
Witness Encryption for Succinct Functional Commitments
and Applications

Matteo Campanelli1, Dario Fiore2, and Hamidreza Khoshakhlagh3

1 Protocol Labs matteo@protocol.ai
2 IMDEA Software Institute, Madrid dario.fiore@imdea.org

3 Concordium hk@concordium.com

Abstract. Witness encryption (WE), introduced by Garg, Gentry, Sahai, andWaters (STOC
2013) allows one to encrypt a message to a statement x for some NP language L, such that
any user holding a witness for x ∈ L can decrypt the ciphertext. The extreme power of
this primitive comes at the cost of its elusiveness: a practical construction from established
cryptographic assumptions is currently out of reach.
In this work we introduce and construct a new notion of encryption that has a strong flavor
of WE and that, crucially, we can build from well-studied assumptions (based on bilinear
pairings) for interesting classes of computation. Our new notion, witness encryption for (suc-
cinct) functional commitment, takes inspiration from a prior weakening of witness encryption
introduced by Benhamouda and Lin (TCC 2020). In a nutshell, theirs is a WE where: the
encryption statement consists of a (non compressible) commitment cm, a function G and a
value y; the decryption witness consists of a (non succinct) NIZK proof about the fact that
cm opens to v such that y = G(v). Benhamouda and Lin showed how to apply this primitive
to obtain MPC with non-interactive and reusability properties—dubbed mrNISC—replacing
the requirement of WE in existing round-collapsing techniques. Our new WE-like notion is
motivated by supporting both commitments of a fixed size and fixed decryption complexity,
independent of the size of the value v—in contrast to the work by Benhamouda and Lin
where this complexity is linear. As a byproduct, our efficiency requirement substantially
improves the offline stage of mrNISC protocols.
From a technical standpoint, our work shows how to solve additional challenges arising
from relying on computationally binding commitments and computational soundness (of
functional commitments), as opposed to statistical binding and unconditional soundness
(of NIZKs), used in Benhamouda and Lin’s work. In order to tackle them, we need not
only to modify their basic blueprint, but also to model and instantiate different types of
projective hash functions as building blocks. Our techniques are of independent interest and
may highlight new avenues to design practical variants of witness encryption.
As an additional contribution, we show that our new WE-flavored primitive and its efficiency
properties are versatile: we discuss its further applications and show how to extend this
primitive to better suit these settings.

Keywords: Witness encryption; Secure multiparty computation; Functional commitments; Smooth
projective hash functions

1 Introduction

Witness Encryption (WE) [GGSW13] is an encryption paradigm that allows one to encrypt a message
under a hard problem—a statement x of an NP language L—so that anyone knowing a solution to this
problem—a witness w such that (x,w) ∈ RL—can decrypt the ciphertext in an efficient manner. Witness
encryption generalizes the classical notion of public-key encryption, where a user can encrypt a message
m to any user who knows the (secret) decryption key w = sk associated to some (public) encryption key
x = pk.

A general-purpose WE, one for all NP, is a powerful tool: it can be used to construct several cryp-
tographic primitives [DH76, Sha84, BF03, SW05]. Yet, currently, all its general constructions rely on
strong assumptions, such as multilinear maps [GGSW13, GLW14] or indistinguishability obfuscation
(iO) [GGH+13], that currently are not very well understood (despite recent progress [JLS21]).

Recent work has shown how some applications of witness encryption can be obtained through weaker
primitives, which, while still maintaining a strong “WE flavor” can at the same time be built through well-
studied cryptographic assumptions. We are referring to the work of Benhamouda and Lin [BL20], which

applies the round-collapsing techniques in [GLS15] to obtain powerful secure-computation protocols, multi-
party reusable non-interactive secure computation (or mrNISC), a type of MPC that requires no interaction
among subsets of users, provided that users had earlier committed to their input on a public bulletin board
(this offline stage is called “input encoding stage”). Before [BL20], similar techniques had required full-
blown WE. Benhamouda and Lin, on the other hand, use a different type of WE with a deterministic angle
to it: the statement w.r.t. which we encrypt is a commitment to a certain string v and a claim on a function
evaluation on v; the decrypting party can use a NIZK proof (non-interactive zero-knowledge [BFM88]).
That is, the encryption statement is (cm, G, y) and in order to decrypt we require a NIZK proof π which
proves that the evaluation of G on the value v committed in cm outputs y, i.e., “cm = Commit(v) and
y = G(v)”. We refer to the WE-like primitive in [BL20] as WEZK-CM for short.

