
1

AGE Is Not Just a Number: Label Distribution in
Deep Learning-based Side-channel Analysis

Lichao Wu, Léo Weissbart, Marina Krček, Huimin Li, Guilherme Perin, Lejla Batina, and Stjepan Picek

Abstract—The efficiency of the profiling side-channel analysis
can be improved significantly with machine learning techniques.
Although powerful, a fundamental machine learning limitation
of being data hungry received little attention in the side-channel
community. In practice, the maximum number of leakage traces
that evaluators/attackers can obtain is constrained by the scheme
requirements or the limited accessibility of the target. Even
worse, various countermeasures in modern devices increase the
conditions on the profiling size to break the target.

This work demonstrates a practical approach to dealing with
the lack of profiling traces. Instead of learning from a one-
hot encoded label, transferring the labels to their distribution
can significantly speed up the convergence of guessing entropy.
Besides, by studying the relationship between all possible key
candidates, we propose a new metric, denoted augmented guess-
ing entropy (AGE), to evaluate the generalization ability of the
profiling model. We validate AGE with two common use cases:
early stopping and network architecture search, and the results
indicate its superior performance.

Index Terms—Side-channel Analysis, Profiling Analysis, Deep
Learning, Label Distribution, Profiling Model Fitting.

I. INTRODUCTION

S IDE-CHANNEL ANALYSIS (SCA) is recognized as one
of the most powerful attack methods on the implemen-

tations of cryptographic algorithms. Commonly, such attacks
are divided into direct attacks like Simple Power Analysis
(SPA) and Differential Power Analysis (DPA) [KJJ99], and
two-stage (profiling) attacks like template attack [CRR02],
stochastic models [SLP05], and machine learning-based at-
tacks [LPB+15], [MPP16], [PHJ+17]. The profiling attacks
impose additional requirements as they assume an ’open’
device (or a copy of it), but the actual key recovery might
need only a few measurements or, in some cases, a single
trace [KPH+19], [PWP22].

In recent years, machine learning-based attacks posi-
tioned themselves as a strong alternative for more ’classical’
SCA [CDP17], [KPH+19], [ZBHV19], which has become
a standard evaluation approach for security evaluation and
certification. The success of such methods relies on a sufficient
number of training traces so that a machine learning classifier
can accurately map the relationship between the traces and
corresponding labels (intermediate data). In the worst-case
scenario, an attacker can obtain unlimited training traces from

L. Wu, M. Krček, and H. Li are affiliated with Delft University of
Technology, The Netherlands.

L. Weissbart, G. Perin, and S. Picek are affiliated with the Delft Univer-
sity of Technology, The Netherlands, and Digital Security Group, Radboud
University, The Netherlands.

L. Batina is affiliated with Digital Security Group, Radboud University, The
Netherlands.

the clone device for profiling attacks. However, in practice,
there is a strong demand for developing a technique that
effectively decreases the required number of profiling traces
while keeping a similar attack performance:

• The time constraint for an evaluation dramatically lim-
its the number of traces one can obtain. For instance,
measuring one million profiling traces for a software
RSA implementation with a 128-bit key could take more
than a week [KS20]. Additionally, in post-analysis tasks
such as trace realignment, noise filtering, and leakage
assessment, an evaluator may not have enough budget to
measure sufficient traces to break the target. Therefore,
reducing the required number of profiling traces would
be beneficial in saving time and enhancing the evaluator’s
attack capability.

• Unlike most deep learning applications, the SCA training
data are most likely being ’protected’ - the SCA counter-
measures represent a standard/default setting for modern
smart card/SOC’s crypto-related implementations. These
protection mechanisms further increase the difficulties in
learning the trace-label relationship, thus increasing the
demand for the number of measurements. From a security
developers’ point of view, an increasing number of side-
channel measurements to break the target implementation
means higher security assurance of their product. If we
can effectively reduce the required number of profiling
traces, then such vulnerabilities will again be considered.

• For a black/grey box evaluation, the available traces can
drop to hundreds or thousands due to the upper limit
of program counters such as Application Transaction
Counter (ATC) or PIN Try Counter (PTC) [Car11], which
is commonly insufficient when implementing an efficient
profiling model. Building a profiling model with limited
profiling traces would significantly increase the capability
of exploiting the potential vulnerability.

There are limited evaluation metrics optimized for SCA.
Evaluation metrics are essential in the training process: by
actively monitoring the metric value, one can easily interpret
the learning process, e.g., underfitting or overfitting. However,
accuracy, a commonly used metric for deep learning, is less
indicative for SCA in multi-trace attack scenarios [KPH+19].
The reasons can be explained from two aspects. First, due to
the noise/countermeasures in the traces, side-channel leakages
are more difficult to classify. Second, accuracy does not
represent the success of an attack well, as we commonly
need to consider continuous attacks that are better evaluated
with metrics capturing this continuity. Guessing entropy and

2

success rate are the commonly used metrics for SCA. Un-
fortunately, using such evaluation metrics would significantly
increase the training time due to their computation complexity.
Moreover, guessing entropy evaluates the rank of the correct
key only. Although effective, we argue that it can be less
indicative as the internal relationships with other (wrong) key
candidates are not considered. More discussions are available
in Section V-B.

We put the above concerns forward as the motivations for
this work. First, to reduce the required number of training
traces, we transfer the one-hot encoded labels to their Gaussian
distribution centering on the corresponding labels motivated
by [Gen16]. An illustration of the proposed learning scheme
is shown in Figure 1. A one-hot encoded label that belongs to
class 4 has been transferred to the distributed label with the
value of the fourth index with the highest probability. Based
on our experiment, regardless of the used leakage model and
deep learning architecture, if using our learning scheme, the
profiling traces can be reduced more than five times compared
with the number of profiling traces used in the literature.

DL model

Profiling traces Profiling labels

0
0
0
1
…
0

0.01
0.05
0.2
0.5
…

0.001

Distributed labels

Fig. 1: Learning with distributed labels.

One essential assumption of the distributed label is that
the label closer to the correct label has a higher probability
of being selected. Under the same assumption, we propose
key distribution to measure the geometry distance between
the most likely key (not necessarily the correct key) and
all the other keys. From this method and guessing entropy
estimation, we propose a novel profiling model fitting metric
- Augmented Guessing Entropy (AGE) that calculates the
correlation between key distribution and the key guessing
vector of all key guesses. As demonstrated with experiments
on publicly available datasets, the proposed metric can indi-
cate the generalization ability of a profiling model and thus
serve as a reliable evaluation metric of early stopping and
network architecture search. AGE is more indicative than
conventional metrics, such as validation cross-entropy loss,
because it directly links with the attack performance. On the
other hand, compared with GE, AGE requires significantly
fewer computation efforts to obtain a reliable estimation of the
results. Thus, it can be a good metric during model training.

To summarize, the main contributions of this paper are:
1) We introduce a new effective training scheme for profiling

SCA when the number of profiling traces is limited.
The attack performance is improved by learning from
the distributed labels compared to conventional one-hot
encoded labels.

2) We propose a novel method to calculate the distance be-
tween the target key and other keys called key distribution

(KD).
3) Based on the guessing entropy, we introduce a new

metric called augmented guessing entropy (AGE) that can
effectively estimate how well the profiling model fits the
data. To that end, we show that the proposed metric is
reliable in reflecting the generality of the profiling model.
We demonstrate two use cases for potential implementors:
early stopping and network architecture search in various
testing conditions. The results show that the AGE metric
performs better than other considered metrics.

We provide comprehensive experimental results on publicly
available datasets to validate our claims. We also consider two
commonly used deep learning techniques in SCA: multilayer
perceptron and convolutional neural networks. The source
code is available in the GitHub: https://github.com/AISyLab/
Label-distribution-and-AGE.

