
WrapQ: Side-Channel Secure Key Management for
Post-Quantum Cryptography

Markku-Juhani O. Saarinen
PQShield Ltd.

Oxford, United Kingdom
mjos@pqshield.com

Abstract—Side-channel secure implementations of public-key
cryptography algorithms must be able to load and store their
secret keys safely. We describe WrapQ, a masking-friendly key
management technique and encoding format for Kyber and
Dilithium Critical Security Parameters (CSPs). WrapQ protects
secret key integrity and confidentiality with a Key-Encrypting
Key (KEK) and allows the keys to be stored on an untrusted
medium. Importantly, its encryption and decryption processes
avoid temporarily collapsing the masked asymmetric secret keys
(which are plaintext payloads from the viewpoint of the wrapping
primitive) into an unmasked format. We demonstrate that a
masked Kyber or Dilithium private key can be loaded in a
leakage-free fashion from a compact WrapQ format without
updating the encoding in non-volatile memory. WrapQ has
been implemented in a side-channel secure hardware module.
Kyber and Dilithium wrapping and unwrapping functions were
validated with 100K traces of TVLA-type leakage assessment.

Index Terms—Side-Channel Security, Masking Countermea-
sures, Key Wrapping, Post-Quantum Cryptography, Kyber, and
Dilithium

I. INTRODUCTION

With the standardization of CRYSTALS suite algorithms
Kyber [1] and Dilithium [2] as the preferred NIST Post-
Quantum Cryptography (PQC) algorithms for key agreement
and digital signatures [3], their secure and efficient imple-
mentation has become one of the most important engineering
challenges in cryptography. NSA has also selected these two
algorithms for the CNSA 2.0 suite for protecting classified
information in National Security Systems [4].

Among other applications, Kyber and Dilithium will be
gradually replacing older RSA and Elliptic Curve systems in
systems where it is a requirement that the secret information
held by a device (such as a mobile phone, payment card, or an
authentication token) does not leak even if an adversary has
access to the physical device (or its close proximity.) A related
application is platform security, where cryptographic methods
protect system integrity and system (firmware) updates against
unauthorized modification and other attacks.

Side-Channel Attacks (SCA) use external physical measure-
ments to derive information about the data being processed.
Some of the most important ones are Timing Attacks (TA)
[5], Differential Power Analysis (DPA) [6], and Differential
Electromagnetic Analysis (DEMA) [7]. The attacks are pow-
erful, and almost any implementation can be rapidly attacked
if appropriate countermeasures are not in place.

A. Side-Channel Countermeasures for Lattice Cryptography
Masking [8] countermeasures have emerged as the most

prominent and effective way to secure lattice-based cryp-
tography against side-channel attacks. Masking is based on
randomly splitting all secret variables into two or more shares.

Definition 1: Order-d masked encoding [[x]] of a group
element x ∈ G consists of a tuple of d + 1 shares
(x0, x1, · · · , xd), xi ∈ G with x0 + x1 + · · ·+ xd ≡ x.

The addition operation can be defined in an arbitrary finite
group G; Boolean masking uses the exclusive-or operation
⊕, while arithmetic masking uses modular addition. Vectors,
matrices, and polynomials can also be used as shares.

A fundamental security requirement is that the shares are
randomized so that all d+1 shares are required to reconstruct
x, and any subset of only d shares reveals no statistical
information about x itself. There are |G|d possible representa-
tions [[x]] for x; Mask refreshing refers to a re-randomization
procedure that maps [[x]] to another encoding [[x]]′ of x.

Computation of cryptographic functions [[y]] = f([[x]]) is
organized to maintain this poperty, avoiding leakage of x or y.
It can be shown that the amount of side channel information
required to learn x or y can be limited to grow exponentially
in d+1, the number of shares. Any circuit can be transformed
to use masking with at most O(d2) overhead [8], [9].

Several abstract models have been proposed for the purpose
of providing theoretical proofs of security for masked imple-
mentations, including the Ishai-Sahai-Wagner probing model
[9] and Prouff-Rivain noisy leakage model [10], [11]. Duc et
al. provide a reduction from the latter to the first [12].

In addition to theoretical soundness, an essential advantage
of masking countermeasures for PQC is that they are defined
at a higher algorithmic level and are generally less dependent
on the physical details of the implementation when compared
to logic-level techniques such as dual-rail countermeasures
[13]. However, it is essential to experimentally verify the
leakage properties. There are standard approaches to leakage
assessment of physical implementations [14]–[16].

Designers often proceed by describing a set of generic
“gadgets” that make up the secured portion of the algorithm
and then providing analysis for the composition. There already
exists a large body of works discussing the masking of lattice
cryptography schemes, including GLP [17], Dilithium [18] and
Kyber [19], [20]. The issue of key management is generally
not addressed in these works.

1 VERSION 20230114184800

B. Private Keys and Secret Variables

Side-channel leakage can be exploited in any component
that handles secret key material. Hence the key management
processes must meet the same security requirements as cryp-
tographic private key operations. Often the “zeroth” step of
a private-key operation is “load private key.” Clearly, the key
can’t be stored in non-masked plaintext format.

Masking generally requires that the shares are refreshed (re-
randomized) every time they are used. A trivial solution is to
write back the refreshed keys to non-volatile memory after
each usage, which risks corruption of the keys.

Furthermore, masked representations significantly increase
the secret key storage requirement. Secure, non-volatile key
storage is a limited resource. Standard-format Kyber1024
private keys are 25,344 bits, while Dilithium5 secret keys are
38,912 bits (Table III.) This is an order of magnitude more than
typical RSA keys and two orders of magnitude more than the
keys of Elliptic Curve Cryptography schemes.

Key Wrapping [21], [22] refers to a process where Authenti-
cated Encryption (AE) is used to protect the confidentiality and
integrity of other key material, such as asymmetric keys. Key
wrapping reduces much of the problem of secure key storage
to that of protecting the shorter AE keys. Furthermore, leakage
of encrypted data is not a security issue.

C. Outline of this work and Our Contributions

We define the side-channel secure key wrapping problem
and outline the WrapQ key import and export methods. WrapQ
performs a simultaneous unwrapping (symmetric decryption)
and refreshing of PQC private keys. The technique enables
compact storage of (relatively long) PQC secret keys on an
untrusted medium and their side-channel secure use.

We describe a real-life implementation of WrapQ for Kyber
and Dilithium. This requires an analysis and classification
of their Critical Security Parameters (CSPs) so that each
variable is appropriately handled. We present data from an
FPGA implementation and “TVLA” validation on importing
and exporting Kyber and Dilithium keys using WrapQ. The
module is found not to leak in 100K traces.

II. MASKED KEY WRAPPING

Most works on side-channel secure implementations of
symmetric ciphers (such as AES) focus on protecting the
symmetric key; in a standard model, the attacker can ob-
serve and even choose both plaintext and ciphertext. For Key
Wrapping, we have an additional goal: its “plaintext” (i.e., the
wrapped asymmetric key payload) also remains invisible to
side-channel measurements.

For lattice-based secret keys, an approach that first decrypts
a standard serialization of a secret key and only then splits it
into randomized shares (Definition 1) will leak information in
repeat observations; even partial information about coefficients
can be used to accelerate attacks. One can also consider
encrypting the individual masked shares, which significantly
increases the size of the key blob. However, when importing
the same static key blob multiple times, the decrypted masked

key is also static: Not a unique, random representation as
required. From the attackers’ viewpoint, a secret key in static
shares is not much different from an unmasked key; it is just a
longer “expanded key”. A potential solution would be to write
a refreshed, re-encrypted secret key back every time the key
is used, but this approach has severe practical disadvantages
in addition to a much larger key blob, such as reliability risks.

