
Efficient Gaussian sampling for RLWE-based cryptography
through a fast Fourier transform∗

Márcio Barbado Júnior1

1Departamento de Engenharia de Computação e Sistemas Digitais
Universidade de São Paulo (USP) – São Paulo, SP – Brazil

mbarbado@usp.br

Abstract. Quantum computing threatens classical cryptography, leading to the
search for stronger alternatives. The cryptographic approach based on lattices
is considered as a viable option. Schemes with that approach use Gaussian
sampling, a design which brings along two concerns: efficiency and informa-
tion leakage. This work addresses those concerns in the RLWE formulation, for
digital signatures. Efficiency mitigation uses the central limit theorem, and the
Walsh–Hadamard transform, whereas the information leakage risk is reduced
via isochronous implementation. Up to 223 samples are queried, and the results
are compared against those of a cumulative distribution table sampler. Statisti-
cal metrics show the suitability of the presented sampler in a number of contexts.

1. Introduction
Current lattice-based cryptography derives from [Ajtai 1996], which is a work based on
a hard computational problem known as short integer solution (SIS). From that point
on, other hardness assumptions started being considered. One of them is the ring learn-
ing with errors problem (RLWE), which consists in an algebraically structured variant of
the learning with errors problem (LWE). Basically, LWE consists in distinguishing be-
tween two types of equations: truly random ones, and those whose underlying structure
have been masked by a controlled amount of noise [Regev 2009]. RLWE has an analo-
gous formulation, the main difference being a hidden underlying structure of polynomial
rings [Lyubashevsky et al. 2013]. Often, the generation of random values in RLWE-
based cryptosystems make use of discrete Gaussian sampling (DGS) routines, which
may suffer from efficiency issues [Dwarakanath and Galbraith 2014, Ortiz et al. 2015],
and may be vulnerable to timing side-channel attacks, leading to information leak-
age [Bernstein et al. 2008, Alkim et al. 2019, Pöppelman et al. 2019]. Evidences of the
need for efficiency and security advancements in the DGS primitive have been provided
by many recent works, mostly stimulated by the post-quantum cryptography standard-
ization process being promoted by the National Institute of Standards and Technology
(NIST) [CSRC 2022].

In this work, a competitive DGS strategy is presented for RLWE-based cryptog-
raphy. Regarding efficiency, the strategy relies on using the central limit theorem and
a fast Fourier transform (FFT) in convenient ways. Information leakage risks are miti-
gated through isochronous implementation. Results are then compared against a widely-
accepted DGS strategy, namely the cumulative distribution table (CDT).

∗This work was supported by research grants 169284/2018-2 from Conselho Nacional de Desenvolvi-
mento Cientı́fico e Tecnológico, BP 1600.03.18 and BP 1975.07.20 from Fundação para o Desenvolvimento
Tecnológico da Engenharia, and 3372 and 300804 from Fundação de Apoio à Universidade de São Paulo.

2. Related works

Lattice-based cryptography works to address DGS may cover the sampler in a number of
forms. Some works may present samplers as standalone proposals, while other works may
adopt wider scopes, of which samplers take parts. Also, there are works based on previ-
ously existing DGS strategies. Authors may regard specification and implementation, the
latter presenting hardware and software proposals In [Ducas et al. 2013], a digital signa-
ture scheme with its own sampler is presented. It is called the Bimodal Lattice Signature
Scheme (BLISS). In [Ortiz et al. 2015], authors illustrate the inherent side-channel prob-
lem of DGS by implementing and testing previously existing strategies in software forms.

Earlier works with embedded and original DGS strategies are [Alkim et al. 2019],
presenting the qTESLA digital signature scheme, [Alkim et al. 2020], presenting the
FrodoKEM key encapsulation scheme, and [Howe et al. 2019], presenting the FALCON
digital signature scheme. All of these have joined the NIST competition [CSRC 2022].

For reference, a comparison of sampling strategies among some works is present
in Table 1. The hereby proposed work is referred to as DiGS in the table, which is short
for “discrete Gaussian sampling”.

Table 1. DGS strategies for DiGS and related works.

Sampler Assumption DGS strategy

DiGS (ours) RLWE CLT and FWHT
BLISS [Ducas et al. 2013] SIS Inversion and rejection
FALCON [Howe et al. 2019] NTRU CDT and rejection
FrodoKEM [Alkim et al. 2020] LWE CDT
qTESLA [Alkim et al. 2019] RLWE CDT and rejection

Italicized text indicates participation in [CSRC 2022].