The paper is organized as follows. Section II provides
information about profiling SCA, commonly used evaluation
metrics, and datasets used in this paper. The related works
are discussed in Section III, followed by the proposal of the
label distribution learning and novel SCA evaluation metric
AGE in Sections IV and V. Section VI validates the proposed
methods experimentally with different datasets, attack models,
and leakage models. Finally, Section VII concludes this paper
and proposes possible future research directions.

II. BACKGROUND

A. Notation

We use calligraphic letters like X to denote sets and the
corresponding upper-case letters X to denote random variables
and random vectors X over X . The corresponding lower-case
letters x and x denote realizations of X and X, respectively.
We use sans serif font for functions (e.g., f).
k represents a key byte candidate that takes its value from

the keyspace K. k∗ is the correct key byte, and kref is the
key byte assumed by an attacker to be correct (as the attacker
does not know the correct key). 1

A dataset T is defined as a collection of traces ti, where
each trace ti is associated with a key-related label (or the key
itself) yi. A complete set of labels with c classes is denoted by
Y = {y1, y2, · · · , yc}. The number of profiling traces equals
N , the number of validation traces equals V , and the number
of attack traces equals Q. Finally, θ denotes the vector of
parameters to be learned in a profiling model.

B. Profiling Side-channel Analysis

As demonstrated in Figure 2, profiling side-channel attacks
consist of two phases:

1) Learning or profiling phase. The profiling phase con-
sists of building a profiling model fθM to map the inputs
(side-channel measurements) to the outputs (classes as
obtained by evaluating the leakage model on the sensitive
operation) on a set of N profiling traces. fθM represents

1Note that the subkey candidates can have any number of bits that are being
guessed and while here we assume the AES cipher scenario, the concept is
algorithm-independent.

https://github.com/AISyLab/Label-distribution-and-AGE
https://github.com/AISyLab/Label-distribution-and-AGE

3

the profiling model trained for a given leakage model M
and the set of learning parameters θ. This phase aims to
fit the parameters of a function that maps the side-channel
traces to the labels in the best way (minimizing the error
function). It is common to use the validation set of size
V to know when to stop the learning process.

2) Test or attack phase. The attack phase consists of
obtaining label predictions for the traces from a different
dataset of size Q to test the model. The trained model
processes each attack trace and produces the attack’s
output as a vector of probabilities pi,j ∈ K, where
each index is the probability that a trace ti is associated
with the leakage value j. We can estimate the attack
performance from this matrix of probabilities (as we have
multiple vectors - one for each attack trace).

1. Profiling

2: Attack

Profiling model

Profiling
traces

Profiling
labels

Attack
traces

Predicted attack labels

Rank key

Fig. 2: Profiling side-channel analysis.

We consider two common profiling approaches:
• Template Attack. Template attack (TA) uses Bayes’

theorem to obtain predictions, dealing with multivariate
probability distributions as the leakage over consecutive
time samples is not independent [CRR02]. In the state-
of-the-art, template attack relies mostly on a normal
(Gaussian) distribution.

• Deep Learning-based SCA. We consider supervised
machine learning and the classification task as the side-
channel attack’s goal. Supervised learning deals with the
task of learning a mapping f from a set of input variables
from X to the set of output variables Y (fθM : X → Y).
For SCA, the profiling phase aims to learn the parameters
θ, minimizing the empirical risk represented by a loss
function on a dataset. In the attack phase, the goal is to
predict the classes (more precisely, the probabilities that a
certain class would be predicted) based on the previously
unseen set of traces and the trained model fθM .

C. Evaluating the Attack Performance

An attack’s output is the logarithmic sum of all Q proba-
bility vectors of single model predictions, where each index
is associated with one key hypothesis. Sorting this vector by
decreasing probabilities leads to a key guessing vector with
increasing confidence predicted by a profiling model. The key
rank denotes the position of the correct key. Then, one can
use metrics such as guessing entropy to estimate the attacker’s
performance [SMY09].

Definition 1. Key guessing vector. The key guessing vector
g is the vector of probabilities for all key candidates from the
output of the profiling model’s predictions:

g = sort

(
Q∑
i

log Pr(ti; f
θ
M)

)
, (1)

where Pr(ti; f
θ
M) is the prediction vector from the profiling

model fθM on a trace ti. sort is the function sorting array
elements in order of decreasing values of their probabilities.
Since the labels are key-related, the cumulative probabilities of
labels can be easily mapped to their corresponding keys. From
g, the index of g represents the likelihood of the corresponding
key candidate being the correct key candidate. g0 and g|K|−1
are the first (best) and last (worst) element of g, respectively.

Definition 2. Key rank. In a known-key setting, the key
rank is the number of (most likely) keys an attacker needs
to brute force until recovering the correct key. Among various
key enumeration techniques [PSG16], one of the more popular
methods is to try every key given its probability after gener-
ating a key guessing vector. In this scenario, the key rank is
the position of the correct key in the guessing vector.

Definition 3. Guessing entropy. The guessing entropy 2

represents the averaged rank of the correct key k∗ in the key
guessing vector g:

GE = E (rankk∗(g)) , (2)

where rankk(g) ∈ {0, . . . , |K|−1}. E is the average of multi-
ple realizations of key rank, which is commonly performed by
attacking with a profiling model multiple times with randomly
selected attack traces.

D. Datasets

1) ASCAD Dataset: The ASCAD dataset is generated by
taking measurements from an ATMega8515 running a masked
AES-128 implementation and is proposed as a benchmark
dataset for SCA [BPS+20]. Side-channel traces represent the
AES encryption, where the commonly attacked trace interval
represents the processing of the third byte in the S-box
operation (S-box is fixed and publicly known for AES) taking
place in the first round (the third byte is the first masked one).
The operation is masked, and we assume no knowledge about
masks in the profiling phase. There are two versions of this
dataset:

1) ASCAD f: The first version consists of 50 000 profiling
traces and 10 000 attack traces, where each trace consists
of 700 features (pre-selected window around the leaking
spot). The profiling and attacking sets use the same fixed
key, and we denote this dataset as ASCAD f.

2) ASCAD r: The second version of the ASCAD dataset
contains 200 000 traces for profiling with random keys
and random plaintexts and 100 000 for the attack phase,
with a fixed key and random plaintexts. A window of

2As we attack only a single key byte, the proper term is partial guessing
entropy. Nevertheless, we use the two terms interchangeably.

4

1 400 points of interest is extracted around the leaking
spot. We denote this dataset as ASCAD r.

For both datasets, different numbers of profiling and at-
tack traces are used in our experiments (see Section VI for
details), and 5 000 traces are used for validation and attack.
The datasets are provided at https://github.com/ANSSI-FR/
ASCAD/tree/master/ATMEGA AES v1.

2) CHES CTF Dataset: This dataset refers to the CHES
Capture-the-flag (CTF) AES-128 measurements released in
2018 for the Conference on Cryptographic Hardware and Em-
bedded Systems (CHES). The traces consist of masked AES-
128 encryption running on a 32-bit STM microcontroller. In
our experiments, we consider 45 000 traces for the training set,
which contains a fixed key. The validation and attack sets con-
sist of 5 000 traces. Each trace consists of 2 200 features. This
dataset is available at https://chesctf.riscure.com/2018/news.

E. Leakage Models

The leakage model simulates the hypothetical power con-
sumption to process one byte (as we attack the AES cipher
that is byte-oriented). Our work considers two commonly used
leakage models: the Hamming Weight (HW) and Identity (ID).
For the HW leakage model, the attacker assumes the leakage is
proportional to the sensitive variable’s Hamming weight. This
leakage model results in nine classes for a single intermediate
byte for the AES cipher. In terms of the ID leakage model, an
attacker considers the leakage in the form of an intermediate
value of the cipher. This leakage model results in 256 classes
for a single intermediate byte for the AES cipher.

III. RELATED WORKS

In Chari et al.’s seminal work, the authors proposed the
template attack (TA) and showed that it could break im-
plementations secure against other forms of side-channel at-
tacks [CRR02]. This attack is the most powerful one from
the information-theoretic point of view, but to reach its full
potential, it requires an unbounded number of traces and
noise following the Gaussian distribution [LPB+15]. Template
attack is interesting as it is a generative technique, which
means it will commonly overfit less as it allows the user to
provide more information in the form of class conditionals.

