
1

Label Correlation in Deep Learning-based
Side-channel Analysis

Lichao Wu, Léo Weissbart, Marina Krček, Huimin Li, Guilherme Perin, Lejla Batina, and Stjepan Picek

Abstract—The efficiency of the profiling side-channel analysis
can be significantly improved with machine learning techniques.
Although powerful, a fundamental machine learning limitation
of being data-hungry received little attention in the side-channel
community. In practice, the maximum number of leakage traces
that evaluators/attackers can obtain is constrained by the scheme
requirements or the limited accessibility of the target. Even
worse, various countermeasures in modern devices increase the
conditions on the profiling size to break the target.

This work demonstrates a practical approach to dealing with
the lack of profiling traces. Instead of learning from a one-hot
encoded label, transferring the labels to their distribution can
significantly speed up the convergence of guessing entropy. By
studying the relationship between all possible key candidates,
we propose a new metric, denoted Label Correlation (LC), to
evaluate the generalization ability of the profiling model. We
validate LC with two common use cases: early stopping and
network architecture search, and the results indicate its superior
performance.

Index Terms—Side-channel Analysis, Profiling Analysis, Deep
Learning, Label Distribution, Profiling Model Fitting.

I. INTRODUCTION

S IDE-CHANNEL ANALYSIS (SCA) is recognized as one
of the most powerful attack methods on the implemen-

tations of cryptographic algorithms. Commonly, such attacks
are divided into direct attacks like Simple Power Analysis
(SPA) and Differential Power Analysis (DPA) [KJJ99], and
two-stage (profiling) attacks like template attack [CRR02],
stochastic models [SLP05], and machine learning-based at-
tacks [LPB+15], [MPP16], [PHJ+17]. The profiling attacks
impose additional requirements as they assume an ’open’
device (or a copy of it). Still, the actual key recovery might
need only a few measurements or, in some cases, a single
trace [KPH+19], [PWP22].

In recent years, machine learning-based attacks posi-
tioned themselves as a strong alternative for more ’classical’
SCA [CDP17], [KPH+19], [ZBHV19], which has become
a standard evaluation approach for security evaluation and
certification. The success of such methods relies on a sufficient
number of training traces so that a machine learning classifier
can accurately map the relationship between the traces and
corresponding labels (intermediate data). In the worst-case
attack scenario, an attacker can obtain unlimited training traces

L. Wu, M. Krček, and H. Li are affiliated with the Delft University of
Technology, The Netherlands.

L. Weissbart, G. Perin, and S. Picek are affiliated with the Delft Univer-
sity of Technology, The Netherlands, and Digital Security Group, Radboud
University, The Netherlands.

L. Batina is affiliated with Digital Security Group, Radboud University, The
Netherlands.

from the clone device for profiling attacks. However, an easy-
to-ignore fact, especially in SCA research, is that it is not easy
to acquire a large number of attack traces, even for a white-box
evaluation in a security lab. We rarely see research focus on
reducing the number of profiling traces number. Indeed, such a
restriction mainly comes from three factors: time constraints,
countermeasures, and the device’s life cycle. We argue the
importance of developing techniques that effectively decrease
the required number of profiling traces while keeping a similar
attack performance.

• Time constraints: An evaluation’s time budget dramat-
ically limits the number of traces one can obtain. For
instance, according to [KS20], measuring one million
profiling traces for a software RSA implementation with a
1 024-bit key could take more than a week. Additionally,
in post-analysis tasks such as trace realignment, noise
filtering, and leakage assessment, an evaluator may not
have enough budget to measure sufficient traces to break
the target. Therefore, reducing the required number of
profiling traces would save time and enhance the evalua-
tor’s attack capability.

• Security Countermeasures: Unlike most deep learning
applications, the SCA training data are most likely ’pro-
tected’ - the SCA countermeasures represent a stan-
dard/default setting for the modern smart card/SoC’s
implementations. These protection mechanisms further
increase the difficulties in learning the trace-label rela-
tionship, thus increasing the demand for the number of
measurements. From a security developers’ point of view,
an increasing number of side-channel measurements to
break the target implementation means higher security
assurance of their product. If we can effectively reduce
the required number of profiling traces, such vulnerabil-
ities will be considered again.

• Application-level Protections: For a black/grey box eval-
uation, the available traces can drop to hundreds or
thousands due to the upper limit of program counters
such as Application Transaction Counter (ATC) or PIN
Try Counter (PTC) [Car11], which is commonly insuf-
ficient when implementing an efficient profiling model.
Building a profiling model with limited profiling traces
would significantly increase the capability of exploiting
the potential vulnerabilities protected by life-cycle-related
counters.

There are limited evaluation metrics optimized for SCA.
Evaluation metrics are essential in the training process: by
actively monitoring the metric value, one can easily interpret

2

the learning process, e.g., underfitting or overfitting. However,
accuracy, a commonly used metric for deep learning, is less
indicative for SCA in multi-trace attack scenarios [KPH+19].
The reasons can be explained from two aspects. First, side-
channel leakages are more difficult to classify due to the
noise/countermeasures in the traces. Second, accuracy does
not represent the success of an attack well, as we commonly
need to consider continuous attacks that are better evaluated
with metrics capturing this continuity. Guessing entropy and
success rate are the commonly used metrics for SCA. Un-
fortunately, using such evaluation metrics would significantly
increase the training time due to their computation complexity.
Moreover, guessing entropy only evaluates the rank of the
correct key. Although effective, we argue that it can be less
indicative as the internal relationships with other (wrong) key
candidates are not considered. More discussion is available in
Section V-B.

We put the above concerns forward as the motivations for
this work. First, to reduce the required number of training
traces, we transfer the one-hot encoded labels to their Gaussian
distribution centering on the corresponding labels motivated
by [Gen16]. The proposed learning scheme is illustrated
in Figure 1. A one-hot encoded label that belongs to class
4 has been transferred to the distributed label with the value
of the fourth index with the highest probability. Based on
our experiment, regardless of the used leakage model and
deep learning architecture, if using our learning scheme, the
profiling traces can be reduced more than five times compared
with the number of profiling traces used in the literature.

DL model

Profiling traces Profiling labels

0
0
0
1
…
0

0.01
0.05
0.2
0.5
…

0.001

Distributed labels

Fig. 1: Learning with distributed labels.

One essential assumption of the distributed label is that the
label closer to the correct label is more likely to be selected.
Under the same assumption, we propose key distribution to
measure the geometric distance between the most likely key
(not necessarily the correct key) and all the other keys. From
this method and guessing entropy estimation, we propose a
novel profiling model fitting metric - Label Correlation (LC)
that calculates the correlation between key distribution and the
key guessing vector of all key guesses. As demonstrated with
experiments on publicly available datasets, the proposed metric
can indicate the generalization ability of a profiling model and
thus serve as a reliable evaluation metric of early stopping
and network architecture search. LC is more indicative than
conventional metrics, such as validation (cross-entropy) loss,
as it directly links with the attack performance. On the other
hand, compared with GE, LC requires less computation effort
as it does not rely on the averaging of multiple realizations of

key ranks [WPP22b]. Thus, it can be a good metric to monitor
the model training.

To summarize, the main contributions of this paper are:
1) We introduce a new efficient training scheme for profiling

SCA when the number of profiling traces is limited.
The attack performance is improved by learning from
the distributed labels compared to conventional one-hot
encoded labels.

2) We propose a novel method to calculate the distance be-
tween the target key and other keys called key distribution
(KD).

3) Based on the guessing entropy, we introduce a new
metric called Label Correlation (LC) that can effectively
estimate how well the profiling model fits the data. To
that end, we show that the proposed metric is reliable
in reflecting the generality of the profiling model. We
demonstrate two use cases for potential implementors:
early stopping and network architecture search in various
testing conditions. The results show that the LC metric
performs better than other commonly used metrics.

We provide comprehensive experimental results on publicly
available datasets to validate our claims. We also consider two
commonly used deep learning architectures in SCA: multilayer
perceptron and convolutional neural networks. The source
code is available in the GitHub: https://github.com/AISyLab/
Label-distribution-and-correlation.

