
sVote with Control Components Voting Protocol

Computational Proof of Complete Verifiability and Privacy

Enrique Larraia Tamara Finogina Nuria Costa
Scytl R&S

research@scytl.com

May 25, 2020

Abstract

sVote with Control components is a cryptographic voting protocol that provides complete verifi-

ability and guarantees voting secrecy and the non-disclosure of early provisional results. This report

demonstrates that sVote fulfills the requirements of the Swiss federal chancellery for completely veri-

fiable E-voting systems. We extract precise requirements from the ordinance and the corresponding

technical annex and model the sVote cryptographic voting protocol based on its design documents.

Based on this model, we show in a detailed security analysis that an adversary cannot break the

complete verifiability and voting secrecy properties of sVote without being detected by either the

voter or by auditors.

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

Scytl

© SCYTL SECURE ELECTRONIC VOTING, S.A, 2020

© Scytl Election Technology, S.L.U., 2022

This Document is proprietary to SCYTL ELECTION TECHNOLOGIES, S.L.U. (SCYTL) and is pro-

tected by the Spanish laws on copyright and by the applicable International Conventions. The property

of SCYTL’s cryptographic mechanisms and protocols described in this Document are protected by patent

applications.

This document is licensed under Attribution-Non Commercial-No Derivatives 4.0 International (CC BY-

NC-ND 4.0). It means that this Document and parts of it may be copied and redistributed in any medium

or format. However, you must give appropriate credit, provide a link to the license, and indicate if any

changes have been made. You may do so in any reasonable manner, but not in any way that suggests the

licensor endorses you or your use. Notwithstanding the foregoing, no part of this Document may be: (i)

used for commercial purposes; (ii) distributed if it has been remixed, transformed, or build upon; and (iii)

no legal terms or technological measures can be applied that legally restrict others from doing anything

the current license permits.

ACKNOWLEDGMENTS

This work has received funding from the European Commission under the auspices of PROMETHEUS

Project, Horizon 2020 Innovation Action (Grant Agreement No. 780701).

i

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

Table of contents

I Complete verifiability and voting secrecy 1

1 Electronic voting in Switzerland... 2

2 Threat model ... 3

2.1 Individual verifiability ... 3

2.2 Complete verifiability.. 3

2.3 Voting secrecy .. 4

2.4 Parties and channels ... 5

2.4.1 Assumptions on parties .. 5

2.4.2 Assumptions on communication channels .. 5

2.5 Trust model in sVote .. 6

2.5.1 Parties in sVote ... 6

2.5.2 Trust assumptions in sVote ... 8

2.6 Correspondence between both security models.. 8

II Building blocks 11

3 ElGamal encryption scheme ... 12

3.1 Multi-recipient ElGamal .. 12

3.2 ElGamal over multiplicative groups... 13

4 Symmetric encryption schemes .. 13

5 Pseudorandom functions... 14

6 Key derivation functions ... 14

7 Proof systems .. 16

7.1 Σ-protocols .. 16

7.2 The random oracle model and the Fiat-Shamir transform .. 17

7.2.1 Non-interactive sigma protocols in ROM ... 17

7.3 Non-interactive pre-image proof systems ... 19

7.3.1 On the security of NIZK pre-image proof systems .. 20

7.3.2 Exponentiation proof system. ... 21

ii

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

7.3.3 Schnorr proof system... 21

7.3.4 Plaintext Equality proof system .. 22

7.3.5 Decryption proof system. .. 22

8 Verifiable mixnet ... 23

8.1 Homomorphic commitment scheme ... 23

8.2 Mixing proof system ... 23

8.2.1 Mix .. 24

8.2.2 ShuffleArg .. 24

8.2.3 MultiExpArg ... 24

8.2.4 ProductArg ... 25

8.2.5 HadamardProdArg... 25

8.2.6 ZeroArg ... 26

8.2.7 SingleValueProdArg ... 26

8.2.8 Fiat-Shamir heuristic in Shuffle Argument... 26

8.2.9 Special case of mixing.. 33

8.3 MixVerify ... 33

8.4 verifyShuffleArg ... 33

8.5 verifyMultiExpArg ... 34

8.6 verifyProductArg .. 34

8.7 verifyHadamardProdArg .. 35

8.8 verifyZeroArg .. 35

8.9 verifySingleValueProdArg .. 36

9 Hard problems... 36

9.1 The Decisional Diffie-Hellman problem (DDH) ... 36

9.2 Subgroup Generated by Small Primes (SGSP).. 36

III sVote voting system 39

10 General aspects ... 40

10.1 Public system parameters... 40

10.1.1 ElGamal parameters.. 40

10.1.2 Pedersen commitment key... 40

iii

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

10.1.3 Voting options... 40

10.1.4 Voter pseudonyms .. 41

10.1.5 Return codes spaces .. 41

10.2 Achieving verifiability and privacy .. 41

10.2.1 Individual verifiability.. 41

10.2.2 Universal verifiability and voter privacy .. 42

11 Phases .. 42

11.1 Configuration phase.. 43

11.2 Voting phase .. 46

11.3 Tally phase .. 47

12 Protocols and procedures.. 47

12.1 Configuration phase protocols.. 51

12.1.1 Protocol SetupVoting ... 51

12.1.1.1 GenEncryptionKeysPO .. 51

12.1.1.2 GenKeysCCRj ... 51

12.1.1.3 GenVerCardSetKeys.. 51

12.1.1.4 GenVerDat .. 52

12.1.1.5 GenEncLongCodeSharesj .. 53

12.1.1.6 CombineEncLongCodeShares ... 54

12.1.1.7 GenCMTable.. 54

12.1.1.8 GenCredDat .. 56

12.1.2 Protocol SetupTally ... 56

12.1.2.1 SetupTallyCCMj ... 56

12.1.2.2 SetupTallySDM .. 57

12.1.3 VerifyConfigPhase ... 57

12.2 Voting phase protocols .. 57

12.2.1 Protocol SendVote .. 58

12.2.1.1 GetKey .. 58

12.2.1.2 CreateVote .. 58

12.2.1.3 VerifyBallotServ .. 59

12.2.1.4 VerifyBallotCCRj ... 60

iv

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

12.2.1.5 PartialDecryptPCCj .. 60

12.2.1.6 DecryptPCC .. 61

12.2.1.7 CreateLCCSharej ... 62

12.2.1.8 ExtractCRC ... 63

12.2.1.9 VerifyCRC... 64

12.2.2 Protocol ConfirmVote ... 64

12.2.2.1 Protocol CreateConfirmMessage ... 64

12.2.2.2 VerifyConfirmationServ .. 64

12.2.2.3 VerifyConfirmationCCRj ... 64

12.2.2.4 CreateLVCCSharej.. 65

12.2.2.5 ExtractVCC ... 66

12.2.2.6 VerifyVCC... 66

12.2.3 VerifyVotingPhase ... 66

12.3 Tally phase protocol ... 68

12.3.1 Protocol MixOnline.. 68

12.3.1.1 Cleansing.. 68

12.3.1.2 MixDecOnlinej ... 69

12.3.2 Protocol MixOffline ... 69

12.3.2.1 MixDecOffline .. 69

12.3.2.2 DecodePlaintexts... 70

12.3.3 Audit tally algorithms.. 70

12.3.3.1 VerifyOnlineTally ... 70

12.3.3.2 VerifyOfflineTally ... 71

12.3.3.3 Auditors.VerifyElection .. 72

IV Security analysis 73

13 Security framework ... 74

13.1 Properties analyzed .. 74

14 Preliminary results .. 74

14.1 Correct setup ... 74

14.2 Vote compliance .. 77

v

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

15 Individual verifiability... 79

15.1 Sent as intended .. 79

15.2 Recorded as confirmed .. 81

15.2.1 Vote rejection ... 81

15.2.2 Vote injection ... 81

16 Universal verifiability .. 83

16.1 On ballot boxes ready for tally .. 83

16.1.1 Extracting votes from ballots.. 84

16.2 Modeling correct tally ... 85

17 Privacy ... 86

18 Security reductions.. 92

18.1 Proof of Lemma 1 (codes mapping table correctness).. 92

18.2 Proof of Lemma 2 (vote compliance) ... 93

18.3 Proof of Theorem 1 (sent as intended) ... 95

18.4 Proof of Theorem 2 (recorded as confirmed - reject) ... 96

18.5 Proof of Theorem 3 (recorded as confirmed - inject) ... 98

18.6 Proof of Theorem 4 (correct tally) .. 99

18.7 Proof of Theorem 5 (ballot privacy) .. 100

V Parameters and further remarks 104

19 Choice of parameters...105

19.1 ElGamal encryption scheme .. 105

19.2 Symmetric key encryption scheme... 105

19.3 Key Derivation functions ... 105

19.4 Hash functions .. 105

19.5 Pseudo-random functions ... 105

19.6 Verifiable mixnet ... 105

19.7 Return codes spaces ... 106

20 Abstractions...106

20.1 PKI and authenticated channels... 106

vi

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

20.2 Voter authentication ... 107

20.3 Offline mixing control component ... 108

20.4 Write-ins... 109

20.5 Re-login after sending or confirming the vote ... 109

20.6 Validations in untrusted components ... 109

21 Conclusion ...109

21.1 Final remarks and improvements .. 110

21.2 Verifiability.. 110

21.3 Privacy... 111

21.4 VEleS security objectives ... 111

21.4.1 Individual verifiability.. 111

21.4.1.1 Assumptions on honest voter’s behavior... 113

21.4.2 Universal verifiability .. 114

21.4.2.1 Assumptions on auditors... 115

vii

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

List of figures

Figure 1 IND-CPA game. ... 13

Figure 2 Games rPRFFA and sPRFFA .. 14

Figure 3 Games rKDFKDF
A and sKDFKDF

A .. 15

Figure 4 Games rSHVZK, and sSHVZK... 17

Figure 5 Games rNIZK, and sNIZK ... 18

Figure 6 Simulation soundness game of ΣH (P,V). ... 19

Figure 7 Shuffle argument .. 27

Figure 8 Multi-exponentiation argument... 28

Figure 9 Product argument... 29

Figure 10 Hadamard argument.. 30

Figure 11 Zero argument ... 31

Figure 12 Single value product argument.. 32

Figure 13 DDH game. ... 37

Figure 14 SGSP game. .. 37

Figure 15 ESGSP game. .. 38

Figure 16 Protocol SetupTally ... 44

Figure 17 Protocol SetupVoting ... 45

Figure 18 Protocol SendVote... 48

Figure 19 Protocol ConfirmVote ... 49

Figure 20 Protocol FirstMixes.. 50

Figure 21 Protocol IdealSetupVoting .. 75

Figure 22 Protocol IdealSetupTally .. 76

Figure 23 Games for correct setup.. 76

Figure 24 Game for vote compliance ... 79

Figure 25 Game for sent as intended ... 80

Figure 26 Game for recorded as confirmed - rejections.. 82

Figure 27 Game for recorded as confirmed - injections.. 83

Figure 28 Games for correct tally... 86

Figure 29 Experiments Expbpriv,βA,V (crs) defined for β ∈ {0, 1}. .. 89

Figure 30 Privacy: Oracles given to the adversary A during the voting phase. 90

Figure 31 Privacy: Oracles given to the adversary A during the tally phase. 91

viii

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

List of tables

Table 1 Assumption on parties of the complete abstract model defined in VEleS [16] 6

Table 2 Assumption on communication channels of the complete abstract model defined in VEleS [16] 6

Table 3 Correspondence between sVote and the Chancellery assumptions made on the protocol’s

participants ... 9

Table 4 Correspondence between the sVote and the Chancellery assumptions made on the communi-

cation channels ... 10

Table 5 Possible corruption scenarios in case of N CCMs and Electoral Board 87

Table 6 Identifying VEleS security objectives with our defined cryptographic properties 112

ix

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

Part I

Complete verifiability and voting secrecy

1

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

1 Electronic voting in Switzerland

Switzerland has a long history of the direct participation of its citizens in decision-making processes.

Besides traditional elections where voters choose their representatives in the Federal Assembly, citizens

can participate in several other voting events. Citizens can propose popular voting initiatives on their own

(after having obtained enough popular support by collecting signatures), and the parties and governments

themselves (at the communal, cantonal or federal level) can organize referendums in order to ask the

citizens for their opinion on a new law or a modification of the Constitution, among others. Thus, on

average Swiss citizens have the chance to participate in 3-4 voting processes a year.

Remote electronic voting was first introduced in Switzerland in three cantons: Geneva, Zurich and

Neuchâtel [24]. The first binding trials were held in 2004. By 2019, 10 cantons will have offered the

electronic voting channel to their electorates. However, until recently the participation rate has been

restricted to up to 10% of the eligible voters. In 2011, the Federal Council of Switzerland launched a task

force to study the security issues of electronic voting. As a result, the Federal Council published, in 2013,

a report with the requirements for extending the use of the electronic voting systems to a larger part

of the electorate. This framework [15], which became binding in January 2014, provides requirements

of functionality, security, verifiability and testing/certification which allow the electronic voting systems

to be extended to 30%, 50% or up to 100% of the electorate. More specifically, while current electronic

voting systems may be allowed to be used for up to 30% of the electorate provided that they fulfil a

certain set of functional and security requirements, systems to be used for up to 100% of the electorate

are required to additionally provide verifiability features. Although the modality of electronic voting

(DRE, remote) is not specified in the report, it refers to electronic voting systems where the vote is cast

electronically. This paper specifically covers remote electronic voting systems.

Verifiability in remote electronic voting is traditionally divided into three types, which are related to

the phase of the voting process which is verified [1]. The first step to audit is the vote preparation at the

Voting Client application run in the voter’s device. This application is usually in charge of encrypting

the selections made by the voter prior to casting them to a remote server so that their secrecy is ensured.

Cast-as-intended verification methods provide the voters with means to audit that the vote prepared and

encrypted by the Voting Client application contains what they selected, and that no changes have been

performed. Recorded-as-cast verification methods provide voters with mechanisms to ensure that, once

cast, their votes have been correctly received and stored at the remote voting server. Finally, counted-as-

recorded verification allows voters, auditors and third party observers to check that the result of the tally

corresponds to the votes which were received and stored at the remote voting server during the voting

phase.

Classically, cast-as-intended and recorded-as-cast verifiability are known as individually verifiable

mechanisms, while counted-as-recorded is considered to be a universally verifiable method. The ex-

2

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

planation is simple: only the voter knows that she had actually cast a vote, and the intended content.

On the other hand, anybody should be able to verify the correct outcome of the election given the votes

in the ballot box.

However, the trust model and verifiability requirements defined by the Federal Council differ from

these well-known properties. More specifically, the Federal Council defines two types of verifiability in

the regulation for e-voting.

2 Threat model

We discus the model for complete verifiability and voting secrecy given by the Chancellery. Our inter-

pretation of the threat model is supported by quotes from, and references to, relevant excerpts of the

Chancellery’s requirements [16]. The extraction of precise properties from the legislation’s informally

stated goals is an important step for justifying that the model matches the requirements.

After discussing the security model laid out by the Chancellery, we introduce the model used in sVote

in Section 2.5 and relate both models in Section 2.6.

2.1 Individual verifiability

The security model for individual verifiability is the following.

• The voting server is trusted.

• A part of the voters may not be trustworthy.

• The Voting Client and the communication channel between the Voting Client and the voting server

is not trusted.

Under this scope, the Federal Council requirement regarding verifiability is that an attacker cannot

change the voter intention, prevent a vote from being stored, or cast a vote on its own, without detection

from an honest voter that follows the verification protocol.

While this seems similar to the usual union of cast-as-intended and recorded-as-cast verifiability done

in the literature, it differs from it due to the fact that in this model the voting server is trusted, which

is not the case when talking in general about recorded-as-cast mechanisms [20]. We can refer to it as a

“weak” recorded-as-cast verification.

2.2 Complete verifiability

Complete verifiability (individual and universal verifiability combined) assumes the following model:

• The voting server is not trusted. Instead, there exists a group of so called control components which

interact with the voting server and which are trusted as a whole, under the assumption that at least

3

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

one of them is reliable (each sole control component is not trusted). The additional communication

channel from the voting server to the control components is not trusted.

• The same assumptions than for individual verifiability apply to the voters, the print office, the

Voting Client , and the channel between the Voting Client and the voting server.

• At least one of the auditors and her technical aids (software or hardware tools), who verify the

proofs generated by the system, are trusted to behave properly.

Taking into account this trust model, the Federal Council verifiability requirements for this type are

many: an attacker cannot change a vote before/after it is stored, or prevent a vote from being stored,

delete it from the ballot box, as well as insert new votes, without voters or auditors noticing it. These

correspond to the previous requirements for individual verifiability, taking into account that the trusted

part of the system is not the server, but the control components which interact with it. Additionally,

voters must have to be able to verify whether their voting credentials have been used to cast a vote in

the system. Finally, auditors must receive a proof that the result of the election corresponds to the votes

cast by eligible voters and accepted by the system during the voting phase. All these requirements have

to be fulfilled while vote and intermediate results secrecy is preserved.

In this case, the requirements for complete verifiability cover the classic cast-as-intended, recorded-

as-cast and counted-as-recorded concepts, plus additional features (such as that each voter can verify

her participation or not in the election). Note that, by the definition provided, the recorded-as-cast

verification may not be restricted to be verified by the voter, but also by auditors which inspect the votes

registered by the trusted part of the system (the control components).

According to the report by the Federal Council, systems to be used for up to the 50% of electors

are required to provide methods for individual verifiability, and systems for up to 100% of the electorate

are required to provide complete verifiability, while also enforcing the separation of duties on operations

impacting the privacy, integrity and verifiability of the system.

The certification process requires to provide security (cryptographic) and formal (symbolic) proofs,

which demonstrate that the system fulfills the claimed security goals.

2.3 Voting secrecy

The trust model of the Federal Council regarding vote secrecy does not account for corrupting the user

platform.

VEleS Annex Chapter 4.3: Under the trust assumptions for complete verifiability of the

protocol, the attacker is unable to breach voting secrecy or to obtain early provisional results

without changing 1 the voters or their user platforms maliciously.
1In the French version the word corrupting is used: “compte tenu des hypothèses de confiance qui ont été formulées

4

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

Moreover, vote secrecy should be preserved only for trustworthy voters provided the server-side does not

manipulate the application.

VEleS Annex Chapter 4.4, supplementary provision 4.4.8: [...] It must be ensured

that the voting secrecy of trustworthy voters cannot be breached without maliciously changing

their user platform through the server-sided manipulation of the application.[...]

Our model assumes that the voters have the possibility to satisfy themselves with the correctness of the

client-side application and the public key by comparing their hash values with a hash value published on

trustworthy sources. This is inline with the model.

VEleS Annex Chapter 4.4, supplementary provision 4.4.8: [...] Voters should there-

fore be able, using a trustworthy platform, to satisfy themselves that the application is sending

their vote in encrypted form with the correct key.[...]

2.4 Parties and channels

2.4.1 Assumptions on parties

Chapter 4.3 of VEleS extends the reduced model defined in Chapter 4.3 with additional system compo-

nents (control components, auditors and auditors’ technical aid) and additional communication channels.

We treat the complete abstract model defined of Chapter 4.3 of VEleS as the extension of the reduced

abstract model.

We see the trusted system components as the combination of those present in the reduced model, and

those in the extended model. The only exception is the Voting Server which is no longer trusted. Table

1 summarizes the system components in the complete abstract model.

2.4.2 Assumptions on communication channels

In the reduced abstract model (section 4.1 in the technical annex of the ordinance) all communication

channels except the channel ’User platform ↔ system’ and ’System ↔ print office’ are trustworthy. The

complete abstract model (section 4.3) extends the model with the additional communication channels

’Control component ↔ system’, ’System ↔ Auditor’s technical aid’, ’Auditor’s technical aid ↔ Auditor’

and ’Control component ↔ Control component’ Section 4.3 states: “Of the additional communications

channels, only those between the auditors and their technical aids may be deemed trustworthy.”

Table 2 presents all possible communication channels.
à propos de la vérifiabilité complète du protocole, l’attaquant ne peut ni violer le secret du vote, ni établir des résultats

partiels de manière anticipé sans corrompre les électeurs ou leurs plates-formes utilisatèurs respectives.”
2This channel may only be regarded as trustworthy if the information has been sent by Swiss Post (section 4.2.9 page

23)

5

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

System components Trust assumption Section [16]

Voters
significant proportion of voters are

4.1
untrustworthy

User platform

untrustworthy for individual 4.1

and complete verifiability

trustworthy for privacy 4.3

Trusted technical aids
trustworthy 4.1

for voters

System (server-side) untrustworthy 4.3

Print office trustworthy 4.1

Control Components trustworthy only as the whole 4.3

Auditors at least one is trustworthy 4.3

Auditor’s technical aid at least one honest auditor has a trustworthy aid 4.3

Table 1: Assumption on parties of the complete abstract model defined in VEleS [16]

Communication channel Trust assumption Section

Voters ↔ user platform trustworthy 4.1

Voters ↔ trustworthy technical aids trustworthy 4.1

Trustworthy technical aids ↔ user platform trustworthy 4.1

User platform ↔ system untrustworthy 4.1

System ↔ print office untrustworthy 4.1

Print office → voter trustworthy 2 4.1

Control component ↔ system untrustworthy 4.3

System ↔ auditor’s technical aids untrustworthy 4.3

Auditors’ technical aid ↔ auditors trustworthy 4.3

Bidirectional channels for communication
untrustworthy 4.3

between control components

Table 2: Assumption on communication channels of the complete abstract model defined in VEleS [16]

2.5 Trust model in sVote

2.5.1 Parties in sVote

The protocol specification [43] uses slightly different notations (Protocol Specifications section 1.1.1) and

defines the participants of the voting protocol as follows:

- Voter: they participate in the election by choosing their preferred options.

- Voting Client : is the device used by the voter to cast their vote given the voting options selected

6

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

by the voters.

- Voting Server: it receives, processes and stores the votes cast by the voters in the ballot box bb.

- Control Components are separated in two groups; one group participates in the choice return codes

and vote cast code generation, one group mixes and decrypts votes:

Choice Return Codes Control Components (CCR): they collaborate with the Print Office in-

directly (via the Voting Server) in the setup phase, and directly with the Voting Server in the

voting phase, to compute the long Choice Return Codes and the long Vote Cast Code.

Mixing Control Components (CCM): they mix and partially decrypt ciphertexts in the ballot

box.

- Print Office: It is responsible for generating, printing and delivering the voting cards to the voters

as well as for generating the required election keys 3.

- Election Administrators: they are responsible for generating the election configuration, verifying it,

computing the results and publishing them. In the Protocol Specification this entity is divided into

Administration Board and Administration Portal based on their ability to perform cryptographic

operations, however, in our model we do not distinguish between those two.

- Bulletin board: is the entity used to store all the information generated during the election to verify

the entire process. It stores the election configuration, the votes, the confirmations and keeps track

of all the actions performed by each entity. The Bulletin Board is implemented as a distributed

system, that includes: the election configuration (maintained by the Print Office), the Secure Logger

(maintained by the CCR) and the Ballot Box (maintained by the Voting Server). In this document

we refer to the Secure Logger as the CCR’s logs.

- Electoral Board: This entity owns a key pair whose private key is shared among the Board members

and is used to partially decrypt the votes in the last Control Component.

- Auditors: they verify the proofs and the information provided by the untrustworthy system compo-

nents. They detect misbehavior of untrustworthy parties and, therefore, ensure the security goals

of the system.

- Verifier: is the component used to verify the correctness of the entire election process, the integrity

of the data processed through different voting system components, and that these processes are

accurate and fair.
3For generating cryptographic material, Print Office runs a software called Secure Data Manger (SDM). This software

is executed in a controlled, offline environment on the canton’s premises. All operations on the SDM are subject to very

strict 4-eyes principles and are executed on laptops with special access rights and hardened laptops.

7

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

2.5.2 Trust assumptions in sVote

Our model proves the desired security goals under the following assumptions:

• The Voting Server is not trusted. Instead, there are two groups of so called control components

CCM and CCR that interact directly with the Voting Server and indirectly with the Print Office

(via Voting Server). Each group of control components is trusted as a whole, under the assumption

that at least one of them is reliable. However, each sole control component is not trusted.

• The credential delivery channel (postal channel between the Print Office and the voter) is considered

to be trustworthy.

• The Print Office is trusted.

• The Voting Client of honest voters is trusted for privacy, and not trusted for individual and universal

verifiability.

• The election configuration (number and names of the candidates, lists, questions, and answers,

generated number of credentials, number of allowed options, details of electoral model) generated

by the Election Administrators is correct. The auditors validate the number of generated voting

cards using the information from the Secure Logs and the electoral board validates the correctness

of the configuration using procedural means (test and control votes).

• The communication channel between the client side and the server side is not trusted.

• A significant proportion of the voters may not be trustworthy.

• The Electoral Board is treated as set of control component and therefore is trusted as whole, i.e. at

least one Electoral Board member is assumed to be trustworthy.

• At least one of the auditors and her technical aids (software or hardware tools) are trusted to behave

properly.

2.6 Correspondence between both security models

Table 3 and 4 relate the different parties and communication channels between the Chancellery and the

sVote security models.

8

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

sVote’s Chancellery’s Trust assumption
system component system component

Voters Voters
significant proportion of

voters are non-trustworthy

Voting Client User platform

untrustworthy for individual

and complete verifiability

trustworthy for privacy

Voting Card Trusted technical aids
trustworthy

for voters

Voting Server System (server-side) untrustworthy

Print office Print office trustworthy

CCM
Control Components trustworthy only as a whole

CCR

Auditors Auditors at least one is trustworthy

Verifier Auditor’s technical aid
at least one honest auditor

has a trustworthy aid

Table 3: Correspondence between sVote and the Chancellery assumptions made on the protocol’s par-

ticipants

9

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

sVote Chancellery’s Trust assumption
communication channels communication channel

Voters ↔ Voting Client Voters ↔ user platform trustworthy

Voters ↔ Voting Cards Voters ↔ Trustworthy technical aids trustworthy

no channel exists Trustworthy technical aids ↔ User platform trustworthy

Voting Client ↔ Voting Server User platform ↔ system untrustworthy

Voting Server ↔ Print office System ↔ print office untrustworthy

Print office → Voter Print office → voter trustworthy a

CCM ↔ Voting Server
Control component ↔ system untrustworthy

CCR ↔ Voting Server

Voting Server ↔ Verifier

System ↔ auditor’s technical aids untrustworthyCCM ↔ Verifier

CCR ↔ Verifier

Verifier ↔ auditor Auditors’ technical aid ↔ auditors trustworthy

no channel exists Bidirectional channels for

untrustworthycommunication between

control components

Table 4: Correspondence between the sVote and the Chancellery assumptions made on the communica-

tion channels

aThis channel may only be regarded as trustworthy if the information has been sent by Swiss Post (section 4.2.9 page

23)

10

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

Part II

Building blocks

11

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

3 ElGamal encryption scheme

The ElGamal [23] encryption scheme is a public-key encryption scheme instantiated over a cyclic group

Gq of order q with generator g, where the Decision Diffie-Hellman (DDH) problem is believed to be hard.

The scheme has four algorithms. The first algorithm takes as input a security parameter λ and outputs

group parameters. The remaining algorithms also take implicitly as input the security parameter and the

group parameters.

ParamsGen(1λ) This algorithm takes as input a security parameter λ and outputs gparams containing a

description of the group Gq, including the group order q and a group generator g ∈ Gq.

KeyGen(gparams) This algorithm takes as input the group parameters and outputs a pair of secret/public

keys (sk, pk) ∈ Z∗
q ×Gq. The secret key is randomly sampled sk $← Z∗

q , and the public key is set to

pk = gsk ∈ Gq.

Enc(m, pk) This algorithm takes as input a message m ∈ Gq and a public key pk ∈ Gq. It samples at

random r
$← Z∗

q and outputs

c = (c0, c1) = (gr, pkr ·m) ∈ G2
q.

Dec(c, sk) This algorithm takes as input a ciphertext c ∈ G2
q, and the private key sk ∈ Z∗

q and outputs

m = c1 · c−sk0 ∈ Gq.

ElGamal has perfect correctness: for any given pair of keys (sk, pk) it holds Dec(Enc(m, pk), sk) = m

for all m ∈ Gq.

3.1 Multi-recipient ElGamal

When a single encrypter sends multiple messages to different recipients (with different public keys) the

encryption algorithm can be optimized by sharing the encryption randomness at no security loss. This

optimization is known as multi-recipient ElGamal [4]. The encryption and decryption algorithms are

defined as follows:

MultiEnc(m,pk) This algorithm takes as input a vector of messages m ∈ Gℓq, and a vector of public keys

pk ∈ Gℓq. It samples at random r
$← Z∗

q and outputs

c = (c0, c1, . . . , cℓ) = (gr, pkr1 ·m1, . . . , pk
r
ℓ ·mℓ) ∈ Gℓ+1

q .

MultiDec(c, sk) This algorithm takes as input a ciphertext c ∈ Gℓ+1
q , and a vector of private keys sk ∈

(Z∗
q)
ℓ and outputs a vector of messages m ∈ Gℓq such that mi = ci · c−ski0 ∈ Gq.

12

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

3.2 ElGamal over multiplicative groups

ElGamal is often instantiated over the group of quadratic residues Qp < Z∗
p of prime order q, for modulus

p = 2q + 1 being a safe prime large enough to preserve the hardness of DDH. The group description is

gparams = (p, q, g), where g generates Qp. We will take g to be the smallest prime which is a quadratic

residue in Z∗
p.

4 Symmetric encryption schemes

Let K, IV , M be a key space, IV space, and message space, respectively, and let E : K× IV ×M→M

be a length-preserving permutation inM, with inverse function D. An IV-based probabilistic symmetric

encryption scheme [42] consists in three algorithms:

KeyGens(λ) This algorithm takes as input a security parameter λ and outputs a random key K $← K.

Encs(M,K) This algorithm takes as input a plaintext M ∈ M and a key K ∈ K. Then it samples a

random IV
$← IV , computes C ′ = E(K, IV,M) and outputs a ciphertext C = IV ||C ′. Here C ′ is

the core part of ciphertext produced using the IV .

Decs(C,K) This algorithm takes as input a ciphertext C ∈ C and a key K ∈ K. Then it parses IV ||C ′ ←

C and outputs plaintext M = D(K, IV,C ′).

The scheme is correct if for each M ∈M it holds Decs(K,Encs(K,M)) =M . We also require the scheme

to be semantically secure. Informally this means that it is not possible to tell apart ciphertexts encrypting

different plaintexts. The following formal definition of semantic security is taken from [6].

Definition 1 (IND-CPA) A symmetric encryption scheme given by the triplet SEnc = (KeyGens,Encs,Decs)

is IND-CPA secure if for any PPT algorithm A it holds:

AdvSEnc,INDCPA
A =

∣∣∣∣Pr[1← INDCPASEnc
A]− 1

2

∣∣∣∣ ≈ 0

where the game INDCPASEnc
A is defined in Figure 1.

INDCPASEnc
A :

1. Choose at random K
$← K

2. b $← {0, 1}

3. b′ ← ALRK,b(·,·)

4. Return 1 iff b = b′

Oracle LRK,b(M0,M1):

1. C ← Encs(K,Mb)

2. Return C

Figure 1: IND-CPA game. The adversary is given access to a left-right encryption oracle of messages of its choosing and

is asked to guess the bit b.

13

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

5 Pseudorandom functions

Let F : K×X → Y be an efficiently computable function where K is the key space, X the domain space,

and Y the range space. The function is parameterized with public parameters pp. Informally, the function

is pseudorandom if its outputs cannot be distinguished from the outputs of a truly random function.

Definition 2 (Pseudorandom) A function Fpp : K×X → Y is pseudorandom if for all PPT algorithms

A we have

AdvF,PRFA (pp) =
∣∣∣Pr[1← rPRFFA(pp)]− Pr[1← sPRFFA(pp)]

∣∣∣ ≈ 0

where the games rPRFFA and sPRFFA are defined in Figure 2.

rPRFFA(pp):

1. Choose at random k
$← K

2. b← AFpp(k,·)

3. Return b

sPRFFA(pp):

1. Choose a random function R : X → Y

2. b← AR(·)

3. Return b

Figure 2: (Left) Real game. The adversary queries adaptively the pseudorandom function F . (Right) Simulated game.

The adversary queries adaptively the random function R.

If the key space K and the range space Y are both groups, then the function is key-homorphic if the

group operation of the range space respects the group operation of the key space. See for example the

formalization of Boneh et. al. [14].