Additionally, comprehensive web pages listing DGS works in lattice-based
cryptography can be found on [Micciancio 2022, Bernstein et al. 2022]. As for DGS
isochronous implementation, [Reparaz et al. 2016] presents an assessment tool, available
in the public domain. In [Micciancio and Walter 2018], there is a similar concern as well.
Implementation security is covered for a DGS strategy based on precomputed values.

Related content about the central limit theorem (CLT) general formulation, as
used herein, is present in [Dwarakanath and Galbraith 2014]. Even though the authors
do not reach acceptable results, their proposal of using the referred theorem rises as an
interesting contribution.

Partially related works to cover the FWHT in shuffling-related strategies
are [Rader 1969, Harwit and Sloane 1979]. Both deal with random variable generation
by means of the Hadamard matrix, the latter featuring the referred topic in its appendix,
with a didactic approach, offering detailed examples. Harwit and Sloane also cover the
relationships between Hadamard matrices and Walsh functions, the Hadamard transform,
and its fast variant.

3. Concepts
This section presents an overview of RLWE-based cryptography, focusing on its DGS
primitive and a few algorithms to build it. It also presents the CLT and FWHE, which
form the basis for the sampling strategy adopted by this work. Finally, timing side-channel
vulnerabilities, the security concern of this work, are briefly depicted.

3.1. RLWE-based cryptography

In lattice-based cryptography, an RLWE scheme structures the LWE problem in polyno-
mial rings. Those schemes hold high asymptotic efficiency, and strong provable security,
backed by the computational complexity of lattice problems [Peikert 2014].

3.1.1. Polynomial rings

A polynomial ring is an algebraic structure consisting in a set of finite or infinite poly-
nomials. The properties to be satisfied by polynomial rings are identity for addition and
multiplication, associative and commutative multiplication, and distributive multiplica-
tion.

This work is interested in finite rings of s polynomials, provided with integer coef-
ficients. Also, the s parameter implies Z[x] polynomials should have maximum degrees
of up to s − 1. In Equation 1, a finite polynomial ring Rq with two moduli is presented.
The first modulus, xs + 1, is generic. The second modulus an RLWE polynomial ring
should obey is q, which is a large public prime. Z[x] expresses the integer nature of
coefficients.

Rq =
Zq[x]
xs + 1

. (1)

3.1.2. The RLWE problem

The RLWE problem is built upon LWE, which in turn is built upon nondeterministic
polynomial (NP) problems from the lattice theory, e.g., the shortest vector problem (SVP)
and the closest vector problem (CVP) [Ajtai 1996, Regev 2009]. In order to illustrate the
RLWE problem, an Rq polynomial ring consisting of s polynomials is considered. The
polynomials are firstly made equal to zero, and then they are separated from their constant
terms, allowing a matrix equation representation as that of Equation 2.

a1 1 a1 2 . . . a1 s−2 a1 s−1 a1 s
a2 1 a2 2 . . . a2 s−2 a2 s−1 a2 s
...

...
. . .

...
...

...
as−2 1 as−2 2 . . . as−2 s−2 as−2 s−1 as−2 s
as−1 1 as−1 2 . . . as−1 s−2 as−1 s−1 as−1 s
as 1 as 2 . . . as s−2 as s−1 as s

×

xs−1

xs−2

...
x2

x
1

=

−a1 s
−a2 s
...

−as−2 s
−as−1 s
−as s

. (2)

By representing the constant terms vector as b, the solution is represented as the
X vector. As LWE problems deal with artificially perturbed equations, a pseudo-random
error e is added to X, as shown in Equation 3.

X = A−1 × b→ X + e , A−1 × b, e , 0. (3)

Distinguishing e influence by taking equations in pairs is the RLWE problem.

3.2. Gaussian sampling

The term Gaussian in Gaussian sampling refers to sampling from normal distributions of
probabilities, which may be used for random number generation in lattice-based cryptog-
raphy. A distribution of probability can be described in continuous and discrete forms.
The latter can be described by the probability mass function (PMF), which is the proba-
bility density funtion (PDF) for the discrete case, and by the cumulative density function
(CDF). Regarding normal distributions, there is also a compact option to represent them
through their two main parameters, as inN(µ, σ2). That notation brings the µmean and
theσ2 variance. It constitutes a simplified normal PDF, which by its turn can be described
as Equation 4, according to [Weisstein 2021].