While machine learning techniques have been widely used
for several decades, the SCA community showed interest in
such techniques only around a decade ago. In the begin-
ning, the most interest sparked techniques like random for-
est [LMBM13], support vector machines [HGM+11], [HZ12],
[PHJ+17], and multilayer perceptron [GHO15] (commonly in
the context of shallow learning as it had only a single hidden
layer).

The rapid development of deep learning-based SCAs started
in 2016 when Maghrebi et al. demonstrated the strong perfor-
mance of several neural network types, most notably, con-
volutional neural networks [MPP16]. Kim et al. investigated
how adding noise to the input (thus, serving as regularization)
improves the performance of profiling SCA attacks [KPH+19].
In [BPS+20], an empirical evaluation for different hyperpa-
rameters is conducted for CNNs on the ASCAD database.

In [ZBHV19], the authors proposed a methodology to select
hyperparameters related to the size (number of learnable
parameters) of layers in CNNs. The methodology includes
observations for the number of filters, kernel sizes, strides, and
neurons in fully connected layers. Wouters et al. showed how
to reach similar attack performance with data regularization
and even smaller neural network architectures [WAGP20].
Perin et al. investigated deep learning model generalization
and demonstrated how ensembles of random models could
perform better than a single carefully tuned neural network
model [PCP20]. Wu et al. and Rijsdijk et al. explored different
automatic hyperparameter tuning strategies, namely Bayesian
optimization [WPP20] and reinforcement learning [RWPP21]
paradigms to find neural networks that perform well. While
their approach requires a significant tuning effort (compu-
tational time), the authors improved state-of-the-art results.
These works showed that deep learning models’ good per-
formance relies on an efficient selection of hyperparameters
for specific datasets. If those hyperparameters are not selected
properly, the attack will fail (or at least not work as well as
possible).

It is intuitive that the number of measurements and input
features also limits the performance of a profiling attack.
Deep neural networks provide top-level performances in many
domains when the amount of training data is sufficiently
large. However, they could also provide excellent performance
when the training data is reduced. In the context of profiling
side-channel attacks, Cagli et al. investigated how to create
measurements that improve the attack performance syntheti-
cally [CDP17]. Differing from the previous work where the
authors developed a specialized data augmentation technique,
Picek et al. showed that generic data augmentation tech-
niques help in profiling SCA also [PHJ+18]. Another work
investigated whether limiting the number of traces can be
beneficial both from the experimental setup and performance
sides [PHPG22].

From the input features perspective, Lu et al. investigated
the performance of deep learning with raw traces (while
the previous works considered pre-selected windows of fea-
tures) [LZC+21]. As a result, better attack performance is
achieved but with significantly more complex neural networks
(e.g., having around 50 layers). Perin et al. showed how simple
re-sampling of raw traces could result in extremely powerful
attacks (requiring only a single attack trace) while using simple
neural networks with only a few hidden layers [PWP22].
Finally, similarity learning was applied to pre-process the
leakage traces and extract high-level features, leading to state-
of-the-art attack performance with significantly reduced com-
putation effort [WPP22a].

Commonly, in machine learning, one estimates the behavior
of a profiling model based on statistics of individual ob-
servations like accuracy, loss, or recall. Unfortunately, such
metrics can be misleading in SCA, as one considers cumulative
predictions. Picek et al. showed that standard machine learning
metrics could suggest radically different performance than the
SCA metrics [PHJ+18]. Masure et al. connected the perceived
information and negative log-likelihood, showing there can
be common ground when using machine learning metrics in

https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1
https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1
https://chesctf.riscure.com/2018/news

5

SCA [MDP19]. Finally, Perin et al. discussed how mutual
information could be a good metric to indicate when to stop
the machine learning training process [PBP21].

IV. LABEL DISTRIBUTION

By asking ’how much does each label describe the in-
stance?’, Geng et al. first proposed Label Distribution Learn-
ing (LDL) by assigning a description degree to each possible
label, leading to enhanced performance compared with hard
(one-hot encoded) labels [Gen16]. This method has been
used in tasks such as age estimation [GWX14] or personality
recognition [XHG+17]. However, the application of LDL is
restricted since one should have a reasonable estimation of
the relation between labels, and such an estimation could be
challenging in many tasks, e.g., image classification. Fortu-
nately, SCA uses the leakage model to construct labels, which
inherently leads to a clear relationship between labels. Indeed,
two leakage traces with closer label (intermediate value)
distance could be more similar. As a result, a combination
of LDL and SCA could enhance attack performance.

Definition 4. Description degree. The description degree dyix
represents the degree of a label yi to describe an input x. From
the machine learning perspective, dyix can be considered as the
probability of the label yi being selected. If a complete set of
labels Y can fully describe the given input, then:∑

i

dyix = 1, yi ∈ Y. (3)

The conventional DL-based SCA represents a multi-class
classification task aiming to describe a measurement with a
unique cluster/label. To train a deep learning model, the label
is one-hot encoded (see Figure 3b) using binary variables. In
an ideal case, the label yi perfectly represents the leaking
features within a measurement (i.e., the correlation between
labels and leaking features are one). However, the presence of
noise/countermeasure increases the description degree of other
labels to the corresponding leakage traces. For illustration,
Figure 3a shows the Probability Density Function (PDF), and
point-of-interests distributions (POI1 and POI2) from 1 000
measurements 3. The color of each point is attributed based
on its cluster label. Using the HW leakage model, nine PDFs
representing nine HW clusters are built during the profiling
phase. Each PDF is represented by two ellipses representing
0.5 (low) and 0.9 (high) of the maximum probabilities.

From Figure 3a, each PDF can be clearly separated. How-
ever, the overlap between each PDF cannot be ignored. For the
traces that are in the middle between two PDFs, although they
have deterministic (single) labels that represent the targeted
intermediate data, leakage-wise, they are also geometrically
close(r) to their neighboring clusters. Indeed, one can observe
a natural measure of description degree that associates the
labels with the traces. A precise description of these traces

3ChipWhisperer dataset [OC14] is used as it represents measurements
obtained from a physical device, where two point-of-interests are selected
based on the signal-to-noise ratio to represent the traces. Note that this dataset
is not noiseless, but it is difficult to obtain less noisy measurements without
resorting to simulations.

0.320.300.280.260.24
POI 1

0.40
0.38
0.36
0.34
0.32
0.30
0.28
0.26
0.24

PO
I 2

HW_0
HW_1
HW_2
HW_3
HW_4
HW_5
HW_6
HW_7
HW_8

(a) PDFs and POIs distribution for
the correct key.

Labels

Pr
ob

ab
ilit

y

1 One-hot label

Distributed label

(b) Comparison between one-hot
and distributed labels.

Fig. 3: PDFs and a demonstration of distributed labels.

should involve the ’incorrect’ labels. Since their similarity to
each cluster is inversely correlated with their label distance, as
demonstrated in Figure 3b, the one-hot label and the highest
distributed label should be on the same abscissa, while the
distribution degree of other labels is assigned with reduced
probability based on the label distance. We denote this label
representation as the distributed label. Since the distributed
labels can more precisely describe the leakage features, learn-
ing from the label distribution helps achieve a more robust
performance than training with one-hot encoded labels. In
addition, the relationship between the traces and distributed
labels can be easier mapped, thus effectively relaxing the
conditions on the required number of training traces. Indeed, as
mentioned in the introductory section, the number of profiling
traces is restricted by the time constraint of security evaluation
as well as the accessibility and availability of the profiling
devices. Profiling with fewer profiling traces would not only
speed up the profiling phase but ease the requirement of
training a good profiling model as well. As a remark, our
learning method fundamentally differs from linear regression
attack (LRA) [DPRS11]. Although LRA would also lead to
smooth labels by estimating weight parameters to each binary
decomposition of the target value, these labels are constructed
during the regression process. On the other hand, our method
still considers SCA as a classification task. The goal of using
distributed labels is to reach more efficient classification.