Definition 3 (Key-homomorphic) Let two groups (G1, ⋆), and (G2,⊗), the pseudorandom function

Fpp : G1 ×X → G2 is key-homomorphic if

Fpp(k1 ⋆ k2, x) = Fpp(k1, x)⊗ F (k2, x) ∀k1, k2 ∈ G1, ∀x ∈ X .

Group Exponentiation as prf in rom. Naor, Pinkas, and Reingold [34] showed that the function

Fpp : Zq×Gq → Gq given by Fpp(k, x) = xk is a weak pseudorandom function under the DDH assumption

over Gq. Thus, it behaves as a pseudorandom function provided the inputs come from the random

distribution. In ROM, randomness on input x (arbitrarily distributed) is enforced by feeding H(x) to F .

Here H(·) denotes a cryptographic hash function with domain and range set to Gq, and pp includes a

description of Gq. This function is clearly key-homomorphic. We will set Gq to be the group of quadratic

residues Qp ≤ Z∗
p, hence pp includes gparams = (p, q, g), see Section 3.2.

6 Key derivation functions

A key derivation function (KDF) KDF : K×X → Y is a function with which an input key from space K

and other input data from X are used to generate (i.e. derive) key material in Y that can be employed

14

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

by cryptographic algorithms.

The protocol uses a secure KDF function that is constructed using a secure PRF function F (k, x)→

{0, 1}h to derive L bits of keying material and defined as follows:

KDF(k, s) takes as input a derivation key k that is a cryptographic key used for derivation of a key

material and s is a unique value per KDF caller. Then it iterates a secure PRF n = [Lh] times and

concatenates the outputs until L bits of key material are generated. Note, that n shall not be large

than 232 − 1. The key derivation is done as follows:

- n = [Lh].

- If n > 232 − 1, abort and return ⊥.

- result(0) = ∅

- For i = 1, . . . , n:

- K(i) = F (k, s||i).

- result(i) = result(i− 1)||K(i).

- Return L leftmost bits of result(n).

Definition 4 (Pseudorandom) A function KDF : K × X → Y is pseudorandom if for all PPT algo-

rithms A we have

AdvKDF
A (k, s) =

∣∣∣Pr[1← rKDFKDF
A (k, s)]− Pr[1← sKDFKDF

A (k, s)]
∣∣∣ ≈ 0

where the games rKDFKDF
A and sKDFKDF

A are defined in Figure 3.

rKDFKDF
A (s, k):

1. Compute k′ ← KDF(k, s)

2. b← A(k′)

3. Return b

sKDFKDF
A (k, s):

1. Choose a random function k′
$← Y

2. b← A(k′)

3. Return b

Figure 3: (Left) Real game. The adversary receives a derived key k′. (Right) Simulated game. The adversary receives

a randomly sampled key k′.

The protocol additionally uses a password-based key derivation function specified in [26] and defined

by the algorithm PBKDF as follows:

PBKDF(pwd, salt) receives as input a password string pwd and a salt salt. This algorithm derives

the cryptographic key K of a length dkLen using PRF with iterN iterations.

The security of this primitive relies on the one-way and collision-resistance properties of the underlying

hash function.

15

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

7 Proof systems

Let R ⊆ {0, 1}∗ × {0, 1}∗ be a polynomial time decidable binary relation. The language associated to R

is the set of ”yes” instances defined as:

LR = {x | ∃w : (x,w) ∈ R}.

For any pair (st, w) ∈ R, the second element w is called a witness for the first element st, sometimes

called the statement.

An interactive proof system for a language L is an interactive protocol between two parties, a prover

P and a verifier V where the prover aims to convince the verifier that a given string st belongs to L

without revealing a witness for st. At the end of the interaction the verifier outputs a bit b ∈ {0, 1}

indicating either acceptance or rejection, which will be denoted with ⟨P ,V⟩ = b. We will denote the

public transcript generated during the execution of the protocol as tr ← ⟨P ,V⟩.

An interactive proof system is public coin if the verifier chooses his messages uniformly at random

and independently from the messages of the prover. The properties we ask the proof system to have are

the following ones.

Definition 5 (Completeness) The protocol ⟨P ,V⟩ is complete for R if for any probabilistic polynomial-

time (PPT) algorithm A it holds:

Pr[(st, w)← A : (st, w) /∈ R

∨ (tr ← ⟨P(st, w),V(st)⟩ ∧ ⟨P(st, w),V(st)⟩ = 1)] = 1

Definition 6 (Soundness) The protocol ⟨P ,V⟩ is sound for R if for any PPT algorithm A it holds:

Pr[st← A : st /∈ LR ∧ ⟨A,V(st)⟩ = 1] ≈ 0.

Definition 7 (Special honest verifier zero knowledge) The protocol ps = ⟨P ,V⟩ is computational

special honest verifier zero knowledge (SHVZK) for relation R if there exists a PPT algorithm Szk such

that for any PPT algorithm A it holds:

Advps,SHVZKA = |Pr[1← rSHVZKps
A]− Pr[1← sSHVZKps

A]| ≈ 0,

where the games rSHVZK, and sSHVZK are defined in Figure 4.

7.1 Σ-protocols

Σ-protocols are the subset of public-coin interactive proof systems that generate a three-move transcript

π = (c, e, z). The first message c, called the commitment, is sent by the prover. The second message

e, called the challenge is sent by the verifier (chosen uniformly and independently from c). The third

message z, called the response, is sent by the prover. In addition to the properties of public-coin proof

systems outlined above, a Σ-protocol also has special soundness.

16

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

rSHVZKps
A:

1. (st, w)← A

2. If (st, w) /∈ R return 0

3. tr ← ⟨P(st, w),V(st)⟩

4. b← A(tr)

5. Return b

sSHVZKps
A:

1. (st, w)← A

2. If (st, w) /∈ R return 0

3. tr ← Szk(st)

4. b← A(tr)

5. Return b

Figure 4: (left) real SHVZK game (right) simulated SHVZK game.

Definition 8 (Special soundness) The protocol Σ⟨P ,V⟩ has special soundness for R if there exists a

PPT algorithm E, such that for any two accepting transcripts π = (c, e, z), π′ = (c, e′, z′) for a statement

st, with e ̸= e′ then w ← E(π, π′) with (st, w) ∈ R.

Special soundness implies soundness and proof of knowledge.

7.2 The random oracle model and the Fiat-Shamir transform

The random oracle model (ROM) is a security model that sees a cryptographic hash function as a black-

box oracle that on fresh inputs returns uniform answers. This model has been used to argue security for

a large variety of cryptographic schemes [8], [35].

The Fiat-Shamir heuristic (FS) [22] converts a public-coin interactive proof system into a non-

interactive protocol by replacing the messages of the verifier with the output of a cryptographic hash

function computed by the prover. Following [21] we denote with ΣH (P,V) the non-interactive protocol

proof system (NIZK) resulting from applying the Fiat-Shamir transform to the proof system Σ⟨P ,V⟩

using the hash function H.

Formalizing the Fiat-Shamir transform is far from being trivial, and it was refined through a series

of works [11] [12], [13], [21], [41], [45]. Indeed, if the transformation is not done properly it is unclear

what type of security ΣH (P,V) guarantees [13]. We choose the formalization from [21] as it comes with

rigorous security proofs.

7.2.1 Non-interactive sigma protocols in ROM

In the explicitly programmable random oracle model (EPROM) [47], all the parties have access to the

random oracle RO, however the zero-knowledge simulator Sps is allowed to choose the answers of the

random oracle on adversarial queries as long as they look random. Wee writes RO[ℓ] to emphasize that

the random oracle is programmed (by Sps) in ℓ different queries [47].

Faust et. al. [21] exploit the general forking lemma [7] in EPROM [47] to show that, if the input

to the hash function H is the pair (st, c) then the NIZK ΣH (P,V) retains the security inherited from

17

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

the underlying Σ-protocol. More concretely, [21] shows that the FS transform enjoys zero-knowledge,

simulation soundness and weak simulation extractability. Intuitively, simulation soundness says that even

an adversary that sees simulated proofs cannot create a proof for a false statement st∗ on its own; weak

simulation extractability says that the probability of accepting a valid proof is close to the probability of

extracting a witness for a valid proof, or in other words, that the FS transform is non-malleable.

Definition 9 (Non-interactive zero knowledge in EPROM) Let the proof system Σ⟨P ,V⟩ for re-

lation R. The NIZK proof system ps = ΣH (P,V) is zero knowledge in the random oracle model if there

exists a PPT algorithm Sps such that for any PPT algorithm A it holds:

Advps,NIZKA = |Pr[1← rNIZKps
A]− Pr[1← sNIZKps

A]| ≈ 0

where the games rNIZK, and sNIZK are defined in Figure 5.

rNIZKps
A:

1. Let b← ARO,PRO(·,·)

2. Return b

sNIZKps
A:

1. Let b← ARO[ℓ],Sps,nizk(·,·)

2. Return b

Sps,nizk(st, w):

1. If (st, w) /∈ R return ⊥

2. π ← Sps(st)

3. Return π

Sps(st):

1. π = (c, e, z)← SROzk (st)

2.Update RO[ℓ] list T with pair ((st, c), e)

as query/answer. If T is already defined

in query (st, c) output failure.

3. Return π

Figure 5: (Upper left) Real NIZK game. If (st, w) /∈ R, then ⊥ ← PRO(st, w). (Upper right) Simulated NIZK

game. (Lower left) Non-interactive zero-knowledge simulator Sps,nizk of ΣH (P,V) . (Lower right) Canonical

simulator Sps in ROM using the zero-knowledge simulator Szk of the interactive proof system Σ⟨P,V⟩. Sps controls

the programmable random oracle RO[ℓ]

For completeness, the canonical non-interactive zero-knowledge simulator Sps of ps = ΣH (P,V) using the

zero-knowledge simulator Szk of the interactive proof system Σ⟨P ,V⟩ of [21] is also described in Figure 5.

Definition 10 (Simulation soundness) Let the proof system Σ⟨P ,V⟩ for relation R. The NIZK proof

system ΣH (P,V) is simulation sound with respect to Sps in the random oracle model if for any PPT

algorithm A it holds

Advps,sSOUND
A = Pr[1← sSOUNDps

A] ≈ 0,

where game sSOUNDps
A is given in Figure 6.

Definition 11 (Weak simulation extractability) Let the proof system Σ⟨P ,V⟩ for relation R. The

NIZK proof system ΣH (P,V) is weak simulation extractable in the random oracle model with respect

18

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

sSOUNDps
A:

1. Init an empty list T for oracle RO[ℓ]

2. (st∗, π∗)← ARO[ℓ],S
′
ps

3. b← 0

4. If (st∗, π∗) /∈ T ∧ VRO[ℓ](st∗, π∗) = 1 ∧ st∗ /∈ LR
then b← 1

5. Return b

Oracle S′
ps(st):

1. π ← Sps(st)

2. Return π

Figure 6: (Left) Simulation soundness game of ΣH (P,V). (Right) Generation of simulated proofs, for either

true or false statements. The canonical simulator Sps controls the programmable random oracle RO[ℓ] and it is

described in Figure 5.

to simulator Sps with extraction error ν, if for any PPT algorithm A, there exists an extractor EA with

access to the random coins ρ of A and to the queries TH, T made by A to oracles RO[ℓ] and S ′

ps, such

that whenever acc ≥ ν it holds

ext ≥ 1

p
(acc− ν)d,

where p and d are polynomially bounded (in the security parameter) and

acc = Pr[(st∗, π∗)← ARO[ℓ],S
′
ps(ρ) : (st∗, π∗) /∈ T ;VRO[ℓ](st∗, π∗) = 1]

ext = Pr[(st∗, π∗)← ARO[ℓ],S
′
ps(ρ) ;

w∗ ← EA(st∗, π∗, ρ, T , TH) : (st∗, π∗) /∈ T ; (st∗, w) ∈ R].

Above, S ′

ps is the oracle given in Figure 6.

7.3 Non-interactive pre-image proof systems

Let two groups (G1, ⋆), and (G2,⊗), and an efficiently computable function ϕ : G1 → G2 that is an

homomorphism, thus ϕ(x1 ⋆ x2) = ϕ(x1) ⊗ ϕ(x2), one can define a binary relation Rϕ and the language

Lϕ associated to it as:

Rϕ = {((ϕ, y), w) | y ∈ G2 ∧ w ∈ G1 ∧ y = ϕ(w)}

Lϕ = {(ϕ, y) | ∃w ∈ G1 s.t. ((ϕ, y), w) ∈ Rϕ}

A pre-image proof system Σϕ⟨P ,V⟩ is a Σ-protocol for the language Lϕ. The statement is the tuple

st = (ϕ, y), where ϕ is (a description of) the homomorphism, and a witness for st is an element w ∈ G1

s.t. ϕ(w) = y. In the random oracle model, these proof systems can be turned non-interactive.

Definition 12 (Non-interactive pre-image proof systems) Let Σϕ⟨P ,V⟩ a pre-image proof system

with group homormorphism ϕ, and let H a cryptographic hash function with range Zs for some s. The

19

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

NIZK proof system ΣH
ϕ (P,V) = (prove, verify) resulting from applying the Fiat-Shamir transform is defined

as follows:

prove(st, w, aux): On input statement st = (ϕ, y), witness w, and auxiliary information aux, where ϕ is

a description of the homomorphism, w ∈ G1, y = ϕ(w) ∈ G2 do :

1. Sample b ∈ G1 at random and compute c = ϕ(b)

2. Compute e = H(ϕ, y, c, aux) and z = b ⋆ we

3. Output π = (e, z)

verify(st, π, aux): On input statement st = (ϕ, y), proof π = (e, z), and auxiliary information aux, where

ϕ is a description of the homomorphism, y ∈ G2, z ∈ G1 and e ∈ Zs do:

1. Compute x = ϕ(z) and c′ = x⊗ y−e

2. If H(ϕ, y, c′, aux) = e output 1, otherwise output 0.

Note that H is a hash function with domain separation, thus the list of variables is encoded uniquely

into a binary string.

7.3.1 On the security of NIZK pre-image proof systems

Maurer [31] proved that the interactive version Σϕ⟨P ,V⟩, where the challenge e ∈ Zs is uniformly chosen

by the verifier, is complete, SHVZK, and it has special soundness. The latter implies that the protocol

is a proof of knowledge with knowledge error 2−s. The assumptions for the above to hold4 [31, Theorem

3] is that there must exist ℓ ∈ Z relatively prime to the difference of any two challenges e1 − e2, and an

element u ∈ G1 such that ϕ(u) = yℓ.

Furthermore, Faust et. al. [21] show that the Fiat-Shamir transform of any Σ-protocol that meets

SHVZK and special soundness properties is non-interactive zero-knowledge in the random oracle model,

simulation sound and weak simulation extractable.

Last, the simulator Szk for ϕ is standard, and can be found e.g. in [31].

Selecting the groups. The non-interactive pre-image proof systems appearing in the following sub-

sections are instantiated over the group of quadratic residues Qp < Z∗
p (see Section 3.2). More concretely,

in all the proof systems G1 = Zn1
q and G2 = Qn2

p with q prime, for some n1, n2; therefore the assumptions

of [31, Theorem 3] trivially hold with ℓ = q and u = 0 ∈ Zq. This is done for the sake of concreteness,

in particular, the description of all the group homomorphisms ϕ include a concrete choice of primes

q, p = 2q + 1. However, we emphasize that the proof systems can be instantiated over any other suitable

pair of groups G1,G2.
4As pointed out in [31], if ϕ is not one-way the properties still hold though the protocol might not be useful at all.

20

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

7.3.2 Exponentiation proof system.

The exponentiation proof system Exp = (ProveExp,VerifyExp) is a generalization of the Chaum-Pedersen

proof system [17]. It is a pre-image proof system with group homomorphism ϕ : Zq → Qnp given by

ϕ(x) = (gx1 , ..., g
x
n). The description of ϕ is given by the group parameters (p, q) and n group elements

g = (g1, . . . , gn) all in Qp.

Let a vector y ∈ Qnp , this proof system proves that y = ϕ(x), that is, it proves that y ∈ Qnp has been

obtained by exponentiating the bases g to the same exponent x. The algorithms are as follows:

ProveExp((p, q,g,y), x, aux): Execute steps of algorithm prove from Defn. 12.

• Inputs: statement st = ((p, q,g),y) and witness w = x, where x ∈ Zq and y ∈ Qnp .

• Output πExp = (e, z) ∈ Zs × Zq.

VerifyExp((p, q,g,y), πExp, aux): Execute steps of algorithm verify from Definition 12.

• Inputs: statement st = ((p, q,g),y) and proof πExp = (e, z), where y ∈ Qnp and (e, z) ∈ Zs×Zq

• Output: either 1 (accept) or 0 (reject).

7.3.3 Schnorr proof system.

The Schnorr proof system sch = (ProveSch,VerifySch) first appeared in [44]. It is a pre-image proof

system with group homomorphism ϕ : Zq → Qp given by ϕ(r) = gr. The description of ϕ is given by the

group parameters (p, q), and a generator g of Qp.

Let an ElGamal ciphertext c = (c0, c1), where ElGamal is instantiated over Qp with generator g.

This proof system proves knowledge of some r such that c0 = ϕ(r), that is, it proves knowledge of the

randomness embedded in c. To bind the generated proof to the ciphertext, the second group element c1
of c is also included as auxiliary information. The algorithms are as follows:

ProveSch((p, q, g, c), r, aux): Execute steps of algorithm prove from Defn. 12.

• Inputs: statement st = ((p, q, g), c0), witness w = r, and aux′ = aux ∪ {c1}, where c0 ∈ Qp
and r ∈ Zq.

• Output: πsch = (e, z) ∈ Zs × Zq.

VerifySch((p, q, g, c), πsch, aux): Execute steps of algorithm verify from Defn. 12.

• Inputs: statement st = ((p, q, g), c0), proof πsch = (e, z), and aux′ = aux∪ {c1}, where c0 ∈ Qp
and (e, z) ∈ Zs × Zq.

• Output: either 1 (accept) or 0 (reject).

21

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

7.3.4 Plaintext Equality proof system

The plaintext equality proof system EqEnc = (ProveEqEnc,VerifyEqEnc) is based on the Chaum-Pedersen

proof system [17]. It is a pre-image proof system with group homomorphism ϕ : Z2
q → Q3

p given by

ϕ(r, r̄) = (gr, gr̄, hr/h̄r̄). The description of ϕ is given by the group parameters (p, q) and the group

elements g, h, h̄, all in Qp.

Let two ElGamal ciphertexts c = (c0, c1), c̄ = (c̄0, c̄1) under two public keys h, h̄ of the same plaintext,

where ElGamal is instantiated over Qp with generator g. This proof system proves that (c0, c̄0, c1/c̄1) =

ϕ(r, r̄), where r, and r̄ are the random exponents used to encrypt c and c̄, respectively. That is, it proves

that c, c̄ encrypt the same plaintext. The algorithms are as follows:

ProveEqEnc((p, q, g, h, h̄, c, c̄), (r, r̄), aux): Execute steps of algorithm prove from Defn. 12.

• Inputs: statement st = ((p, q, g, h, h̄), (c0, c̄0, c1/c̄1)), witness w = (r, r̄), where (c0, c̄0, c1/c̄1) ∈

Q3
p and (r, r̄) ∈ Z2

q.

• Output: πEqEnc = (e, z, z̄) ∈ Zs × Z2
q.

VerifyEqEnc((g, h, h̄, c, c̄), πEqEnc, aux): Execute steps of algorithm verify from Defn. 12.

• Inputs: statement st = ((p, q, g, h, h̄), (c0, c̄0, c1/c̄1)), proof πEqEnc = (e, z, z̄), where (c0, c̄0, c1/c̄1) ∈

Q2
p and (e, z, z̄) ∈ Zs × Z2

q.

• Output: either 1 (accept) or 0 (reject).

7.3.5 Decryption proof system.

The correct decryption proof system dec = (ProveDec,VerifyDec) is also based on the Chaum-Pedersen

proof system [17]. It is a pre-image proof system with group homomorphism ϕ : Znq → Q2n
p given by

ϕ(x) = (gx1 , . . . , gxn , cx1
0 , . . . , c

xn
0). The description of ϕ is given by the group parameters (p, q) and by g

and c0, both elements in Qp.

Let ElGamal instantiated over a cyclic group Qp with generator g, and let a multi-recipient ciphertext

c = (c0, c̄) = (c0, c1, . . . , cn) under public keys h = (h1, . . . , hn), with hi = gxi , and plaintexts m =

(m1, . . . ,mn) resulting from decrypting c using the secret keys x = (x1, . . . , xn). This proof system

proves that (h, c̄/m) = ϕ(x), that is, it proves correct decryption of c to m under secret keys x. The

algorithms are as follows:

ProveDec((p, q, g,h, c,m),x, aux): Execute steps of algorithm prove from Definition 12.

• Inputs: statement st = ((p, q, g, c0), (h, c̄/m)), witness w = x, where (h, c̄/m) ∈ Q2n
p and

x ∈ Znq .

• Output: πdec = (e, z) ∈ Zs × Znq .

22

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

VerifyDec((p, q, g,h, c,m), πdec, aux): Execute steps of algorithm verify from Definition 12.

• Inputs: statement st = ((p, q, g, c0), (h, c̄/m)), proof πdec = (e, z), where (h, c̄/m) ∈ Q2n
p and

(e, z) ∈ Zs × Znq .

• Output: either 1 (accept) or 0 (reject).

Observe that this proof system also proves correctness of partial decryptions: in this situation the ci-

phertext c is encrypted under public key
∏m
j=1 hj , and the partially decrypted ciphertext is d = (c0,m).

Then, the party Pj holding shares (hj ,xj) of the public and private keys proves that (hj , c̄/m) = ϕ(xj).

8 Verifiable mixnet

8.1 Homomorphic commitment scheme

The verifiable proof of a shuffle correctness requires a computationally binding homomorphic commitment

scheme i.e. a computationally binding commitment scheme for which it holds that comckmix(a+ b; r+s) =

comckmix(a; r)comckmix(b; s) for messages a, b, a commitment key ckmix and randomnesses r, s.

We use the generalization of the Pedersen commitment scheme [40] with a commitment key ckmix =

(G, G1, . . . , Gn,H), where G1, . . . , Gn,H are the random generators of the group G generated by the key

generation algorithm K.

To commit to a vector of n elements a = (a1, . . . , an) ∈ Znq , we pick randomness r ∈ Zq and compute

comckmix(a; r) = comckmix(a1, . . . , an; r) = Hr
∏n
i=1G

ai
i . We can also commit to less than n elements; this

is done by setting the remaining entries to 0.

A commitment to a matrix A ∈ Zn×mq with columns a1, . . . , am is computed as comckmix(A; r) =

(comckmix(a1; r1), . . . , comckmix(am; rm)). Similarly a commitment to a large vector a ∈ ZNq , where N = m×

n (that is in fact a matrix converted into to vector), is computed as comckmix(a; r) = (comckmix(a1, . . . , an; r1),

. . . , comckmix(a(m−1)n+1, . . . , aN ; rm)).

Also we define cb = (c1, . . . , cm)(b1,...,bm)T =
∏m
j=1 c

bj
j and for matrix B with columns b1, . . . ,bm we

define cB = (cb1 , . . . , cbm).

8.2 Mixing proof system

Informally, a shuffle or mixing of ciphertexts C1, . . . , CN is a set of ciphertexts C ′
1, . . . , C

′
N with the same

plaintexts in permuted order and a different encryption randomness. Therefore, to prove the correctness

of a shuffle , one needs to prove knowledge of the permutation π and the randomness ρ such that

{C ′
i}Ni=1 = {Cπ(i) · Enc(1, pkmix; ρi)}Ni=1 without revealing π and ρ to the verifier.

In our protocol we use an honest verifier zero-knowledge argument for correctness of a shuffle of

homomorphic encryptions proposed by Stephanie Bayer and Jens Groth [2]. Following their notation, we

write G for the group used in the commitment scheme, and H for the ciphertext space.

23

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

8.2.1 Mix(pkmix, ckmix,C)

This algorithm takes as input a mixing pkmix and commitment ckmix public keys and a vector of initial

ciphertexts C, then it permutes and re-encrypts ciphertexts to generate the resulting vector C′ and proves

shuffle correctness by computing a zero-knowledge proof of a shuffle πmix,:

1. Sample permutation π and randomness ρ.

2. Re-encrypt and permute ciphertexts C to get C′.

3. Compute proof of the shuffle πmix, ← ShuffleArg(pkmix, ckmix,C,C
′, π, ρ).

Finally it returns the shuffled and permuted ciphertexts C′ and a proof of shuffle correctness πmix,.

8.2.2 ShuffleArg(pkmix, ckmix,C,C
′, π, ρ)

This algorithm is a public coin perfect SHVZK argument of knowledge of a permutation π ∈ ΣN and

randomness ρ ∈ ZNq such that for given ciphertexts C ∈ HN and C′ ∈ HN it holds that C′ = Enc(1, pk)Cπ.

An interactive proof is computed as described in Figure 7 with the following input:

• CRS: pkmix, ckmix

• Statement: C,C′

• Witness: π, ρ

Note, that for non-interactive case, challenges are computed as follows:

• x← H(pkmix, ckmix, InitMShufArg,C
′,C, aux) = H(pkmix, ckmix, cA,C

′,C, aux).

• y ← H(Answer1ShufArg, pkmix, ckmix, InitMShufArg,C
′,C, aux) = H(cB , pkmix, ckmix, cA,C

′,C, aux)5.

• z ← H(1,Answer1ShufArg, pkmix, ckmix, InitMShufArg,C
′,C, aux) = H(1, cB , pkmix, ckmix, cA,C

′,C, aux)6,

where InitMShufArg = (cA) is an initial message of a shuffle argument and Answer1ShufArg = (cB) is a

first answer of the Shuffle product argument computed as described in Figure 7.

The output is (cA, cB , πProd, πMultiExp).

8.2.3 MultiExpArg(pkmix, ckmix, (C1, . . . ,Cm), C, cA, {aj}mj=1, r, ρ)

This algorithm is a public coin argument of knowledge of openings of commitments cA to A = {aj}mj=1

such that C = Enc(1; pkmix; ρ)
∏m
i=1 C

ai
i and cA = comckmix(A; r). An interactive proof is computed as

described in Figure 8 with the following input:
5 We don’t need to include x explicitly since it deterministically depends on values already included in the hash.
6We don’t need to include x and y explicitly since they deterministically depend on values already included in the hash.

24

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

• CRS: pkmix, ckmix

• Statement: (C1, . . . ,Cm), C, cA

• Witness: {aj}mj=1, r, ρ

Note, that for non-interactive case, the challenge are computed as follows:

• x← H(pkmix, ckmix, InitMMultiExp, cA, C,C1, . . . ,Cm, aux) = H(pkmix, ckmix, {Ek}2m−1
k=0 , {cBk}

2m−1
k=0 , cA0

, cA, C,

C1, . . . ,Cm, aux), where InitMMultiExp = ({Ek}2m−1
k=0 , {cBk}

2m−1
k=0 , cA0

) is an initial message of a multi-

exponentiation argument computed as described in Figure 8.

The output is πMultiExp = (cA0 , {cBk}
2m−1
k=0 , {Ek}2m−1

k=0 ,a, r, b, s, τ).

8.2.4 ProductArg(pkmix, ckmix, cA, b, A, r)

This algorithm is an argument that a set of committed values have a particular product i.e. given a

commitment cA to A = {aij}n,mi,j=1 and a value b it gives an argument of knowledge for
∏n
i=1

∏m
j=1 aij = b.

An interactive proof is computed as described in Figure 9 with the following input:

• CRS: pkmix, ckmix

• Statement: cA, b

• Witness: A, r

Note, that this proof does not require a challenge.

The output is πProd = (cb, πHadPA, πSingleVPA).

8.2.5 HadamardProdArg(pkmix, ckmix, cA, cb, (a1, . . . , am), r,b, s)

This algorithm is an argument of knowledge of the openings a11, . . . , anm and b1, . . . , bn to the commit-

ments cA and cb s.t. bi =
∏m
j=1 aij for i = 1, . . . , n. An interactive proof is computed as described in

Figure 10 with the following input:

• CRS: pkmix, ckmix

• Statement: cA, cb

• Witness: (a1, . . . , am), r,b, s

Note, that for non-interactive case, challenges are computed as follows:

• x← H(pkmix, ckmix, InitMHadPA, cb, cA, aux) = H(pkmix, ckmix, cB , cb, cA, aux)

• y ← H(1, pkmix, ckmix, InitMHadPA, cb, cA, aux) = H(1, pkmix, ckmix, cB , cb, cA, aux)
5, where InitMHadPA =

(cB) is an initial message of Hadamard product argument computed as described in Figure 10.

The output is πHadPA = (cB , πZeroArg).

25

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

8.2.6 ZeroArg(pkmix, ckmix, cA, cB, ⋆, A,B, r, s)

This algorithm is an argument of knowledge of the committed values a1,b0, . . . , am,bm−1 s.t. 0 =∑m
i=1 ai ⋆ bi−1. An interactive proof is computed as described in Figure 11 with the following input:

• CRS: pkmix, ckmix

• Statement: cA, cB and a specification of a bilinear map ⋆ : Znq × Znq → Zq

• Witness: A,B, r, s

Note, that for non-interactive case, challenges are computed as follows:

• x← H(pkmix, ckmix, InitMZeroArg, cB , cA, aux) = H(pkmix, ckmix, cD, cBm , cA0 , cB , cA, aux),where InitMZeroArg =

(cD, cBm , cA0
) is an initial message of a zero argument computed as described in Figure 11.

The output is πZeroArg = (cA0
, cBm , cD,a,b, r, s, t).

8.2.7 SingleValueProdArg(pkmix, ckmix, ca, b, a, r)

This algorithm is an argument of knowledge of the opening a1, . . . , an, r s.t. ca = comckmix(a; r) and

b =
∏n
i=1 ai. An interactive proof is computed as described in Figure 12 with the following input:

• CRS: pkmix, ckmix

• Statement: ca, b

• Witness: a, r

Note, that for non-interactive case, challenges are computed as follows:

• x← H(pkmix, ckmix, InitMSingleVPA, b, ca, aux) = H(pkmix, ckmix, c∆, cσ, cd, b, ca, aux), where InitMSingleVPA =

(c∆, cσ, cd) is an initial message of a single value product argument computed as described in Figure

12.

The output is πSingleVPA = (cd, cσ, c∆, ã1, b̃1, . . . , ãn, b̃n, r̃, s̃).

8.2.8 Fiat-Shamir heuristic in Shuffle Argument

In the Fiat-Shamir heuristic the prover computes the public-coin challenges with a cryptographic hash-

function instead of interacting with a verifier. We apply the Fiat-Shamir heuristic of the following form:

x = H(CRS, Statement, InitMessage, aux) to each internal public-coin interactive sub-argument of the

Shuffle Argument independently. Note that H is a hash function with domain separation, thus the list of

variables is encoded uniquely into a binary string.

For the Hadamard Product Argument and the Shuffle Argument, where the Verifier sends two chal-

lenges x, y, the second challenge is generated as y = H(1,CRS, InitMessage, Statement, aux) to ensure that

y differs from x.

26

Prover Challenger

CRS: pkmix, ckmix

Statement: C,C′ ∈ HN with N = mn

Witness: π ∈ ΣN and ρ ∈ ZNq

Pick r← Zmq
Set a = {π(i)}Ni=1

Compute cA = comckmix (a; r)
InitMessage: cA−−−−−−−−−−−−→

x← Z∗
q

Challenge: x←−−−−−−−−−−

Pick s ∈ Zmq
Set b = {xπ(i)}Ni=1

Compute cB = comckmix (b; s)
1st Answer: cB−−−−−−−−−−−−→

y, z ← Z∗
q

Challenges: y,z←−−−−−−−−−−−−

Define c−z = comckmix (−z, . . . ,−z;0)

and cD = cyAcB .

Compute d = ya+ b and t = yr+ s

Set b =
∏N
i=1(yi+ xi − z)

πProd ← ProductArg(pkmix, ckmix, cDc−z , b,d− z, t)

Engage in Product Argument of opening

d1 − z, . . . , dN − z and t s.t.

cDc−z = comckmix (d− z; t) and∏N
i=1(di − z) =

∏N
i=1(yi+ xi − z)

Compute ρ = −ρ · b

Set x = (x, x2, x3, . . . , xN)T

πMultiExp ← MultiExpArg(pkmix, ckmix,C
′,Cx, cB ,b, s, ρ)

Engage in a multi-exponentiation argument

of b, s and ρ s.t. Cx = Enc(1; pkmix; ρ)C
′b

2nd Answer: πProd,πMultiExp−−−−−−−−−−−−−−−−−−−−→

Figure 7: Shuffle argument: an argument of knowledge of a permutation π and randomness ρ s.t.