P(x) =
1

σ
√

2π
· e−

1
2 (x−µ

σ)2, x ∈ R (4)

A graphical example is present in Figure 1, which portrays a standard normal
distribution PDF, bounded inside the [−4, 4] sampling domain. Being standard implies
mean 0 and variance 1.

Figure 1. A [-4, 4] bounded-domain view of a standard normal distribution PDF.

-4 4

0.4

Possible sample values

Probability

N(0, 1)

3.3. Sampling strategies

Current sampling strategies pertinent to DGS in lattice-based cryptography often adopt
inversion, rejection and CDT, as seen in Table 1. Inversion is a transform algorithm
which turns a probability value p into a number whose probability in another distribution
is at most p, while rejection follows the premise that computations not achieving certain

criteria should be discarded. The CDT algorithm, used by this work as reference, samples
from a precomputed table, the cumulative distribution table. It does so by taking a random
real value r ∈ [0, 1), and performing a search operation on the table, comparing r to
each value in there. The last value to be bigger than r has its index s returned as a
valid observation for the sample. Formally, the algorithm tries to find an s index such
that the CDT s−1 < r < CDT s condition is satisfied. Its main drawback being the
high memory consumption involved, as the algorithm requires a precomputed table. An
isochronous CDT construction, which fills a table and samples from it, can be found
in [Alkim et al. 2019].

3.4. Central limit theorem
The central limit theorem (CLT) refers to a number of enunciations. The core idea behind
most of them is that by sampling randomly and repeatedly from a supposedly uniform
population distribution, and then computing an average for each sample, the resulting
distribution of averages tends to a normal distribution. Samples correspond to uncor-
related uniform random variables, and the obtained distribution of averages is a normal
random variable [Rader 1969]. Thus, the CLT can also be used to estimate values, e.g., as
a maximum likelihood estimator (MLE). In this work, the CLT is used to accelerate the
generation of Gaussian random variables, e.g., seemingly normal distributions, in a more
efficient way. The µD mean of 2β random variables approaches the theoretical population
average as the number of samples grows.

A supposedly uniform population distribution is to be sampled, and in that lies a
part of the CLT acceleration used, precisely, in population choice. The chosen population
is previously manipulated, forcing the original, supposedly uniform population distribu-
tion to be normal already. Considering the samples obtained in this work, it is desirable
to understand how far results are from a trustable normal distribution.

3.5. The fast Walsh–Hadamard transform
The fast Walsh–Hadamard transform is an O(n log n) FFT algorithm, basically con-
stituting an operation of multiplication between an Hadamard matrix and an in-
put matrix η. In this work, the latter is an initialization vector (IV), e.g., η =
(0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0). An Hadamard matrix H is a sym-
metric matrix whose elements are either one or minus one [Sylvester 1867, Rader 1969].
An example of order four is presented in Equation 5.

Hβ=2 =

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 (5)

The number of steps needed to compute an FWHT of order n is approximately
n log2 n [Harwit and Sloane 1979], or simply nβ, considering the main input variable of
this work.

The diagram in Figure 2 illustrates the transform evolution for the previously men-
tioned η vector. The resulting FWHT is presented in column g(ω). Continuous arrows

generate positive numbers, and dashed arrows generate negative numbers. A stage can be
understood as a vector shuffling procedure. There are β = 4 stages, and in each stage, 24

operations are computed, one for each vector position.

Figure 2. Diagram of FWHT with stages and cycles marked.