The paper is organized as follows. Section II provides
information about profiling SCA, commonly used evaluation
metrics, and datasets used in this paper. The related works are
discussed in Section III, followed by the proposal of the label
distribution learning and novel SCA evaluation metric LC in
Sections IV and V. Section VI validates the proposed methods
experimentally with different datasets, attack models, and
leakage models. Finally, Section VII concludes this paper and
proposes possible future research directions. In Appendix A,
we provide details about the neural network architectures we
used.

II. BACKGROUND

A. Notation

We use calligraphic letters like X to denote sets and the
corresponding upper-case letters X to denote random variables
and random vectors X over X . The corresponding lower-case
letters x and x denote realizations of X and X, respectively.
We use a sans serif font for functions (e.g., f).
k represents a key byte candidate that takes its value from

the keyspace K. k∗ is the correct key byte, and kref is the
key byte assumed by an attacker to be correct (as the attacker
does not know the correct key).1

A dataset T is defined as a collection of traces ti, where
each trace ti is associated with a key-related label (or the key
itself) yi. A complete set of labels with c classes is denoted by
Y = {y1, y2, · · · , yc}. The number of profiling traces equals
N , the number of validation traces equals V , and the number

1Note that the subkey candidates can have any number of bits that are being
guessed and while here we assume the AES cipher scenario, the concept is
algorithm-independent.

https://github.com/AISyLab/Label-distribution-and-correlation
https://github.com/AISyLab/Label-distribution-and-correlation

3

of attack traces equals Q. Finally, θ denotes the vector of
parameters to be learned in a profiling model.

B. Profiling Side-channel Analysis

As depicted in Figure 2, profiling side-channel attacks
consist of two phases:

1) Learning or profiling phase. The profiling phase con-
sists of building a profiling model fθM to map the inputs
(side-channel measurements) to the outputs (classes as
obtained by evaluating the leakage model on the sensitive
operation) on a set of N profiling traces. fθM represents
the profiling model trained for a given leakage model M
and the set of learning parameters θ. This phase aims to
fit the parameters of a function that maps the side-channel
traces to the labels in the best way (minimizing the error
function). It is common to use the validation set of size
V to know when to stop the learning process.

2) Test or attack phase. The attack phase consists of
obtaining label predictions for the traces from a different
dataset of size Q to test the model. The trained model
processes each attack trace and produces the attack’s
output as a vector of probabilities pi,j ∈ K, where
each index is the probability that a trace ti is associated
with the leakage value j. We can estimate the attack
performance from this matrix of probabilities (as we have
multiple vectors - one for each attack trace).

1. Profiling

2: Attack

Profiling model

Profiling
traces

Profiling
labels

Attack
traces

Predicted attack labels

Rank key

Fig. 2: Profiling side-channel analysis.

We consider two common profiling approaches:
• Template Attack. Template attack (TA) uses Bayes’

theorem to obtain predictions, dealing with multivariate
probability distributions as the leakage over consecutive
time samples is not independent [CRR02]. In the state-
of-the-art, template attack relies mostly on a normal
(Gaussian) distribution.

• Deep Learning-based SCA (DL-SCA). We consider
supervised machine learning and the classification task as
the side-channel attack’s goal. Supervised learning deals
with the task of learning a mapping f from a set of
input variables from X to the set of output variables
Y (fθM : X → Y). For SCA, the profiling phase aims
to learn the parameters θ, minimizing the empirical risk
represented by a loss function on a dataset. In the attack
phase, the goal is to predict the classes (more precisely,
the probabilities that a certain class would be predicted)
based on the previously unseen set of traces and the
trained model fθM .

C. Evaluating the Attack Performance

An attack’s output is the logarithmic sum of all Q proba-
bility vectors of single model predictions, where each index
is associated with one key hypothesis. Sorting this vector by
decreasing probabilities leads to a key guessing vector with
increasing confidence predicted by a profiling model. The key
rank denotes the position of the correct key. Then, one can
use metrics such as guessing entropy to estimate the attacker’s
performance [SMY09].

Definition 1. Key guessing vector. The key guessing vector
g is the vector of probabilities for all key candidates from the
output of the profiling model’s predictions:

g = sort

(
Q∑
i

log Pr(ti; f
θ
M)

)
, (1)

where Pr(ti; f
θ
M) is the prediction vector from the profiling

model fθM on a trace ti. sort is the function sorting array
elements in order of decreasing values of their probabilities.
Since the labels are key-related, the cumulative probabilities of
labels can be easily mapped to their corresponding keys. From
g, the index of g represents the likelihood of the corresponding
key candidate being the correct key candidate. g0 and g|K|−1

are the first (best) and last (worst) element of g, respectively.

Definition 2. Key rank. In a known-key setting, the key
rank is the number of (most likely) keys an attacker needs
to brute force until recovering the correct key. Among various
key enumeration techniques [PSG16], one of the more popular
methods is to try every key given its probability after gener-
ating a key guessing vector. In this scenario, the key rank is
the position of the correct key in the guessing vector.

Definition 3. Guessing entropy. The guessing entropy 2

represents the averaged rank of the correct key k∗ in the key
guessing vector g:

GE = E (rankk∗(g)) , (2)

where rankk(g) ∈ {0, . . . , |K|−1}. E is the average of multi-
ple realizations of key rank, which is commonly performed by
attacking with a profiling model multiple times with randomly
selected attack traces.

D. Datasets

1) ASCAD Dataset: The ASCAD dataset is generated by
taking measurements from an ATMega8515 running a masked
AES-128 implementation and is proposed as a benchmark
dataset for SCA [BPS+20]. Side-channel traces represent the
AES encryption, where the commonly attacked trace interval
represents the processing of the third byte in the S-box
operation (S-box is fixed and publicly known for AES) taking
place in the first round (the third byte is the first masked one).
The operation is masked, and we assume no knowledge about
masks in the profiling phase. There are two versions of this
dataset:

2As we attack only a single key byte, the proper term is partial guessing
entropy. Nevertheless, we use the two terms interchangeably.

4

1) ASCAD f: The first version consists of 50 000 profiling
traces and 10 000 attack traces, where each trace consists
of 700 features (pre-selected window around the leaking
spot). The profiling and attacking sets use the same fixed
key, and we denote this dataset as ASCAD f.

2) ASCAD r: The second version of the ASCAD dataset
contains 200 000 traces for profiling with random keys
and random plaintexts and 100 000 for the attack phase,
with a fixed key and random plaintexts. A window of
1 400 points of interest is extracted around the leaking
spot. We denote this dataset as ASCAD r.

For both datasets, different numbers of profiling and at-
tack traces are used in our experiments (see Section VI for
details), and 5 000 traces are used for validation and attack.
The datasets are provided at https://github.com/ANSSI-FR/
ASCAD/tree/master/ATMEGA AES v1.

2) CHES CTF Dataset: This dataset refers to the CHES
Capture-the-flag (CTF) AES-128 measurements released in
2018 for the Conference on Cryptographic Hardware and Em-
bedded Systems (CHES). The traces consist of masked AES-
128 encryption running on a 32-bit STM microcontroller. In
our experiments, we consider 45 000 traces for the training set,
which contains a fixed key. The validation and attack sets con-
sist of 5 000 traces. Each trace consists of 2 200 features. This
dataset is available at https://chesctf.riscure.com/2018/news.

E. Leakage Models

The leakage model simulates the hypothetical power con-
sumption to process one byte (as we attack the AES cipher
that is byte-oriented). Our work considers two commonly used
leakage models: the Hamming Weight (HW) and Identity (ID).
For the HW leakage model, the attacker assumes the leakage is
proportional to the sensitive variable’s Hamming weight. This
leakage model results in nine classes for a single intermediate
byte for the AES cipher. In terms of the ID leakage model, an
attacker considers the leakage in the form of an intermediate
value of the cipher. This leakage model results in 256 classes
for a single intermediate byte for the AES cipher.

III. RELATED WORKS

In Chari et al.’s seminal work, the authors proposed the
template attack (TA) and showed that it could break im-
plementations secure against other forms of side-channel at-
tacks [CRR02]. This attack is the most powerful one from
the information-theoretic point of view, but to reach its full
potential, it requires an unbounded number of traces and
noise following the Gaussian distribution [LPB+15]. Template
attack is interesting as it is a generative technique, which
means it will commonly overfit less as it allows the user to
provide more information in the form of class conditionals.