C′ = Enc(1; pkmix; ρ)Cπ.

Prover Challenger

CRS: pkmix, ckmix

Statement: (C1, . . . ,Cm) ∈ Hn, C ∈ H and cA ∈ Gm

Witness: {aj}mj=1 ∈ Zn×mq , r ∈ Zmq and ρ ∈ Zq

Pick a0 ← Znq , r0 ← Zq
Pick b0, s0, τ0, . . . , b2m−1, s2m−1, τ2m−1 ← Zq
Set bm = 0, sm = 0, τm = ρ

Compute for k = 0, . . . , 2m− 1:

cA0 = comckmix (a0; r0)

cBk = comckmix (bk; sk)

Ek = Enc(gbk ; pkmix; τk)
∏m,m

i=i,j=0
j=(k−m)+i

Ci
aj

InitMessage: {Ek}
2m−1
k=0

,{cBk}
2m−1
k=0

,cA0−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

x← Z∗
q

Challenge: x←−−−−−−−−−−

Set x = (x, x2, x3, . . . , xm)T

Compute:

a = a0 +Ax

r = r0 + rx

b = b0 +
∑2m−1
k=1 bkx

k

s = s0 +
∑k=1

2m−1 skx
k

τ = τ0 +
∑2m−1
k=1 τkx

k

Answer: a,r,b,s,τ−−−−−−−−−−−−−→

Figure 8: Multi-exponentiation argument: an argument of knowledge of openings of commitment cA to

A = {aij}n,mi,j=1 s.t. C = Enc(1; pkmix; ρ)
∏m
i=1 Ci

ai and cA = comckmix(A; r).

Prover Challenger

CRS: pkmix, ckmix

Statement: cA ∈ Gm and b ∈ Zq

Witness: A ∈ Zn×m and r ∈ Zmq

Pick s← Zq
Set b′ = (

∏m
j=1 a1j , . . . ,

∏m
j=1 anj)

Compute cb = comckmix (b
′; s):

InitMessage: cb−−−−−−−−−−−−→

πHadPA ← HadamardProdArg(pkmix, ckmix, cA, cb, A, r,b
′, s))

Engage in a Hadamard product argument

of cb = comckmix (b
′; s), where a11, . . . , anm

are the committed values in cA

πSingleVPA ← SingleValueProdArg(pkmix, ckmix, cb, b,b
′, s)

Engage in a Single Value Product Argument of b

being the product of the committed values in cb.

Answer: πHadPA,πSingleVPA−−−−−−−−−−−−−−−−−−→

Figure 9: Product argument: an argument of knowledge of openings a11, . . . , anm, r1, . . . , rm to a given

commitment cA s.t.
∏n
i=1

∏m
j=1 aij = b.

Prover Challenger

CRS: pkmix, ckmix

Statement: cA ∈ Gm and cb ∈ G

Witness: a1, . . . ,am,b ∈ Zn, r ∈ Zmq and s ∈ Zq

Define:

b1 = a1

b2 = a1a2

. . .

bm−1 = a1 · · · am−1

bm = b

Pick s2, . . . , sm−1 ← Zq
Compute:

cB2
= comckmix (b2; s2)

. . .

cBm−1
= comckmix (bm−1; sm−1)

Define s1 = r1 and sm = s

Set cB1
= cA1

and cBm = cb

Set cB = (cB1
, . . . , cBm)

InitMessage: cB−−−−−−−−−−−−→

x, y ← Z∗
q

Challenges: x,y←−−−−−−−−−−−−

Define the bilinear map ⋆ : Znq × Znq → Zq
by (a1, . . . , an)T ⋆ (d1, . . . , dn)T =

∑n
j=1 ajdjy

j

Define cDi = cx
i

Bi
, cD =

∏m−1
i=1 cx

i

Bi+1

and c−1 = comckmix (−1; 0)

Set:

d1 = xb1, t1 = xs1

. . .

dm−1 = xm−1bm−1, tm−1 = xm−1sm−1

d =
∑m−1
i=1 xibi+1, t =

∑m−1
i=1 xisi+1

Define:

D = (d1, . . . ,dm−1,d)

t = (t1, . . . , tm−1, t)

F = (a2, . . . ,am,−1)

τ = (r2, . . . , rm, 0)

cf = (cA2
, . . . , cAm , c−1)

cd = (cD1 , . . . , cDm−1,cD)

πZeroArg ← ZeroArg(pkmix, ckmix, cf , cd, ⋆, F,D, τ, t)

Engage in a Zero argument for

the committed values in cf , cd satisfying

0 =
∑m−1
i=1 ai+1 ⋆ di − 1 ⋆ d

Answer: πZeroArg−−−−−−−−−−−−→

Figure 10: Hadamard argument: an argument of knowledge of the openings a11, . . . , anm and b1, . . . , bn
to the commitments cA and cb s.t. bi =

∏m
j=1 aij for i = 1, . . . , n.

Prover Challenger

CRS: pkmix, ckmix

Statement: cA, cB ∈ Gm and a specification of a biliner map ⋆ : Znq × Znq → Zq

Witness: A = {ai}mi=1 ∈ Zn×m, r ∈ Zmq
and B = {bi}m−1

i=0 , s = (s0, . . . , sm−1) ∈ Zmq

Pick a0,bm ← Znq and r0, sm ← Zq
Compute:

cA0
= comckmix (a0; r0)

cBm = comckmix (bm; sm)

Compute d0, . . . , d2m as dk =
∑

0≤i,j≤m
j=(m−k)+i

ai ⋆ bj

Pick t = (t0, . . . , t2m)← Z2m+1
q

Set tm+1 = 0

Compute cD = comckmix (d, t)
InitMessage: cD,cBm ,cA0−−−−−−−−−−−−−−−−−−−−→

x← Z∗
q

Challenge: x←−−−−−−−−−−

Compute:

a =
∑m
i=0 x

iai

r =
∑m
i=0 x

iri

b =
∑m
j=0 x

m−jbj

s =
∑m
j=0 x

m−jsj

t =
∑2m
k=0 x

ktk
Answer: a,b,r,s,t−−−−−−−−−−−−−→

Figure 11: Zero argument: an argument of knowledge of the committed values a1,b0, . . . , am,bm−1 s.t.

0 =
∑m
i=1 ai ⋆ bi−1.

Prover Challenger

CRS: pkmix, ckmix

Statement: ca ∈ G and b ∈ Zq

Witness: a ∈ Znq and r ∈ Zq

Compute:

b1 = a1

b2 = a1a2

. . .

bn =
∏n
i=1 ai

Pick d1, . . . , dn, rd ← Zq
Define σ1 = d1 and σn = 0

Pick σ2, . . . , σn−1 ← Zq
Pick s1, sx ← Zq
Set ∆ = (σ2 − a2σ1 − b1d2, . . . , σn − anσn−1 − bn−1dn)

Set σ = (−σ1d2, . . . ,−σn−1dn)

Compute:

cd = comckmix (d; rd)

cσ = comckmix (σ; s1)

c∆ = comckmix (∆; sx)
InitMessage: c∆,cσ,cd−−−−−−−−−−−−−−−−−→

x← Z∗
q

Challenge: x←−−−−−−−−−−

Compute:

ã1 = xa1 + d1, . . . , ãn = xan + dn

r̃ = xr + rd

b̃1 = xb1 + σ1, . . . , b̃n = xbn + σn

s̃ = xsx + s1
Answer: ã1,b̃1,...,ãn,b̃n,r̃,s̃−−−−−−−−−−−−−−−−−−−−→

Figure 12: Single value product argument: an argument of knowledge of the opening a1, . . . , an, r s.t.

ca = comckmix(a; r) and b =
∏n
i=1 ai.

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

8.2.9 Special case of mixing

If the ciphertexts cannot be arranged in a matrix (e.g. the number of votes N is a prime number),

then the mixing process is executed for n = N and m = 1 parameters. In such cases, the Hadamard

Product argument becomes redundant and the single value product argument can be executed directly.

Alternatively, one can add a vector containing unity elements and compute commitment to that vector

comckmix(1; 0), then set m = 2 and execute the Hadamard Product as usual for A = (a1,1).

8.3 MixVerify(pkmix, ckmix,C,C′, πmix,)

This algorithm takes as input a mixing pkmix and commitment ckmix public keys, a vector of initial

ciphertexts C and permuted ciphertexts C′ and verifies the mixing procedure as follows:

1. If verifyShuffleArg(pkmix, ckmix,C,C
′, πmix,) outputs 0, aborts and returns ⊥.

2. Otherwise outputs ⊤.

8.4 verifyShuffleArg(pkmix, ckmix,C,C′, πmix,)

This algorithm takes as input a mixing pkmix and commitment ckmix public keys, a vector of initial

ciphertexts C and permuted ciphertexts C′ and verifies the proof of the shuffle correctness πmix, as

follows:

1. Parses πmix, as (cA, cB , πProd, πMultiExp).

2. Computes challenges:

• x← H(pkmix, ckmix, cA,C
′,C, aux).

• y ← H(cB , pkmix, ckmix, cA,C
′,C, aux).

• z ← H(1, cB , pkmix, ckmix, cA,C
′,C, aux).

3. Computes the following values:

(a) cD = cyAcB .

(b) c−z = comckmix(−z, . . . ,−z;0).

(c) Cx.

(d) b =
∏N
i=1(yi+ xi − z).

4. Verifies:

(a) cA, cB ∈ Gm.

(b) checks that verifyMultiExpArg(pkmix, ckmix,C
′,Cx, b, πMultiExp) outputs 1.

33

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

(c) checks that verifyProductArg(pkmix, ckmix, cDc−z, b, πProd) outputs 1.

If and only if all verifications above are successful, the algorithm outputs 1. Otherwise, it outputs 0.

8.5 verifyMultiExpArg(pkmix, ckmix, (C1, . . . ,Cm), C, cA, πMultiExp)

This algorithm verifies a public coin argument of knowledge of openings of commitments cA to A =

{aj}mj=1 such that C = Enc(1; pkmix; ρ)
∏m
i=1 C

ai
i and cA = comckmix(A; r).

1. Parses πMultiExp as (cA0
, {cBk}

2m−1
k=0 , {Ek}2m−1

k=0 ,a, r, b, s, τ).

2. Computes challenge x← H(pkmix, ckmix, {Ek}2m−1
k=0 , {cBk}

2m−1
k=0 , cA0

, cA, C,C1, . . . ,Cm, aux)

3. Checks that:

(a) cA0
, cB0

, . . . , cB2m−1
∈ G.

(b) E0, . . . , E2m−1 ∈ H.

(c) a ∈ Znq .

(d) r, b, s, τ ∈ Zq.

(e) cBm = comckmix(0; 0).

(f) Em = C.

(g) cA0c
x
A = comckmix(a; r).

(h) cB0

∏2m−1
k=1 cx

k

Bk
= comckmix(b; s).

(i) E0

∏2m−1
k=1 Ex

k

k = Enc(Gb; pkmix; τ)
∏m
i=1 C

xm−ia
i .

If and only if all verifications above are successful, the algorithm outputs 1. Otherwise, it outputs 0.

8.6 verifyProductArg(pkmix, ckmix, cA, b, πProd)

This algorithm verifies an argument that a set of committed values have a particular product i.e. given a

commitment cA to A = {aij}n,mi,j=1 and a value b it gives an argument of knowledge for
∏n
i=1

∏m
j=1 aij = b.

1. Parses πProd as (cb, πHadPA, πSingleVPA).

2. Verifies:

(a) cb ∈ G.

(b) Checks that verifyHadamardProdArg(pkmix, ckmix, cA, cb, πHadPA) outputs 1.

(c) Checks that verifySingleValueProdArg(pkmix, ckmix, cb, b, πSingleVPA) outputs 1.

If and only if all verifications above are successful, the algorithm outputs 1. Otherwise, it outputs 0.

34

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

8.7 verifyHadamardProdArg(pkmix, ckmix, cA, cb, πHadPA)

This algorithm verifies an argument of knowledge of the openings a11, . . . , anm and b1, . . . , bn to the

commitments cA and cb s.t. bi =
∏m
j=1 aij for i = 1, . . . , n.

1. Parses πHadPA as (cB , πZeroArg).

2. Parses cB = (cB1
, . . . , cBm).

3. Verifies that cB2
, . . . , cBm−1

∈ G, cB1
= cA1

and cBm = cb.

4. Computes challenges:

(a) x← H(pkmix, ckmix, cB , cb, cA, aux).

(b) y ← H(1, pkmix, ckmix, cB , cb, cA, aux).

5. Computes cDi = cx
i

Bi
, cD =

∏m−1
i=1 c

Bx
i
i+1

and c−1 = comckmix(−1; 0).

6. Defines the bilinear map ⋆ : Znq × Znq → Zq by (a1, . . . , an)
T ⋆ (d1, . . . , dn)

T =
∑n
j=1 ajdjy

j

7. Sets cf = (cA2
, . . . , cAm , c−1) and cd = (cD1

, . . . , cDm−1,cD).

8. Verifies verifyZeroArg(pkmix, ckmix, cf , cd, ⋆, πZeroArg).

If and only if all verifications above are successful, the algorithm outputs 1. Otherwise, it outputs 0.

8.8 verifyZeroArg(pkmix, ckmix, cA, cB, ⋆, πZeroArg)

This algorithm verifies an argument of knowledge of the committed values a1,b0, . . . , am,bm−1 s.t. 0 =∑m
i=1 ai ⋆ bi−1.

1. Parses πZeroArg as (cA0 , cBm , cD,a,b, r, s, t).

2. Computes challenge x← H(pkmix, ckmix, cD, cBm , cA0
, cB , cA, aux).

3. Checks that:

(a) cA0
, cBm ∈ G.

(b) cD ∈ G2m+1.

(c) cDm+1
= comckmix(0; 0).

(d) a,b ∈ Znq .

(e) r, s, t ∈ Zq.

(f)
∏m
i=0 c

xi

Ai
= comckmix(a; r).

(g)
∏m
j=0 c

xm−j

Bj
= comckmix(b; s).

(h)
∏2m
k=0 c

xk

Dk
= comckmix(a ⋆ b; t).

If and only if all verifications above are successful, the algorithm outputs 1. Otherwise, it outputs 0.

35

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

8.9 verifySingleValueProdArg(pkmix, ckmix, ca, b, πSingleVPA)

This algorithm verifies an argument of knowledge of the opening a1, . . . , an, r s.t. ca = comckmix(a; r) and

b =
∏n
i=1 ai.

1. Parses πSingleVPA as (cd, cσ, c∆, ã1, b̃1, . . . , ãn, b̃n, r̃, s̃).

2. Computes challenge x← H(pkmix, ckmix, c∆, cσ, cd, b, ca, aux).

3. Check that:

(a) cd, cσ, c∆ ∈ G.

(b) ã1, b̃1, . . . , ãn, b̃n, r̃, s̃ ∈ Zq.

(c) cxacd = comckmix(ã1, . . . , ãn; r̃).

(d) cx∆cσ = comckmix(xb̃2 − b̃1ã2, . . . , xb̃n − b̃n−1ãn; s̃).

(e) b̃1 = ã1.

(f) b̃n = xb.

If and only if all verifications above are successful, the algorithm outputs 1. Otherwise, it outputs 0.

9 Hard problems

9.1 The Decisional Diffie-Hellman problem (DDH)

Definition 13 (DDH) The Decisional Diffie-Hellman problem in a cyclic group G of order q with a

generator g, informally, requires the indistinguishability of gs1 from random element, given (gs, g1) for

random s ∈ Z∗
q and g1 ∈ G. Figure 13 describes the DDH game formally for L different instances.

The group G is DDH-hard if it holds:

AdvG,DDH
A = |Pr

[
1← DDHG

A(λ)
]
− 1

2
| ≈ 0.

DDH over quadratic residues.. The group of quadratic residues Qp < Z∗
p of prime order q, for

modulus p = 2q+1 a safe prime of length λ is believed to be DDH-hard. In this case, in step 1 of Figure

13 the group parameters (sampled at random) are set to gparams = (p, q, g).

9.2 Subgroup Generated by Small Primes (SGSP)

This problem was first introduced in [25]. It is similar to the DDH problem but weaker.

Definition 14 (SGSP) The SGSP problem in the group of quadratic residues Qp informally, requires

the indistinguishability of ℓs1 from a random element, given (gs, ℓ1) for random s ∈ Z∗
q , and ℓ ∈ Qp the

36

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

DDHG
A(λ):

1. gparams← GParamsGen(λ) //Sample at random

2. b← {0, 1}

3. s← Z∗
q

4. si ← s ∀ 0 ≤ i ≤ L

5. g1, . . . , gL ← G // Sampled at random

6. if b = 1 then

6.1 si ← Z∗
q∀0 ≤ i ≤ L

7. b′ ← A(gparams, gs0 , gs11 , . . . , g
sL
L)

8. Output 1 if b = b′. Else output 0.

Figure 13: DDH game. GParamsGen samples at random the group parameters gparams, including the order q and a

generator g of the cyclic group G.

first prime that is a quadratic residue. Figure 14 describes the SGSP game formally for the first L primes

that are quadratic residues.

The group Qp is SGSP-hard if it holds:

AdvQp,SGSPA = |Pr
[
1← SGSP

Qp
A (λ)

]
− 1

2
| ≈ 0.

SGSP
Qp
A (λ):

1. gparams← GParamsGen(λ) // Sampled at random

2. ℓ1, . . . , ℓL ← Qp // Find first L smallest primes that are quadratic residues

2. b← {0, 1}

3. s← Z∗
q

4. si ← s ∀0 ≤ i ≤ L

5. if b = 1 then

5.1 si ← Z∗
q∀ 0 ≤ i ≤ L

6. b′ ← A(gparams, gs0 , ℓs11 , . . . ℓ
sL
L)

7. Output 1 if b = b′. Else output 0.

Figure 14: SGSP game. GParamsGen samples at random the group parameters gparams = (p, q, g), including the order

q and a generator g of Qp.

The following problem combines DDH and SGSP problems.

Definition 15 (ESGSP) The extended SGSP problem in the group of quadratic residues Qp informally,

requires the indistinguishability of (gs1, ℓ
s
1) from random elements, given (gs, g1, ℓ1) for random s ∈ Z∗

q ,

random g1 ∈ Qp and ℓ ∈ Qp the first prime that is a quadratic residue. Figure 15 describes the ESGSP

game formally for L1 random group elements and the first L2 primes that are quadratic residues.

37

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

The group Qp is ESGSP-hard if it holds:

AdvQp,ESGSPA = |Pr
[
1← SGSP

Qp
A (λ)

]
− 1

2
| ≈ 0.

ESGSP
Qp
A (λ):

1. gparams← GParamsGen(λ)

2. g1, . . . , gL1 ← Qp // Sampled at random

3. ℓ1, . . . , ℓL2
← Qp // Find first L2 smallest primes that are quadratic residues

2. b← {0, 1}

3. s← Z∗
q

4. si ← s ∀0 ≤ i ≤ L1 + L2

5. if b = 1 then

5.1 si ← Z∗
q∀ 0 ≤ i ≤ L1 + L2

6. b′ ← A(gparams, gs0 , gs11 , . . . g
sL1
L1

, ℓ
sL1+1

1 , . . . ℓ
sL1+L2
L2

)

7. Output 1 if b = b′. Else output 0.

Figure 15: ESGSP game. GParamsGen samples at random the group parameters gparams = (p, q, g), including the order

q and a generator g of Qp.

Hardness of ESGSP problem.. It is not difficult to see that if Qp is DDH-hard and SGSP-hard, then

it is also ESGSP-hard.

38

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

Part III

sVote voting system

39

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

10 General aspects

sVote is a e-voting system that allows to vote for up to ψ options out of n voting options.

The system consists of three phases: the configuration phase, the voting phase and the tally phase.

Each phase has several protocols (interactive algorithms) and procedures (local algorithms). Phases and

flow diagrams are covered in Section 11. Descriptions of the algorithms are covered in Section 12.

The tally phase outputs plaintexts of the confirmed votes in random order while maintaining vote pri-

vacy, individual verifiability (cast-as-intended and recorded-as-cast), and universal verifiability (counted-

as-recorded). Section 10.2 discusses the techniques for achieving these security objectives.

10.1 Public system parameters

Some of the system parameters are generated before the configuration phase begins. These parameters,

jointly denoted as crs, form the common reference string that all parties in the system know. Thus,

implicitly all algorithms take crs as input. Public parameters are generated in a verifiable way.

10.1.1 ElGamal parameters

To encrypt the voting options in the Voting Client , sVote uses ElGamal over the multiplicative group

of quadratic residues Qp. The group parameters gparams = (p, q, g), namely the modulus p, the order q

and the generator g are generated in advance. See Section 3.2 for more details.

10.1.2 Pedersen commitment key

A Pedersen commitment is instantiated over Qp, the same group used for ElGamal encryptions. The pair

of commitment keys is generated in advance.

10.1.3 Voting options

Voting options are encoded as elements of Qp. They are chosen as the first n primes that are quadratic

residues modulo p. We denote them with vector v = (v1, . . . , vn).

We use the operations of multiplication and factorization for encoding/decoding the selected voting

options: a voter selects ψ voting options v′i out of n possibilites, and the Voting Client encodes them as

the group element ν =
∏ψ
i=1 v

′
i ∈ Qp. During tally, the votes are eventually decrypted, and the voter

selections v′i recovered by factorizing the plaintext ν in basis v. Therefore, it has to be ensured that the

product of any subset of ψ primes is smaller than p.

40

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

10.1.4 Voter pseudonyms

A list ID of N pseudonyms (identifiers) of eligible voters is available prior to the configuration phase.

This list is provided by an external authority.

10.1.5 Return codes spaces

To derive human-readable return codes and keys, we use different value spaces.

• Start voting keys are derived from Csvk. These keys are used to send a vote.

• Ballot casting keys are derived from Cbck. These keys are used to confirm a vote .

• Short choice return codes are derived from Ccc. These codes are used to verify cast-as-intended.

• Short vote cast return codes are derived from Cvcc. These codes is used to verify recorded-as-cast.

10.2 Achieving verifiability and privacy

10.2.1 Individual verifiability

sVote uses a two-round protocol between the voter, the Voting Client and the server to provide individual

verifiability.

Before the voting phase is open, an eligible voter with identifier id receives a paper-based voting card

vcdid
7 with a one-to-one correspondence between the voting options v and a set of Choice Return Codes

ccid = (CC1,id, . . . , CCn,id).

During the voting phase, the voter selects ψ voting options, then her voting client prepares the

ballot and sends it to the server. The server jointly with CCRs derives a set of choice return codes

ccid = (CC1,id, . . . , CCψ,id) that correspond to the ψ selected voting options and sends them back to

Voting Client. The Voting Client shows the received Choice Return Codes ccid to the voter so that she

can cross-check them against the Choice Return Codes ccid printed on her voting card. If the Choice

Return Codes ccid match, the voter confirms the vote by entering into the Voting Client a Ballot Casting

Key BCKid that is also printed on her voting card. The Voting Client derives the confirmation message

CMid from the Ballot Casting Key BCKid and sends the confirmation message CMid to the voting server.

Subsequently, the voting server retrieves, in collaboration with the CCR, the Vote Cast Return Code

VCCid and sends it back to the voting client to allow the voter to cross-check the received Vote Cast

Return Code VCCid against the Vote Cast Return Code VCCid printed on the voting card. If the voter

receives the correct Choice Return Codes ccid and Vote Cast Return Code VCCid, the system has correctly

registered the vote. Otherwise, the voter complains to the authorities to invalidate the vote.
7We do not cover the provision of voting cards to the voters; it is assumed they are delivered by a secure channel, e.g.

postal channel.

41

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

Generation of choice return codes and vote cast return code. During the configuration

phase, the Print Office generates the short Choice Return Code CCi,id and the short Vote Cast Return

Code VCCid for each voter with identifier id and each voting option vi. Furthermore, the Print Office

collaborates with the Choice Return Codes control components (CCR) to generate the long Choice Return

Code lCCi,id and the long Vote Cast Return Code lVCCid. The Print Office symmetrically encrypts the

short Choice Return Codes CCi,id and the Vote Cast Return Code VCCid. Then, it maps the hash of the

long Choice Return Code lCCi,id to the encrypted short Choice Return Codes CCi,id and the hash of the

long Vote Cast Return Code lVCCid to the encrypted short Vote Cast Return Code VCCid and stores the

result in the codes mapping table CMtable8.

The Print Office sends the mapping table CMtable to the voting server.

Retrieval of choice return codes and vote cast return code. During the voting phase,

the voting client sends (E1, E2,πballot) to the voting server, where E1 is the ciphertext used for the tally

phase, E2 = (c2,0, c2,1, . . . , c2,ψ) is a multi-recipient ElGamal ciphertext containing encryptions of the

Partial Choice Return Codes pCCi,id, and πballot is a set of three NIZK proofs. The voting server and

the CCR collaborate to retrieve the long Choice Return Code lCCi,id and to retrieve the corresponding

encrypted short Choice Return Code CCi,id from the mapping table CMtable. Then, the voting server

decrypts the short Choice Return code CCi,id and sends it to the voting client. A similar mechanism is

applied in the second round of the protocol to retrieve the short Vote Cast Return Code VCCid; first by

collaboratively generating the long Vote Cast Return code lVCCid and then by retrieving the encrypted

short Vote Cast Return Code VCCid from the mapping Table CMtable.

Three NIZK proofs πballot ensure that the encoded voting options E1 correspond to the encrypted

Partial Choice Return Codes E2.

10.2.2 Universal verifiability and voter privacy

The protocol uses verifiable mixnets [2] to ensure voter privacy. These mixnets are enhanced with zero-

knowledge proofs of correct shuffling and decryption which allow to check the correctness of the output

of the tally whilst maintaining the privacy of each voter and which exclude the possibility of obtaining

early provisional results.

11 Phases

8The Print Office permutes the codes mapping table CMtable before sending it to the voting server. This prevents the

voting server from correlating the voting options to the position in the mapping table in order to break vote privacy

42

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

11.1 Configuration phase

In the configuration phase the control components and the Print Office generate the Election key pair

and the voting cards of the voters.

It consists of two interactive protocols SetupTally and SetupVoting. In addition, at the end of the

phase the auditors execute a verification algorithm VerifyConfigPhase to ensure everything was generated

properly. The public parameters crs are known to all system parties. Refer to section 12.1 for the

complete list of algorithms executed during configuration.

Protocol Setup Tally. The Print Office and the Mixing control components generate the global

Election key pair.

- Each control component CCMj for j ≤ m′ − 1 generates a share of the Election key pair.

- The Print Office generates the last share and combines all the Election public key shares.

See Figure 16 for an overview of the interaction and Section 12.1.2 for the description of the algorithms.

Protocol Setup Voting. The Print Office and the Choice Return Codes control components generate

the Global CCR encryption key pair and credential and verification material for each voter.

- Each CCRj generates an encryption key pair, and Print Office combines the encryption keys of each

CCRj .

- The Print Office generates the Verification Card key pairs for each voter, and sends encryptions

(under the Secure Data Manager encryption key) of the Partial Choice Return Codes and Confir-

mation Key (voting options and Ballot Casting Key raised to the Verification Card Private key of

each voter, respectively) to the CCRs.

- The CCRs exponentiate the two sets of received ciphertexts to their Voter Choice Return Code

Generation and Voter Vote Cast Return Code Generation private keys, respectively. These are the

(encrypted) long Choice Return Code shares and long Vote Cast Return Code shares that each

control component generates.

- The Print Office generates the short Choice Return Codes and short Vote Cast Return Code. Then

it combines and decrypts the ciphertexts returned by the CCRs and obtains the two sets of long

return codes. These codes are used to derive the symmetric keys to encrypt the short return codes

in the Codes mapping table.

See Figure 17 for an overview and Section 12.1.1 for the description of the algorithms.

43

ELpk,EBpk

SetupTallySDM

ELpk,j

ELpk,j

SetupTallyCCMj

EBpk, EBsk

PO Server CCMs:j < m′ Electoral Board

Figure 16: Protocol SetupTally, executed between the Print Office and the Mixing control components.

Each control component, except the last one, generates its own share of the Election key pair and send

it back to the Print Office, who generates the last Election key pair (the Electoral Board key pair) share

and combines all shares.

pkCCR,Csk
GenVerCardSetKeys

pkCCRj

pkCCRj

GenKeysCCRj

CombineEncLongCodeShares

πexpPCC,j ,πexpCK,j

CexpPCC,j , cexpCK,j

Kj ,Kcj

πexpPCC,j ,πexpCK,j

CexpPCC,j , cexpCK,j

Kj ,Kcj
GenEncLongCodeSharesj

vcd,Cpcc, cck

vcd,K,Cpcc, cck
GenVerDat

GenEncryptionKeysPO

VCks
GenCredDat

CMtable
GenCMTable

VerifyConfigPhase

LogsPO

invalid execution
VCardid = (SVK, BCKid, ccid, VCCid)

PO Server CCRs Auditors Voter

Figure 17: Protocol SetupVoting executed between the Print Office and the Choice Return Code control

components CCRs. Upon termination, auditors verify execution and the voters receive the Voting Card with the

Start Voting Key, the Ballot Casting Key, the voting options and the short Return Codes.

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

11.2 Voting phase

In the voting phase a Voter sends and confirms her vote with the help of a Voting Client and her voting

card.

It consists in two interactive protocols SendVote and ConfirmVote. In addition, at the end of the phase

the auditors execute a verification procedure VerifyVotingPhase to ensure the ballot box bb is consistent.

Refer to section 12.2 for the complete list of algorithms executed during the voting phase.

Protocol Send Vote. The Voter starts the protocol introducing the Start Voting Key in the Voting

Client , who creates the ballot and send it to the Server. Then, the Server and the CCRs interact to

retrieve the short Choice Return Codes from the Codes mapping table using information encrypted in

the ballot. The Server sends the return codes to the Voting Client and these are displayed to the Voter.

- The Voter enters the Start Voting Key SVKid, and her selected voting options vid = (vj1 , . . . , vjψ)

printed on her voting card.

- The Voting Client creates the ballot and sends it to the Server.

- The Server and the CCRs validate the ballot.

- The Server and the CCRs interact to decrypt the Partial Choice Codes embedded in the ballot.

- The Server and the CCRs interact to derive the long Choice Return Codes using the Partial Choice

Codes. During the process the CCRs validates Server’s requests (for a given Voter’s identifier,

decryption has been done and no previous request has been answered).

- The Server extracts the short Choice Return Codes from the mapping table and send them back to

the Voting Client .

- The Voter verifies the short Choice Return Codes.

For an overview of the interaction see Figure 18 and for a description of the algorithms see Section 12.2.1.

Protocol Confirm Vote. The Voter starts the protocol introducing the Ballot Casting Key in the

Voting Client , who creates the Confirmation Key and sends it to the Server. The Server and the CCRs

interact to retrieve the short Vote Cast Return Code from the mapping table.

- The Voter enters the Ballot Casting Key in the Voting Client , who sends the Confirmation Key to

the Server.

- The CCRs validate Server’s request and exponentiate the Confirmation Key to obtain the long Vote

Cast Return Code shares.

- The Server combines the shares of the CCRs and extracts the short Vote Cast Return Code from

the Codes mapping table and sends them back to the Voting Client.

46

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

- The Voter verifies the Vote Cast Return Code. If the verification is successful, the voter has

concluded the vote cast successfully. Otherwise, she notifies the authorities and uses another channel

to cast her vote.

For an overview of the interaction see Figure 19 and for a description of the algorithms see Section 12.2.2.

11.3 Tally phase

In the tally phase the Server and the Mixing control components compute the result of the election.

It consists in two protocols, MixOnline and MixOffline. In addition, two audits are in place to ensure

no party deviate from the protocol:

1. After completion of the online mix protocol, the auditors run algorithm VerifyOnlineTally (section

12.3.3.1) to ensure the protocol has been executed correctly.

2. After completion of the offline mix, the auditors run algorithm VerifyOfflineTally (section 12.3.3.2)

to ensure the output of the last Mixing control component CCMm′ is correct. If this last audit is

successful, the result is deemed trustworthy.

Online mix protocol. First, the server first cleans the ballot box removing all information related to

the voters and keeping only the ciphertexts for mixing. Then, all but the last Mixing control components

shuffle and partially decrypt the list of ciphertext received from the preceding control component (or from

the server in case of the first control component). They also produce NIZK proofs for correct shuffling

and correct partial decryption that are described in sections 8 and 7.3.5.