Above, both the commitment and the proof size—and hence decryption time—grow linearly in the size
of v. The latter represents a piece of potentially large data and whose commitment is publicly shared at
an earlier time. We refer concisely to a construction not having this dependence in efficiency as having
“input-independent (decryptor’s) complexity”. A scheme with input-independent complexity would be
interesting to further minimize the communication complexity of applications of this type of WE. This
can be relevant, for example, in the input encoding phase of mrNISC (as well as in other applications,
see section 7): commitments are stored on a bulletin board (e.g., a blockchain) forever and thus their size
significantly affects its growth over time. On the other hand, we cannot just remove this dependence by
straightforwardly changing any “localized piece” in the approach in [BL20]. This dependency is to a certain
extent entangled with the techniques in [BL20]. These techniques rely on statistically binding commitments
and cryptographic proofs (rather than arguments, see also footnote 7), which cannot be compressed.

1.1 Our Work: WE For Succinct Functional Commitments

The work from [BL20] is encouraging: we may be able to use more familiar assumptions to obtain useful
variants of witness encryption. Our work is motivated by pushing this avenue further, both practically and
theoretically. We ask:

What are other weak-but-useful variants of WE that remain “as simple as possible” in terms of
assumptions to build them and that can achieve input-independent complexity?

In order to address this question, we move towards defining and constructing witness encryption for
succinct commitments that support succinct arguments. That is, where commitments are of fixed size—
independent of the input’s length—and so are the arguments about the correctness of computations on the
committed inputs. At the same time, we turn our gaze towards approaches requiring simpler and plausibly
strictly weaker primitives than general non-deterministic arguments.

We propose a generalization of WEZK-CM, the primitive in [BL20]. Our definition relies on the notion of
functional commitments of Libert, Ramanna and Yung [LRY16]. We call this primitive “WE for functional
commitments” (WEFC). Functional commitments allow a party to commit to a value v and later open
the commitment to y = G(v) for some functions G, by generating an opening proof π. Notably, in FCs
both the commitment and the opening proofs can be succinct (in particular, throughout this work we
always use the term ‘functional commitments’ to mean succinct ones). In terms of security, an FC should
be evaluation binding and hiding. The former means that an adversary cannot open the commitment to
two distinct outputs y ̸= y′ for the same function G, while the latter is the standard hiding property of
commitments. In addition, in our work we require FC to be zero-knowledge, which informally states that
the opening proof π should not reveal any information about the committed value v.

Functional commitments can be seen as a simple version of succinct commit-and-prove NIZK arguments
for polynomial-time computations. Their main difference from a NIZK is that soundness is replaced by
evaluation binding, which is a falsifiable notion since it requires the adversary to provide valid proofs for two
contradicting statements. Thanks to this, large classes of computations support functional commitments
that can be realized from falsifiable assumptions, as shown in the existing constructions of Libert et al.
[LRY16] for linear functions and of Lipmaa and Pavlyk [LP20] for sparse polynomials. For our goal of
extending WEZK-CM to succinct commitments, functional commitments are therefore a suitable candidate
as they minimally express the functionalities we need.

1.2 Our Contributions

Modeling: We introduce the notion of witness encryption for functional commitments (WEFC) and
formally define it. This notion can be seen as a—still highly useful—weakening of witness encryption with

2

nice communication complexity properties and that can actually be built from common cryptographic
assumptions. We elaborate on these features in the rest of this section.