While machine learning techniques have been widely used
for several decades, the SCA community showed interest in
such techniques only around a decade ago. In the beginning,
the most attention was given to techniques like random for-
est [LMBM13], support vector machines [HGM+11], [HZ12],
[PHJ+17], and multilayer perceptron [GHO15] (commonly in

the context of shallow learning as it had only a single hidden
layer).

The rapid development of deep learning-based SCAs started
in 2016 when Maghrebi et al. demonstrated the strong perfor-
mance of several neural network types, most notably, convo-
lutional neural networks [MPP16].

In [BPS+20], an empirical evaluation for different hyper-
parameters is conducted for CNNs on the ASCAD database.
In [ZBHV19], the authors proposed a methodology to select
hyperparameters related to the size (number of learnable
parameters) of layers in CNNs. The methodology includes
observations for the number of filters, kernel sizes, strides, and
neurons in fully connected layers. Wouters et al. showed how
to reach similar attack performance with data regularization
and even smaller neural network architectures [WAGP20].
Perin et al. investigated deep learning model generalization
and demonstrated how ensembles of random models could
perform better than a single carefully tuned neural network
model [PCP20]. Wu et al. and Rijsdijk et al. explored different
automatic hyperparameter tuning strategies, namely Bayesian
optimization [WPP20] and reinforcement learning [RWPP21]
paradigms to find neural networks that perform well. While
their approach requires a significant tuning effort (compu-
tational time), the authors improved state-of-the-art results.
These works showed that deep learning models’ good per-
formance relies on an efficient selection of hyperparameters
for specific datasets. If those hyperparameters are not selected
properly, the attack will fail (or at least not work as well as
possible).

It is intuitive that the number of measurements and input
features also limits the performance of a profiling attack.
Deep neural networks provide top-level performances in many
domains when training data is sufficiently large. However,
they could also perform excellently when the training data is
reduced. In an effort to improve attack performance, already
Choudary et al. investigated how adding noise to the input
improves the performance of template attacks on different
devices [CK14]. The same idea is applied to deep learning-
based attacks, introduced by Kim et al. [KPH+19]. In the
context of profiling side-channel attacks, Cagli et al. inves-
tigated how to create measurements that improve the attack
performance synthetically [CDP17]. Unlike the previous work
where the authors developed a specialized data augmentation
technique, Picek et al. showed that generic data augmentation
techniques help in profiling SCA also [PHJ+18]. Another work
investigated whether limiting the number of traces can be
beneficial both from the experimental setup and performance
sides [PHPG22].

From the input features perspective, Bursztein introduced
the usage of raw traces for profiling in an invited talk at CHES
2018 [Bur18]. Lu et al. also worked in this direction, showing
that better attack performance is achieved but with signifi-
cantly more complex neural networks (e.g., having around 50
layers) [LZC+21]. Perin et al. showed how simple re-sampling
of raw traces could result in extremely powerful attacks
(requiring only a single attack trace) while using simple neural
networks with only a few hidden layers [PWP22]. Finally,
similarity learning was applied to pre-process the leakage

https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1
https://github.com/ANSSI-FR/ASCAD/tree/master/ATMEGA_AES_v1
https://chesctf.riscure.com/2018/news

5

traces and extract high-level features, leading to state-of-the-
art attack performance with significantly reduced computation
effort [WPP22a].

As already discussed, commonly, in machine learning, one
estimates the behavior of a profiling model based on statis-
tics of individual observations like accuracy, loss, or recall.
Unfortunately, such metrics can be misleading in SCA, as
one considers cumulative predictions. Picek et al. showed
that standard machine learning metrics could suggest radically
different performance than the SCA metrics [PHJ+18]. Ma-
sure et al. connected the perceived information and negative
log-likelihood, showing there can be common ground when
using machine learning metrics in SCA [MDP19]. Perin et
al. discussed how mutual information could be a good metric
to indicate when to stop the machine learning training pro-
cess [PBP21]. Finally, Rădulescu et al. compared efficient
metrics (Massey’s guessing entropy and empirical guessing
entropy) in full-key recovery, which may help decide when to
stop profiling [RPC22].

IV. LABEL DISTRIBUTION

By asking ’how much does each label describe the
instance?’, Geng et al. first proposed Label Distribution
Learning (LDL) by assigning a description degree (proba-
bility) of each possible label, leading to enhanced perfor-
mance compared with hard (one-hot encoded) labels [Gen16].
This method has been used in tasks such as age estima-
tion [GWX14] or personality recognition [XHG+17]. How-
ever, the application of LDL is restricted since one should
have a reasonable estimation of the relation between labels,
and such an estimation could be challenging in many tasks,
e.g., image classification. Fortunately, SCA uses the leakage
model to construct labels, which inherently leads to a clear
relationship between labels. Indeed, two leakage traces with
closer label (intermediate value) distance could be more simi-
lar. As a result, a combination of LDL and SCA could enhance
attack performance.

Definition 4. Description degree. The description degree dyix
represents the degree of a label yi to describe an input x. From
the machine learning perspective, dyix can be considered as the
probability of the label yi being selected. If a complete set of
labels Y can fully describe the given input, then:∑

i

dyix = 1, yi ∈ Y. (3)

The conventional DL-based SCA represents a multi-class
classification task that describes a measurement with a unique
cluster/label. Using binary variables, the label is one-hot
encoded to train a deep learning model (see Figure 3b). In an
ideal case, the label yi perfectly represents the leaking features
within a measurement (i.e., the correlation between labels
and leaking features equals one). However, the presence of
noise/countermeasure increases the description degree of other
labels to the corresponding leakage traces. For illustration,
Figure 3a shows the Probability Density Function (PDF), and
point-of-interests distributions (POI1 and POI2) from 1 000

measurements 3. The color of each point is attributed based
on its cluster label. Using the HW leakage model, nine PDFs
representing nine HW clusters are built during the profiling
phase. Each PDF is represented by two ellipses representing
0.5 (low) and 0.9 (high) of the maximum probabilities. Note
that PDF is the basis of template attack, used to present the
leakages’ distributions and making label predictions [CK14],
[CK17].

0.320.300.280.260.24
POI 1

0.40
0.38
0.36
0.34
0.32
0.30
0.28
0.26
0.24

PO
I 2

HW_0
HW_1
HW_2
HW_3
HW_4
HW_5
HW_6
HW_7
HW_8

(a) PDFs and POIs distribution for
the correct key.

Labels

Pr
ob

ab
ilit

y

1 One-hot label

Distributed label

(b) Comparison between one-hot
and distributed labels.

Fig. 3: PDFs and a demonstration of distributed labels.

From Figure 3a, each PDF can be separated. However, the
overlap between each PDF cannot be ignored. Although the
traces in the middle between two PDFs have deterministic
(single) labels representing the targeted intermediate data, they
are also geometrically close(r) to their neighboring clusters
leakage-wise. Here, we denote the squared Euclidean distance
between two label values as label distance. Indeed, one
can observe a natural measure of description degree that
associates the labels with the traces. An accurate description
of these traces should involve the ’incorrect’ labels. Since
their similarity to each cluster is inversely correlated with
their label distance, as demonstrated in Figure 3b, the one-hot
label and the highest distributed label should be on the same
abscissa; the distribution degree of other labels is assigned
with reduced probability based on label distance. We denote
this label representation as distributed labels. The description
degree of each label is sorted based on their actual values.
Distributed labels more precisely describe the leakage features,
thus helping relax the conditions on the required number of
training traces to achieve a robust performance than training
with one-hot encoded labels.

It is worth noting the links between template attacks and
distributed labels. The multivariate normal distribution, param-
eterized by the mean vector µ and covariance matrix Σ, can
be represented using the following equation

f(x;µ,Σ) =
1

(2π)
k
2 · |Σ| 12

· exp−
1
2 (x−µ)T ·Σ−1·(x−µ), (4)

where x represents the random vector from the multivariate
normal distribution with k dimensions. Indeed, both methods
calculate the mean and variation of the variable to precisely
describe the leakage features. The main difference is that the

3ChipWhisperer dataset [OC14] is used as it represents measurements
obtained from a physical device, where two point-of-interests are selected
based on the signal-to-noise ratio to represent the traces. Note that this dataset
is not noiseless, but obtaining less noisy measurements without resorting to
simulations is challenging.