One should notice the relation between label smooth-
ing [SVI+16] and label distribution. As a regularization tech-
nique, label smoothing improves accuracy by computing cross-
entropy not with the ’hard’ (i.e., one-hot encoded) labels from
the dataset but with a weighted mixture of all possible labels
with the noise (i.e., uniform) distribution. Label distribution
further preserves relations between different labels, thus being
more helpful in speeding up the learning process. The perfor-
mance benchmark between these two techniques can be found
in Section VI-A. A natural choice to form distributed labels
is a normal distribution. 4

D(yi) =
1

σ
√
2π

exp

(
−1

2

(
yi − yi∗

σ

)2)
, yi ∈ Y, (4)

4The construction of distributed labels should align with the distribution of
leakages. This paper assumes that the leakage follows a Gaussian distribution,
which is commonly observed in practice.

6

where D(yi) denotes the distributed label for label i. i∗

stands for the target label. The only adjustable parameter σ
depends on the data property (more specifically, the noise
in the dataset). In Section VI, we systematically analyze the
influence of σ with different datasets, (including their noisy
version) and leakage models and then give suggestions on the
value selection.

Then, the learning process can be formulated as:

Definition 5. Label distribution learning. Given a training
set with trace-label pairs (x, y) sampled from T, where x ∈ X
and y ∈ Y , the goal is to learn a function fθM , so that the
outputted ŷ has a similar distribution to the distributed label
D(y).

An essential assumption of label distribution learning is
that the label y should be pre-determined by an attacker.
Then, the attacker can calculate the distributed label D(y).
Next, to optimize the learning parameter θ, instead of using
conventional loss functions such as categorical cross-entropy
or mean squared error, following [Gen16], Kullback-Leibler
(KL) divergence is used as the loss function to measure the
similarity between the predicted and ground truth distribution:

L = −
∑
i

D(yi) ln(ŷi), yi ∈ Y, (5)

Where ŷi denotes the predicted probability for label i.
Stochastic gradient descent is used to minimize the loss

function L. Once a network is trained, given a random input
x with an unknown label from the attack dataset, the model f
outputs a predicted label distribution ŷ. The predicted label is
the one in ŷ with the highest probability.

i∗ = argmax
i

ŷi. (6)

V. AUGMENTED GUESSING ENTROPY METRIC

A. Key Distribution

As mentioned, label distribution assumes a positive corre-
lation between label distance (to the correct label) and the
probability of selecting that label. Under the same assumption,
the similarity of different key candidates can be represented by
the distance of possible hypothetical leakage data generated by
these keys as well. 5 Using AES as an example, we calculate
hypothetical leakage data (i.e., the S-box output) for each
key candidate with all possible plaintexts. This distribution is
denoted as the leakage distribution. The key distribution (KD)
is measured by calculating the leakage distribution difference
between the key candidates.

KD provides an estimation of the hypothetical distance
between key candidates. For a model built in a successful
profiling attack (the correct key k∗ is the best guess), suppose
KD is large between a specific key k ∈ K and k∗. Then, k
will be likely ranked low (i.e., with guessing entropy close
to 2b − 1) as it has a negligible probability of being selected.

5Aligned with the distributed label, we assume the leakage follows a
Gaussian distribution. If this assumption does not hold for the given leakage
traces, the calculation of the hypothetical leakage data distance should be
adjusted accordingly.

Consequently, KD can be considered an ideal key rank 6 metric
indicating the best possible scenario where the correct key is
maximally separated from all the other keys.

In Eq. (7), we calculate KD based on the Euclidean dis-
tance (L2 norm) between the leakage distribution of all key
hypotheses k ∈ K and the reference key candidate kref . We
also investigated the Manhattan distance and found the results
to be in line but with somewhat smaller discriminate power 7.

KD(kref , k) =
∥∥f(d, kref)− f(d, k)

∥∥2 , k ∈ K. (7)

Here, f is the leakage model function (described in Sec-
tion II-E) that returns the leakage value (labels) according to
a key candidate k and data value d. Note that when it is clear
from the context, we use the notations KD(kref , k) and KD
interchangeably.

KD gives a unique distribution of all key candidates k
based on their difference to the reference key kref . The
selection of kref , therefore, determines the KD value for each
key candidate. The reference key candidate has a distribution
difference equal to zero with itself, and the lower the dis-
tribution difference, the more similar the key candidate is to
the reference key. In practice, the reference key can be set to
the k∗ (correct key). When k∗ is unknown (black-box), kref

should be the most likely key.
The KD definition can be extended to any leakage model,

i.e., the Hamming distance or the Least Significant Bit. Fig-
ure 4 illustrates the summed KD (for all key candidates)
with the HW and ID leakage models for the key candidates
kref = 34 (correct third subkey for the ASCAD r) and
kref = 224 (correct third subkey for the ASCAD f). Although
all KD values except for kref = k∗ act as ’noisy’ values,
the similarity difference between kref and other keys can be
distinguished. One should note that a precise estimation of
KD relies on the chosen leakage model. An incorrect leakage
model would not only degrade the attack performance, but
KD’s effectiveness will also drop. Since the publicly available
datasets leak mostly in the HW leakage model, we calculate
KD with the HW leakage model throughout the paper.

0 50 100 150 200 250
Key Candidates

0

200

400

600

800

1000

1200

Ke
y

Di
st

rib
ut

io
n

K=34
K=224

(a) HW leakage model.

0 50 100 150 200 250
Key Candidates

0.0M

0.5M

1.0M

1.5M

2.0M

2.5M

3.0M

3.5M

Ke
y

Di
st

rib
ut

io
n

K=34
K=224

(b) ID leakage model.

Fig. 4: Illustration for the Key Distribution for the HW/ID
leakage models and key candidates 34 and 224.

6Here, ’ideal’ means the perfect fit between an attack model and the
leakage. Under this circumstance, the resulting key rank is equivalent to KD
as discussed in Section V-B.

7Since KD is a list of labels associated with the given key that does not
follow any known distribution, f-divergence functions (i.e., KL-divergence,
Hellinger distance) are not considered.

7

B. Augmented Guessing Entropy - AGE

Key distribution defines the distance between kref and
other key candidates. Naturally, a perfectly fitted model should
output a key rank similar to KD. Following this, we define
a profiling model fitting metric by correlating KD with the
predicted probability for all k ∈ K. Since this metric is
based on GE but takes into consideration other key candidates
besides the correct key, we denote it as Augmented Guessing
Entropy (AGE), as a function of KD and the key guessing
vector g:

AGE = corr(KD,g). (8)

Eq. (8) defines how well a profiling model fits the data
concerning a key candidate kref for a chosen leakage model.
The notation corr represents the Spearman correlation [HK11]
that evaluates the monotonic relationship with two inputs. We
also considered Pearson correlation, but as shown in Figure 4b,
KD for the kref and other keys is around three million.
Pearson correlation would be dominated by this high value,
thus producing low correlations.

Following Eq. (8), if the profiling model outputs the correct
key as the most likely key, one could expect a stronger
correlation between KD and g. Conversely, if the profiling
model fails to fit the data, the outputted random, but still,
most likely key, would lead to a low correlation between KD
and g. As a demonstration, Figure 5 depicts the ’almost’
perfectly fitted profiling model for the HW and ID
leakage models. We use simulated measurements with strong
HW and ID leakages and a controlled Gaussian noise level,
normally distributed with a variance of 0.01 around a mean
of zero. The simulated traces have two features that hold
the leakage, which is proportional to HW (Sbox(d ⊕ k)) and
Sbox(d ⊕ k), to simulate the ideal HW and ID leakages,
respectively. The profiling set has plaintexts d and keys k
chosen from a uniformly random distribution. The attack
set’s plaintexts are selected uniformly at random, while the
attack key is the same for the whole dataset. We use the
template attack and consider the increasing number of profiling
traces N . In both figures, AGE increases w.r.t. the number of
profiling traces and reaches 0.999 and 0.998 for the HW and
ID leakage models. The results confirm that the correlation
between KD and g tends to increase with better (more fit)
models (since we use template attack, better models are those
that are trained with more traces).

