sim-
ulator algorithm, SimRand, that uses information from SimProve and the witness
that was supposedly used to compute the proof to generate convincing-looking
coins for P ’s random tape. Many popular Σ-protocols are adaptive according to
this definition.

Adaptive Straight-Line Compilers. A straight-line compiler (SLC) [27] is
an algorithm SLC that takes as input any Σ-protocol ΣR for relation R (as de-
scribed above) and produces as output a non-interactive, straight-line extractable
(NISLE) proof system ΠSLC

R for R in the random-oracle model (ROM). Recall
that a proof system is straight-line extractable if the challenger in the security
experiment can obtain the two proofs needed to run the Extract algorithm
(and thereby compute a witness for the statement x) immediately after an ad-
versarial prover issues a single proof, i.e. without any further interaction with
the prover. In the ROM, the security experiment has access to the adversary’s
queries to the random oracle (RO); therefore, as long as an adversarial prover
is forced to query the RO on two proof transcripts with the same first mes-
sage but different challenges, the Extract algorithm can immediately compute
a witness for the prover’s statement. The randomized Fischlin transform [24,26]
sets the proof repetition parameters such that the prover is guaranteed (with
probability that is overwhelming in the security parameter) to issue two such
transcripts to the RO. Other forms of straight-line extraction, such as the afore-
mentioned commit-and-open construction due to Camenisch and Damg̊ard [5]
work in the plain model, but require the prover to couple each repetition with a
cryptographic commitment, creating substantial computational overhead.
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We define an adaptive SLC as an SLC that preserves the adaptive secu-
rity properties of the underlying Σ-protocol—that is, the resulting proof sys-
tem ΠSLC

R is also secure against adaptive corruptions. Specifically, we define new
adaptive versions of the non-interactive multiple SHVZK and special simulation-
soundness (SSS) properties guaranteed by the regular SLC, and show these prop-
erties (with standard completeness, Definitions 7, 8, and 9) are both necessary
and sufficient to obtain adaptive UC NIZKPoK in the global ROM.

Theorem 1 (Informal). If a protocol Π creates adaptive UC NIZKPoK in
the ROM, then it must have the properties from Definitions 7-9.

Theorem 2 (Informal). Given any adaptive Σ-protocol ΣR and adaptive
straight-line compiler, we construct adaptive UC NIZKPoK in the

programmable global ROM (i.e. assuming the global RO can be programmed by
the security experiment).

Theorem 3 (Informal). Given any adaptive Σ-protocol ΣR, any adaptive
straight-line compiler, and an adaptive version of Lysyanskaya and

Rosenbloom’s OR-protocol compiler [27], we construct adaptive UC NIZKPoK
in the (non-programmable) global RO-CRS hybrid model.

We prove that the randomized Fischlin transform meets our definition of an
adaptive SLC, and can therefore efficiently transform any adaptive Σ-protocol
into adaptive UC NIZKPoK in the global ROM.

Theorem 4 (Informal). The randomized Fischlin transform [24,26] is an
adaptive straight-line compiler; that is, it preserves the security properties of

adaptive Σ-protocols under transformation.

Universal Composition with Global Subroutines. The security experi-
ment in the UC framework [14,1] tests a session of a cryptographic protocol Π
in the presence of arbitrary concurrent protocols, which are modeled using an
adversarial “environment” machine Z. Z controls the corrupted protocol partici-
pants through an adversary machine, and can also send inputs to honest protocol
participants and observe their outputs. In the “real-world” half of the security
experiment, the honest parties form their outputs according to the protocol Π,
and the adversary machine is the traditional notion of a cryptographic protocol
adversary A (i.e. one that executes arbitrary instructions). In the “ideal-world”
experiment, honest parties are just placeholder “dummies” who pass all of their
inputs to an ideal functionality F , which acts according to an “ideal” version
of the protocol. The adversary A is replaced with an “ideal adversary” S, who
acts like A when talking to Z, but also communicates with F and simulates the
view of the corrupted parties. When Z wishes to adaptively corrupt a protocol
participant P , F hands over any relevant information about P to S, and all fu-
ture communications with P are handled through S. If Z cannot distinguish its
interaction with “real” parties running Π in the presence of the “real” adversary
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A from its interaction with “ideal” (dummy) parties running F in the presence
of the “ideal” adversary, then Π is said to “UC-realize” (or be UC-secure with
respect to) F in the presence of Z.

In the original version of the framework [14], the “test session” of a protocol
must be subroutine respecting—its subroutines cannot process inputs coming
from other sessions or protocols. Since it is reasonable to expect protocols in
real-world applications to share a common reference string (CRS) or RO, sub-
sequent versions of the UC framework such as joint-state UC (JUC) [18] and
general UC (GUC) [15] tweak the model to allow this feature. The GUC model
in particular is designed to incorporate global functionalities G that can be ac-
cessed by any party in the security experiment. However, Badertscher, Canetti,
Hesse, Tackmann, and Zikas [1] observe subtle inconsistencies in the GUC model
stemming from the (unconstrained) environment’s ability to spawn parties with
arbitrary session identifiers (see Appendix A in Badertscher et al. [1]). Rather
than relax the constraints of the model, Badertscher et al. leverage the “shell-
and-body” construct of the original UC framework [14] to create a UC with
global subroutines (UCGS) model. In the UCGS model, the global subroutine
protocol G is “wrapped” into a joint body with the test protocol session π by a
“shell” protocol M. The shell M processes all communications in and out of π and
G and ensures that the combined entity M[π,G] is subroutine respecting, even
though π and G are not.

In this work, the ideal functionality F is the ideal functionality FaNIZK for
adaptive NIZKPoK. The global subroutines are the restricted programmable
observable global RO GrpoRO of Camenisch, Drijvers, Gagliardoni, Lehmann, and
Neven [6] and the restricted observable (non-programmable) global RO GroRO of
Canetti, Jain, and Scafuro [15].

Applications. NIZKPoK are widely used in group [12,5], blind [25], threshold
[3], aggregate [26], and multi- [3,22] signatures, cryptographic shuffles [34,28]
and accumulators [2,10], anonymous networks [20], credentials [9], e-cash [8], e-
token [7], and voting [30,28,33], distributed ledgers [30], verifiable secret sharing
[33] and encryption schemes [5,11] that are secure against adaptively chosen ci-
phertext attacks (CCA security). We demonstrate that many of the Σ-protocols
used as core building blocks in these constructions, including proofs of knowl-
edge of discrete logarithm [32] and proofs of knowledge of n representations of
discrete logarithm [13,11], qualify as adaptive Σ-protocols, and can therefore
be efficiently transformed into adaptive UC NIZKPoK in the global ROM. The
result is an immediate and significant boost in the security potential of all of the
above real-world systems.

Theorems 5-7 (Informal). Many common Σ-protocols are adaptive
Σ-protocols, and can therefore be converted to efficient and adaptive UC

NIZPoK in the global ROM using our techniques.

Organization. In Section 2, we introduce the various oracles, models, and se-
curity definitions we will use in our constructions. Section 3 contains formal
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definitions of adaptive Σ-protocols and adaptive SLCs. We prove in Section 4
that the security guaranteed by adaptive SLCs is both necessary and sufficient
to create adaptive UC NIZKPoK in the programmable global ROM, and suf-
ficient along with an ideal CRS functionality [27] in the (non-programmable)
global RO-CRS hybrid model. In Section 5 we demonstrate that the randomized
Fischlin transform [24,26] is an adaptive SLC, and can therefore create efficient
and adaptive UC NIZKPoK from any adaptive Σ-protocol. Finally in Section 6,
we prove that many common Σ-protocols are adaptive, concluding that efficient
and adaptive UC NIZKPoK are realizable for a variety of real-world systems.

2 Preliminaries

In this section, we give preliminary definitions of the global RO (Section 2.1)
and RO-CRS hybrid (Section 2.2) models we will use in our constructions, as
well as a specification of the adaptive corruption mechanism (Section 2.3), the
ideal adaptive NIZKPoK functionality FaNIZK (Section 2.4), and finally adaptive
security in the UCGS model (Section 2.5).

2.1 The Global Random Oracle Model(s)

We will demonstrate how to obtain adaptive UC NIZKPoK in two global random
oracle models: the restricted observable global ROM of Canetti et al. [17] and the
restricted programmable observable global ROM of Camenisch et al. [6]. Recall
from the introduction that NIZKPoK in the ROM traditionally require a proof
simulator algorithm SimProve that programs the outputs of the RO, and an
extractor algorithm Extract that observes the adversary’s RO queries. While
making the global RO programmable is easier from a construction standpoint,
the non-programmable model is closer to the intended vision of a truly “global”
RO that cannot be edited or controlled by any one entity. We highlight and
discuss the differences between the two models below; the formal versions of the
definitions are provided in the supplementary materials (A.2).

The global ROs in both models have a traditional random function interface,
Query, which takes an any-length string as input and returns a uniformly ran-
dom ℓ-bit string as output [4]. The “global” designation refers to the fact that
there exists a single instance of the oracle for all sessions of a protocol, and po-
tentially across protocols (as opposed to one functionality per protocol session,
as in the standard UC model [14]). In order to be considered a global subrou-
tine in the UCGS model [1], the global RO must be subroutine respecting and
regular with respect to the challenge protocol. Both global ROs are subroutine
respecting since the “extended instance” of each includes querying parties in any
session, and no oracle subroutines interact directly with the querent. They are
also regular with respect to the challenge protocol, since they neither invoke new
NIZKPoK protocol participants nor run them as subroutines.

The observable-only RO GroRO [17,6] records all “illegitimate” queries made
for a session s by parties with an sid ̸= s, which captures all of the environ-
ment’s direct queries (since the environment is external to all legitimate protocol
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sessions by definition). The observability property is captured by the interface
Observe, which takes a session s as input and produces a list of illegitimate
queries Qs for s as output. Since the only queries in Qs are adversarial, we
model Qs as completely public—GroRO can release it to anyone who asks [6].

The programmable version GrpoRO [6] builds on the observable-only function-
ality with an additional interface, the IsProgrammed interface, which reveals the
programmed entries for a session s to any parties in the same session. Again since
the environment is external to all legitimate protocol sessions by definition, it
will not be able to query the IsProgrammed interface directly, and must instead
ask through the corrupted session participants (in the ideal world, the simula-
tor can always return “false” to corrupted session participants’ IsProgrammed
queries). Unlike the “illegitimate queries” of the observation interface, the list
of programmed queries cannot be made public to everyone (or the environment
could trivially distinguish the real from ideal experiments). It is unclear to date
how this distinction affects the security of protocols under composition in the
global ROM, if at all. In the meantime, we recall in the next section the GroRO-
FCRS-hybrid model, which will allow us to obtain adaptive UC NIZKPoK without
programming the global RO.

2.2 The GroRO-FCRS-hybrid Model

In the observable-only GroRO-hybrid model, the SimProve algorithm has no addi-
tional power over a regular prover, since it cannot program GroRO. Thus, NIZKPoK
in the plain GroRO-hybrid model are impossible [17,6,31,16,15]. To work around
this impossibility result and construct UC NIZKPoK while avoiding the session-
localized IsProgrammed interface of the programmable global RO GrpoRO, Lysyan-
skaya and Rosenbloom introduce the GroRO-FCRS-hybrid model [27], where FCRS

is the (local) ideal common reference string (CRS) functionality.
In the real-world execution of the GroRO-FCRS-hybrid model, FCRS has one

interface, Query, that simply returns a consistent CRS to the participants of a
particular session s. Protocol participants can generate this secure CRS for a
one-time cost at the beginning of a protocol session using Canetti et al.’s UC
NISC protocol [17] and only GroRO [27].

In the ideal-world experiment, the simulator plays the role of FCRS, and can
generate CRSs for each session s with a secret trapdoor traps. Provers in the
GroRO-FCRS-hybrid model prove via an OR-type Σ-protocol [21,23] that either
they know a real witness to a statement, or they know the trapdoor traps
to CRSs. This allows the simulator in the ideal-world experiment to “simu-
late” proofs of statements without witnesses using its extra power—the CRS
trapdoor—which a real-world prover will never have.

In order to make the CRS statement compatible with the definition of Σ-
protocols, it must be drawn from a samplable-hard relation S—that is, generating
the CRS must be efficient, and, given any CRSs ∈ LS , it must be overwhelmingly
difficult to generate a traps such that S(CRSs, traps) = 1 [27]. The relation
S must additionally be Σ-friendly : it must have a corresponding efficient Σ-
protocol ΣS . Proofs in the GroRO-FCRS-hybrid model are therefore well-specified
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as OR-protocols ΣR∨S over the relation R ∨ S, where R is the relation of the
original Σ-protocol ΣR, and S is the samplable-hard relation underlying ΣS .
Formal definitions of the ideal functionality and context-friendly properties of
FCRS are given in the supplementary materials (A.2).

2.3 Adaptive Corruptions in the UC Model

Adaptive corruptions allow the (adversarial) environment Z in the UC model to
obtain full internal views of honest parties after they have already participated
in a cryptographic protocol. Briefly, adaptive corruptions in the UC framework
are modeled as follows. When it wants to corrupt an extant party P , Z sends a
message (Corrupt, P ) to the control function [14].1

In the real world, the control function passes the message (Corrupt, P ) to
the traditional adversary A , who passes the message to P . Upon receiving the
corruption instruction, P relinquishes all of its hidden internal tapes, including
its input, output, work, and random tapes, to A .2

In the ideal world, the control function passes the message (Corrupt, P ) to
the ideal adversary S, who must be able to provide a convincing internal view
of P to Z. S does this by first querying the ideal functionality F (who has been
running computations on “dummy party” P ’s behalf) for any relevant informa-
tion about P ; it then runs some algorithms (in our case SimRand) to simulate P ’s
internal tapes. The control function routes all subsequent instructions for P to
A in the real world, and S in the ideal world. We call any protocol that satisfies
the UC security definition (given in the next section) with adaptive corruptions
adaptive UC, or aUC for short.

2.4 The NIZKPoK Ideal Functionality

Recall from the introduction that ideal functionalities F in the UC model oper-
ate on behalf of the honest “dummy parties” in the ideal-world experiment [14].
Upon receiving instructions from the ideal adversary S and setting up any neces-
sary parameters, FaNIZK proves statements for honest parties using the SimSetup
and SimProve algorithms (which do not take witnesses as input) and verifies
proofs using the Extract algorithm. If the algorithms from S do not function

1 The control function is the entity in the UC experiment in charge of passing messages
back and forth between all protocol participants. It is easiest to think of the control
function as a modeling technique that prevents Z from sending messages that are
outside the scope of the desired security experiment. For example, in the passive
corruption model, the control function would not allow a message (Corrupt, P ) to
go through after P was initialized. In the adaptive setting, corruption messages are
allowed at any point during the security experiment.