6

template attack directly characterizes the leakage features with
µ and Σ, while our method focuses on enhancing leakage
features’ label representation.

Notice, our learning method fundamentally differs from lin-
ear regression attack (LRA) [DPRS11]. Although LRA would
also lead to smooth labels by estimating weight parameters to
each binary decomposition of the target value, these labels are
constructed during the regression process. On the other hand,
our method considers SCA as a classification task. The goal of
using distributed labels is to reach more efficient classification.

One should notice the relation between label smooth-
ing [SVI+16] and label distribution. As a regularization tech-
nique, label smoothing improves accuracy by computing cross-
entropy not with the ’hard’ (i.e., one-hot encoded) labels from
the dataset but with a weighted mixture of all possible labels
with the noise (i.e., uniform) distribution. Label distribution
further preserves relations between different labels to describe
leakage features. From the model training perspective, the
model is less penalized by the loss value caused by the
inconsistency between predictions and real labels (e.g., one-
hot labels), thus speeding up the learning process. The perfor-
mance benchmark between these two techniques can be found
in Section VI-A. A natural choice to form distributed labels is
a normal distribution. Indeed, the construction of distributed
labels should align with the actual distribution of leakages.
This paper assumes the leakage follows a Gaussian distribution
commonly observed in practice. Moreover, Gaussian distribu-
tion inherently fits the distribution of the environmental noise,
a main factor that increases the description degree of labels.

Definition 5. Label distribution learning. Given a training
set with trace-label pairs (x, y) sampled from T, where x ∈ X
and y ∈ Y , the goal is to learn a function fθM , so that the
predicted output ŷ, representing the probability of all possible
labels given an input x, has a similar distribution to the
distributed label D(y):

D(y) =
1

σ
√

2π
exp

(
−1

2

(
y − y′

σ

)2
)
, y′ ∈ Y, (5)

where D(y) denotes the distributed label for the input label
y; the variance of is denoted by σ.4

An essential assumption of label distribution learning is that
the label y should be pre-determined by an attacker. Then, the
attacker can calculate the distributed label D(y) with Eq. (5).
Indeed, the only adjustable parameter σ depends on the data
property (specifically, the dataset’s noise). In Section VI,
we systematically analyze the influence of σ with different
datasets (including their noisy versions) and leakage models
and then give suggestions on the value selection.

Next, to optimize the learning parameter θ, instead of using
conventional loss functions such as categorical cross-entropy
or mean squared error, following [Gen16], Kullback-Leibler

4We assume the leakage follows a Gaussian distribution. If this assumption
does not hold for the given leakage traces, the calculation of the distributed
label should be adjusted accordingly.

(KL) divergence is used as the loss function to measure the
similarity between the predicted and ground truth distribution:

L =
∑
i

D(yi) ln(
D(yi)

ŷi
), yi ∈ Y, (6)

where ŷi and yi denote the predicted probability for label i
and the true label, respectively.

Stochastic gradient descent is used to minimize the loss
function L. Once a network is trained, given a random input
x with an unknown label from the attack dataset, the model f
outputs a predicted label distribution ŷ. The predicted label is
the one in ŷ with the highest probability.

i∗ = argmax
i

ŷi. (7)

V. LABEL CORRELATION METRIC

A. Key Distribution

Following Eq. (5), the probability of a label y being selected
as the correct label depends on its label distance to the true
label y∗. Since these labels are key-related, we can also
calculate the differences between key candidates, denoted as
key distribution (KD), based on the label distance.

KD(kref , k) =
∥∥f(d, kref)− f(d, k)

∥∥2
, k ∈ K. (8)

where f is the leakage model function (described in Sec-
tion II-E) that returns the leakage value (labels) according to
a key candidate k and data value d. Similar to Eq. (5), KD is
based on the squared Euclidean distance between the leakage
distribution of all key hypotheses k ∈ K and the reference key
candidate kref . We form a KD vector sorted by the KD value
for each k (so kref always ranks the first).5 Note that when it
is clear from the context, we use the notations KD(kref , k)
and KD interchangeably.

KD gives a unique distribution of all key candidates k based
on their difference to the reference key kref . Therefore, kref

determines the KD value for each key candidate. Typically,
kref has a distribution difference equal to zero with itself,
and the lower the distribution difference, the more similar the
key candidate is to the reference key. The reference key can be
set to the k∗ (correct key). When k∗ is unknown (black-box),
kref should be the most likely key.

From an attack perspective, for a model built in a successful
profiling attack (the correct key k∗ is the best guess), suppose
KD is large between a specific key k ∈ K and k∗. Then, k
will likely be ranked low (i.e., with guessing entropy close
to 2b − 1) as it has a negligible probability of being selected.
Consequently, KD can be considered an ideal key rank6 metric
indicating the best possible scenario where the correct key is
maximally separated from all the other keys.

5We also investigated the Manhattan distance and found the results to be
in line but with smaller discriminate power. Besides, since KD is a list
of labels associated with the given key that does not follow any known
distribution, f-divergence functions (i.e., KL-divergence, Hellinger distance)
are not considered.

6Here, ’ideal’ means the perfect fit between an attack model and the
leakage. Under this circumstance, the resulting key rank is equivalent to KD
as discussed in Section V-B.

7

The KD definition can be extended to any leakage model,
i.e., the Hamming distance or the Least Significant Bit. Fig-
ure 4 illustrates the summed KD (for all key candidates)
with the HW and ID leakage models for the key candidates
kref = 34 (correct third subkey for the ASCAD r) and
kref = 224 (correct third subkey for the ASCAD f). Although
all KD values except for kref = k∗ act as ’noisy’ values,
the similarity difference between kref and other keys can
be observed. One should note that a precise estimation of
KD relies on the chosen leakage model. An incorrect leakage
model would not only degrade the attack performance, but
KD’s effectiveness will also drop. Since the publicly available
datasets leak mostly in the HW leakage model, we calculate
KD with the HW leakage model throughout the paper.

0 50 100 150 200 250
Key Candidates

0

200

400

600

800

1000

1200

Ke
y

Di
st

rib
ut

io
n

K=34
K=224

(a) HW leakage model.

0 50 100 150 200 250
Key Candidates

0.0M

0.5M

1.0M

1.5M

2.0M

2.5M

3.0M

3.5M

Ke
y

Di
st

rib
ut

io
n

K=34
K=224

(b) ID leakage model.

Fig. 4: Illustration for the Key Distribution for the HW/ID
leakage models and correct keys 34 and 224.

B. Label Correlation - LC

Key distribution defines the distance between kref and other
key candidates. Following this, we define a profiling model
fitting metric by correlating KD with the predicted probability
for all k ∈ K, denoted as Label Correlation (LC), as a function
of KD and the key guessing vector g (defined in Definition 3):

LC = corr(KD,g). (9)

Eq. (9) defines how well a profiling model fits the data
concerning a key candidate kref for a chosen leakage model.
The notation corr represents the Spearman correlation [HK11]
that evaluates the monotonic relationship with two inputs. We
also considered the Pearson correlation, but the results are less
optimal due to the significant differences in key distribution
between the correct key and other keys (Figure 4).

Following Eq. (9), if the profiling model outputs the correct
key as the most likely key, one could expect a stronger
correlation between KD and g. Conversely, if the profiling
model fails to fit the data, the outputted random (but still) most
likely key would lead to a low correlation between KD and
g. As a demonstration, Figure 5 depicts the ’almost’ perfectly
fitted profiling model for the HW and ID leakage models. We
use simulated measurements with strong HW and ID leakages
and a controlled Gaussian noise level, normal-distributed with
a variance of 0.01 around a mean of zero. The simulated traces
have two features that hold the leakage, which is proportional
to HW (Sbox(d⊕k)) and Sbox(d⊕k), to simulate the ideal HW
and ID leakages, respectively. The profiling set has plaintexts d

and keys k chosen from a uniformly random distribution. The
attack set’s plaintexts are selected uniformly at random, while
the attack key is the same for the whole dataset. We use the
template attack and consider the increasing number of profiling
traces N . In both figures, LC increases w.r.t. the number of
profiling traces, reaching 0.999 and 0.998 for the HW and
ID leakage models. The results confirm that the correlation
between KD and g tends to increase with better (fitter) models
(since we use template attack, better models are those that are
trained with more traces).

