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Abstract
Registration-based encryption (RBE) was recently introduced as an alternative to identity-based

encryption (IBE), to resolve the key-escrow problem: In RBE, the trusted authority is substituted with
a weaker entity, called the key curator, who has no knowledge of any secret key. Users generate keys
on their own and then publicly register their identities and their corresponding public keys to the key
curator. RBE is a promising alternative to IBE, retaining many of its advantages while removing the
key-escrow problem, the major drawback of IBE. Unfortunately, all existing constructions of RBE use
cryptographic schemes in a non black-box way, which makes them prohibitively expensive. It has been
estimated that the size of an RBE ciphertext would be in the order of terabytes (though no RBE has
even been implemented).

In this work, we propose a new approach to construct RBE, from well-studied assumptions in bilinear
groups. Our scheme is black-box and it is concretely highly efficient—a ciphertext is 866 bytes. To
substantiate this claim, we implemented a prototype of our scheme and we show that it scales to millions
of users. The public parameters of the scheme are in the order of kilobytes. The most expensive operation
(registration) takes a handful of seconds, whereas the encryption and decryption runtimes are in the
order of milliseconds. This is the first ever implementation of an RBE scheme, and demonstrates that
the practical deployment of RBE is already possible with today’s hardware.

1 Introduction
Public-key encryption (PKE) [RSA78,DH76] is the cornerstone of secure communication: It allows Alice and
Bob to privately exchange messages via a public channel, provided that they know each other’s public key.
Enabling Alice to learn Bob’s public key (and vice versa) requires setting up a public key infrastructure
(PKI) to certify the ownership of public keys. In practice, certification authorities are complex processes and
PKI turns out to be a cumbersome and error-prone mechanism to implement.

To obviate these issues, Shamir [Sha84] proposed the notion of identity-based encryption (IBE), as an
alternative to PKE with a simplified key management process: An IBE scheme allows Alice to encrypt her
messages to Bob knowing just Bob’s identity, along with some additional public parameters. Bob can then
decrypt Alice’s ciphertexts using an identity-specific secret key that he obtains from the key authority. Since
the seminal work of Boneh and Franklin [BF01], IBE has seen tremendous progress with numerous new
schemes being proposed over the years [Coc01,Wat05,Gen06,DG17]. In contrast, the practical deployment
of IBE has been comparatively slow. Perhaps the main reason to hold back the widespread adoption of IBE
is the so-called key-escrow problem: In an IBE scheme, the key authority can generate the secret key for any
identity. This means that the key authority can decrypt any message sent through the system. This is not an
acceptable compromise for many scenarios and has generated strong criticism against the notion [Rog15].

A recent work of Garg et al. [GHMR18, GHM+19] proposes a new paradigm for handling key-escrow,
where the authority does not hold any secret information and it is completely transparent. They put forward
the notion of registration-based encryption (RBE), which we recall next.
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Registration-Based Encryption. In an RBE system, there is a dedicated party, called the key curator
(KC), that is responsible for maintaining the updated system parameters. Users can register to the system
by contacting the KC and sending their public key and identity. In response, the KC updates the public
parameters of the system and returns to the user some supplementary information, which we refer to as the
opening, that is useful to decrypt ciphertexts. Note that this opening serves only a functional purpose and
does not substitute the user’s secret key: In fact, it can be made public without affecting security. As public
parameters change through the course of the system evolution, users will have to contact the KC to update
their opening (i.e., the KC is also responsible for answering update queries). Importantly, we do not want
to update every user’s key every time a new public key is registered, so the definition of RBE imposes some
efficiency requirement on the frequency of the updates.

Encryption and decryption works analogously as IBE: Given the public parameters and Bob’s identity,
Alice can non-interactively encrypt a message for Bob. Bob, given his secret key and the opening, can at
a later point in time decrypt Alice’s message. In terms of correctness, we require that decryption returns
the correct message, provided that Bob registered his public key to the system prior to Alice computing
her ciphertext. We also require that the size of the public parameters and the runtime of all algorithms is
sublinear in the total number of registered users N . In terms of security, we require that encrypted messages
must be hidden if no key was registered for the target identity, or if the key belongs to an honest party.

RBE can be thought as a hybrid notion between IBE and a PKI: Similar to the PKI settings, RBE
requires a KC to keep the parameters up to date and (additionally) to issue updates to users. However, it
has the strong advantage of offering the encryption with respect to identity functionality, which is the main
appeal of IBE. On the flip side, RBE shares some similarities with IBE, since the users have to contact the KC
in order to obtain the opening. However, the crucial difference is that the opening is not sufficient to decrypt
ciphertexts, without the user’s secret key. In other words, RBE does not suffer from the key escrow problem
of IBE. As such, RBE is viewed as a promising alternative to the PKI architecture, without sacrificing the
security of the users, also in contrast to PKI, in RBE the encryptor does not need to commmunicate with
the PKI to obtain user’s public keys in order to send an encrypted message.

Example Application. To exemplify the difference between RBE and PKI, consider a hypothetical scenario
in which a whistle-blower wants to reveal some information to a journalist, but does not want to raise any
suspicion. Querying a PKI to learn the journalist’s public key may leak that some leak is about to be released,
and may alert authorities. On the other hand, using RBE, the whistle-blower could encrypt a message that
only the journalist is able to decrypt by just knowing the public parameters (that he stores locally anyway),
without the need to contact any external entity. Although one may envision augmenting the PKI with
oblivious access to the public keys (e.g., via private information retrieval), RBE allows us to achieve this
functionality completely non-interactively and more efficiently. We stress that this is just one example where
RBE achieves better properties than PKI, and other applications of RBE were already described in prior
works (see, e.g., [GHM+19]).

The Black-Box Barrier. While RBE is considered to be a promising theoretical notion for a candidate
substitute of the PKI architecture, current constructions of RBE [GHMR18, GHM+19] are prohibitively
expensive. While such schemes achieve asymptotically excellent parameters, the concrete numbers are still
nowhere close to the realm of practicality. It has been estimated [CES21] that, for an RBE supporting 2
billion users, ciphertexts would be as large as 11 terabytes (improved to 4.5 terabytes in [CES21]). This
large overhead derives from the current construction paradigm of RBE, which is based on the garbled circuit
tree of [CDG+17]. In more detail, known RBE constructions use cryptographic schemes in a non black-
box manner, i.e., the scheme does not simply use cryptographic primitives in an input/output sense, but
rather need access to their code. Traditionally, non black-box cryptographic schemes have been associated
with prohibitive computational costs and a large body of literature in cryptography studies the possibility of
constructing advanced primitives in a black-box way. We view known constructions of RBE as a manifestation
of this phenomenon. Given the potential practical impact of this notion, the current state of affairs leaves
open the following outstanding question:

Can we build efficient (and black-box) RBE?
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We stress that a positive answer to the question above requires a conceptual rework of the current RBE
construction paradigms, to circumvent the inefficiency barrier imposed by known (non black-box) constructions.

1.1 Our Results
We summarize our contributions below.

(i) Black-box RBE for Bounded Identity Sets. We propose a new method to construct RBE, which
significantly departs from existing works. The resulting RBE scheme is black-box, and its security is based
on well-studied assumptions over bilinear groups, namely the hardness of the bilinear Diffie-Hellman problem
and the n-power Diffie-Hellman problem. The scheme is in the common reference string model and supports
identities in the set {1, . . . , N}, for any polynomially bounded N . The common reference string and the
public parameters consist of at most O(

√
N) group elements, whereas ciphertexts and public/secret keys

are composed of O(1) group elements. Consequently, the key registration runs in time O(
√
N), whereas

encryption, decryption, and updates are very efficient, requiring only O(1) group operations. During the
entire life cycle of the system, each user will have received an update at most O(

√
N)-many times.

(ii) Extensions. Starting from the base RBE construction, we present several modifications that allow us
to achieve a number of properties of interest.

• Efficient Updates: We show how to reduce the number of updates ever received by each user to
O(log(

√
N)), at the cost of increasing the size of the ciphertexts and of the public parameters by

a multiplicative factor of O(log(
√
N)).

• Verifiability: We describe an efficient procedure for the KC to prove that a certain public key was
indeed registered in the public parameters [GV20]. The proof consists of a single group element and
can be verified in time independent of N . We also show a method to prove the converse, i.e., that a
public key was not registered, with essentially the same cost.

• Anonymity: We present a modification of our base scheme that achieves the desirable property of
anonymity [GHM+19]. Loosely speaking, an RBE is anonymous if it is computationally hard to
distinguish ciphertexts encrypted for any two distinct identities, unless one possesses the appropriate
secret key.

• CCA Security: Finally, we define the notion of CCA security for RBE and discuss how a minor
modification of our construction already satisfies this property.

(iii) Implementation. To demonstrate the practicality of our approach, we implemented prototypes of
our base and efficient-update constructions. Here we report numbers for our efficient-update construction.
Without optimizing the code, we were able to scale our scheme up to 10 million users on a personal computer.
In this regime, our construction has a common reference string of size 1MB and public parameters of size
2.8KB, the size of ciphertext for encrypting a single group element will be at most 10KB, and each update
consists of a single group element (49B). In terms of runtime, registering a public key takes 2.59 seconds on
average. On the other hand, encrypting and decrypting a ciphertext can be done in milliseconds.

1.2 Limitations
We explicitly discuss some shortcomings of our construction, when compared with prior works [GHMR18,
GHM+19,GV20]. First of all, our scheme has worse asymptotic parameters than prior RBE schemes where
the size of the public parameters is poly-logarithmic in the size of the universe of users (= N). In contrast, our
scheme achieves only a square root compression. We, also, note that in our construction the set of identities
is {1, . . . , N} and therefore polynomially bounded.

Furthermore, the KC has to store an auxiliary information, containing the openings of all users, that
grows with O(N

√
N) in our base construction, and with O(N log

√
N) in the version with efficient updates.
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In prior RBE schemes, the size of the auxiliary information was linear in N . We recall that the auxiliary
information can be kept public and is only needed by the KC to issue updates correctly, but it is not stored
by users.

Another important limitation is that our scheme requires a structured common reference string (i.e., a
private-coin trusted setup), whereas prior work required only a transparent common reference string (i.e., a
public-coin setup). Thus, our system must be initialized in a trusted manner, or via a multi-party computation
(MPC) protocol. However, we stress that this operation needs to be done once and for all, and after that
the KC can operate in a fully transparent manner.