A. High level interface

WrapQ implements masked Key Wrapping (protection of
the confidentiality and integrity of cryptographic keys [21])
for lattice cryptography with a special type of Authenticated
Encryption with Associated Data (AEAD) [23] mechanism.
An abstract high-level interface for a masked key wrapping
and unwrapping is:

C ←WrapQ([[K]], [[P]], AD) (1)

{ [[P]],FAIL } ←WrapQ−1([[K]], C,AD). (2)

Double square brackets [[·]] denote masked variables:

[[K]] Symmetric key(s) for integrity and confidentiality
protection. Supplied as Boolean shares.

[[P]] Payload: Asymmetric key material to be encrypted.
A set of masked (Boolean/Arithmetic) quantities.

AD Authenticated Associated Data: Public values that
only require integrity protection.

C Resulting wrapped key blob containing encrypted
P , authentication information for AD and P , and
internal auxiliary information such as nonces.

Each unwrapping call WrapQ−1 produces a fresh, random-
ized masking representation for [[P]] variables, or FAIL in case
of authentication (integrity) failure. In addition to standard
AEAD security goals, the primitives guarantee that long-term
secrets K or P do not leak while handling [[K]] and [[P]].

III. WRAPQ 1.0 DESING OUTLINE

Our solution makes several design choices motivated by its
particular use case; a side-channel secure hardware module
that implements lattice-based cryptography. It is hardware-
oriented and not intended as an “universal” format.

A. Design Choices

1) Key Import and Export: Importing may occur during
device start-up or if there is a change of keys. Key export is
required when new keys are generated or if KEK changes.
Side-channel considerations are equally important in both
use cases. The term “import” does not necessarily imply
interaction with external devices. The import function simply
prepares and loads a private key from static storage to be used
by a cryptographic processor.

2

2) Key Encryption Key: We primarily want to secure the
process of local, automatic, unsupervised loading of secret
keys for immediate use. For example, some hardware devices
may use a device-unique key or a Physically Unclonable
Function (PUF) to derive the KEK, with the idea that keys
exported to a less trusted storage can only be imported back
into the same physical module [24]. Since the main goal is
side-channel security, the storage format may be modified to
accommodate implementation-specific requirements.

3) Non-Determinism is Preferable: Rogaway and Shrimp-
ton [22] argue that a key wrapping operation should be fully
deterministic; the inputs K,P,A fully determine C without
randomization. Their motivation is that removing the random-
ization nonce from C will save some bandwidth. We prioritize
side-channel security and observe that randomization helps to
eliminate leakage in the export function.

4) Secondary Encryption: WrapQ only encrypts critical
portions of the key material. It is a “feature” that algorithm
identifiers and the public key hash are unencrypted; this makes
it possible to retrieve a matching public key before validating
the secret key blob. WrapQ key blobs do not have complete
confidentiality properties, such as indistinguishability from
random. However, the resulting blob is much safer to handle
as critical variables are encrypted; a secondary confidentiality
step can use arbitrary mechanisms to re-encrypt it.

5) Not (necessarily) a key interchange format: Export can
also occur between devices; sometimes, the term “Key Ex-
change Key” is used to export a key from one HSM to another
or from an on-premises system to the cloud [25]. In such “one-
off” manual use cases, side-channel protections may be less
critical, and mechanisms such as PKCS #12 [26] can be used
(after additional authorization).

B. Masked XOF and Domain Separation

WrapQ uses a masked XOF (extensible output function
[27]) as a building block for all of its side-channel secure
cryptographic functionality.

Definition 2: An Order-d masked extensible output function
[[h]] ← XOFn([[m]]) processes an arbitrary-length masked
input [[m]] into n-byte output shares [[h]] while maintaining
Order-d security (under some applicable definition.)

We construct a non-secret frame header for all XOF inputs
from four fixed-length components:

frame = (ID ∥ DS ∥ ctr ∥ IV) (3)

ID 32-bit identifier for algorithm type, parameter set,
authentication frame structure, key blob structure,
WrapQ version; all serialization details.

DS 8-bit Domain Separation identifier. This specifies
frame purpose: hash, keyed MAC, encryption, etc.

ctr A 24-bit block index 0, 1, 2, . . . for encrypting multi-
block material. Set to 0 for authentication (unless the
authentication process is parallelized).

IV Nonce: a 256-bit Initialization Vector, chosen ran-
domly for the key blob. Its frames share the IV .

The main security property of the frame header is that it creates
non-repeating, domain-separated inputs for the XOF.

• For a fixed secret key protecting many key blobs, this
is due to the randomization of IV . There is a birthday
bound of 2128 wrapping operations for a given key.

• Within a key blob (fixed IV , key), frames are made
unique thanks to (DS , ctr) being different.

• Across versions. Any functional change in WrapQ serial-
ization requires a new ID . This identifier unambiguously
defines the structure of the key blob, the interpretation of
the contents, the frame header, etc.

There are predefined domain separation bytes; DShash

and DSmac for authentication (Algorithm 1) and DS enc for
encryption/decryption (Algorithms 2 and 3.) Frame headers
with these domain separation fields are denoted framehash,
framemac and frameenc.

C. Integrity Protection: Masked MAC Computation

Algorithm 1 describes the authentication tag computation
process. The authentication tag is always checked before any
decryption is performed.

Algorithm 1: T = AuthTag(A, [[K]], ID , ctr , IV)

Input: A, Authenticated data, including ciphertext.
Input: [[K]], Message Integrity Key (Boolean masked.)
Input: ID , ctr , IV : Used to construct frame headers.
Output: T , Resulting authentication tag/code.

1: h← Hash(framehash ∥ A)
2: [[T]]← XOF|T |(framemac ∥ [[K]] ∥ h)
3: [[K]]← Refresh([[K]])
4: return T = Decode([[T]])

For performance reasons, we first use a non-masked hash
function Hash() to process A (Step 1), and only use a masked
XOF to bind the hash result h with the (masked) authenti-
cation key [[K]] and other variables (Step 2.) Furthermore,
randomized hashing [28] with a frame header containing the
IV is used to make the security of h more resilient to
collision attacks. The random prefix IV is included in the
frame construction (Eq. (3)) and used again in the masked
key binding step. It is domain-separated via DS from en-
cryption/decryption frames in case the same [[K]] is used.
After this single masked step, [[K]] is refreshed, and the
authentication tag [[T]] can be unmasked (collapsed) into T .

Cryptographic security notes. In the terminology of [29],
WrapQ is an Encrypt-then-MAC (EtM) scheme; ciphertext is
authenticated rather than plaintext. Upon a mismatch between
the calculated T ′ and the tag T , a FAIL is returned – no
partial decrypted payload. Since WrapQ is an Authenticated
Encryption with Associated Data (AEAD) [23] scheme, A
includes data items that do not need to be decrypted in
addition to ciphertext C. Unambiguous serialization is used
to guarantee domain separation between data items. The ID
identifier in frame defines the contents and ordering of fixed-
length fields in A.

3

D. Confidentiality Protection: Encrypting Masked Plaintext

We use the masked XOF in “counter mode” to en-
crypt/decrypt data. Data is processed in blocks. For Sponge-
based primitives such as SHA3/SHAKE [27] the appropriate
block size is related to the “rate” parameter, which depends
on the security level. Generally, one wants to minimize the
number of permutation invocations. SHAKE256 has a data
rate of (1600− 2 ∗ 256)/8 = 136 bytes for each permutation,
while SHAKE128 has a 168-byte rate.