Offline mix protocol. The last Mixing control component CCMm′ shuffles and decrypt the permuted

ballot box received from CCMm′−1. It also produces NIZK proofs for correct shuffling and correct

decryption. Finally, it decodes the decrypted votes and outputs the result of the election.

Finally, the auditors may also run algorithm Auditors.VerifyElection to verify the entire election. Refer

to Section 12.3 for the complete list of algorithms of the tally phase. Figure 20.

12 Protocols and procedures

This section is devoted to list the algorithms executed at each phase of the sVote protocol.

Unless specified otherwise, the public system parameters crs are understood to be implicit inputs to

those algorithms that use them. Recall that crs includes a description gparams = (p, q, g) of Qp, a list of

voter pseudonyms ID, the number of voting options and maximum of choices (n, ψ), and a set of voting

options v = {v1, . . . , vn}. See Section 10.1 for more details.

47

Invalid ballot
VerifyBallotServ

bid

CreateVote

GetKey

vid, SVKid

dj,id
PartialDecryptPCCj

Invalid ballot
VerifyBallotCCRj

bid

lCCj,id

Invalid request
CreateLCCSharej

pCCid

VerifyCRC

ccid

ccid

Invalid CRC
ExtractCRC

DecryptPCC

CCRs Server Voting Client Voter

Figure 18: Protocol SendVote executed between the Voting Server and the Choice Return Code control com-

ponents CCRs. Upon termination, voters receive short Choice Return Codes and perform verification.

Invalid confirmation

VerifyVCC

VCCid

VCCid

ExtractVCC

lVCCid,j

CreateLVCCSharej

Invalid ballot
VerifyConfirmationCCRj

CKid

VerifyConfirmationServ

CKid

CreateConfirmMessage

BCKid

CCRs Server Voting Client Voter

Figure 19: Protocol ConfirmVote executed between the Voting Server and the Choice Return Code control

components CCRs. Upon termination, voters receive the Vote Cast Return Code and perform the verification.

EBpk, EBpk

OK

VerifyOfflineTally

cmix,m′ ,m, LogsCCMm′ , Lvotes

MixDecOffline

VerifyOnlineTally

{cmix,i, cDec,i, ELpk,i, LogsCCMi}i<m′
MixDecOnlinej

bbclean, ELpk
Cleansing

bb, Logsserv

Server CCMsj < m′ Auditors Electoral Board CCM

Figure 20: Protocol FirstMixes executed between the Voting Server and the Mixing control components CCMs.

Protocol is divided in two phases: online mixing (all but last CCMs) and offline mixing (last CCM). Upon online

mixing termination, auditors perform audit. If and only if the verification is successful, last CCM receives its key

pair from Electoral Board members.

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

12.1 Configuration phase protocols

The execution flow of the algorithms in the configuration phase is depicted in Figure 17 (setup for voting

phase) and Figure 16 (setup for tally phase).

12.1.1 Protocol SetupVoting

It is an interactive protocol run between the Print Office and the Choice Return Codes control components

CCRs. It consist of the following algorithms.

12.1.1.1 GenEncryptionKeysPO(crs, LogsPO)

This algorithm is executed by the Print Office. The algorithm takes as input the public parameters

crs and logs LogsPO. Then it generates the Secure Data Manager encryption key pair (skSDM, pkSDM) ←

KeyGen(gparams). This key pair is used to communicate with the control components. Additionally it

logs the public key LogsPO ← LogsPO ∪ {pkSDM}.

12.1.1.2 GenKeysCCRj(crs, LogsCCRj)

This algorithm is executed by the Choice Return Code control component CCRj . It receives as input the

public parameters crs, and the logs LogsCCRj . Then it does the following:

- Generate the CCRj Choice Return Codes encryption key pairs (skCCRj ,i, pkCCRj ,i
)← KeyGen(gparams)

for i ∈ (1, . . . , ψ). Set skCCRj = (skCCRj ,1, . . . , skCCRj ,ψ) and pkCCRj = (pkCCRj ,1
, . . . , pkCCRj ,ψ

).

- Compute at random the CCRj Choice Return Codes Generation private key k′j ∈ Z∗
q .

- Update the logs LogsCCRj ← LogsCCRj ∪ {pkCCRj}.

The algorithm outputs ((skCCRj ,pkCCRj), k
′
j) and LogsCCRj .

12.1.1.3 GenVerCardSetKeys((pkCCR1
, . . . ,pkCCRm), LogsPO, crs)

This algorithm is executed by the Print Office to create the global public encryption key of the control

components and the Codes Secret key.9

The algorithm takes as input the public keys pkCCRj = (pkCCRj ,1
, . . . , pkCCRj ,ψ

) of each CCRj . Then

it does the following: :

- Compute the global Choice Return Codes Encryption public keys pkCCR = (pkCCR,1, . . . , pkCCR,ψ)

as follows:

pkCCR,i =

m∏
j=1

pkCCRj ,i
∀i ∈ (1, . . . , ψ).

9The Codes Secret key is a salt value used for the codes mapping table (see Algorithm 12.1.1.7).

51

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

- Generate a random Codes Secret key Csk
$← {0, 1}s.

- Updates logs LogsPO ← LogsPO ∪ (pkCCR1
, . . . ,pkCCRm , Csk).

The algorithm outputs (pkCCR, Csk, LogsPO).

12.1.1.4 GenVerDat(pkSDM, LogsPO, crs)

It is an algorithm run by the Print Office. It generates verification data for each voter, and prepares

ciphertexts to send to the Choice Return Code control components.

The algorithm receives as input the Secure data Manager public encryption key pkSDM, logs LogsPO and

the public parameters crs. Then, it does the following for voters id ∈ ID :

1. Parse the voting options as (v1, . . . , vn)← v.

2. Generate a random Voting Card ID vcdid for voter id.10 Set vector vcd = (vcdid)id∈ID.

3. Generate a Verification Card key pair: (kid, Kid = gkid) ← KeyGen(gparams) for voter id. Set

vectors k = (kid)id∈ID, and K = (Kid)id∈ID.

4. Generate a random Ballot Casting Key BCKid
$← Cbck for voter id. Set vector bck = (BCKid)id∈ID.

5. Generate the following encrypted verification material:

- Compute hashes of the Partial Choice Return Codes

hpccid,i =
(
H(vkidi)

)2 ∈ Qp ∀i ∈ (1, . . . , n).

- Encrypt under the Secure Data Manager public key pkSDM the above elements as:

cpcc,i,id ← Enc(hpccid,i, pkSDM), ∀i ∈ (1, . . . , n).

Set vector cpcc,id = (cpcc,1,id, . . . , cpcc,n,id), and let Cpcc, the N × n-matrix with each row set

to cpcc,id.

- Compute the Confirmation Key CKid = (BCKid)
2·kid .

- Compute a hash of the Confirmation Key hckid =
(
H(CKid)

)2 ∈ Qp and encrypt it under the

Secure Data Manager public key pkSDM:

cck,id ← Enc(hckid, pkSDM).

Set vector cck = (cck,id)id∈ID.

6. Update logs LogsPO ← LogsPO ∪ {vcd,K,Cpcc, cck}.

The algorithm outputs
(
vcd, (k,K),bck,Cpcc, cck

)
10It holds vcdid ̸= vcdid′ for any two id ̸= id′.

52

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

12.1.1.5 GenEncLongCodeSharesj(k
′
j ,vcd,Cpcc, cck, LogsCCRj , crs)

This algorithm is executed by the Choice Return Code control component CCRj . It creates shares of the

long Choice Return Codes and a share of the long Vote Cast Return Code in an encrypted form.

It receives as input the CCRj Choice Return Codes Generation private key k′j , Voting Card IDs vcd

ciphertexts of the Partial Choice Return Codes Cpcc, ciphertexts of the Confirmation Keys cck (of all

voters), and logs LogsCCRj . Then it does the following:

1. For each voter id ∈ ID compute the Voter Choice Return Code Generation private key kj,id =

KDF(vcdid||k′j) and the corresponding public key Kj,id = gkj,id . Here kj,id ∈ Z∗
q . Let vectors

kj = (kj,id)id∈ID, and Kj = (Kj,id)id∈ID.

2. For each voter id ∈ ID compute the Voter Vote Cast Return Code Generation private key kcj,id =

KDF(vcdid||ConfirmStr||k′j) and the corresponding public key Kcj,id = gkcj,id . Here kcj,id ∈ Z∗
q . Let

vectors kcj = (kcj,id)id∈ID, and Kcj = (Kcj,id)id∈ID.

3. For each voter id ∈ ID generate (encrypted) shares of the long Choice Return Codes:

- Parse ciphertexts cpcc,id = (cpcc,1,id, . . . , cpcc,n,id) and exponentiate them to kj,id. Thus, com-

pute:

cexPCC,j,id,i =
(
cpcc,i,id

)kj,id ∀i ∈ (1, . . . , n).

Set cexpPCC,j,id = (cexPCC,j,id,1, . . . , , cexPCC,j,id,n), and let CexpPCC,j be the N × n-matrix with

rows set to cexpPCC,j,id.

- Compute a NIZK proof of correct exponentiation:

πexpPCC,j,id = ProveExp
(
((p, q, g, cpcc,id), (Kj,id, cexpPCC,j,id)), kj,id

)
.

πexpPCC,j,id proves that cexpPCC,j,id are computed by raising the group elements of cpcc,id to the

Voter Choice Return Code Generation private key kj,id respectively. Let vector πexpPCC,j =

(πexpPCC,j,id)id∈ID.

4. For each voter id ∈ ID generate an (encrypted) share of the long Vote Cast Return Code:

- Exponentiate cck,id to kcj,id. Thus, compute:

cexpCK,j,id := (cck,id)
kcj,id .

Set vector of ciphertexts cexpCK,j = (cexpCK,j,id)id∈ID.

- Compute the following NIZK proof:

πexpCK,j,id := ProveExp
(
((p, q, g, cck,id), (Kcj,id, cexpCK,j,id)), kcj,id

)
.

πexpCK,j,id proves that cexpCK,j,id is computed by raising the elements of cck,id to the Voter Vote

Cast Return Code Generation private key kcj,id. Let vector πexpCK,j = (πexpCK,j,id)id∈ID.

53

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

The algorithm outputs ((kj ,Kj), (kcj ,Kcj), (CexpPCC,j ,πexpPCC,j), (cexpCK,j ,πexpCK,j)).

12.1.1.6 CombineEncLongCodeShares(Kj ,Kcj ,CexpPCC,j ,πexpPCC,j , cexpCK,j ,πexpCK,j , LogsPO)

This algorithm is executed by the Print Office. It combines the (encrypted) long codes shares generated

by the Choice Return Code control components CCRj .

It receives as input the matrix of encrypted long Choice Return Code shares CexpPCC,j , the vector of

encrypted long Vote Cast Return Code shares cexpCK,j , and the vectors of Generation public keys Kj ,Kcj

(along with NIZKs of correct exponentiations) from each Choice Return Code control component CCRj .

Then it does the following:

1. Combine the encrypted long Choice Return Codes. Thus for each j ∈ (1, . . . ,m), parse each row of

CexpPCC,j as a vector of ciphertexts cexpPCC,j,id = (cexPCC,j,id,i)
n
i=1 and multiply:

clcc,id,i =

m∏
j=1

cexPCC,j,id,i ∀i ∈ (1, . . . , n).

Let Clcc be the N × n-matrix, where each row is set to (clcc,id,i)
n
i=1.

2. Combine the encrypted long Vote Cast Return Codes. Thus for each j ∈ (1, . . . ,m), parse the

vector of ciphertexts cexpCK,j = (cexpCK,j,id)id∈ID and multiply:

clvc,id =

m∏
j=1

cexpCK,j,id. ∀id ∈ ID.

Let the vector of ciphertexts clvc = (clvc,id)id∈ID.

3. Updates logs:

LogsPO ← LogsPO ∪ {Kj ,Kcj ,CexpPCC,j ,πexpPCC,j , cexpCK,j ,πexpCK,j}.

The algorithm outputs (Clcc, clvc).

12.1.1.7 GenCMTable
(
vcd,Clcc, clvc, Csk, skSDM, crs

)
This algorithm is run by the Print Office to generate the Choice Return Codes and the short Vote Cast

Return Code, to encrypt them with the Choice Return Code encryption symmetric key (derived from the

long Choice Return Code) and the Vote Cast Return Code encryption symmetric key (derived from the

long Vote Cast Return Code), and to store the encryptions in the Codes Mapping table.

The algorithm takes as input the Voting Cards IDs vcd, the encrypted long codes (Clcc, clvc), the

Codes Secret key Csk, the Secure Data Manager decryption key skSDM, and logs LogsPO. Then, it does the

following:

1. Parse the N -long vector vcd = (vcdid)id∈ID.

54

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

2. Generate the long Choice Return Codes :

- Parse each of the N rows of Clcc as (clcc,id,i)
n
i=1 and decrypt each ciphertext:

pCi,id ← Dec(skSDM, clcc,id,i) ∀i ∈ (1, . . . , n).

- Set the n long Choice Return Codes for voter id to:

lCCi,id = H(pCi,id||vcdid) ∀i ∈ (1, . . . , n).

3. Generate the long Vote Cast Return Codes:

- Parse the N -long vector clvc = (clvc,id)id∈ID and decrypt each ciphertext:

pVCCid = Dec(skSDM, clvc,id).

- Set the long Vote Cast Return code to:

lVCCid = H(pVCCid||vcdid).

4. Generate random short Choice Return Codes CCi,id ← Ccc for each voting option vi ∈ v and voter

id ∈ ID. Let vector ccid = (CCi,id)id∈ID, and CC the N × n-matrix with each row set to ccid.

5. Generate random short Vote Cast Return Code VCCid ← Cvcc for voter id ∈ ID. Let vector

vcc = (VCCid)id∈ID.

6. Generate the codes mapping table:

- Compute hashes hlCCi,id = H(lCCi,id||Csk) and hlVCCid = H(lVCCid||Csk). Then derive the

symmetric encryption keys skcci,id, skvccid using a key derivation function11

skcci,id = KDF(hlCCi,id) ∀i ∈ (1, . . . , n), ∀id ∈ ID,

skvccid = KDF(hlVCCid) ∀id ∈ ID.

- Encrypt the short Choice Return Code CCi,id and the short Vote Cast Return Code:

ctCCid,i ← Encs(CCi,id; skcci,id) ∀i ∈ (1, . . . , n), ∀id ∈ ID,

ctVCCid ← Encs(VCCid; skvccid)

The mapping between long and short codes for voter with Voting Card ID vcdid is defined as

CMtableid =
{
{[H(lCCi,id), ctCCid,i]}ni=1 , [H(lVCCid), ctVCCid]

}
.

11KDF stands for the mask generation function defined in ISO-18033-2 and in PKCS#1v2.2.

55

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

- Set the code mapping table to CMtable := {CMtableid}id∈ID. The entries of the table are

shuffled to avoid trivial correlation.

• Updates logs:

LogsPO ← LogsPO ∪ {CMtable}.

The algorithm outputs (CC,vcc,CMtable).

12.1.1.8 GenCredDat(k, crs)

This algorithm is executed by the Print Office. It creates credential material for the voters.

The algorithm takes as input the Verification Card private keys k = (kid)id∈ID. Then for each voter

id ∈ ID it does the following:

1. Generate a random Start Voting Key SVKid
$← Csvk. Set vector svk = (SVKid)id∈ID.

2. Generate a keystore symmetric encryption key as:

KSkeyid ← PBKDF(SVKid, KEYseed).

12 Set vector KSkeys = (KSkeyid)id∈ID.

3. Symmetrically encrypt the Verification Card private key with the keystore symmetric encryption

key: VCksid ← Encs(kid; KSkeyid). Set vector VCks = (VCksid)id∈ID

The algorithm outputs (svk,KSkeys,VCks).

12.1.2 Protocol SetupTally

It is an interactive protocol run between the mixing control components CCMs and the Print Office. It

consists of the following algorithms.

12.1.2.1 SetupTallyCCMj(crs, LogsCCMj)

This algorithm is executed by the Mixing control component CCMj to generate its share of the Election

key pair.

The algorithm takes as input the ElGamal parameters gparams and logs LogsCCMj . Then it does the

following:

1. Compute the Election key pair share (ELpk,j , ELsk,j)← KeyGen(gparams)

2. Update logs LogsCCMj ← LogsCCMj ∪ {ELpk,j}

The algorithm outputs the key pair (ELpk,j , ELsk,j).
12Where string KEYseed is a salt.

56

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

12.1.2.2 SetupTallySDM(crs, {ELpk,j}m
′−1

j=1 , LogsPO)

The algorithm takes as input the mixing public key {ELpk,j}m
′−1

j=1 of the online Mixing control components

CCM1, . . . ,CCMm′−1 and logs LogsPO. The it does the following:

1. Compute the Election key pair share of the offline Mixing control component (EBpk, EBsk) ←

KeyGen(gparams).

2. Compute the Election public key ELpk = EBpk ·
∏m′−1
j=1 ELpk,j .

3. Update logs LogsPO ← LogsPO ∪ {ELpk, {ELpk,j}m
′−1

j=1 , EBpk}.

The algorithm outputs ELpk and (EBpk, EBsk).

12.1.3 VerifyConfigPhase(LogsPO, crs)

This algorithm is run by an auditor. It verifies the proper execution of the configuration phase.

The algorithm takes as input the logs LogsPO of the Print Office. Then it does the following:

1. Extract from the LogsPO the following:

- The output ciphertext matrix Cpcc of Partial Choice Return Codes, and the output ciphertext

vector cck of Confirmation Keys of Algorithm 12.1.1.4.

- The input public keys, ciphertexts and NIZK proofs

(Kj ,Kcj ,CexpPCC,j ,πexpPCC,j , cexpCK,j ,πexpCK,j),

of Algorithm 12.1.1.6.

2. Verify the NIZK proofs of correct Partial Choice Return Codes exponentiation ∀id ∈ ID, ∀j ∈

(1,m):

bid,i ← VerifyExp(((p, q, g, cpcc,id), (Kj,id, cexpPCC,j,id)),πexpPCC,j)

If some bid,i = 0, abort and output ⊥.

3. Verifiy the NIZK proofs of correct Confirmation Keys exponentiations ∀id ∈ ID, ∀j ∈ (1,m):

bid ← VerifyExp(((p, q, g, cck,id), (Kcj,id, cexpCK,j,id)), πexpCK,j,id).

If bid = 0 abort and output ⊥.

If, and only if, all verifications were successful, the algorithm outputs ⊤.

12.2 Voting phase protocols

The execution flow of the algorithms in the voting phase is depicted in Figure 18 (send vote) and Figure

19 (confirm vote).

57

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

12.2.1 Protocol SendVote

It is an interactive protocol run between the voter, the Voting Client , the server and the Choice Return

Code control components CCRs. It consists of the following algorithms.

12.2.1.1 GetKey(SVKid, VCksid)

This algorithm is executed by the Voting Client . It takes as input a Start Voting Key SVKid and a

Verification Card keystore VCksid and it obtains a Verification Card private key kid as follows:

- Generate the keystore encryption symmetric key:

KSkeyid ← PBKDF(SVKid, KEYseed).

- Run the Decs algorithm with inputs VCksid and KSkeyid, and recover the Verification Card private

key kid.

It outputs the Verification Card private key kid.

12.2.1.2 CreateVote
(
vcdid,vid, ELpk,pkCCR, (Kid, kid), crs

)
This algorithm is executed by the Voting Client to create the ballot with the voting options selected by

the Voter.

It takes as input the Voting Card ID vcdid, the voting options vid, the Election public key ELpk, the

global Choice Return Code public keys pkCCR = (pkCCR,1, . . . , pkCCR,ψ), and the Verification Card key

pair (Kid, kid). Then it does the following:

1. Parse vid = (vj1 , . . . , vjψ) and compute: ν =
∏ψ
i=1 vji mod p.

2. Encrypt the aggregation: E1 = (c1,0, c1,1)← Enc(ν, ELpk; r).

3. Generate a Schnorr proof πsch ← ProveSch((p, q, g, E1), r, aux). The auxiliary information aux con-

tains the Voting card ID vcdid.

4. Computes the Partial Choice Return Codes as

pCCid = (pCC1,id, . . . , pCCψ,id) = (vkidj1 , . . . , v
kid
jψ

).

5. Compute a multi-recipient ElGamal encryption of these codes as

E2 = (c2,0, c2,1, . . . , c2,ψ)← MultiEnc (pkCCR,pCCid; r
′) .

6. Exponentiate E1 and aggregate E2:

Ẽ1 = (c̃1,0, c̃1,1) = (ckid1,0, c
kid
1,1),

Ẽ2 = (c̃2,0, c̃2,1) =
(
c2,0,

ψ∏
i=1

c2,i
)
.

58

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

Note that Ẽ1 encrypts νkid under public key ELpk with randomness r·kid, and Ẽ2 encrypts
∏ψ
i=1 pCCi,id =

νkid under public key
∏ψ
i=1 pkCCR,i with randomness r′.

7. Generate two NIZK proofs to to link E1 and E2:

- πExp ← ProveExp
(
((p, q, g, E1), (Kid, Ẽ1)), kid

)
proves that Ẽ1 is computed by raising the ele-

ments of E1 to the Verification Card private key kid.

- πEqEnc ← ProveEqEnc
((
p, q, g, ELpk,

∏ψ
i=1 pkCCR,i, Ẽ1, Ẽ2

)
, (r · kid, r′)

)
proves that Ẽ1 and Ẽ2

encrypt plaintext νkid under public keys ELpk and
∏ψ
i=1 pkCCR,i.

It outputs bid = (vcdid, E1, E2, Ẽ1, Kid,πballot), where πballot = (πsch, πExp, πEqEnc).

12.2.1.3 VerifyBallotServ
(
bid, ELpk,pkCCR, Kid, Logsserv, crs

)
This algorithm is executed by the Server to verify the NIZKs of the ballot.

It receives as input a ballot bid, the Election public key ELpk, the global Choice Return Code control

component public keys pkCCR =
(
pkCCR,1, . . . , pkCCR,ψ

)
, Verification Card public key Kid and the logs

Logsserv. Then it does the following:

1. Parse bid as (vcdid, E1, E2, Ẽ1, Kid,πballot).

2. Extract from Logsserv the list of valid votes LvalidVotes
13. If vcdid is present in LvalidVotes abort and

output ⊥.

3. Otherwise parse E2 as (c2,0, c2,1, . . . , c2,ψ) and compute Ẽ2 =
(
c2,0,

∏ψ
i=1 c2,i

)
.

4. Validate NIZK proofs πballot = (πsch, πExp, πEqEnc) by running:

- b1 ← VerifySch((p, q, g, E1), πsch, aux), where aux includes the Voting Card ID vcdid.

- b2 ← VerifyExp(((p, q, g, E1), (Kid, Ẽ1)), πExp).

- b3 ← VerifyEqEnc((p, q, g, ELpk,
∏ψ
i=1 pkCCR,i, Ẽ1, Ẽ2), πEqEnc).

If some bi = 0 abort and output (0, Logsserv).

5. Extract the list LvalidVotes of valid ballots from Logsserv, and find entry (bid). If there is no entry,

create entry (bid). Also, update the logs with the list.

It outputs (1, Logsserv). (If reached this point the ballot verifies successfully.)
13Voters cannot cast a vote twice.

59

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

12.2.1.4 VerifyBallotCCRj

(
bid, ELpk,pkCCR, Kid, LogsCCRj , crs

)
This algorithm is executed by the Choice Return Code control components to verify the NIZKs of the

ballot.

It receives as input a ballot bid, the Election public key ELpk, the global Choice Return Code control

component public keys pkCCR =
(
pkCCR,1, . . . , pkCCR,ψ

)
,Verification Card public key Kid and the logs

LogsCCRj . Then it does the following:

1. Parse bid as (vcdid, E1, E2, Ẽ1, Kid,πballot).

2. Extract the list LqueriedVotes,j of requested ballots from the logs. If vcdid is present in some bal-

lot b ∈ LqueriedVotes,j abort and output (0, LogsCCRj). Otherwise update the list LqueriedVotes,j ←

LqueriedVotes,j ∪ (bid).

3. Parse E2 as (c2,0, c2,1, . . . , c2,ψ) and compute Ẽ2 =
(
c2,0,

∏ψ
i=1 c2,i

)
.

4. Validate NIZK proofs πballot = (πsch, πExp, πEqEnc) by running πballot:

- b1 ← VerifySch((p, q, g, E1), πsch, aux).

- b2 ← VerifyExp(((p, q, g, E1), (Kid, Ẽ1)), πExp).

- b3 ← VerifyEqEnc((p, q, g, ELpk,
∏ψ
i=1 pkCCR,i, Ẽ1, Ẽ2), πEqEnc).

If some bi = 0 abort and output (0, Logsserv).

5. Otherwise, extract the list LvalidVotes,j of valid votes from the logs and update it: LvalidVotes,j ←

LvalidVotes,j ∪ (bid). Also, update the logs with the list.

It outputs (1, LogsCCRj). (If reached this point the ballot verifies successfully.)

12.2.1.5 PartialDecryptPCCj(bid,pkCCRj , skCCRj , LogsCCRj , crs)

This algorithm is executed in the Choice Return Codes control component CCRj to partially decrypt the

second ciphertext E2 of the ballot.

It receives as input a ballot bid, the Choice Return Code control component key pairs (pkCCRj , skCCRj)

and the logs LogsCCRj . Then it does the following:

1. Parse ballot as bid = (vcdid, E1, E2, Ẽ1, Kid,πballot).

2. Extract lists LvalidVotes,j and LdecPCC,j from logs. The latter list contains ballots already processed

in this algorithm. If bid /∈ LvalidVotes,j or if vcdid is present in some ballot b ∈ LdecPCC,j abort and

output (0, LogsCCRj).14

14Only ballots with valid NIZKs are processed: list LvalidVotes,j is updated in Algorithm 12.2.1.4.

60

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

3. Parse E2 as (c2,0, c2,1, . . . , c2,ψ) and compute the DDH masks to decrypt E2. Thus, compute:

dj,id = (dj,1, . . . , dj,ψ) =
(
c
skCCRj ,1

2,0 , . . . , c
skCCRj ,ψ

2,0

)
.

4. Computes the following NIZK proof:

πdecPCC,j ← ProveExp
(
((p, q, g, c2,0), (

ψ∏
i=1

pkCCRj ,i
,

ψ∏
i=1

dj,i)),

ψ∑
i=1

skCCRj ,i

)
5. Update the list LdecPCC,j ← LdecPCC,j ∪ (bid,dj,id, πdecPCC,j). Also update the logs with the list.

It outputs (dj,id, LogsCCRj).

12.2.1.6 DecryptPCC
(
bid, {dj,id}mj=1 , Logsserv, crs

)
This algorithm is executed by the Server to decrypt the second ciphertext E2 of the ballot.

It receives as input the ballot bid, the DDH masks contributions dj,id = (dj,1, . . . , dj,ψ) from each

CCRj (see algorithm PartialDecryptPCCj), and the logs Logsserv. Then it does the following:

1. Parse ballot as bid = (vcdid, E1, E2, Ẽ1, Kid,πballot).

2. Parse E2 as (c2,0, c2,1, . . . , c2,ψ).

3. Merge the DDH mask contributions. Thus, compute:

di =

m∏
j=1

dj,i ∀i ∈ (1, . . . , ψ),

and let did = (d1, . . . , dψ).

4. Decrypt the multi-recipient ciphertext E2 to obtain the Partial Choice Return codes as follows:

pCCi,id =
c2,i
di
. ∀i ∈ (1, . . . , ψ).

Denote pCCid = (pCC1,id, . . . , pCCψ,id).

5. Extract the list LdecPCC of votes for which decryption has been already done from LogsCCRj and do

the following:

- If there is an entry (bid, ⋆, ⋆, ⋆) abort an output (⊥, Logsserv).

- Otherwise, update the list LdecPCC ← LdecPCC ∪ (bid,pCCid,did, {dj,id}mj=1). Also, update the

logs with the list.

It outputs (pCCid, Logsserv).

61

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

12.2.1.7 CreateLCCSharej(bid,pCCid, kj,id, Kj,id, LogsCCRj)

This algorithm is executed by the Choice Return Code control component CCRj to generate shares of

the long Choice Return Codes.

It takes as input a ballot bid, Partial Choice Return codes pCCid, the Voter Choice Return Code

Generator key pair (kj,id, Kj,id) and logs LogsCCRj . Then it does the following:

1. Parse ballot as bid = (vcdid, E1, E2, Ẽ1, Kid,πballot).

2. Extract the list LsentVotes,j , list of ballots already requested for this algorithm, and list LdecPCC,j
15

from LogsCCRj .

3. If bid /∈ LdecPCC,j or vcdid is present in some ballot b ∈ LsentVotes,j abort and output (⊥, LogsCCRj).

4. Parse the partial Choice Return Codes as pCCid = (pCC1,id, . . . , pCCψ,id).

5. Compute the long Choice Return Code shares as follows:

- Hash and convert to group element:

hpCCi,id = (H(pCCi,id))
2 ∀i ∈ (1, . . . , ψ).

- Exponentiate to kj,id:

lCCj,i,id = (hpCCi,id)
kj,id ∀i ∈ (1, . . . , ψ),

where kj,id is the Voter Choice Return Code Generation private key of the CCRj . Then, set

lCCj,id = (lCCj,1,id, . . . , lCCj,ψ,id).

6. Computes the following NIZK.

πexp,j ← ProveExp
(
((p, q, g, hpCC1,id, . . . , hpCCψ,id), (Kj,id, lCCj,id)), kj,id

)
∀i ∈ (1, . . . , ψ)

to prove that lCCj,id are computed by raising hpCC1,id, . . . , hpCCψ,id to the Voter Choice Return

Code Generation private key kj,id corresponding to the Voter Choice Return Code Generation

public key Kj,id.

7. Update LsentVotes,j ← LsentVotes,j ∪ (bid,pCCid, lCCj,id, πexp,j) and the logs with the list.

It outputs (lCCj,id, LogsCCRj).
15LdecPCC,j is the list of ballots for which partial decryption have been already performed. It is updated in Algorithm

12.2.1.5

62

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

12.2.1.8 ExtractCRC(bid, {lCCj,id}mj=1 ,CMtable, Csk, bb)

This algorithm is executed by the server to extract the Choice Return Codes from the codes mapping

table.

It takes as input the ballot bid, the shares lCCj,id of the long Choice Return Codes computed by the

CCRj , the codes mapping table CMtable, the Codes secret key Csk, and the ballot box bb. Then it does

the following:

1. Parse ballot as bid = (vcdid, E1, E2, Ẽ1, Kid,πballot).

2. For each j ∈ (1, . . . ,m), parse lCCj,id = (lCCj,1,id, . . . lCCj,n,id)

3. Compute the long Choice Return Codes as:

- Compute the pre-long Choice Return Codes pCidi as:

pCi,id =

m∏
j=1

lCCj,i,id ∀i ∈ (1, . . . , ψ).

- The long Choice Return Codes are:

lCCi,id = H(pCi,id||vcdid) ∀i ∈ (1, . . . , ψ).

4. Derive the symmetric keys as follows:

- Hash hlCCi,id = H(lCCi,id||Csk) ∀i ∈ (1, . . . , ψ).

- The symmetric keys are skcci,id ← KDF(hlCCi,id) ∀i ∈ (1, . . . , ψ).

5. Extract the Choice Return Codes from the codes mapping table:

- If there exists an entry [H(lCCi,id), ctCCid,i)] in CMtable, decrypt the Choice Return Code:

CCi,id ← Decs(ctCCid,i; skcci,id).

Then, set boolean flag extCC← ⊤, and let ccid = (CC1,id, . . . , CCψ,id).

- If entry [H(lCCi,id), ctCCid,i)] does not exist in CMtable for some i ∈ (1, . . . , ψ) unset boolean

flag extCC← ⊥.

6. Extract the list LsentVotes of ballots with extracted short Choice Return Codes from the ballot box

bb and update it: LsentVotes ← LsentVotes ∪ (bid, extCC). In addition, update the ballot box with the

list.

If extCC = ⊥ abort and output (⊥, bb). Otherwise, output (ccid, bb).

63

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

12.2.1.9 VerifyCRC
(
vid, cc

∗
id, ccid

)
This algorithm is executed by the Voter. It checks whether the Choice Return Codes cc∗id = (CC∗1,id, . . . , CC

∗
ψ,id)

shown by her Voting Client are the same as the codes ccid = (CC1,id, . . . , CCψ,id) printed in her Voting

Card matching her choices vid.