Overall, we believe that the above limitations do not substantially reduce the practical applicability of
our approach. For concrete parameter settings, a square root compression leads to very noticeable savings.
This was already advocated in [CES21], and it is further demonstrated by our prototype implementation.
As for the trusted setup, MPC protocols to sample our common reference string exist [BGM17] and have
been in fact run by the Zcash community [Bow18] to achieve precisely the same goal.1

We also stress that polynomially bounded-sized identities can be sufficient in practical applications. As a
concrete example, one could set the universe of identities to be the total set of phone numbers2, and achieve
the desired functionality of “encrypting with respect to the phone-number of a user”. In addition, this is
particularly useful in group messaging protocols (e.g. MLS protocol [BBM+20]) where currently a PKI is
used. Furthermore, our RBE can be used as a square root compressing mechanism of a PKI, by setting a
counter in {1, . . . , N} to each public key. On the other hand, bounded identities-RBE does not suffice for
applications where identities should be arbitrarily large, such as email-based encryption.

Finally, the increase in the size of auxiliary input is modest, especially in the construction with efficient
updates. As a concrete example, for N = 106 the size of the auxiliary information our construction with
efficient updates is 2N log

√
N ≈ 20 ·N group elements, which is not far from the information needed to be

stored by a PKI (i.e., N public keys).

1.3 Related Work
The notion of RBE was proposed in [GHMR18] and was later extended with the notion of anonymity [GHM+19]
and verifiability [GV20], and was also optimized in [CES21]. All of these constructions follow roughly the
same template and make non black-box usage of cryptographic primitives. While asymptotically they achieve
essentially optimal efficiency, the concrete computational and storage costs are prohibitively high. We also
mention that in [GHM+19] the authors also introduced the notion of timestamp RBE (T-RBE), as an
intermediate abstraction. This is similar to the notion of RBE for bounded identity sets, as the users are
indexed by time stamps in {1, . . . , N}. However, the crucial difference is that in T-RBE the time stamps
(and therefore the identities of the users) need to register in increasing order, whereas in our RBE settings
the parties can register in any order, therefore T-RBE is a weaker notion than RBE for bounded identity
sets.

Prior to the introduction of RBE, various attempts had been made to mitigate the key-escrow problem
of IBE, though none of which fully addressing it. Boneh and Franklin [BF01] first proposed the existence of
multiple private key generator authorities, an idea which was later developed by follow-up works [CHSS02,
PS08,KG10, LBD+04], which however only distributes the escrow problem among many parties instead of
a single one. Goyal [Goy07] introduced and [GLSW08] further developed the notion of accountable IBE, in
which the private key authority is made accountable, but still not eliminated key-escrow. Chow [Cho09] and
later Wei et al. [WQT18] used anonymous ciphertexts so that the authority cannot tell which is corresponding
secret key, in combination to large number of identities (so that a brute-force search is hard), which even so
required that each identity generation had some guaranteed randomness. Finally, in [AP03] the intermediate
notion of certificateless public-key cryptography was introduced, however here a party cannot encrypt solely
with respect to the identity but needs some extra information.

1In fact our trusted setup is even simpler, it almost lies in the ’power-of-tau’ category, and would require only the first phase
of the MPC protocol to run.

2A rough upper bound on the total number of existing phone numbers on earth is N = 1010, which is within reach of our
approach.
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1.4 Technical Overview
We provide here a rough outline of the main technical steps of our approach to construct RBE. To put our
work into context, we briefly recall the main ideas behind prior constructions of RBE.

Merkle-Hashing with Encryption. The main idea behind existing RBE constructions [GHMR18] is to
design a special-purpose hash function that supports an “encryption” functionality. Specifically, the KC uses
such a function to hash all key-identity pairs (pk, id) in a Merkle-tree and sets the root of the tree to be the
public parameters pp of the RBE system. This additional encryption functionality allows anyone that knows
the root of the hash (pp) to encrypt a message m with respect to an identity id. The resulting ciphertext
can be decrypted by knowing (i) the pre-image of the hash and (ii) the secret key sk corresponding to pk.
Observe that the KC is only responsible for correctly hashing all the public keys, but at no point in time is
required to know any secret key. In fact, the pair (sk, pk) is sampled locally by the user associated with the
identity id.

The main technical step of their approach is then how to build such a “hash with encryption”. This is
realized using a special-purpose two-to-one hash (which can be constructed from a variety of assumption) in
conjunction with garbled circuits [Yao82]. This can be then turned into a hash for arbitrarily long messages
via the standard Merkle tree construction and a chain of garbled circuits, where the last outputs an encryption
of the message m under the public key pk that was hashed in the tree. Decryption requires knowing the
root-to-leaf path for the Merkle tree, along with sk. Note that such root-to-leaf paths may change as new
public-keys are added to the hash, which is the reason why users need to receive updates. Asymptotically,
they achieve RBE with close to optimal efficiency. Unfortunately this comes at the cost of running expensive
cryptographic operations inside garbled circuits.

Vector Commitments with Encryption. In this work we take a different approach to bypass the
use of heavy cryptographic non black-box primitives. Our main idea is to substitute Merkle trees with
an algebraic data structure to accumulate the public keys: Vector commitments [LY10, CF13] (VCs). VCs
work analogously to Merkle trees, i.e., one can commit to a vector of elements so that at a later point one
can selectively open any position of the vector. However, they offer algebraic structure that enables more
advanced properties, e.g., batch opening [BBF19,LM19], opening aggregation [CFG+20,GRWZ20,TAB+20]
or functional opening [LRY16,LP20]. Our observation is that, once the verification of an opening is algebraic
(e.g., a pairing operation), one can hope to directly encrypt a message with respect to this verification
equation, thus avoiding the non black-box tools.

More concretely, we make use of the [LY10] VC which works over bilinear groups. The commitment
to a vector x = (x1, . . . , xN ) is defined as C =

∏
i∈[N ] h

xi
i , whereas the opening value for position i is

Λi =
∏

j ̸=i(hN+1−i+j)
xj . To verify that is xi is the value at position i one checks if

e(C, hN+1−i)
?
= e(Λi, g) · e(hxi

i , hN+1−i)

where {hi}i∈[2N ]\{N+1} are part of the public parameters (henceforth referred to as the crs). It is binding
under the q-Diffie-Hellman exponent assumption [BGW05], a well-established q-type (falsifiable) assumption
over bilinear groups. To turn this into an RBE, we set the position i to be the identity of the user (implicitly
we have N potential users), ski = xi to be the secret key and pki = hxi

i to be public key. Then C =
∏

i∈[N ] pki
is the public parameter that accumulates the keys of the users (this is the analogue of the Merkle-tree root).
Furthermore, Λi is the necessary opening a user should hold in order to be able to decrypt, provided by the
KC.

Our goal is now to describe a procedure to generate a ciphertext ct that can be decrypted by knowing
(i) the secret key xi and (ii) the opening Λi that satisfies the above equation. On input a message m and an
identity i, our encryption algorithm outputs (r the encryption randomness):

ct = (e(C, hN+1−i)
r, gr, e(hi, hN+1−i)

r ·m) .

If Λi is a valid opening, then we can derive that

e(hi, hN+1−i)
r = (e(C, hN+1−i)

re(Λi, g
r))

x−1
i .
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Therefore a user that knows xi can decrypt the ciphertext by computing e(hi, hN+1−i)
r as indicated and

dividing the third component to recover m. On the other hand, it can be shown that if either the secret key
or the opening is missing, then the message m is hidden.

Amortizing the Public Parameters. Although encryption/decryption, as described, is performed very
efficiently, the scheme as described in not yet a valid RBE. Observe that the crs = {hi} consists of 2N − 1
group elements, where N is the number of users. Thus, this is even worse than the trivial scheme where the
public parameters simply consist of the concatenation of all public keys! Our next observation is that the crs
is reusable across different commitments, and can therefore be amortized. Specifically, we divide the users
in blocks of size n = O(

√
N) : {1, . . . , n}, {n + 1, . . . , 2n}, . . . Then we create B = N/n = O(

√
N) vector

commitments (C1, C2, . . . , CB), one for each block, using the same crs. Now the public parameters of the
RBE consist of an O(

√
N)-sized crs and O(

√
N) number of commitments, therefore overall have size O(

√
N),

sublinear on the number of users.

Extensions. The construction outlined above forms the basis for our template to construct RBE. We then
show how to extend the scheme to lower the number of updates received by each user to O(log(

√
N))

(Section 5.1), achieve anonymity (Section 5.3), verifiability (Section 5.2), and CCA security (Section 5.4).
We refer the reader to the corresponding sections for more details.

2 Preliminaries
We denote by λ ∈ N the security parameter. We say that a function is negligible if it vanishes faster than
any polynomial. Given a set S, we denote by s← S the uniform sampling from S. We say that an algorithm
is PPT if it can be implemented by a probabilistic machine running in time polynomial in the security
parameter. We denote by [n] the set {1, . . . , n}.

2.1 Bilinear Groups
Let bg := (p,G,GT , g, e)← BG(1λ) be a generator of a (symmetric) bilinear group generated by g of prime
order p, with an efficiently computable pairing e : G×G→ GT . We recall a few well-known assumptions in
bilinear groups.

Assumption 1 (Bilinear Diffie-Hellman). Let BG be a bilinear group generator. The bilinear Diffie-Hellman
problem is hard for BG if the following distributions are computationally indistinguishable:

(p,G,GT , g, e, g
x, gy, gz, e(g, g)xyz) ≈ (p,G,GT , g, e, g

x, gy, gz, e(g, g)w)

where (p,G,GT , g, e)← BG(1λ) and (x, y, z, w)← Z∗
p.

It is going to be convenient for us to rephrase the above assumption as the hardness of distinguishing between
the distributions, which can be easily reduced to the bilinear Diffie-Hellman assumption:

(p,G,GT , g, e, g
x, e(g, g)y, e(g, g)xy) ≈ (p,G,GT , g, e, g

x, e(g, g)y, e(g, g)z) .