2 Coins from the random tape in the UC model [14] are defined (without loss of
generality) to be read-once and flipped on-the-fly, such that the calling TM can
generate as much randomness as it wants (within its polynomial run-time bound).
This implies that the corrupted party P will only need to relinquish its random tape
history, rather than a “full” tape (the length of which is undefined).
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as FaNIZK intends, for instance if SimProve produces proofs that do not verify
or Extract outputs invalid witnesses, FaNIZK outputs Fail. During its process-
ing, FaNIZK stores information about the proofs it has computed on each dummy
party’s behalf. S retrieves this information via FaNIZK’s Corrupt interface when-
ever an honest party is corrupted by the environment.

Definition 1 (Adaptive NIZKPoK Ideal Functionality). The ideal func-
tionality FaNIZK of an adaptive non-interactive zero-knowledge proof of knowl-
edge (adaptive NIZKPoK) for a particular session s is defined as follows.

Setup: Initialize an empty list C of corrupted parties. Upon receiving a request
(Setup, P ) from a party P = (pid, sid), check whether sid = s and P /∈ C.
If either check fails, output ⊥. Otherwise, if this is the first time a request
(Setup, P ) was received from an uncorrupted party with sid = s, do as follows:
pass (Setup, s) to the ideal adversary S, receive and store (Algorithms, Setup,
Prove, Verify, SimSetup, SimProve, Extract). Then run SimSetup and store
(ppm, zs), where ppm are public parameters and zs is any auxiliary output of
SimSetup. Otherwise, output ⊥.

Prove: Upon receiving a request (Prove, x, w) from a party P = (pid, sid),
check that sid = s, P /∈ C, and R(x,w) = 1. If any check fails, output ⊥.
Otherwise, set w aside, compute π according to the SimProve algorithm, and
check that Verify(x, π) = 1. If it doesn’t, output Fail. Otherwise, record the
tuple (Proof, P, x, w, π, zs, zπ), where zπ is any auxiliary output of the SimProve
algorithm. Output (Proof, P, x, π).

Verify: Upon receiving a request (Verify, x, π) from a party P = (pid, sid),
first check that sid = s and P /∈ C. If either check fails, output ⊥. Otherwise if
Verify(x, π) = 0, output (Verification, P, x, π, 0). Otherwise if (Proof, P, x, π)
is already stored, output (Verification, P, x, π, 1). Otherwise, compute w ac-
cording to the Extract algorithm. If R(x,w) = 1, output (Verification, P, x, π, 1)
for a successful extraction. Else if R(x,w) = 0, output Fail.

Corrupt: Upon receiving a request (Corrupt, P ) from S, add P to C and return
all of the stored tuples (Proof, P, ∗), if they exist. Otherwise, output ⊥.

2.5 UC Security with Adaptive Corruptions

At a high level, a protocol Π qualifies as adaptive UC (aUC) with respect to an
ideal functionality F (i.e. Π “aUC-emulates” F) in the global ROM if for all ef-
ficient players in the security experiment, no adaptively-corrupting environment
can distinguish the real-world experiment (with Π and A ) from the ideal-world
experiment (with FaNIZK and S).

In the UC with global subroutines (UCGS) model, Π UC-emulates F in the
presence of a global subroutine G if M[Π,G] UC-emulates M[F ,G], where M is the
“shell” wrapper discussed in the introduction. Badertscher et al. show in Propo-
sition 3.4 [1] that as long as the global subroutine is subroutine respecting and
regular with respect to the challenge protocol, and that the challenge protocol is
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subroutine respecting except in its interactions with G (i.e. it is G-subroutine re-
specting), then M[Π,G] (resp. M[F ,G]) are subroutine respecting and behave just
like Π and G (resp. F and G) would behave as individual entities. We argued in
Section 2.1 that both GrpoRO and GroRO qualify as global subroutines, and as GrpoRO
and GroRO are the only global subroutines in our experiments, Π and FaNIZK are
GrpoRO- and GroRO-subroutine respecting. Therefore, without loss of generality, we
consider our UC experiments “in the presence of global subroutines” GrpoRO and
GroRO—or in the GrpoRO- and GroRO-hybrid models for short—and make no further
reference to M (for details, see Section 3 in Badertscher et al. [1]).

We review the (standard) UC-security definition with respect to a generic
global subroutine G, and instantiate the individual versions (i.e. with the generic
global RO GRO, GrpoRO, GroRO, and FCRS) as needed throughout the paper.

Definition 2 (aUC Protocols in the G-hybrid Model). A protocol Π with
security parameter λ aUC-realizes the ideal functionality F with adaptive cor-
ruptions in the G-hybrid model if for all efficient A , there exists an ideal ad-
versary S efficient in expectation such that for all efficient environments Z that
can issue adaptive corruptions,

IDEALGF,S,Z(1
λ, aux) ≈c REAL

G,∗
Π,A ,Z(1

λ, aux),

where G is a global subroutine, aux is any auxiliary information provided to the
environment, and ∗ represents any additional local functionality included in the
real-world experiment.

3 Adaptive Σ-protocols and Straight-line Compilers

In this section, we formalize the notions of adaptive Σ-protocols (Section 3.1)
and adaptive straight-line compilers (Section 3.2).

3.1 Defining Adaptive Σ-protocols

Recall from the introduction that a Σ-protocol for a binary NP relation R is
a three-move public-coin protocol between a prover P and a verifier V , after
which V is convinced that P has a witness w for some statement x such that
R(x,w) = 1. P is assumed to be a probabilistic (polynomial-time) Turing Ma-
chine (TM)—that is, P is assumed to have a random tape, from which it can sam-
ple polynomially-many random bits. In the traditional definitions of Σ-protocols
[23,27], the contents of P ’s random tape are not explicitly captured in the inputs
and outputs of the Σ-protocol algorithms. However, P ’s randomness is vital to
the security experiment—it is the only piece of information hidden from the ad-
versary (recall the adversary in the SHVZK game is allowed to query for proofs
of statements using witnesses of its choosing), and in the adaptive corruption
setting, the adversary will have access to this randomness after proofs have been
generated. Therefore, rather than keeping the randomness necessary to compute
proofs implicit in P ’s random tape, we make it an explicit quantity, denoted r.
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The basic three-move form of a Σ-protocol is generally described as an in-
teractive “protocol template” τ [23,27]. The algorithmic version of the protocol
template definition [27] consists of the following algorithms: τ.Setup, τ.Commit,
τ.Challenge, τ.Respond, and τ.Decision. We modify the τ.Setup algorithm
such that the public parameters contain a randomness security parameter λr,
derived from the overall security parameter λ, that specifies the amount of ran-
domness necessary to compute the first message com. In particular, we assume
the randomness r that is given as input to τ.Commit is sampled uniformly at
random from {0, 1}λr , representing a λr-length section of P ’s random tape. The
algorithms τ.Challenge, τ.Respond, and τ.Decision are unchanged. We provide
a full version of the definition in the supplementary materials (A.3).

Definition 3 (Adaptive Σ-protocol Template). The adaptive Σ-protocol
template for a relation R modifies the standard Σ-protocol template (Definition
3 in A.3) as follows.

– The public parameters ppm returned by τ.Setup include the randomness se-
curity parameter λr.

– τ.Commit takes r ← {0, 1}λr as an additional input.

In order to maintain correctness and security for the prover and to ade-
quately convince the verifier, Σ-protocols must have three properties: complete-
ness, special honest-verifier zero-knowledge (SHVZK), and special soundness
(SS). Lysyanskaya and Rosenbloom formalized a Σ-protocol as a tuple of al-
gorithms, Σ = (Setup, Prove, Verify, SimSetup, SimProve, Extract), that cap-
ture the requirements of the three-move form as well as the correctness and secu-
rity properties. In the adaptive corruption setting, the zero-knowledge simulator
must additionally be able to produce a view of the prover’s randomness that is
consistent with the proofs generated by the SimProve algorithm. We therefore
introduce a new algorithm—SimRand—which, given a statement, a proof, some
auxiliary information produced by SimSetup and SimProve, and the witness that
was supposedly used to compute the proof, outputs some simulated randomness.
This algorithm captures the intuition that an adaptive Σ-protocol simulator
must be able to generate convincing randomness for the prover’s random tape
after the proof has already been generated and the prover is corrupted by the
adversary. We will show in Section 6 that several widely-used instantiations of
Σ-protocols are adaptive according to this definition.

Finally, adaptiveΣ-protocols require an adaptive version of SHVZK, in which
the adversary should not be able to tell the difference between the outputs of
Σ.Prove and Σ.SimProve or between the randomness r of a real prover and the
output of Σ.SimRand.

Definition 4 (Adaptive Σ-protocol). An adaptive Σ-protocol for a relation
R based on adaptive protocol template τ (Definition 3) is a tuple of efficient pro-
cedures ΣR,τ = (Setup, Prove, Verify, SimSetup, SimProve, SimRand, Extract),
defined as follows.
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– ppm ← Setup(1λ): Given a security parameter 1λ, invoke τ.Setup(1λ) to
obtain the public parameters ppm.

– π ← Prove((ppm, x, w, r), (ppm, x)): Let the first (resp. second) argument to
Prove be the input to P (resp. V ), where both parties get ppm and the state-
ment x, but only P gets witness w and randomness r ←$ {0, 1}λr . P and V
run τ.Commit, τ.Challenge, and τ.Respond. Output π = (com, chl, res).

– {0, 1} ← Verify(ppm, x, π): Given a proof π for statement x, parse π as
(com, chl, res) and output the result of running τ.Decision on input (x, com,
chl, res). Verify must satisfy the completeness property from Definition 6
in A.5.

– (ppm, zs) ← SimSetup(1λ): Generate ppm and a general simulation trapdoor
zs. Together, SimSetup, SimProve, and SimRand must satisfy the adaptive
special honest-verifier zero-knowledge property from Definition 5.

– (π, zpi) ← SimProve(ppm, zs, x, chl, r) : Given public parameters ppm, trap-
door zs, statement x, challenge chl, and randomness r ← {0, 1}λr , produce
a proof π = (com, chl, res) and proof trapdoor zπ.

– r ← SimRand(ppm, zs, zπ, x, π, w) : Given public parameters ppm, general
trapdoor zs, proof trapdoor zπ, proof π for statement x, and a witness w
such that R(x,w) = 1, produce randomness (secret state) r.

– w ← Extract(ppm, x, π, π′) : Given two proofs π = (com, chl, res) and π′ =
(com, chl′, res′) for a statement x, output a witness w. Extract must satisfy
the special soundness property from Definition 7 in A.5.

For convenience and when the meaning is clear, we use ΣR to represent ΣR,τ

and omit ppm from the input of the algorithms.

Definition 5 (Adaptive Special Honest-Verifier Zero-Knowledge). A
Σ-protocol ΣR for relation R is statistical (resp. computational) adaptive spe-
cial honest-verifier zero-knowledge (adaptive SHVZK) if there exist algorithms
SimSetup, SimProve, and SimRand such that for any security parameter λ, any
adversary (resp. any PPT adversary) A , and a bit b←$ {0, 1}, there exists some
negligible function negl such that Pr[b′ = b] ≤ 1

2 + negl(λ), where b′ is the result
of running the game adSHVZKA ,ΣR

(1λ, b) from Figure 1. We say A wins the
adSHVZK game if Pr[b′ = b] > 1

2 + negl(λ).

3.2 Defining Adaptive Straight-Line Compilers

Adaptive straight-line compilers are straight-line compilers [27] that preserve the
adaptive security properties of the Σ-protocol being transformed. Recall from
the introduction that a regular straight-line compiler SLC takes a Σ-protocol ΣR

for a relation R as input and produces a new proof system ΠSLC
R that is a tuple of

(non-interactive) algorithms (SetupH , ProveH , VerifyH , SimSetup, SimProve,
Extract), whereH is any random oracle. In order to be considered a straight-line
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adSHVZKA ,ΣR(1
λ, 0): Real

1 : ppm← ΣR.Setup(1
λ)

2 : (Prove, x, w, st)← A (1λ, ppm)

3 : if R(x,w) = 1 :

4 : r ←$ {0, 1}λr

5 : chl← {0, 1}ℓ

6 : π ← ΣR.Prove((x,w, r), (x, chl))

7 : else :

8 : π ← ⊥
9 : b′ ← A (st, π, r)

10 : return b′

adSHVZKA ,ΣR(1
λ, 1): Ideal

1 : (ppm, zs)← ΣR.SimSetup(1
λ)

2 : (Prove, x, w, st)← A (1λ, ppm)

3 : if R(x,w) = 1 :

4 : chl← {0, 1}ℓ

5 : (π, zπ)← ΣR.SimProve(zs, x, chl)

6 : r ← ΣR.SimRand(zs, zπ, x, π, w)

7 : else :

8 : π ← ⊥
9 : b′ ← A (st, π, r)

10 : return b′

Fig. 1. Adaptive Special Honest-Verifier Zero-Knowledge (adSHVZK) Game.

compiler, ΠSLC
R must have the following properties: overwhelming completeness

(i.e. a negligibly small completeness error is allowed), non-interactive multiple
special honest-verifier zero-knowledge (NIM-SHVZK), and non-interactive spe-
cial simulation soundness (NI-SSS). Our adaptive version of an SLC, denoted
aSLC, says that ΠaSLC

R must have adaptive NIM-SHVZK and adaptive NI-SSS
properties—that is, NIM-SHVZK and NI-SSS must hold even when the adver-
sary gets to compare the prover’s true randomness with the output of SimRand.

Definition 6 (Adaptive Straight-Line Compiler). An algorithm SLC is an
adaptive straight-line compiler (adaptive SLC) in the random-oracle model if
given any adaptive Σ-protocol ΣR for relation R (Definition 4) as input, it out-
puts a tuple of algorithms ΠSLC

R = (SetupH , ProveH , VerifyH , SimSetup,
SimProve, SimRand, Extract) based on ΣR that satisfy the following properties:
overwhelming completeness (Definition 7), adaptive non-interactive multiple spe-
cial honest-verifier zero-knowledge (Definition 8), and adaptive non-interactive
special simulation soundness (Definition 9).