Construction and techniques: We propose a construction of WEFC based on bilinear pairings. Our
construction combines a functional commitment with a linear verification procedure over a bilinear group,
together with an extractable projective hash function. Informally, linear verification of an FC means that
its openings proofs are group elements that are not paired together using the bilinear map. Interestingly,
the two FC schemes in [LRY16, LP20] satisfy this property and can be used to instantiate our WEFC.

While our construction follows the blueprint of [BL20] (i.e., combining a proof system with an SPHF
for its verification language), we had to solve substantial challenges due to our shift from the “soundness
against any adversary” of NIZKs to the “computational binding” of functional commitments. In particular,
the WEZK-CM definition of [BL20] used the notion of statistically binding commitments and statistically
sound NIZKs that allow one to classify a statement x = (cm, G, y) as false. The latter property is crucial
when building WE from an SPHF for the NIZK verification language: if x is false, then there is also no
proof that makes the NIZK verification accept, and thus the smoothness of SPHF can be used to mask
the message. If cm is succinct, this property may no longer hold. cm may contain collisions and always
open to a v′ such that G(v′) = y (and a similar issue arises for the fact that openings are arguments).
To solve this challenge, we develop two main technical contributions. The first one is finding a useful vari-
ant of projective hash function for our purposes. We define the notion of extractable PHFs and construct
this primitive secure in the algebraic group model [FKL18]. The second one is a different methodology
for building WE from extractable projective hash functions that resorts to the Goldreich-Levin technique
[GL89] in order to turn a good distinguisher into an algorithm that computes the hash function. We refer
to our technical overview in section 1.3 for further details.

A construction of mrNISC from WEFC: We show how our WEFCnotion can be used to build mrNISC.
The latter is a class of secure multiparty computation protocols in which parties work with minimal
interaction. In a first round, each party posts an encoding of its inputs in a public bulletin board. This is
done once and for all. Next, any subset of parties can compute a function of their private inputs by sending
only one message each. This second phase can be repeated many times for different computations and
different subsets of parties. Our construction for mrNISC confirms that our notion is not losing expressivity
compared to WEZK-CM from [BL20] and can in addition yield protocols with a succinct input encoding
phase. We also discuss properties of concrete MPC protocols that make them amenable to be compiled
into a mrNISC through our approach.

Other applications of WEFC: We provide additional applications beyond mrNISC where WEFCcan be
useful. As a first application, we show how WEFCcan be used for a simple construction of a variant of
targeted broadcast. In targeted broadcast [GPSW06] we want a certain message to be conveyed only to
authorized parties. An authorized party is one holding attributes satisfying a certain property (specified
at encryption time). As an example, a streaming service may want to broadcast an encryption of a movie
so that only users having purchased certain packages would be able to decrypt (and watch) it. There exist
ways to build this primitive non-naively while satisfying basic desiderata of the application domain4, for
example through ciphertext-policy ABE [GPSW06]. We show how we can achieve targeted broadcast in
a new (and simple) manner through WEFC. We observe that our construction achieves some interesting
properties absent in previous approaches: it achieves flexible and secret attestation and without any master
secret. This means that decryption attributes may be granted to a user through different methods, that
the latter can be kept secret and that there is no single party holding a key that can decrypt all messages
in the system. We provide further details and motivation in section 7.

As a second application, we show how, through WEFC, we can achieve simple and non-interactive
contingent payment for services [CGGN17] (“contingent payment” for short5). In a contingent payment
a payer wants to provide a reward/payment to another user conditional to the user having performed a
certain service. For example, a user may want to pay a cloud service conditionally to them storing their
data. Ideally this protocol should require no interaction. We describe a simple way to instantiate the
above through WEFC. Our solution can be used, for example, to incentivize, in a fine-grained manner,
portions of large committed data (for instance incentivizing storage of specific pages of Wikipedia or the
Internet Archive of particular importance on IPFS6) [dec22]. Compared to other approaches [CGGN17],
our solution is simple (e.g., does not require a blockchain with special properties or smart contracts) and

4 For example, sometimes a desideratum in such systems is that the broadcaster should not have to refer
to a database of user authorizations each time a different item is to be encrypted for broadcast.