Definition 6. Perfectly fitted profiling model. A perfectly
fitted profiling model reaches AGE = 1 in the attack phase
for any set of Q attack traces. 8

It is worth mentioning that KD can also be used to calculate
the confusion covariance metric (E(KD)) [FLD12], a metric
designed initially to measure the DPA resistance of S-boxes. A
low expectation of KD indicates less distinctive intermediate
data, which could lead to reduced data leakage. On top of
that, the AGE metric suggests that the variance of KD should
also be low to secure the target. Indeed, a low KD variance

8We assume there are many possible ways to select Q traces from the
available traces.

0 50 100 150 200 250
0

50

100

150

200

250

N=1e+03
N=1e+06

KD
 R

an
k

Guessing Entropy

(a) HW leakage model.

0 50 100 150 200 250
0

50

100

150

200

250

N=1e+04
N=1e+06

KD
 R

an
k

Guessing Entropy

(b) ID leakage model.

Fig. 5: ’Perfectly’ fitted profiling model with template attack,
considering the HW and ID leakage models and simulated
traces with an increasing number of profiling traces N . KD
ranks (Y-axis) stands for a sorted KD.

indicates high similarity between different keys, which will
lead to a less deterministic order of g. Since the AGE value
is more likely to be low in this case, one can expect more
effort in obtaining the security assets via SCA. Another way
of perturbing g is by introducing additional noise or counter-
measures, a common implementation in modern products.

VI. EXPERIMENTAL RESULTS

A. Profiling with Distributed Labels

In Section IV, we argue that the distributed label enlarges
the description degrees of labels to the leakage traces and can
lead to more efficient learning even with a reduced number
of training examples. We validate this assumption by training
the state-of-the-art CNNs [RWPP21] and MLPs [WPP20] with
a different number of profiling traces. The models’ hyperpa-
rameters are listed in Appendix A. We use a wide selection
of DL architectures to ensure the generalization of the results.
Besides, we tune the σ value of the distributed label to find
the optimal value for different training settings. The distributed
labels are pre-computed before the training starts. To obtain
the most representative performance, the attack results of
each training setting (σ and profiling traces number) are
the median value from 20 independent training (and attacks)
with random weight initialization following recommendations
from [WPP22b].

Figures 6, 7, and 8 show the results for the ASCAD f, AS-
CAD r, and CHES CTF datasets, respectively. The conven-
tional training method (one-hot encoded label) is represented
with σ = 0.0 (blue bar). When training with the conventional
method, we used the categorical cross-entropy (CCE) loss.
CCE is a standard loss function for classification tasks and
is widely used in DL-SCA. When learning from the label
distribution, the KL divergence loss is used to measure the
distribution difference between the true and predicted label
distribution.

For the ASCAD f dataset, as shown in Figure 6, by dis-
tributing HW-based labels, GE equal to zero can be reached
with up to 3 000 profiling traces for both MLP and CNN
within the given number of attack traces, which is more
than ten times less than the number of the profiling traces
commonly used in literature (50 000). At the same time, more
than 10 000 profiling traces are insufficient when considering

8

the conventional training method (σ = 0.0). Using the ID
leakage model, although one-hot encoded labels lead to better
performance in some cases (discussed in later paragraphs),
one can confirm the advantages of using the distributed label
in low profiling settings.

When looking at the influence of the label distribution
variation σ (Figure 6), although different numbers of profiling
traces, leakage models, and attack models are considered, the
optimal settings show consistency: for the HW leakage model,
σ ranges from 1 to 2 can lead to the best attack performance.
This value increases to 40 to 80 for the ID leakage model. In
addition, we have tested the traces with Gaussian noise levels
2 and 4. While the optimal value of sigma defined in the
paper still holds for most settings, we expect the best sigma
to be larger since the leakage traces become more difficult to
correctly classify.

(a) MLP with the HW leakage
model.

(b) MLP with the ID leakage
model.

(c) CNN with the HW leakage
model.

(d) CNN with the ID leakage
model.

Fig. 6: Label distribution learning on the ASCAD f dataset.

Although ASCAD r is considered a dataset more difficult
to break than ASCAD f [WPP20], as shown in Figure 7, the
distributed label boosts the attack performance significantly.
For the HW leakage model, around 6 000 profiling traces
are sufficient for MLP and CNN models to reach GE of
zero, which is around ten times less than the related works
(¿50 000 profiling traces). For the ID leakage model, aligned
with the attack on the ASCAD f dataset, although none of the
training settings can retrieve the secret information with 5 000
attack traces, label distribution learning halves the GE value
compared with its one-hot encoded counterpart, indicating a
faster GE convergence with our learning scheme.

Finally, similar results can be obtained when attacking the
CHES CTF dataset. Since this dataset leaks limited ID leakage
according to literature [WPP20], [RWPP21], we attack with
the HW leakage model only. With the MLP and CNN models,
5 000 profiling traces are needed to break the target, which is
nine times less than the traces used in the literature (45 000
traces). It is important to note that the optimal σ setting shows

similarity for all three tested datasets. From the experimental
results on three datasets, good prior knowledge about the
leakage model is necessary to construct a meaningful label
distribution. Still, when attacking leakages from other devices,
one could start with low σ and monitor the attack performance
until it reaches optimal behavior.

(a) MLP with the HW leakage
model.

(b) MLP with the ID leakage
model.

(c) CNN with the HW leakage
model.

(d) CNN with the ID leakage
model.

Fig. 7: Label distribution learning on the ASCAD r dataset.

(a) MLP with the HW leakage
model.

(b) CNN with the HW leakage
model.

Fig. 8: Label distribution learning on the CHES CTF dataset.

Indeed, there are various techniques available when the
profiling traces are limited. To better illustrate the pros and
cons of label distribution learning when compared with these
methods, we benchmark the attack performance of previously
used state-of-the-art (SotA) MLPs and CNNs with multiple
profiling settings. We consider several commonly-used tech-
niques to counter the limitation of the training data.
• 10 000 profiling traces with and without techniques such

as label distribution, label smoothing, L2 regularization,
and dropout.

• 50 000 profiling traces, obtained directly or generated
with Gaussian noise-based data augmentation.

• 100 000 profiling traces generated from 10 000 traces with
Gaussian noise-based data augmentation.

The dropout rate and regularization factor are tuned to 5e-
2 and 1e-4. For data augmentation, four augmentation levels

9

(0.25, 0.5, 0.75, 1.0) are selected following [KPH+19], and the
one with the best performance is presented in the benchmark.
The label smoothing factor is set to be optimal based on the
various search options. 9 Each profiling setting is tested with
two label formats: one-hot encoded label and distributed label.
For label distributed learning, σ is set to 1/2 and 40/80 for HW
and ID leakage models. The attack performance is evaluated
by calculating the required number of attack traces to reach
GE of zero, denoted as TGE0. The results presented are the
median TGE0 from 20 independently trained models. If an
attack setting failed to reach GE zero with a given number of
attack traces, the corresponding results are marked with ”-”.

Traces Label ASCAD f ASCAD r CHES CTF

10 000 One-hot -/- -/- -
Smoothed 3 484/- -/- -
Distributed 1 618/4 964 3 623/4 892 2 337

10 000 One-hot -/- -/- 3 728
(L2) Distributed -/- -/- 1 930

10 000 One-hot -/- -/- 4 156
(Dropout) Distributed 2 264/- -/- 2 493

50 000 One-hot 1 219/182 970/2 625 567
Distributed 1 421/3 530 919/- 905

50 000 One-hot 1 588/- -/- -
(Augmented) Distributed 1 095/4 728 2 784/- 2 735

100 000 One-hot 1 254/- -/- -
(Augmented) Distributed 1 447/4 895 2 998/- 2 793

TABLE I: Benchmark the attack performance (TGE0) with
SotA MLP. Attack results for the HW and ID leakage models
are separated by ’/’.