We refer to ΠaSLC
R ← aSLC(ΣR) as an adaptive and non-interactive straight-

line extractable (adaptive NISLE) proof system for R, and proofs generated by
ΠaSLC

R as adaptive and non-interactive straight-line extractable zero-knowledge
proofs of knowledge (adaptive NISLE ZKPoK).

Definition 7 (Overwhelming Completeness). An adaptive NISLE proof
system ΠaSLC

R for relation R in the random-oracle model has the overwhelm-
ing completeness property if for any security parameter λ, any (x,w) ∈ R, and
any proof π ← ΠaSLC

R .ProveH(x,w),

Pr[ΠaSLC
R .VerifyH(x, π) = 1] ≥ 1− negl(λ).

The RO in the “real-world” experiment Hf is parameterized by a function
f ←$ F selected from random function family F , while the RO in the “ideal-
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world” experiment is a list oracle HL parameterized by an initially empty list
L that the challenger in the security experiment can program via the interface
ProgL. In order to maintain indistinguishability between the experiments and
satisfy the (adaptive) NIM-SHVZK property, the ideal-world challenger must
program the RO imperceptibly.3 For a full description, see Figure 3 in A.5.

Definition 8 (Adaptive Non-Interactive Multiple SHVZK). An adaptive
NISLE proof system ΠaSLC

R for relation R in the random-oracle model has the
adaptive non-interactive multiple special honest-verifier zero-knowledge (adNIM-
SHVZK) property if there exist algorithms ΠSLC

R .SimSetup, ΠSLC
R .SimProve, and

ΠSLC
R .SimRand such that for any security parameter λ, any PPT adversary A , and

a bit b←$ {0, 1}, there exists some negligible function negl such that Pr[b′ = b] ≤
1
2+negl(λ), where b′ is the result of running the game adNIM–SHVZKH∗,∗

A ,ΠSLC
R
(1λ, b)

from Figure 2.

adNIM–SHVZKH∗,F
A ,ΠSLC

R
(1λ, 0): Real

1 : f ←$ F

2 : ppm← ΠSLC
R .SetupHf (1λ)

3 : st← A Hf (1λ, ppm)

4 : while st /∈ {0, 1} :

5 : (Prove, x, w, st)← A Hf (st)

6 : if R(x,w) = 1 :

7 : r ←$ {0, 1}λr

8 : π ← ΠSLC
R .ProveHf (x,w, r)

9 : else :

10 : π, r ← ⊥

11 : st← A Hf (st, π, r)

12 : return st

adNIM–SHVZKH∗,Prog
A ,ΠSLC

R
(1λ, 1): Ideal

1 : L← ⊥

2 : (ppm, zs)← ΠSLC
R .SimSetupProgL(1λ)

3 : st← A HL(1λ, ppm)

4 : while st /∈ {0, 1} :

5 : (Prove, x, w, st)← A HL(st)

6 : if R(x,w) = 1 :

7 : (π, zπ)← ΠSLC
R .SimProveProgL(zs, x)

8 : r ← ΠSLC
R .SimRandProgL(zs, zπ, x, π, w)

9 : else :

10 : π, r ← ⊥

11 : st← A HL(st, π, r)

12 : return st

Fig. 2. Adaptive Non-Interactive Multiple SHVZK (adNIM-SHVZK) Game.

Similarly, we extend Lysyanskaya and Rosenbloom’s definition of NI-SSS
[27] by giving A not only the output of ΠaSLC

R .SimProve, but of ΠaSLC
R .SimRand

as well. The adaptive NI-SSS property says that soundness must hold even
when A can see polynomially-many proofs from the simulator and can corrupt
polynomially-many provers (i.e., see the contents of polynomially-many random
tapes). Our work has the same limitation of Lysyanskaya and Rosenbloom [27]

3 To satisfy NIM-SHVZK when ΣR.SimProve involves programming, the first message
com will need entropy that is superlogarithmic in the security parameter [24,27].
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in that we formalize the ΠaSLC
R .Extract algorithm to work based on the adver-

sary’s queries to the random oracle, denoted QA . Extending the formalization
of SLCs to include “key-based” extractors that leverage verifiable encryption
schemes [5]—and determining whether or not such extractors can be used to
obtain (adaptive) GUC NIZKPoK—is left for future work.

Definition 9 (Adaptive Non-Interactive SSS). An adaptive NISLE proof
system ΠSLC

R for relation R in the random-oracle model has the adaptive non-
interactive special simulation sound (adNI-SSS) property if there exists an algo-
rithm ΠSLC

R .Extract such that for any security parameter λ and any PPT adver-
sary A ,

Pr[Fail← adNI–SSSHA ,ΠSLC
R
(1λ)] ≤ negl(λ),

where H is any random oracle and adNI–SSS is the game described in Figure 3.

adNI–SSS
HL,ProgL
A ,ΠSLC

R
(1λ)

1 : L, pflist, Response, st← ⊥;

2 : ppm, z ← ΠSLC
R .SimSetupProgL(1λ)

3 : while A HL(1λ, ppm, st) ̸= halt :

4 : (Query,QA , st)← A HL(st)

5 : if Query = (Prove, x, w) ∧R(x,w) = 1 :

6 : π, zπ ← ΠSLC
R .SimProveProgL(z, x)

7 : pflist.append(x, π)

8 : r ← ΠSLC
R .SimRandProgL(z, zπ, x, π, w)

9 : Response← (x, π, r)

10 : elseif Query = (Challenge, x, π)

11 : if ΠSLC
R .VerifyHL(x, π) = 1 ∧ (x, π) /∈ pflist :

12 : w ← ΠSLC
R .Extract(x, π,QA )

13 : if R(x,w) = 0 : return Fail

14 : st← A HL(st, Response)

15 : return Success

Fig. 3. Adaptive Non-Interactive Special Simulation Soundness (adNI-SSS) Game.

4 Adaptive and Universally Composable NIZKPoK

In this section, we show that the adaptive non-interactive multiple special honest-
verifier zero-knowledge (adNIM-SHVZK) and adaptive non-interactive special
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simulation-soundness (adNI-SSS) properties afforded by any adaptive straight-
line compiler (SLC) are necessary to achieve adaptive aUC NIZKPoK in any
global ROM (Section 4.1), and that they are sufficient to transform any Σ-
protocol into an adaptive aUC NIZKPoK in the GrpoRO-hybrid model (Section 4.2).
For our construction in the GroRO-FCRS-hybrid model, we show how to adapt
Lysyanskaya and Rosenbloom’s OR-protocol compiler [27] to obtain adaptive
aUC NIZKPoK without programming the global RO (Section 4.3).

4.1 Adaptive aUC NIZKPoK are adNIM-SHVZK and adNI-SSS

We begin by showing that any adaptive UC NIZKPoK must be adaptive NIM-
SHVZK and adaptive NI-SSS. Because this result holds for any choice of global
RO with the minimal Query functionality (as described in Section 2.1), we use
the generic notation GRO to represent the global RO.

Theorem 1. Let Π be a protocol that aUC-realizes FaNIZK in the GRO-hybrid
model (Definition 2 where G is replaced with GRO) with adaptive corruptions.
Then Π must be overwhelmingly complete (Definition 7), adaptive NIM-SHVZK
(Definition 8), and adaptive NI-SSS (Definition 9).

Proof. We proceed by cases and show that if Π is not overwhelmingly complete
and adNIM-SHVZK then it does not aUC-realize FaNIZK in the GRO-hybrid model
with adaptive corruptions, and similarly that if Π is not adNI-SSS then it does
not aUC-realize FaNIZK in the same model.

Our first reduction B uses an adversary A that wins the adNIM-SHVZK
game from Figure 2 with non-negligible advantage to distinguish between the
real- and ideal-world aUC experiments with non-negligible advantage. B pro-
ceeds as follows. After passing the security and public parameters that it received
from the aUC experiment to A , B forwards A ’s oracle queries to GRO and GRO’s
responses back to A .

Prove queries proceed as follows. Note that according to the definition of
adNIM-SHVZK, any time A issues a Prove query, it is expecting not only a
proof, but also the proof’s randomness, in return. In order to accurately simulate
A ’s view, B first issues the Prove query as-is to a new honest party in the
aUC experiment.4 Before returning the proof to A , B then corrupts the prover
to obtain the prover’s internal tapes. Since the Prove operation was the first
performed by the honest party, B simply takes the first λr bits of the prover’s
random tape and returns these bits to A along with the proof.

If the aUC challenger is running the real-world experiment, the proof will
be the result of running Π.Prove on the prover’s witness and randomness. If
the aUC challenger is running the ideal-world experiment, the proof will be the
result of the ideal functionality FaNIZK running Π.SimProve, and the randomness
will have been generated by the simulator (ideal adversary) S using Π.SimRand.

4 Recall that as part of the (adaptive G)UC experiment, the environment is permitted
to spawn polynomially-many protocol participants, subject to polynomial run-time
restrictions [14].
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Therefore, B simulates A ’s view exactly, and succeeds in distinguishing the real-
and ideal-world aUC experiments with the same probability that A distinguishes
the real- from ideal-world adaptive NIM-SHVZK game.

The only other condition that might allow B to distinguish the two exper-
iments are if the ideal functionality FaNIZK in the ideal-world aUC experiment
outputs Fail due to a completeness error. This condition occurs with negligible
probability due to overwhelming completeness.

The second reduction uses two black-box algorithms: A that wins the adap-
tive NI-SSS game from Figure 3, and A ′ that wins the regular NI-SS game from
Definition 21 in section A.5 of the supplementary materials (in which the adver-
sary does not have access to simulated proofs), with non-negligible advantage. B
answers A ’s queries the same as in the previous reduction, by forwarding all of
A ’s oracle queries to GRO and Prove queries to the aUC challenger, then making
adaptive corruptions to obtain the prover’s randomness. B forwards A ′’s queries
to GRO (note A ′ does not make Prove queries, but can run Π.Prove itself).

B proceeds the same as before, forwarding all of A ’s oracle queries to GRO
and Prove queries to the aUC challenger, then making adaptive corruptions to
obtain the prover’s randomness. Whenever A (resp. A ′) outputs a proof π for
a statement x such that Π.Verify(x, π) = 1, B gathers A ’s (resp. A ′’s) oracle
queries QA (resp. QA ′) and runs w ← Π.Extract(x, π,QA (resp.A ′)). If w is such
that R(x,w) = 0, B invokes a new honest party and sends it the instruction
(Verify, x, π). If the aUC challenger is running the ideal-world experiment, then
B has simulated A ’s expected view, and the honest (dummy) party will invoke
FaNIZK on A ’s proof and output Fail, causing B to output “ideal.” If the aUC
challenger is running the real-world experiment, then on input a proof π from A ′,
the real-world honest party will outputΠ.Verify(x, π) = 1, causing B to output
“real.” B therefore distinguishes the ideal- from real-world aUC experiments
with the same probability as A and A ′, respectively. ⊓⊔

4.2 Adaptive aUC NIZKPoK in the GrpoRO-hybrid Model

We prove in this section that running any adaptive Σ-protocol ΣR for relation R
through any adaptive straight-line compiler (adaptive SLC) results in adaptive
UC NIZKPoK for relation R in the (programmable) GrpoRO-hybrid model.

Theorem 2. Let ΣR be any adaptive Σ-protocol for relation R (Definition 4),
GrpoRO be the restricted programmable observable global random oracle (Definition
1 in A.2) and SLC be any adaptive straight-line compiler (Definition 6). Then the
NISLE proof system ΠSLC

R ← SLC(ΣR) aUC-realizes FaNIZK in the GrpoRO-hybrid
model (Definition 2 where G is replaced with GrpoRO).

Proof. We begin with the construction of the ideal adversary (simulator) S.

Construction of the Ideal Adversary. When S receives (Setup, s) from FaNIZK, S
returns the tuple of algorithmsΠSLC

R . When corrupted parties issue IsProgrammed
queries, S returns false. When Z issues a query (Corrupt, P ) for a party
P = (pid, sid), S sends (Corrupt, P ) to FaNIZK to obtain the stored tuples
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(Proof, P, x1, w1, π1, z1), . . . , (Proof, P, xq, wq, πq, zq) corresponding to each que-
ry (Prove, P, xi, wi) that Z issued to P . (who forwarded them to FaNIZK). For
each tuple, S interprets zi = (zs, zπi) as the auxiliary outputs of ΠSLC

R .SimSetup
andΠSLC

R .SimProve, respectively. S then runs ri ← ΠSLC
R .SimRand(zs, zπi , x, π, w)

to obtain simulated randomness ri. To reconstruct the prover’s random tape R,
S concatenates R = r1|| . . . ||rq and returns R to Z. Otherwise, S forwards all
communications between Z and the protocol.

We proceed by creating a hybrid argument that starts in the real-world ex-
periment and replaces each piece of the real-world protocol ΠSLC

R with the func-
tionality of FaNIZK and S.

Hybrid 1. First, we replace all of the environment’s and adversary’s connections
to the real-world protocol participants with the “challenger” of our reduction, C.
This difference is syntactic, so Hybrid 1 is identical to the real-world experiment.

Hybrid 2. In the second hybrid, we replace C’s real-world Prove functional-
ity with the Prove interface of FaNIZK and random tape simulation of S, and
show the environment’s views are indistinguishable between Hybrids 1 and 2
as long as ΣR is adaptive and non-interactive multiple special honest-verifier
zero-knowledge (adNIM-SHVZK). First, we specify C to simulate GrpoRO accord-
ing to its specification (noting that C can “program” its simulation) and re-
turn false to all of the corrupted parties’ IsProgrammed queries. As long as
ΠSLC

R .SimProve produces valid proofs for statements x ∈ LR with overwhelm-
ing probability (which follows from overwhelming completeness), the environ-
ment’s view of GrpoRO remains statistically indistinguishable between the hybrids
(which follows from the restriction of the IsProgrammed interface), Z is forced
to distinguish the hybrids based on the only other difference—the proofs πi and
randomness ri.

We bound Z’s probability of distinguishing the hybrids based on the proofs
and randomness by constructing a reduction to the adNIM-SHVZK property
as follows. Whenever Z issues a query (Prove, P, xi, wi) to C, C forwards the
query to the adNIM-SHVZK challenger from Figure 2, who returns (πi, ri). C
forwards πi to Z and stores (P, ri) for later. If Z issues a query (Corrupt, P ),
C retrieves all of the tuples (P, ri) and sets the random tape R to be the con-
catenation of all ri in the order they were stored. It then returns R to C. For
Z’s queries (Verify, x, π), C returns the result of running ΠSLC

R .Verify(x, π). C
outputs whatever Z outputs.