5 Notice that “contingent payment” can also refer to payment for goods, rather than services. In this paper
we only refer to payment for services.

6 http://wikipedia.org, http://archive.org, http://ipfs.io

3

http://wikipedia.org
http://archive.org
http://ipfs.io

is highly communication efficient. To achieve this solution we need to solve additional technical challenges:
modeling and building an extractable variant of WEFC. We provide further details in section 7.

1.3 Technical Overview

We start with an overview of the techniques in [BL20]. Their notion of witness encryption called “WE
for NIZK of Commitments” (WEZK-CM) is defined for an NP language whose statements are of the form
x = (cm, G, y) such that cm is a commitment, G is an arbitrary polynomial-size circuit, and y is a value
(additionally, this language is parametrized by the common reference string, or crs, of the NIZK). The
type of commitment assumed in [BL20] is perfectly binding; therefore, a statement (cm, G, y) is true if
there exists a NIZK proof π (as a witness) which proves w.r.t. crs that G evaluates to y on the value v
committed in cm.

The definition of WEZK-CM states that semantic security property should hold for ciphertexts created
with respect to false claims (that is, commitments whose opening v is such that G(v) ̸= y). To achieve this
property, the idea in [BL20] relies on applying smooth projective hash function (SPHF) on the verification
algorithm of the NIZK. For the sake of this high-level overview, the reader can think of an SPHF as a
form of WE itself and which we know how to realize for simple languages. The crux of the construction
in [BL20], then is that, if the NIZK verification algorithm is “simple enough”, then we can leverage it to
build WEZK-CM. In more detail, let Θ = Mπ be the linear equation corresponding to the verification of
a NIZK for a statement x = (cm, G, y), such that Θ and M depend on x and crs, and hence are known
at the time of encryption. To encrypt a message, one can use an SPHF for this relation such that only
those who can compute the hash value using a valid witness π (i.e., π such that Θ = Mπ) can retrieve the
message. The work in [BL20] instantiates the above through Groth-Sahai NIZKs, which can be reduced
to a linear verification for committed inputs (this is true for only a restricted class of computations which
then [BL20] shows how to extend to all of P through randomized encodings). The commitments they rely
on are statistically binding and thus not compressing.

We now discuss how to go from this idea to our solutions. Recall that our goal is to have a type of
witness encryption that works on functional commitments. This implies that both the commitments and
opening proofs for functional evaluation on them are compressing. This efficiency requirement is the main
point of divergence between WEFC and WEZK-CM.

Moving from [BL20] to our approach is not unproblematic. In [BL20], in order to (i) effectively reduce
the original relation (G(v) = y for a correct opening v) to the verification of the NIZK, and (ii) to maintain
semantic security at the same time—in order to simultaneously achieve these two points—it is crucial
that the NIZK proof has unconditional soundness and that the underlying commitments are perfectly
binding7. At a very high level, the switch from [BL20] to our work consists of the switch from a NIZK
proof system [GS08], with linear proof size, to a succinct certificate, a succinct functional commitment.
Simple as it may sound, however, this switch is not immediate and requires solving several new challenges
on the way.

Brush up on functional commitments: The notion of functional commitments introduced by [LRY16] allows
a committer to commit to a value v and later open the commitment to y = G(v) by outputting an opening
proof π. Note that G can be chosen by the verifier at the time of opening. Functional commitments should
satisfy standard properties of hiding and evaluation binding (we will sometimes refer to the computational
flavor of soundness of evaluation binding as “argument” to make immediate the connection with argument
systems). In this work we also require a stronger property, namely a zero-knowledge property which in-
formally states that the opening proof π should not reveal any information about the committed value
v. Finally our main interest is in succinct functional commitments, where both the commitment and the
opening proof are succinct. We choose succinct functional commitments for our design, intuitively, because
they are a minimal primitive providing the properties we hope for. We discuss further in the related work
sections.