Algorithm 2 outlines the process of encrypting a single
block; using stream cipher terminology, it uses the masked
XOF to produce a block of keystream shares (Step 1), which
are exclusive-ored with the plaintext to produce ciphertext
(Step 2). Key blocks must be used only once before being
refreshed (Step 3.) Plaintext must also be refreshed unless it
is discarded (Step 4.) The ciphertext is no longer sensitive, so
it can be decoded back into unmasked format (Step 5.)

Algorithm 2: C = EncBlock([[P]], [[K]], ID , ctr , IV)

Input: [[P]], Payload block (Boolean masked.)
Input: [[K]], Key Encryption Key (Boolean Masked).
Input: ID , ctr , IV : Used to construct header frameenc.
Output: C, Resulting ciphertext block.

1: [[x]]← XOF|P |(frameenc ∥ [[K]])
2: [[C]]← [[P]] ⊕ [[x]] ▷ “Stream cipher.”
3: [[K]]← Refresh([[K]])
4: [[P]]← Refresh([[P]]) ▷ (Unless discarded.)
5: return C = Decode([[C]])

Algorithm 3 describes the decryption process, which is also
illustrated in Fig. 1. A necessary feature of the block decryp-
tion (import) function (Algorithm 3) is that the ciphertext C is
first converted into masked encoding (Step 1). The secret cover
[[x]] is also in randomized shares (Step 2). Hence decryption
occurs in masked form (Step 3), avoiding collapsing [[P]].

Algorithm 3: [[P]] = DecBlock(C, [[K]], ID , ctr , IV)

Input: C, Ciphertext block.
Input: [[K]], Key Encryption Key (Boolean Masked).
Input: ID , ctr , IV : Used to construct header frames.
Output: [[P]], key material payload (Boolean masked.)

1: [[C]]← Encode(C)
2: [[x]]← XOF|P |(frameenc ∥ [[K]])
3: [[P]]← [[C]]⊕ [[x]] ▷ “Strem cipher.”
4: [[K]]← Refresh([[K]])
5: return [[P]] = Refresh([[P]])

Cryptographic security notes. Confidentiality of C follows
from the random-indistinguishability and one-wayness of the
XOF function (as it would without masking), assuming that
the frame identifiers never repeat for the same secret key K.

ID ∥ DS ∥ ctr ∥ IV [[K]] shares

frameenc K0 K1 K2

m0 m1 m2

XOF (Masked Keccak Permutation)

Ciphertext Block

C

Encode (Random)

C0 C1 C2 x0 x1 x2

P0 P1 P2

[[P]] shares

Fig. 1. WrapQ import uses a masked XOF in counter mode to decrypt
ciphertext blocks C into randomized Boolean shares [[P]]. A masked Keccak
Permutation (pictured here with three shares) is also required for masked
implementations of Dilithium and Kyber private key operations themselves,
so we may assume that this primitive is available.

E. XOF and Gadget Instantation

The XOF (Definition 2) is instantiated with a masked
Keccak[1600] [27] permutation. Note that a masked
SHA3/SHAKE (and hence a masked Keccak permutation) is
required to process secret variables in Kyber (G, PRF, KDF)
and in Dilithium (H, ExpandS, ExpandMask). Hence this
masked primitive can be expected to be available in masked
Kyber and Dilithium implementations.

For first-order security one can use the Threshold Imple-
mentation (TI) approach of [30], [31] to implement Keccak.
Note that a TI Keccak internally uses three shares to obtain
first-order resistance, but the technique reduces the amount
of randomness required. For higher-order XOF, one can use
higher-order TI [32] or the techniques of [33].

For first-order security, we use trivial refresh gadgets
Refresh([[x]]) = (x0 ⊕ r, x1 ⊕ r) with r = Random() and
Encode(x) = (x⊕ r, r) with r = Random(). For higher-order
refresh gadgets, see [34], [35]. The function Decode([[x]]) =
x0 ⊕ x1 ⊕ · · ·xd = x simply unmasks x.

IV. KYBER AND DILITHIUM PRIVATE KEYS

Cryptographic module security standards (FIPS 140-3 [36] /
ISO 19790 [37]) expect that implementors classify all variables
based on the impact of their potential compromise.

• CSP (Critical Security Parameter): Security-related infor-
mation whose disclosure or modification can compromise
the security of a cryptographic module. CSPs require both
integrity and confidentiality protection.

• PSP (Public Security Parameter): Security-related pub-
lic information whose modification can compromise the
security of a cryptographic module. PSPs require only
integrity protection (authentication).

• SSP (Sensitive Security Parameter): Either a CSP or
PSP, or a mixture of both. Essentially all variables in
a cryptographic module are SSPs.

4

The parts of secret key material whose disclosure can com-
promise cryptographic security are CSPs. Additionally, all
internally derived or temporary variables whose leakage will
compromise security are CSPs. In the FIPS 140-3 / ISO 19790
context, the (non-invasive) side-channel leakage protection
requirement only applies to CSPs, not PSPs.

A. CRYSTALS-Kyber

Table I contains a classification of Kyber key variables.
WrapQ encrypts and authenticates masked CSPs (s, z) and
only authenticates the rest of the parameters. For the underly-
ing MLWE problem t = As+ e the public key consists of t
and the secret key is s. In Kyber, the A matrix is represented
by a SHAKE128 seed ρ that deterministically generates it.

TABLE I
KYBER PUBLIC AND SECRET KEY COMPONENT VARIABLE

CLASSIFICATION AND WRAPQ ENCODING FOR SECRET KEYS.

CRYSTALS-Kyber Public Key Secret Key
Standard encoding [1] pk = (t̂, ρ) sk = (ŝ, pk, pkh), z)

Field Size (bits) Description
t̂ k×12×256 PSP: Public vector, NTT domain.
ρ 256 PSP: Seed for public A.
ŝ k×12×256 CSP: Secret vector, NTT domain.
pk |t̂|+ 256 PSP: Full public key.
pkh 256 PSP: Hash of the public key SHA3(pk).
z 256 CSP: Fujisaki-Okamoto rejection secret.

WrapQ Key / Kyber skwq = (ID , T, IV , pkh, z, s)

Field Size (bits) Description
ID 32 Algorithm and serialization type identifier.
T 256 Authentication tag (Algorithm 1).
IV 256 Random nonce.
pkh 256 Authenticated: Public key hash SHA3(pk).
z 256 Encrypted: FO Transform secret.
s k×4×256 Encrypted: Secret key polynomials.

Kyber standard secret key standard encoding stores s in the
NTT-domain representation ŝ. To conserve storage space and
also Boolean-to-Arithmetic transformation effort, we instead
store normal-domain s, where coefficients are in the range
[−η, η] and would fit into 3 bits (in Kyber, we have η ∈ {2, 3},
depending on the security level.) However, WrapQ uses 4 bits
per coefficient for decoding convenience.

The z variable is a secret quantity used to generate a
deterministic response to an invalid ciphertext in the Fujisaki-
Okamoto transform. The security proofs assume it to be secret
(we implement the entire FO transform as masked); hence, this
256-bit quantity is handled as a Boolean masked secret.

The standard encoding secret key contains a full copy of
the public key, likely due to the reference API [38], which
did not allow the passing of the public key to signature
decapsulation functions. It also contains H(pk), purely as a
performance optimization. We also retain and authenticate the
H(pk) quantity, but for a different reason: it can be used to
authenticate a separately supplied public key.