Note that if the adNIM-SHVZK challenger is running the 0-bit experiment
(using ΠSLC

R .Prove and the prover’s randomness), C simulates Z’s exact view of
the experiment in Hybrid 1. Else if the adNIM-SHVZK challenger is running
the 1-bit experiment (using ΠSLC

R .SimProve and ΠSLC
R .SimRand), C simulates Z’s

view of Hybrid 2. Therefore, C succeeds at winning the adNIM-SHVZK game
with the same probability that Z can distinguish the hybrids, proving Hybrid 1
is computationally indistinguishable to Hybrid 2.

Hybrid 3. In the third hybrid, we replace C’s Verify functionality with the
Verify functionality of FaNIZK, and show the environment’s views are indistin-
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guishable between Hybrids 2 and 3 as long as ΠSLC
R is adaptive non-interactive

special simulation-sound (adNI-SSS). We construct a reduction that uses an en-
vironment Z that can distinguish Hybrids 2 and 3 with non-negligible advantage
to win the adNI-SSS game from Figure 3 as follows. First, note the only differ-
ence in output between Hybrids 2 and 3 is that the Hybrid 3 experiment can
output Fail, while the Hybrid 2 experiment never does—in particular, Hybrid
3 will output Fail if Z succeeds in producing a valid, non-simulated proof that
causes ΠSLC

R .Extract to output Fail. For Z’s Prove queries, the reduction acts
according to Hybrid 2, this time forwarding the queries to the adNI-SSS chal-
lenger, returning the proofs, and saving random bits in case Z issues a corruption
query on the prover. When Z issues a query (Verify, x, π) for a proof π that C
did not send to Z, C sends (Challenge, x, π,QP∗) to the adNI-SSS challenger.
Since both the adNI-SSS challenger and FaNIZK use the ΠSLC

R .Extract algorithm
and fail under the same conditions, C succeeds in winning the adNI-SSS game
with the same probability that Z distinguishes Hybrids 2 and 3.

Hybrid 4. The final hybrid replaces C with FaNIZK and S. Note that since C now
runs all of FaNIZK and S’s procedures, this is again a syntactic difference, and
Hybrid 3 is identical to Hybrid 4. ⊓⊔

4.3 Adaptive aUC NIZKPoK in the GroRO-FCRS-hybrid Model

Similarly, any adaptive SLC in conjunction with the OR-protocol construction
given by Lysyanskaya and Rosenbloom [27] and reviewed in Section 2.2 is suf-
ficient to create adaptive UC NIZKPoK in the GrpoRO-FCRS-hybrid model. We
update the algorithms ΠSLC

R∨S of the OR-protocol construction below to create an
adaptive NISLE proof system, denoted ΠaSLC

R∨S .

Definition 10 (Adaptive OR-protocol Compiler). The adaptive OR-protocol
compiler guc modifies Lysyanskaya and Rosenbloom’s candidate compiler (Def-
inition 13 in [27]) for the adaptive setting as follows.

– Our compiler uses any adaptive straight-line compiler aSLC (Definition 6).

– As in the definition of adaptive Σ-protocols (Definition 4), ΠaSLC
R∨S .Prove now

takes as input sufficient randomness r ←$ {0, 1}λr for λr = λrR+λrS , where
λrR is the randomness security parameter of ΣR and λrS is the randomness
security parameter of ΣS.

5

– The algorithm ΠaSLC
R∨S .SimSetup produces an additional list prand to store the

randomness used by the proof simulator ΠaSLC
R∨S .SimProve.

– The algorithm ΠaSLC
R∨S .SimProve updates the list prand with the random bits

r used to compute the “simulated” OR-proof Φ (which is simply an iteration
of ΠaSLC

R∨S .Prove using the trapdoor to the CRS rather than a “real” witness),
and returns prand as additional output.

5 For an in-depth treatment of OR-protocols in the adaptive setting, see 25 in the
supplementary materials.
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– The tuple of algorithms ΠaSLC
R∨S contains an additional algorithm SimRand,

which, on input (ppm, prand, X, Φ,W ), looks up the randomness r used to
compute Φ in the list prand and returns it.

Theorem 3. Let ΣR be any adaptive Σ-protocol for relation R (Definition 4),
GroRO be the restricted observable global random oracle (Definition 2 in A.2) ΣS

be an efficient Σ-protocol for samplable-hard relation S (Definition 11 in A.8)
FCRS be the ideal CRS functionality (Definition 10 in A.8), aSLC be any adap-
tive straight-line compiler (Definition 6), and guc be the adaptive OR-protocol
compiler (Definition 10). Then ΠaSLC

R∨S ← guc(ΣR, aSLC) aUC-realizes FaNIZK in
the GroRO-FCRS-hybrid model (Definition 2 where G is replaced with GroRO and ∗
is replaced with FCRS).

Proof. The construction of the ideal adversary (simulator) S is the same as in
the proof of Theorem 2, except it returns Πaguc

R∨S to FaNIZK rather than ΠSLC
R ,

and there are no IsProgrammed queries. (Note that the simulation and proof
trapdoors, zs and zπ respectively, are simply the simulator’s CRS list simcrs

and proof randomness list prand, respectively.)
We again create a hybrid reduction that starts in the real-world experiment

and replaces each piece of the real-world adaptive NISLE OR-protocol Πaguc
R∨S

with the functionality of FaNIZK and S.

Hybrid 1. Identical to Hybrid 1 in the proof of Theorem 2.

Hybrid 2. In the second hybrid, we replace C’s real-world Prove functional-
ity with the original straight-line compiled OR-protocol simulator algorithms
ΠaSLC

R∨S .SimSetup, ΠaSLC
R∨S .SimProve, and ΠaSLC

R∨S .SimRand. This step allows us to
avoid giving C control over the CRS trapdoors for now, such that we are able to
show in the next hybrid argument that C can use a proof-forging environment to
break either the adNI-SSS property or the hardness property of the samplable-
hard relation S (i.e. the reduction produces a CRS trapdoor). The proof that
Hybrid 2 is indistinguishable from Hybrid 1 proceeds identically to the proof
under Hybrid 2 in Theorem 2 above, modulo the IsProgrammed interface.

Hybrid 3. In the third hybrid, we replace C’s Verify functionality with the
Verify functionality of FaNIZK, and show the environment’s views are indistin-
guishable between Hybrids 2 and 3 as long as ΠSLC

R is adaptive non-interactive
special simulation-sound (adaptive NI-SSS) and S is a hard relation (i.e. given
CRSs, the probability of finding traps such that S(CRSs, traps) = 1 is negligible).
This piece of the proof proceeds identically to the proof of indistinguishability
between the second and third hybrids in Lysyanskaya and Rosenbloom’s proof
of Theorem 3 [27], where Z’s adaptive corruption queries are handled identically
to those in Hybrid 2 (i.e. S patches together the prover’s random tape by con-
catenating the outputs of ΠaSLC

R∨S .SimRand returned by the adaptive NI-SSS chal-
lenger). To recap briefly, C plays the role of the adversary in the adaptive NI-SSS
game, forwarding Z’s queries to its challenger. When Z produces a valid proof
that causes Πaguc

R∨S .Extract to output Fail (which happens with non-negligible
probability by assumption, as the failure condition is the only difference between
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the hybrids), either R is not satisfied and C wins the adaptive NI-SSS game, or
S is not satisfied and C breaks the hardness property of S.

Hybrid 4. In the penultimate hybrid, C uses Π
aguc
R∨S .SimSetup, Π

aguc
R∨S .SimProve,

and Πaguc
R∨S .SimRand. Recall that Πaguc

R∨S .SimProve is essentially Πaguc
R∨S .Prove, ex-

cept that C generates and stores pairs (CRSs, traps) for each protocol session s
in the list simcrs, and uses the witness traps as input to Πaguc

R∨S .Prove rather
than a “real” witness w. Moreover, the Πaguc

R∨S .SimRand algorithm is function-
ally identical to the “real-world” corruption process, in which the prover simply
hands over the random tape used to compute its proofs. Similar to the proof
that Hybrid 1 is indistinguishable from Hybrid 2, we argue that Hybrids 3 and
4 are indistinguishable as long as Πaguc

R∨S is adaptive NIM-SHVZK. The proof is
the same with one caveat: we must ensure that the only way Z can distinguish
the hybrids is based on the differences between the proof simulations—that is,
we must rule out the possibility that Z can learn something new from interact-
ing with both the simulated proofs and the extractor. Following LR, we note
that since Extract functions solely using Z’s (and A ’s) queries to GroRO, Z
cannot possibly learn anything from interacting with it, regardless of the proof
simulation algorithms.

Hybrid 5. Identical to Hybrid 4 in Theorem 2. ⊓⊔

5 Constructions via the Randomized Fischlin Transform

In this section, we update the randomized Fischlin transform [24,26] for the
adaptive setting (Section 5.1), and prove that it is an adaptive SLC (Section 5.2).
We then use the adaptive randomized Fischlin transform to aUC-realize FaNIZK

efficiently6 in both the GrpoRO- and GroRO-FCRS-hybrid models (Sections 5.3).

5.1 The Adaptive Randomized Fischlin Transform

The standard randomized Fischlin transform [24,26] is a straight-line compiler
rFis [27] that transforms any Σ-protocol with certain general properties into
a non-interactive, straight-line extractable (NISLE) proof system ΠrFis

R in the
ROM. The prover in the randomized Fischlin transform essentially rewinds it-
self, computing proofs on repeated commitments (but different challenges) until
it is guaranteed with overwhelmingly probability that there are at least two
transcripts queried to the RO with the same commitment but different chal-
lenges. The algorithm ΠrFis

R .Extract takes these proofs as input (via the adver-
sary’s oracle query history QA ), and can therefore extract a witness for valid,
adversarially-created proofs without any further interaction with the prover.

We argue in this section that our adaptive randomized Fischlin transform
aFis, which is almost the same as rFis but contains a SimRand functionality,

6 For a discussion about the precise efficiency of the randomized Fischlin transform,
see Section A.10.
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preserves the adaptive security property of the underlying Σ-protocol: we will
show that as long as ΣR is adaptive (and conforms to standards of rFis), aFis
is an adaptive SLC. The ΠaFis

R .SimRand functionality, which is in charge of pro-
ducing a convincing version Q of the prover’s randomness, works as follows.

In order to reconstruct the random “first-message” section of Q (i.e. the
section used to run τ.Commit), the ΠaFis

R .SimRand algorithm runs ΣR,τ .SimRand
using auxiliary output fromΠaFis

R .SimProve. To simulate the random “challenge-
selection” section of Q (i.e. the section used to generate the randomly-selected
challenges of the randomized Fischlin transform), ΠaFis

R .SimRand concatenates
the random coins corresponding to all of the challenges sampled by ΠaFis

R .
SimProve. In order for (not only the challenges in the proof tuple, but) all of the
challenges sampled by the simulator to agree with the output of the random ora-
cle, ΠaFis

R .SimRand programs the random oracle on all of the proof-output tuples
it generated while executing ΠaFis

R .SimProve. (Recall that the simulator in the
randomized Fischlin transform generates challenges and outputs of the oracle si-
multaneously, finds the first challenge in lexicographic order mapping to the least
output, and programs the oracle on that index—we simply extend this practice
to the randomness simulator.) The amount of programming is still polynomial
in the security parameter and all of the challenges are identically distributed,
so we are able to show that the adaptive simulator algorithms ΠaFis

R .SimProve
and ΠaFis

R .SimRand are indistinguishable from ΠaFis
R .Prove on real randomness,

as long as the underlying Σ-protocol used as input to the transform is adaptive
special honest-verifier zero-knowledge (adSHVZK).

Definition 11 (Adaptive Randomized Fischlin Transform). The adap-
tive randomized Fischlin transform aFis is an algorithm that takes a Σ-protocol
ΣR,τ based on protocol template τ for relation R (Definition 4) with the required
properties for rFis (Definition 29 in the supplementary materials) as input, and
produces a tuple of algorithms ΠaFis

R = (SetupH , ProveH , VerifyH , SimSetup,
SimProve, SimRand, Extract), where H : {0, 1}∗ → {0, 1}b is any random ora-
cle. We highlight important modifications to rFis below; a full specification of
the transform can be found in the supplementary materials (A.9).

– ΠaFis
R .Prove takes randomness Q ←$ {0, 1}λQ as additional input. ΠaFis

R .
SimProve additionally returns ZΦ = (zπ1

, . . . , zπn
, Q′) for each proof Φ =

π1, . . . , πn, where Q′ is a copy of the randomness used by SimProve during
its computation.

– We specify the new algorithm ΠaFis
R .SimRand as follows. ΠaFis

R .SimRand takes
as input public parameters ppm, simulation trapdoor zs, proof trapdoor ZΦ =
(zπ1

, . . . , zπn
, Q′), a proof Φ = (π1, . . . , πn), and a witness w. It produces the

prover’s random tape Q as follows. First, generate the simulated randomness
of the first messages by running ΣR,τ .SimRand(zs, zπi , x, πi, w, r

′
i) for each

πi, where each r′i is the same section of Q′ used by ΠaFis
R .SimProve to produce

πi. Next, generate the randomness of the challenge selection process as fol-
lows. For each commitment comi, use the appropriate segment of Q′ to recon-
struct the map µ : {0, 1}t → {0, 1}b generated by ΠaFis

R .SimProve that maps
2t t-bit challenges to b-bit potential outputs of H. For each challenge chlj
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in the list of 2t challenges, compute the response resj ← τ.Respond(x,w,
comi, chlj) and program the output of H on input (x, com, i, chlj , resj) to be
µi(chlj). Finally, concatenate chlj to Q. Once the process as been completed
for all commitments and challenges, return Q.

5.2 Adaptive Randomized Fischlin is an Adaptive SLC

We now prove that the adaptive randomized Fischlin transform aFis qualifies as
an adaptive SLC, and can therefore efficiently bootstrap adaptive Σ-protocols
into adaptive UC NIZKPoK in the global ROM(s).

Theorem 4. Let ΣR,τ be an adaptive Σ-protocol based on protocol template τ
for relation R (Definition 4) with the required properties for rFis (Definition 29
in A.9), and H : {0, 1}∗ → {0, 1}b be any random oracle. Then the adaptive ran-
domized Fischlin transform aFis (Definition 30 in A.9) is an adaptive straight-
line compiler for ΣR,τ (Definition 6) in the random-oracle model.