In what follows, we go into the details of our construction in a step-by-step approach, by discussing the
main challenges that will need to be addressed in each step.

Challenge 1: Proofs vs Arguments. The main challenge arises when using arguments (as opposed
to proofs) as witness in the witness encryption scheme. Recall that WEZK-CM constructs WE for the
augmented relation R corresponding to the verification algorithm of the NIZK proof and, as mentioned
above, switching to R still preserves semantic security. However, the same idea does not work when using

7 Unconditional soundness of a proof system means: “for a false statement, no proof string will have a
substantial probability of being accepted as valid”. This is in contrast to the computational soundness of
our building blocks: “for a false statement, no PPT adversary can produce a proof string with substantial
probability of being accepted”. The latter does not state that such proof string does not exist.

4

an argument system. This is because semantic security only guarantees security when the statement, under
which the challenge ciphertext is generated, is false. Defining R as the relation specified by the verification
of an argument system makes all statements potentially true. Hence, even though finding a witness (i.e,
an argument) is computationally hard, semantic security holds vacuously and makes no guarantee about
the encrypted message.

To solve this challenge, we observe that even though the relation is trivial here, finding the witness for
a statement yields a contradiction to security properties of the commitment in use. To elaborate further,
we note that the WE is constructed for the NP language corresponding to the verification algorithm of a
functional commitment. Now, given a “false” statement x̄ = (cm, G, y), where G(v) ̸= y for v committed in
cm and chosen by the adversary, our construction is such that for any efficient adversary that distinguishes
ciphertexts encrypted under the statement x corresponding to the verification circuit which (incorrectly)
asserts the truth of x̄, there exists an efficient adversary that breaks the evaluation-binding property of the
functional commitment by computing a valid opening proof op that satisfies the FC verification.

Challenge 2: Membership vs Knowledge. To build the above reduction, we make use of the
Goldreich-Levin technique [GL89] by which we can transform a ciphertext distinguisher into an efficient
algorithm that computes the hash value H used as a one-time pad to mask the message. While this part of
the reduction is straightforward, one challenge is how to compute a valid opening proof op from H. To this
end, we observe that the underlying SPHF is for the same language L that we build our WE and thus op
plays the role of the witness for x by which one can compute H. Thus, it seems like we would need a type
of SPHF with a strong notion of extractable security. Namely, a type of projective hash function (PHF)
that guarantees the existence of an extractor such that for any adversary that is able to compute a valid
hash, the extractor can compute a witness for the corresponding problem statement.

Unfortunately, there exists no construction of extractable PHF in literature, even based on non-standard
assumptions. The closest work is that of Wee [Wee10] which suggests a similar notion but only for some
relations not in NP that correspond to search problems. For the NP languages of our interest, it is easy to
see that since the hash values are of constant size (usually consisting of one group element), one needs to
rely on non-black-box techniques to provide extractability. We follow this approach and give a construction
of extractable PHF in the algebraic group model [FKL18].

Challenge 3: Reusability. Replacing NIZK of commitments with a functional commitment as de-
scribed above, and then following the same approach of [GLS15, BL20] yields a two-round MPC protocol.
However, building a mrNISC protocol is more challenging as the construction may not necessarily provide
reusability. To provide this property, we need functional commitment schemes that satisfy a strong form of
zero-knowledge, wherein any number of opening proofs for a given commitment can be simulated. In other
words, for a commitment cm broadcasted by a party in the first round of the protocol, running computa-
tion on different statements (cm, Gi, yi) with the same commitment cm does not reveal any information
about the committed value. This should be guaranteed by the existence of an efficient simulator that can
generate simulated openings for any adversarially chosen computation.