The voter outputs 1 if and only if CC∗i,id = CCi,id, ∀i ∈ (1, . . . , ψ).

12.2.2 Protocol ConfirmVote

It is an interactive protocol run between the voter, the Voting Client , the server and the Choice Return

Code control components CCRs. It consists of the following algorithms.

12.2.2.1 CreateConfirmMessage(BCKid, kid)

This algorithm is executed by the Voting Client . It receives as input a Ballot Casting Key BCKid, and a

Verification Card private key kid. It outputs the Confirmation Key CKid = (BCKid)
2·kid .

12.2.2.2 VerifyConfirmationServ(bid, Logsserv)

This algorithm is executed by the Server. It receives as input a ballot bid, and logs Logsserv. Then it

does the following checks:

1. Parse ballot as bid = (vcdid, E1, E2, Ẽ1, Kid,πballot).

2. Extract the list LsentVotes and the list LconfirmedVotes from the logs 16

3. If vcdid /∈ LsentVotes abort and output ⊥.

4. If there exists an entry (bid, attemptsid) ∈ LconfirmedVotes, and attemptsid equals the maximum

number of confirmation attempts17 abort and output ⊥.

It outputs ⊤. (If reached this point, short Choice Return Codes have been extracted for bid and the

number of confirmation attempts is in range.)

12.2.2.3 VerifyConfirmationCCRj(bid, LogsCCRj)

This algorithm is executed by the Choice Return Code control component CCRj . It receives as input a

ballot bid, and logs LogsCCRj . Then it does the following checks:

1. Parse ballot as bid = (vcdid, E1, E2, Ẽ1, Kid,πballot).
16The Server updates list LsentVotes when it extracts the short Choice Codes from the codes mapping table, and list

LconfirmedVotes when it extracts short Vote Cast Return Codes. See Algorithm 12.2.1.8 and Algorithm 12.2.2.5.
17The maximum number of attempts to confirm a vote should be small, e.g. five attempts.

64

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

2. Extract the list LsentVotes,j of ballots for which shares of the long Choice Codes have been al-

ready computed, and the list LconfirmedVotes,j of ballots for which a confirmation attempt has been

requested.18

3. If there is no entry bid /∈ LsentVotes,j abort and output ⊥.

4. If there exists an entry (bid, attemptsid, ⋆, ⋆, ⋆) ∈ LconfirmedVotes,j , and attemptsid equals the max-

imum number of confirmation attempts abort and output ⊥.

It outputs ⊤. (If reached this point, long Choice Return Codes shares have been computed for bid and

the number of confirmation attempts is in range.)

12.2.2.4 CreateLVCCSharej(bid, CKid, (Kcj,id, kcj,id), LogsCCRj)

This algorithm is executed by the Choice Return Code control component CCRj to create its share of

the long Vote Cast Return Code.

It takes as input a ballot bid, a Confirmation Key CKid, the Voter Vote Cast Return Code Generation

key pair (Kcj,id, kcj,id), and logs LogsCCRj . Then it does the following:

1. Parse ballot as bid = (vcdid, E1, E2, Ẽ1, Kid,πballot).

2. Hash the Confirmation Key and convert it to a group element: hcmid =
(
H(CKid)

)2.

3. Create the long Vote Cast Return Code share as:

lVCCid,j = hcmid
kcj,id ,

where kcj,id is the Voter Vote Cast Return Code Generation private key.

4. Generate the following NIZK proof of correct exponentation

πexpCK,j := ProveExp (((p, q, g, hcmid), (Kcj,id, lVCCid,j)), kcj,id) .

5. Extract the list LconfirmedVotes,j of ballots processed in this algorithm and do the following:

- Find entry (bid, attemptsid, ⋆, ⋆, ⋆). If the entry does not exist, create entry (bid, 0, ⋆, ⋆, ⋆)

- Update the entry:

(bid, attemptsid, ⋆, ⋆, ⋆)← (bid, attemptsid + 1, CKid, lVCCid,j , πexpCK,j).

Also, update the logs with the list.

It outputs (lVCCid,j , LogsCCRj).
18The control component update list LsentVotes,j and list LconfirmedVotes,j during generation of the long code shares. See

Algorithm 12.2.1.7 and Algorithm 12.2.2.4.

65

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

12.2.2.5 ExtractVCC(bid, {lVCCid,j}mj=1,CMtable, Csk, bb)

This algorithm is executed by the Server to retrieve the Vote Cast Return Code from the codes mapping

table.

It takes as input a ballot bid, the long Vote Cast Return Code share lVCCid,j of each CCRj , the codes

mapping table CMtable, the Codes secret key Csk, and the ballot box bb. Then it does the following:

1. Parse ballot as bid = (vcdid, E1, E2, Ẽ1, Kid,πballot).

2. Compute the long Vote Cast Return Code as follows:

- Compute the pre-long Vote Cast Return Code pVCCid =
∏m
j=1 lVCCid,j .

- Compute the long Vote Cast Return Code: lVCCid = H(pVCCid||vcdid).

3. Extract the Vote Cast Return Code from the codes mapping table:

- Compute hlVCCid = H(lVCCid||Csk) and derive the symmetric encryption key skvccid =

KDF(hlVCCid).

- If there exists an entry [H(lVCCid), ctVCCid)] in CMtable, decrypt the Vote Cast Return Code:

VCCid ← Decs(ctVCCid; skvccid).

Then, set the boolean flag extVCC← ⊤.

- If there is no entry [H(lVCCid), ctVCCid)] in CMtable unset boolean flag extVCC← ⊥.

4. Extract the list LconfirmedVotes from bb and do the following:

- Find entry (bid, attemptsid, ⋆). If the entry does not exist, create entry (bid, 0, ⋆).

- Update the entry: (bid, attemptsid, ⋆)← (bid, attemptsid+1, extVCC). Also update the ballot

box with the list.

If extVCC = ⊥ abort and output (⊥, bb). Otherwise, output (VCCid, bb).

12.2.2.6 VerifyVCC(VCC∗id, VCCid)

This algorithm is executed by the Voter. It checks whether the Vote Cast Return Code VCC∗id shown by

her Voting Client is the same as the code VCCid printed in her Voting Card.

The voter outputs 1 if and only if VCC∗id = VCCid.

12.2.3 VerifyVotingPhase(bb, LogsPO, Logsserv, {LogsCCRj}
m
j=1)

This algorithm is run by an auditor. It verifies transcript consistency and NIZKs of the voting phase.

It takes as input the ballot box bb, the codes mapping table CMtable, the Codes Secret key Csk,

and the logs of the Print Office, the Server, and the Choice Return Codes control components. Then it

proceeds as follows.

66

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

Parse ballot box and logs:

1. Extract the lists LsentVotes and LconfirmedVotes from the ballot box bb.

2. For each j ∈ (1, . . . ,m) extract from LogsCCRj the lists LvalidVotes,j , LdecPCC,j , LsentVotes,j and

LconfirmedVotes,j .

3. Extract from Logsserv the list LdecPCC.

4. Extract PublicKeysj =
(
pkCCRj , {vcdid, Kcj,id, Kj,id, }id∈ID

)
from LogsPO.

5. Extract (CMtable, Csk) from LogsPO.

Consistent ballot box: Check that ballots in lists LsentVotes and {LsentVotes,j}mj=1 are the same. Like-

wise, check that ballots in lists LconfirmedVotes and {LconfirmedVotes,j}mj=1 are the same. If an inconsis-

tency is found output ⊥.

Validity of confirmed votes: Check that all ballots bid in list LconfirmedVotes are also present in lists

LvalidVotes,j for j ∈ (1, . . . ,m). If an inconsistency is found for some j, output ⊥.

Extractable short Choice Return Codes: For each bid ∈ LconfirmedVotes do the following

1. Verify correct decryption of Partial Choice Return Codes:

- Find entry (bid,pCCid,did, {dj,id}mj=1) in LdecPCC, and entry (bid,d
⋆
j,id, πdecPCC,j) in

LdecPCC,j . If some entry is not found output ⊥.

- If d⋆j,id ̸= dj,id for some j ∈ (1, . . . ,m), output ⊥.

- Parse E2 ∈ bid as E2 = (c2,0, c2,1, . . . , c2,ψ), and dj,id = (dj,1, . . . , dj,ψ). Then, execute:

bj ← VerifyExp(((p, q, g, c2,0), (

ψ∏
i=1

pkCCRj ,i
,

ψ∏
i=1

dj,i)), πdecPCC,j) ∀j ∈ (1, . . . ,m).

If some bj = 0 output ⊥.

- Parse did = (d1, . . . , dψ) and pCCid = (pCC1,id, . . . , pCCψ,id). If di ̸=
∏ψ
j=1 dj,i or

pCCi,id ̸=
c2,i
di

for some i ∈ (1, . . . , ψ) output ⊥.

2. Verify correct generation of long Choice Return Codes:

- Find entry (bid,pCC⋆
id, lCCj,id, πexp,j) ∈ LsentVotes,j . If pCCid ̸= pCC⋆

id for some j ∈

(1, . . . ,m) output ⊥.

- Then for ∀j ∈ (1, . . . ,m) execute:

bj ← VerifyExp(((p, q, g,H(pCC1,id))
2, . . . ,H(pCCψ,id))

2), (Kj,id, lCCj,id), π
(j)
exp,i)

If some bj = 0 output ⊥.

3. Using input (bid, {lCCj,id}mj=1 ,CMtable, Csk) if bid is marked as extractable in LsentVotes, check

there is an entry in the codes mapping table; otherwise if ballot is non-extractable, check there

is no entry. (See Algorithm 12.2.1.8.) If an incosistency is found, output ⊥.

67

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

Extractable short Vote Cast Return Code: For each bid ∈ LconfirmedVotes do the following

1. Verify correct generation of long Vote Cast Return Code:

- Find entry (bid, attemptsid, CKid, lVCCid,j , πexpCK,j) ∈ LconfirmedVotes,j . If attemptsid or

CKid are different for any j ̸= j′ output ⊥.

- For each j ∈ (1, . . . ,m) execute:

bj ← VerifyExp(((p, q, g,H(CKid)
)2
), (Kcj,id, lVCCid,j), πexpCK,j).

If some bj = 0 output ⊥.

2. Using input (bid, {lVCCid,j}mj=1,CMtable, Csk): if ballot bid is marked as extractable in LconfirmedVotes

check there exist an entry in CMtable; for non-extractable ballots check there is no entry. (See

Algorithm 12.2.2.5.) If some inconsistency is found output ⊥.

If and only if all verifications are successful it outputs ⊤.

12.3 Tally phase protocol

The execution flow of the protocols in the tally phase is depicted in Figure 20.

12.3.1 Protocol MixOnline

It is an interactive protocol run between the Server and all but the last Mixing control components CCMs.

It consist in the following algorithms.

12.3.1.1 Cleansing(bb)

It is an algorithm run by the server. It takes as input the ballot box bb and it does the following:

1. Extract from the ballot box bb the list of confirmed ballots LconfirmedVotes and list of sent ballots

LsentVotes.

2. Create an empty cleansed ballot box bbclean.

3. For each entry of LconfirmedVotes do:

- Parse the entry as (bid, attemptsid, extVCC)

- Parse bid as (vcdid, E1, E2, Ẽ1, Kid,πballot).

- Update bbclean ← bbclean ∪ {E1}.

It outputs bbclean, LconfirmedVotes, LsentVotes/LconfirmedVotes.

68

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

12.3.1.2 MixDecOnlinej
(
cmix,j−1, cDec,j−1, ELpk,j−1, ELpk,j , ELsk,j , LogsCCMj , crs

)
This algorithm is executed by the Mixing control component CCMj for j ∈ (1, . . . ,m′ − 1) to shuffle

ciphertexts and partially decrypt them.

It takes as input a list of shuffled ciphertexts cmix,j−1, a list of partially decrypted ciphertexts cDec,j−1,

the remaining Election public key ELpk,j−1, control component Election key pair share (ELpk,j , ELsk,j) and

logs LogsCCMj .

If j = 1, the first ciphertext list cmix,j−1 is empty, the second ciphertext list cDec,j−1 comes from the

cleansed ballot box bbclean, and the remaining election public key ELpk,j−1 is the election public key ELpk.

Then, it does the following:

1. Shuffle the input ciphertexts: (cmix,j , πmix,j)← Mix(ELpk,j−1, ckmix, cDec,j−1).

2. Partially decrypt the shuffled ciphertexts:

- Compute a list of partially decrypted ciphertexts cDec,j = (c1, . . . , cN
)

as

ci = (ci,1, ci,2) =
(
ĉi,1, ĉi,2 · (ĉi,1

)−ELsk,j
) for ∀(ĉi,1, ĉi,2) ∈ cmix,j , where i ∈ (1, . . . , N),

and a list of NIZK proofs πdec,j =
(
πdec,j,1, . . . , πdec,j,N

)
for correct partial decryptions as

πdec,j,i = ProveDec
((
p, q, g, ELpk,j , ĉi, ci,2

)
, ELsk,j

)
∀i ∈ (1, . . . , N).

- Compute the remaining election public key for the next control component. Thus, set: ELpk,j =

ELpk,j−1/ELpk,j . Note that cDec,j is encrypted under public key ELpk,j .

3. Update logs:

LogsCCMj ← LogsCCMj ∪
(
(cmix,j−1, cDec,j−1), (cmix,j , cDec,j), (ELpk,j−1, ELpk,j), (πmix,j ,πdec,j)

)
.

It outputs (cmix,j , cDec,j , ELpk,j , LogsCCMj).

12.3.2 Protocol MixOffline

It is a protocol executed in the last (offline) Mixing control component CCMm′ . It consist in two al-

gorithms. For simplicity, decoding it also executed in this node, although it can be done in a different

one.

12.3.2.1 MixDecOffline
(
cmix,m′−1, cDec,m′−1, ELpk,m′−1, EBpk, EBsk, LogsCCMm′ , crs

)
This algorithm is executed by the last Mixing control component CCMm′ , and it is very similar to the

online mixes, the difference is that it outputs the decrypted votes.

It takes as input a list of shuffled ciphertexts cmix,m′−1, a list of partially decrypted ciphertexts

cDec,m′−1, the remaining Election public key ELpk,m′−1, Electoral Board’s key pair (EBpk, EBsk), and logs

LogsCCMm′ . Then it does the following:

69

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

1. Shuffle the input ciphertexts: (cmix,m′ , πmix,m′) = Mix(EBpk, ckmix, cDec,m′−1).

2. Decrypt the shuffled ciphertexts:

mi ← Dec(ĉi, EBsk) = ĉi,2 · (ĉi,1
)−EBsk ∀i ∈ (1, . . . , N),

- Compute a list of plaintexts m = (m1, . . . ,mN

)
as

mi = Dec(ĉi, EBsk) = ĉi,2 · (ĉi,1
)−EBsk for ∀(ĉi,1, ĉi,2) ∈ cmix,j , where i ∈ (1, . . . , N),

and a list of NIZK proofs πdec,m′ =
(
πdec,m′,1, . . . , πdec,m′,N

)
for correct decryption as

πdec,m′,i = ProveDec
((
p, q, g, EBpk, ĉi,mi

)
, EBsk

)
∀i ∈ (1, . . . , N),

where g is the ElGamal group generator contained in crsconf.

3. Update logs:

LogsCCMm′ = LogsCCMm′ ∪ {(cmix,j−1, cDec,m′−1), (cmix,m′ ,m), (ELpk,m′−1, EBpk), (πmix,m′ ,πdec,m′)}.

It outputs (cmix,m′ ,m, LogsCCMm′).

12.3.2.2 DecodePlaintexts
(
m,v

)
This algorithm is executed by the last Mixing control component CCMm′ to decode the plaintext as

votes.

It takes as input the decrypted plaintexts m = (m1, . . . ,mN) and the list of voting options options

v = (v1, . . . , vn). The it does the following:

1. For each mi factorize it as mi =
∏ψ
s=1 vis . Let vi = (vi1 , . . . , viψ).

2. Set Lvotes = {vi}Ni=1.

It outputs the list of votes Lvotes.

12.3.3 Audit tally algorithms

12.3.3.1 VerifyOnlineTally(bb, LogsPO, Logsserv, {LogsCCMj}
m′−1
j=1 , cmix,m′−1, cDec,m′−1,)

It takes as input the ballot box bb and logs LogsPO , Logsserv, {LogsCCMj}
m′−1
j=1 and output cmix,m′−1, cDec,m′−1.

Then it does the following:

Audit flow consistency: Ensure inputs bb, LogsPO, Logsserv correspond to the inputs of Algorithm 12.2.3

(voting phase audit).

Parses logs:

70

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

- Extract
(
(cmix,j−1, cDec,j−1), (cmix,j , cDec,j), (ELpk,j−1, ELpk,j), (πmix,j ,πdec,j)

)
from {LogsCCMj}

m′−1
j=1 .

- Extracts {EL∗pk,j}m
′−1

j=1 , EB∗pk and EL∗pk from LogsPO.

Checks information consistency:

- Checks that ELpk,1 = EL∗pk.

- Checks that ELpk,m′−1 = EB∗pk.

- For each j = (1, . . . ,m′ − 1):

- Checks that EL∗pk,j = ELpk,j .

- Checks that all logged outputs of CCMj−1 are logged as inputs by CCMj .

- Checks that the logged outputs of the last online mixing component CCMm′−1 are identical

to cmix,m′−1, cDec,m′−1.

- Check that the mixing key used by CCMj is computed as ELpk,j = ELpk,j−1/ELpk,j , where

ELpk,j−1 is the mixing key used by CCMj−1. Note, that the first component is using public

election key that is identical to the one logged by the Print Office EL∗pk.

Checks Cleansing: Execute Cleansing(bb, Logsserv) (see Algorithm 12.3.1.1) and check the output

bbclean is identical to cDec,0.

Verifies NIZKs:

- For each j = (1, . . . ,m′ − 1):

- Verifies mixing proof by running MixVerify(ELpk,j−1, ckmix, cDec,j−1, cmix,j , πmix,j). Note,

that for CCM1 ELpk,0 = ELpk.

- For each i = (1, . . . , N) runs the decryption proof verification:

VerifyDec
(
(p, q, g, ELpk,j , ĉi, ci,2), πdec,m′,i, aux

)
,

where ĉi, ci = (ci,1, ci,2) are i-th elements of the lists cmix,j , cDec,j respectively.

If and only if all the validations are successful, the process outputs ⊤. Otherwise, it outputs ⊥.

12.3.3.2 VerifyOfflineTally(cmix,m′−1, cDec,m′−1, LogsCCMm′ , cmix,m′ ,m, Lvotes, LogsPO)

It takes as input an output of the the last online mixing component CCMm′−1 i.e mixed ciphertexts

cmix,m′−1 and partially decrypted ciphertexts cDec,m′−1, logs LogsCCMm′ and output cmix,m′ ,m, Lvotes of the

offline CCMm′ mixing component and logs of the Print Office LogsPO and verifies the first tally phase as

follows:

Audit flow consistency: Checks that cmix,m′−1, cDec,m′−1 are identical to the output of the last online

mixing component that was verified in VerifyOnlineTally.

71

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

Parses logs:

- Parses LogsCCMm′ as {cmix,j−1, cDec,m′−1, cmix,m′ ,m, ELpk,m′−1, EBpk, πmix,m′ ,πdec,m′}.

- Extracts EB∗pk and EL∗pk from LogsPO.

Checks information consistency:

- Checks that EBpk = EB∗pk and ELpk,m′−1 = EBpk.

- Verifies that logged by CCMm′ inputs cmix,m′−1, cDec,m′−1 are identical to the verified outputs

of the last online mixing nodes.

- Verifies that logged by CCMm′ outputs cmix,m′ ,m, Lvotes are identical to the output of CCMm′ .

Verifies NIZKs:

- Verifies mixing proof by running MixVerify(ELpk,m′ , ckmix, cDec,m′−1, cmix,m′ , πmix,m′).

- For each i = (1, . . . , N) runs the decryption proof verification:

VerifyDec
(
(p, q, g, EBpk, ĉi,mi), πdec,m′,i, aux

)
,

where ĉi,mi are i-th elements of the lists cmix,m′ ,m respectively.

Verifies decoding: Runs DecodePlaintexts(m,v) and checks that it matches Lvotes.

If and only if all the validations are successful, the process outputs ⊤. Otherwise, it outputs ⊥.

12.3.3.3 Auditors.VerifyElection(bb, Logsserv, LogsPO, {LogsCCRj}
m
j=1, {LogsCCMj}

m′

j=1)

It takes as input the Server’s ballot box bb, server’s logs Logsserv,Print Office ’s logs LogsPO, logs of all

control components denoted as {LogsCCRj}mj=1, {LogsCCMj}
m′

j=1, and does the following checks:

- Runs VerifyConfigPhase(LogsPO, {LogsCCRj}
m
j=1).

- Runs VerifyVotingPhase(bb, Logsserv, {LogsCCRj}
m
j=1, LogsPO).

- Runs VerifyOnlineTally(bb, Logsserv, {LogsCCMj}
m′−1
j=1 , LogsPO).

- Retrieves cmix,m′−1, cDec,m′−1 from the logs of the last online mixing node LogsCCMm′−1
.

- Retrieves cmix,m′ ,m, Lvotes from the logs of the offline mixing component LogsCCMm′ .

- Runs VerifyOfflineTally(cmix,m′−1, cDec,m′−1, LogsCCMm′ , cmix,m′ ,m, Lvotes, LogsPO).

If and only if all the validations are successful, the process outputs ⊤. Otherwise, it outputs ⊥.

72

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

Part IV

Security analysis

73

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

13 Security framework

We conduct a thorough analysis in the provable secure framework [9]. The desired properties that sVote

must fulfill are defined with games. A game is a set of well-defined instructions between two entities, a

challenger (i.e. the game itself) and an adversary. The game finalizes with a decision signaling whether the

adversary wins or not. The game-playing framework provides an environment to analyze, in a meaningful

way, cryptographic schemes: the scheme under scrutiny (in our case, sVote) exhibits certain property if the

corresponding game decides affirmatively with probability close to 0. Bounding the success probability

of the adversary is precisely what the security reduction does: one starts with the original game and

gradually change it to reach an (ideal) game where it is easy to argue that the adversary cannot win.

Every change (or hop) is reduced down to a different property that has been already established; in

our case, reduced either to the properties of the building blocks that sVote is built on, or to an already

established property of sVote. Ultimately, everything is reduced down to the building blocks.

Random oracle model. In the analysis, hash functions are modeled as a (programmable) random

oracle. Although not explicitly stated in the game definitions, all the games control this oracle.

13.1 Properties analyzed

The analysis of sVote presented here assesses the three requirements established by the Swiss Chan-

cellery [16] to use an electronic voting system by a vast majority of the electorate. In a nutshell, these

requirements are individual verifiability (cast-as-intended and recorded-as-cast), universal verifiability

(counted-as-recorded) and voting secrecy (confidentiality of voters’ intent and non-disclosure of early

provisional results).

In Section 14 we prove two preliminary lemmas that will be useful for individual verifiability. Section

15 addresses individual verifiability and Section 16 universal verifiability. We finalize with privacy in

Section 17. The proofs of all the claims are presented in Section 18.

14 Preliminary results

14.1 Correct setup

We show that the configuration phase of sVote is correct and leaks no sensitive information. More

concretely, protocol SetupVoting generates a correct Codes mapping table, independently of the actions

of corrupted Choice Return Code control components. Also, the transcript of the protocol reveals nothing

about the private keys kh,kch of a non-compromised (honest) Choice Return Code control component

CCRh.

74

pkCCR,Csk

GenVerCardSetKeys

{
pkCCRj

}m
j=1,j ̸=h

pkCCRh

GenKeysCCRh

{
Kj ,Kcj ,CexpPCC,j , cexpCK,j ,πexpPCC,j ,πexpCK,j

}m
j=1,j ̸=h

K$
h,Kc$h,C

$
expPCC,h, c

$
expCK,h,π

$
expPCC,h,π

$
expCK,h

GenEncLongCodeSharesh
$

vcd,K,C$
pcc, c

$
ck

GenVerDat$

GenEncryptionKeysPO

GenCredDat

CMtable
GenCMTable$

CombineEncLongCodeShares$

Challenger Adversary

Figure 21: Protocol IdealSetupVoting used in the simulated game sMTC of Figure 23. It is executed between

the Challenger (the game), controlling the Print Office and the honest CCRh, and the adversary A. Algorithm

GenEncLongCodeSharesh
$ outputs random ciphertexts C$

expPCC,h, c
$
expCK,h and random public keys K$

h,Kc$h. Algorithm

CombineEncLongCodeShares$ extracts CCRj ’s private keys kj and kcj for all j ̸= h using the extractor of the exponenti-

ation proof system Exp. Finally, the algorithm GenCMTable$ uses the extracted keys and the honest CCRh’s private keys

kh,kch to construct the (correct) Codes mapping table CMtable.

LogsPO ← LogsPO ∪ {ELpk, {ELpk,j}
m′−1
j=1 , EBpk}

EBpk =
ELpk∏m′−1

j=1 ELpk,j

(ELsk, ELpk)← KeyGen(gparams)

{ELpk,j}m
′−1

i=1,i ̸=h

ELpk,h

SetupTallyCCMh

Challenger Adversary

Figure 22: Protocol IdealSetupTally used in the simulated games. It is executed between the Challenger (the game),

controlling the Print Office and the honest CCMh, and the adversary A. In this protocol, the Challenger gets control over

the election private key ELsk by manipulating an honest CCMh private key share. Note that during the tally phase, the

Challenger will have to run an extractor EA to extract witnesses from πdec NIZKs in order to adjust EBsk.

Modeling an ideal setup. Adversaries against the mapping table correctness property attempt to

force the Print Office to generate the Codes mapping table for which Choice Return Codes or Vote Cast

Return Codes are not extractable for a correct protocol execution, even though the auditors execute their

verification algorithm VerifyConfigPhase successfully. In Figure 23 we define two games, rMTC and sMTC.

The former corresponds to the real setup and the latter to an idealized setup, outlined in Figure 21. The

real setup is correct and private if no adversary A can distinguish it from the ideal setup. The advantage

of A is defined as:

AdvsVote,mtc
A = |Pr [1← rMTCA(crs)]− Pr [1← sMTCA(crs)]| ≈ 0,

rMTCsVote(crs):

1. Execute SetupVotingA

2. b← A // A outputs a decision

3. If 0← VerifyConfigPhase output ⊥ (abort)

4. Else output b

sMTCAsVote(crs):

1. Execute IdealSetupVoting

2. b← A // Adversary outputs a decision

3. If 0← VerifyConfigPhase output ⊥ (abort)

4. Else output b

Figure 23: (left) real rMTC game (right) simulated sMTC game. Protocol IdealSetupVoting is outlined in

Figure 21.

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

Lemma 1 In the random oracle model

AdvsVote,mtc
A ≤ AdvExp,NIZKB1

+ AdvkdfB2
+ 2 · AdvF,PRFB3

+ AdvElGamal,INDCPA
B4

+ 2 · AdvQp,SGSPB5
+ ϵext,

where B1 is an adversary against the zero-knowledge property of the exponentiation proof system Exp,

B2 an adversary against the key-derivation function, B3 an adversary against the weak pseudorandom

property of the exponentiation function in the group of quadratic residues Qp, B4 an adversary against

the semantic security of ElGamal encryption scheme, B5 and adversary against the SGSP problem [25],

and ϵext is the extraction error of the exponentiation proof system.

Its proof is in Section 18.1.

14.2 Vote compliance

We show that sVote enjoys a special notion of vote correctness19 that we call vote compliance. In a

nutshell, if a ballot submitted by a Voting Client is marked as sent and extractable in the ballot box,

and the auditors check that there exists an entry in the Codes mapping table using the ballot and the

transcript of the Choice Return Code control components, then the ballot must contain ψ voting options

with high probability.

We start defining what is understood by a valid ballot, a compliant ballot and a compliant registered

ballot. The latter notion is used in the security reductions; although the definitions may seem artificial

their purpose is to work with them.

Definition 16 (Valid ballot) Let Gq an (ElGamal) cyclic group with generator g, ELpk ∈ Gq the Elec-

tion public key, pkCCR = (pkCCR,1, . . . , pkCCR,ψ) the global public keys of the control components, and

let (kid, Kid) ∈ Z∗
q ×Gq a Verification Card key pair. A submitted ballot

bid = (vcdid, E1, E2, Ẽ1, Kid,πballot)

E2 = (c2,0, c2,1, . . . , c2,ψ)

πballot = (πsch, πExp, πEqEnc)

is valid if the NIZKs πballot verify successfully. That is, if:

1← VerifySch((p, q, g, E1), πsch, aux), where aux includes vcdid.

1← VerifyExp(((p, q, g, E1), (Kid, Ẽ1)), πExp).

1← VerifyEqEnc((p, q, g, ELpk,
∏ψ
i=1 pkCCR,i, Ẽ1, Ẽ2), πEqEnc), where Ẽ2 =

(
c2,0,

∏ψ
i=1 c2,i

)
.

19Vote correctness asks for ballots containing valid combinations of the voting options as defined by the election rules.

Vote correctness is out of the scope of this analysis.

77

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

Definition 17 (Compliant ballot) Let Gq, ELpk,pkCCR, kid as in Definition 16. A submitted ballot

bid = (vcdid, E1, E2, Ẽ1, Kid,πballot) with E1 = Enc(ν, ELpk), E2 = MultiEnc((w1, . . . , wψ),pkCCR), and

Ẽ1 = Enc(w, ELpk) is compliant if it holds:

(i) w = νkid in Gq.

(ii) w =
∏ψ
i=1 wi in Gq.

Definition 18 (Compliant registered ballot) Let Gq, ELpk,pkCCR, kid, a submitted ballot bid, and

group elements ν, w, w1, . . . , wψ as in Definition 17. The ballot is compliant and registered if it holds:

(i) There exists an entry (bid,pCCid, lCCj,id, πexp,j), where pCCid = (pCC1,id, . . . , pCCψ,id) in the list

of sent votes LsentVotes,j of the Choice Return Code control component CCRj for all j ≤ m.

(ii) ν =
∏ψ
i=1 wi, and pCCi,id = wkid

i where wi is a voting option.

Modeling vote compliance. Adversaries against vote compliance attempt to force registration of

non-compliant ballots in an honest Choice Return Code control component, even though the auditors

and the honest control component execute their verification algorithms successfully. We analyze sVote up

to termination of protocol SendVote. This is enough since it is at this point when a ballot is marked as

sent by the Server and the honest control component. In Figure 24 we derive a game capturing adversaries

against vote compliance in sVote. The game is stated with an ideal setup, recall that in Section 14.1 we

have shown that the real setup SetupVoting from Section 12.1.1, and the ideal one IdealSetupVoting from

Figure 23, are computationally indistinguishable. The advantage of A is defined as:

AdvsVote,vcA = Pr [1← vcA(crs)] .

In the game, event badvc is defined as:

badvc =

Ballot bid is not a compliant registered ballot (see Definition 18)

bid ∈ LsentVotes ⊂ bb is marked as extractable for Choice Return Codes

1← VerifyVotingPhase(bb,CMtable, Csk, LogsPO, Logsserv, {LogsCCRj }
m
j=1)

Lemma 2 In the random oracle model

AdvsVote,vcA ≤ 2 · AdvExp,sSOUND
B1

+ AdvEqEnc,sSOUND
B2

,

where B1, B2 are adversaries against the simulation soundness property of the exponentiation and plaintext

equality proof systems Exp, EqEnc, respectively.

Its proof is in Section 18.2.

78

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

vcA(crs)

1. id, h← A // A specifies honest CCRh and a target voter id

2. dat← IdealSetupVoting

3. Extract (CMtable, Csk,vcd,CC,k,K, svk,pkCCR, (kj ,Kj)j≤m)← dat

4. (ELpk, ELsk)← IdealSetupTally

5. Extract LogsPO from Print Office.

6. b ← VerifyConfigPhase(LogsPO, crs). If b = ⊥ output 0. // Perform configuration

phase audit

7. bb← ∅ // Initialize an empty ballot box

8. Give the following data to A:

advDat = (vid,vcd, svk, (k,K), ELpk,pkCCR, bb,CMtable,

Csk, ((kj ,Kj))j ̸=h,Kh)

9. ((bid, bb), (pCCid, (dj,id, πdecPCC,j), (lCCj,id, πexp,j)j ̸=h)) ← SendVoteA // A sub-

mits ballot, updated ballot box, partial Choice Return Codes together with decryption

shares, and long Choice Return Code shares for each CCRj with j ̸= h

10. If badvc output 1

Figure 24: Game modeling attacks against compliance of registered ballots. Protocols IdealSetupVoting, SetupTally,

and SendVote are executed in interaction with the adversary A, who keeps state across calls. Algorithms corresponding to

honest CCRh are controlled by the game. Public parameters crs are implicit.