Traces Label ASCAD f ASCAD r CHES CTF

10 000 One-hot 2940/- -/- -
Smoothed 2 994/- -/- -
Distributed 1 252/4 050 1 939/3 753 2 182

10 000 One-hot 2 217/3 779 -/- -
(L2) Distributed 1 096/- 2 034/4 892 1 458

10 000 One-hot 1 913/- -/- -
(Dropout) Distributed 1 338/4 219 -/- 1 868

50 000 One-hot 544/87 650/487 455
Distributed 779/- 553/3 684 450

50 000 One-hot 2 829/4 061 -/- -
(Augmented) Distributed 1 201/- 2 190/- 1 724

100 000 One-hot 2 278/1 621 -/- -
(Augmented) Distributed 1 218/- 2 298/- 2 105

TABLE II: Benchmark the attack performance (TGE0) with
SotA CNN. Attack results for the HW and ID leakage models
are separated by ’/’.

The benchmark results are shown in Table I and Table II.
The best results for each profiling setting are marked in
bold. With limited (10 000) profiling traces, distributed labels
bring a significant performance boost with both attack and
leakage models. The considered regularization techniques are
helpful in some attack settings, improving significantly when

9The possible label smoothing factors are 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1, 5,
and 10.

combined with distributed labels. Similarly, data augmen-
tation helps obtain better performance in some cases; the
combination with distributed labels makes it even better. In
practice, due to the limitation of controlled devices and time
budget, attackers would likely use smaller networks, more
regularization, and more data augmentation to run their attacks
in lower-data settings. However, as shown in the table, label
distribution is the best technique considering the additional
efforts to tune hyperparameters and their performance.

It is worth noting that one-hot encoded labels generally
produce better results by directly training with 50 000 pro-
filing traces. Indeed, an increased number of profiling traces
enlarges the side-effect of the distributed label: high estimation
variance, leading to reduced predictive performance. Although
data augmentation could also generate more leakages, the
difficulty of setting a proper augmentation level makes the
generated traces less helpful in the profiling phase. An eval-
uator should consider the risk of using distributed labels if
many traces are available. The simplest way to validate the
traces’ sufficiency is to profile with both one-hot encoded
and distributed labels (with low σ) and monitor if the attack
performance is improved with distributed labels.

B. AGE Use Cases

In this section, we investigate the effectiveness of the
AGE metric for different use cases. Specifically, we consider
network architecture search (NAS) and overfitting prevention
as they have a major influence on the attack performance with
DL-based SCA. Indeed, adjusting the profiling model size will
directly influence its learning capacity. On the other hand, a
properly set training epoch number could improve the model’s
fitness to the dataset. Since these two aspects rely on well-
performing evaluation metrics [RWPP21], [PCP20], we show
the performance of AGE in various settings and benchmark it
with other common metrics.

1) Early Stopping: As an evaluation metric, AGE can be
used as early stopping regularization or as an indicator of
when to save the best model. For illustration, we evaluate
state-of-the-art models by training with a different number
of epochs ranging from 1 to 150 in steps of 10. Aligned
with previous sections, the attack performance is evaluated
by TGE0. Besides, four metrics, accuracy, loss, mutual in-
formation (MI) [PBP21], and AGE, are calculated per epoch
with 5 000 validation traces. 10 One may argue that TGE0 can
be used as an evaluation metric. However, TGE0 can only
be calculated when GE equals zero. For a model that cannot
break the target with a given number of attack traces, TGE0 is
not indicative. Similarly, the key rank metric is only indicative
when GE is larger than zero: when the key rank stays zero, one
cannot know if the model is still learning or starting overfitting.
Following this, since all of the selected models reached the key
rank of zero quickly and never change, we omit the key rank
metric as it is less indicative in the training process.

The results for three datasets and two leakage models
are shown in Figures 9, 10, and 11. Since the metrics and
TGE0 have different scales, multiple Y-axes are used to scale

10If GE is greater than zero, TGE0=5 000.

10

the results data. The optimal training epoch proposed in the
literature is marked by green vertical lines (10 for MLPs and
50 for CNNs). Aligned with the previous section, all of the
presented results are the median from 20 independent pieces
of training.

For ASCAD f, using TGE0 as a reference, AGE perfectly
reflects the variation of the model’s generalization with dif-
ferent training epochs. For instance, in Figure 9a, TGE0 starts
to increase when the training epoch exceeds 25, indicating
that the model is overfitting. Interestingly, AGE indicates the
overfitting effect even a bit earlier than the attack performance
starts to degrade. Based on Figure 4, the order of the key
candidates with closer KD values would more likely be
perturbed when overfitting starts. Only after the overfitting
effect accumulates to a certain level (i.e., with more training
epochs) the “disorder” of the key candidate would propagate
to the correct key, finally captured by the GE-related metrics.
From the practical perspective, AGE can be a good candidate
as an early stopping indicator due to its high sensitivity
to overfitting. In terms of other metrics, the MI metric is
somewhat misleading because it keeps on increasing, although
the TGE0 suggests that the performance becomes worse. The
loss value is only helpful in limited cases (e.g., Figure 9a),
which confirms the conclusion from picek et al. [PHJ+18]
that it is commonly not considered a good evaluation metric
for SCA. The accuracy metric remains mostly stable with a
different number of training epochs, indicating its mediocre
performance. Finally, when looking at the optimal training
epoch, the ones used in the literature are not optimal for
Figures 9a and 9d. On the other hand, AGE consistently
indicates the epoch that reaches the best attack performance.

(a) MLP with the HW leakage
model.

(b) MLP with the ID leakage
model.

(c) CNN with the HW leakage
model.

(d) CNN with the ID leakage
model.

Fig. 9: Metrics performance on the ASCAD f dataset.

Attacks on ASCAD r and CHES CTF show consistent
results with ASCAD f. AGE performs the best among all eval-
uated metrics, representing the attack performance precisely.
As an evaluation metric, AGE combines the advantages of

key rank and TGE0 with limited computation overhead, thus
becoming a reliable metric for the applications such as early
stopping.

(a) MLP with the HW leakage
model.

(b) MLP with the ID leakage
model.

(c) CNN with the HW leakage
model.

(d) CNN with the ID leakage
model.

Fig. 10: Metrics performance on the ASCAD r dataset.

(a) MLP with the HW leakage
model.

(b) MLP with the ID leakage
model.

Fig. 11: Metrics performance on the CHES CTF dataset.

2) Network Architecture Search: Network architecture
search (NAS) is essential in DL-SCA. A smartly designed
neural network can not only break the target but reduce the
training complexity as well [ZBHV19], [RWPP21]. To better
illustrate the advantage of the AGE metric, we use CNN listed
in Table III with a tunable α parameter to control the size of
the deep learning model. Specifically, α determines the number
of filters in convolutional layers and neurons in the fully
connected layers. We use α (range from 1 to 64) to estimate
the complexity of a profiling model. Note, for the CNN best
from [BPS+20], α equals 64. The training epoch is set to
be optimal (75) based on [BPS+20], which is represented by
the green vertical line in the plot. This section presents the
results for the ASCAD f and ASCAD r datasets only. Since
CHES CTF produce similar results, we omit them from this
section.

The results are shown in Figure 12. Aligned with the
previous section, accuracy, loss, MI, and AGE are used

11

TABLE III: CNN architecture used for the attack.