Proof Sketch. Recall that an adaptive straight-line compiler according to our
definition must create protocols that are overwhelmingly complete, adaptive non-
interactive multiple special honest-verifier zero-knowledge (adNIM-SHVZK), and
adaptive non-interactive special simulation-sound (adNI-SSS). First, note that
since the specification of ΠaFis

R .Prove does not functionally change between rFis

and aFis (as our explicit treatment of the prover’s randomness is syntactic),
aFis is as complete as rFis [24,26]. We proceed by contrapositive to show that
if ΠaFis

R is not additionally adNIM-SHVZK and adNI-SSS, then ΣR cannot be
adaptive special honest-verifier zero-knowledge (adSHVZK). The full version of
this proof can be found in the supplementary materials (A.11).

We begin by constructing a reduction B that uses an algorithm A that
can win the adNIM-SHVZK game (Definition 8) parameterized over ΠaFis

R with
non-negligible advantage as a black-box in order to win the adSHVZK game
(Definition 5) parameterized over ΣR with non-negligible advantage. B proceeds
as follows. When it obtains ppm from the adSHVZK challenger, B passes ppm

to A . Note that the adSHVZK challenger is expecting exactly one Prove query
(i.e. it is not multi-adaptive), so we modify A to distinguish two hybrids i and
i+1, where in the ith hybrid, the first i proofs and random coins are according to
ΠaFis

R .Prove using randomness r ∈ {0, 1}λr , and the i+1st onward are according
to ΠaFis

R .SimProve and ΠaFis
R .SimRand.

For the first i queries (Prove, x, w) from A , B samples randomness Q ←
{0, 1}λQ , runs ΠaFis

R .Prove(x,w,Q), and returns (Φ,Q) to A . On A ’s i + 1st

query (Prove, x∗, w∗), B passes (Prove, x∗, w∗) to its challenger and receives
(π∗, r∗) for π∗ = (com∗, chl∗, res∗) that is either the result of running ΣR.Prove
on randomness r∗ or the result of running ΣR.SimProve and ΣR.SimRand. Note
that that A is expecting more proofs than just π∗, as the output of ΠaFis

R .Prove
and ΠaFis

R .SimProve is actually a tuple of proofs Φ = π1, . . . , πn. We therefore
modify A again to distinguish the hybrids i+1, j from i+1, j+1, where in the
i + 1, jth hybrid, the first j proofs of the challenge proof tuple Φ∗ = π1, . . . , πn
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are computed according to ΠaFis
R .Prove each with randomness Q ∈ {0, 1}λQ ,

and the i + 1, j + 1st through the nth proof are according to ΠaFis
R .SimProve

and ΠaFis
R .SimRand. B constructs the entire i + 1st hybrid proof tuple Φi+1 =

Φ1, . . . , Φn from the challenge query as follows.

Let the j + 1st commitment comj+1 = com∗, and πj+1 = (com∗, chl∗, res∗).
Since it must have the entire tuple com1, . . . , comn of commitments before running
ΠaFis

R .Prove, B starts by running the steps ofΠaFis
R .SimProve n−(j+2) times. B

then samples each r1, . . . rj uniformly at random from {0, 1}λr and runs τ.Commit
j times to obtain com1, . . . , comj and produce the full commitment vector com =
com1, . . . , comn. B computes each proof πl for 1 ≤ l ≤ j by running the steps of
ΠaFis

R .Prove j times.

B generates the prover’s hybrid random tape Q∗ as follows. The first jλr

bits are the j λr-bit samples that B made while computing proofs according to
ΠaFis

R .Prove. The proceeding λr bits are those returned by the adNIM-SHVZK
challenger, r∗. To obtain the remaining bits, B runs ΣR,τ .SimRand on input each
πl, r

′
l for j + 2 ≤ l ≤ n, where r′l is the same section of B’s random tape that it

used in running ΣR,τ .SimProve to obtain πl. To simulate the “random challenge
selection” section of Q∗, B first concatenates (in order) all of the challenges
sampled while computing π1, . . . , πj . For chlj+1 (i.e. chl∗, which was produced
by the adNIM-SHVZK challenger rather than being sampled by B), B uses fresh
randomness to sample new challenges and inserts chlj+1 as the first challenge
in lexicographic order to map to the minimal output value, then concatenates
all of the challenges (in order) to Q∗. Finally, B concatenates (again in order)
all of the challenges it sampled while computing πj+2, . . . , πn.

All that remains in B’s simulation is to make sure H is consistent with
the proofs and randomness it has generated. For all proofs πl where j + 1 ≤
l ≤ n, B programs the output of H on input (x, com, l, chlm, resm) to be the
corresponding b-bit output in the challenge-to-output mappings for all challenges
and responses 1 ≤ m ≤ 2t.

For the analysis, consider that B’s execution of the proofs π1, . . . , πj and
πj+2, . . . , πn and corresponding randomness is exactly what A expects in ei-
ther hybrid. It remains to show that the challenge proof πj+1 and correspond-
ing randomness is also formatted according to what A expects. If the adNIM-
SVHZK challenger is playing with bit b = 0 and generated (π∗, r∗) according
to ΠaFis

R .Prove and randomness r, then πj+1 and the “first message” section of
Q∗ corresponding to rj (i.e. the randomness used to generate comj+1) will be
exactly what A expects from the i, j + 1st hybrid. If, on the other hand, π∗, r∗

were generated according to ΠaFis
R .SimProve and ΠaFis

R .SimRand, then A ’s view
of πj+1 and rj will be according to hybrid i, j.

Finally, we must argue that A ’s view of the “challenge-selection” section of
Q∗ is formatted how A expects (since according to the hybrid experiment, A is
expecting a “simulated” challenge selection process only when π∗, r∗ were gen-
erated according to ΠaFis

R .SimProve and ΠaFis
R .SimRand). The statistical indis-

tinguishability of B’s simulation for the challenge-selection section phase follows
from the fact that all of the sampled challenges are identically distributed—they
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are all sampled uniformly at random from {0, 1}t. Likewise, the programmed
outputs of H are all sampled uniformly at random from {0, 1}b. Therefore, if
B outputs 0 when A outputs “Hybrid i, j + 1” and 1 when A outputs “Hy-
brid i, j,” it succeeds with the same probability as A . Because i is bounded by
the number of prove queries and j is bounded by the parameter n, the number
of hybrids is bounded by some polynomial in the security parameter, and B’s
summed advantage over all of the hybrids is negligible.

The proof that ΠaFis
R is adNI-SSS follows identically to the corresponding

proof that the regular randomized Fischlin transform is NI-SSS [24,27], except
that B’s passes the proof randomness r from the adNI-SSS challenger to A any
time A issues an adaptive corruption (in the same manner as described above).
We therefore defer the argument to the full version of the proof (A.11). ⊓⊔

5.3 Realizing Efficient and Adaptive GUC NIZKPoK from
Σ-protocols in the Global ROM(s)

We demonstrated in Section 4.2 that any adaptive SLC is sufficient to convert
any Σ-protocol ΣR into a NISLE proof system ΠSLC

R that aUC-realizes FaNIZK

in the GrpoRO-hybrid model. In the previous section, we proved that the adap-
tive randomized Fischlin transform aFis is an adaptive SLC for any Σ-protocol
that has either the quasi-unique responses or strong special soundness proper-
ties. Therefore, we can efficiently aUC-realize FaNIZK in the programmable global
ROM using aFis and any such Σ-protocol.

Corollary 1. Let ΣR be any adaptive Σ-protocol for a relation R (Definition 4)
with the required properties for aFis (Definition 29), and aFis be the adaptive
randomized Fischlin transform (Definition 11). Then the NISLE proof system
ΠSLC

R ← aFis(ΣR) aUC-realizes FaNIZK in the GrpoRO-hybrid model (Definition 2
where GRO := GrpoRO).

Proof. The corollary follows directly from Theorems 2 and 4. ⊓⊔

Similarly, we showed in Section 4.3 that any adaptive SLC is sufficient in con-
junction with the adaptive OR-protocol compiler aguc from Definition 10 to con-
vert any Σ-protocol into a NISLE proof system Πaguc

R∨S that aUC-realizes FaNIZK in
the GroRO-FCRS-hybrid model. Therefore, we can efficiently aUC-realize FaNIZK in
the non-programmable global ROM using aguc, aFis and any Σ-protocol that
is compatible with aFis.

Corollary 2. Let ΣR be any adaptive Σ-protocol for a relation R (Definition 4)
with the required properties for aFis (Definition 29), aguc be the adaptive OR-
protocol compiler (Definition 10), and aFis be the adaptive randomized Fischlin
transform (Definition 11). Then the NISLE proof system Πaguc

R∨S ← aguc(ΣR, aFis)
aUC-realizes FaNIZK in the GroRO-FCRS-hybrid model (Definition 2 where G := GroRO
and ∗ := FCRS).

Proof. The corollary follows directly from Theorems 3 and 4. ⊓⊔
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6 Practical Adaptive Σ-protocols

In this section, we recall the abstract treatment of identification schemes from lin-
ear function families due to Hauck, Kiltz, and Loss [25], and remodel it to capture
many simple Σ-protocols (Section 6.1). We then give three satisfying instantia-
tions: proofs of knowledge of a discrete logarithm (Section 6.2) and n equivalent
representations of m witnesses (Section 6.3). As proven in Sections 4 and 5.1,
any Σ-protocol that qualifies as adaptive can be efficiently bootstrapped into an
adaptive UC NIZKPoK. We therefore conclude with an abstract blueprint and
three instantiations of efficient, composable, and adaptively-secure NIZKPoK for
a variety of real-world applications.

6.1 Simple Adaptive Σ-protocol Abstraction

Hauck et al.’s construction of “canonical identification schemes” from pseudo-
modules and linear function families [25] describes an abstract three-move iden-
tification scheme that bears close resemblance to the three-move form of a
Σ-protocol. We remodel their construction as a Σ-protocol template and add
new adaptive Σ-protocol-specific abstractions for the SimProve, SimRand, and
Extract algorithms.

For simplicity and since all of our instantiations are parameterized over mod-
ules, we narrow the focus of our abstraction to modules rather than pseudo-
modules. Briefly, we form the Σ-protocol module over the challenge space C and
the language (statement) space X . The definition of a module requires that C is
a ring with multiplicative identity 1C , X is a group with additive commutativ-
ity, and for all chl, chl′ ∈ C and x, y ∈ X , there exists a map C × X → X
satisfying the following properties: 1) chl · (x + y) = chl · x + chl · y, 2)
(chl+ chl′) · x = chl · x+ chl′ · x, 3) (chl · chl′) · x = chl · (chl′ · x), and 4)
1C ·x = x. In order to guarantee the special soundness property, we additionally
require that for any two proofs π = (com, chl, res) and π′ = (com, chl′, res′) for
x such that Verify(x, π) = Verify(x, π′) = 1 and chl ̸= chl′ ̸= 0C , the inverse
of (chl−chl′) exists. We write the inversion (chl−chl) · (chl−chl′)−1 = 1C .

7

We highlight the properties of linear function families that are critical to under-
standing our results as part of the proof below.

Definition 12 (Simple Adaptive Σ-protocol Candidate). The simple adap-
tive Σ-protocol candidate Σsim for relation R is a tuple of efficient procedures
Σsim = (Setup, Prove, Verify, SimSetup, SimProve, SimRand, Extract) that ad-
here to the following format:

7 Note that some Σ-protocol constructions that would otherwise fit this template,
such as the proof of knowledge of an RSA inverse, do not quite work because the
extractor cannot compute the inverse of (chl−chl′) directly (in the case of the RSA
inverse, the extractor uses Shamir’s trick [10]). For such constructions, it might be
convenient to use the abstraction for the adaptive SHVZK property and treat the
special soundness property separately.
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– ppm ← Setup(1λ): Define the linear function family LF = (PGen, F) (Def-
inition 3.1 in [25]) such that ppm ← PGen(1λ) fixes a statement space X ,
witness space W, first message space A, challenge space C, response space
B, and randomness space R such that W = R = B, X = A, W and X form
modules over C, |X | ≥ |C| ≥ 22λ, and the evaluation function F :W → X .

– π ← Prove((ppm, x, w, r), (ppm, x)): P sends V a first message com = F(r).
V replies with a challenge chl←$ C. P responds with res = chl · w + r.

– {0, 1} ← Verify(ppm, x, π): Parse π as (com, chl, res). If F(res) = chl ·x+
com, output 1 (accept). Otherwise, output 0 (reject).

– ppm← SimSetup(1λ): Invoke Setup(1λ) and return ppm.

– π ← SimProve(ppm, x, chl) : Sample res←$ B and compute com = F (res−
chl · w). Return π = (com, chl, res).

– r ← SimRand(ppm, x, π, w) : Parse π = (com, chl, res). Compute and output
r = res− (chl · w).

– w ← Extract(ppm, x, π, π′) : Given any two proofs π = (com, chl, res) and
π′ = (com, chl′, res′) such that Verify(x, π) = Verify(x, π′) = 1 and chl ̸=
chl′, compute and output w = (res− res′) · (chl− chl′)−1.

Theorem 5. The simple adaptive Σ-protocol candidate given above (Defini-
tion 12) is an adaptive Σ-protocol (Definition 3).

Proof. The following proof relies on two core properties of the evaluation function
F, described below (for details in context, see Definition 4.1 [25]). First, the
pseudo-module homomorphism (PMH) property states that for all y, z ∈ W,
F(chl · y + z) = chl · F(y) + F(z). Second, the smoothness property guarantees
that for all y ∈ W, F(y) is uniformly distributed over X . (Recall these properties
hold as well for W = R = B and X = A.) We will now show that the simple
Σ-protocol format given above satisfies the necessary completeness, adaptive
special honest-verifier zero-knowledge, and special soundness properties of an
adaptive Σ-protocol.

Completeness. The verifier checks whether F (res) = chl · x + com. By the
PMH property, we have F (chl · w + r) = chl · F (w) + F (r) = chl · x+ com.