Assumption 2 (n-Power Diffie-Hellman). Let BG be a bilinear group generator. The n-power Diffie-Hellman
problem is hard for BG if the following distributions are computationally indistinguishable:(

p,G,GT , g, e,
{
gx

i
}
i∈[2n]\{n+1}

, gy, e(g, g)x
n+1y

)
≈

(
p,G,GT , g, e,

{
gx

i
}
i∈[2n]\{n+1}

, gy, e(g, g)z
)

where (p,G,GT , g, e)← BG(1λ) and and (x, y, z)← Z∗
p.

Symmetric vs Asymmetric Pairings. Throughout this work, we describe our assumptions and our
schemes using symmetric pairings. However, both the assumptions and the constructions are easily generalizable
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to the setting where only an asymmetric pairing e : G1 × G2 → GT is available. We chose to present our
constructions in the symmetric settings for two reasons: (i) In terms of security, symmetric pairings are
more general since one cannot rely on the hardness of mapping between the two source groups. This shows
that our construction template is more robust, and remains secure even if there is an efficiently computable
isomorphism between the two source groups. (ii) Symmetric pairings help avoiding overloading the reader
with indices, and allow for a more elegant presentation of main ideas of the construction.

3 Definitions
Here we formally define RBE, and our definitions are taken almost in verbatim from [GHM+19]. Compared
with [GHM+19], we modify the syntax of RBE to allow the key generation algorithm to take as input
a common reference string crs. Furthermore, we fix a bound on universe of users N ahead of time. For
notational convenience, we still refer to such primitive as an RBE, but we explicitly mention that the scheme
only supports bounded identity sets.

Definition 1 (Registration-Based Encryption (RBE)). A registration-based encryption for a universe of
identities {1, . . . , N} scheme consists of five PPT algorithms (Setup,Gen,Reg,Enc,Upd,Dec) working as
follows. The Reg and Upd algorithms are performed by the key curator, which we call KC for short.

• Setup. Setup(1λ, N) → crs: The setup algorithm Setup samples a common reference string crs once
and for all at the beginning of the protocol.

• Key Generation. Gen(crs) → (pk, sk): The randomized algorithm Gen takes as input the common
reference string crs and outputs a pair of public and secret keys (pk, sk). The key generation algorithm
is run by any honest party locally who wants to register itself into the system.

• Registration. Reg[aux](crs, pp, id, pk) → pp′: The deterministic algorithm Reg takes as input the
common random sting crs, current public parameter pp, a registering identity id and a public key
pk (supposedly for the identity id), and it outputs pp′ as the updated public parameters. The Reg
algorithm uses read and write oracle access to the auxiliary information aux which will be updated
into aux′ during the process of registration. (The system is initialized with public parameters pp and
auxiliary information aux set to ⊥.)

• Encryption. Enc(crs, pp, id,m) → ct: The randomized algorithm Enc takes as input the common
random sting crs, a public parameter pp, a recipient identity id, and a plaintext message m and outputs
a ciphertext ct.

• Update. Upd[aux](pp, id, pk)→ u: The deterministic algorithm Upd takes as input the current parameters
pp stored at the KC, an identity id, and a public key pk. It has read only oracle access to aux and
generates an update information u that can help id to decrypt its messages.

• Decryption. Dec(sk, u, ct) → m: The deterministic decryption algorithm Dec takes as input a secret
key sk, an update information u, and a ciphertext ct, and it outputs a message m ∈ {0, 1}∗ or in
{⊥,GetUpd}. The symbol ⊥ indicates a syntax error while GetUpd indicates that more recent update
information (than u) might be needed for decryption.

Definition 2 (Completeness, compactness, and efficiency of RBE). For any interactive computationally
unbounded adversary A with polynomial query complexity, consider the following game EXPComp

A (λ) between
an adversary A and a challenger C.

1. Initialization. C sets pp = ⊥, aux = ⊥, u = ⊥, D = ∅, id∗ = ⊥, t = 0, and crs← Setup(1λ), and sends
the sampled crs to A.

2. Until A continues (which is at most poly(λ) steps), proceed as follows. At every iteration, A chooses
exactly one of the actions below to be performed.
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(a) Registering new (non-target) identity. A sends some id /∈ D and pk in the support of the
Gen(crs) algorithm, to C. C registers (id, pk) by letting pp := Reg[aux](crs, pp, id, pk) and D :=
D ∪ {id}.

(b) Registering the target identity. If id∗ ̸= ⊥, skip this step. Otherwise, A sends some id∗ /∈ D to
C. C then samples (pk∗, sk∗)← Gen(crs), updates pp := Reg[aux](crs, pp, id∗, pk∗) and D := D∪{id∗},
and sends pk∗ to A.

(c) Encrypting for the target identity. If id∗ = ⊥, then skip this step. Otherwise, C sets
t := t + 1. A sends some mt ∈ {0, 1}∗ to C who sends back a corresponding ciphertext ctt ←
Enc(crs, pp, id∗,mt) to A.

(d) Decryption by target identity. A sends a j ∈ [t] to C. C then lets m′
j = Dec(sk∗, u, ctj). If

m′
j = GetUpd, then C obtains the update u∗ = Updaux(pp, id∗) and then lets m′

j = Dec(sk∗, u∗, ctj).

3. The adversary A wins the game if there is some j ∈ [t] for which m′
j ̸= mj .

Let Q ∈ poly be an upper bound on the number of queries issued by A and let Ñ = |D| ≤ N at the end of
the execution. We require the following properties to hold.

• Completeness. For all computationally unbounded A, Pr[AwinsEXPComp
A (λ)] = 0.

• Compactness of public parameters and updates. For all queries q ∈ [Q], let ppq be the public
parameters after the q-th query. Then |pp| is sublinear in Ñ . Moreover, for all id ∈ D, the size of the
corresponding update |uq| is also sublinear in Ñ .

• Efficiency of runtime of registration and update. The running time of each invocation of Reg
and Upd algorithms is sublinear in Ñ .

• Efficiency of the number of updates. The total number of invocations of Upd for identity id∗ in
Step 2(d) of the game EXPComp

A (λ) is sublinear in Ñ .

Definition 3 (Security of RBE). For any interactive PPT adversary A, consider the following game
EXPCPA

A (λ) between A and a challenger C.

1. Initialization. C sets pp = ⊥, aux = ⊥, D = ∅, id∗ = ⊥, crs ← Setup(1λ) and sends the sampled crs
to A.

2. Until A continues (which is at most poly(λ) steps), proceed as follows. At every iteration, A chooses
exactly one of the actions below to be performed.

(a) Registering new (non-target) identity. A sends some id /∈ D and pk to C. C registers (id, pk)

by letting pp := Reg[aux](crs, pp, id, pk) and D := D ∪ {id}.
(b) Registering the target identity. If id∗ ̸= ⊥, skip this step. Otherwise, A sends some id∗ /∈ D to
C. C then samples (pk∗, sk∗) ← Gen(crs), updates pp := Reg[aux](crs, pp, id∗, pk∗), D := D ∪ {id∗},
and sends pk∗ to A.

3. Encrypting for the target identity. A sends some id /∈ D \ {id∗} and two messages (m0,m1) and
C generates ct← Enc(crs, pp, id,mb), where b← {0, 1} is a random bit, and sends ct to A.

4. The adversary A outputs a bit b′ and wins the game if b = b′.

We call an RBE scheme secure if there exists a negligible function negl such that for all PPT adversaries A
it holds that

∣∣1/2− Pr[AwinsEXPCPA
A (λ)]

∣∣ ≤ negl(λ).
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4 Our Base RBE Construction

4.1 Our Base Construction
Here we present our base RBE for bounded identity sets construction. We let N be the maximum number of
users to be registered and we divide the N users in blocks of n and subsequently we get B := ⌈Nn ⌉ number
of blocks. We denote by ī the modular reduction ī := (i mod n)+1, for any i ∈ Z. As outlined in Section 1.4
the key curator (KC) has to manage B vector commitments, committing to the secret keys of the users,
without knowing the secret keys. Each committed vector consists of n keys, thus overall N = Bn keys are
committed. That is, KC needs to maintain the commitments C(1), . . . , C(B) and up-to-date opening values
for each user, Λ1, . . . ,ΛN , so that any user can query her opening value. We will use the vector commitment
from [LY10], where the commitments and the openings are of the form

C =
∏
i∈[n]

hxi
i and Λi =

∏
j ̸=i

(hn+1−i+j)
xj

where {hi}i∈[2n]\n+1 are part of the crs. It will be convenient to think of i := id as the identity of the user
and xi := skid as the user’s secret key.

Overview. For simplicity, we illustrate how the algorithms operate over the commitment C(1) for identities in
{1, . . . , n}, the general case follows by a straightforward generalization and it is formally described in Figure 1.
The public key of the user id is set to pkid = (hid)

skid and the commitment is simply the accumulation of
all the public keys C(1) =

∏
id∈[n] pkid. However, once a user joins the system, we also have to update the

opening information {Λid}id∈[n], since its computation includes the secret keys of all the other users in the
block:

Λid =
∏

id′ ̸=id

(hn+1−id+id′)
skid′ .

We resolve this by letting the users compute locally all terms that are used for different openings. For example
id computes (hn+1−1+id)

skid (used in Λ1), (hn+1−2+id)
skid (used in Λ2), and so on (excluding (hn+1−id+id)

skid

that is used nowhere). We call these values helping information and denote them by

ξ =
(
(hid+n)

skid , . . . , (hid+1)
skid

)
.

When a new user id ∈ [n] registers, it sends her pkid and ξ = (ξ1, . . . , ξn) to the KC. Then the KC first checks
the correctness of the helping information (using pairings) and updates the corresponding commitment as
C(1) ← C(1) ·pkid and all the corresponding openings in the cluster as Λid′ ← Λid′ ·ξid′ for each id′ ∈ [n]\{id}.
Afterwards, KC can delete ξ.

Furthermore, we note that a user needs to keep track of all the openings throughout the evolution of
the system. That is because a ciphertext may have been encrypted with respect to any instance of the
public parameters (thus any C(1)). Therefore the KC (and the user) should maintain a list of openings
Lid = {Λid,1, . . . ,Λid,ℓ}, instead of a single opening, that correspond to all the opening values changes that
have occurred until this point. Concretely, ℓ is the number of users that have registered in this block so far
and Λid,j is the corresponding openings. It follows that ℓ ≤ n.