B. CRYSTALS-Dilithium

Table II contains a classification of Dilithium key variables.
WrapQ encrypts CSPs (K, s1, s2) and only authenticates the
rest of the parameters. For the underlying equation t =
As1 + s2 the public key is (A, t) and the secret key is
(s1, s2). In Dilithium, the A matrix is represented with a short
SHAKE128 seed ρ.

Note that Dilithium’s public variable t is split into two
halves to minimize the size of the public key, with t1 placed
in the public key and the t0 in private key (as high bits are
sufficient for verification.) The underlying hard problems and
security proofs treat the entire t as a public variable. Hence
t0 is placed within the secret key blob, but as a PSP, there is
no need to encrypt it; we just authenticate it.

TABLE II
DILITHIUM PUBLIC AND SECRET KEY COMPONENT VARIABLE
CLASSIFICATION AND WRAPQ ENCODING FOR SECRET KEYS.

CRYSTALS-Dilithium Public Key Secret Key
Standard encdoding [2] pk = (ρ, t1) sk = (ρ,K, tr, s1, s2, t0)

Field Size (bits) Description
ρ 256 PSP: Seed for public A.
t1 k×10×256 PSP: Upper half of public t.
K 256 CSP: Seed for deterministic signing.
tr 256 PSP: Hash of public key tr = H(ρ ∥ t1).
s1 ℓ×dη×256 CSP: Secret vector 1, coefficients [−η, η].
s2 k×dη×256 CSP: Secret vector 2, coefficients [−η, η].
t0 k×13×256 PSP: Lower half of public t.

WrapQ / Dilithium skwq = (ID , T, IV , ρ,K, tr, s1, s2)

Field Size (bits) Description
ID 32 Algorithm and serialization type identifier.
T 256 Authentication tag (Algorithm 1).
IV 256 Random nonce.
ρ 256 Authenticated: Public seed for A.
K 256 Encrypted: Seed for deterministic signing.
tr 256 Authenticated: Hash tr = SHAKE256(pk).
t0 k×13×256 Authenticated: Lower half of public t.
s1 ℓ× 4× 256 Encrypted: Secret vector 1.
s2 k×4×256 Encrypted: Secret vector 2.

The tr quantity is a 256-bit hash of the public key tr =
SHAKE256(ρ ∥ t1). Only the hash is required for signature
generation, but since it is an authenticated part of the key
blob, we use this quantity to verify that a supplied public key
matches the secret key.

The distribution of both s1 and s2 is uniform in [−η,+η].
Depending on the security parameters, we have η ∈ {2, 4},
resulting in 5 or 9 distinct values. While the standard encoding
uses bit-packed dη = ⌈log2(2η + 1)⌉ bits (either 3 or 4).
WrapQ uses 4 bits per coefficient in both cases.

The K variable is a secret “seed” value used in deterministic
signing (when a signature should be a deterministic, non-
randomized function of the private key and the message to be
signed). We treat K as a Boolean-masked quantity. However,
from a side-channel security perspective, it is preferable to
randomize the signing process, in which case K is not used.

5

V. PARAMETER SELECTION AND ALGORITHM ANALYSIS

WrapQ is entirely built from SHA3 / Keccak components;
the XOF() masked permutation (Definition 2) and its non-
masked counterpart Hash() (Section III-C). A straightforward
first-order threshold implementation of masked Keccak is
roughly three times larger [30] than the unmasked one, and the
complexity grows quadratically with the masking order [33].
Other operations in the process are related to mask refreshing
or trivial ones such as linear XORs, packing of bits, etc.

Algorithm 1 requires ⌈(|frame| + |A| + |padding|)/r⌉
unmasked Keccak permutations to compute h with Hash(),
where r is the block rate. For SHAKE256, we have r = 136
bytes. Additionally, there is a single invocation of masked
XOF() permutation to compute [[T]].

Algorithms 2 and 3 require ⌈|P |/r⌉ invocations of the
masked permutation in XOF(). This is also the minimum when
computation is organized in a “counter mode” fashion where
[[P]] is split into block-sized chunks and ctr is used as an input
index. In a way, the encryption process is “format-preserving”
as the block size is arbitrary. It is not economical to encrypt
blocks substantially smaller than r, as that will result in
an increased number of permutations. However, for some
parameters, we sacrifice optimality for the logical separation
of data items, simplifying implementation.

A. Wrapping Process

In the implementation of the key wrapping operation WrapQ
(Eq. (1)) all CSPs are converted to Boolean shares. For s
shares, this involves Inverse-NTT operations since 4-bit pack-
ing is used, followed by an Arithmetic-to-Boolean conversion.

After conversions required for the construction of [[P]] we
choose a random IV for the entire key blob. The [[P]] input,
comprising of CSP data, is divided into blocks and fed to
Algorithm 2 to produce ciphertext C.

For Dilithium and Kyber, we process one polynomial at a
time since the resulting (4× 256)/8 = 128-byte block fits the
136-byte data rate of SHAKE256. This has the advantage of
“random access” – each secret polynomial can be decrypted
only when needed, reducing the RAM requirement. The 4-bit
encoding is not optimal of all [−η,+η] ranges present in these
algorithms but is simpler to decode.

The Boolean CSPs (K or z) have ctr = 0, block and poly-
nomial CSPs are 1 ≤ ctr ≤ k with Kyber and 1 ≤ ctr ≤ k+ℓ
with Dilithium. The ciphertext blocks and the PSP data items
are then combined into blob A; its serialization is the same as
in Tables I and II, although ID , T, IV are omitted from A.

Finally, A is passed to Algorithm 1 to produce T ; then the
final WrapQ key blob is combined from (ID , T, IV , A).

B. Unwrapping Process

The unwrapping operation WrapQ−1 (Eq. (2) starts with
consistency checks; we parse ID from the beginning of the
blob and see if the size of the blob matches with it. We also
check that the pkh (Kyber) or tr (Dilithium) fields match with
a hash of the public key that is separately provided.

The rest of unwrapping proceeds in inverse order from
wrapping; authentication first, then decryption. We extract IV
and A (the remaining part after IV in the blob), and pass
those to Algorithm 1 to obtain a check value T ′. If we have
a mismatch T ̸= T ′ then we return FAIL and abort.

Upon success, we proceed to decrypt CSP fields into
payload shares [[P]] using Algorithm 3. The conversion of
arithmetic CSPs also follows an inverse route; Boolean-to-
Arithmetic conversion, followed by an NTT transform as the
implementation keeps secret keys “ready” in the NTT domain.

C. Size Metrics

Table Table III summarizes the sizes of both standard
encodings for Kyber and Dilithium keypairs. We observe that
even a single randomized arithmetic CSP share would be
larger than the WrapQ format. For several parameter sizes, the
WrapQ size could be further reduced by encoding the [−η,+η]
coefficients in less than 4 bits, but this would complicate
implementation somewhat.

TABLE III
KYBER 3.02 [1] AND DILITHIUM 3.1 [2] “STANDARD SERIALIZATION”

PUBLIC AND SECRET KEY SIZES IN BYTES, AND THE SIZE OF THE WRAPQ
SECURE SECRET KEY BLOB (TABLES I AND II.)

Algorithm Masking Std. Encoding WrapQ
Parameters k ℓ Per Share |pk| |sk| |skwq |
Kyber512 2 768 800 1,632 388
Kyber768 3 1,152 1,184 2,400 516

Kyber1024 4 1,536 1,568 3,168 644
Dilithium2 4 4 5,888 1,312 2,528 2,852
Dilithium3 6 5 8,096 1,952 4,000 4,068
Dilithium5 8 7 11,040 2,592 4,864 5,412

The NIST standardization process will likely bring some
changes to Kyber 3.02 [1] and Dilithium 3.1 [2]. Furthermore,
WrapQ is not necessarily an “interchange” key format; details
are subject to change from one instantiation to another.