15 Individual verifiability

In this section we analyze the individual verifiability property of sVote. The security against the attack

vectors modeled here is “up to guessing the return codes”. Thus, our analysis shows that adversaries can

not do better than guessing either the (short) Choice Return codes, the Vote Cast code, or the Ballot

Casting key - all adversarial bounds account for the spaces of these short codes.

15.1 Sent as intended

Adversaries against sent as intended attempt to force registration, in an honest control component CCRh,

of a ballot with at least one voting option (out of ψ) different to the voting option selected by an honest

voter. The voter, honest control components, and auditors do not detect the modification although they

execute their verification algorithms successfully.

As for the case of vote compliance, we analyze sVote up to termination of protocol SendVote, since it

is at this point when a ballot is marked as sent by the Server and the honest control component, and the

voter executes her verification algorithm. In Figure 25 we present a game capturing adversaries against

79

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

the sent as intended property of sVote. It is similar to game vc, however this time the adversary must

output a ballot registered as sent by an honest control component not containing the voter’s intent and

the set of valid Choice Return Codes corresponding to the selections of the voter. The advantage of A is

defined as:

AdvsVote,saiA = Pr [1← saiA(crs)] .

In the game, event badsai is defined as:

badsai =

Dec(E1, ELsk) ̸=

∏ψ
i=1 vji // ballot bid does not contain voter’s selections

bid ∈ LsentVotes ⊂ bb is marked as extractable for Choice Return Codes

1← VerifyVotingPhase(bb,CMtable, Csk, LogsPO, Logsserv, {LogsCCRj }
m
j=1)

1← VerifyCRC(vid, cc∗id, ccid)

saiA(crs)

1. id, h← A // A specifies honest CCRh and a target voter id

2. dat← SetupVoting(crs)

3. Extract (CMtable, Csk,vcd,CC,k,K, svk,pkCCR, (kj ,Kj)j≤m)← dat

4. (ELpk, ELsk)← SetupTally(crs)

5. bb← ∅ // Initialize an empty ballot box

6. Choose at random vid = (vj1 , . . . , vjψ). // Voter’s selections

7. Set CC∗ ← CC\ccid // Do not give Choice Return Codes for Voter id to A

8. Give the following data to A:

advDat = (vid,vcd, svk, (k,K), ELpk,pkCCR, bb,CMtable,

Csk, ((kj ,Kj))j ̸=h,Kh,CC∗)

9. (cc∗id, (bid, bb), (pCCid, (dj,id, πdecPCC,j), (lCCj,id, πexp,j)j ̸=h)) ← SendVote // A

submits ballot, updated ballot box, partial Choice Return Codes together with decryp-

tion shares, long Choice Return Code shares for each CCRj with j ̸= h, and short Choice

Return Code shares for voter id

10. If badsai output 1

Figure 25: Game modeling attacks against sent as intended (sai) property of sVote. Protocols SetupVoting, SetupTally,

and SendVote are executed in interaction with the adversary A, who keeps state across calls. Algorithms corresponding to

honest CCRh are controlled by the game. Public parameters crs are implicit.

Theorem 1 In the random oracle model

AdvsVote,saiA ≤ AdvsVote,mtc
B1

+ AdvsVote,vcB2
+ AdvExp,NIZKB3

+ AdvSEnc,INDCPA
B4

+
1

|Ccc|
,

where B1, B2 are adversaries against the Codes mapping table correctness and vote compliance properties

of sVote (respectively), B3 an adversary against the zero-knowledge property of the exponentiation proof

80

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

system, B4 an adversary against the semantic security of the symmetric encryption scheme, and Ccc is

the space of short Choice Return Code values.

Its proof is in Section 18.3.

15.2 Recorded as confirmed

We define the property recorded as confirmed of sVote as the inability to either reject confirmed votes or

inject non-confirmed votes in the ballot box.

15.2.1 Vote rejection

In this type of attacks, an honest voter sends and confirms her vote. The adversary A attempts to avoid

registration of the confirmed vote in an honest control component CCRh, resulting in a vote deleted

from the ballot box. The voter and auditors do not detect the modification although they follow their

respective verification algorithms. In Figure 26 we define game rac-rej, capturing adversaries against vote

rejection. The advantage of A is defined as:

AdvsVote,rac-rejA = Pr[1← rac-rej(crs)].

In the game, event badrej is defined as:

badrej =

Ballot bid /∈ LconfirmedVotes ⊂ bb or it is marked as non-extractable for VCC

1← VerifyVCC(VCC∗id, VCCid)

1← VerifyVotingPhase(bb,CMtable, Csk, LogsPO, Logsserv, {LogsCCRj }
m
j=1)

Theorem 2 In the random oracle model,

AdvsVote,rac-rejA ≤ AdvsVote,mtc
B1

+ AdvExp,NIZKB2
+ AdvExp,sSOUND

B3
+ AdvSEnc,INDCPA

B4
+

1

|Cvcc|
,

where B1 is an adversary against the Codes mapping table correctness property of sVote, B2,B3 are

adversaries against the zero-knowledge and simulation soundness properties of the exponentiation proof

system Exp, respectively, B4 an adversary against the semantic security of the symmetric encryption

scheme, and Cvcc is the space of short Vote Cast Return Code values.

Its proof is in Section 18.4.

15.2.2 Vote injection

In this type of attacks, an honest voter sends but does not confirm her vote. The adversary attempts to

force registration of the non-confirmed vote resulting in inserting a vote in the ballot box. The auditors

81

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

rac-rejA(crs)

1. id, h← A // A specifies honest CCRh and a target voter id

2. dat← SetupVoting

3. Extract (CMtable, Csk,vcd,vcc,k,K, svk,bck,pkCCR, (kcj ,Kcj)j≤m)← dat

4. (ELpk, ELsk)← SetupTally(crs)

5. bb← ∅ // Initialize an empty ballot box

6. Choose at random vid = (vj1 , . . . , vjψ). // Voter’s selections

7. Set bck∗ ← bck\BCKid, and vcc∗ ← vcc\VCCid // Do not give BCK (yet) and VCC

for Voter id to A.

8. Give the following data to A:

advDat = (vid,vcd, svk, (k,K), ELpk,pkCCR, bb,CMtable,

Csk, (kcj ,Kcj)j ̸=h),Kch,bck
∗,vcc∗)

9. (cc∗id, bid)← SendVote

10. If voter accepts cc∗id give BCKid to A.

11. (CKid, VCC∗id, (lVCCid,j , πexpCK,j)j ̸=h)← ConfirmVote // A submits Confirmation Key,

Vote Cast Return Code and long Vote Cast Return Code shares for each CCRj with

j ̸= h.

13. If badrej output 1

Figure 26: Game modeling attacks against recorded as confirmed (rejection) property of sVote. Protocols SetupVoting,

SetupTally, SendVote and ConfirmVote are executed in interaction with the adversary A, who keeps state across calls.

Algorithms corresponding to honest CCRh are controlled by the game. Public parameters crs are implicit.

do not detect the modification although they follow their verification algorithms. In Figure 27 we define

game rac-inj capturing adversaries against vote injection. The advantage of A is defined as:

AdvsVote,rac-injA = Pr[1← rac-inj(crs)],

In the game, event badinj is defined as:

badinj =

 Ballot bid ∈ LconfirmedVotes ⊂ bb is marked as extractable for VCC

1← VerifyVotingPhase(bb,CMtable, Csk, LogsPO, Logsserv, {LogsCCRj }
m
j=1)

Theorem 3 In the random oracle model

AdvsVote,rac-injA ≤ AdvsVote,mtc
B1

+ AdvExp,NIZKB2
+

1

|Cbck|
+

1

q
,

where B1 is an adversary against the Codes mapping table property of sVote, B2 an adversary against

simulation sound property of the Exponentiation proof system Exp, and Cbck is the space of Ballot Casting

Keys values.

Its proof is in Section 18.5.

82

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

rac-injA(crs)

1. id, h← A // A specifies honest CCRh and a target voter id

2. dat← SetupVotingA

3. Extract (CMtable, Csk,vcd,k,K, svk,bck,pkCCR, (kcj ,Kcj)j≤m)← dat

4. (ELpk, ELsk)← SetupTally(crs)

5. bb← ∅ // Initialize an empty ballot box

6. Choose at random vid = (vj1 , . . . , vjψ). // Voter’s selections

7. Set bck∗ ← bck\BCKid // Do not give BCK (ever) for Voter id to A.

8. Give the following data to A:

advDat = (vid,vcd, svk, (k,K), ELpk,pkCCR, bb,CMtable,

Csk, (kcj ,Kcj)j ̸=h),Kch,bck
∗)

9. (cc∗id, bid)← SendVote // A submits ballot and Choice Return Codes and Voter stops

interaction

10. (CKid, (lVCCid,j , πexpCK,j)j ̸=h) ← ConfirmVote // A submits Confirmation Key, and

long Vote Cast Return Code shares for each CCRj with j ̸= h without knowledge of

BCKid.

11. If badinj output 1

Figure 27: Game modeling attacks against recorded as confirmed (injection) property of sVote. Protocols SetupVoting,

SetupTally, SendVote and ConfirmVote are executed in interaction with the adversary A, who keeps state across calls.

Algorithms corresponding to honest CCRh are controlled by the game. Public parameters crs are implicit.

16 Universal verifiability

We define the property correct tally of sVote as the inability of an adversary to alter the election result.

Contrary to properties related to individual verifiability and privacy, an adversary against correct tally

is given full control of the Mixing control components.

16.1 On ballot boxes ready for tally

A ballot box bb is ready for tally if it has been audited and, additionally, the setup phase has also been

audited before bb is sent to tally. Thus:

bb is ready for tally⇒

 1← VerifyVotingPhase(bb, LogsPO, Logsserv, {LogsCCRj }
m
j=1)

1← VerifyConfigPhase(LogsPO)

In other words, our formulation assumes the ballot box resulting from the voting phase in a consistent

state with the transcript of the Server and the Choice Return Code control components. Only such a

ballot box is given to an adversary against correct tally as input.

83

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

16.1.1 Extracting votes from ballots

Vote extractor. The votes embedded in a given confirmed ballot bid can be extracted from its

corresponding vector of partial Choice Codes pCCid with the knowledge of the voter’s Verification Card

private key kid. The extraction mechanism is simple, just compute the kid-th roots of pCCid.

Algorithm extractVoteWithAuxInfo(pCCid, kid, crs)

It takes as input the partial Choice Codes pCCid = (pCC1,id, . . . , pCCψ,id) and the Verification Card

private key kid. Then it does the following:

1. Compute inverse k′id = k−1
id mod q.

2. For each i ∈ (1, . . . , ψ) set vid,i = pCC
k
′
id

i,id ∈ Qp.

It outputs vid = (vid,1, . . . , vid,ψ). Note that step 1 is well-defined since q is prime and therefore there

exist and inverse k′id ∈ Z∗
q .

Correctness of the vote extractor. A ballot box ready for tally contains confirmed ballots that

are compliant registered ballots as per Definition 18 with very high probability. Intuitively, this follows

from the vote compliance property of sVote (Lemma 2). Moreover, the above is true independently of

whether or not the voter behaved honestly at the moment of casting her votes.

Lemma 3 (correct vote extraction) Let bb be a ballot box that is ready for tally, let bid =

(vcdid, E1, E2, Ẽ1, Kid,πballot) ∈ bb be a ballot with pCCid its corresponding vector of partial Choice

Codes contained in the logs Logsserv of the Server, and let kid the Verification Card Private key of voter

id. Then if

(i) E1 ∈ bbclean such that bbclean ← Cleansing(bb)

(ii) ν ← Dec(E1, ELsk)

(iii) vid ← extractVoteWithAuxInfo(pCCid, kid)

it holds

Pr[ν ̸=
ψ∏
i=1

vid,i] ≤ AdvsVote,mtc
B1

+ 3 · AdvExp,sSOUND
B2

+ AdvEqEnc,sSOUND
B3

.

where B1 is an adversary against the mapping table correctness of sVote, (see Figure 23), and B2, B3 are

adversaries against the simulation soundness property of the exponentiation and plaintext equality proof

systems Exp, EqEnc, respectively.

The proof of this lemma is straightforward. If the ballot bid is a compliant registered ballot as in

Definition 18, then it clearly holds ν =
∏ψ
i=1 vid,i with probability 1.

84

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

On the other hand, since the ballot box is ready for tally, the setup and voting phases have been

audited. We can move to an ideal setup scenario, with an error probability upper bounded by AdvsVote,mtc
B1

.

Then, using Lemma 2, we upper bound the probability of a non-compliant registered ballot bid ending

up in the cleansed ballot box bbclean with 3 · AdvExp,sSOUND
B1

+ AdvEqEnc,sSOUND
B2

.

16.2 Modeling correct tally

We define correct tally with an experiment comparing the election result corresponding to a real execution

of the tally phase with the election result corresponding to a simulated (ideal) tally. The ideal tally

ignores the Mixing control components and instead extract votes from the partial Choice Code vectors

corresponding to confirmed ballots stored in the (already audited) ballot box.

Also, the game knows the Verification Card Private key kid of all voters. Modeling with this piece of

extra knowledge is done for simplicity and justified by two observations: (i) the Verification Card Private

key kid can be extracted from the ballot NIZK Proofs πballot, (ii) an alternative game formulation of

correct tally accounting for the three phases 20) would know these keys anyways since the game would

control the Print Office during setup. In Figure 28 we define game correctTally capturing adversaries

against the correctness of tally. The advantage of an adversary A is defined as:

AdvsVote,correctTallyA = Pr[1← correctTallysVoteA (bb, LogsPO, Logsserv,k, crs)].

In the game, event badcorrectTally is defined as:

badcorrectTally =

 L∗
votes ̸= Lvotes

Lvotes ̸= ⊥

where L∗
votes is the output result of the adversary A and Lvotes is the result of the ideal tally executed by

the game.

Theorem 4 Let N be the total number of voters. In the random oracle model

AdvsVote,correctTallyA ≤ AdvsVote,mtc
B1

+N · (3 · AdvExp,sSOUND
B2

+ AdvEqEnc,sSOUND
B3

) + Advmix,sound
B1

+ Advdec,sSOUND
B2

,

where B1 is an adversary against the mapping table correctness of sVote, B2, B3 are adversaries against

the simulation soundness property of the exponentiation and plaintext equality proof systems Exp, EqEnc,

respectively, B4 is an adversary against the soundness of the Shuffle proof system, and B5 an adversary

against the soundness of the decryption proof system.

Its proof is in Section 18.6.
20Accounting for the three phases when we only want to analyze the tally phase is redundant given the analysis of the

previous sections, and unnecessarily complicates the game and the reduction with no clear benefit.

85

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

correctTallyAsVote(bb, LogsPO, Logsserv,k, crs):

1.
(
L∗
votes, (LogsCCMj)

m′
j=1

)
← A(bb) // A executes protocols MixOnline and MixOffline

2. Audit tally phase:

2.1 b1 ← VerifyOnlineTally(bb, {LogsCCMj }
m′−1
j=1 , Logsserv, LogsPO)

2.2. b2 ← VerifyOfflineTally(L∗
votes,m, LogsCCMm′ , LogsPO)

3. If b1 = 0 or b2 = 0 set Lvotes ← ⊥

4. Else, execute the ideal tally:

4.1. bbclean ← Cleansing(bb)

4.2. Get list LdecPCC from Logsserv

4.3. For each E1 ∈ bbclean do:

4.3.1 Find entry (bid,pCCid, ⋆, ⋆) ∈ LdecPCC with E1 ⊂ bid // Get partial Choice Codes

4.3.2 Get kid from k // Get Verification Card private key for voter id

4.3.3 vid = (vid,1, . . . , vid,ψ)← extractVoteWithAuxInfo(pCCid, kid) // Extract votes

4.4. Check if vid,i is in v, if not set Lvotes ← ⊥ // Check extracted vote is a valid voting option

4.5. Else, set Lvotes ← {vid}id∈ID

5. If badcorrectTally output 1

Figure 28: Game modeling attacks against correct tally. The adversary A is in full control of the Mixing

control components CCMs. In step 2.1, algorithm VerifyOnlineTally checks that the inputs bb, LogsPO, Logsserv are

the same of algorithm VerifyVotingPhase (see Section 12.2.3). This ensures that the ballot box passed as input has

been audited, thus it is ready for tally. The game executes an ideal tally in step 4 via vote extraction from the

partial Choice Codes using the Verification Card private keys of the voters. Public parameters crs are implicit.

17 Privacy

We define the property ballot privacy of sVote as the inability to learn information about the cast votes,

beyond what is unavoidably leaked by the election results.

For the privacy case, Voting Client is considered to be honest. Note that this assumption is fair for

any client-side encryption based e-voting system since the voting options are introduced in clear. Thus,

the honest parts of the system would be Voting Client , Print Office , one of Electoral Board members,

one of CCRs and one of CCMs.

For simplicity we consider only two CCMs, whereas in [43] four mixing control components are speci-

fied. We claim that our reduction does not affect proof structure due to the mandatory audit performed

before the last CCM is executed and the fact that the last key is distributed among members of Electoral

Board.

Consider a case of N CCMs where only one of them is honest. In such scenario, the mandatory

verification of online mixing tally (VerifyOnlineTally) would be performed after CCMN−1 execution. If

and only the verification holds, Electoral Board members 21 would submit their private key shares and
21Electoral Board members can be viewed as a set of ‘human control components’, thus at least one of the members

86

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

CCMN will be able to reconstruct its private key. All possible corruption scenarios can be mapped to 4

cases as presented in Table 5.

Honest CCM

is among

first N-1

VerifyOnlineTally

outputs ⊤

Honest EB

members submit

their keyshares

CCMN

knows its

key

Case description

Case 1
Yes

No No No
CCMN is corrupted, but

can’t reconstruct its key.

Case 2 Yes Yes Yes
CCMN is corrupted and

can reconstruct its key.

Case 3
No

No No No
CCMN is honest, but

can’t reconstruct its key.

Case 4 Yes Yes Yes
CCMN is honest and

knows its key.

Table 5: Possible corruption scenarios in case of N CCMs and Electoral Board

It is easy to see, that all corruption cases can be efficiently modeled with just two CCMs due to the

fact that last CCM doesn’t know its key until VerifyOnlineTally verification is successful. Therefore, in

privacy definition and proofs are modeled are only two CCMs and the Challenger holds the last CCM’s

private key ELsk,EB. The Challenger reveals this key to A if and only if A chooses to corrupt the last

mixing node and VerifyOnlineTally outputs ⊤.

We base our definition of the ballot privacy on the definition defined in [10] for the Helios scheme and

adopt it to sVote as shown in 19.

On the high level, the idea of the game-based ballot privacy definition is to capture the situation,

where an adversary that provides voter with two possible voting options sets v0
id,v

1
id cannot distinguish

which one was chosen by an honest voter. To avoid trivial wins, the adversary is restricted to select only

sets that would produce the same result i.e. {v0
id}id∈Ω should be a permutation of {v1

id}id∈Ω, where Ω

are all honest voters ids that confirmed their votes successfully (both Choice Return Codes and Vote Cast

Code).

The game has 3 phases:

Setup During the setup phase, the challenger and adversary jointly participate in the election configuration

and set up process. At the end of this phase, the adversary additionally receives private information

of all corrupt voters.

Voting During the voting phase, the Adversary can schedule vote casting, vote confirmation (honest voter

checks Choice Return Codes and, if codes are valid, introduces BCKid) and vote verification (honest

voter checks Vote Cast Code) of all honest voters as well as request an honest CCR to perform

is honest and refuses to submit the decryption key share if validation fails. The use of humans as control components is

permitted by section 4.4.10 of [16], “it is also permitted to implement a group of control components so that they take the

form of people”.

87

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

necessary actions for Choice Return Codes or Vote Cast Code retrieval. The challenger, that is

playing on behalf of honest parties, flips a coin β and uses {vβid} for all honest voters, also it keeps

track of all cast, verified, confirmed ballots and failed verifications.

Tally The Adversary can select which CCM it wishes to corrupt22. The challenge’s behavior depends on

the coin β. In case, when β = 0, the challenger honestly executes an honest CCM and outputs the

result. However, if β = 1, the challenger would change honest voters’ ballots cast for voting options

{v1
id} to those generated for {v0

id} and use simulators to fake shuffle and decryption proofs.

Definition 19 (Privacy) Consider sVote scheme described in section 12 for a set ID of voter identities.

We say that the scheme has ballot privacy if there exist algorithms Sdec and SMix such that:

AdvsVote,bprivA =

∣∣∣∣Pr [1← [Expbpriv,0A,V (crs)
]
− Pr

[
1← [Expbpriv,1A,V (crs)

]
− 1

|Csvk|

∣∣∣∣ ≈ 0,

where Csvk is a code space of Start Voting Keys SVKid.

Theorem 5 In the random oracle model

AdvsVote,bprivA ≤ Advdec,NIZKB.1 + Advmix,NIZK
B.2 + AdvExp,NIZKB.3 + AdvsVote,mtc

B.4

+ Advsch,NIZKB.5 ++AdvEqEnc,NIZKB.6 +Nh · AdvSEnc,INDCPA
B.7

+ AdvF,PRFB.8 +Nh · AdvQp,ESGSPB.9 + AdvElGamal,INDCPA
B.10 ,

where B.1 is an adversary against the zero-knowledge property of the Decryption proof system dec, B.2

is an adversary against the zero-knowledge property of the shuffle argument mix, B.3 is an adversary

against the zero-knowledge property of the Exp proof system, B.4 is an adversary against mapping table

correctness property of sVote, B.5 is an adversary against the zero-knowledge property of the sch proof

system, B.6 is an adversary against the zero-knowledge property of the EqEnc proof system, B.7 is an

adversary against IND-CPA property of symmetric encryption scheme, B.8 is an adversary against the

weak pseudorandom property of the exponentiation function F (k, x) = xk, B.9 is an adversary against the

ESGSP problem [25], B.10 is an adversary against the IND-CPA property of the ElGamal.

Its proof is in Section 18.7.

22Note that, if CCM2 is corrupt, it will receive its private share of election key if and only if CCM1 doesn’t abort.

88

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

Expbpriv,βA,V (crs):

//setup phase

1. ID, IDh, h, c← A(crs) // A specifies voter identities, honest voters,

an honest CCRh and whether it corrupts online (c = 1) or offline (c = 0) CCM

2. dat← SetupVotingA(crs)

3. (ELpk, ELpk,1, EBpk, EBsk)← SetupTallyA(crs) // EBsk is not known to A regardless

of which CCM is corrupted. If and only if c = 1, ELsk,1 is generated by A.

4. b← VerifyConfigPhase(LogsPO, crs). If b = ⊥, abort the game.

5. bb, bb0, bb1 ← ∅ // Initialize 3 empty ballot boxes

6. At the end of this phase A obtains:

server’s data: bb, Csk,CMtable

public data: vcd,K,VCks, ELpk,pkCCR, EBpk, ELpk,1

corrupt voters’ data: (ccid, SVKid, VCCid, BCKid)id∈ID\IDh

//voting phase

A is allowed to query oracles OCastBallot,OHonestCCRdec,OConfirmBallot,

OHonestCCRconfirm,OVerifyVCC defined in Figure 30.

//tally phase

A is allowed to query oracle OHonestMix defined in Figure 31 only once.

Figure 29: Experiments Expbpriv,βA,V (crs) defined for β ∈ {0, 1}. The adversary A has access to set of oracles OCastBallot,

OHonestCCRdec, OConfirmBallot ,OHonestCCRconfirm,OVerifyVCC, OHonestMix. A can query oracle OHonestMix only once.

For β = 1 the experiment also depends on Sdec and SMix, To simplify notation, oracle’s explicit dependence on β, SMix and

Sdec is not shown.

89

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

OCastBallot(id,v0
id,v

1
id): //cast ballot on behalf of honest voter

1. If id /∈ IDh or v0
id,v

1
id have more than ψ voting options, abort.

2. kid ← GetKey(SVKid, VCksid) // obtain verification card private key

3. b0id ← CreateVote(VCid,v0
id, ELpk,pkCCR, (Kid, kid), crs) // ballot for option v0id

b1id ← CreateVote(VCid,v1
id, ELpk,pkCCR, (Kid, kid), crs) // ballot for option v1id

4. νiid =
∏ψ
k=1 v

i
k, where viid = (v1, . . . , vψ) for i ∈ {0, 1}

5. bb0 ← bb0 ∪ (id, ν0id, b
0
id) and bb1 ← bb1 ∪ (id, ν1id, b

1
id)

6.Output b
β
id

OHonestCCRdec(bid): //honest CCR partially decrypt encrypted pCCid

1. (b, LogsCCRh)← VerifyBallotCCRh(bid, ELpk,pkCCR, Kid, LogsCCRh , crs)

2. If b = 0 abort, otherwise proceed.

3. (dj,id, LogsCCRj)← PartialDecryptPCCh(bid, pkCCR,h, sk
(h)
CCR, LogsCCRh , crs)

4. Output dj,id

OHonestCCRexp(bid,pCCid): //honest CCR exponentiate pCCid

1. (lCCh,id, LogsCCRh)← CreateLCCShare(bid,pCCid, kh,id, Kh,id, LogsCCRh))

2. Output lCCh,id // the result is either ⊥ or lCCh,id

OConfirmBallot(id, cc∗id): //confirm ballot on behalf of an honest voter

1. If bbβ has an entry (id, confirmed) or (id,wrongCRCs), abort.

2. b← VerifyCRC(vβ , cc
∗
id, cc

β
id)

3. If b = 0:

bb0 ← bb0 ∪ (id,wrongCRCs)

bb1 ← bb1 ∪ (id,wrongCRCs)

abort.

4. CMid ← CreateConfirmMessage(BCKid, kid)

5. bb0 ← bb0 ∪ (id, confirmed) and bb1 ← bb1 ∪ (id, confirmed)

6. Output CMid.
OHonestCCRconfirm(bid, CMid): //honest CCR confirms ballot

1. b← VerifyConfirmationCCRh(bid, LogsCCRh)

2. If b = 0, abort.

3. (lVCCid,h, LogsCCRh)← CreateLVCCShareh(bid, CM
id, (Kch,id, kch,id), LogsCCRh).

4. Output lVCCid,h.
OVerifyVCC(id, VCC∗id): //verify VCC on behalf of an honest voter

1. If bbβ has an entry (id, verified) or (id,wrongVCC), abort.

2. b← VerifyVCC(VCC∗id, VCCid).

3. if b = 0

bb0 ← bb0 ∪ (id,wrongVCC)

bb1 ← bb1 ∪ (id,wrongVCC)

abort.

4. bb0 ← bb0 ∪ (id, verified) and bb1 ← bb1 ∪ (id, verified)

5. Output 1.

Figure 30: Privacy: Oracles given to the adversary A in experiments Expbpriv,βA,V (crs) (see Figure 29) modeling the voting

phase. They are implicitly parameterized with bit β ∈ {0, 1}.

90

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

OHonestMix(bb, Logsserv, {LogsCCRarg1}
m
j=1,j ̸=h, bbclean, cmix,A, cDec,A, LogsCCMA): // tally

1. If for id ∈ IDh bbβ has (id, confirmed) entry, but not (id, verified), raise a complaint.

2. b← VerifyVotingPhase(bb, LogsPO, bb, Logsserv, {LogsCCRarg1}
m
j=1)

3. If b = ⊥, abort

4. //Check that adversary cannot trivially break privacy based on tally results

V1
h ← {ν1

id : (id, verified) ∈ bb1}// extract verified options of honest voters from bb1

V0
h ← {ν0

id : (id, verified) ∈ bb0}// extract verified options of honest voters from bb0

5. If V0
h is not a permutation of V1

h, abort.

6. if c = 0: //online mixing (ELpk,h, ELsk,h) = (ELpk,1, ELsk,1)

if β = 0:

(cmix,h, cDec,h, ELpk,h, LogsCCMh)← MixDecOnlineh(bbclean, ELpk, ELpk,h, ELsk,h, LogsCCRh , crs)

else if β = 1: // simulate mixing and decryption proofs

b1h ← {bid : (id, verified) ∈ bb1}// extract verified ballots of honest voters from bb1

b0h ← {bid : (id, verified) ∈ bb0}// extract verified ballots of honest voters from bb0

bbh = bbclean/b
1
h ∪ b0h //change honest voter’s ballots

Permute entries in bbh to get bbshuffled
h

(cmix,h, π
∗
mix,h) = SMix(ELpk, ckmix, bbclean, bb

shuffled
h). //simulate shuffle proof

Compute cDec,h = (c1, . . . , cℓ
)

as ci =
(
ci,1, ci,2 · (ci,1

)−ELsk,h), for each ci = (ci,1, ci,2) ∈ cmix,h

and a list of NIZKs π∗
dec,h =

(
π∗
dec,h,1, . . . , π

∗
dec,h,ℓ

)
, where π∗

dec,h,i = Sdec (g, ELpk,h, ci, ci) .

LogsCCMh ← LogsCCMh ∪
(
(bbclean), (cmix,h, cDec,h), (ELpk/ELpk,h, ELpk), (π

∗
mix,h,π

∗
dec,h)

)
.

Output: (ELsk,EB, cmix,h, cDec,h, LogsCCMh). //offline CCM private key and mixing results

6. else if c = 1 // offline mixing

b← VerifyOnlineTally(bb, LogsPO, Logsserv, LogsCCMh , LogsCCMAcmix,A, cDec,A)

If b = ⊥, abort

if β = 0:

(cmix,h,m, LogsCCMh)← MixDecOffline(cmix,A, cDec,A, EBpk, EBsk, LogsCCRh , crs)

Output: (cmix,h,m, LogsCCRh)

else if β = 1: // simulate mixing and decryption proofs

mh = m/V1
h ∪V0

h // substitute V1
h with V0

h in m

Permute entries in cDec,A to get cshuffled
Dec,A

(cmix,h, π
∗
mix,h) = SMix(ELpk, ckmix, cDec,A, cshuffled

Dec,A). //simulate shuffle proof

Compute π∗
dec,h =

(
π∗
dec,h,1, . . . , π

∗
dec,h,ℓ

)
as π∗

dec,h,i = Sdec
(
g, EBpk, ci,m

h
i

)
, for each mh

i ∈mh, ci ∈ cmix,h.

LogsCCMh = LogsCCMh ∪ {(cmix,A, cDec,A), (cmix,h,m
h), (ELpk,A, EBpk), (π

∗
mix,h,π

∗
dec,h)}.

Output: (cmix,h,m
h, LogsCCMh).

Figure 31: Privacy: Oracle given to A in experiments Expbpriv,βA,V (crs) (see Figure 29) during the tally phase. It can be

queried only once. The oracle is implicitly parameterized with bit β ∈ {0, 1} and simulators Sdec and SMix.

91

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

18 Security reductions

18.1 Proof of Lemma 1 (codes mapping table correctness)

We use six hops to transform the real game rMTC (executing the real protocol SetupVoting of Figure 17)

into the simulated game sMTC (executing the simulated protocol IdealSetupVoting of Figure 21). Both

games are defined in Figure 23. After the transformation is completed, clearly AdvsVote,mtc.6
A = 0 since the

real and simulated games are identical.

Game rMTC.1. In this game, algorithm CombineEncLongCodeShares (see Section 12.1.1.6) ignores input

from CCRj , ∀j ̸= h and instead uses the extractor EA of the Exponentiation proof system to obtain

witnesses {kj,id, kcj,id}mj=1,j ̸=h from the NIZKs {πexpPCC,j ,πexpCK,j}mj=1,j ̸=h.

Additionally, to answer consistently between phases, the honest CCRh keeps an internal Codes map-

ping table for Voter id

CMtableCCRh
id =

{
id,

{[
pCCi,id, xi

]}n
i=1

, [CKid, y]
}
,

where xi =
(
(H(vkidi)

)2·kh,id), and y =
(
H(CKid)

)2·kch,id .
Then, algorithm GenCMTable (see Section 12.1.1.7) constructs CMtable based on the extracted keys

of the dishonest CCRj , ∀j ̸= h, and the group elements xi, y of the internal table of CCRh.