Encryption and decryption are done (as described in Section 1.4) with respect to the verification equation
of the vector commitment. This is accompanied with a mechanism to make the user aware of the fact that
the opening of the vector commitment is outdated. In that case, the user simply requests an update from
the KC.
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Setup(1λ, n)→ crs : generate a bilinear group bg := (p,G,GT , g, e)← BG(1λ) and sample z ← Z∗
p. Sets

hi = gz
i

for each i ∈ [2n] and output

crs =
(
bg, {hi}i∈[2n]\{n+1}

)
.

Gen(crs, id)→ (pk, sk, ξ) : If id /∈ [N ] output ⊥. Otherwise, sample xid ← Z∗
p, compute īd = (id mod n)+

1 and set

pk = (hīd)
xid , sk = xid, ξ =

(
(hīd+n)

xid , . . . , (h2+n)
xid , ∅, (hn)

xid , . . . , (hīd+1)
xid
)

Reg[aux](crs, pp, id, pk, ξ)→ pp′ : The key curator proceeds as follows:

• If it is the first identity to be registered then initialize pp = (1, . . . , 1) ∈ GB and aux =
({1}, . . . , {1}) ∈ GN .

• If id /∈ [N ] output ⊥.

• Check the correctness of ξ:

e(pk, hn) = e(ξ1, g) = · · · = e(ξīd−1, hīd−2) = e(ξīd+1, hīd) = . . . = e(ξn, hn−1)

where īd = id mod n. If the above doesn’t hold output ⊥.

• Otherwise, parse pp =
(
C(1), . . . , C(B)

)
, compute k = ⌈ idn ⌉ and set C ′(k) ← C(k) · pk, the rest

remain the same C ′(j) = C(j) for each j ∈ [B] \ {k}. Output

pp′ = (C ′(1), . . . , C ′(B))

• Parse aux = (L1, . . . , LN ) and for each j ∈ {(k − 1)n + 1, . . . , (k − 1)n + n} \ {id} parse
Lj = {Λj,1, . . . ,Λj,ℓ}. Set Lj = Lj ∪ {Λj,ℓ+1 = Λj,ℓ · ξj}, while the rest remain the same.

Enc(crs, pp, id,m)→ ct : On input m ∈ GT , let īd = id mod n and k = ⌈ idn ⌉. Sample r ← Z∗
p and

compute:

ct = (ct0, ct1, ct2, ct3) =
(
C(k), e(C(k), hn+1−īd)

r, gr, e(hīd, hn+1−īd)
r ·m

)
.

Upd[aux](pp, id)→ u : parse aux = (L1, . . . , LN ) and output Lid.

Dec(sk, u, ct)→ m or GetUpd : Parse u = {Λ1, . . . ,Λℓ}, if there exists no i ∈ [ℓ] such that
e(ct0, hn+1−īd) = e(Λi, g) · e((hīd)

sk, hn+1−īd), then output GetUpd.3Otherwise let i be such index
and return

ct3

(e(Λi, ct2)−1 · ct1)sk
−1 .

Figure 1: Our main RBE construction.

Correctness. We can prove the correctness for party id with key pair (skid, pkid) by expanding the above
equation. For notational convenience, we assume that id ∈ [n] and thus the corresponding commitment is C(1).
Additionally, we assume that all n identities are registered under this commitment, hence C(1) =

∏
i∈[n] h

ski
i .
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Setup Gen Reg Enc Upd Dec #Upd Prove Verify
[GHMR18, §4] 1 1 logM logM logM logM logM – –
[GHM+19,CES21] 1 1 log2 M log2 M logM log2 M logM – –
[GV20] 1 1 log2 M log2 M logM logM logM log2 M log2 M

Sec. 4
√
N

√
N

√
N 1 1 1

√
N 1 1

Sec. 5.1
√
N

√
N

√
N log

√
N log

√
N log

√
N log

√
N log

√
N log

√
N log

√
N

|crs| |pp| |aux| |pk| |sk| |ct| |u| |π|
[GHMR18, §4], [GHM+19] – logM M 1 1 logM logM –
[CES21] 1 logM M 1 1 logM logM –
[GV20] 1 logM M 1 1 logM logM log2 M

Sec. 4
√
N

√
N M

√
N 1 1 1

√
N 1

Sec. 5.1
√
N

√
N log

√
N N log

√
N 1 1 log

√
N log

√
N log

√
N

Table 1: Comparison of worst-case asymptotic complexities of this work and previous works. The parameter
sizes of our scheme are given in number of group elements, so we omit factors of λ. M denotes the number
of registered users, and N the capacity of the system. The cost of the Prove and Verify algorithms refers to
both membership and non-membership proofs.

Consequently, the corresponding update for id is Λ =
∏

i∈[n]\{id} ξi,id. We can then write:

ct3

(e(Λ, ct2)−1 · ct1)sk
−1
id

=
e(hid, hn+1−id)

r ·m(
e(Λ, gr)−1 · e(C(1), hn+1−id)r

)sk−1
id

=
e(hid, hn+1−id)

r ·m

e(
∏

i∈[n]\{id}

ξi,id, g
r)

−1
skid · e(

∏
i∈[n]

hski
i , hn+1−id)

r
skid

=
e(hid, hn+1−id)

r ·m∏
i∈[n]\{id}

e(ξi,id, g)
−r
skid ·

∏
i∈[n]

e(hski
i , hn+1−id)

r
skid

=
m∏

i∈[n]\{id}

e(hski
i+n−id+1, g)

−r
skid · e(hski

i , hn+1−id)
r

skid

=
m∏

i∈[n]\{id}

e(gz
i+n−id+1ski , g)

−r
skid · e(gz

iski , gz
n+1−id

)
r

skid

= m.

The scheme is also multiplicatively homomorphic over GT , where the homomorphic operation can be
computed by multiplying two ciphertexts component-wise.

4.2 Efficiency
Setting the parameter as n = B =

√
N optimizes the public information a user should store: Both crs and pp

are O(
√
N) group elements. Below we provide an efficiency analysis adopting this choice, n =

√
N . However,

we stress that alternative options, that optimize different aspects of the system, can always be considered.
Here we give an asymptotic efficiency analysis, parametrized by the number of users N , and we show a
comparison with prior works in Table 1.

3In a slight abuse of notation, we assume that the algorithm is also given id as input.
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Regarding the computational complexity, generating the crs requires O(
√
N) group exponentiations

and is only done once at the system setup. Similarly, the key-generation of a user takes O(
√
N) group

exponentiations, and is only executed once by each user. Registration of a user by the KC takes O(
√
N)

pairing checks and then 1 group multiplication to compute the new pp and O(
√
N) group multiplications to

update the aux. Finally, Enc, Dec, and Upd are very efficient requiring O(1)-many group operations.4
As for the storage requirements, the crs and the pp stored by the KC and the users are both O(

√
N)

group elements, while pk and sk are 1 group and field element respectively.5 The aux stored by the Key
Curator consists of at most O(N3/2) group elements, O(

√
N) corresponding to each participating user. More

specifically, if M users are registered then |aux| = O(M
√
N) in the worst-case. Each user needs to make

up to O(
√
N) Upd-queries to the KC and store the update information u of size O(

√
N). In Section 5.1

we show a variant of our construction that reduces both these to O(log(N)) and the aux of the KC to
|aux| = O(N log

√
N), at the cost of having public parameters of size |pp| = O(

√
N log(N)) instead. Finally

any ciphertext consists of 2 G-elements and 2 GT -elements.
We also remark that the total number of users in the system is determined by the parameter N , which

is chosen ahead of time and fixed throughout the life of the system. However, we stress that N is not a
hard bound: If at some point in time the total amount of identities exceed N , nothing prevents one from
appending new commitments to the public parameters to increase the identity bound (say from N to 2N).
I.e., one does not have to re-initialize the system, even if the identity bound is exceeded.

4.3 Security Analysis
In the following we state and prove our main security theorem.

Theorem 1 (Security). If the bilinear Diffie-Hellman and the n-Power Diffie-Hellman assumptions hold for
BG, then the scheme as described above satisfies security.

Proof. In the following, we consider an adversary having registered N ′ arbitrary identities, 0 ≤ N ′ ≤ N ,
i.e. |D| = N ′. The target identity id∗ /∈ D chosen by the adversary A may or may not be registered by the
challenger C, according to the definition. In concrete:

• (Step 1) The challenger first C samples a crs = (bg, {gzi}i∈[2n]/∈{n+1}) and performs the initialization.

• (Step 2) Until A exits step 2 of the security definition C registers the identities chosen by A. At the
end N ′ identities have been registered.

Let D = {id1, . . . , idN ′} be the registered identities, observe that for each id ∈ D the challenger receives
pk, ξ such that:

e(pk, hn) = e(ξ1, g) = · · · = e(ξīd−1, hīd−2) = e(ξīd+1, hīd) = . . . = e(ξn, hn−1).

Since the order of the group p is prime (thus the group is cyclic), we can write pk = (hīd)
xid , for some xid ∈ Z∗

p.
Then ξj = (hīd+n−(j−1))

xid .

• (Step 3) Encrypting the target identity we get a ciphertext ct← Enc(crs, pp, id∗,mb). Concretely:

ct =
(
C(k),e(C(k), hn+1− ¯id∗)

r, gr, e(h ¯id∗ , hn+1− ¯id∗)
r ·mb

)
Next, in order to prove security of our construction we define the following sequence of games:

4For Dec we assume that the decrypter knows the correct opening for a given ciphertext, which is naturally the case if the
user is up-to-date and the ciphertext recent. Otherwise its worse-case complexity is bounded by O(

√
N) (base construction) or

by O(log
√
N) (efficient updates).

5The helping information ξ is generated by the user once during the registration. It is not needed to later be stored neither
by the KC nor the user.
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Game0: Is the original game of RBE security described above. Here:

ct =
(
C(k),e(C(k), hn+1− ¯id∗)

r, gr, e(h ¯id∗ , hn+1− ¯id∗)
r ·mb

)
where k = ⌈ id

∗

n ⌉,
¯id∗ = id∗ mod n.