Definition 6. Perfectly fitted profiling model. A perfectly
fitted profiling model reaches LC = 1 in the attack phase for
any set of Q attack traces.7

0 50 100 150 200 250
0

50

100

150

200

250

N=1e+03
N=1e+06

KD
 R

an
k

Guessing Entropy

(a) HW leakage model.

0 50 100 150 200 250
0

50

100

150

200

250

N=1e+04
N=1e+06

KD
 R

an
k

Guessing Entropy

(b) ID leakage model.

Fig. 5: ’Perfectly’ fitted profiling model with template attack,
considering the HW and ID leakage models and simulated
traces with an increasing number of profiling traces N . KD
ranks (Y-axis) stands for a sorted KD.

It is worth mentioning that KD can also be used to calculate
the confusion covariance metric (E(KD)) [FLD12], a metric
designed initially to measure the DPA resistance of S-boxes. A
low expectation of KD indicates less distinctive intermediate
data, which could lead to reduced data leakage. On top of that,
the LC metric suggests that the variance of KD should also be
low to secure the target. Indeed, a low KD variance indicates
high similarity between different keys, which will lead to a less
deterministic order of g. Since the LC value is more likely to
be low in this case, one can expect more effort in obtaining the
security assets via SCA. Another way of perturbing g is by
introducing additional noise or countermeasures, a common
implementation in modern products.

VI. EXPERIMENTAL RESULTS

A. Profiling with Distributed Labels

In Section IV, we argue that the distributed label enlarges
the description degrees of labels to the leakage traces and
can lead to more efficient learning even with fewer profiling
examples. We validate this assumption with machine learning
models by training the state-of-the-art CNNs [RWPP21] and
MLPs [WPP20] with a different number of profiling traces.
The models’ hyperparameters are listed in Appendix A. We
use a diverse selection of DL architectures to ensure the
generalization of the results. Note that we select MLP and

7We assume there are many possible ways to select Q traces from the
available traces.

8

CNNs due to their wide applications in SCA. Still, we expect
other supervised learning methods to benefit from distributed
labels thanks to their higher description degree of the leakage
features. Besides, we tune the σ value of the distributed label
to find the optimal value for different training settings. The dis-
tributed labels are pre-computed before the training starts. To
obtain the most representative performance, the attack results
of each training setting (σ and profiling traces number) are
the median value from 20 independent training (and attacks)
with random weight initialization following recommendations
from [WPP22b].

Figures 6, 7, and 8 show the results for the ASCAD f,
ASCAD r, and CHES CTF datasets, respectively. The con-
ventional training method (one-hot encoded label) is repre-
sented with σ = 0.0 (black bar). We used the categorical
cross-entropy (CCE) loss when training with the conventional
method. CCE is a standard loss function for classification
tasks widely used in DL-SCA. When learning from the label
distribution, the KL divergence loss measures the distribution
difference between the true and predicted label distributions.

For the ASCAD f dataset, as shown in Figure 6, by dis-
tributing HW-based labels, GE equal to zero can be reached
with less than 3 000 profiling traces for both MLP and CNN
within the given number of attack traces, which is more
than ten times less than the number of the profiling traces
commonly used in literature (50 000). At the same time, more
than 10 000 profiling traces are insufficient when considering
the conventional training method (σ = 0.0). Using the ID
leakage model, although one-hot encoded labels lead to better
performance in some cases (discussed in later paragraphs),
one can confirm the advantages of using the distributed label
in low profiling settings.

When looking at the influence of the label distribution
variation σ (Figure 6), although different numbers of profiling
traces, leakage models, and attack models are considered, the
optimal settings show consistency: for the HW leakage model,
σ ranges from 1 to 2 can lead to the best attack performance.
This value increases to 20-80 for the ID leakage model. We
have also tested the traces with Gaussian noise levels 2 and 4.
While the optimal value of σ defined in the paper still holds
for most settings, we expect the best σ to be larger since the
leakage traces become more difficult to classify correctly.

Although ASCAD r is considered more difficult to break
than ASCAD f [WPP20], as shown in Figure 7, the distributed
label boosts the attack performance significantly. For the HW
leakage model, around 6 000 profiling traces are sufficient
for MLP and CNN models to reach GE of zero, which is
around ten times less than the related works (≥50 000 profiling
traces). For the ID leakage model, aligned with the attack on
the ASCAD f dataset, although none of the training settings
can retrieve the secret information with 5 000 attack traces,
label distribution learning halves the GE value compared
with its one-hot encoded counterpart, indicating a faster GE
convergence with our learning scheme.

Finally, similar results can be obtained when attacking the
CHES CTF dataset. Since this dataset leaks limited ID leakage
according to literature [WPP20], [RWPP21], we attack with
the HW leakage model only. With the MLP and CNN models,

(a) MLP with the HW leakage
model.

(b) MLP with the ID leakage
model.

(c) CNN with the HW leakage
model.

(d) CNN with the ID leakage
model.

Fig. 6: Label distribution learning on the ASCAD f dataset.

5 000 profiling traces are needed to break the target, nine times
less than the traces used in the literature (45 000 traces). It is
important to note that the optimal σ setting shows similarity
for all three tested datasets. From the experimental results on
three datasets, good prior knowledge about the leakage model
is necessary to construct a meaningful label distribution. Still,
when attacking leakages from other devices, one could start
with low σ and monitor the attack performance until it reaches
optimal behavior.

(a) MLP with the HW leakage
model.

(b) MLP with the ID leakage
model.

(c) CNN with the HW leakage
model.

(d) CNN with the ID leakage
model.

Fig. 7: Label distribution learning on the ASCAD r dataset.

Indeed, there are various techniques available when the
profiling traces are limited. To better illustrate the pros and

9

(a) MLP with the HW leakage
model.

(b) CNN with the HW leakage
model.

Fig. 8: Label distribution learning on the CHES CTF dataset.

cons of label distribution learning compared to these methods,
we benchmark the attack performance of previously used state-
of-the-art (SotA) MLPs and CNNs with multiple profiling
settings. We consider several commonly-used techniques to
counter the limitation of the training data.
• 10 000 profiling traces with and without techniques such

as label distribution, label smoothing, L2 regularization,
and dropout.

• 50 000 profiling traces, obtained directly or generated
with Gaussian noise-based data augmentation.

• 100 000 profiling traces generated from 10 000 traces with
Gaussian noise-based data augmentation.

The dropout rate and regularization factor are tuned to 5e-
2 and 1e-4. For data augmentation, four augmentation levels
(0.25, 0.5, 0.75, 1.0) are selected following [KPH+19], and the
one with the best performance is presented in the benchmark.
The label smoothing factor is set to be optimal based on the
various search options.8 Each profiling setting is tested with
two label formats: one-hot encoded and distributed labels.
For label distributed learning, σ is set to 1/2 and 40/80 for
HW and ID leakage models. Recall that the number of attack
traces is set to 10 000. The attack performance is evaluated by
calculating the required number of attack traces to reach GE of
zero, denoted as TGE0. The results are the median TGE0 from
20 independently trained models. If an attack setting fails to
reach GE zero with a given number of attack traces, the results
are marked with ”-”.

The benchmark results are shown in Table I and Table II.
The best results for each profiling setting are marked in bold.
With limited (10 000) profiling traces, distributed labels bring
a significant performance boost with various attack settings.
The considered regularization techniques are helpful in some
attack settings, improving significantly when combined with
distributed labels. Similarly, data augmentation helps obtain
better performance in some cases; the combination with dis-
tributed labels makes it even better. In practice, due to the
limitation of controlled devices and time budget, attackers
would likely use smaller networks, more regularization, and
more data augmentation to run their attacks in lower-data
settings. However, as shown in the table, label distribution
is the best technique considering the additional efforts to tune
hyperparameters and their performance.

8The possible label smoothing factors are 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1, 5,
and 10.