Adaptive SHVZK. As long as r ←$ R and chl ←$ C, the distribution of
res = chl · w + r computed in Σsim.Prove is uniformly random in B. The
res ←$ B and chl ←$ C sampled by Σsim.SimProve are therefore identical
to the res and chl in a real proof. By the smoothness of F, Σsim.SimProve’s
com = F (res − chl · w) is also uniformly random in A. Since res and chl are
uniformly random in B and C respectively, the distribution of r = res−(chl ·w)
will be similarly random. Note that both simulations are correct, since

F(r) = F(res− chl ·w) = −chl · F(w)+ F(res) = −chl ·x+ chl ·x+ com = com

by the PMH property. The outputs of Σsim.Prove and r are therefore distributed
identically to the outputs of Σsim.SimProve and Σsim.SimRand, respectively.
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Special Soundness. Solving the two verification equations for com and setting
them equal, we get F(res)− chl · x = F(res′)− chl′ · x, which implies

F(w) · chl− F(w) · chl′ = F(res)− F(res′) (substitution and commutativity)

F(w) · (chl− chl′) = F(res)− F(res′) (distributivity)

F(w) = F(res)− F(res′) · (chl− chl′)−1 (invertability of chl− chl′)

⇒ F(w) = F((res− res′) · (chl− chl′)−1) (PMH property)

⇒ w = (res− res′) · (chl− chl′)−1. ⊓⊔

6.2 Adaptive Proof of Knowledge of Discrete Logarithm

Proofs of knowledge of discrete logarithm (PoK DL), also known as Schnorr
proofs, are the backbone of many practical constructions of group [12,5], thresh-
old [3], blind [25], and multi- [3,22] signatures.

Theorem 6. A proof of knowledge of discrete logarithm can be described as a
simple adaptive Σ-protocol (Definition 12).

Proof. The PoK DL can be described using the simple adaptive Σ-protocol
format from Definition 12 as follows.

The public parameters ppm are (G, q, g), where G is a cyclic group of prime
order q, and g is a generator of G. The statement and first-message spaces are
X = A = G, the witness, randomness, and response spaces are W = B = R =
Zq, and the challenge space is C = Z∗

q . The evaluation function F : Zq → G
is defined such that F(w) = w · g. For elements x and y in Zq, we define the
operation x · y to be the process of adding y to itself (component-wise) x times
modulo q. For elements x ∈ Zq,Z∗

q and y ∈ G, we define x ·y to be the process of
performing the group operation on y with itself x times. (In traditional Schnorr,
this would be exponentiation yx; in the elliptic curve version, it would the scalar
multiplication xy where y is a curve point.)

Z∗
q and G satisfy the requirements of a module, and all elements in C = Z∗

q are
invertible. Furthermore, the pseudo-module homomorphism property is satisfied
because F(w) := w · g ⇒ F(chl · w + r) = (chl · w + r) · g = chl · w · g + r · g =
chl·F (w)+F (r). Finally, F is smooth, since for r ←$ Zq, F (r) = r·g is uniformly
distributed over G.

6.3 Adaptive Proof of Knowledge of Equality of n Representations

Proofs of knowledge of equality of n representations ofm witnesses (PoK EqRep)
are essential building blocks in the construction of cryptographic shuffles [34,28],
accumulators [2,10], and anonymous credentials [9], which form the basis of
anonymous networks, voting, payment, and identification systems. Note also that
PoK EqRep is a generalization of other common Σ-protocols such as standard
proofs of knowledge of representation [13,11] and Okamoto-Schnorr [29], and
that the following result holds for those narrower instantiations as well.
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Theorem 7 (PoK EqRep is an Adaptive Σ-protocol). A proof of knowl-
edge of equality of n representations can be described as a simple adaptive Σ-
protocol (Definition 12).

Proof. PoK EqRep is a natural extension of PoK DL, and fits the abstract form
from Definition 12 as follows. The public parameters ppm are (G, q, g1, . . . , gn),
where G is a cyclic group of prime order q, and each gi is a vector of m generators
gi,1, . . . , gi,m. The statement and first-message spaces are X = A = Gn, the
witness, randomness, and response spaces are W = R = B = Zm

q , and the
challenge space is C = Z∗

q . The evaluation function F : Zm
q → Gn is such that

F(w) = F(w1, . . . , wm) =

m∏
i=1

wi · g1,i, . . . ,
m∏
i=1

wi · gn,i.

The operator · is defined the same as in the proof of Theorem 6 above (with
emphasis on component-wise). Likewise, the pseudo-module homomorphism and
smoothness properties are satisfied via component-wise application of the logic
from Theorem 6. Since PoK EqRep is more involved than PoK DL, we review
the specific details of the construction in the supplementary materials (A.12) to
confirm they indeed fit the abstract template. ⊓⊔
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Supplementary Materials

A Supplementary Materials

A.1 Notation

We use λ for the security parameter, and say an algorithm A is efficient in λ
if its runtime can be expressed as a polynomial poly(λ) on input λ. We say a
function negl is negligible in λ if for every positive polynomial p there exists a
threshold N such that for all λ > N , negl(λ) < 1

p(λ) .

When we write y ← z where z is a quantity, we mean that y is assigned the
value z. Similarly, y ← A (x) means that y is assigned the output of algorithm
A on input x. We write ⊥ ← A (x) to indicate that A has halted on input x
with no output, such that any process that invoked A can resume. By y ←$ Z
where Z is a set or a probability distribution, we mean that y is assigned an
element sampled uniformly at random from Z.

If two distributions Y and Z are equivalent, we use the notation Y = Z.
If Y and Z are statistically indistinguishable, we use the notation Y ≈s Z.
If Y and Z are only computationally indistinguishable, we use the notation
Y ≈c Z. When we say two distributions are statistically (resp. computationally)
indistinguishable, we mean that for all λ, the probability that any algorithm
A (resp. PPT algorithm A ) can determine whether a mystery element x was
sampled from Y or Z is only negligibly greater than a random guess, or 1

2 +
negl(λ). We might also say in this case that A distinguishes Y from Z with
negligible advantage over a random guess.

A.2 The Observable and Programmable Global ROs

Definition 13 (Observable Global RO GroRO). [17,6] The observable global
RO GroRO is a tuple of algorithms (Query, Observe) defined over an output length
ℓ and an initially empty list of queries Q:

– v ← Query(x) : Parse x as (s, x′) where s is an SID. If a list Qs of ille-
gitimiate queries for s does not yet exist, set Qs = ⊥. If the caller’s SID
̸= s, add (x, v) to Qs. If there already exists a pair (x, v) in the query list Q,
return v. Otherwise, choose v uniformly at random from {0, 1}ℓ, store the
pair (x, v) in Q, and return v.

– Qs ← Observe(s) : If a list Qs of illegitimate queries for s does not yet exist,
set Qs = ⊥. Return Qs.

Definition 14 (Restricted Programmable Observable Global RO GrpoRO).
[6] The restricted programmable observable global random oracle GrpoRO is a tu-
ple of algorithms (Query, Observe, Program, IsProgrammed) defined over an out-
put length ℓ and initially empty lists Q (queries) and prog (programmed queries):

– v ← Query(x) : Same as Definition 13 above.
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– Qs ← Observe(s) : Same as Definition 13 above.

– {0, 1} ← Program(x, v) : If ∃v′ ∈ {0, 1}ℓ such that (x, v′) ∈ Q and v ̸= v′,
output 0. Otherwise, add (x, v) to Q and prog and output 1.

– {0, 1} ← IsProgrammed(x) : Parse x as (s, x′). If the caller’s SID ̸= s,
output ⊥. Otherwise if x ∈ prog, output 1. Otherwise, output 0.

A.3 Σ-protocols

Definition 15 (Adaptive Σ-protocol Template). The adaptive Σ-protocol
template for a relation R is a tuple of efficient algorithms τ = (Setup, Commit,
Challenge, Respond, Decision), defined as follows.

– ppm ← Setup(1λ): Given a security parameter, generates a set of public
parameters ppm which minimally include 1λ, challenge length ℓ, and ran-
domness security parameter λr.

– com← Commit(ppm, x, w, r): Given statement x, witness w, and randomness
r ←$ {0, 1}λr , P sends V a message com.

– chl← Challenge(ppm, x, com): V sends P a random ℓ-bit string chl.

– res← Respond(ppm, x, w, com, chl): P sends V a reply res.

– {0, 1} ← Decision(ppm, x, com, chl, res): V decides whether to output 1 (ac-
cept) or 0 (reject) based on the input (ppm, x, com, chl, res).

The tuple (com, chl, res) is called a transcript or proof. We say a transcript or
proof is valid or accepting if Decision(ppm, x, com, chl, res) outputs 1.

Definition 16 (Damg̊ard’s Protocol Template for Relation R). [23] Let
the common input to P and V be x, and the private input to P be a value w such
that (x,w) ∈ R. The protocol template is the following three-round transaction:

1. P sends V a message a.
2. V sends P a random ℓ-bit string e.
3. P sends V a reply z.
4. V decides to accept (output 1) or reject (output 0) based solely on the values

(x, a, e, z).

We say a transcript (a, e, z) is an accepting transcript for x if the protocol
instructs V to accept based on the values (x, a, e, z).

Definition 17 (Original Σ-protocol). [23] A protocol Φ is a Σ-protocol for
relation R if it is a three-round public-coin protocol of the form in Definition 3
and the following requirements hold:

– Completeness: If P and V follow the protocol on input x and private input
w to P where (x,w) ∈ R, then V always accepts.
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– Special Soundness: There exists a polynomial-time algorithm E that given
any x and any pair of accepting transcripts (com, chl, res) and
(com, chl′, res′) for x where chl ̸= chl′, outputs w such that (x,w) ∈ R.

– Special honest verifier zero knowledge: There exists a PPT simulator
M , which on input x and chl outputs a transcript of the form (com, chl, res)
with the same probability distribution as transcripts between the honest P and
V on common input x. Formally, for every x and w such that (x,w) ∈ R
and every chl ∈ {0, 1}ℓ it holds that{

M(x, chl)
}
≡

{
⟨P (x,w), V (x,w)⟩

}
where M(x, chl) denotes the output of simulator M on input x and chl,
and ⟨P (x,w), V (x,w)⟩ denotes the output transcript of an execution between
P and V , where P has input (x,w), V has input x, and V ’s random tape
(determining its query) equals chl.

The value ℓ is called the challenge length.

We give formal descriptions of the completeness, special honest-verifier zero-
knowledge, and special soundness properties. Other than notational differences,
our definitions are due to Damg̊ard [23].

Definition 18 (Completeness). A Σ-protocol ΣR for relation R is complete
if for all (x,w) ∈ R and π ← ΣR.Prove((x,w), x), ΣR.Verify(x, π) = 1.

Definition 19 (Special Honest-Verifier Zero-Knowledge). A Σ-protocol
ΣR for relation R is statistical (resp. computational) special honest-verifier zero-
knowledge (SHVZK) if there exist algorithms SimSetup and SimProve such that
for any security parameter λ, any adversary (resp. any PPT adversary) A , and a
bit b←$ {0, 1}, there exists some negligible function negl such that Pr[b′ = b] ≤
1
2 + negl(λ), where b′ is the result of running the game SHVZKA ,ΣR

(1λ, b) from
Figure 4. We say A wins the SHVZK game if Pr[b′ = b] > 1

2 + negl(λ).

Definition 20 (Special Soundness). A Σ-protocol ΣR for relation R is spe-
cial sound if there exists a PPT algorithm Extract such that for any security
parameter λ, any PPT adversary A ,

Pr[Fail← SSA ,ΣR
(1λ)] ≤ negl(λ),

where SS is the special soundness game described in Figure 5. We say A wins
the SS game if Pr[Fail← SSA ,ΣR

(1λ)] > negl(λ).

A.4 Modeling the Generic RO H

The traditional RO Hf is parameterized by a function f ←$ F selected from
random function family F . The programmable RO HL, is parameterized by a
list L that can be added to (but not edited by) the simulator.
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SHVZKA ,ΣR(1
λ, 0): Real

1 : ppm← ΣR.Setup(1
λ)

2 : (Prove, x, w), st← A (1λ, ppm)

3 : if R(x,w) = 1 :

4 : π ← ΣR.Prove((x,w), (x, chl))

5 : else :

6 : π ← ⊥
7 : b′ ← A (st, π)

8 : return b′

SHVZKA ,ΣR(1
λ, 1): Ideal

1 : (ppm, z)← ΣR.SimSetup(1
λ)

2 : (Prove, x, w), st← A (1λ, ppm)

3 : if (x,w) ∈ R :

4 : π ← ΣR.SimProve(x, z, chl)

5 : else :

6 : π ← ⊥
7 : b′ ← A (st, π)

8 : return b′

Fig. 4. Special Honest-Verifier Zero-Knowledge (SHVZK) Game.

SSA ,ΣR(1
λ)

1 : ppm← ΣR.Setup(1
λ)

2 : (Challenge, x, π, π′)← A (1λ, ppm)

3 : parse π = (com, chl, res), π′ = (com′, chl′, res′)

4 : if ΣR.Verify(x, π) = ΣR.Verify(x, π
′) = 1 ∧

5 : com = com
′ ∧ chl ̸= chl

′ :

6 : w ← ΣR.Extract(x, π, π
′)

7 : if R(x,w) = 0 :

8 : return Fail

9 : return Success

Fig. 5. Special Soundness (SS) Game.

RO Hf (x)

1 : return f(x)

Random List Oracle HL(x)

1 : if ∃ v s.t. (x, v) ∈ L :

2 : return v

3 : else :

4 : v ← {0, 1}ℓ

5 : L.append(x, v)

6 : return v

Interface ProgL(x, v)

1 : if ∄ v′ s.t. (x, v′) ∈ L :

2 : L.append(x, v)

Fig. 6. Random Oracle Functionalities for NIM-SHVZK and NI-SSS Games [27].
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A.5 Non-Interactive Special Soundness

Non-interactive special soundness (NI-SS) is a weakened version of the NI-SSS
game where A does not get to issue Prove queries to the simulator algorithm
SimProve.

Definition 21 (Non-Interactive Special Soundness). A NISLE proof sys-
tem ΠSLC

R = (SetupH , ProveH , VerifyH , SimSetup, SimProve, Extract) non-interactive
special sound (NI-SS) in the random-oracle model if there exists an algorithm
ΠSLC

R .Extract such that for any security parameter λ any random oracle H, and
any PPT adversary A ,

Pr[Fail← NI–SSA ,ΠSLC
R
(1λ)] ≤ negl(λ),

where NI–SS is the NI-SS game described in Figure 7. We say A wins the NI–SS
game if Pr[Fail← NI–SSHA ,ΠSLC

R
(1λ)] > negl(λ).