Trusted Setup and Malicious Security: We note that both existing constructions of mrNISC from bilinear
pairing groups [BL20] or from LWE [BJKL21] are in the plain model, whereas our construction requires
a trusted setup. However, for security analysis of mrNISC construction in previous works, it is assumed
that the corruption by the adversary is static. Further, the security in these works is only against semi-
malicious adversaries where corrupted parties follow the protocol specification, except they are allowed to
select their input and randomness from arbitrary distributions. This has been justified by the fact that
providing stronger notion of malicious security for MPC in two rounds in the plain model is impossible
and hence one should use either a trusted setup assumption or overcome this impossibility by relying on
super-polynomial time simulation (See [FJK21] for the second approach). We thus see the use of trusted
setup in our construction, in a sense, at no cost as it is crucial for achieving malicious security 8.

1.4 Related Work

The first candidate construction of witness encryption was proposed by the seminal work of Garg et
al. [GGSW13] based on multilinear maps. In a line of research, several other works [GGH+13, GLW14,
GLW14, GKW17] proposed constructions from similar strong assumptions; i.e., multilinear maps as in [GGSW13],
or indistinguishability obfuscation (iO). Recently, Barta et al. [BIOW20] showed a witness encryption
scheme based on a coding problem called Gap Minimum Distance Problem (GapMDP). However, they left

8 Achieving malicious security by using NIZK proofs in the trust model is a folklore technique and has
been used in many classical MPC works (e.g., See Lemma 7.5 in [BL20]). We thus omit details on
malicious security and similarly to previous works focus only on semi-malicious security.

5

it as an open problem whether their version of GapMDP is NP-hard. Another recent proposal based on
new unexplored algebraic structures and with conjectured security is that in [CVW18].

The work of [BL20] defines a restricted flavour of witness encryption called WE for NIZK of commit-
ments wherein parties first commit to their private inputs once and for all, and then later, an encryptor
can produce a ciphertext so that any party with a NIZK showing that the committed input satisfies the re-
lation can decrypt. Their construction relies on the SXDH assumption in bilinear pairings and Groth-Sahai
commitments and NIZKs. Using NIZK proofs as the decryption key provides a “delegatability” property
in [BL20], where the holder of a witness can delegate the decryption by publishing a NIZK proof for the
truth of the statement. Recently, [CDK+21] formalize a similar notion but without delegation property,
and give more efficient instantiations based on two-party Multi-Sender Non-Interactive Secure Computa-
tion (MS-NISC) protocols. The recent work of [Kho22] also defines a similar notion of Witness Encryption
with Decryptor Privacy that provides zero-knowledge, but not delegation property. Our approach is a
follow-up to the work of [BL20]. Finally, we note that constructions with a flavor of witness-encryption-
over-commitments [BL20, CDK+21] are also a viable solution to this problem, but with the caveat of
commitments having to be as large as the data (which is problematic if the data is large). This is not the
case in our constructions.

If we turn our attention to NIZKs and succinct commitments, one may wonder whether one can adapt
the results of [BL20] to work with (commit-and-prove) SNARKs. Although we cannot exclude this option,
we argue this may be an overkill for two reasons. First, in terms of assumptions this approach would
inherently require the use of non-falsifiable assumptions due to the impossibility result of Gentry and
Wichs [GW11]. In particular, the semantic security definition of WEZK-CM is falsifiable and thus could in
principle be realized without these strong assumptions. Second, in terms of efficiency, if we want to rely on
the SPHF construction framework we would need a SNARK with a linear verification over bilinear groups,
but such schemes are likely impossible, as shown by Groth [Gro16].