η g(ω)

00 0 0 + 0 = 0 0 + 2 = 2 2 + 3 = 5 5 + 3 = 8

01 0 0 + 1 = 1 1 + 1 = 2 2 + 1 = 3 - 3 + 5 = 2

02 1 1 + 0 = 1 1 + 2 = 3 - 3 + 2 =-1 - 1 + 1 = 0

03 0 0 + 1 = 1 1 + 0 = 1 - 1 + 2 = 1 - 1 - 1 = -2

04 1 1 + 1 = 2 - 2 + 0 =-2 - 2 - 1 =-3 - 3 + 1 = -2

05 1 1 + 0 = 1 - 1 + 1 = 0 0 + 1 = 1 - 1 - 3 = -4

06 1 1 + 1 = 2 - 2 + 1 =-1 1 - 2 =-1 - 1 - 1 = -2

07 0 0 + 0 = 0 0 + 1 = 1 - 1 + 0 =-1 1 - 1 = 0

08 0 0 + 0 = 0 0 + 0 = 0 0 + 1 = 1 1 - 1 = 0

09 1 - 1 + 0 =-1 - 1 + 1 = 0 0 - 1 =-1 1 + 1 = 2

10 0 0 + 1 = 1 1 + 0 = 1 - 1 + 0 =-1 - 1 + 1 = 0

11 1 - 1 + 0 =-1 - 1 + 0 =-1 1 + 0 = 1 - 1 - 1 = -2

12 1 - 1 + 1 = 0 0 + 0 = 0 0 + 1 = 1 1 - 3 = -2

13 0 0 + 1 = 1 - 1 - 1 =-2 - 2 - 1 =-3 3 + 1 = 4

14 1 - 1 + 1 = 0 0 + 1 = 1 - 1 + 0 =-1 - 1 - 1 = -2

15 0 0 + 0 = 0 0 - 1 =-1 1 - 2 =-1 1 - 1 = 0

1st stage 2nd stage 3rd stage 4th stage
1 cycle 2 cycles 4 cycles 8 cycles

3.6. Timing side-channel vulnerabilities

Timing side-channel vulnerabilities were firstly described in [Kocher 1996]. The reffered
work shows that, once many cryptographic routine implementations do not run in fixed
times, due to performance and other reasons, there is a number of possible attacks which
can be carried out against such implementations. Those attacks can exploit slight differ-
ences in computing times of the vulnerable cryptosystems. The referred differences can
be measured and analysed, allowing attackers to obtain secret keys.

Mitigation measures can be implemented in application, operating system, and
hardware levels. That can be accomplished through isochronous architectures for ex-
ample. Isochrony in coding can be described as a design pattern which imposes an
invariant execution time to a given routine. Specifically regarding DGS isochronous
construction in RLWE-based cryptography, an example can be seen in the qTESLA
scheme [Alkim et al. 2019].

4. FWHT Gaussian sampler

DiGS, the discrete Gaussian sampler presented herein is an LWE-oriented DGS construc-
tion. It addresses efficiency through CLT convergence acceleration and an FFT algorithm,
namely, the FWHT. It also mitigates timing-attack risks through an isochronous design
for the referred algorithm.

Building of approximate Gaussians is achieved by means of sampling algebraic
Gaussian distributions, instead of uniform distributions, meaning a biased procedure is
enforced. This is also the phase of CLT convergence, which consists in getting to a prob-
ability distribution fitting in reduced time. The number of sampling iterations are reduced
by a precision acceptability criteria, which estimates tolerance values for differences be-
tween the mean of the polynomial roots and the roots of the algebraic polynomial, offering
opportunities for routines to be terminated prematurely, still being effective. The FWHT
is then used for shuffling. Sampling is always performed in a fixed regime, i.e., Gaussian
parameter values do not change during a sampling session.

4.1. The variables

Variables may have anN index if they relate to the algebraic normal distribution PDF, or
aD index if they relate to the approximated Gaussian PMF. Additionally, the following
presentation of variables divides them in two groups, input and output, all of them are
presented in the following sections. Values of input variables are supposed to be secret.

Input variable: σN2 denotes the variance for a Gaussian PDF. Its square root is the
standard deviation σ, which is used to determine where to bound the PDF, for practical
purposes.

Input variable: τN is the tail-cut factor. It is not often used for simple Gaussian de-
scriptions, but it constitutes an artificial resource for bound manipulation.

Input variable: β is a scalar, β ∈ N∗, created to comply with dimension requirements
of Hadamard matrices. This is because the FWHT-based sampling strategy demands a
2β number of positions on its input vector. The variable influences all of the sampling
routines, both on PDF and PMF functions. As a consequence, not only does the β ex-
ponent dictate the number of stages in the FWHT algorithm presented by this work, but
it also determines a 2β order square matrix, the full-rank lattice dimension to work with,
and the number of keys to be supported. In practical terms, β influences the sample size,
that is, the number of observations in each sample, and it also influences the number of
samples itself. Thus, a β value of 8 produces a sample size and a number of samples of
256. Regarding the sample size, denoted in this work as s, each observation corresponds
to one polynomial coefficient, that is, a sample size of 256 implies a polynomial of de-
gree 255 with 256 coefficients. As for the number of samples, each sample represents a
polynomial, so 256 samples stand for 256 polynomials.