VI. IMPLEMENTATION AND LEAKAGE ASSESSMENT

WrapQ grew out of a need to be able to manage Kyber and
Dilithium private keys in a commercial side-channel secure
hardware module. For leakage testing, the hardware platform
was instantiated on an FPGA target. A simple conversion
program was written in Python for interoperability testing.

A. FPGA Platform Overview

A first-order implementation of WrapQ was tested with
an FPGA module that also implements first-order masked
Dilithium and Kyber. We outline its relevant components.

• A simple 64-bit RISC-V control processor.
• Lattice accelerator that can support Kyber and Dilithium

Zq polynomials and NTT ring arithmetic. The unit can
also perform vectorized bit manipulation operations for
tasks such as masking conversions (A2B, B2A).

• Ascon-based [39] random mask generator. This is used
by the lattice unit for refreshing Boolean and Arithmetic
(mod q) shares. The unit can be continuously seeded
from an entropy source.

6

• A compact first-order, three-share Threshold Implemen-
tation [30], [31] of the masked Keccak permutation. See
discussion in Section III.

• A faster, non-masked 1600-bit Keccak permutation used
for public A matrix generation and also to compute PSP
hashes (e.g., the h value in Algorithm 1).

B. Implementation Overview

The implementation supported all main versions of Kyber
and Dilithium (Table III). In the internal representation, the
algorithms hold two copies of the variables in Tables I
and II either in compressed or uncompressed format. Kyber
polynomials were decoded into 16 bits per coefficient for
arithmetic operations, while Dilithium polynomials used 32
bits. Hence a two-share unpacked Kyber1024 [[s]] requires 4
kB of internal storage while Dilithium5 ([[s1]], [[s2]]) needs 30
kB. These polynomials are handled using (mod q) arithmetic
masking. The 256-bit quantities z (Kyber) and K (Dilithium)
were Boolean masked.

Key generation for Kyber (CBD functions) and Dilithium
(small-range uniform rejection sampling) was implemented in
the bitwise Boolean-masked domain. Hence the wrapping op-
eration does not necessarily require an Arithmetic-to-Boolean
(A2B) transform – if invoked from the key generation. The
implementation had an A2B function for this case, however.

First-order Boolean-to-Arithmetic (B2A) transform in the
unwrapping function was based on the efficient method of
Goubin [40], with additional masked manipulation steps to
transform secret key quantities from (mod 2n) arithmetic
masking to (modq) arithmetic masking.

Conversion from the two-share representation to the three-
share input required for the TI Keccak was done with the
help of the fast masking random generator. Two random
vectors were used. Conversion into another direction involves
collapsing two of the three shares together (keeping the third
intact) and then refreshing the result.

The confidentiality algorithm used in the test target matches
the details of Algorithms 2 and 3 in Section Section II-A.
Authentication was enabled in the import and export functions,
but the tests were performed using a “platform security”
parameterization; 128-bit IV and T fields, and a slightly
different arrangement of hashes is Algorithm 1.

C. Leakage Assessment: Fixed-vs-Random Experiments

Our methodology broadly follows the ISO/IEC WD
17825:2021(E) “General Testing Procedure,” [16, Figure 7]
with statistical corrections [15], [41]. This, in turn, was based
on Test Vector Leakage Assessment (TVLA) proposed by CRI
/ Rambus in 2011 [42] and refined in [14], [15].

In TVLA testing, two sets of trace waveforms, A and B,
each with L synchronized time points, are compared. The tests
we use are of the “Fixed-vs-Random” type, where set A has
a CSP (such as a secret key set) to a fixed value, while set B
has that CSP set to random values. Welch’s t-test is applied
to each time point to see if the averages of A and B sets

differ significantly. A significant difference is a distinguishing
feature between the sets, implying leakage from the CSP.

The first step is determining the required sample size
N = NA + NB and t-test threshold C from the experiment
parameters.
α: Significance level of false positives / type I error.
β: Significance level of false negatives / type II error.
Traditionally ([43]–[45]) a critical value C of ±4.5 has

been used for L = 1, which matches an α < 10−5 in that
case. Since we have long traces (large L), this choice would
cause false positives. We adjust the critical value C based
on L using the Mini-p procedure from Zhang et al. [15]. Let
αL = 1−(1−α)(1/L) be the adjusted significance level. Since
the degrees of freedom are very large, we can approximate
using the normal distribution: C = CDF−1(1− αL

2).
Older (2016) versions of ISO 17825 [45] set the number

of traces to N = 10, 000 at FIPS 140-3 security level 3
and N = 100, 000 at the highest level 4. Newer draft ver-
sions [16] derive N using an experimentally-derived Cohen’s
statistical effect size d, an approach suggested in [41]. The
d ∈ {0.01, 0.04} values were based on AES key recovery
experiments. We don’t have experimental key-extraction data
to justify a specific d selection, so we collect as many traces
as practically possible (in a day or two.) We adopt a best-
effort approach to leakage detection and attempt to minimize
physical or methodological sources of interference that might
negatively impact the leakage assessment process.

1. Collect Subsets A and B and compute their pointwise
averages (µA, µB) and standard deviations (σA, σB).

2. Compute the pointwise Welch t-test statistic vector

T =
µA − µB√
σ2
A

NA
+

σ2
B

NB

.

3. If at any point |T | > C, the test results in a FAIL. If the
threshold is not crossed, the test is a PASS.

D. KEK Leakage Testing

A (relatively) straightforward fixed-vs-random test is used
in relation to the symmetric Key Encryption Key (KEK) K.
This 256-bit secret variable is used for decryption in import
(Algorithm 3), encryption in export (Algorithm 3), and to
compute integrity check values (Algorithm 1) in both cases.

The test aims to find leakage from the key K itself, and
its set-up is similar to “fixed-vs-random key” TVLA tests
performed on block ciphers such as AES [16], [44]. Set A has
a fixed K, while set B has a random K. Note that the plaintext
payload data (i.e., Kyber and Dilithium keys) is randomized
in this test; only the symmetric keys are manipulated.

E. CSP Leakage Testing

For fixed-vs-random testing, confidentiality (encryption) is
only provided in WrapQ for CSP (actually non-public) vari-
ables. Kyber has two CSPs: ring vector s (decryption key),
and FO secret z (Table I) while Dilithium’s CSPs are the
ring vectors s1, s2 (signing key) and the deterministic seed
K (Table II.) All other variables are PSPs (public.)

7

Since public components are not protected, they would, of
course “leak.” In order to capture leakage from these specific
CSP variables during the import/export function, we construct
synthetic keys [46] where CSPs have been randomized, but
other components (such as public seed ρ) are unmodified.
Such masked keys [[P]] would not be valid for encapsula-
tion/decapsulation or signing/verifying; they are merely arti-
facts used in side-channel testing of key import and export
functions.

F. Trace Acquisition and Results

The experiments were performed with XC7A100T2FTG256
Artix 7 FPGA chip on a ChipWhisperer CW305-A100 board,
clocked at 50 Mhz. The processor and coprocessor bitstreams
were synthesized with Xilinx Vivado 2021.2. All firmware was
in C and complied GCC, under -Os size optimization and
-mabi=lp64 -march=rv64imac architectural flags.

Signal acquisition was performed with Picoscope 6434E
oscilloscopes with a 156.25 MHz sampling rate connected to
the SMA connectors on the CW305 board. The DUT generated
a cycle-precise trigger.