The primitive that we propose in this work is closely tied to functional commitments, first formalized
by Libert et al. [LRY16]. The functional commitment schemes in the state of the art support a variety of
functions classes, which include linear maps [LRY16, LM19], sparse polynomials [LP20], constant-degree
polynomials [CFT22, ACL+22], and NC1 circuits [CFT22]. Also, very recent works [BCFL22, dCP22] pro-
pose FC schemes for virtually arbitrary computations. As we mentioned earlier, our construction of WEFC

relies on FCs whose verification algorithm is a ‘linear’ pairing-based equation. This property is achieved
by the FC schemes for linear maps [LRY16, LM19] and sparse polynomials [LP20], which means we can
obtain instantiations of WEFC for these classes of functions. The recent and more expressive constructions
that are based on pairings [CFT22, BCFL22] unfortunately do not support this linear verification, as they
need to pair elements of the proof. Finding new FCs with a linear pairing-based verification and supporting
more expressive functions, such as circuits, is an interesting open problem motivated by our work.

2 Preliminaries

Notation. We use DPT (resp. PPT) to mean a deterministic (resp. probabilistic) polynomial time
algorithm. We denote by [n] the set {1, . . . , n} ⊆ N. To represent matrices and vectors, we use bold upper-
case and bold lower-case letters, respectively. We denote the security parameter by λ ∈ N. For an algorithm
A, RND(A) is the random tape of A (for a fixed choice of λ), and r ←$ RND(A) denotes the random choice
of r from RND(A). By y ← A(x; r) we denote that A, given an input x and a randomizer r, outputs y. By
x ←$ D we denote that x is sampled according to distribution D or uniformly randomly if D is a set. Let
negl(λ) be an arbitrary negligible function.

Pairings. A pairing is defined by a tuple bp = (p,G1,G2,GT , ê, g1, g2) where G1,G2,GT are (additive)
groups of order p, g1 is a generator of G1, g2 is a generator of G2, and ê : G1 × G2 → GT is an efficient,
non-degenerate bilinear map. In particular, ê(a · g1, b · g2) = (ab) · ê(g1, g2) for any a, b ∈ Zp. We denote
[a]t := a · gt for t ∈ {1, 2, T} where we define gT = ê(g1, g2). The same notation naturally extends to
matrices [M]t for M ∈ Zn×m

p .

Algebraic (Bilinear) Group Model. Essentially, in the AGM [FKL18], one assumes that every PPT
algorithm A is algebraic in the sense that A is allowed to see and use the structure of the group, but she
is required to also output a representation of output group elements as a linear combination of the inputs.
While the definition of AGM in [FKL18] only captures regular groups, here we require an extension that
captures asymmetric pairings as well. To formalize this notion, we use the following definition that is taken
from [CH20], but adjusted for our setting where A only outputs target group elements.

6

Definition 1 (Algebraic Adversaries). . Let bp = (p,G1,G2,GT , ê, g1, g2) be a pairing group and
[x]1 = ([x1]1, . . . , [xn]1) ∈ Gn

1 , [y]2 = ([y1]2, . . . , [ym]2) ∈ Gm
2 , [z]T = ([z1]T , . . . , [zl]T) ∈ Gl

T be vectors in
G1, G2 and GT , respectively. An algorithm A with input [x]1, [y]2, [z]T is called algebraic if in addition to
its output

S =
(
[S1]T . . . , [Sl′]T

)
∈ Gl′

T

A also provides a vector

s =

(Aijk) 1≤i≤l′

1≤j≤n
1≤k≤m

, (Bij)1≤i≤l′

1≤j≤l

 ∈ Zζ
p with ζ = l′ · (l + n ·m)

such that

Si =

n∑
j=1

m∑
k=1

ê (xj , yk)
Aijk +

l∑
j=1

Bijzi for i ∈
{
1, . . . , l′

}

2.1 Functional Commitment Schemes

Let D be some domain and C : Dµα ×Dµβ → Dκ be a circuit. In a functional commitment scheme for C,
the committer first commits to a vector α ∈ Dµα , obtaining a functional commitment cm, and then later
can open C to y = C(α,β) ∈ Dκ, where β ∈ Dµβ .