Output variable: σD denotes the standard deviation for the Gaussian PMF.

Output variable: µD denotes the mean of a normal distribution PMF.

Output variable: s lowercase s is the even 2β sample size to be used both by PDF
and PMF sampling routines, and it also represents a security parameter of the RLWE
problem. The sample size is the number of observations in each sample, and, in this work,
that also means the number of coefficients in each RLWE polynomial. Bigger values are
expected to reduce tails, and make statistical distance smaller between algebraic PDF and
approximated PMF.

Output variable: skewnessD denotes quality. An approximated normal distribution
PMF whose skewness value is closer to zero indicate a more likely bell-shaped function.

Output variable: kurtosisD as skewnessD, the kurtosisD variable stands as a mea-
sure of quality. Higher values of kurtosis indicate lower-quality PMF approximation.

Output variable: CPUcyclesN portrays an efficiency metric, reporting the number
of CPU cycles for a complete sampling routine.

Output variable: CPUcyclesD portrays an efficiency metric, reporting the number
of CPU cycles spent in the production of a noise vector.

Output variable: CPUcyclestotal portrays an efficiency metric, corresponding to the
total CPU cycles, from the moment routines start trying to achieve CLT convergence until
the production of a noise vector.

Output variable: entropy is also known as the Shannon entropy. For the purposes of
this work, higher values of this variable are desirable, as they offer more randomness.

Output variable: DKL is the relative entropy, measured in bits. Values closer to zero
are desirable in this work, as they stand for PMF functions better representing the original
PDF function.

4.2. The algorithm

The FWHT routine presented is supposed to be provided with argumentative values for
the following parameters: the exponent β, the σN standard deviation for the Gaussian
PDF, the τN tail-cut factor, and the option sampling algorithm. As for the algorithm
variables, ` is expected to store the number of cycles on a given stage. Variable `l is
expected to store the current cycle length, that is, the number of vector positions the
current cycle takes. Variable `lh is expected to store half the cycle length, and it also
helps didactically in the pseudocode, emphasizing the idea cycles always have two equal-
sized chunks, one for addition operations and other for subtraction operations. Variable
v is a 2β-sized vector, which firstly stores an η initialization vector, produced by the

sample() function, and the PDF sampling strategy to be performed by this function is
arbitrated by the option parameter. Variable vaux serves the purpose of preserving the
value stored in vector position `aux`l + `laux before it is altered. Variables βaux, `aux, and
`laux help in counting and controlling the number of iterations in each of the three loop
structures. Variable `p is expected to store a relative position in vector v, always in the
first chunk of the current cycle, computed as `aux`l + `laux.

Algorithm 1 An FWHT isochronous construction.

1: algorithm fwht non recursive (β: natural, σN : real, τN : real, option: natural)

2: `: natural; // Number of cycles on a given stage.

3: `l: natural; // Current cycle length.

4: `lh: natural; // Half the cycle length.

5: `p: natural; // Position in the first chunk of the current cycle.

6: v[2β], vaux: integer;

7: βaux, `aux, `laux: natural;

8:

9: v ← sample(β, σN , τN , option);

10: ` ← 1;

11: `l ← 2β;
12:

13: for (βaux from 0 to β − 1, step 1)
14: ` ← ` · 2βaux ;

15: `l ← `l/2βaux ;

16: `lh ← `l/2;

17: for (`aux from 0 to `, step 1)
18: for (`laux from 0 to `lh − 1, step 1)
19: `p ← `aux`l + `laux;

20: vaux ← v[`p];

21: v[`p] ← vaux + v[`p + `lh];

22: v[`p + `lh]← vaux − v[`p + `lh];

23: end for
24: end for
25: end for
26:

27: return v;