Traces Label ASCAD f ASCAD r CHES CTF

10 000 One-hot -/- -/- -
Smoothed 3 484/- -/- -
Distributed 1 618/4 964 3 623/4 892 2 337

10 000 One-hot -/- -/- 3 728
(L2) Distributed -/- -/- 1 930

10 000 One-hot -/- -/- 4 156
(Dropout) Distributed 2 264/- -/- 2 493

50 000 One-hot 1 219/182 970/2 625 567
Distributed 1 421/3 530 919/- 905

50 000 One-hot 1 588/- -/- -
(Augmented) Distributed 1 095/4 728 2 784/- 2 735

100 000 One-hot 1 254/- -/- -
(Augmented) Distributed 1 447/4 895 2 998/- 2 793

TABLE I: Benchmark the attack performance (TGE0) with
SotA MLP. Attack results for the HW and ID leakage models
are separated by ’/’.

Traces Label ASCAD f ASCAD r CHES CTF

10 000 One-hot 2940/- -/- -
Smoothed 2 994/- -/- -
Distributed 1 252/4 050 1 939/3 753 2 182

10 000 One-hot 2 217/3 779 -/- -
(L2) Distributed 1 096/- 2 034/4 892 1 458

10 000 One-hot 1 913/- -/- -
(Dropout) Distributed 1 338/4 219 -/- 1 868

50 000 One-hot 544/87 650/487 455
Distributed 779/- 553/3 684 450

50 000 One-hot 2 829/4 061 -/- -
(Augmented) Distributed 1 201/- 2 190/- 1 724

100 000 One-hot 2 278/1 621 -/- -
(Augmented) Distributed 1 218/- 2 298/- 2 105

TABLE II: Benchmark the attack performance (TGE0) with
SotA CNN. Attack results for the HW and ID leakage models
are separated by ’/’.

Note that one-hot encoded labels often lead to comparable
or superior results when training with 50 000 profiling traces.
Indeed, one-hot encoded labels are more precise in discrimi-
nating the correct labels than distributed labels. On the other
hand, increasing the number of profiling traces amplifies the
side-effect of distributed labels, leading to high estimation
variance and reduced predictive performance. Finally, although
data augmentation could also generate more profiling traces,
the difficulty of setting a proper augmentation level makes the
generated traces less helpful in the profiling phase.

B. Use Cases of Label Correlation

In this section, we investigate the effectiveness of the
LC metric for different use cases. Specifically, we consider
network architecture search (NAS) and overfitting prevention
as they significantly influence the attack performance with DL-
based SCA. Indeed, adjusting the profiling model size will
directly influence its learning capacity. On the other hand, a
correctly set training epoch number could improve the model’s
fitness to the dataset. Since these two aspects rely on well-
performing evaluation metrics [RWPP21], [PCP20], we show

10

the performance of LC in various settings and benchmark it
with other standard metrics.

1) Early Stopping: As an evaluation metric, LC can be used
as early stopping regularization or as an indicator of when
to save the best model. For illustration, we evaluate state-
of-the-art models by training with different training epochs
ranging from 1 to 150 in steps of 10, representing the number
of iterations to train a profiling model. Aligned with previous
sections, the attack performance is assessed by TGE0. Besides,
four metrics, accuracy, loss, mutual information (MI) [PBP21],
and LC, are calculated per epoch with 5 000 validation traces.9

One may argue that TGE0 can be used as an evaluation metric.
However, TGE0 can only be calculated when GE equals zero.
For a model that cannot break the target with a given number
of attack traces, TGE0 is not indicative. Similarly, the key
rank metric is only meaningful when GE is larger than zero:
when the key rank stays zero, one cannot know if the model is
still learning or starting overfitting. Since all selected models
reached the key rank of zero quickly and never changed, we
omit the key rank metric as it is less indicative in the training
process.

The results for three datasets and two leakage models
are shown in Figures 9, 10, and 11. Since the metrics and
TGE0 have different scales, multiple Y-axes are used to scale
the results data. The optimal training epoch proposed in the
literature is marked by green vertical lines (10 for MLPs
and 50 for CNNs). Aligned with the previous section, all the
presented results are the median from 20 independent pieces
of training.

Regarding ASCAD f, LC perfectly reflects the generaliza-
tion variation of the profiling model with different training
epochs when using TGE0 as a reference. From both figures, LC
indicates the overfitting effect accurately, or even before the
attack performance degrades. Indeed, LC evaluates the order
of the key candidates, and the order closer to KD is more likely
to be perturbed when overfitting starts. When the overfitting
effect accumulates to a certain level, the “disorder” of the key
candidate propagates to the correct key, finally captured by
GE-related metrics. Due to LC’s sensitivity, one can decide
on optimal epochs with more patience (i.e., the number of
epochs to wait before an early stop if there is no progress on
the validation set) without suffering from overfitting.

Regarding other metrics, the MI metric is somewhat mis-
leading as it keeps increasing (e.g., Figures 9a, 9d, and 10d)
or does not change much (Figures 10b and 11b) even when
TGE0 suggests performance degradation. The loss value is
only useful in limited cases (e.g., Figure 9a), which confirms
the conclusion from Picek et al. [PHJ+18] that it is commonly
not considered a good evaluation metric for SCA, and accuracy
remains mostly stable with different training epochs, indicating
mediocre performance. Lastly, the literature’s optimal training
epochs are not optimal for Figures 9a and 9d. On the other
hand, LC consistently indicates the epoch that achieves the
best attack performance.

Attacks on ASCAD r and CHES CTF show consistent
results with ASCAD f. LC performs the best among all

9If GE is greater than zero, TGE0=5 000.

(a) MLP with the HW leakage
model.

(b) MLP with the ID leakage
model.

(c) CNN with the HW leakage
model.

(d) CNN with the ID leakage
model.

Fig. 9: Metrics performance on the ASCAD f dataset.

evaluated metrics, alarming the overfitting effect precisely. As
an evaluation metric, LC combines the advantages of key rank
and TGE0 with limited computation overhead, thus becoming
a reliable metric for the applications such as early stopping.

(a) MLP with the HW leakage
model.

(b) MLP with the ID leakage
model.

(c) CNN with the HW leakage
model.

(d) CNN with the ID leakage
model.

Fig. 10: Metrics performance on the ASCAD r dataset.

2) Network Architecture Search: Network architecture
search (NAS) is essential in DL-SCA. A smartly designed
neural network can break the target and reduce the training
complexity as well [ZBHV19], [RWPP21]. To better illustrate
the advantage of the LC metric, we use CNN listed in
Table III with a tunable α parameter to control the size of the
deep learning model. Specifically, α determines the number

11

(a) MLP with the HW leakage
model.

(b) MLP with the ID leakage
model.

Fig. 11: Metrics performance on the CHES CTF dataset.

of filters in convolutional layers and neurons in the fully
connected layers. We use α (range from 1 to 64) to estimate
the complexity of a profiling model. Note, for the CNN best
from [BPS+20], α equals 64. The training epoch is set to be
optimal (75) based on [BPS+20], represented by the green
vertical line in the plot. This section presents the results for
the ASCAD f and ASCAD r datasets only. Since CHES CTF
produce similar results, we omit them from this section.

TABLE III: CNN architecture used for the attack.

Layer Types Filter
Size

of
Filters

Pooling
Stride

of
Neurons

Conv block 11 a*1 2 -
Conv block 11 a*2 2 -
Conv block 11 a*4 2 -
Conv block 11 a*8 2 -
Flatten - - - -
Fully connected (2×) - - - a*64

The results are shown in Figure 12. Aligned with the
previous section, accuracy, loss, MI, and LC are used as
evaluation metrics. As a reference, TGE0 represents the attack
performance. Among the three considered metrics, LC best
represents the attack performance. For instance, in Figure 12a,
TGE0 reaches minimum when α equals around 50. Further
increase of the profiling model size degrades the attack per-
formance, meaning the fitness reduction for a dataset. The
LC metric perfectly represents this tendency, as it reaches
the maximum when α is around the same model size, then
decreases gradually. Regarding other metrics, the validation
accuracy has limited changes regardless of the variation of
α. Validation loss, in contrast, is more indicative than its
counterpart. However, it is challenging to judge when to stop
the training. For instance, the loss value in Figure 12c suggests
that the profiling should end after training with around 35
epochs, but the best performance is reached 15 epochs later.
MI keeps on increasing with the HW leakage model. However,
it does not correctly reflect the attack performance. Finally, the
training epoch suggested in the literature is still sub-optimal
when looking at the results (i.e., Figure 12b). Using LC as an
evaluation metric can help monitor the attack performance in
various settings.