Table IV summarizes the various Fixed-vs-Random tests
performed on the implementation. The tests were carried out
on all three proposed security levels of Kyber and Dilithium,
but we only include graphs for the highest Category 5 propos-
als, Kyber1024 and Dilithium5.

The functions passed the tests with 100,000 traces. Even
though the critical value C has been adjusted for long traces
(as discussed above), by looking at the figures referenced in
Table IV, we can see that the t values are generally bound
at a much smaller range. The target unit also performs side-
channel secure Kyber and Dilithium operations, but those tests
are out of scope for the present work.

TABLE IV
SUMMARY OF RANDOM-VS-FIXED TESTS ON WRAPQ KEY IMPORT AND

EXPORT FUNCTIONS. THE TESTS WERE DESIGNED TO TEST LEAKAGE
FROM THE KEK (KEY) AND THE PAYLOAD CSPS.

Function Under Test Set A Set B Both A&B
Kyber Import (Fig. 2) Fix CSP Rand CSP Fix KEK
Kyber Export (Fig. 3) Fix CSP Rand CSP Fix KEK
Kyber Import (Fig. 4) Fix KEK Rand KEK Rand CSP
Kyber Export (Fig. 5) Fix KEK Rand KEK Rand CSP

Dilithium Import (Fig. 6) Fix CSP Rand CSP Fix KEK
Dilithium Export (Fig. 7) Fix CSP Rand CSP Fix KEK
Dilithium Import (Fig. 8) Fix KEK Rand KEK Rand CSP
Dilithium Export (Fig. 9) Fix KEK Rand KEK Rand CSP

VII. CONCLUSIONS AND FUTURE WORK

When building side-channel secure implementations of
asymmetric algorithms, it is easy to sidestep the key man-
agement problem. Academic works have generally focused on
protecting the private key operations, assuming that refreshed
key shares can be kept in working memory. However, many
real-life devices do not have the option of having refreshable
non-volatile memory for keys.

WrapQ is a method for handling masked secret key material
between a hardware security module and potentially untrusted
storage. Its encryption, decryption, and authentication modes
can manage wrapped key material in masked format, signifi-
cantly increasing resilience to side-channel attacks.

We describe a version of WrapQ that supports CRYSTALS-
Kyber 3.02 Key Encapsulation Mechanism and CRYSTALS-
Dilithium 3.1 signature scheme. The implementation leverages
a masked implementation of FIPS 202 / SHAKE256 (the Kec-
cak permutation) in a mode that prevents leakage even when an
attacker can acquire thousands of side-channel measurements
from importing and exporting secret keys and also access the
resulting WrapQ data itself.

We have performed a TVLA leakage assessment and vali-
dation of a WrapQ implementation for Kyber and Dilithium.
The leakage of payload CSP variables and the KEK (key-
encryption key) was tested. Import and export functions for
both algorithms pass TVLA testing for up to 100K traces.

Our experimental work has focused on first-order pro-
tections. However, the file format works also with higher-
order masking. As the masking order grows, so does the
complexity of all nonlinear operations and refresh gadgets.
We acknowledge that the construction of higher-order gadgets
for WrapQ (Section II-A) requires further investigation.

ACKNOWLEDGMENTS

The author wishes to thank Ben Marshall for running the
leakage assessment tests and Oussama Danba and Kevin Law
for helping to make the FPGA test target operational. Further
thanks to Thomas Prest, Rafael del Pino, and Melissa Rossi
for the technical and theoretical discussions. The author is to
blame for all errors and omissions.

APPENDIX

Fig. 2. Kyber1024 WrapQ Import Random-vs-Fixed CSP, 100K Traces.

REFERENCES

[1] R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint,
V. Lyubashevsky, J. M. Schanck, P. Schwabe, G. Seiler, and
D. Stehlé, “CRYSTALS-kyber: Algorithm specifications and supporting
documentation (version 3.02),” NIST PQC Project, 3rd Round
Submission Update, August 2021. [Online]. Available: https:
//pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf

8

https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf

Fig. 3. Kyber1024 WrapQ Export Random-vs-Fixed CSP, 100K Traces.

Fig. 4. Kyber1024 WrapQ Import Random-vs-Fixed KEK, 100K Traces.

[2] S. Bai, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky,
P. Schwabe, G. Seiler, and D. Stehlé, “CRYSTALS-dilithium:
Algorithm specifications and supporting documentation (version
3.1),” NIST PQC Project, 3rd Round Submission Update,
February 2021. [Online]. Available: https://pq-crystals.org/dilithium/
data/dilithium-specification-round3-20210208.pdf

[3] G. Alagic, D. Apon, D. Cooper, Q. Dang, T. Dang, J. Kelsey,
J. Lichtinger, Y.-K. Liu, C. Miller, D. Moody, R. Peralta, R. Perlner,
A. Robinson, and D. Smith-Tone, “Status report on the third round
of the NIST post-quantum cryptography standardization process,”
NISTIR 8413-upd1, National Institute of Standards and Technology,
Interagency or Internal Report, September 2022. [Online]. Available:
https://csrc.nist.gov/publications/detail/nistir/8413/final

[4] NSA, “Announcing the commercial national security algorithm
suite 2.0,” National Security Agency, Cybersecurity Advisory,
September 2022. [Online]. Available: https://media.defense.gov/2022/
Sep/07/2003071834/-1/-1/0/CSA CNSA 2.0 ALGORITHMS .PDF

[5] P. C. Kocher, “Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems,” in Advances in Cryptology - CRYPTO
’96, 16th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 18-22, 1996, Proceedings, ser. Lecture Notes
in Computer Science, N. Koblitz, Ed., vol. 1109. Springer, 1996, pp.
104–113.

[6] P. C. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in
Advances in Cryptology - CRYPTO ’99, 19th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 15-
19, 1999, Proceedings, ser. Lecture Notes in Computer Science, M. J.
Wiener, Ed., vol. 1666. Springer, 1999, pp. 388–397.

[7] J. Quisquater and D. Samyde, “Electromagnetic analysis (EMA): mea-
sures and counter-measures for smart cards,” in Smart Card Program-
ming and Security, International Conference on Research in Smart
Cards, E-smart 2001, Cannes, France, September 19-21, 2001, Pro-
ceedings, ser. Lecture Notes in Computer Science, I. Attali and T. P.

Fig. 5. Kyber1024 WrapQ Export Random-vs-Fixed KEK, 100K Traces.

Fig. 6. Dilithium5 WrapQ Import Random-vs-Fixed CSP, 100K Traces.

Jensen, Eds., vol. 2140. Springer, 2001, pp. 200–210.
[8] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi, “Towards sound

approaches to counteract power-analysis attacks,” in Advances in Cryp-
tology - CRYPTO ’99, 19th Annual International Cryptology Conference,
Santa Barbara, California, USA, August 15-19, 1999, Proceedings, ser.
Lecture Notes in Computer Science, M. J. Wiener, Ed., vol. 1666.
Springer, 1999, pp. 398–412.

[9] Y. Ishai, A. Sahai, and D. A. Wagner, “Private circuits: Securing
hardware against probing attacks,” in Advances in Cryptology - CRYPTO
2003, 23rd Annual International Cryptology Conference, Santa Barbara,
California, USA, August 17-21, 2003, Proceedings, ser. Lecture Notes
in Computer Science, D. Boneh, Ed., vol. 2729. Springer, 2003, pp.
463–481.

[10] M. Rivain and E. Prouff, “Provably secure higher-order masking of
AES,” in Cryptographic Hardware and Embedded Systems, CHES 2010,
12th International Workshop, Santa Barbara, CA, USA, August 17-20,
2010. Proceedings, ser. Lecture Notes in Computer Science, S. Mangard
and F. Standaert, Eds., vol. 6225. Springer, 2010, pp. 413–427.