It will be useful to recall the structure of C(k):

1. Case 1: if id∗ was registered by C then

C(k) = (h ¯id∗)
xid∗

∏
i∈D(k)\{id∗}

(hī)
xi

where k = ⌈ id
∗

n ⌉ and D(k) = D ∩ {id}(k−1)n+n
id=(k−1)n+1. Consequently:

e
(
C(k), hn+1− ¯id∗

)r

= e

(h ¯id∗)
xid∗ ·

∏
i∈D(k)\{id∗}

(hī)
xi , hn+1− ¯id∗

r

= e
(
(h ¯id∗)

xid∗ , hn+1− ¯id∗
)r ·

·
∏

i∈D(k)\{id∗}

e
(
(hī)

xi , hn+1− ¯id∗
)r

= e (g, g)
zn+1rxid∗

∏
i∈D(k)\{id∗}

e (g, g)
zī+n+1− ¯id∗xir

= e (g, g)
zn+1rxid∗

∏
i∈D(k)\{id∗}

e
(
gz

ī+n−( ¯id∗−1)xi , gr
)

= e (g, g)
zn+1rxid∗ e

 ∏
i∈D(k)\{id∗}

ξi, ¯id∗ , g
r


2. Case 2: if id∗ was not registered then:6

C(k) =
∏

i∈D(k)\{id∗}

(hī)
xi

where k = ⌈ id
∗

n ⌉ and D(k) = D ∩ {id}(k−1)n+n
id=(k−1)n+1 and similarly to the previous case:

e
(
C(k), hn+1− ¯id∗

)r

=
∏

i∈D(k)\{id∗}

e
(
ξi, ¯id∗ , g

r
)

Game1: Is the same to Game0, except for step 3 (the encryption step); we change the ciphertext according
to the two cases below:

1. Case 1: if A chooses to register id∗ we set the ciphertext:

ct0 = C(k),

ct1 = e(g, g)s·xid∗ e

 ∏
i∈D(k)\{id∗}

ξi, ¯id∗ , g
r


ct2 = gr, ct3 = e(g, g)smb

for a random s← Z∗
p.

6We note that \{id∗} in the product is written for emphasis, since D(k) doesn’t include it anyway.
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2. Case 2: if A chooses not to register id∗ then we set:

ct0 = C(k), ct1 = e

 ∏
i∈D(k)\{id∗}

ξi, ¯id∗ , g
r


ct2 = gr, ct3 = e(g, g)smb

for a random s← Z∗
p.

In both cases, the distributions induced by Game0 and Game1 are computationally indistinguishable assuming
the n-power Diffie-Hellman assumption: according to the assumption e(h ¯id∗ , hn+1− ¯id∗)

r = e (g, g)
zn+1r ≈

e (g, g)
s (given {hi = gz

i}i∈[2n]\{n+1} and ct2 = gr). Therefore, for case 1 ct0, ct2 are identical to the ones
in Game0 and ct1 and ct3 computationally indistinguishable, while for case 2 ct0, ct1, ct2 identical and ct3
computationally indistinguishable.
Game2: Again, is the same to Game1 except for step 3 and we have two cases:

1. Case 1: if A chooses to register id∗ we set the ciphertext:

ct0 = C(k), ct1 = e(g, g)we

 ∏
i∈D(k)\{id∗}

ξi, ¯id∗ , g
r


ct2 = gr, ct2 = e(g, g)smb

for random s← Z∗
p and w ← Z∗

p.

2. Case 2: if A chooses not to register id∗ then the ciphertext is identical to the one of Game1, case 2:

ct0 = C(k), ct1 = e

 ∏
i∈D(k)\{id∗}

ξi, ¯id∗ , g
r


ct2 = gr, ct3 = e(g, g)smb

for a random s← Z∗
p.

In case 2, the distributions of Game1 and Game2 are identical. On the other hand, for case 1, the two
distributions are computationally indistinguishable by the Bilinear Diffie-Hellman assumption: e(g, g)sxid∗ ≈
e(g, g)w. The proof is concluded by observing that in game 2, the e(g, g)s ·mb is perfectly indistinguishable
from a random element M ∈ GT , thus the probability of the adversary to win is exactly 1/2.

5 Extensions
We discuss a few extension to our main construction and we describe their efficiency tradeoffs.

5.1 More Efficient Updates
Here we describe a modified version of our scheme to make the updates more efficient and also decrease the
size of the auxiliary information that is required to be stored on the KC side. To ease the understanding of the
extension, we restate some of the notations compared to our construction in Figure 1. Let t = log(n); in our
extension we are going to run t parallel instances of the scheme and we denote the public parameters of each
instance by pp = {pp1, . . . , ppt}. Similar to the construction in Figure 1, each ppi consists of commitments
(C

(1)
i , . . . , C

(B)
i ). Throughout the construction, we are going to maintain the invariant that no identity id is

registered under both ppi and ppj at any time, for any i ̸= j. We will additionally maintain a global auxiliary
information aux = (L1, . . . , LN ), along with an auxiliary variable α

(j)
i associated with the commitment C(j)

i .

14



L3 ∪ ξ(3)
3,4 and L4 ∪ ξ(4)

3,4

L3 ∪ ξ(3)
3  and L4 ∪ ξ(4)

4{
{C(1,2) C(3) C(4)

"#$%# C(1,2) C(3,4)

"#$%# C(1,2,3,4)

Figure 2: Merge of the commitments triggered by the registration of id = 4. C(I) denotes a commitment
containing identities in the set I, whereas ξ

(i)
I denotes the auxiliary information of the i-th party

corresponding to C(I).

To avoid notation clutter, in the following description we will only consider identities in the range
{1, . . . , n}. This allows us to only consider the first component C(1)

i of each commitment, and we consequently
suppress the superscript denoting C

(1)
i = Ci and α

(1)
i = αi. This is without loss of generality, since other

indices outside of this set are mapped to different commitments.

Registration. Whenever an identity id ∈ [n] with (pkid, ξid) wants to register, the KC checks the correctness
of ξid (same as in Figure 1), parses the commitments (C1, . . . , Ct), and finds the largest index i such that
Ci ̸= 1. Then it sets Ci+1 = pkid and αi+1 = ξid. It then invokes the Merge subroutine to recursively update
the public parameters and the auxiliary information. In a nutshell, the Merge subroutine maintains the
invariant that the i-th commitment always has at least twice as many keys as the (i+1)-th commitment. A
pictorial description is shown in Figure 2 and the pseudocode is shown below.

Merge[aux,αi,αi+1](Ci, Ci+1) :

• Let Ji ⊆ [n] be the set of identities contained in Ci, and let Ji+1 ⊆ [n] be the set of identities
contained in Ci+1.

• If i = 0 or |Ji| ≠ |Ji+1|, then return ⊥.

• Update Ci = Ci · Ci+1 and Ci+1 = 1.

• Parse aux = (L1, . . . , Ln).

• For all j ∈ Ji parse Lj = (Λj,1, . . . ,Λj,ℓ) and update Lj ∪ {Λj,ℓ+1 = αi,j}.
• For all j ∈ Ji+1 parse Lj = (Λj,1, . . . ,Λj,ℓ) and update Lj ∪ {Λj,ℓ+1 = αi+1,j}.
• Compute αi = αi◦αi+1, where ◦ denotes the component-wise product of the two vectors of group

elements.

• Call Merge[aux,αi−1,αi](Ci−1, Ci).

Encryption and Decryption. To encrypt a message m with respect to an identity id ∈ [n], the encrypter
computes

ct = {cti}i∈[t] =

{Ci, e(Ci, hn+1−id)
ri , gri , e(hid, hn+1−id)

rim}i∈[t]

that is, the encryption is done in parallel with respect to all commitments (C1, . . . , Ct). This way, as long as
the decrypter knows the opening for any of the commitments, the decryption algorithm is successful. The
security of the scheme can be shown by a standard hybrid argument.

Number of Updates. We claim that the total number of updates any identity id will receive will be
at most log(n). The intuition behind this is quite simple, since updates must be issued only when two
commitments are merged and therefore it suffices to establish that t ≤ log(n). Since the size of a merged
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commitment doubles, this operation can happen at most log(n) times before the number of identities loaded
in a commitment equals n. More formally, let |Ji| and |Ji+1| be the number of identities in Ci and Ci+1,
respectively. By definition, the Merge subroutine is only effective when |Ji| = |Ji+1| (else it returns ⊥),
resulting in a commitment with 2|Ji| identities. Therefore for each i ∈ [t] we have |Ji| = 2t−i at the end of
the Merge subroutine. Since at most n identities are contained in each block, we have that∑

i∈[t]

2t−i =
∑
i∈[t]

|Ji| ≤ n

which in turn implies that t ≤ log(n).

Runtimes Analysis. In the following analysis, we ignore factors in the security parameter (such as the
size of individual group elements) and we only consider the dependence of the algorithms with respect to
the number of users. For the registration algorithm, the runtime of each recursive call is dominated by
the component-product of αi and αi, which computes n group operations. Since there are at most t-many
recursive calls, we can bound the total runtime by O(n · t) = O(

√
N log

√
N). The update algorithm sends

at most t group elements to the receiver and thus its runtime is bounded by O(log
√
N).

Space Analysis. Since we run t parallel instances of the public parameters, this variant introduces a
multiplicative factor in t ≤ log(n) and thus the size of the public parameter is bounded by

√
N log

√
N .

As for the auxiliary information, we have to bound the size of aux as well as the size of α
(j)
i . As argued

above, each user receives at most log(n)-many updates in its lifespan, so the size of aux is bounded by
N log(n) = N log

√
N . On the other hand, the size of each α

(j)
i is exactly n − 1 and does not change

throughout the execution of the protocol. In total, their size is (n − 1)Bt ≤ N log
√
N , thus we can bound

the total size of the auxiliary information by O(N log
√
N).

5.2 Verifiability
In the following we discuss how to augment the construction in Section 4.1 with verifiability. Verifiable
RBE [GV20] allows one to obtain a proof of registration (membership proof) or a proof of non-registration
(non-membership proof) of an identity. In terms of efficiency, we require that both the proofs π and the
runtime of the verification algorithm are sublinear in the size of the statement. The syntax of the definition
of verfiable RBE is taken from [GV20].

Definition 4 (Verifiable RBE). A verifiable RBE is an RBE scheme that is augmented with the PPT
algorithms (MProve,MVerify,NMProve,NMVerify) defined as follows.