In addition, we have also tested the influence of the noise
on the considered metrics by adding Gaussian noise to the
traces with incremental variations ranging from 0 to 10 in a

(a) ASCAD f with the HW leak-
age model.

(b) ASCAD f with the ID leakage
model.

(c) ASCAD r with the HW leak-
age model.

(d) ASCAD r with the ID leakage
model.

Fig. 12: Metrics performance with different model sizes.

step of 0.5. The results show that the LC metric can correctly
and precisely reflect the negative influence introduced by the
noise. Since the results align with the conclusions from the
previous sections, the results are omitted.

In conclusion, the LC metric reliably reflects the generality
of the profiling model in various training conditions. Com-
pared to other metrics, the evaluation of the keys’ order helps
in increasing the sensitivity of the LC metric in measuring the
model’s performance. Indeed, in almost all of the experimental
results, LC is the first metric that indicates the overfitting
effect. Additionally, due to its computation simplicity, we
believe LC is an ideal candidate as an evaluation metric.

VII. CONCLUSIONS AND FUTURE WORK

In the profiling side-channel analysis, one commonly uses
intermediate data to form a one-hot encoded label for the
profiling. Additionally, it is common to use guessing entropy
to estimate the attack performance. This paper introduces dis-
tributed labels as a new learning approach that can effectively
reduce the required number of profiling traces. Then, based
on the relationship between each key candidate, we define
the Key distribution (KD) metric and use it to form a novel
LC metric. Our results show that the LC metric can be a
reliable candidate for evaluating the generality of a model,
which has been validated with two use cases: early stopping
and network architecture search. Our findings are confirmed
for several experiments considering various usage cases, attack
methods, leakage models, and datasets.

In future work, we plan to extend the application of label
distribution for high-order masked implementations. In terms
of the LC metric, since the key distribution relies on the hypo-
thetical distance between key candidates, the distance depends
on the algorithm and hardware implementation. Following this,
we plan to investigate if the method can be easily adapted to

12

a new implementation or a new algorithm. Moreover, prior
knowledge about the leakage model plays a significant role in
the proposed label distribution, so we plan to explore LC in
the context of leakage assessment for the black-box devices
without this knowledge. Finally, applying our results to the
non-profiling SCA would be an exciting research direction.

ACKNOWLEDGMENTS

This work received funding in the framework of the NWA
Cybersecurity Call with project name PROACT with project
number NWA.1215.18.014, which is (partly) financed by the
Netherlands Organisation for Scientific Research (NWO). Ad-
ditionally, this work was supported in part by the Netherlands
Organization for Scientific Research NWO project DISTANT
(CS.019).

APPENDIX

The used state-of-the-art models are listed in Tables IV
and V. All of the non-listed hyperparameter settings are
aligned with the original papers [RWPP21], [WPP20]. The
convolution layer is denoted by C; averaging pooling layer is
denoted by P. FLAT and FC denote the flatten layer and fully
connected layer, respectively. Finally, SM denotes the output
layer with the softmax activation function.

REFERENCES

[BPS+20] Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli,
and Cécile Dumas. Deep learning for side-channel analysis and
introduction to ASCAD database. J. Cryptographic Engineering,
10(2):163–188, 2020.

[Bur18] Elie Bursztein. Leveraging deep-learning to perform sca attacks
against aes implementations. 2018. Invited talk.

[Car11] IC Card. Emv integrated circuit card specifications for payment
systems, book 3 application specification, November 2011.
https://www.emvco.com/wp-content/uploads/2017/04/EMV v4.
3 Book 3 Application Specification 20120607062110791.pdf.

[CDP17] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. Convolu-
tional neural networks with data augmentation against jitter-based
countermeasures. In Wieland Fischer and Naofumi Homma,
editors, Cryptographic Hardware and Embedded Systems – CHES
2017, pages 45–68, Cham, 2017. Springer International Publish-
ing.

[CK14] Omar Choudary and Markus G Kuhn. Template attacks on
different devices. In Constructive Side-Channel Analysis and
Secure Design: 5th International Workshop, COSADE 2014,
Paris, France, April 13-15, 2014. Revised Selected Papers 5,
pages 179–198. Springer, 2014.

[CK17] Marios O Choudary and Markus G Kuhn. Efficient, portable
template attacks. IEEE Transactions on Information Forensics
and Security, 13(2):490–501, 2017.

[CRR02] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template
attacks. In Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof
Paar, editors, Cryptographic Hardware and Embedded Systems
- CHES 2002, 4th International Workshop, Redwood Shores,
CA, USA, August 13-15, 2002, Revised Papers, volume 2523 of
Lecture Notes in Computer Science, pages 13–28. Springer, 2002.

[DPRS11] Julien Doget, Emmanuel Prouff, Matthieu Rivain, and François-
Xavier Standaert. Univariate side channel attacks and leakage
modeling. Journal of Cryptographic Engineering, 1(2):123–144,
2011.

[FLD12] Yunsi Fei, Qiasi Luo, and A Adam Ding. A statistical model for
dpa with novel algorithmic confusion analysis. In International
Workshop on Cryptographic Hardware and Embedded Systems,
pages 233–250. Springer, 2012.

[Gen16] Xin Geng. Label distribution learning. IEEE Transactions on
Knowledge and Data Engineering, 28(7):1734–1748, 2016.

[GHO15] R. Gilmore, N. Hanley, and M. O’Neill. Neural network based
attack on a masked implementation of AES. In 2015 IEEE
International Symposium on Hardware Oriented Security and
Trust (HOST), pages 106–111, May 2015.

[GWX14] Xin Geng, Qin Wang, and Yu Xia. Facial age estimation by
adaptive label distribution learning. In 2014 22nd International
Conference on Pattern Recognition, pages 4465–4470. IEEE,
2014.

[HGM+11] Gabriel Hospodar, Benedikt Gierlichs, Elke De Mulder, Ingrid
Verbauwhede, and Joos Vandewalle. Machine learning in side-
channel analysis: a first study. J. Cryptogr. Eng., 1(4):293–302,
2011.

[HK11] Jan Hauke and Tomasz Kossowski. Comparison of values of
pearson’s and spearman’s correlation coefficients on the same sets
of data. Quaestiones geographicae, 30(2):87, 2011.

[HZ12] Annelie Heuser and Michael Zohner. Intelligent Machine Homi-
cide - Breaking Cryptographic Devices Using Support Vector
Machines. In Werner Schindler and Sorin A. Huss, editors,
COSADE, volume 7275 of LNCS, pages 249–264. Springer, 2012.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential
power analysis. In Michael J. Wiener, editor, Advances in
Cryptology - CRYPTO ’99, 19th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 15-19, 1999,
Proceedings, volume 1666 of Lecture Notes in Computer Science,
pages 388–397. Springer, 1999.

[KPH+19] Jaehun Kim, Stjepan Picek, Annelie Heuser, Shivam Bhasin,
and Alan Hanjalic. Make some noise. unleashing the power of
convolutional neural networks for profiled side-channel analysis.
IACR Transactions on Cryptographic Hardware and Embedded
Systems, pages 148–179, 2019.

[KS20] Y Kiran Kumar and R Mahammad Shafi. An efficient and secure
data storage in cloud computing using modified rsa public key
cryptosystem. International Journal of Electrical and Computer
Engineering, 10(1):530, 2020.

[LMBM13] Liran Lerman, Stephane Fernandes Medeiros, Gianluca Bon-
tempi, and Olivier Markowitch. A Machine Learning Approach
Against a Masked AES. In CARDIS, Lecture Notes in Computer
Science. Springer, November 2013. Berlin, Germany.

[LPB+15] Liran Lerman, Romain Poussier, Gianluca Bontempi, Olivier
Markowitch, and François-Xavier Standaert. Template attacks
vs. machine learning revisited (and the curse of dimensionality
in side-channel analysis). In International Workshop on Con-
structive Side-Channel Analysis and Secure Design, pages 20–33.
Springer, 2015.