[11] E. Prouff and M. Rivain, “Masking against side-channel attacks: A
formal security proof,” in Advances in Cryptology - EUROCRYPT 2013,
32nd Annual International Conference on the Theory and Applications
of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Pro-
ceedings, ser. Lecture Notes in Computer Science, T. Johansson and
P. Q. Nguyen, Eds., vol. 7881. Springer, 2013, pp. 142–159.

[12] A. Duc, S. Dziembowski, and S. Faust, “Unifying leakage models: From
probing attacks to noisy leakage,” J. Cryptol., vol. 32, no. 1, pp. 151–
177, 2019.

[13] M. Alioto, S. Bongiovanni, M. Djukanovic, G. Scotti, and A. Trifiletti,
“Effectiveness of leakage power analysis attacks on DPA-resistant logic
styles under process variations,” IEEE Transactions on Circuits and
Systems I: Regular Papers, vol. 61, no. 2, pp. 429–442, 2014.

[14] T. Schneider and A. Moradi, “Leakage assessment methodology - A
clear roadmap for side-channel evaluations,” in Cryptographic Hardware

9

https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://csrc.nist.gov/publications/detail/nistir/8413/final
https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF

Fig. 7. Dilithium5 WrapQ Export Random-vs-Fixed CSP, 100K Traces.

Fig. 8. Dilithium5 WrapQ Import Random-vs-Fixed KEK, 100K Traces.

and Embedded Systems - CHES 2015 - 17th International Workshop,
Saint-Malo, France, September 13-16, 2015, Proceedings, ser. Lecture
Notes in Computer Science, T. Güneysu and H. Handschuh, Eds., vol.
9293. Springer, 2015, pp. 495–513.

[15] A. A. Ding, L. Zhang, F. Durvaux, F. Standaert, and Y. Fei, “Towards
sound and optimal leakage detection procedure,” in Smart Card Research
and Advanced Applications - 16th International Conference, CARDIS
2017, Lugano, Switzerland, November 13-15, 2017, Revised Selected
Papers, ser. Lecture Notes in Computer Science, T. Eisenbarth and
Y. Teglia, Eds., vol. 10728. Springer, 2017, pp. 105–122.

[16] ISO, “Information technology – security techniques – testing methods
for the mitigation of non-invasive attack classes against cryptographic
modules,” International Organization for Standardization, Working Draft
ISO/IEC WD 17825:2021(E), 2021.

[17] G. Barthe, S. Belaı̈d, T. Espitau, P. Fouque, B. Grégoire, M. Rossi,
and M. Tibouchi, “Masking the GLP lattice-based signature scheme at
any order,” in Advances in Cryptology - EUROCRYPT 2018 - 37th
Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018
Proceedings, Part II, ser. Lecture Notes in Computer Science, J. B.
Nielsen and V. Rijmen, Eds., vol. 10821. Springer, 2018, pp. 354–384.
[Online]. Available: https://eprint.iacr.org/2018/381

[18] V. Migliore, B. Gérard, M. Tibouchi, and P. Fouque, “Masking Dilithium
- efficient implementation and side-channel evaluation,” in Applied
Cryptography and Network Security - 17th International Conference,
ACNS 2019, Bogota, Colombia, June 5-7, 2019, Proceedings, ser.
Lecture Notes in Computer Science, R. H. Deng, V. Gauthier-Umaña,
M. Ochoa, and M. Yung, Eds., vol. 11464. Springer, 2019, pp. 344–362.

[19] J. W. Bos, M. Gourjon, J. Renes, T. Schneider, and C. van Vredendaal,
“Masking kyber: First- and higher-order implementations,” IACR Trans.
Cryptogr. Hardw. Embed. Syst., vol. 2021, no. 4, pp. 173–214, 2021.

[20] D. Heinz, M. J. Kannwischer, G. Land, T. Pöppelmann, P. Schwabe,
and D. Sprenkels, “First-order masked Kyber on ARM Cortex-

Fig. 9. Dilithium5 WrapQ Export Random-vs-Fixed KEK, 100K Traces.

M4,” IACR ePrint 2022/058, 2022. [Online]. Available: https:
//eprint.iacr.org/2022/058

[21] M. Dworkin, “Recommendation for block cipher modes of operation:
Methods for key wrapping,” NIST Special Publication SP 800-38F,
December 2012.

[22] P. Rogaway and T. Shrimpton, “A provable-security treatment of the
key-wrap problem,” in Advances in Cryptology - EUROCRYPT 2006,
25th Annual International Conference on the Theory and Applications
of Cryptographic Techniques, St. Petersburg, Russia, May 28 - June 1,
2006, Proceedings, ser. Lecture Notes in Computer Science, S. Vaude-
nay, Ed., vol. 4004. Springer, 2006, pp. 373–390.

[23] P. Rogaway, “Authenticated-encryption with associated-data,” in
Proceedings of the 9th ACM Conference on Computer and
Communications Security, CCS 2002, Washington, DC, USA, November
18-22, 2002, V. Atluri, Ed. ACM, 2002, pp. 98–107. [Online].
Available: http://dl.acm.org/citation.cfm?id=586110

[24] N. Menhorn, “External secure storage using the PUF,”
Application Note: Zynq UltraScale+ Devices, XAPP1333 (v1.2),
April 2022. [Online]. Available: https://docs.xilinx.com/r/en-US/
xapp1333-external-storage-puf

[25] Microsoft, “Bring your own key specification,” Online documentation:
Azure Key Vault / Microsoft Learn. Accessed 2022-Oct-12,
February 2022. [Online]. Available: https://learn.microsoft.com/en-us/
azure/key-vault/keys/byok-specification

[26] K. M. Moriarty, M. Nystrom, S. Parkinson, A. Rusch, and M. Scott,
“PKCS #12: Personal information exchange syntax v1.1,” IETF RFC
7292, July 2014.

[27] NIST, “SHA-3 standard: Permutation-based hash and extendable-output
functions,” Federal Information Processing Standards Publication FIPS
202, August 2015.

[28] S. Halevi and H. Krawczyk, “Strengthening digital signatures via
randomized hashing,” in Advances in Cryptology - CRYPTO 2006, 26th
Annual International Cryptology Conference, Santa Barbara, California,
USA, August 20-24, 2006, Proceedings, ser. Lecture Notes in Computer
Science, C. Dwork, Ed., vol. 4117. Springer, 2006, pp. 41–59.

[29] M. Bellare and C. Namprempre, “Authenticated encryption: Relations
among notions and analysis of the generic composition paradigm,” J.
Cryptol., vol. 21, no. 4, pp. 469–491, 2008.

[30] G. Bertoni, J. Daemen, M. Peeters, and G. V. Assche,
“Building power analysis resistant implementations of Keccak,”
August 2010. [Online]. Available: https://csrc.nist.gov/Events/2010/
The-Second-SHA-3-Candidate-Conference

[31] J. Daemen, “Changing of the guards: A simple and efficient method for
achieving uniformity in threshold sharing,” in Cryptographic Hardware
and Embedded Systems - CHES 2017 - 19th International Conference,
Taipei, Taiwan, September 25-28, 2017, Proceedings, ser. Lecture Notes
in Computer Science, W. Fischer and N. Homma, Eds., vol. 10529.
Springer, 2017, pp. 137–153.