• MProve[aux](crs, pp, id, pk) → π: The membership proof algorithm MProve takes as input the common
random sting crs, current public parameter pp, an identity id, and a public key pk and it outputs a
membership proof π that certifies that id was registered in pp.

• MVerify(crs, pp, id, pk, π) → 0/1: The membership verification algorithm MVerify takes as input the
common random sting crs, current public parameter pp, an identity id, a public key pk, and a proof π
and it outputs a bit {0, 1} denoting acceptance or rejection.

• NMProve[aux](crs, pp, id) → π: The membership proof algorithm NMProve takes as input the common
random sting crs, current public parameter pp, and an identity id and it outputs a membership proof
π that certifies that id was not registered in pp.

• NMVerify(crs, pp, id, π)→ 0/1: The non membership verification algorithm NMVerify takes as input the
common random sting crs, current public parameter pp, an identity id, and a proof π and it outputs a
bit {0, 1} denoting acceptance or rejection.

We refer the reader to [GV20] for definitions of completeness. In terms of efficiency, we require that both
the proofs π and the runtime of the verification algorithm are sublinear in the size of the statement. Below
we recall the formal definitions for soundness for both membership and non-membership proofs.
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Definition 5 (Membership Soundness). A verifiable RBE satisfies membership soundness if there exists a
negligible function negl such that for all PPT adversaries A it holds that the advantage in the following
experiment is negligibly close to 1/2:

• crs← Setup(1λ)

• (pk, sk)← Gen(crs)

• b← {0, 1}

• (pp, id, π,m0,m1)← A(crs, pk)

• ct← Enc(crs, pp, id,mb)

• The adversary wins if:
A(ct) = b and MVerify(crs, pp, id, pk, π) = 1.

Definition 6 (Non Membership Soundness). A verifiable RBE satisfies non membership soundness if there
exists a negligible function negl such that for all PPT adversaries A it holds that the advantage in the
following experiment is negligibly close to 1/2:

• crs← Setup(1λ)

• b← {0, 1}

• (pp, id, π,m0,m1)← A(crs)

• ct← Enc(crs, pp, id,mb)

• The adversary wins if:
A(ct) = b and NMVerify(crs, pp, id, π) = 1.

Algorithms. We describe the algorithms here. In fact we show that the opening Λid is already a valid
membership/non-membership proof for the public key of id.

MProve[aux](crs, pp, id, pk)→ π : Parse aux = (L1, . . . , LN ) and let Λid be the last (most up to date) element
of Lid. Return π = Λid.

MVerify(crs, pp, id, pk, π)→ {0, 1} : Let k = ⌈ idn ⌉ and parse pp =
(
C(1), . . . , C(B)

)
. Accept if

e
(
C(k), hn+1−īd

)
?
= e (π, g) · e(pk, hn+1−īd).

NMProve[aux](crs, pp, id)→ π : (Same as MProve)

NMVerify(crs, pp, id, π)→ {0, 1} : Let k = ⌈ idn ⌉ and parse pp =
(
C(1), . . . , C(B)

)
. Accept if

e
(
C(k), hn+1−īd

)
?
= e (π, g) .

In terms of efficiency, both membership and non-membership proofs consist of a single group element and the
verification runtime is independent of N . Thus, the scheme satisfies verifier efficiency and proof succinctness.

Security Analysis. We state the main theorem in the following and we prove the two properties separately.

Theorem 2 (Soundness). If the bilinear Diffie-Hellman and the n-Power Diffie-Hellman assumptions hold
for BG, then the scheme as described above satisfies membership and non-membership soundness.
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Proof: Membership Soundness. We consider a sequence of games starting from the original Membership
Soundness game of Definition 5. Each game induces a distribution for the output ciphertext; we will argue
that the final distribution of ct is exactly 1/2 and thus by a standard hybrid argument we will conclude that
the initial Membership Soundness game is negligibly close to 1/2. In the following k = ⌈ idn ⌉.
Game0: This is the original game of Membership Soundness. The challenger samples crs← Setup(1λ), a key-
pair (pk, sk)← Gen(crs) according to the RBE algorithms and a random bit b← {0, 1} and sends (crs, pk) to
the adversary A. The adversary on input (crs, pk) outputs (pp, id, π,m0,m1). Then a ciphertext of message
mb is computed ct← Enc(crs, pp, id,mb). Here:

ct =
(
C(k), e(C(k), hn+1−īd)

r, gr, e(hīd, hn+1−īd)
rmb

)
and the adversary is admissible if MVerify(crs, pp, id, pk, π) = 1:

e
(
C(k), hn+1−īd

)
= e (π, g) · e(pk, hn+1−īd)

where pp is parsed as
(
C(1), . . . , C(B)

)
.7

Game1: The game is the same to Game0 except for the ciphertext computation. We change the way the
second element of the ciphertext is computed. Namely, we set:

ct =
(
C(k), e(π, gr) · e(pk, hn+1−īd)

r, gr, e(hīd, hn+1−īd)
r ·mb

)
Note that, since π correctly verifies, MVerify(crs, pp, id, pk, π) = 1, we have

e(π, gr) · e(pk, hn+1−īd)
r = e(π, g)r · e(pk, hn+1−īd)

r = e
(
C(k), hn+1−īd

)r

and thus the two distributions are identical.
Game2: Here we change again the way the second element of the ciphertext is computed. Namely, we set:

ct =
(
C(k), e(π, gr) · e(hīd, hn+1−īd)

r·sk, gr, e(hīd, hn+1−īd)
r ·mb

)
.

To see that the two distributions are identical, note that in the RBE construction pk = hsk
īd

(note that pk, sk
were honestly generated by the challenger) and thus:

e(hīd, hn+1−īd)
r·sk = e(hsk

īd , hn+1−īd)
r = e(pk, hn+1−īd)

r

Game3: In this hybrid, we compute the ciphertext as:

ct =
(
C(k), e(π, gr) · e(g, g)s·sk, gr, e(g, g)s ·mb

)
where s ← Z∗

p is a random field element. By the n-Power Diffie-Hellman assumption e(hīd, hn+1−īd)
r =

e(g, g)z
n+1·r ≈ e(g, g)s, therefore the distributions of ct in Game2 and Game3 are computationally indistinguishable.

Game4: In this hybrid, we compute the ciphertext as:

ct =
(
C(k), e(π, gr) · e(g, g)w, gr, e(g, g)s ·mb

)
where s← Z∗

p and w ← Z∗
p. Again, by the bilinear Diffie-Hellman assumption e(g, g)s·sk ≈ e(g, g)w, thus the

distributions induced by Game3 and Game4 are computationally indistinguishable. The proof is concluded
by observing that e(g, g)s ·mb is a uniformly distributed in GT , so the adversary has probability of success
exactly 1/2.
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Proof: Non-Membership Soundness. We consider the following sequence of hybrid games. In the following
k = ⌈ idn ⌉.
Game0: This is the original game of Non-Membership Soundness. The challenger samples crs ← Setup(1λ)
according to the RBE algorithm and a random bit b← {0, 1} and sends crs to the adversary A. The adversary
on input crs outputs (pp, id, π,m0,m1). Then a ciphertext of message mb is computed ct← Enc(crs, pp, id,mb).
Here:

ct =
(
C(k), e(C(k), hn+1−īd)

r, gr, e(hīd, hn+1−īd)
rmb

)
and the adversary is admissible if NMVerify(crs, pp, id, π) = 1:

e
(
C(k), hn+1−īd

)
= e (π, g)

where pp is parsed as
(
C(1), . . . , C(B)

)
.7

Game1: Here we change the way the second element of the ciphertext is computed. Namely, we set:

ct =
(
C(k), e(π, gr), gr, e(hīd, hn+1−īd)

r ·mb

)
.

Observe that, since the proof π correctly verifies

e(π, gr) = e(π, g)r = e
(
C(k), hn+1−īd

)r

thus the two distributions are identical.
Game2: In this hybrid, we compute the ciphertext as:

ct =
(
C(k), e(π, gr), gr, e(g, g)s ·mb

)
where s ← Z∗

p. By the n-Powers Diffie-Hellman assumption e(hīd, hn+1−īd)
r = e(g, g)z

n+1·r ≈ e(g, g)s,
therefore the distributions of Game1 and Game2 are computationally indistinguishable. The proof is concluded
by observing that e(hīd, hn+1−īd)

s ·mb is uniformly distributed in GT , so the adversary has probability of
success exactly 1/2.

5.3 Anonymity
We present a (slight) variant of our scheme of Section 4.1 that is additionally anonymous, namely, where the
ciphertexts hide the identity of the decrypter. Intuitively, there are two reasons why our original scheme is
not anonymous.

Firstly, in order for the decrypter to identify if her update information u is outdated (and thus needs to
query the KC for Upd), we include the up-to-date C(k) in the ciphertext. Then the decrypter can directly
check if Λℓ verifies with respect to C(k). This clearly (partially) breaks anonymity, since the ’block’ k in which
the user lies is leaked. We resolve this by including in the ciphertext a hiding commitment of the message m
instead, c = Com(m; o), together with an encryption of the randomness o, in place of C(k). If u is up-to-date
then the two ciphertexts are decrypted normally and c opens to m with randomness o, c = Com(m; o). If
not, then u is outdated and the user calls GetUpd.

Secondly, an adversary controlling all the users registered in a cluster k∗ can, by using their secret keys
and gr, identify if the part e(C(k), hn+1−īd)

r of a ciphertext for identity id is containing C(k∗), in case id

is not registered yet. Intuitively this is because the adversary knows all the secret keys in C(k∗) =
∏

i h
ski
i

(since id hasn’t registered yet). To resolve this we initialize all C(i) with a dummy public key in an extra
position n + 1, R = ht

n+1, generated in the setup phase. Being generated in the setup phase, no adversary
knows the corresponding secret.

Definition. Here we can formally define the anonymity notion for RBE schemes, we note that the definition
is taken from [GHM+19] with some minor changes.

7If k > B the adversary is considered non-admissible.
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Definition 7 (Anonymous RBE). An anonymous RBE scheme has the same syntax as that of an RBE
scheme, with PPT algorithms (Gen,Reg,Enc,Upd,Dec). It satisfies the properties of completeness, compactness
and efficiency as a RBE scheme and has the following stronger notion of security: For any interactive PPT
adversary A, consider the game EXPAnon

A (λ) between A and a challenger C as follows.