Let bad1 be the event that some of the NIZKs {πexpPCC,j ,πexpCK,j}mj=1,j ̸=h verify successfully but EA
could not extract a witness. The game aborts if bad1 is true. We have that:

|AdvsVote,mtc.1
A − AdvsVote,mtc

A | ≤ Pr[bad1].

Now, Pr[bad1] ≤ ϵext, where ϵext is given by the weak simulation extractability property of the Exponen-

tiation proof system Exp.

Game rMTC.2. In this game, algorithm GenEncLongCodeSharesh (see section 12.1.1.5), controlled by the

honest CCRh, uses the canonical simulator SExp to generate proofs for statements containing CCRh’s

public keys Kh,id and Kch,id. We have that

|AdvsVote,mtc.2
A − AdvsVote,mtc.1

A | ≤ AdvExp,NIZKB ,

where B is an adversary against the zero-knowledge property of the Exponentiation proof system Exp.

In the reduction, B uses its own oracle to answer the queries of CCRh and outputs what the (emulated)

game rMTC outputs (see Figure 5).

Observe that from this game onwards, CCRh’s private keys kh,id, kch,id are used for exponentiation

(but not as witnesses in the setup phase).

Game rMTC.3. Algorithm GenEncLongCodeSharesh samples at random the Voter Choice Return Code

Generation private key kh,id and the Voter Vote Cast Return Code Generation private key kch,id instead

92

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

of deriving them from the CCRj Choice Return Codes Generation private key k′h. We have that

|AdvsVote,mtc.3
A − AdvsVote,mtc.2

A | ≤ AdvkdfB ,

where B is an adversary against the pseudorandom property of KDF. The reduction is straightforward.

Game rMTC.4. In this game, algorithm GenEncLongCodeSharesh from the previous game samples at

random Voter Vote Cast Return Code Generation public key Kh,id and the Voter Vote Cast Return Code

Generation public key Kch,id independent from the corresponding private keys kh,id and kch,id. We have

that

|AdvsVote,mtc.2
A − AdvsVote,mtc.3

B | ≤ 2 · AdvQp,SGSPA

Where B is an adversary against the SGSP problem (see Definition 9.2). In the reductions, B from the

challenge instance (g̃, g̃s0 , ℓ, ℓs1), sets the generator g = ℓ, and Kh,id = ℓs1 (or Kch,id = ℓs1).

Game rMTC.5. In this game GenVerDat samples Cpcc, cck at random and independently from values

hpccid,1, . . . , hpccid,n, hckid.

We have that

|AdvsVote,mtc.5
A − AdvsVote,mtc.4

A | ≤ AdvElGamal,INDCPA
B ,

where B is an adversary against the IND-CPA property of the ElGamal.

Game rMTC.6. In this game GenEncLongCodeSharesh from the previous game samples CexpPCC,h and

cexpCK,h at random and independent from the received input Cpcc, cck, and the keys kid and kh,id. The

honest CCRh also sets the values xi and y of its internal mapping table CMtableCCRh
id to random group

elements. We have that

|AdvsVote,mtc.6
A − AdvsVote,mtc.5

A | ≤ 2 · AdvF,PRFB ,

where B is an adversary against the weak pseudorandom property of the exponentiation functions

F (kh,id, r) = rkh,id and F (kch,id, r) = rkch,id . Technically this game is unfolded in two: one for key

kh,id, and another for key kch,id; hence the 2 factor in the bound. For the reductions to go through

we shall see that all queries B asks are uniform; indeed ciphertexts Cpcc,cck are honestly generated (by

the Print Office) at random, and the queries to obtain xi and y are hashed before, so in ROM they are

random too.

Now, game rMTC.6 broadcasts meaningless ciphertexts Cpcc, cck and computes the Codes mapping

table via extracting private keys of CCRj , ∀j ̸= h, and using the internal table for CCRh. In other

words, it does exactly what IdealSetupVoting does, hence games rMTC.6 and sMTC are identical, so

AdvsVote,mtc.6
A = 0. Collecting the bounds gives the result.

18.2 Proof of Lemma 2 (vote compliance)

We use a series of game hops to bound the probability of event badvc in Game vc of Figure 24.

93

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

Game vc.1. This games adds an extra check to the original game. Let bid = (vcdid, E1, E2, Ẽ1, Kid,πballot)

be the adversarial submitted ballot. Abort if event bad1 is true, where

bad1 =

ν = Dec(E1, ELsk) ∧ w = Dec(Ẽ1, ELsk)

νkid ̸= w

1← VerifyBallotCCRh

Note, that since the C runs IdealSetupTally, it controls ELsk and can perform required for bad1 check

decryptions. Also note, that vc doesn’t take into account tally phase, thus C doesn’t need to know EBsk.

We have that |AdvsVote,vcA − AdvsVote,vc.1A | ≤ Pr[bad1]. Now,

Pr[bad1] ≤ AdvExp,sSOUND
B1

,

where B1 is an adversary against the simulation soundness property of the exponentiation proof system

Exp. In the reduction, B1 uses πExp from πballot and submits
(
(g, E1), (Kid, Ẽ1)), πExp

)
as the challenge

statement/proof pair (see Figure 6).

Game vc.2. This games adds an extra check to the previous game. Let bid be the adversarial submitted

ballot and pCCid be the vector of partial Choice Return Codes. This game aborts if event bad2 is true,

where

bad2 =

w = Dec(Ẽ1, ELsk)

w ̸=
∏ψ
i=1 pCCi,id

1← VerifyBallotCCRh

In other words, the adversary is restricted to submit compliant ballots (see Definition 17). We have that

|AdvsVote,vc.1A − AdvsVote,vc.2A | ≤ Pr[bad2]. Now,

Pr[bad2] ≤ AdvEqEnc,sSOUND
B2

,

where B2 is an adversary against the simulation soundness property of the plaintext equality proof system

EqEnc. In the reduction, B2 uses πEqEnc from πballot and submits (g, ELpk,
∏ψ
i=1 pkCCR,i, Ẽ1, Ẽ2), πEqEnc)

as the challenge statement/proof pair, where E2 = (c2,0, c2,1, . . . , c2,ψ), and Ẽ2 =
(
c2,0,

∏ψ
i=1 c2,i

)
and

pkCCR,i is the i-th global public key of the control components.

Game vc.3. This game adds an extra check to the previous game. Let (pCCid, (lCCj,id, πexp,j)j ̸=h)) the

partial Choice Codes and long Choice Code shares submitted by the adversary. This game aborts if event

bad3 is true, where

bad3 =

 ∃pCCi,id, lCCj,i,id s.t. lCCj,i,id ̸= (H(pCCi,id))
2)kj,id

1← VerifyVotingPhase

We have that |AdvsVote,vc.2A − AdvsVote,vc.3A | ≤ Pr[bad3]. Now,

Pr[bad3] ≤ AdvExp,sSOUND
B3

,

94

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

where B3 is an adversary against the simulation soundness property of the exponentiation proof system

Exp. In the reduction, B3 submits
(
((g,H(pCCi,id))

2), (Kj,id, lCCj,i,id), π
(j)
exp,i

)
.

It remains to see that AdvsVote,vc.3A = 0. We show that A has no other chance but submit a compliant

registered ballot.

Case 1. A submits vector pCCid with some pCCi,id ̸= vkidi′ for all voting options vi′ . Then since the

Codes mapping table contains only correct entries (it is generated with the ideal setup protocol),

at least one short Choice Return Code is not extractable (using that A exponentiates correctly to

generate lCCj,id), but the ballot is marked as sent and extractable in the ballot box, therefore

VerifyVotingPhase outputs 0.

Case 2. A submits valid pCCid = (vkidj1 , . . . , v
kid
jψ

). In this case,
∏ψ
i=1 pCCi,id =

∏ψ
i=1 v

kid
ji

Since the ballot

is compliant it follows that Dec(Ẽ1) =
∏ψ
i=1 pCCi,id =

∏ψ
i=1 v

kid
ji

= νkid = Dec(E1, ELsk)
kid . Last,

using Qp has prime order q, kid has a (multiplicative) inverse k−1 in Z∗
q , so ν =

∏ψ
i=1 pCC

k−1

i,id =∏ψ
i=1 vji .

18.3 Proof of Theorem 1 (sent as intended)

We use five hops to bound the probability of event badsai in Game sai of Figure 25.

Game sai.1. In this game, algorithm CreateLCCShareh (see section 12.2.1.7) use the canonical simulator

SExp to generate a proof for statements containing Kh,id. We have that

|AdvsVote,saiA − AdvsVote,sai.1A | ≤ AdvExp,NIZKB ,

where B is an adversary against the zero-knowledge property of the Exponentiation proof system Exp.

In the reduction, B uses its own oracle to answer the queries of CCRh and outputs what the (emulated)

game sai outputs (see Figure 5).

Observe that from this game onwards, the Voter Choice Return Code Generation private key kh,id is

used for exponentiation (but not as a witness in the voting phase).

Game sai.2. We now switch to the ideal setup protocol IdealSetupVoting (see Figure 21), which generates

a correct Codes mapping table CMtable with a randomized transcript.

Also, in algorithm CreateLCCShareh, the honest CCRh uses its internal table, populated during the

ideal setup protocol, to answer queries. (If the adversarial pCCi,id is not in the internal table, hash and

exponentiate to kh,id.) We have that:

|AdvsVote,sai.1A − AdvsVote,sai.2A | ≤ AdvsVote,mtc
B .

We use the bound given in Lemma 1 to bound AdvsVote,mtc
B .

Observe that in the ideal setup protocol, choosing independent and random long Choice Code shares

lCCh,id implies that the symmetric keys skcci,id, encrypting the short Choice Return Codes in CMtable,

are also independent from each other, randomly distributed, and not known to A.

95

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

Game sai.3. We now switch to the ideal setup tally protocol IdealSetupTally (see Figure 22), which enables

challenger to control ELsk.

We have that |AdvsVote,sai.2A − AdvsVote,sai.3A | = 0.

Observe that in the ideal setup tally protocol, the distributions of honestly generated EBpk and the one

computed as ELpk∏m′−1
j=1 ELpk,j

are identical, furthermore the corresponding EBsk is never used since sai never

reaches tally phase.

Game sai.4. This game adds an extra check to the previous game. It aborts if the adversary submits a

non-compliant registered ballot. More formally, the game aborts if event badvc is true.

We have that |AdvsVote,sai.3A −AdvsVote,sai.4A | ≤ Pr[badvc] = AdvsVote,vcB . Note that we can use lemma 2 to

bound AdvsVote,vcB .

An important observation is that from now on A is restricted to submit ballots that are compliant

registered ballots (see Definition 18). To reach the winning condition it must hold:

Dec(E1) =

ψ∏
i=1

uji ̸=
ψ∏
i=1

vji

pCCi,id = ukidji

Thus, for some i ≤ ψ we must have pCCi,id ̸= (vji)
kid , where vji is the i-th voting option selected by the

honest voter in this game (using that there exists an inverse k−1
id in Z∗

q if q is prime). Up to re-ordering

we can assume A sets i = 1.

Game sai.5. This game encrypts a different code xCC1,id ̸= CC1,id in algorithm GenCMTable$. We have

that:

|AdvsVote,sai.4A − AdvsVote,sai.5A | ≤ AdvSEnc,INDCPA
B ,

The reduction is straightforward because the adversary A never submits pCCj1,id to CCRh (in algorithm

CreateLCCShareh) corresponding the the first selection of the honest voter, so lCCh,1,id and hence the

symmetric key for the first short Choice Return Code skcci,id is not used in the previous game nor in

this one.

Last, in this game the adversary is given no information about CC1,id, so he can only guess a value

CC∗1,id for this code. Thus,

AdvsVote,sai.5A ≤ Pr[1← VerifyCRC(vid, cc
∗
id, ccid)] ≤

1

|Ccc|
.

Collecting the bounds of the hops concludes the proof.

18.4 Proof of Theorem 2 (recorded as confirmed - reject)

We use a series of game hops to bound the probability of event badrej in Game rac-rej of Figure 26. The

hops almost mimic those in the proof of sent as intended game, the difference is that we now argue over

the Voter Vote Cast Return Code Generation keys of the honest control component CCRh.

96

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

Game rac-rej.1. In this game, algorithm CreateLVCCShareh (see section 12.2.2.4) use the canonical simu-

lator SExp to generate a proof for statements containing Kch,id. We have that

|AdvsVote,rac-rejA − AdvsVote,rac-rej.1A | ≤ AdvExp,NIZKB ,

where B is an adversary against the zero-knowledge property of the Exponentiation proof system Exp.

In the reduction, B uses its own oracle to answer the queries of CCRh and outputs what the (emulated)

game rac-rej outputs (see Figure 5).

Observe that from this game onwards, the Voter Vote Cast Return Code Generation private key kch,id

is used for exponentiation (but not as a witness in the voting phase).

Game rac-rej.2. We now change to the ideal setup protocol IdealSetupVoting explained in Figure 21.

Also, in algorithm CreateLVCCShareh, the honest CCRh uses its internal table, populated during the ideal

setup protocol, to answer queries. (If the adversarial confirmation key CKid is not in the internal table,

hash and exponentiate to kch,id.) We have:

|AdvsVote,rac-rej.1A − AdvsVote,rac-rej.2A | = AdvsVote,mtc
B .

We use the bound given in Lemma 1 to bound AdvsVote,mtc
B .

We observe that in the ideal setup protocol, choosing long Vote Cast Return Code share lVCCid,h

independent from the keys kid, kch,id, and at random implies that the symmetric key skvccid, encrypting

the short Vote Cast Return Code in CMtable, is also randomly distributed, independent from the above

keys, and not known to A.

Game rac-rej.3. This game adds an extra check to the previous game. It aborts if the following event is

true.

bad3 =

 ∃j s.t. lVCCid,j ̸= (H(CKid)
2)kcj,id

1← VerifyVotingPhase

We have that |AdvsVote,rac-rej.2A − AdvsVote,rac-rej.3A | ≤ Pr[bad3]. Now,

Pr[bad3] ≤ AdvExp,sSOUND
B ,

where B is an adversary against the simulation soundness property of the exponentiation proof system Exp.

In the reduction, B submits
(
(g, (H(CKid)

)2
), (Kcj,id, lVCCid,j)), πexpCK,j

)
as the challenge statement/proof

pair, with valid proof πexpCK,j .

Game rac-rej.4. This game adds an extra check to the previous game. It aborts if the following event is

true.

bad4 =

 A submits the right Confirmation Key CKid = H(BCKkidid)
2 to CCRh

1← VerifyVotingPhase

We have that |AdvsVote,rac-rej.3A − AdvsVote,rac-rej.4A | ≤ Pr[bad4]. Now,

97

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

Pr[bad4] = 0,

because since the right Confirmation Key is submitted the auditors can extract something from the Codes

mapping table, however the ballot is marked as non-extractable; the auditors can extract because in this

game A is generating the long Vote Cast Return Code shares (lVCCid,j)j ̸=h correctly and the Codes

mapping table is correct (generated with the ideal setup) .

Game rac-rej.5. This game encrypts a different code xVCCid ̸= VCCid in algorithm GenCMTable$. We

have that:

|AdvsVote,rac-rej.4A − AdvsVote,rac-rej.5A | ≤ AdvSEnc,INDCPA
B ,

The reduction is straightforward because the adversary A never submits the right Confirmation Key

CKid = H(BCKkidid)
2 to CCRh (in algorithm CreateLCCShareh), hence the symmetric key is not needed to

emulate games rac-rej.4 and rac-rej.5.

Last, in this game the adversary is given no information about VCCid, so he can only guess a value

VCC∗id for this code. Thus,

AdvsVote,rac-rej.A ≤ Pr[1← VerifyVCC(VCC∗id, VCCid)] ≤
1

|Cvcc|
.

Collecting the bounds of the hops concludes the proof.

18.5 Proof of Theorem 3 (recorded as confirmed - inject)

We use two hops to bound the probability of event badrej in Game rac-inj of Figure 27.

Game rac-inj.1. In this game, algorithm algorithm CreateLVCCShareh (see section 12.2.2.4) use the canon-

ical simulator SExp to generate a proof for statements containing Kch,id. We have that

|AdvsVote,rac-injA − AdvsVote,rac-inj.1A | ≤ AdvExp,NIZKB ,

where B is an adversary against the zero-knowledge property of the Exponentiation proof system Exp.

In the reduction, B uses its own oracle to answer the queries of CCRh and outputs what the (emulated)

game rac-inj outputs (see Figure 5).

Observe that from this game onwards, the Voter Vote Cast Return Code Generation private key kch,id

is used for exponentiation (but not as a witness in the voting phase).

Game rac-inj.2. We now changing the SetupVoting protocol to the ideal setup protocol IdealSetupVoting

explained in Figure 21. Also, in algorithm CreateLVCCShareh, the honest CCRh uses its internal table,

populated during the ideal setup protocol, to answer queries. (If the adversarial confirmation key CKid is

not in the internal table, hash and exponentiate to kch,id.). We have:

|AdvsVote,rac-inj.1A − AdvsVote,rac-inj.2A | = AdvsVote,mtc
B .

98

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

We use the bound given in Lemma 1 to bound AdvsVote,mtc
B .

We observe that in game rac-inj.2 choosing at random lVCCid,h in the ideal setup implies that the

symmetric key, encrypting the short Vote Cast Return Code in CMtable, is also random and independent

from the Ballot Casting Key, and the keys kid, kch,id. Also, A is given no information about the

Confirmation Key during setup.

Let the adversarial query CK∗id, unless CK∗id = CKid (e.g. if A guess BCKid) or CreateLVCCShareh on

query CK∗id ̸= CKid answers with the same (randomly chosen) value in Qp as on query CKid, the ballot is

non-extractable for VCC, thus the adversary looses the game. We have that:

AdvsVote,rac-inj.3A ≤ 1

Cbck
+

1

q
.

18.6 Proof of Theorem 4 (correct tally)

We use two hops to argue that the output result L∗
votes of the adversary A in step 1 (see Figure 28) and

the output of the ideal tally in step 4 are the same up to a negligible quantity.

Game correctTally.1. In this game, for all j ≤ m′, the adversary A submits on behalf of the Mixing

control component CCMj ciphertext list cmix,j that really are re-encryptions of the permuted CCMj ’s

ciphertext input list cmix,j−1, together with NIZK Proofs πmix,j of the Shuffle proof system. These are part

of the output of algorithm MixDecOnlinej , for j < m′, or part of the output of algorithm MixDecOffline

for j = m′. We claim that

|AdvsVote,correctTally.1A − AdvsVote,correctTallyA | ≤ Advmix,sound
B1

,

where B1 is an adversary against the soundness of the shuffle argument explained in Section 8, thus its

advantage is negligible provided the NIZKs verify, in other words, provided 1 ← VerifyOnlineTally and

1← VerifyOfflineTally. For a formal proof of this claim see the original paper [2].

Game correctTally.2. In this game, for all j < m′, the adversary A submits on behalf of the Mixing control

component CCMj ciphertext list cDec,j that really are partial decryptions (with respect the mixing private

key ELsk,j) of the shuffled ciphertexts cmix,j , together with NIZK Proofs πdec,j,i. Also A submits on behalf

of CCMm′ a list of plaintexts m that really are decryptions of the shuffled ciphertexts cmix,m′ (with

respect the secret Electoral Board private key EBsk), together with NIZK proofs πdec,m′,i. These are part

of the output of algorithm MixDecOnlinej , for j < m′, or part of the output of algorithm MixDecOffline

for j = m′. We have that

|AdvsVote,correctTally.2A − AdvsVote,correctTally.1A | ≤ Advdec,sSOUND
B2

,

where B2 is an adversary against the soundness of the decryption proof system. Here also the advantage

of B2 is negligible provided 1← VerifyOnlineTally and 1← VerifyOfflineTally.

99

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

Now, in this game the list of plaintexts m submitted by A correspond, up to permutation, to de-

cryptions of ciphertexts E1 ∈ bbclean. Lemma 3 ensures that after applying extractVoteWithAuxInfo it-

eratively a number of |bbclean| ≤ N times gives the same list with error probability upper bounded by

AdvsVote,mtc
B1

+N · ϵ, where ϵ = 3 · AdvExp,sSOUND
B2

+ AdvEqEnc,sSOUND
B3

. Thus, we have that

AdvsVote,correctTally.2A ≤ AdvsVote,mtc
B1

+N · (3 · AdvExp,sSOUND
B2

+ AdvEqEnc,sSOUND
B3

).

18.7 Proof of Theorem 5 (ballot privacy)

We use a series of game hops to prove that the game Expbpriv,0A,V (crs) (C uses voting options v0
id and an

honest CCM is executed normally) and the game Expbpriv,1A,V (crs) (C uses voting options v1
id and an honest

CCM simulates shuffle and decryption proofs) are indistinguishable. Both games are defined in Figure

29.

Game bpriv.1. Let this be the game where C always uses the canonical generators Sdec and SMix in

OHonestMix to generate all decryption and shuffle proofs respectively.

To support this change, the following adjustments to the functions are made:

• Both MixDecOnlineh and MixDecOffline functions shuffle the received list of ciphertexts (bbclean and

cDec,A respectively) to get cmix,h and then run SMix in order to generated simulated shuffle proof

πmix,h instead of using Mix. Also, they use Sdec instead of ProveDec to get πdec,h.

We have that

|AdvsVote,bpriv.1A − AdvsVote,bprivA | ≤ Advdec,NIZKB.1 + Advmix,NIZK
B.2 ,

where B.1 is an adversary against the zero-knowledge property of the Decryption proof system dec and

B.2 is an adversary against the zero-knowledge property of the shuffle argument mix.

Game bpriv.2. In this game, in OHonestCCRexp and OHonestCCRconfirm, the C uses the canonical

simulator SExp to generate proofs for statements containing kh,id and kch,id.

To support this change, the following adjustments to the functions are made:

• Algorithms CreateLCCShareh and CreateLVCCShareh use SExp to generate πexp,h and πexpCK,h respec-

tively.

We have, that

|AdvsVote,bpriv.2A − AdvsVote,bpriv.1A | ≤ AdvExp,NIZKB ,

where B is an adversary against the zero-knowledge property of the Exp proof system.

Observe that from this game onwards, CCRh’s private keys kh,id, kch,id are used only for exponenti-

ation and as witnesses in the setup phase (but not as witnesses in the voting phase).

100

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

Game bpriv.3. In this game, C instead of SetupVoting runs IdealSetupVoting, which generates a correct

Codes mapping table CMtable with a randomized transcript. The honest CCRh uses its internal table,

populated during the ideal setup protocol, to answer queries.

We have, that

|AdvsVote,bpriv.3A − AdvsVote,bpriv.2A | ≤ AdvsVote,mtc
B ,

where B is an adversary against mapping table correctness property of sVote.

Game bpriv.4. In this game, in OCastBallot, the C uses canonical simulators Ssch, SExp and SEqEnc to

simulate all NIZK proofs in the cast ballot.

To support this change, the following adjustments to the functions are made:

• The algorithm CreateVote uses canonical simulators Ssch, SExp and SEqEnc to generate πsch, πExp and

πEqEnc respectively.

We have that

|AdvsVote,bpriv.4A − AdvsVote,bpriv.3A | ≤ Advsch,NIZKB.1 + AdvExp,NIZKB.2 + AdvEqEnc,NIZKB.3 ,

where B.1, B.2 and B.3 are adversaries against the zero-knowledge properties of the sch, Exp and EqEnc

proof systems respectively.

Game bpriv.5. In this game the C does not put honest voters’ Verification Card private keys kid into

keystores GenCredDat and encrypt random values instead.

To support this change, the following adjustments to the functions are made:

• For all honest voters algorithm GenCredDat symmetrically encrypt a randomly selected value R

with the keystore symmetric encryption key: VCksid ← Encs(R; KSkeyid).

We have, that

|AdvsVote,bpriv.5A − AdvsVote,bpriv.4A | ≤ Nh · AdvSEnc,INDCPA
B ,

where B is an adversary against IND-CPA property of symmetric encryption scheme defined in 1.

Game bpriv.6. In this game, in OHonestCCRexp and OHonestCCRconfirm, the C outputs randomly

sampled elements instead of honestly generating shares of the long Choice Return Codes lCCh,id and a

share of the Voter Vote Cast Return Code lVCCid,h.

To support this change, the following adjustments to the functions are made:

• For all honest voters algorithm GenCMTable$ (from IdealSetupVoting) uses ran-

domly samples elements lCCh,id and lVCCid,h from G instead of computing them as

((hpCC1,id)
kh,id , . . . , (hpCCn,id)

kh,id) and hcmid
kch,id respectively. The C keeps an internal ta-

ble in order to use the same random values for honest CCR’s replies as were used for CMtable.

For example, if value (hpCCk,id)
kh,id were substituted by Rk during IdealSetupVoting and later on

101

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

(during voting phase) CCRh receives pCCK,id such that H(pCCK,id))
2 = hpCCk,id, then lCCh,K,id

should be set to Rk.

• Functions CreateLCCShareh and CreateLVCCShareh from the game bpriv.2 take randomly sampled

lCCh,id and lVCCid,h from an internal C’s table.

We have that

|AdvsVote,bpriv.6A − AdvsVote,bpriv.5A | ≤ AdvF,PRFB .

where B is an adversary against the weak pseudorandom property of the exponentiation functions

F (kh,id, hpCCi,id) = (hpCCi,id)
kh,id and F (kch,id, hcmid) = (hcmid)

kch,id .

Game bpriv.7. In this game, we substitute all exponentiations to kid by randomly sampled elements. In

other words we change (Ẽ1, Kid, CKid,pCCid) that were computed as
(
E1kid, g

k
id, (BCKid)

2·kid , (vkidj1 , . . . , v
kid
jψ

)
)

to values randomly samples from G.

To support this change, the following adjustments to the functions are made:

• The algorithm GenVerDat$ (from IdealSetupVoting) samples Kid at random for all honest voters.

• For all honest voters algorithm GenCMTable$ (from IdealSetupVoting) randomly samples ele-

ments for the Confirmation Key CKid and the partial Choice Codes pCCid, instead of the elements

(BCKid)
2·kid and (vkid1 , . . . , vkidn), respectively, to construct CMtable. The C keeps an internal table

with entries (id, CKid,pCCid) to be consistent between the setup and voting phase.

• During vote casting (OCastBallot), GetKey is not executed, instead C uses its knowledge of kid to

generate a ballot. Additionally, algorithm CreateVote is as in the Game bpriv.4, but samples Ẽ1

at random and takes pCCid from the internal table kept by the C (in order to be consistent with

generated CMtable).

• During vote confirmation (OConfirmBallot), CreateConfirmMessage is not executed, instead the C

outputs CKid from its internal table.

Observe that the only value that depends on the coin β is vβid that is encrypted with ELpk.

We have that

|AdvsVote,bpriv.7A − AdvsVote,bpriv.6A | ≤ Nh · AdvQp,ESGSPB ,

where B is an adversary against the ESGSP problem (see Definition 9.2).

Game bpriv.8. In this game, in OCastBallot, the C changes vβid to v1−β
id for all honest voters id ∈ Nh.

We have that,

|AdvsVote,bpriv.8A − AdvsVote,bpriv.7A | ≤ AdvElGamal,INDCPA
B ,

where B is an adversary against the IND-CPA property of the distributed ElGamal [19].

102

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

Note, that A doesn’t know nor controls ELsk since the offline (last) CCM’s private share EBsk is

generated by the honest Print Officeafter all online CCMs key shares are submitted and given to the

offline CCM if and only if VerifyOnlineTally is successful. Therefore in bpriv game, where only two CCMs

are modeled, A either doesn’t participate in election key pair generation at all (if it chooses to corrupt

an offline CCM whose key is generated by C regardless) or has to pass VerifyOnlineTally in order to get

the result of the offline mixing.

Observe that after this change the adversarial view that was corresponding to the case β = 0 is

changed to β = 1, and the view that was corresponding to the case β = 1 is changed to β = 0. Thus,

adversarial views for β = 0 and β = 1 are identical, and the adversary can win the Game bpriv.8 only by

guessing the coin β at random.

Therefore,

AdvsVote,bprivA ≤ Advdec,NIZKB + Advmix,NIZK
B + 2 · AdvExp,NIZKB + AdvsVote,mtc

B + Advsch,NIZKB + AdvEqEnc,NIZKB

+Nh · AdvSEnc,INDCPA
B + AdvF,PRFB +Nh · AdvsgspB + AdvElGamal,INDCPA

B

103

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

Part V

Parameters and further remarks

104

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

19 Choice of parameters

19.1 ElGamal encryption scheme

Parameters p, q for ElGamal are generated verifiably similarly to FIPS 186-4 [37] and g is chosen as the

smallest prime number that is member of the group Q. The bitlength of p and q are set to 2048 and 2047

bits respectively.

For the client-side operations, we use short exponents of 256 bits for performance optimization. The

security of this optimization is shown in [46], [29].

19.2 Symmetric key encryption scheme

Our protocol uses AES encryption scheme in GCM mode that is defined in NIST SP 800-38D [18].

As analyzed in [32] and [5], the confidentiality (IND-CPA security) of this cryptosystem relies on the

(well-accepted) assumption of modeling the AES block cipher as a keyed random function.

19.3 Key Derivation functions

As KDF algorithm we use the construction defined in ISO-18033-2 [27] and in PKCS#1v2.2 [33] with the

name MGF1. Specifically we use MGF1-SHA2-256.

As PBKDF algorithm we use the PBKDF2 algorithm defined in PKCS#5v2.0 [28]. Specifically, we use

the function with HMAC-SHA2-256 and 32000 iterations. The salt KEYseed is provided as a parameter.

19.4 Hash functions

We use SHA2-256 defined in FIPS 180-4 [39] and SHAKE-128 (for verifible parameters generation only)

defined in FIPS 202 [38].

19.5 Pseudo-random functions

We use the HMAC function defined in FIPS 198-1 [36], that is composed of a SHA-256 hash function,

parameterized by the symmetric key k. As detailed in [3], HMAC is a PRF whose resistance against

collision is the one of the underlying hash scheme. Up to date, the collision probability of the SHA-256

hash function is considered to be negligible.

19.6 Verifiable mixnet

The verifiable re-encryption mixnet proposed by Stephanie Bayer and Jens Groth [2] requires the un-

derlying generalized Pedersen commitment scheme to be computationally binding and to have the same

prime order q as the ElGamal encryption scheme.

105

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

In order to ensure those properties, the protocol uses a verifiable group element generation scheme for

generating the public key of the Pederson commitment scheme ckmix = (G, G1, ..., Gn,H). This algorithm

was inspired by FIPS 186-4 (algorithm in Appendix A.2.3) [37] but includes the following modifications:

• To generate Gi for i = (1, . . . , n) it executes the steps proposed in FIPS, but uses the

extendable-output function SHAKE128 instead of a hash function, and sets index = i − 1 and

domain_parameter_seed = commitment_seed.

• To generate H it executes the steps proposed in FIPS, but uses the extendable-output func-

tion SHAKE128 instead of a hash function, and sets index = n and domain_parameter_seed =

commitment_seed.

SHAKE128 has been standarized in FIPS-202.

19.7 Return codes spaces

The return codes should be large enough for security, and small enough for usability.

Start voting keys. These codes are 20-character strings encoded in base 32. The space Csvk consists

of 3220 values.

Ballot casting keys. These codes are 8-digit non-zero numbers. The space Cbck consists of 108 − 1

values. The 8-digit number is concatenated with an extra checksum digit in EAN13 format.

Long choice and vote cast return codes. These codes are sometimes seen as ElGamal plaintexts.

The space Clc is the group G, so there are Ord(G) = q different possible values.

Short choice return codes. These codes are 4-digit numbers. The space Ccc consists of 104 values.

Short vote cast return codes. These codes are 8-digit numbers. The space Cvcc consists of 108

values.

20 Abstractions

To focus our model and analyis, we discuss the abstractions made in the description of the voting system

presented in Section 12.

20.1 PKI and authenticated channels

Constitution of a platform root CA, and generation of credentials for the different system contexts and

tenants that wish to run an election is omitted. For more details, see [43]

106

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

Furthermore, we have abstracted away authenticated channels, i.e. we are not modeling signatures

and related cryptographic keys. In the actual implementation, authenticated channels are implemented

with signatures and established public key infrastructure.

20.2 Voter authentication

We have not covered details on how eligible voters authenticate in the system. This might happen via a

dedicated protocol, or via a third party. In any case, the focus in this document is to show that privacy

is maintained regardless of authentication procedure, so how the user authenticates is considered out

of the scope. This is consistent with the current state-of-the-art in computational security proofs for

e-voting systems, where eligibility verifiability [30] is very rarely analyzed.

In the actual implementation, users authenticate in the system using a challenge-response mechanism.