NI–SSH
A ,ΠSLC

R
(1λ)

1 : ppm← ΠSLC
R .Setup(1λ)

2 : st← A H(1λ, ppm)

3 : while st ̸= ⊥ :

4 : (x, π,QA , st)← A H(st)

5 : Response← ⊥

6 : if ΠSLC
R .VerifyH(x, π) = 1 :

7 : w ← ΠSLC
R .Extract(x, π,QA )

8 : if R(x,w) = 0 :

9 : return Fail

10 : st← A H(st, Response)

11 : return Success

Fig. 7. Non-Interactive Special Soundness (NI-SS) Game.

A.6 Parameters for FCRS

Definition 22 (CRS Ideal Functionality). The ideal functionality FCRS of
a common reference string (CRS) for a particular CRS generation mechanism
GenCRS is defined as follows.

Query: Upon receiving a request (Query, s) from a party P = (pid, sid), first
check whether sid = s. If it doesn’t, output ⊥. Otherwise, if this is the first time
that (Query, s) was received, compute x according to the algorithm GenCRS and
store the tuple (CRS, s, x). Return (CRS, s, x).
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Definition 23 (Samplable-Hard Relation). A binary NP relation S is samp-
lable-hard with respect to a security parameter λ if it has the following properties.

1. Sampling a statement-witness pair is easy. There exists a sampling
algorithm κS that on input 1λ outputs (x,w) such that S(x,w) = 1 and
|x| = poly(λ).

2. Computing a witness from a statement is hard. For a randomly sam-
pled statement-witness pair (x,w)← κS(1

λ) the probability that an efficient
adversary A can find a valid witness given only the statement is negligible.
Formally, for all PPT A ,

Pr[(x,w)← κS(1
λ), w′ ← A (1λ, x, κS) : (x,w

′) ∈ R] ≤ negl(λ).

Definition 24 (Σ-Friendly Relation). A Σ-friendly relation S is a binary
NP relation with a corresponding efficient Σ-protocol ΣS.

A.7 The Adaptive OR-protocol

Definition 25 (Adaptive OR-Protocol). An OR-protocol for a relation ROR =
R0∨R1 based on adaptive Σ-protocols ΣR0,τ0 and ΣR1,τ1 (Definition 4) is a tuple
of procedures ΣOR = (Setup, Prove, Verify, SimSetup, SimProve, SimRand, Extract)
defined as follows.

– PPM ← Setup(1λ): Given a security parameter 1λ, run ΣR0 .Setup(1
λ) to

obtain ppm0 and ΣR1 .Setup(1
λ) to obtain ppm1. Output PPM = (ppm0, ppm1).

– Φ ← Prove(X,W,Q): Parse X = (x0, x1), W = (w, b), and Q = (r0, r1),
and let b be the bit such that (xb, w) ∈ Rb. Execute the following:

• Com← Commit(X,W,Q): P computes comb according to τb.Commit(xb, w, rb).
P chooses chl1−b at random and generates (com1−b, chl1−b, res1−b) by
running ΣR1−b

.Simulate(x1−b, chl1−b). P sends V Com = (com0, com1).

• CHL← Challenge(X, Com): V sends P a random ℓ-bit string CHL.

• Res ← Respond(X,W, Com, Chl): P sets chlb = CHL⊕ chl1−b and com-
putes resb according to τb.Respond(xb, w, comb, chlb). P sends (Chl, Res)
= (chl0, chl1, res0, res1) to V .

The output “proof” Φ is a tuple (π0, π1, CHL), where πb = (comb, chlb, resb).

– {0, 1} ← Verify(X,Φ): Parse Φ as (π0, π1, CHL), where πb = (comb, chlb, resb).
Execute the following:

• {0, 1} ← Decision(X, Com, Chl, Res): If τ0.Decision(x0, com0, chl0, res0)
= 1 and τ1.Decision(x1, com1, chl1, res1) = 1, return 1. Otherwise, re-
turn 0.

If Decision(X, Com, Chl, Res) = 1 and chl0⊕chl1 = CHL, output 1 (accept).
Otherwise, output 0 (reject).
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– (PPM, Z)← SimSetup(1λ): Generate (ppm0, z0) by running ΣR0
.SimSetup(1λ)

and (ppm1, z1) by running ΣR1
.SimSetup(1λ). Return (PPM, Z) where Z =

(z0, z1).

– Φ ← SimProve(X,Z, CHL) : Parse X = (x0, x1) and Z = (z0, z1). Generate
chl0 uniformly at random and set chl1 = chl0⊕CHL. Obtain π0 by running
ΣR0 .Simulate(x0, chl0) and π1 by running ΣR1 .Simulate(x1, chl1). Return
Φ = (π0, π1, CHL).

– qb ← SimRand(PPM, zs, Zπ, X,Π,W ) : Parse PPM = (ppm0, ppm1), Zπ =
(zπ0

, zπ1
), X = (x0, x1), Φ = (π0, π1), and W = (w, b). Compute qb ←

Σb.SimRand(ppmb, zb, zπb
, xb, πb, wb) and return it.

– W ← Extract(X,Φ,Φ′): Parse X = (x0, x1), Φ = (π0, π1), and Φ′ =
(π′

0, π
′
1). Obtain w0 by running ΣR0

.Extract(x0, π0, π
′
0) and w1 by running

ΣR1 .Extract(x1, π1, π
′
1). Return W = (w0, w1).

A.8 Required Properties for the Randomized Fischlin Transform

To stop A from predicting com and querying the RO on (x, com) before the prover
does, the com messages of Σ-protocols under any non-interactive transform in
the ROM need entropy that is superlogarithmic in the security parameter.

Definition 26 (Superlogarithmic Commitment Entropy). [24] Let ΣR be
any Σ-protocol for binary NP relation R and template τ as specified in Defini-
tion 4. ΣR has superlogarithmic commitment entropy if for all (x,w) ∈ LR, the
min-entropy of com← τ.Commit(x,w) is superlogarithmic in λ.

The quasi-unique responses property [24] says that two proofs with the same
commitments and challenges must have different responses.

Definition 27 (Quasi-Unique Responses). A Σ-protocol for relation R (Def-
inition 4) has the quasi-unique responses property if for any PPT A , security
parameter λ, and (x, com, chl, res, res′)← A (1λ), we have

Pr[ΣR.Verify(x, com, chl, res) = ΣR.Verify(x, com, chl, res
′) = 1

∧ res ̸= res′] ≤ negl(λ).

The strong special soundness property [26] says that the extractor must still
work as long as there is some difference between the challenges and responses of
two transcripts—in particular, it could be that chl = chl′, as long as res ̸= res′.

Definition 28 (Strong Special Soundness). A Σ-protocol ΣR for relation R
(Definition 4) has the strong special soundness property if the condition chl ̸=
chl′ in the specification of the Σ.Extract algorithm is replaced with the condition
(chl, res) ̸= (chl′, res′).

Definition 29 (Required Properties for aFis). A Σ-protocol ΣR for rela-
tion R (Definition 4) has the required properties for the randomized Fischlin
transform aFis if it has the superlogarithmic commitment entropy property
(Definition 26) and either the quasi-unique responses property (Definition 27)
or the strong special soundness property (Definition 28).
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A.9 The Adaptive Randomized Fischlin Transform

Definition 30 (Adaptive Randomized Fischlin Transform). Let ΣR,τ be
any adaptive Σ-protocol for relation R (Definition 4) based on protocol template
τ (Definition 3) with the quasi-unique responses (Definition 27) or strong spe-
cial soundness property (Definition 28). Let H be any random oracle. Then the
randomized Fischlin transform of ΣR,τ , denoted aFis, is an algorithm that takes
ΣR,τ as input and creates a tuple of algorithms ΠaFis

R = (SetupH , ProveH ,
VerifyH , SimSetup, SimProve, SimRand, Extract), defined as follows.

– ppm← SetupH(1λ) : H is fixed. Let b, n, S, t, ℓ be set according to the Fischlin
transform [24] bn = ω(log λ), 2t−b = ω(log λ), b, n, t = O(log λ) and b ≤
t ≤ ℓ, where we use n in place of r repetitions to avoid confusion with the
notation for randomness. The compound randomness security parameters
λR = n(λr + 2tt) and λR′ = 2tb + n((ℓ − b) + λr), where λr and λr′ are
the randomness security parameters of ΣR,τ .

8 Output the public parameters
ppm = (ppmΣ , b, n, S, t, ℓ, λR), where ppmΣ ← τ.Setup(1λ).

– (x, Φ) ← ProveH(x,w,R) : Compute the vector of n first messages com =
⟨com1, . . . , comn⟩ by running τ.Commit(x,w, ri) for 1 ≤ i ≤ n, where each ri
consumes λr bits of the random tape R. To compute each response resi, test
2t challenges chl1, . . . , chl2t as follows. First, set chlj to be the next t bits of
R. Then, repeat resj ← τ.Respond(x,w, com, chlj) until H(x, com, i, chlj ,
resj) = 0b, or else take the minimal over all of the responses. Set the mini-
mal response-producing challenge chlj = chli. Finally, return (x, Φ), where
Φ = (π1, . . . , πn), and each πi = (comi, chli, resi).

– {0, 1} ← VerifyH(x, Φ) : Parse Φ = (π1, . . . , πn). Output 1 (accept) if and
only if ΣR.Verify(x, πi) = 1 and

∑n
i=1 trunc(H(x, com, i, chli, resi)) ≤ S

for 1 ≤ i ≤ n. Otherwise, output 0 (reject).

– (ppm, zs) ← SimSetup(1λ) : Fix H and generate b, n, S, t the same as in
ΠaFis

R .Setup. Generate ppmΣ and simulator state information zs by running
ΣR,τ .SimSetup. Set ppm = (ppmΣ , b, n, S, t, λR) and return (ppm, zs).

– (x, Φ, ZΦ) ← SimProve(x, zs, R
′) : For each proof 1 ≤ i ≤ n, sample 2t

random t-bit challenges and b-bit strings from R′. Let µ : {0, 1}t → {0, 1}b
represent the map between the challenges and the b-bit outputs, which are
potential truncated outputs of H. Let the final challenge for the ith proof chli
be the first challenge in lexicographic order to map to the minimal response.
Run ΣR,τ .SimProve(x, zs, chli, r

′
i) to obtain πi = (comi, chli, resi) and zπi ,

8 For each execution of ΠaFis
R .Prove, we will need enough randomness to compute n

proofs, each requiring λr bits to compute the first message and 2tt bits to sample 2t

t-bit random challenges. For each execution of simulator algorithms ΠaFis
R .SimProve

and ΠaFis
R .SimRand, we will need enough randomness to sample 2t b-bit random

challenges and n(ℓ−b) bits to program the random oracle, as well n(λr′) bits to feed
into n executions of ΣS,τ .SimRand and n2tt bits to simulate the challenge selection
process.
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where each r′i is the next λr′i
bits of R′. Repeat this process for all n proofs.

For each proof, program the output of H on input (x, com, i, chli, resi) to
be µi(chli). Finally, output the proof tuple (x, Φ) and auxiliary information
ZΦ, where Φ = (Φ1, . . . , Φn) and ZΦ = (zπ1 , . . . , zπn).

– R ← SimRand(ppm, zs, ZΦ, x, Φ, w,R
′) : Parse Φ = (π1, . . . , πn) and ZΦ =

(zπ1 , . . . , zπn). Reconstruct the proof randomness R corresponding to Φ as fol-
lows. Begin reading R′ at the 2t(t+b)+1st bit. Generate the first nλr bits of R
(i.e. the randomness of the first messages) by running ΣR,τ .SimRand(zs, zπi

,
x, πi, w, r

′
i) for each πi, where each r′i is the next λr′ bits of R

′. Next, generate
the randomness of the challenge selection process as follows. Reset the pointer
reading R′ back to the beginning of R′. For each commitment comi, use the
appropriate segment of R′ to reconstruct the map µ : {0, 1}t → {0, 1}b map-
ping the 2t t-bit challenges to b-bit outputs. For each challenge chlj in the list
of 2t challenges, compute the response resj ← τ.Respond(x,w, comi, chlj)
and program the output of H on input (x, com, i, chlj , resj) to be µi(chlj),
then concatenate chlj to R. Once the process as been completed for all com-
mitments and challenges, return R.

– w ← Extract(X,Φ,QA ) : Parse Φ = (π1, . . . , πn) and each πi = (comi, chli,
resi). Given a list QA the adversary’s queries to H, search for two queries
(x, com, i, chli, resi) and (x, com, i, chl′i, res

′
i) such that (chli, resi) ̸= (chl′i,

res′i) and ΣR.Verify(x, πi) = ΣR.Verify(x, π
′
i) = 1. If no such queries ex-

ist, output Fail. Otherwise, obtain w by running ΣR.Extract(x, π, π
′).

A.10 Efficiency of the Randomized Fischlin Transform

There are several metrics by which to evaluate the efficiency of the randomized
Fischlin transform. We focus on communication and computational complexity.

To understand the communication and computation costs, consider the pa-
rameters of the randomized Fischlin transform b, n, S, t with respect to the se-
curity parameter λ and (underlying Σ-protocol’s) challenge length ℓ = O(log λ).
Here b represents the number of bits output by the random oracle H, n the
number of repetitions (of the underlying Σ-protocol) and therefore total proof
transcripts output by the prover, S the maximum size of the sum over all out-
puts of H on input each of the n proof transcripts, and t the number of bits
in each test challenge. These quantities are related as follows: b, r, t = O(log λ),
b ≤ t ≤ ℓ, br = ω(log λ), and 2t−b = ω(log λ) [24]. The incurred communica-
tion cost is therefore logarithmic in the security parameter—precisely, n times
the size of the underlying Σ-protocol proof transcript (similarly, the verifier will
need to run the verification algorithm of the Σ-protocol n times).

With respect to the prover’s computational overhead, Fischlin proves that
any NISLE ZKPoK (with a non-programming extractor) must queryH a number
of times that is at least superlogarithmic in the security parameter—that is,
the computational complexity of any NISLE ZKPoK prover is lower-bounded
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by ω(log λ) (Proposition 2 in Section 3.4 [24]).9 Kondi and shelat tighten this
bound, and demonstrate that the standard (and randomized) Fischlin transform
is a factor of n

(n!)1/n
worse on average than an optimally efficient prover (Lemma

5.1 and Claim 5.3, respectively [26]). They additionally introduce a “drop-in
replacement” for Fischlin’s minimal hash output predicate in the form of a hash
collision predicate (i.e. rather than finding a transcript that maps to a minimal
hash output, the prover finds two transcripts that map to the same hash output).
If the underlying Σ-protocol has properties called n + 1-special soundness and
n-simulatability (which the adaptive Σ-protocol examples given in Section 6
do), the prover can apply a multi-collision predicate to obtain optimal efficiency
(Section 5.3 [26]). For comparison, the cut-and-choose method of straight-line
extraction due to Pass [31] incurs a minimal computational overhead of λ2 [26].