[LZC+21] Xiangjun Lu, Chi Zhang, Pei Cao, Dawu Gu, and Haining Lu.
Pay attention to raw traces: A deep learning architecture for end-
to-end profiling attacks. IACR Transactions on Cryptographic
Hardware and Embedded Systems, pages 235–274, 2021.

[MDP19] Loı̈c Masure, Cécile Dumas, and Emmanuel Prouff. A com-
prehensive study of deep learning for side-channel analysis.
IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2020(1):348–375, Nov. 2019.

[MPP16] Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff.
Breaking cryptographic implementations using deep learning
techniques. In International Conference on Security, Privacy, and
Applied Cryptography Engineering, pages 3–26. Springer, 2016.

[OC14] Colin O’Flynn and Zhizhang David Chen. Chipwhisperer: An
open-source platform for hardware embedded security research.
In International Workshop on Constructive Side-Channel Analysis
and Secure Design, pages 243–260. Springer, 2014.

[PBP21] Guilherme Perin, Ileana Buhan, and Stjepan Picek. Learning
when to stop: A mutual information approach to prevent overfit-
ting in profiled side-channel analysis. In COSADE, volume 12910
of Lecture Notes in Computer Science, pages 53–81. Springer,
2021.

[PCP20] Guilherme Perin, Lukasz Chmielewski, and Stjepan Picek.
Strength in numbers: Improving generalization with ensembles
in machine learning-based profiled side-channel analysis. IACR
Transactions on Cryptographic Hardware and Embedded Sys-
tems, 2020(4):337–364, Aug. 2020.

[PHJ+17] Stjepan Picek, Annelie Heuser, Alan Jovic, Simone A. Ludwig,
Sylvain Guilley, Domagoj Jakobovic, and Nele Mentens. Side-
channel analysis and machine learning: A practical perspective. In
2017 International Joint Conference on Neural Networks, IJCNN
2017, Anchorage, AK, USA, May 14-19, 2017, pages 4095–4102,
2017.

https://www.emvco.com/wp-content/uploads/2017/04/EMV_v4.3_Book_3_Application_Specification_20120607062110791.pdf
https://www.emvco.com/wp-content/uploads/2017/04/EMV_v4.3_Book_3_Application_Specification_20120607062110791.pdf

13

TABLE IV: CNN architecture used for the attack [RWPP21].

Dataset Leakage Model Architectures Learning Rate Batch Size
ASCAD f HW C(2,25,1), P(4,4), FLAT, FC(15, 10, 4), SM(9) 5e-3 50

ID C(128,25,1), P(25,25), FLAT, FC(20, 15), SM(256) 5e-3 50

ASCAD r HW C(4,50,1), P(25,25), FLAT, FC(30, 30, 30), SM(9) 5e-3 128
ID C(128,3,1), P(75,75), FLAT, FC(30, 2), SM(256) 5e-3 128

CHES CTF HW C(2,2,1), P(7,7), FLAT, FC(10), SM(9) 5e-3 128

TABLE V: MLP architecture used for the attack [WPP20].

Dataset Leakage Model Architectures Learning Rate Batch Size
ASCAD f HW FC(496, 496, 136, 288, 552, 408, 232, 856), SM(9) 5e-4 32

ID FC(160, 160, 624, 776, 328, 968), SM(256) 1e-4 32

ASCAD r HW FC(200, 200, 304, 832, 176, 872, 608, 512), SM(9) 5e-4 32
ID FC(256, 256, 296, 840, 280, 568, 672), SM(256) 5e-4 32

CHES CTF HW FC(192, 192, 616, 248, 440), SM(9) 1e-3 32

[PHJ+18] Stjepan Picek, Annelie Heuser, Alan Jovic, Shivam Bhasin, and
Francesco Regazzoni. The curse of class imbalance and conflict-
ing metrics with machine learning for side-channel evaluations.
IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2019(1):209–237, Nov. 2018.

[PHPG22] Stjepan Picek, Annelie Heuser, Guilherme Perin, and Sylvain
Guilley. Profiled side-channel analysis in the efficient attacker
framework. In Smart Card Research and Advanced Applications,
pages 44–63. Springer International Publishing, 2022.

[PSG16] Romain Poussier, François-Xavier Standaert, and Vincent Grosso.
Simple key enumeration (and rank estimation) using histograms:
An integrated approach. In International Conference on Cryp-
tographic Hardware and Embedded Systems, pages 61–81.
Springer, 2016.

[PWP22] Guilherme Perin, Lichao Wu, and Stjepan Picek. Exploring
feature selection scenarios for deep learning-based side-channel
analysis. IACR Transactions on Cryptographic Hardware and
Embedded Systems, 2022(4):828–861, Aug. 2022.

[RPC22] Anca Rădulescu, Pantelimon G Popescu, and Marios O Choudary.
Ge vs gm: Efficient side-channel security evaluations on full cryp-
tographic keys. IACR Transactions on Cryptographic Hardware
and Embedded Systems, pages 886–905, 2022.

[RWPP21] Jorai Rijsdijk, Lichao Wu, Guilherme Perin, and Stjepan
Picek. Reinforcement learning for hyperparameter tuning
in deep learning-based side-channel analysis. IACR Trans-
actions on Cryptographic Hardware and Embedded Systems,
2021(3):677–707, Jul. 2021.

[SLP05] Werner Schindler, Kerstin Lemke, and Christof Paar. A stochastic
model for differential side channel cryptanalysis. In Josyula R.
Rao and Berk Sunar, editors, Cryptographic Hardware and Em-
bedded Systems – CHES 2005, pages 30–46, Berlin, Heidelberg,
2005. Springer Berlin Heidelberg.

[SMY09] François-Xavier Standaert, Tal G. Malkin, and Moti Yung. A
unified framework for the analysis of side-channel key recovery
attacks. In Antoine Joux, editor, Advances in Cryptology -
EUROCRYPT 2009, pages 443–461, Berlin, Heidelberg, 2009.
Springer Berlin Heidelberg.

[SVI+16] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens,
and Zbigniew Wojna. Rethinking the inception architecture for
computer vision. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2818–2826, 2016.

[WAGP20] Lennert Wouters, Victor Arribas, Benedikt Gierlichs, and Bart
Preneel. Revisiting a methodology for efficient cnn architectures
in profiling attacks. IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, 2020(3):147–168, Jun. 2020.

[WPP20] Lichao Wu, Guilherme Perin, and Stjepan Picek. I choose you:
Automated hyperparameter tuning for deep learning-based side-
channel analysis. Cryptology ePrint Archive, 2020.

[WPP22a] Lichao Wu, Guilherme Perin, and Stjepan Picek. The best of
two worlds: Deep learning-assisted template attack. IACR Trans-

actions on Cryptographic Hardware and Embedded Systems,
2022(3):413–437, Jun. 2022.

[WPP22b] Lichao Wu, Guilherme Perin, and Stjepan Picek. On the evalua-
tion of deep learning-based side-channel analysis. In Constructive
Side-Channel Analysis and Secure Design: 13th International
Workshop, COSADE 2022, Leuven, Belgium, April 11-12, 2022,
Proceedings, volume 13211, page 49. Springer, 2022.

[XHG+17] Di Xue, Zheng Hong, Shize Guo, Liang Gao, Lifa Wu, Jinghua
Zheng, and Nan Zhao. Personality recognition on social media
with label distribution learning. IEEE access, 5:13478–13488,
2017.

[ZBHV19] Gabriel Zaid, Lilian Bossuet, Amaury Habrard, and Alexandre
Venelli. Methodology for efficient cnn architectures in profiling
attacks. IACR Transactions on Cryptographic Hardware and
Embedded Systems, 2020(1):1–36, Nov. 2019.

	Introduction
	Background
	Notation
	Profiling Side-channel Analysis
	Evaluating the Attack Performance
	Datasets
	ASCAD Dataset
	CHES CTF Dataset

	Leakage Models

	Related Works
	Label Distribution
	Label Correlation Metric
	Key Distribution
	Label Correlation - LC

	Experimental Results
	Profiling with Distributed Labels
	Use Cases of Label Correlation
	Early Stopping
	Network Architecture Search

	Conclusions and Future Work
	Appendix
	References