The goal of the authentication procedure is to ensure that only a voter who proved that he opened an

encrypted key store gets a valid authentication token. Namely, a voter sends a request that includes

his Credentials ID to the server. The server sends back the corresponding encrypted Verification Card

keystore and a challenge. The voter replies by sending a client message, which includes the server’s

challenge signed with the key retrieved from the encrypted keystore. If the reply to the challenge is

valid, the server generates an Authentication Token containing the Voter Information, a timestamp etc.

and sends it to the voter. During the voting phase, the voter includes this token with every request they

send to the server. See [43, Sections 5.1, 5.2] for more details. Since authentication tokens are generated

by the untrustworthy voting server, the adversary can learn all authentication tokens and can generate

new ones for arbitrary voters at will. Authentication tokens do not strengthen the security of the system

under the given trust assumptions, therefore they were omitted in the model

Details about the authentication layer have been deliberately omitted in the proofs for the sake of

clarity, and given the fact that they are not relevant for proving cast-as-intended verifiability, universal

verifiability or privacy. We emphasize that our model is independent of the way encrypted Credential

Data Keystore is delivered to the voters. We actually make the adversary stronger by omitting

authentication because the goal of the authentication mechanism in our protocol is to restrict access to

the verification card keystores. By omitting authentication, we are granting the adversary free access

to the keystores. Our only requirements are: Verification Card Keystore is generated and encrypted as

described in our model and Voting Cards are delivered to the voters via a trusted channel (i.e. postal mail).

Please note that a Verification Card Keystore can only be opened by the person in possession of the

voting card: the keystore is encrypted with the key that is derived from the Start Voting Key (SVKid)

printed in the voting card.

107

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

In the protocol model we assume, that all encrypted Verification Card Keystore are public. Moreover,

the Attacker can open a keystore if he controls the Voting Client or corrupts a voter and access his

voting card. In the event that a voter is honest and Voting Client is not leaking any information to

the Attacker, it is assumed that a voter’s Start Voting Key (SVKid) that is printed in the voting card is

private. Therefore, three different cases can arise:

Case 1: Non-Voter & Verifiability model (untrustworthy Voting Client). The non-voter does

not reveal his Start Voting Key SVKid to the adversary, therefore the polynomially-bounded adver-

sary cannot open the keystore.

Case 2: Voter & Verifiability (untrustworthy Voting Client). In that scenario, the adversary

has access to the verification card private key kid . This corruption is accounted for in the proofs

of verifiability.

Case 3: Voter & Privacy (Trustworthy Voting Client). Under the assumption that the Voting

Client is trustworthy, the start voting key SVKid is not known to the adversary, therefore it is

computationally unfeasible for him to open the keystore. No information about the start voting

key SVKid is leaked to the adversary during the authentication mechanism. Prior to the GetKey

algorithm (see Section 12), the start voting key SVKid is used in two occasions as an input (together

with a cryptographic salt) to a password-based key derivation function executed on a trustworthy

(in case of privacy) Voting Client for deriving the credential ID and a keystore key. Only the

credential ID is known to the untrustworthy voting server. Due to the security of the key derivation

function (PBKDF2), it is not possible to infer anything about the start voting key SVKid. Without

knowledge of the Start Voting Key SVKid , the adversary is only left with the possibility of breaking

the keystore. Breaking a 128-bits symmetric encryption (to open the keystore) is computationally

equivalent (or requires at least the same amount of computations) to solve the 2048-bit discrete

logarithm problem. Therefore, an adversary able to get access to the contents of a keystore can

also compromise the (ElGamal) key of a trusted control component. This type of adversary is

not compliant with the security model of the ordinance (where at least one control component is

trustworthy)

20.3 Offline mixing control component

We have abstracted away the generation and recovery of the Election key private key share EBsk corre-

sponding to the last Mixing control component CCMm′ . In the actual implementation, during configu-

ration this private key is secret-shared using a Shamir secret sharing scheme among the electoral board

members, and during tally, it is reconstructed accordingly.

108

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

This detail is irrelevant in the security analysis: it only matters that the adversary learns the key EBsk

in case the last CCM is compromised. See [43, Sections 4.5, 6.1.2, Annex 9.1.9, 9.1.10] for more details.

20.4 Write-ins

Certain elections in Switzerland give voters the possibility to write the name of a candidate in a form

instead of selecting a predefined candidate (so called write-in candidates). Usually, only a small fraction

of voters select write-in candidates. The protocol supports write-in candidates: using multi-recipient

ElGamal encryption, the system encodes and encrypts write-in candidates as separate messages along

with the pre-defined candidates (which are still encoded as the product of primes and linked to a specific

choice return code using NIZK proofs). Therefore, the existence of write-in candidates does not impact

the security of the protocol. However, the protocol cannot provide cast-as-intended for the write-in

candidates, since it is impossible to map all possible write-in values to a choice return code. For all these

reasons, the voting system description and the security analysis do not cover write-in candidates and the

security guarantees regarding individual verifiability apply only to predefined voting options.

20.5 Re-login after sending or confirming the vote

Normally, the voter performs the voting process - from logging in, selecting options, sending the vote,

checking the choice return codes, confirming the vote, and checking the vote cast return code - in one

go. However, it might be possible that the voter aborts the session after sending the vote but before

confirming it (either voluntarily or if for instance the browser crashed) and wishes to re-login to continue

the process and to confirm the vote. Alternatively, the voter might re-login after a successful confirmation

to check the vote cast return code a second time. The system covers both scenarios since the voting server

stores the necessary information to repeat the ExtractCRC or ExtractVCC algorithm. No interaction with

the Choice Return Code control components is necessary in this process. For the sake of clarity, we have

omitted these alternative protocol flows in the voting system description, since they do not impact our

security goals.

20.6 Validations in untrusted components

For the sake of simplicity and readability of the voting system description, we have abstracted away some

validations in the voting server and the voting client. While these validations increase the robustness and

usability of the system, they are irrelevant for the security analysis, since the adversary controls untrusted

components and can omit those validations.

21 Conclusion

109

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

21.1 Final remarks and improvements

Observe that given the format of the choice return codes, it is important to take into account some

considerations: a vote cannot contain repeated voting options, and the number of voting options inside

the vote has to be fixed. In case the voter can perform a variable number of selections, the maximum will

be included in the vote, filling those not selected by the voter with blank options (which are all different).

This means that the voter will receive choice return codes for both the options she selected and the voting

options she left blank. Finally, only one vote is allowed per voter, and this has an effect on the security

of the cast-as-intended verification mechanism, as shown in the analysis. These considerations are all

enforced by the protocol implementation.

21.2 Verifiability

Our analysis shows that the four attack types described in Section 13 are unlikely to occur. Security

against the first three type of attacks model cast-as-intended and recorded-as-cast properties. The last

type of attack models the counted-as-recorded property.

Regarding the first and third types of attacks, leveraging on the entropy of the output of the return

codes control component allowed us to argue that the (encrypted and sorted) codes mapping table does

not leak meaningful information on the Choice Return Codes corresponding to the selected voting options,

nor on the Vote Cast Return Code of the voter.

Security against the second type of attack tells us that an adversary - even with the knowledge of the

ballot casting key - cannot discard the vote of an honest user. Without this guarantee it is not possible

to tell apart the case where the voter types incorrectly the ballot casting key from the case where the

adversary tampers with it. We have not considered the case in which the adversary tampers with the

start voting key because this would be detected (either the content of the encrypted ballot will not be

well-formed or we are in a similar situation as for type 1 attacks).

The fourth type of attack leverages the difficulty of carrying out the first three attacks so that it can

be assumed the ballot box after the voting phase is in a good state. From this, an argument for the

correctness of the result is given due to the presence of verifiable mixnets.

We point out that the assurance stemming from our security definitions does not rule out other attacks.

However, it rules out those considered in the ordinance, as shown in our analysis. There are several

possibilites to strengthen sVote, including distributing the mapping table across control components

(avoiding a centralized setup), and augmenting the entropy of the return control components for the

computation of the long choice return codes. These improvements may allow moving checks from auditors

to honest voters, among other advantages.

110

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

21.3 Privacy

The protocol has been proven to provide ballot privacy under the assumptions for complete verifiability

given in Federal Council: voting client of an honest voter, one of the control components and the print

office are trustworthy. Furthermore, it is assumed that all voters receive their credentials via an untappable

channel.

It needs to be pointed out that our adversarial model does not account for trivial cases of privacy

breaches such as when all honest voters vote for the same options, election authorities run the decryption

procedure before results from other voting channels are obtained or if the adversary controls the user

platform. We emphasize that no voting channel electronic or not can preserve the privacy of honest

voters if they all chose identical options. Similarly, we are not considering as ‘provisional’ results known

by authorities before results from other channels are acquired as it is solely a procedural issue. Also, we

highlight that no system that relies on client-side encryption can satisfy ballot privacy property in cases

when an attacker controls the user platform that is used for encryption the ballot as he instantly learns

the voter’s preferences.

Another thing worth mentioning is the importance of auditing cleansing and mixing procedures before

performing the last decryption (or executing the last control component). This verification ensures the

result would be checked before decryption and if any manipulation attempt detected privacy of individual

votes would not be affected. It is important to stress that auditing intermediate results before executing

the last CCM is the requirement only due to privacy concerns, as an attacker may attempt to send re-

encryptions of a particular ballot instead of cleansing output to break the privacy of a specific voter. Even

though it is arguable that ballot privacy is broken in scenarios when re-election is required, we prevent

any interpretation ambiguity by demanding verification.

21.4 VEleS security objectives

We believe that our interpretation of the security objectives [16] fits with what we have proven. We

review the ordinance, and in Table 6 provide a many-to-one relationship between the security objectives

of the ordinance and our cryptographic properties defined in Part IV.

21.4.1 Individual verifiability

The ordinance states the following requirements for authorizations for more than 30 percent, but less

than 50 percent, of the cantonal electorate.

VEleS Art. 4.2: For the purpose of individual verification, voters must receive proof that

the server system has registered the vote as it was entered by the voter on the user platform

as being in conformity with the system. [...]

111

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

Security Objective Technical annex of VEleS Our interpretation

Sent as intended. Sec-

tion 15.1.

Changing a vote before its reg-

istration by the trustworthy

part of the system

The voter must receive the

short Choice Return Codes

that correspond to her se-

lected voting options and that

were derived by the trustwor-

thy part of the system

Recorded as confirmed

(rejection). Section

15.2.1.

Misappropriating a vote before

its registration by the trust-

worthy part of the system

The voter must receive the

short Vote Cast Code that cor-

responds to her Ballot Casting

Key and that was derived by

the trustworthy part of the sys-

tem

Recorded as confirmed

(injection). Section

15.2.2.

Casting a vote It shall not be possible to cast a

vote in a voter’s name without

knowledge of the Ballot Cas-

ting Key

Sent as intended. Sec-

tion 15.1.

Changing a vote cast in confor-

mity with the system, the cas-

ting of which has been regis-

tered by the trustworthy part

of the system

The auditor must be able to

check that a vote was not al-

tered after its registration by

the trustworthy part of the sys-

tem

Recorded as confirmed

(rejection). Section

15.2.1.

Misappropriating a vote cast

in conformity with the system,

the casting of which has been

registered by the trustworthy

part of the system

The auditor must be able

to check that all votes that

were correctly confirmed are

included in the final tally.

Recorded as confirmed

(injection). Section

15.2.2.

Inserting a vote The auditor must be able to

check that no votes that were

cast were not confirmed using

a valid voter’s Ballot Casting

key

Correct tally. Section

16.

Auditors receive proof that the

result has been ascertained cor-

rectly

Correctness of tally

Privacy. Section 17. Under the trust assumptions

for complete verifiability of the

protocol, the attacker is un-

able to breach voting secrecy or

to obtain early provisional re-

sults without changing the vot-

ers or their user platforms ma-

liciously

It shall be not possible to learn

information about the votes

cast beyond what is unavoid-

ably leaked by the election re-

sults

Table 6: Identifying VEleS security objectives with our defined cryptographic properties

112

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

It follows that only the voter can detect these type of attacks. Therefore, neither the voting client nor

the system should be able to forge a proof to the voter that convinces him that his vote was registered

correctly by the trustworthy part of the system. Since the voter has a central role in individual verifiability,

we need to formulate a number of assumptions about a honest voter’s behavior.

21.4.1.1 Assumptions on honest voter’s behavior

Our assumption is that the voter receives a voting card containing the following information over a trusted

channel (postal mail). All codes are different for each voter and the attacker cannot learn these codes in

advance from an honest voter. However, it is possible that dishonest voters collude with the attacker and

divulge their codes to the attacker.

Based on an honest voter’s behavior, our security objectives closely follow the technical annex of the

ordinance.

VEleS Annex, Chapter 4.3: The attacker is unable to achieve the following objectives

under the trust assumptions for the complete verifiability of the protocol without a voter or a

trustworthy auditor being highly likely to recognise that an attack has been carried out:

- changing a vote before its registration by the trustworthy part of the system

- misappropriating a vote before its registration by the trustworthy part of the system

- casting a vote

- [...]

Further extending the requirements of Art 4., Art. 5.3 states additional requirements for authoriza-

tions up to a 100 per cent of the cantonal electorate.

VEleS Art 5.3: For individual verification the following requirements must be met in addition

to those in Article 4:

a. The proof must also confirm to the voters that the data relevant to universal verification

has reached the trustworthy part of the system (para. 6).

b. Voters must be able to request proof after the electronic voting system is closed that the

trustworthy part of the system has not already registered a vote cast using their client-sided

authentication measure.

c. The substantiveness of the proof must not depend on the trustworthiness of the entire

server system. It may however be based on the trustworthiness of the trustworthy part of

the system.

Based on our interpretation, Art 5.3.a is covered by the security against type 1 attacks. We understand

Art 5.3.b as an extension of security against type 3 attacks, for instance when the voter is not sure that

113

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

somebody used his ballot casting key in his name in case he did not want to participate in the vote.

We would like to highlight that we proof under the given trust assumptions (Print office is trusted,

channel print office to voter is trusted, non-voter does not divulge his codes) that the adversary cannot

successfully cast a vote for a non-voter, since he does not have knowledge of his ballot casting key.

Nonetheless, the cryptographic protocol allows covering the requirement from Art 5.3.b procedurally,

since the trustworthy auditor verifies the correctness of the list Lchecked that was established during the

cleansing process. Lchecked contains all voting card identifiers that correspond to ballots that are valid

(due to ZKP verifications) and confirmed (due to the verification of signatures of the corresponding Vote

Cast Code, see Section 12.3.1.1. The absence of a voting card identifier from the list Lchecked proofs that a

voting card was not used to successfully cast a vote. How the information from Lchecked is made available

to the voter depends on the canton and is not explicitly covered in this document. One could imagine

that instead of publishing the list Lchecked, the auditors verify Lchecked and make the list available to a

trusted canton’s representative. A voter could then contact the canton’s representative and ask him to

check if his voting card is present in Lchecked. This is in line with the technical annex which states the

following:

VEleS Annex. Supplementary provision 4.4.2: At the end the voting process, the public

board displays the result and the proof that the result is correct, which has been issued in the

context of universal verifiability. The voters could accordingly assume the role of ”auditors”

in the spirit of maximum possible transparency. Various risk considerations, connected not

least with the practice orientated assumption that user platforms need to be regarded as un-

trustworthy, can be used as arguments that the data for the trustworthy part of the system that

is relevant to verifiability should not be published without restriction. It is therefore permitted

to make the data available to a restricted group of auditors

Art 5.3.c follows naturally from the trust assumptions of universal verifiability in the technical annex.

21.4.2 Universal verifiability

In contrast to individual verifiability, universal verifiability puts the role of the verifier into the hands of

an auditor. Other approaches in academia go even further and would allow everyone to assume the role

of this auditor. However, as stated in the supplementary provision 4.4.2, the group of auditors can be

restricted.

VEleS , Annex. Chapter 4.3:: The attacker is unable to achieve the following objectives

under the trust assumptions for the complete verifiability of the protocol without a voter or a

trustworthy auditor being highly likely to recognise that an attack has been carried out:

- [...]

114

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

- changing a vote cast in conformity with the system, the casting of which has been registered

by the trustworthy part of the system

- misappropriating a vote cast in conformity with the system, the casting of which has been

registered by the trustworthy part of the system

- inserting a vote

21.4.2.1 Assumptions on auditors

We explicitly do not cover the process of selecting and designating auditors and their technical aids.

However, we assume that at least one honest auditor is verifying the results using a trustworthy technical

aid.

VEleS Chapter 4.3: In addition, it is assumed that at least one trustworthy auditor will

review the proof with the assistance of a trustworthy technical aid.

VEleS Annex: Supplementary provision 4.4.1. (On Art. 5 para. 1): The use of

auditors serves transparency. Voters should be able to assume that auditors in the event of

any doubt would point out irregularities. However the groups which people who act as auditors

should be recruited from is deliberately left open.

Of course, the result of the tally should be also correct.

VEleS Art. 5.4: For universal verification, the auditors receive proof that the result has

been ascertained correctly.

115

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

References

[1] Ben Adida and C. Andrew Neff. Ballot casting assurance. In Dan S. Wallach and Ronald L. Rivest,

editors, 2006 USENIX/ACCURATE Electronic Voting Technology Workshop, EVT’06, Vancouver,

BC, Canada, August 1, 2006. USENIX Association, 2006.

[2] Stephanie Bayer and Jens Groth. Efficient zero-knowledge argument for correctness of a shuffle. In

David Pointcheval and Thomas Johansson, editors, Advances in Cryptology - EUROCRYPT 2012 -

31st Annual International Conference on the Theory and Applications of Cryptographic Techniques,

Cambridge, UK, April 15-19, 2012. Proceedings, volume 7237 of Lecture Notes in Computer Science,

pages 263–280. Springer, 2012.

[3] Mihir Bellare. New proofs for NMAC and HMAC: Security without collision-resistance. Cryptology

ePrint Archive, Report 2006/043, 2006.

[4] Mihir Bellare, Alexandra Boldyreva, and Jessica Staddon. Randomness re-use in multi-recipient

encryption schemeas. In Public Key Cryptography - PKC 2003, 6th International Workshop on

Theory and Practice in Public Key Cryptography, Miami, FL, USA, January 6-8, 2003, Proceedings,

pages 85–99, 2003.

[5] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of the cipher block chaining message

authentication code. J. Comput. Syst. Sci., 61(3):362–399, 2000.

[6] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations among notions and

analysis of the generic composition paradigm. J. Cryptology, 21(4):469–491, 2008.

[7] Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key model and a general

forking lemma. In Proceedings of the 13th ACM Conference on Computer and Communications

Security, CCS 2006, Alexandria, VA, USA, Ioctober 30 - November 3, 2006, pages 390–399, 2006.

[8] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient

protocols. In Proceedings of the 1st ACM Conference on Computer and Communications Security,

CCS ’93, pages 62–73, New York, NY, USA, 1993. ACM.

[9] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for code-based

game-playing proofs. In Advances in Cryptology - EUROCRYPT 2006, 25th Annual International

Conference on the Theory and Applications of Cryptographic Techniques, St. Petersburg, Russia,

May 28 - June 1, 2006, Proceedings, pages 409–426, 2006.

[10] David Bernhard, Véronique Cortier, David Galindo, Olivier Pereira, and Bogdan Warinschi. SoK:

A comprehensive analysis of game-based ballot privacy definitions. In IEEE Symposium on Security

and Privacy 2015. IEEE Computer Society, 5 2015.

116

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

[11] David Bernhard, Marc Fischlin, and Bogdan Warinschi. Adaptive proofs of knowledge in the random

oracle model. In Public-Key Cryptography - PKC 2015 - 18th IACR International Conference on

Practice and Theory in Public-Key Cryptography, Gaithersburg, MD, USA, March 30 - April 1, 2015,

Proceedings, pages 629–649, 2015.

[12] David Bernhard, Ngoc Khanh Nguyen, and Bogdan Warinschi. Adaptive proofs have straightline

extractors (in the random oracle model). In Applied Cryptography and Network Security - 15th

International Conference, ACNS 2017, Kanazawa, Japan, July 10-12, 2017, Proceedings, pages 336–

353, 2017.

[13] David Bernhard, Olivier Pereira, and Bogdan Warinschi. How not to prove yourself: Pitfalls of the

Fiat-Shamir heuristic and applications to Helios. In X. Wang and K. Sako, editors, ASIACRYPT,

volume 7658 of Lecture Notes in Computer Science, pages 626–643. Springer, 2012.

[14] Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghunathan. Key homomorphic

prfs and their applications. In Advances in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology

Conference, Santa Barbara, CA, USA, August 18-22, 2013. Proceedings, Part I, pages 410–428, 2013.

[15] Swiss Federal Chancellery. Explications relatives à l’ordonnance de la chancellerie fédérale sur le

vote électronique (OVotE). Available at http://www.bk.admin.ch/themen/pore/evoting/07979,

2013.

[16] Swiss Federal Chancellery. Technical and administrative requirements for electronic vote casting.

Annex of the Federal Chancellery Ordinance on Electronic Voting 2.0. https://www.bk.admin.ch/

bk/en/home/politische-rechte/e-voting.html, July 2018.

[17] David Chaum and Torben P. Pedersen. Wallet databases with observers. In Ernest F. Brickell,

editor, Advances in Cryptology - CRYPTO ’92, 12th Annual International Cryptology Conference,

Santa Barbara, California, USA, August 16-20, 1992, Proceedings, volume 740 of Lecture Notes in

Computer Science, pages 89–105. Springer, 1992.

[18] Lily Chen. Recommendation for Key Derivation Using Pseudorandom Functions (Revised) . Special

Publication 800-108, National Institute of Standards and Technology, U.S. Department of Commerce,

October 2009.

[19] Véronique Cortier, David Galindo, Stéphane Glondu, and Malika Izabachène. Distributed ElGamal

à la Pedersen: Application to helios. In Ahmad-Reza Sadeghi and Sara Foresti, editors, WPES,

pages 131–142. ACM, 2013.

[20] Véronique Cortier, David Galindo, Stéphane Glondu, and Malika Izabachène. Election verifiability

for Helios under weaker trust assumptions. In Miroslaw Kutylowski and Jaideep Vaidya, editors,

117

http://www.bk.admin.ch/themen/pore/evoting/07979
https://www.bk.admin.ch/bk/en/home/politische-rechte/e-voting.html
https://www.bk.admin.ch/bk/en/home/politische-rechte/e-voting.html

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

Computer Security - ESORICS 2014 Proceedings, Part II, volume 8713 of Lecture Notes in Computer

Science, pages 327–344. Springer, 2014.

[21] Sebastian Faust, Markulf Kohlweiss, Giorgia Azzurra Marson, and Daniele Venturi. On the non-

malleability of the fiat-shamir transform. In Progress in Cryptology - INDOCRYPT 2012, 13th

International Conference on Cryptology in India, Kolkata, India, December 9-12, 2012. Proceedings,

pages 60–79, 2012.

[22] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signature

problems. In Andrew M. Odlyzko, editor, CRYPTO, volume 263 of Lecture Notes in Computer

Science, pages 186–194. Springer, 1986.

[23] Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms.

In G. R. Blakley and David Chaum, editors, CRYPTO, volume 196 of Lecture Notes in Computer

Science, pages 10–18. Springer, 1984.

[24] Jan Gerlach and Urs Gasser. Three case studies from Switzerland: E-voting, 2009.

[25] Kristian Gjosteen. The Norwegian internet voting protocol. Cryptology ePrint Archive, Report

2013/473, 2013.

[26] IETF. RFC 8018. PKCS#5: Password-Based Cryptography Specification Version 2.1, 2017.

[27] Information technology – Security techniques – Encryption algorithms – Part 2: Asymmetric ciphers.

Standard, International Organization for Standardization, Geneva, CH, 2006.

[28] Burt Kaliski. PKCS #5: Password-Based Cryptography Specification Version 2.0. RFC 2898,

September 2000.

[29] Takeshi Koshiba and Kaoru Kurosawa. Short exponent diffie-hellman problems. In Feng Bao,

Robert Deng, and Jianying Zhou, editors, Public Key Cryptography – PKC 2004, pages 173–186,

Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[30] Steve Kremer, Mark Ryan, and Ben Smyth. Election verifiability in electronic voting protocols. In

Computer Security - ESORICS 2010, 15th European Symposium on Research in Computer Security,

Athens, Greece, September 20-22, 2010. Proceedings, volume 6345, pages 389–404. Springer, 2010.

[31] Ueli Maurer. Unifying zero-knowledge proofs of knowledge. In B. Preneel, editor, Advances in

Cryptology - AfricaCrypt 2009, Lecture Notes in Computer Science. Springer-Verlag, June 2009.

[32] David A. McGrew and John Viega. Flexible and efficient message authentication in hardware and

software, 2003.

118

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

[33] K. Moriarty, B. Kaliski, J. Jonsson, and A. Rusch. PKCS #1: RSA Cryptography Specifications

Version 2.2. RFC 8017, RFC Editor, November 2016.

[34] Moni Naor, Benny Pinkas, and Omer Reingold. Distributed pseudo-random functions and kdcs. In

Advances in Cryptology - EUROCRYPT ’99, International Conference on the Theory and Application

of Cryptographic Techniques, Prague, Czech Republic, May 2-6, 1999, Proceeding, pages 327–346,

1999.

[35] Jesper Buus Nielsen. Separating random oracle proofs from complexity theoretic proofs: The non-

committing encryption case. In Advances in Cryptology - CRYPTO 2002, 22nd Annual International

Cryptology Conference, Santa Barbara, California, USA, August 18-22, 2002, Proceedings, pages

111–126, 2002.

[36] NIST Computer Security Division. The Keyed-Hash Message Authentication Code (HMAC). FIPS

Publication 198-1, National Institute of Standards and Technology, U.S. Department of Commerce,

July 2008.

[37] NIST Computer Security Division. Digital Signature Standard (DSS). FIPS Publication 186-4,

National Institute of Standards and Technology, U.S. Department of Commerce, July 2013.

[38] NIST Computer Security Division. SHA-3 Standard: Permutation-Based Hash and Extendable-

Output Functions. FIPS Publication 202, National Institute of Standards and Technology, U.S.

Department of Commerce, May 2014.

[39] NIST Computer Security Division. Secure Hash Standard (SHS). FIPS Publication 180-4, National

Institute of Standards and Technology, U.S. Department of Commerce, August 2015.

[40] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. In

CRYPTO, pages 129–140, 1991.

[41] David Pointcheval and Jacques Stern. Security proofs for signature schemes. In Advances in Cryptol-

ogy - EUROCRYPT ’96, International Conference on the Theory and Application of Cryptographic

Techniques, Saragossa, Spain, May 12-16, 1996, Proceeding, pages 387–398, 1996.

[42] Phillip Rogaway. Evaluation of some blockcipher modes of operation. In Technical report -

CRYPREC, 2011.

[43] Scytl R&S. Scytl sVote. Protocol Specifications. 2018. v13.0.

[44] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Gilles Brassard,

editor, Advances in Cryptology - CRYPTO ’89, 9th Annual International Cryptology Conference,

Santa Barbara, California, USA, August 20-24, 1989, Proceedings, volume 435 of Lecture Notes in

Computer Science, pages 239–252. Springer, 1989.

119

sVote with Control Components Voting Protocol
Computational Proof of Complete Verifiability and Privacy

[45] Dominique Unruh. Post-quantum security of fiat-shamir. In Advances in Cryptology - ASIACRYPT

2017 - 23rd International Conference on the Theory and Applications of Cryptology and Information

Security, Hong Kong, China, December 3-7, 2017, Proceedings, Part I, pages 65–95, 2017.

[46] Paul C. van Oorschot and Michael J. Wiener. On diffie-hellman key agreement with short expo-

nents. In Ueli Maurer, editor, Advances in Cryptology — EUROCRYPT ’96, pages 332–343, Berlin,

Heidelberg, 1996. Springer Berlin Heidelberg.

[47] Hoeteck Wee. Zero knowledge in the random oracle model, revisited. In Advances in Cryptology -

ASIACRYPT 2009, 15th International Conference on the Theory and Application of Cryptology and

Information Security, Tokyo, Japan, December 6-10, 2009. Proceedings, pages 417–434, 2009.

120

	I Complete verifiability and voting secrecy
	Electronic voting in Switzerland
	Threat model
	Individual verifiability
	Complete verifiability
	Voting secrecy
	Parties and channels
	Assumptions on parties
	Assumptions on communication channels

	Trust model in sVote
	Parties in sVote
	Trust assumptions in sVote

	Correspondence between both security models

	II Building blocks
	ElGamal encryption scheme
	Multi-recipient ElGamal
	ElGamal over multiplicative groups

	Symmetric encryption schemes
	Pseudorandom functions
	Key derivation functions
	Proof systems
	-protocols
	The random oracle model and the Fiat-Shamir transform
	Non-interactive sigma protocols in ROM

	Non-interactive pre-image proof systems
	On the security of NIZK pre-image proof systems
	Exponentiation proof system.
	Schnorr proof system.
	Plaintext Equality proof system
	Decryption proof system.

	Verifiable mixnet
	Homomorphic commitment scheme
	Mixing proof system
	Mix
	ShuffleArg
	MultiExpArg
	ProductArg
	HadamardProdArg
	ZeroArg
	SingleValueProdArg
	Fiat-Shamir heuristic in Shuffle Argument
	Special case of mixing

	MixVerify
	verifyShuffleArg
	verifyMultiExpArg
	verifyProductArg
	verifyHadamardProdArg
	verifyZeroArg
	verifySingleValueProdArg

	Hard problems
	The Decisional Diffie-Hellman problem (DDH)
	Subgroup Generated by Small Primes (SGSP)

	III sVote voting system
	General aspects
	Public system parameters
	ElGamal parameters
	Pedersen commitment key
	Voting options
	Voter pseudonyms
	Return codes spaces

	Achieving verifiability and privacy
	Individual verifiability
	Universal verifiability and voter privacy

	Phases
	Configuration phase
	Voting phase
	Tally phase

	Protocols and procedures
	Configuration phase protocols
	Protocol SetupVoting
	GenEncryptionKeysPO
	GenKeysCCRj
	GenVerCardSetKeys
	GenVerDat
	GenEncLongCodeSharesj
	CombineEncLongCodeShares
	GenCMTable
	GenCredDat

	Protocol SetupTally
	SetupTallyCCMj
	SetupTallySDM

	VerifyConfigPhase

	Voting phase protocols
	Protocol SendVote
	GetKey
	CreateVote
	VerifyBallotServ
	VerifyBallotCCRj
	PartialDecryptPCCj
	DecryptPCC
	CreateLCCSharej
	ExtractCRC
	VerifyCRC

	Protocol ConfirmVote
	Protocol CreateConfirmMessage
	VerifyConfirmationServ
	VerifyConfirmationCCRj
	CreateLVCCSharej
	ExtractVCC
	VerifyVCC

	VerifyVotingPhase

	Tally phase protocol
	Protocol MixOnline
	Cleansing
	MixDecOnlinej

	Protocol MixOffline
	MixDecOffline
	DecodePlaintexts

	Audit tally algorithms
	VerifyOnlineTally
	VerifyOfflineTally
	Auditors.VerifyElection

	IV Security analysis
	Security framework
	Properties analyzed

	Preliminary results
	Correct setup
	Vote compliance

	Individual verifiability
	Sent as intended
	Recorded as confirmed
	Vote rejection
	Vote injection

	Universal verifiability
	On ballot boxes ready for tally
	Extracting votes from ballots

	Modeling correct tally

	Privacy
	Security reductions
	Proof of Lemma 1 (codes mapping table correctness)
	Proof of Lemma 2 (vote compliance)
	Proof of Theorem 1 (sent as intended)
	Proof of Theorem 2 (recorded as confirmed - reject)
	Proof of Theorem 3 (recorded as confirmed - inject)
	Proof of Theorem 4 (correct tally)
	Proof of Theorem 5 (ballot privacy)

	V Parameters and further remarks
	Choice of parameters
	ElGamal encryption scheme
	Symmetric key encryption scheme
	Key Derivation functions
	Hash functions
	Pseudo-random functions
	Verifiable mixnet
	Return codes spaces

	Abstractions
	PKI and authenticated channels
	Voter authentication
	Offline mixing control component
	Write-ins
	Re-login after sending or confirming the vote
	Validations in untrusted components

	Conclusion
	Final remarks and improvements
	Verifiability
	Privacy
	VEleS security objectives
	Individual verifiability
	Assumptions on honest voter’s behavior

	Universal verifiability
	Assumptions on auditors