A.11 Full Proof of Theorem 4

Recall Theorem 4: Let ΣR,τ be an adaptive Σ-protocol based on protocol
template τ for relation R (Definition 4) with the required properties for rFis

(Definition 29 in A.9), and H : {0, 1}∗ → {0, 1}b be any random oracle. Then the
adaptive randomized Fischlin transform aFis (Definition 30 in A.9) is an adap-
tive straight-line compiler for ΣR,τ (Definition 6) in the random-oracle model.
Proof. Recall that an adaptive straight-line compiler according to our defini-
tion must create protocols that are overwhelmingly complete, adaptive non-
interactive multiple special honest-verifier zero-knowledge (adNIM-SHVZK), and
adaptive non-interactive special simulation-sound (adNI-SSS). First, note that
since the specification of ΠaFis

R .Prove does not functionally change between rFis

and aFis (as our explicit treatment of the prover’s randomness is syntactic),
aFis is as complete as rFis [24,26]. We proceed by contrapositive to show that
if ΠaFis

R is not additionally adNIM-SHVZK and adNI-SSS, then the underlying
Σ-protocol ΣR cannot be regular adaptive special honest-verifier zero-knowledge
(adSHVZK), contradicting the assumption in the theorem statement.

We begin by constructing a reduction B that uses an algorithm A that
can win the adNIM-SHVZK game (Definition 8) parameterized over ΠaFis

R with
non-negligible advantage as a black-box in order to win the adSHVZK game
(Definition 5) parameterized over ΣR with non-negligible advantage. B proceeds
as follows. When it obtains ppm from the adSHVZK challenger, B passes ppm

to A . Note that the adSHVZK challenger is expecting exactly one Prove query
(i.e. it is not multi-adaptive), so we modify A to distinguish two hybrids i
and i + 1, where in the ith hybrid, the first i proofs and random coins are
according to ΠaFis

R .Prove using randomness r ∈ {0, 1}λr , and the i+1st onward
are according to ΠaFis

R .SimProve and ΠaFis
R .SimRand using randomness r′ ∈

{0, 1}λr′ . B models the RO with an initially empty list L ← ⊥. To answer the
first i queries, B first samples f ←$ F then runs Hf on the query, storing the

9 This bound does not capture any efficiency loss due to repeating expensive operations
in the underlying Σ-protocol template—it is meant to capture the additional cost
incurred by the transform itself.
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input-output pair in L. From the i + 1st query onward, B programs the RO
using the interface ProgL according to ΠaFis

R .SimProve and ΠaFis
R .SimRand.

For the first i queries (Prove, x, w) from A , B samples randomness Q ←
{0, 1}λQ , runs ΠaFis

R .Prove(x,w,Q), and returns (Φ,Q) to A . On A ’s i + 1st

query (Prove, x∗, w∗), B passes (Prove, x∗, w∗) to its challenger and receives
(π∗, r∗) for π∗ = (com∗, chl∗, res∗) that is either the result of running ΣR.Prove
on randomness r∗ or the result of running ΣR.SimProve and ΣR.SimRand. Note
that that A is expecting more proofs than just π∗, as the output of ΠaFis

R .Prove
and ΠaFis

R .SimProve is actually a tuple of proofs Φ = π1, . . . , πn. We therefore
modify A again to distinguish the hybrids i+1, j from i+1, j+1, where in the
i + 1, jth hybrid, the first j proofs of the challenge proof tuple Φ∗ = π1, . . . , πn

are computed according to ΠaFis
R .Prove each with randomness Q ∈ {0, 1}λQ ,

and the i+1, j+1st through the nth proof are according to ΠaFis
R .SimProve and

ΠaFis
R .SimRand with randomness Q′ ∈ {0, 1}λQ′ . B constructs the entire i+ 1st

hybrid proof tuple Φi+1 = Φ1, . . . , Φn from the challenge query as follows.

Let the j + 1st commitment comj+1 = com∗, and πj+1 = (com∗, chl∗, res∗).
Since it must have the entire tuple com1, . . . , comn of commitments before running
ΠaFis

R .Prove, B starts by running the steps ofΠaFis
R .SimProve n−(j+2) times—

that is, to compute each proof πl for j + 2 ≤ l ≤ n, B samples 2t random t-bit
challenges and b-bit strings, maps the challenges to the strings, picks chll to be
the first challenge in lexicographic order to map to the minimal response, and
computes πl ← ΣR,τ .SimProve(x, zs, chll, r

′
l), where r′l comes from B’s random

tape. (It will later program the outputs of H to remain consistent with these
proofs, but first it needs to generate the rest of the commitment vector.)

B then samples each r1, . . . rj uniformly at random from {0, 1}λr and runs
τ.Commit j times to obtain com1, . . . , comj and produce the full commitment
vector com = com1, . . . , comn. B computes each proof πl for 1 ≤ l ≤ j by
running the steps of ΠaFis

R .Prove j times—that is, B samples j λr-bit first
messages com1, . . . , comj and for each coml samples j2t t-bit challenges, computes
resm ← τ.Respond(x,w, coml, chlm) for each of the 1 ≤ m ≤ 2t challenges, and
chooses the proof tuple such that the value returned by H(x, com, l, chlm, resm)
is minimal over all chl1, . . . , chl2t .

B generates the prover’s hybrid random tape Q∗ as follows. The first jλr

bits are the j λr-bit samples that B made while computing proofs according to
ΠaFis

R .Prove. The proceeding λr bits are those returned by the adNIM-SHVZK
challenger, r∗. To obtain the next (n − (j + 2))λr bits, B runs ΣR,τ .SimRand
on input each πl, r

′
l for j + 2 ≤ l ≤ n, where r′l is the same section of B’s

random tape that it used in running ΣR,τ .SimProve to obtain πl. To simulate
the “random challenge selection” section of Q∗, B first concatenates (in order)
all of the challenges sampled while computing π1, . . . , πj . For chlj+1 (i.e. chl∗,
which was produced by the adNIM-SHVZK challenger rather than being sampled
by B), B uses fresh randomness to sample 2t − 1 t-bit challenges and 2t b-bit
outputs of H, inserts chlj+1 as first challenge in lexicographic order to map to
the minimal b-bit output value, then concatenates all 2t challenges (in order)
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to Q∗. Finally, B concatenates (again in order) all of the challenges it sampled
while computing πj+2, . . . , πn.

All that remains in B’s simulation is to make sure H is consistent with
the proofs and randomness it has generated. For all proofs πl where j + 1 ≤
l ≤ n, B programs the output of H on input (x, com, l, chlm, resm) to be the
corresponding b-bit output in the challenge-to-output mappings for all challenges
and responses 1 ≤ m ≤ 2t.

For the analysis, consider that B’s execution of the proofs π1, . . . , πj and
πj+2, . . . , πn and corresponding randomness is exactly what A expects in ei-
ther hybrid. It remains to show that the challenge proof πj+1 and correspond-
ing randomness is also formatted according to what A expects. If the adNIM-
SVHZK challenger is playing with bit b = 0 and generated (π∗, r∗) according
to ΠaFis

R .Prove and randomness r, then πj+1 and the “first message” section of
Q∗ corresponding to rj (i.e. the randomness used to generate comj+1) will be
exactly what A expects from the i, j + 1st hybrid. If, on the other hand, π∗, r∗

were generated according to ΠaFis
R .SimProve and ΠaFis

R .SimRand, then A ’s view
of πj+1 and rj will be according to hybrid i, j.

Finally, we must argue that A ’s view of the “challenge-selection” section of
Q∗ is formatted how A expects (since according to the hybrid experiment, A is
expecting a “simulated” challenge selection process only when π∗, r∗ were gen-
erated according to ΠaFis

R .SimProve and ΠaFis
R .SimRand). The statistical indis-

tinguishability of B’s simulation for the challenge-selection section phase follows
from the fact that all of the sampled challenges are identically distributed—they
are all sampled uniformly at random from {0, 1}t. Likewise, the programmed
outputs of H are all sampled uniformly at random from {0, 1}b. Therefore, if
B outputs 0 when A outputs “Hybrid i, j + 1” and 1 when A outputs “Hy-
brid i, j,” it succeeds with the same probability as A . Because i is bounded by
the number of prove queries and j is bounded by the parameter n, the number
of hybrids is bounded by some polynomial in the security parameter, and B’s
summed advantage over all of the hybrids is negligible.

We now use the fact that ΠaFis
R is adaptive NIM-SHVZK to argue that

ΠaFis
R must also be adaptive NI-SSS. Consider a new reduction B that uses

an adversary A that can win the adNI-SSS game (Definition 9), as well as a
second adversary A ′ that can win the regular NI-SS game (Definition 21 in
Appendix A.5) with non-negligible advantage as black boxes to win the adNIM-
SHVZK game (Definition 8). B forwards all of A ’s Prove queries to and from
the adNIM-SHVZK challenger, and all of A ’s random oracle queries to and from
H. Similarly, B forwards all of A ′’s oracle queries to and from H. Whenever A
produces a fresh (non-simulated) proof (x, Φ) such that ΠaFis

R .Verify(x, Φ) = 1,
B computes w ← ΠaFis

R .Extract(x, Φ,QA ) and checks whether R(x,w) = 0,
which happens with non-negligible probability by assumption. B does the same
for A ′’s proofs (x′, Φ′). (The argument that there must be sufficient queries in
QA or QA ′ to invoke ΠaFis

R .Extract in the first place is identical to the argu-
ments given by Fischlin [24] and Kondi and shelat [26]; in brief, the quasi-unique
responses property (Definition 27 in A.8) (resp. strong special soundness prop-
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erty (Definition 28 in A.8) stops A from being able to “tweak” an old proof to
create a forgery, for instance by changing one response.)

If the adNIM-SVHZK challenger is playing with bit b = 1 and the proofs
and randomness being passed to A are according to ΠaFis

R .SimProve and ΠaFis
R .

SimRand, this is exactly what A expects from the adNI-SSS game, and B’s
advantage is the same as A ’s. If the adNIM-SHVZK challenger is playing with
bit b = 0, then A ’s advantage reduces to A ′’s advantage in the standard NI-SS
game (since A ′ can always generate honest proofs and randomness according
to ΠaFis

R .Prove itself). Assume for a contradiction that there is a non-negligible
difference between the extraction failures produced by A when b = 1 and A /A ′

when b = 0. If B observes a difference in output betwen A and A ′, B knows
A has an extra advantage due to seeing simulated proofs and randomness and
outputs 1; otherwise if there is no difference, B outputs 0. Therefore, the differ-
ence must be negligible, implying that as long as ΠaFis

R is adNIM-SHVZK (as
proven in the preceeding paragraphs) and NI-SS (which follows directly from the
special soundness of ΣR,τ and the randomness of H), ΠaFis

R must be adNI-SSS.
We have shown that the tuple ΠaFis

R ← aFis(ΣR,τ ) is overwhelmingly com-
plete, adNIM-SVHZK, and adNI-SSS, completing the proof that aFis is an adap-
tive SLC. ⊓⊔

A.12 Full Proof of Theorem 7

Recall Theorem 7: A proof of knowledge of equality of n representations can
be described as a simple adaptive Σ-protocol (Definition 12).

Proof. We recall the setup. The public parameters ppm are (G, q, g1, . . . , gn),
where G is a cyclic group of prime order q, and each gi is a vector of m generators
gi,1, . . . , gi,m. The statement and first-message spaces are X = A = Gn, the
witness, randomness, and response spaces are W = R = B = Zm

q , and the
challenge space is C = Z∗

q . The evaluation function F : Zm
q → Gn is defined such

that

F(w) = F(w1, . . . , wm) =

m∏
i=1

wi · g1,i, . . . ,
m∏
i=1

wi · gn,i.

The operator · is defined, component-wise, the same as in the proof of Theorem 6.
The prover’s first message com = F(r) becomes

F(r1, . . . , rm) =

m∏
i=1

wi · g1,i, . . . ,
m∏
i=1

wi · gn,i

for r1, . . . , rm ←$ Zq. We can therefore write com = ⟨com1, . . . , comn⟩. The chal-
lenge is a uniformly random element chl ←$ Z∗

q , and the prover’s response is
res = ⟨res1, . . . , resm, where each resi = chl · wi + rm. The verifier accepts
the proof (com, chl, res) if and only if

F(res) = F(res1, . . . , resm) =

m∏
i=1

resi · g1,i, . . . ,
m∏
i=1

resi · gn,i =
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m∏
i=1

(chl · wi + ri) · g1,i, . . . ,
m∏
i=1

(chl · wi + ri) · gn,i =

chl · F(w) + F(r) = chl · x+ com.

The SimProve algorithm samples a random m-length response vector from Zm
q

and computes each component of the n-length first message vector com1, . . . , comn
as

com = F(res− chl ·w) =
m∏
i=1

(resi− chl ·wi) · g1,i, . . . ,
m∏
i=1

(resi− chl ·wi) · gn,i,

and each random value ri output by SimRand is computed resi − (chl · wi) for
1 ≤ i ≤ m. Similarly, each witness wi is extracted by computing (resi − res′i) ·
(chl− chl′)−1, where (chl− chl′) ̸= 0 is again invertible in Z∗

q .
The pseudo-module homomorphism and smoothness properties follow from

the component-wise application of the arguments from Theorem 6:

F(chl · w + r) = F(chl · w1, . . . , wm + r1, . . . , rm) =

m∏
i=1

(chl · wi + ri) · g1,i, . . . ,
m∏
i=1

(chl · wi + ri) · gn,i =

m∏
i=1

(chl · wi) · g1,i + ri · g1,i, . . . ,
m∏
i=1

(chl · wi) · gn,i + ri · gn,i =

chl ·
m∏
i=1

wi · g1,i + ri · g1,i, . . . , chl ·
m∏
i=1

wi · gn,i + ri · gn,i =

chl · F(w) + F(r).

Finally, since each ri ← Zq and ri · g1,i is a uniformly random element in G,
F(r) = F(r1, . . . , rm) =

∏m
i=1 ri · g1,i, . . . ,

∏m
i=1 ri · gn,i is distributed uniformly

over Gn. ⊓⊔
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