28: end algorithm

The first loop structure iterates β times, corresponding to the number of stages.
The second loop structure iterates on the number of cycles of the current stage. In the first
stage, there is only one cycle. Then, in the second stage, there are two cycles, and that
value keeps being doubled at each new stage. The third and last loop is based on the length
of the current cycle, but it iterates upon only half that value. In the first stage, the cycle
length equals 2β. In the second stage, the cycle length becomes 2β−1. Then 2β−2 in the
third stage, and the exponent keeps being decremented by one at each new stage, until it
reaches the value of one, meaning the last stage has cycles with 2 elements. As the number
of cycles double, the number of elements in each cycle decreases in an exponential rate.
Using only half the cycle length for iteration is due to the FWHT always breaking a cycle
length into two equal-sized chunks. In this work, a chunk corresponds to half the length
of a cycle. For each chunk element, there is a sign attribution, followed by an addition
or a subtraction operation, respectively represented by lines 21 and 22 of Algorithm 1.
Line 21 represents the first of the two chunks, so its first position corresponds to the
first position of the current cycle, which is determined by `p. In the first chunk, vector
elements are given plus signs, and then each of those elements is used in two operations,
the first operation occurring in the first chunk itself, and the second operation occurring
in the second chunk. Line 22 represents the second of the two chunks, so its first position
corresponds to the middle of the current cycle, which is determined by `p + `lh. In the
second chunk, vector elements are given plus signs for operations in the first chunk, and
minus signs for operations in the second chunk itself.

Lastly, v is returned as the g(ω) transform output. It has the same 2β length of
the η input, and its content is a set of integer coefficients for a polynomial. Those integer
values may be turned into binaries if necessary.

In the diagram of Figure 2 didacticism is addressed, and many one-valued posi-
tions are used in the η vector. However, for the sampling routine of this work, there is a
single non-zero value in the referred IV, all other positions being occupied by zeros. The η
initialization vector is obtained from a preliminary Gaussian sampling observation. Thus,
still considering the β = 4 example, the referred sampling is performed in the positive
portion of a N(0, σ2) truncated PDF, whose domain is divided into 16 equally-sized
intervals.

Figure 3. The intervals to be observed for β = 4.

[08] [09] [10] [11] [12] [13] [14] [15]
Intervals

Pr
ob

ab
ili

ty

Each interval of Figure 2 corresponds to a position in η. The µ mean assumes a
value of zero, and the positive bound is τσ. Observed values assume alternating signs
minus and plus. In practice, half the number of intervals is used, as in Figure 3, and the al-
ternating signs simulate a (−τσ, τσ] domain. Intervals corresponding to positions [00],
[01], [02], [03], [04], [05], [06], and [07] are not shown because they stand in the negative
side of the curve. A negative [08] corresponds to [07], a negative [09] corresponds to [06],
a negative [10] corresponds to [05], a negative [11] corresponds to [04], a negative [12]
corresponds to [03], a negative [13] corresponds to [02], a negative [14] corresponds to
[01], and a negative [15] corresponds to [00]. After having one of its positions occupied
by 1, η is subjected to the FWHT, in order to generate a transform representation.

5. Tests and results
The tests are executed with the CDT and FWHT strategies, consisting in a Python routine,
developed from a SageMath script written by Jefferson E. Ricardini. The continuous-case
algebraic normal probability distribution used isN(0, 14.71025358). Table 2 presents
the results for the CDT sampling strategy . For all of the listed β values, skewness is zero
and kurtosis is −2. Table 3 presents the results for the FWHT sampling strategy . For
all of the listed β values, the obtained µ′ is zero. The same applies to skewness values.
A histogram plot corresponding to FWHT tests is present in Figure 4. All of the relative
entropy values are truncated for cleaner presentation.

Table 2. Results for the CDT sampling strategy.

β s CPU cycles ×106 µD σD relative entropy

11 2048 13.49 -13.0 8.0 0.360
12 4096 13.41 -4.5 10.5 0.353
13 8192 13.60 -1.0 10.0 0.366
14 16384 13.31 -22.0 1.0 0.360
15 32768 13.33 4.0 26.0 0.355
16 65536 14.35 -2.0 2.0 0.359
17 131072 14.13 -3.5 23.5 0.363
18 262144 14.34 -12.5 7.5 0.359
19 524288 14.20 3.5 2.5 0.359
20 1048576 14.19 -17.0 15.0 0.360