Layer Types Filter
Size

of
Filters

Pooling
Stride

of
Neurons

Conv block 11 a*1 2 -
Conv block 11 a*2 2 -
Conv block 11 a*4 2 -
Conv block 11 a*8 2 -
Flatten - - - -
Fully connected (2×) - - - a*64

as evaluation metrics. As a reference, TGE0 represents the
attack performance. Among the three considered metrics,
AGE best represents the attack performance. For instance, in
Figure 12a, TGE0 reaches minimum when α equals around 50.
Further increase of the profiling model size degrades the attack
performance, meaning the fitness reduction for a dataset. The
AGE metric perfectly represents this tendency, as it reaches
the maximum when α is around the same model size, then
decreases gradually. Regarding other metrics, the validation
accuracy has limited changes regardless of the variation of
α. Validation loss, in contrast, is more indicative than its
counterpart. However, it is challenging to judge when to stop
the training. For instance, the loss value in Figure 12c suggests
that the profiling should end after training with around 35
epochs, but the best performance is reached 15 epochs later.
MI keeps on increasing with the HW leakage model. However,
it does not correctly reflect the attack performance. Finally, the
training epoch suggested in the literature is still sub-optimal
when looking at the results (i.e., Figure 12b). Using AGE as
an evaluation metric can help monitor the attack performance
in various settings.

(a) ASCAD f with the HW leak-
age model.

(b) ASCAD f with the ID leakage
model.

(c) ASCAD r with the HW leak-
age model.

(d) ASCAD r with the ID leakage
model.

Fig. 12: Metrics performance with different model sizes.

In addition, we have also tested the influence of the noise on
the considered metrics by adding Gaussian noise to the traces
with incremental variations ranging from 0 to 10 in a step of

0.5. The results show that the AGE metric can correctly and
precisely reflect the negative influence introduced by the noise.
Since the results align with the conclusions from the previous
sections, the results are omitted.

In conclusion, the AGE metric reliably reflects the gen-
erality of the profiling model in various training conditions.
Compared with other metrics, the evaluation of the keys’
order helps in increasing the sensitivity of the AGE metric in
measuring the model’s performance. Indeed, in almost all of
the experimental results, AGE is the first metric that indicates
the overfitting effect. Additionally, due to its computation sim-
plicity, we believe AGE is an ideal candidate as an evaluation
metric.

VII. CONCLUSIONS AND FUTURE WORK

In the profiling side-channel analysis, one commonly uses
intermediate data to form a one-hot encoded label for the
profiling. Additionally, it is common to use guessing entropy
to estimate the attack performance. This paper introduces dis-
tributed labels as a new learning approach that can effectively
reduce the required number of profiling traces. Then, based
on the relationship between each key candidate, we define
the Key distribution (KD) metric and use it to form a novel
AGE metric. Our results show that the AGE metric can be
a reliable candidate for evaluating the generality of a model,
which has been validated with two use cases: early stopping
and network architecture search. Our findings are confirmed
for several experiments considering various usage cases, attack
methods, leakage models, and datasets.

In future work, we plan to extend the application of label
distribution for masked implementations. For instance, by
setting multiple peaks in the distributed label to reflect the
higher-order property of the information. In terms of the AGE
metric, since the key distribution relies on the hypothetical
distance between key candidates, the distance depends on
the algorithm and hardware implementation. Following this,
we plan to investigate if the method can be easily adapted
to a new implementation or a new algorithm. Moreover, it
would be interesting to explore AGE in the context of leakage
assessment. Finally, applying our results to the non-profiling
SCA would be an exciting research direction.

APPENDIX

The used state-of-the-art models are listed in Tables IV
and V. All of the non-listed hyperparameter settings are
aligned with the original papers [RWPP21], [WPP20]. The
convolution layer is denoted by C; averaging pooling layer is
denoted by P. FLAT and FC denote the flatten layer and fully
connected layer, respectively. SM denotes the output layer with
the softmax activation function.

REFERENCES

[BPS+20] Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli,
and Cécile Dumas. Deep learning for side-channel analysis and
introduction to ASCAD database. J. Cryptographic Engineering,
10(2):163–188, 2020.

12

TABLE IV: CNN architecture used for the attack [RWPP21].

Dataset Leakage Model Architectures Learning Rate Batch Size
ASCAD f HW C(2,25,1), P(4,4), FLAT, FC(15, 10, 4), SM(9) 5e-3 50

ID C(128,25,1), P(25,25), FLAT, FC(20, 15), SM(256) 5e-3 50

ASCAD r HW C(4,50,1), P(25,25), FLAT, FC(30, 30, 30), SM(9) 5e-3 128
ID C(128,3,1), P(75,75), FLAT, FC(30, 2), SM(256) 5e-3 128

CHES CTF HW C(2,2,1), P(7,7), FLAT, FC(10), SM(9) 5e-3 128

TABLE V: MLP architecture used for the attack [WPP20].

Dataset Leakage Model Architectures Learning Rate Batch Size
ASCAD f HW FC(496, 496, 136, 288, 552, 408, 232, 856), SM(9) 5e-4 32

ID FC(160, 160, 624, 776, 328, 968), SM(256) 1e-4 32

ASCAD r HW FC(200, 200, 304, 832, 176, 872, 608, 512), SM(9) 5e-4 32
ID FC(256, 256, 296, 840, 280, 568, 672), SM(256) 5e-4 32

CHES CTF HW FC(192, 192, 616, 248, 440), SM(9) 1e-3 32

[Car11] IC Card. Emv integrated circuit card specifications for payment
systems, book 3 application specification, November 2011.
https://www.emvco.com/wp-content/uploads/2017/04/EMV v4.
3 Book 3 Application Specification 20120607062110791.pdf.

[CDP17] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. Convolu-
tional neural networks with data augmentation against jitter-based
countermeasures. In Wieland Fischer and Naofumi Homma,
editors, Cryptographic Hardware and Embedded Systems – CHES
2017, pages 45–68, Cham, 2017. Springer International Publish-
ing.

[CRR02] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template
attacks. In Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof
Paar, editors, Cryptographic Hardware and Embedded Systems
- CHES 2002, 4th International Workshop, Redwood Shores,
CA, USA, August 13-15, 2002, Revised Papers, volume 2523 of
Lecture Notes in Computer Science, pages 13–28. Springer, 2002.

[DPRS11] Julien Doget, Emmanuel Prouff, Matthieu Rivain, and François-
Xavier Standaert. Univariate side channel attacks and leakage
modeling. Journal of Cryptographic Engineering, 1(2):123–144,
2011.

[FLD12] Yunsi Fei, Qiasi Luo, and A Adam Ding. A statistical model for
dpa with novel algorithmic confusion analysis. In International
Workshop on Cryptographic Hardware and Embedded Systems,
pages 233–250. Springer, 2012.

[Gen16] Xin Geng. Label distribution learning. IEEE Transactions on
Knowledge and Data Engineering, 28(7):1734–1748, 2016.

[GHO15] R. Gilmore, N. Hanley, and M. O’Neill. Neural network based
attack on a masked implementation of AES. In 2015 IEEE
International Symposium on Hardware Oriented Security and
Trust (HOST), pages 106–111, May 2015.

[GWX14] Xin Geng, Qin Wang, and Yu Xia. Facial age estimation by
adaptive label distribution learning. In 2014 22nd International
Conference on Pattern Recognition, pages 4465–4470. IEEE,
2014.

[HGM+11] Gabriel Hospodar, Benedikt Gierlichs, Elke De Mulder, Ingrid
Verbauwhede, and Joos Vandewalle. Machine learning in side-
channel analysis: a first study. J. Cryptogr. Eng., 1(4):293–302,
2011.

[HK11] Jan Hauke and Tomasz Kossowski. Comparison of values of
pearson’s and spearman’s correlation coefficients on the same sets
of data. Quaestiones geographicae, 30(2):87, 2011.

[HZ12] Annelie Heuser and Michael Zohner. Intelligent Machine Homi-
cide - Breaking Cryptographic Devices Using Support Vector
Machines. In Werner Schindler and Sorin A. Huss, editors,
COSADE, volume 7275 of LNCS, pages 249–264. Springer, 2012.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential
power analysis. In Michael J. Wiener, editor, Advances in
Cryptology - CRYPTO ’99, 19th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 15-19, 1999,
Proceedings, volume 1666 of Lecture Notes in Computer Science,
pages 388–397. Springer, 1999.