1. Initialization. C sets pp = ⊥, aux = ⊥, D = ∅, id0 = ⊥, id1 = ⊥, t = 0, crs ← Upoly(λ) and sends the
sampled crs to A.

2. Until A continues (which is at most poly(λ) steps), proceed as follows. At every iteration, A can perform
exactly one of the following actions.

(a) Registering new (non-target) identity. A sends some id ̸∈ D and pk to C. C registers (id, pk)

by getting pp = Reg[aux](crs, pp, (id, pk)) and lets D = D ∪ {id}.
(b) Registering new target identity pair. If id0 or id1 was chosen by A already (i.e., id0 ̸= ⊥

or id1 ̸= ⊥), skip this step. Otherwise, A sends challenges id0, id1 /∈ D to C. C first samples
(pk0, sk0) ← Gen(1λ), registers id0 by setting pp = Reg[aux](crs, pp, (id0, pk0)) and then samples
(pk1, sk1) ← Gen(1λ), registers id1 by setting pp = Reg[aux](crs, pp, (id1, pk1)). Next, C lets D =
D ∪ {id0, id1} and sends pk0, pk1 to A.

3. Encrypting for the challenge identity. A sends some (id∗0, id
∗
1) /∈ D \ {id0, id1} and two messages

(m0,m1) and C generates ct← Enc(crs, pp, idb,mb), where b← {0, 1} is a random bit, and sends ct to
A.

4. The adversary A outputs a bit b′ and wins the game if b′ = b.

We call an RBE scheme anonymous if there exists a negligible function negl such that for all PPT adversaries
A it holds that

∣∣1/2− Pr[AwinsEXPAnon
A (λ)]

∣∣ ≤ negl(λ).

Construction. Our full construction is on Figure 3. For generality we use Com as a black-box; the reader
can think of it as an ElGamal commitment.8 For ease of presentation we highlight the differences with the
original construction with blue color.

Correctness. Correctness is similar to the one of the original construction. We, additionally, argue that,
under the Binding property of the commitment scheme, c = Com(m′; o′) iff Λℓ is up-to-date: if it is up-
to-date then m = m′ and r = r′, if not then m ̸= m′ and r = r′ (unless with negligible probability) and
c = Com(m; r) ̸= Com(m′; r′) (from the Binding property of Com).

Anonymity. We state and prove the following theorem.

Theorem 3 (Anonymity). If the bilinear Diffie-Hellman and the n-Power Diffie-Hellman assumptions hold
for BG, then the scheme as described above satisfies anonymity.

Proof. The proof follows along the lines of the argument of our main theorem, so here we provide a sketch,
only highlighting the differences in the game-hops.
Game0: Is the original game of Anonymous RBE security. Here:

ct =
(
Com(mb; o), e(C

(k), hn+1− ¯id∗b
)r1 , gr1 , e(h ¯id∗b

, hn+1− ¯id∗b
)r1mb, , e(C

(k), hn+1− ¯id∗b
)r2 , gr2 , e(h ¯id∗b

, hn+1− ¯id∗b
)r2o

)
Game1: As a first step we switch to a game with a random value committed instead of mb.

ct =
(
Com(m∗; o∗), e(C(k), hn+1− ¯id∗b

)r1 , gr1 , e(h ¯id∗b
, hn+1− ¯id∗b

)r1mb, , e(C
(k), hn+1− ¯id∗b

)r2 , gr2 , e(h ¯id∗b
, hn+1− ¯id∗b

)r2o
)

8In case of domain mismatch we assume a collision-resistant hash function being applied to m and/or o.
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Setup(1λ, n)→ crs : generate a bilinear group bg := (p,G,GT , g, e)← BG(1λ) and sample z ← Zp. Sets
hi = gz

i

for each i ∈ [2(n + 1)]. Furthermore, sample t ← Z∗
p and compute R = (hn+1)

t and
Ξ = ((h2n+2)

t, . . . , (hn+3)
t, ∅). Output

crs =
(
bg, {hi}i∈[2(n+1)]\{n+2}, R, {Ξi}i∈[n]

)
.

Gen(crs, id)→ (pk, sk, ξ) : If id /∈ [N ] output ⊥. Otherwise, sample xid ← Zp, compute īd = id mod n
and set

pk = (hīd)
xid , sk = xid, ξ =

(
(hīd+n)

xid , . . . , (h2+n)
xid , ∅, (hn)

xid , . . . , (hīd+1)
xid
)

Reg[aux](crs, pp, id, pk, ξ)→ pp′ : The key curator proceeds as follows:

• If it is the first identity to be registered then initialize pp = (R, . . . , R) ∈ GB and aux =
({Ξ1}, . . . , {Ξn}, . . . , {Ξ1}, . . . {Ξn}) ∈ GN .

• If id /∈ [N ] output ⊥.

• Check the correctness of ξ:

e(pk, hn) = e(ξ1, g) = · · · = e(ξīd−1, hīd−2) = e(ξīd+1, hīd) = . . . = e(ξn, hn−1).

If the above doesn’t hold output ⊥.

• Otherwise, parse pp =
(
C(1), . . . , C(B)

)
, compute k = ⌈ idn ⌉ and set C ′(k) ← C(k) · pk, the rest

remain the same C ′(j) = C(j) for each j ∈ [B] \ {k}. Output

pp′ = (C ′(1), . . . , C ′(B))

• Parse aux = (L1, . . . , LN ) and for each j ∈ {(k − 1)n + 1, . . . , (k − 1)n + n} \ {id} parse
Lj = {Λj,1, . . . ,Λj,ℓ}. Set Lj = Lj ∪ {Λj,ℓ+1 = Λj,ℓ · ξj}, while the rest remain the same.

Enc(crs, pp, id,m)→ ct : On input m ∈ GT , let k = ⌈ idn ⌉. Sample r ← Z∗
p, o← O and compute:

ct = (ct0, ct1, ct2, ct3, ct4, ct5, ct6) =

=
(
Com(m; o), e(C(k), hn+1−īd)

r1 , gr1 , e(hīd, hn+1−īd)
r1m, e(C(k), hn+1−īd)

r2 , gr2 , e(hīd, hn+1−īd)
r2o

)
Updaux(pp, id)→ u : parse aux = (L1, . . . , LN ) and output Lid.

Dec(sk, u, ct)→ m or GetUpd : Parse u = {Λ1, . . . ,Λℓ} and for each i ∈ [ℓ] compute

m′
i =

ct3

(e(Λi, ct2)−1 · ct1)sk
−1 and o′i =

ct6

(e(Λi, ct5)−1 · ct4)sk
−1

If the exist no i such that Com(m′
i; o

′
i) ̸= ct0 then output GetUpd, otherwise output m′

i.

Figure 3: Our Anonymous RBE construction variant.

for random m∗ ← GT , o∗ ← O. From the hiding property of the commitment scheme Com, the games 0 and
1 are indistinguishable.
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From here the proof in the case 1, the case where A chooses to register id∗b , is identical to the original
proof. Hence we omit this case and focus on case 2, where the adversary A chooses not to register id∗b .
Game2: Here we compute:

ct0 = Com(m∗; o∗),

ct1 = e(g, g)s1·te

 ∏
i∈D(k)

ξi, ¯id∗b
, gr1

 , ct2 = gr1 ,

ct3 = e(g, g)s1mb,

ct4 = e(g, g)s2·te

 ∏
i∈D(k)

ξi, ¯id∗b
, gr2

 ,

ct5 = gr2 , ct6 = e(g, g)s2o

for random m∗ ← GT , o∗ ← O, s1, s2 ← Z∗
p. The distributions induced by Game0 and Game1 are computationally

indistinguishable assuming the n-power Diffie-Hellman assumption. To see why this holds observe that
C(k) = (hn+1)

t
∏

i∈D(k)(hī)
xi from which we get that e(C(k), hn+1− ¯id∗b

)r = e(g, g)z
n+2rt ·e

(∏
i∈D(k) ξi, ¯id∗b

, gr
)

(see the original proof for a similar argument) and e(h ¯id∗b
, hn+1− ¯id∗b

)r = e(g, g)z
n+2r.

Game3: Here we compute:
ct0 = Com(m∗; o∗),

ct1 = e(g, g)w1e

 ∏
i∈D(k)

ξi, ¯id∗b
, gr1

 , ct2 = gr1

ct3 = e(g, g)s1mb,

ct4 = e(g, g)w2e

 ∏
i∈D(k)

ξi, ¯id∗b
, gr2


ct5 = gr2 , ct6 = e(g, g)s2o

for random m∗ ← GT , o∗ ← O, s1, s2 ← Z∗
p, w1, w2 ← Z∗

p. The distributions of games 2 and 3 are
computationally indistinguishable by the Bilinear Diffie-Hellman assumption. To conclude the proof note
that the distribution of Game3 is perfectly indistinguishable from a random one.

5.4 CCA Security
The standard CCA security notion for encryption schemes captures the fact that an adversary may be able
to obtain decryptions for ciphertexts of her choice and demands that even in this case she should not be
able distinguish between encrypted messages. In the following we state the notion of security under chosen
ciphertext attack (CCA) for RBE.

Definition 8 (CCA Security of RBE). For any interactive PPT adversary A, consider the following game
EXPCCA

A (λ) between A and a challenger C.

1. Initialization. C sets pp = ⊥, aux = ⊥, D = ∅, id∗ = ⊥, crs ← Setup(1λ) and sends the sampled crs
to A.

2. Until A continues (which is at most poly(λ) steps), proceed as follows. At every iteration, A chooses
exactly one of the actions below to be performed.

(a) Registering new (non-target) identity. A sends some id /∈ D and pk to C. C registers (id, pk)

by letting pp := Reg[aux](crs, pp, id, pk) and D := D ∪ {id}.
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(b) Registering the target identity. If id∗ ̸= ⊥, skip this step. Otherwise, A sends some id∗ /∈ D to
C. C then samples (pk∗, sk∗) ← Gen(crs), updates pp := Reg[aux](crs, pp, id∗, pk∗), D := D ∪ {id∗},
and sends pk∗ to A.