6. Conclusion and final remarks
As for the input parameters the β exponent determines the most relevant aspects of the
sampler, from lattice dimension, and polynomial degrees, to CLT convergence rate, and
the entropy of samples. Additionally, in terms of implementation, β is directly responsible
for the CPU cycles spent. Modeling DGS via the β parameter alone reveals itself as a
challenge in searching for optimal values, because higher values raise entropy, but they
also lower efficiency. Thus, β represents a trade-off involving efficiency and security. The
standard deviation σN influences inflection points of the function and the cardinality of
the sample space. For the settings of this work, the optimal standard deviation value of
the PDF isσN = 14.71025358. The tail-cut factor τN of the PDF was initially planned
to be used as an input parameter because, along with σN , it influences the cardinality of
sample spaces. However, acceptable efficiency results are obtained without it, thus, for
simplicity, this work chooses not to use it.

Table 3. Results for the FWHT sampling strategy.

β s CPU cycles ×103 σD kurtosis relative entropy

11 2048 96.18 2 -2 0.333
12 4096 104.16 14 -2 0.332
13 8192 110.67 12 -2 0.325
14 16384 124.11 10 -2 0.316
15 32768 114.24 10 -2 0.320
16 65536 111.72 6 -2 0.319
17 131072 111.51 15 -2 0.320
18 262144 109.83 8 -2 0.317
19 524288 111.72 0 -3 0.318
20 1048576 109.20 18 -2 0.317

Figure 4. Histogram of observations for the FWHT sampling strategy.

As for the outputs feasible lattice dimensions of up to 223, are tested by this work
Regarding σD values, in most cases, the obtained numbers are more than 10% above or
belowσN . That is not considered as a reasonably good result for this work. Regarding the
Kullback–Leibler divergence values, the fact that all measures are closer to zero than they
are to one denotes a reasonable approximation achievement. Such values indicate PMFs
resemble their respective PDFs. As for the quality of the PMFs, the obtained skewness
values are zero, showing maximum quality is achieved for that metric, and Kurtosis is
always −2 in all tests but one. Approaching zero from the left, with absolute values
below 3 means the PMFs are platykurtic, i.e., they are flatter than they should be.

As for the efficiency comparison between FWHT and CDT firstly, it is relevant to
mention the algorithm complexities involved. While CDT is O(τN · σN), the FWHT
shuffling routine is O(n · log n), or O(β · 2β) in terms of the β parameter. CDT sam-
pling complexity, being governed by τ, the tail-cut factor, and σ, the standard deviation,

depends on the size of the sampling interval. FWHT sampling complexity is governed by
the β exponent, responsible for the number of samples, the lattice dimension, and other
variables. In the scope of this work, a more efficient algorithm is the one which takes less
central processing unit (CPU) cycles to securely complete the noise generation routine for
a given parameter setup. Considering the values of β in the interval 4 ≤ β ≤ 20, and
the further settings of this work, the results of efficiency for the FWHT strategy are better
than the CDT strategy results. The difference, measured in CPU cycles, tends to be two
orders of magnitude, in favor of the FWHT approach. As for the values of µD, which are
supposed to follow the µN value of zero, that is observed in all of the FWHT tests but it is
not the case for the CDT tests. This issue, regarding the mean of the Gaussian, is consis-
tent with the relative entropy results, which are generally bigger for CDT tests. Thus, the
relative entropy values show that the PMF vector is closer to the algebraic function as the
FWHT strategy is used. In the tests performed, the only case of similar Kullback–Leibler
values for CDT and FWHT is β = 7. The values of µD following those of µD denote
successful acceleration of the CLT.

References

Ajtai, M. (1996). Generating hard instances of lattice problems (extended abstract). In
Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing,
pages 99–108, New York, NY, USA. ACM. STOC ’96.

Alkim, E., Barreto, P. S. L. M., Bindel, N., Longa, P., and Ricardini, J. E. (2019). The
Lattice-Based Digital Signature Scheme qTESLA. Cryptology ePrint Archive, Report
2019/085.

Alkim, E., Bos, J. W., Ducas, L., Longa, P., Mironov, I., Naehrig, M., Nikolaenko, V.,
Peikert, C., and Raghunathan, A. (2020). FrodoKEM Learning With Errors Key En-
capsulation Algorithm Specifications And Supporting Documentation.