[32] B. Bilgin, B. Gierlichs, S. Nikova, V. Nikov, and V. Rijmen, “Higher-
order threshold implementations,” in Advances in Cryptology - ASI-
ACRYPT 2014 - 20th International Conference on the Theory and
Application of Cryptology and Information Security, Kaoshiung, Taiwan,
R.O.C., December 7-11, 2014, Proceedings, Part II, ser. Lecture Notes

10

https://eprint.iacr.org/2018/381
https://eprint.iacr.org/2022/058
https://eprint.iacr.org/2022/058
http://dl.acm.org/citation.cfm?id=586110
https://docs.xilinx.com/r/en-US/xapp1333-external-storage-puf
https://docs.xilinx.com/r/en-US/xapp1333-external-storage-puf
https://learn.microsoft.com/en-us/azure/key-vault/keys/byok-specification
https://learn.microsoft.com/en-us/azure/key-vault/keys/byok-specification
https://csrc.nist.gov/Events/2010/The-Second-SHA-3-Candidate-Conference
https://csrc.nist.gov/Events/2010/The-Second-SHA-3-Candidate-Conference

in Computer Science, P. Sarkar and T. Iwata, Eds., vol. 8874. Springer,
2014, pp. 326–343.

[33] G. Barthe, S. Belaı̈d, F. Dupressoir, P. Fouque, B. Grégoire, P. Strub,
and R. Zucchini, “Strong non-interference and type-directed higher-
order masking,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, Vienna, Austria, October
24-28, 2016, E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers,
and S. Halevi, Eds. ACM, 2016, pp. 116–129. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2976749

[34] A. Mathieu-Mahias, “Securisation of implementations of cryptographic
algorithms in the context of embedded systems,” Ph.D.
dissertation, Université Paris-Saclay, 2021. [Online]. Available:
https://tel.archives-ouvertes.fr/tel-03537322

[35] D. Goudarzi, T. Prest, M. Rivain, and D. Vergnaud, “Probing security
through input-output separation and revisited quasilinear masking,”
IACR Trans. Cryptogr. Hardw. Embed. Syst., vol. 2021, no. 3, pp. 599–
640, 2021.

[36] NIST, “Security requirements for cryptographic modules,” Federal In-
formation Processing Standards Publication FIPS 140-3, March 2019.

[37] ISO, “Information technology – security techniques – security re-
quirements for cryptographic modules,” International Organization for
Standardization, Standard ISO/IEC 19790:2012(E), 2012.

[38] NIST, “PQC – API notes,” Example Files, Official Call for
Proposals, National Institute for Standards and Technology, September
2017. [Online]. Available: https://csrc.nist.gov/CSRC/media/Projects/
Post-Quantum-Cryptography/documents/example-files/api-notes.pdf

[39] C. Dobraunig, M. Eichlseder, F. Mendel, and M. Schläffer,
“Ascon v1.2,” Submission to NIST (Lightweight
Cryptography Project), May 2021. [Online]. Available:
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/
documents/finalist-round/updated-spec-doc/ascon-spec-final.pdf

[40] L. Goubin, “A sound method for switching between boolean and arith-
metic masking,” in Cryptographic Hardware and Embedded Systems -
CHES 2001, Third International Workshop, Paris, France, May 14-16,
2001, Proceedings, ser. Lecture Notes in Computer Science, Ç. K. Koç,
D. Naccache, and C. Paar, Eds., vol. 2162. Springer, 2001, pp. 3–15.

[41] C. Whitnall and E. Oswald, “A critical analysis of ISO 17825 (’test-
ing methods for the mitigation of non-invasive attack classes against
cryptographic modules’),” in Advances in Cryptology - ASIACRYPT
2019 - 25th International Conference on the Theory and Application
of Cryptology and Information Security, Kobe, Japan, December 8-12,
2019, Proceedings, Part III, ser. Lecture Notes in Computer Science,
S. D. Galbraith and S. Moriai, Eds., vol. 11923. Springer, 2019, pp.
256–284.

[42] G. Goodwill, B. Jun, J. Jaffe, and P. Rohatgi, “A testing
methodology for sidechannel resistance validation,” CMVP & AIST
Non-Invasive Attack Testing Workshop (NIAT 2011), September
2011. [Online]. Available: https://csrc.nist.gov/csrc/media/events/
non-invasive-attack-testing-workshop/documents/08 goodwill.pdf

[43] G. Becker, J. Cooper, E. DeMulder, G. Goodwill, J. Jaffe, G. Kenworthy,
T. Kouzminov, A. Leiserson, M. Marson, P. Rohatgi, and S. Saab, “Test
vector leakage assessment (TVLA) methodology in practice,” 2013,
presented at International Cryptography Module Conference – ICMC
2013.

[44] Rambus, “Test vector leakage assessment (TVLA) derived test
requirements (DTR) with AES,” Rambus CRI Technical Note, February
2015. [Online]. Available: https://www.rambus.com/wp-content/uploads/
2015/08/TVLA-DTR-with-AES.pdf

[45] ISO, “Information technology – security techniques – testing
methods for the mitigation of non-invasive attack classes against
cryptographic modules,” International Organization for Standardization,
Standard ISO/IEC 17825:2016, 2016. [Online]. Available: https:
//www.iso.org/standard/82422.html

[46] M.-J. O. Saarinen, “WiP: Applicability of ISO standard side-
channel leakage tests to NIST post-quantum cryptography,” in IEEE
International Symposium on Hardware Oriented Security and Trust
(HOST). June 27–30, 2022 Washington DC, USA. IEEE, 2022, pp.
69–72. [Online]. Available: https://eprint.iacr.org/2022/229

[47] M. J. Wiener, Ed., Advances in Cryptology - CRYPTO ’99, 19th Annual
International Cryptology Conference, Santa Barbara, California, USA,
August 15-19, 1999, Proceedings, ser. Lecture Notes in Computer
Science, vol. 1666. Springer, 1999.

11

http://dl.acm.org/citation.cfm?id=2976749
https://tel.archives-ouvertes.fr/tel-03537322
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/example-files/api-notes.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/example-files/api-notes.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/ascon-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/ascon-spec-final.pdf
https://csrc.nist.gov/csrc/media/events/non-invasive-attack-testing-workshop/documents/08_goodwill.pdf
https://csrc.nist.gov/csrc/media/events/non-invasive-attack-testing-workshop/documents/08_goodwill.pdf
https://www.rambus.com/wp-content/uploads/2015/08/TVLA-DTR-with-AES.pdf
https://www.rambus.com/wp-content/uploads/2015/08/TVLA-DTR-with-AES.pdf
https://www.iso.org/standard/82422.html
https://www.iso.org/standard/82422.html
https://eprint.iacr.org/2022/229

	Introduction
	Side-Channel Countermeasures for Lattice Cryptography
	Private Keys and Secret Variables
	Outline of this work and Our Contributions

	Masked Key Wrapping
	High level interface

	WrapQ 1.0 Desing Outline
	Design Choices
	Key Import and Export
	Key Encryption Key
	Non-Determinism is Preferable
	Secondary Encryption
	Not (necessarily) a key interchange format

	Masked XOF and Domain Separation
	Integrity Protection: Masked MAC Computation
	Confidentiality Protection: Encrypting Masked Plaintext
	XOF and Gadget Instantation

	Kyber and Dilithium Private Keys
	CRYSTALS-Kyber
	CRYSTALS-Dilithium

	Parameter Selection and Algorithm Analysis
	Wrapping Process
	Unwrapping Process
	Size Metrics

	Implementation and Leakage Assessment
	FPGA Platform Overview
	Implementation Overview
	Leakage Assessment: Fixed-vs-Random Experiments
	KEK Leakage Testing
	CSP Leakage Testing
	Trace Acquisition and Results

	Conclusions and Future Work
	Appendix
	References