[KPH+19] Jaehun Kim, Stjepan Picek, Annelie Heuser, Shivam Bhasin,
and Alan Hanjalic. Make some noise. unleashing the power of
convolutional neural networks for profiled side-channel analysis.
IACR Transactions on Cryptographic Hardware and Embedded
Systems, pages 148–179, 2019.

[KS20] Y Kiran Kumar and R Mahammad Shafi. An efficient and secure
data storage in cloud computing using modified rsa public key
cryptosystem. International Journal of Electrical and Computer
Engineering, 10(1):530, 2020.

[LMBM13] Liran Lerman, Stephane Fernandes Medeiros, Gianluca Bon-
tempi, and Olivier Markowitch. A Machine Learning Approach
Against a Masked AES. In CARDIS, Lecture Notes in Computer
Science. Springer, November 2013. Berlin, Germany.

[LPB+15] Liran Lerman, Romain Poussier, Gianluca Bontempi, Olivier
Markowitch, and François-Xavier Standaert. Template attacks
vs. machine learning revisited (and the curse of dimensionality
in side-channel analysis). In International Workshop on Con-
structive Side-Channel Analysis and Secure Design, pages 20–33.
Springer, 2015.

[LZC+21] Xiangjun Lu, Chi Zhang, Pei Cao, Dawu Gu, and Haining Lu.
Pay attention to raw traces: A deep learning architecture for end-
to-end profiling attacks. IACR Transactions on Cryptographic
Hardware and Embedded Systems, pages 235–274, 2021.

[MDP19] Loı̈c Masure, Cécile Dumas, and Emmanuel Prouff. A com-
prehensive study of deep learning for side-channel analysis.
IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2020(1):348–375, Nov. 2019.

[MPP16] Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff.
Breaking cryptographic implementations using deep learning
techniques. In International Conference on Security, Privacy, and
Applied Cryptography Engineering, pages 3–26. Springer, 2016.

[OC14] Colin O’Flynn and Zhizhang David Chen. Chipwhisperer: An
open-source platform for hardware embedded security research.
In International Workshop on Constructive Side-Channel Analysis
and Secure Design, pages 243–260. Springer, 2014.

[PBP21] Guilherme Perin, Ileana Buhan, and Stjepan Picek. Learning
when to stop: A mutual information approach to prevent overfit-
ting in profiled side-channel analysis. In COSADE, volume 12910
of Lecture Notes in Computer Science, pages 53–81. Springer,
2021.

[PCP20] Guilherme Perin, Lukasz Chmielewski, and Stjepan Picek.
Strength in numbers: Improving generalization with ensembles
in machine learning-based profiled side-channel analysis. IACR
Transactions on Cryptographic Hardware and Embedded Sys-
tems, 2020(4):337–364, Aug. 2020.

[PHJ+17] Stjepan Picek, Annelie Heuser, Alan Jovic, Simone A. Ludwig,
Sylvain Guilley, Domagoj Jakobovic, and Nele Mentens. Side-
channel analysis and machine learning: A practical perspective. In
2017 International Joint Conference on Neural Networks, IJCNN
2017, Anchorage, AK, USA, May 14-19, 2017, pages 4095–4102,
2017.

https://www.emvco.com/wp-content/uploads/2017/04/EMV_v4.3_Book_3_Application_Specification_20120607062110791.pdf
https://www.emvco.com/wp-content/uploads/2017/04/EMV_v4.3_Book_3_Application_Specification_20120607062110791.pdf

13

[PHJ+18] Stjepan Picek, Annelie Heuser, Alan Jovic, Shivam Bhasin, and
Francesco Regazzoni. The curse of class imbalance and conflict-
ing metrics with machine learning for side-channel evaluations.
IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2019(1):209–237, Nov. 2018.

[PHPG22] Stjepan Picek, Annelie Heuser, Guilherme Perin, and Sylvain
Guilley. Profiled side-channel analysis in the efficient attacker
framework. In Smart Card Research and Advanced Applications,
pages 44–63. Springer International Publishing, 2022.

[PSG16] Romain Poussier, François-Xavier Standaert, and Vincent Grosso.
Simple key enumeration (and rank estimation) using histograms:
An integrated approach. In International Conference on Cryp-
tographic Hardware and Embedded Systems, pages 61–81.
Springer, 2016.

[PWP22] Guilherme Perin, Lichao Wu, and Stjepan Picek. Exploring
feature selection scenarios for deep learning-based side-channel
analysis. IACR Transactions on Cryptographic Hardware and
Embedded Systems, 2022(4):828–861, Aug. 2022.

[RWPP21] Jorai Rijsdijk, Lichao Wu, Guilherme Perin, and Stjepan
Picek. Reinforcement learning for hyperparameter tuning
in deep learning-based side-channel analysis. IACR Trans-
actions on Cryptographic Hardware and Embedded Systems,
2021(3):677–707, Jul. 2021.

[SLP05] Werner Schindler, Kerstin Lemke, and Christof Paar. A stochastic
model for differential side channel cryptanalysis. In Josyula R.
Rao and Berk Sunar, editors, Cryptographic Hardware and Em-
bedded Systems – CHES 2005, pages 30–46, Berlin, Heidelberg,
2005. Springer Berlin Heidelberg.

[SMY09] François-Xavier Standaert, Tal G. Malkin, and Moti Yung. A
unified framework for the analysis of side-channel key recovery
attacks. In Antoine Joux, editor, Advances in Cryptology -
EUROCRYPT 2009, pages 443–461, Berlin, Heidelberg, 2009.
Springer Berlin Heidelberg.

[SVI+16] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens,
and Zbigniew Wojna. Rethinking the inception architecture for
computer vision. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2818–2826, 2016.

[WAGP20] Lennert Wouters, Victor Arribas, Benedikt Gierlichs, and Bart
Preneel. Revisiting a methodology for efficient cnn architectures
in profiling attacks. IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, 2020(3):147–168, Jun. 2020.

[WPP20] Lichao Wu, Guilherme Perin, and Stjepan Picek. I choose you:
Automated hyperparameter tuning for deep learning-based side-
channel analysis. Cryptology ePrint Archive, 2020.

[WPP22a] Lichao Wu, Guilherme Perin, and Stjepan Picek. The best of
two worlds: Deep learning-assisted template attack. IACR Trans-
actions on Cryptographic Hardware and Embedded Systems,
2022(3):413–437, Jun. 2022.

[WPP22b] Lichao Wu, Guilherme Perin, and Stjepan Picek. On the evalua-
tion of deep learning-based side-channel analysis. In Constructive
Side-Channel Analysis and Secure Design: 13th International
Workshop, COSADE 2022, Leuven, Belgium, April 11-12, 2022,
Proceedings, volume 13211, page 49. Springer, 2022.

[XHG+17] Di Xue, Zheng Hong, Shize Guo, Liang Gao, Lifa Wu, Jinghua
Zheng, and Nan Zhao. Personality recognition on social media
with label distribution learning. IEEE access, 5:13478–13488,
2017.

[ZBHV19] Gabriel Zaid, Lilian Bossuet, Amaury Habrard, and Alexandre
Venelli. Methodology for efficient cnn architectures in profiling
attacks. IACR Transactions on Cryptographic Hardware and
Embedded Systems, 2020(1):1–36, Nov. 2019.

	Introduction
	Background
	Notation
	Profiling Side-channel Analysis
	Evaluating the Attack Performance
	Datasets
	ASCAD Dataset
	CHES CTF Dataset

	Leakage Models

	Related Works
	Label Distribution
	Augmented Guessing Entropy Metric
	Key Distribution
	Augmented Guessing Entropy - AGE

	Experimental Results
	Profiling with Distributed Labels
	AGE Use Cases
	Early Stopping
	Network Architecture Search

	Conclusions and Future Work
	Appendix
	References