(c) Decryption by target identity If id∗ = ⊥, skip this step. Otherwise, A sends some ciphertext ct
to C. C then lets m = Dec(sk∗, u, ct). If m = GetUpd, then C obtains the update u∗ = Updaux(pp, id∗)
and then returns Dec(sk∗, u∗, ctj).

3. Encrypting for the target identity. A sends some id /∈ D \ {id∗} and two messages (m0,m1) and
C generates ct∗ ← Enc(crs, pp, id,mb), where b← {0, 1} is a random bit, and sends ct∗ to A.

4. The adversary A can continue querying the decryption oracle on ciphertexts not equal to ct∗. At some
point A outputs a bit b′ and wins the game if b = b′.

We call an RBE scheme secure if there exists a negligible function negl such that for all PPT adversaries A
it holds that

∣∣1/2− Pr[AwinsEXPCCA
A (λ)]

∣∣ ≤ negl(λ).

We sketch how our scheme can be transformed into a CCA-secure one. First, we observe that the procedure
to determine whether the user’s opening is up to date depends only on hsk

īd
= pk, which is a public information.

It follows that this check is publicly computable and therefore does not leak any further information about
the secret key. It remains to show how to modify the scheme to answer decryption queries. There are
many generic transformations available in the literature, and the most efficient is the Fujisaki-Okamoto
transformation [FO99], where the encryption algorithm is defined as

Enc(crs, pp, id, r;H1(r,m)),H2(r)⊕m

where (H1,H2) are two hash functions modeled as random oracles and r is a random string. Since this is a
standard transformation, we omit the formal analysis and we refer the reader to [FO99] for further details.

5.5 Efficient RBE from the BDH assumption
We show an efficient construction of RBE secure under the plain Bilinear Diffie-Hellman assumption, i.e., not
based on a q-type assumption. The construction is in the same spirit as the one of Section 4.1, but is instead
based on the [CF13] vector commitment (which is secure under the standard CDH assumption). The scheme
is slightly less efficient than our main construction. The overhead comes from the fact that the [CF13] VC
has quadratic parameters, thus (after applying the square root trick) the parameters are still linear on the
number of users. Fortunately, the linear-sized part of the parameters (denoted as crs) is not needed to be
stored by the users, but solely by the KC.9

We denote the parameters that the user should store by crsuser, and as will be apparent in the construction
they have size O(n) (instead of O(N)). The scheme is described in Figure 4.

Security For lack of space we omit a full formal proof. To see why the scheme is secure under the Bilinear
Diffie-Hellman (BDH) assumption observe that ct3 = e(hi, hi)

rm = e(g, g)r·z
2

m. Under the BDH assumption,
e(g, g)rz

2

is indistinguishable from e(g, g)s, for a random s← Z∗
p.10

6 Implementation and Benchmarks
We implemented a Python prototype11 of both efficient-update and basic RBE construction described
in Section 5.1 and Section 4.1. We used asymmetric pairings instead of symmetric pairings in our prototype.
To accommodate asymmetric pairings, the construction is modified slightly to have two copies of the CRS

9Each user needs to download the linear-sized parameters once at the registration phase and then delete it.
10In fact, this is a square-variant of the BDH assumption, but can be reduced to the plain BDH. Analogous reductions for

CDH and its square-variant can be found in the literature [BDZ03,MW96].
11https://anonymous.4open.science/r/Efficient-RBE-2/
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Setup(1λ, n)→ (crs, crsKC) : generate a bilinear group bg := (p,G,GT , g, e) ← BG(1λ) and sample
{zi}i∈[n] ← Z∗

p. Set hi = gzi for each i ∈ [n], Hi,j = gzizj for each i, j ∈ [n] and output

crs =
(
bg, {hi}i∈[n], {Hi,j}i,j∈[n],i̸=j

)
and crsuser =

(
bg, {hi}i∈[n]

)
Gen(crs, id)→ (pk, sk, ξ) : If id /∈ [N ] output ⊥. Otherwise, sample xid ← Zp, compute īd = id mod n

and set

pk = (hīd)
xid , sk = xid, ξ =

(
(H1,īd)

xid , . . . , (Hīd−1,īd)
xid , ∅, (Hīd+1,īd)

xid , . . . , (Hn,īd)
xid
)

Reg[aux](crs, pp, id, pk, ξ)→ pp′ : The key curator proceeds as follows:

• If it is the first identity to be registered then initialize pp = (1, . . . , 1) ∈ GB and aux =
({1}, . . . , {1}) ∈ GN .

• If id /∈ [N ] output ⊥.

• Check the correctness of ξ:

e(pk, h1) = e(ξ1, g), . . . , e(pk, hīd−1) = e(ξīd−1, g), e(pk, hīd+1) = e(ξīd+1, g), . . . , e(pk, hn) = e(ξn, g)

where īd = id mod n. If the above doesn’t hold output ⊥.

• Otherwise, parse pp =
(
C(1), . . . , C(B)

)
, compute k = ⌈ idn ⌉ and set C ′(k) ← C(k) · pk, the rest

remain the same C ′(j) = C(j) for each j ∈ [B] \ {k}. Output

pp′ = (C ′(1), . . . , C ′(B))

• Parse aux = (L1, . . . , LN ) and for each j ∈ {(k − 1)n + 1, . . . , (k − 1)n + n} \ {id} parse
Lj = {Λj,1, . . . ,Λj,ℓ}. Set Lj = Lj ∪ {Λj,ℓ+1 = Λj,ℓ · ξj}, while the rest remain the same.

Enc(crsuser, pp, id,m)→ ct : On input m ∈ GT , let īd = id mod n and k = ⌈ idn ⌉. Sample r ← Zp and
compute:

ct = (ct0, ct1, ct2, ct3) =
(
C(k), e(C(k), hi)

r, gr, e(hi, hi)
r ·m

)
.

Updaux(pp, id)→ u : parse aux = (L1, . . . , LN ) and output Lid.

Dec(sk, u, ct)→ m or GetUpd : Parse u = {Λ1, . . . ,Λℓ}, if there exists no i ∈ [ℓ] such that e(ct0, hi) ̸=
e(u, g) · e((hi)

sk, hi) then output GetUpd. Otherwise return

ct3

(e(Λi, ct2)−1 · ct1)sk
−1 .

Figure 4: Our RBE construction from the Bilinear Diffie-Hellman assumption.
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Figure 5: Benchmarks for our basic and efficient constructions. The sizes of crs, pp, aux are given are calculated
assuming the full system capacity N has been registered. The size of ct is given for the worst case (see
discussion in text); the sizes of pk, sk are constant at 49B and 32B, respectively.

(one in G1 and one in G2); all other elements (commitments and auxiliary information) are left in G1, and
ct2 is set to gr2 (where g2 is the generator of G2). For the choice of pairings, we used BLS-381 pairings
from [AGM+] via the petrelic [pet] Python wrapper; each element in G1,G2,GT can be represented with
49B, 97B, and 384B, respectively.

Storage. In the base RBE implementation, the size of pk, sk, ct for encrypting a single group element from GT

is constant: 49B, 32B, 866B respectively, and size of each update that users will receive during the decryption
is also constant and it is 49B. In the RBE with efficient updates, the size of pk, sk is constant and it is 49B
and 32B. However, the size of ct for the encryption of a single GT element will increase by a factor of log

√
N

in the worst case, which in the case of 10 million users is a total 10KB. Throughout the lifetime of the system
each user will have to receive a total of

√
N (base construction) or log

√
N (efficient updates) updates, each

of size 49B.

Benchmarks. The run-time of each algorithm and size of the parameters are plotted for increasing values
of N in Figure 5. The benchmarking for an RBE system of N users is performed in the following way: First
the crs is generated for the parameter N and n =

√
N identities id1, . . . , idn where idi ∈ [n] for all i ∈ [n]

are registered in a random order. Notice that all these parties will register under a single commitment in the
public parameter, and without loss of generality we take the first commitment. We also remark that since
the registration/encryption/decryption of each commitment can be done in parallel and independently of the
other commitments, registering all the users in the same commitment is the worst case in terms of runtimes.
The registration times are taken as an average over n identities, whereas the encryption and decryption times
are averages of over 100 runs of the respective algorithms. In the base construction, we allow the encrypter

25



Time (s) Size
N Setup Gen Reg Enc Upd Dec crs pp aux
10K 0.085 0.011 0.094 0.002 0.002 0.004 41KB 16KB 57MB
100K 0.228 0.034 0.270 0.002 0.005 0.004 115KB 28 KB 1.9GB
1M 0.678 0.109 0.829 0.003 0.014 0.004 336KB 65 KB 59GB
10M 2.181 0.343 2.595 0.002 0.042 0.004 1.0MB 188KB 1.9TB

Time (s) Size
N Setup Gen Reg Enc Upd Dec crs pp aux
10K 0.147 0.011 0.098 0.014 0.001 0.033 41KB 118KB 9.8MB
100K 0.36 0.034 0.273 0.017 0.001 0.033 115KB 286KB 124MB
1M 1.59 0.107 0.821 0.019 0.001 0.037 336KB 794KB 1.4GB
10M 10.99 0.340 2.547 0.022 0.001 0.043 1.04MB 2.8MB 16.5GB

Table 2: Benchmarks for our basic construction (top) and the construction with efficient updates (bottom).

to include the time of the encryption in the ciphertext, which allows the decryption algorithm to directly
use the appropriate opening and decrypt the ciphertext in constant time. The measurements are taken on a
16-core Intel i7 10700K 3.8GHz with 128GB of RAM.

In Table 2 we report the measurements for our benchmarks plotted in Section 6.

7 Conclusions and Open Problems
In this work, we proposed a new method for constructing RBE. The resulting RBE scheme is black-box,
practically efficient, and its security is based on standard assumptions over bilinear groups. For the first time,
we show that RBE can be implemented in systems scaling to millions of users. Our work opens the doors
to the practical deployment of RBE, and we hope it will inspire researchers to explore new applications and
build new systems based on RBE. On the theoretical side, our work leaves open the problem of matching
the asymptotics of previous RBE constructions [GHMR18, GHM+19], without resorting to non black-box
use of cryptography. Another interesting direction is to construct an efficient RBE with a public-coin (a.k.a.
transparent) setup.
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