Bernstein, D. J., Hallgren, S., Vollmer, U., Buchmann, J., Dahmen, E., Szydlo, M., Over-
beck, R., Sendrier, N., Micciancio, D., Regev, O., Ding, J., and Yang, B.-Y. (2008).
Post Quantum Cryptography. Springer Publishing Company, Incorporated, Berlin Hei-
delberg, 1st edition.

Bernstein, D. J., Lange, T., Cayrel, P.-L., and Peters, C. (2022). Lattice-based public-key
cryptography. http://pqcrypto.org/lattice.html, accessed on MAY 26th, 2022.

CSRC, N. (2022). Post-quantum cryptography. https://csrc.nist.gov/Projects/Post-
Quantum-Cryptography/, accessed on MAY 26th, 2022.

Ducas, L., Durmus, A., Lepoint, T., and Lyubashevsky, V. (2013). Lattice Signatures and
Bimodal Gaussians. Cryptology ePrint Archive, Report 2013/383.

Dwarakanath, N. C. and Galbraith, S. D. (2014). Sampling from discrete gaussians for
lattice-based cryptography on a constrained device. Applicable Algebra in Engineer-
ing, Communications and Computing, 25(3):159–180.

Harwit, M. and Sloane, N. J. A. (1979). Appendix hadamard and s-matrices, walsh
functions, pseudo-random sequences, and the fast hadamard transform. In Hadamard
Transform Optics, pages 200–228. Elsevier Inc.

Howe, J., Prest, T., Ricosset, T., and Rossi, M. (2019). Isochronous gaussian sampling:
From inception to implementation with applications to the falcon signature scheme.
pages 1–23.

Kocher, P. C. (1996). Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In Koblitz, N., editor, Advances in Cryptology - CRYPTO ’96,
pages 104–113, Berlin Heidelberg. , Springer-Verlag. LNCS 1109.

Lyubashevsky, V., Peikert, C., and Regev, O. (2013). On ideal lattices and learning with
errors over rings. J. ACM, 60(6):43:1–43:35.

Micciancio, D. (2022). Sampling, Lattice Cryptography.
http://cseweb.ucsd.edu/ daniele/LatticeLinks/Sampling.html, accessed on MAY
26th, 2022.

Micciancio, D. and Walter, M. (2018). Gaussian sampling over the integers: Efficient,
generic, constant-time. pages 01–28.

Ortiz, J. N., Aranha, D. F., and Dahab, R. (2015). Implementação em Tempo Constante
de Amostragem de Gaussianas Discretas. SBSeg 2015.

Peikert, C. (2014). Lattice Cryptography for the Internet. In Mosca, M., editor, Post-
Quantum Cryptography 6th International Workshop, Lecture Notes in Computer Sci-
ence, pages 197–219, Switzerland. Springer International Publishing.

Pöppelman, T., Alkim, E., Avanzi, R., Bos, J., Ducas, L., de la Piedra, A., Schwabe,
P., and Stebila, D. (2019). NewHope Algorithm Specifications and Supporting Docu-
mentation. c/o Thomas Pöppelmann, Infineon Technologies AG, Am Campeon 1-12,
85579 Neubiberg, Germany, version 1.03 edition. NIST.

Rader, C. M. (1969). A new method of generating gaussian random variables by computer.
Technical Report 1969-49, MASSACHUSETTS INSTITUTE OF TECHNOLOGY,
Lexington, Massachusetts.

Regev, O. (2009). On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM, 56(6):34:1–34:40.

Reparaz, O., Balasch, J., and Verbauwhede, I. (2016). Dude, is my code constant time?
Cryptology ePrint Archive, Report 2016/1123.

Sylvester, J. J. (1867). Lx. thoughts on inverse orthogonal matrices, simultaneous sign-
successions, and tessellated pavements in two or more colours, with applications to
newton’s rule, ornamental tile-work, and the theory of numbers. The London, Edin-
burgh, and Dublin Philosophical Magazine and Journal of Science, 34(232):461–475.

Weisstein, E. W. (2021). Probability Density Function. From MathWorld–A Wolfram
Web Resource.

	Introduction
	Related works
	Concepts
	RLWE-based cryptography
	Polynomial rings
	The RLWE problem

	Gaussian sampling
	Sampling strategies
	Central limit theorem
	The fast Walsh–Hadamard transform
	Timing side-channel vulnerabilities

	FWHT Gaussian sampler
	The variables
	The algorithm

	Tests and results
	Conclusion and final remarks