Definition 2 (Functional Commitments). For a class CC of circuits C : Dµα × Dµβ → Dκ, a func-
tional commitment scheme FC consists of four polynomial-time algorithms (Setup,Commit,Open,Verify),
where

Setup. Setup(1λ, C) is a probabilistic algorithm that given a security parameter λ ∈ N, and a circuit
C ∈ CC, outputs a commitment key ck and a trapdoor key td. For simplicity of notation, we assume
that ck contains the description of 1λ and C.

Commitment. Commit(ck,α; r) is a probabilistic algorithm that on input a commitment key ck, a message
α ∈ Dµα , and randomness r, outputs (cm, d), where cm is a commitment to α and d is a decommitment
information.

Opening. Open(ck, cm, d,β) is a deterministic algorithm that on input ck, a commitment cm (to α), a
decommitment d, and a vector β ∈ Dµβ , outputs an opening opy to y = F(α,β) := (Fi(α,β))

κ
i=1,

where public function Fi is the i-th output value of C.
Verification. Verify(ck, cm, opy,β,y) is a deterministic algorithm that on input ck, a commitment cm, an

opening opy, a vector β ∈ Dµβ , and y ∈ Dκ, outputs 1 if opy is a valid opening for cm and outputs 0
otherwise.

Security. We require two security properties for functional commitments, zero-knowledge and evaluation-
binding. The zero-knowledge property can be seen as a simulation-based definition of hiding property,
considerably stronger than the definition given in [LRY16] 9. Further, compared to the zero-knowledge
definition of [LP20], our definition is stronger in the sense that the commitment and simulated openings
are not generated at the same time. In other words, to make commitments reusable for our mrNISC
application, we need two simulators S1,S2, where S1 generates a simulated commitment, and S2—given
the simulated commitment—can produce any number of simulated openings for different adversarially
chosen functions.

Definition 3 (Perfect zero-knowledge). A functional commitment scheme FC = (Setup,Commit,Open,Verify)
for circuit class CC is perfectly zero-knowledge if there exists a PPT simulator S = (S1,S2), such that for
all λ, all C ∈ CC, (ck, td)← Setup(1λ, C), the following distributions are identical.{

AOOpen(st) = 1 : (st,α)← A(ck), r ←$ RNDλ(Commit), (cm, d)← Commit(ck,α; r)
}}

{
AOS (st) = 1 : (st,α)← A(ck), (cm, aux)← S1(td)

}
where OOpen(β) := Open(ck, cm, d,β) and OS(β) := S2(td, aux,β, C(α,β)).

We now define evaluation-binding property. Our definition is weaker than the definition of evaluation-
binding given in [LRY16, LP20] as the adversary here is required to output the committed input and
random coins, rather than the commitment.

9 The definition of hiding in [LRY16] guarantees that the commitment does not reveal any information
about α.

7

Definition 4 (Computational evaluation-binding). A functional commitment scheme FC = (Setup,
Commit,Open,Verify) for circuit class CC is computationally evaluation-binding if for any λ, any C ∈ CC,
and PPT adversary A, AdvbindFC,C,A(λ) = negl(λ), where AdvbindFC,C,A(λ) :=

Pr

β ∈ D
µβ ∧ y ∈ Dκ ∧

C(α,β) ̸= y ∧
Verify(ck, cm, opy,β,y) = 1

:

(ck, td)← Setup(1λ, C)
(α, r,β,y, opy)← A(ck)
cm = Commit(ck,α; r)

Lastly, we say that FC is succinct if the length of commitments and openings are polylogarithmic in

|α| and |β|.

2.2 Smooth Projective Hash Functions

Let Llpar be a NP language, parametrized by a language parameter lpar, and Rlpar ⊆ Xlpar be its correspond-
ing relation. A Smooth projective hash functions (SPHFs, [CS02]) for Llpar is a cryptographic primitive
with this property that given lpar and a statement x, one can compute a hash of x in two different ways:
either by using a projection key hp and (x,w) ∈ Rlpar as pH← projhash(lpar, hp, x,w), or by using a hashing
key hk and x ∈ Xlpar as H← hash(lpar, hk, x). The formal definition of SPHF follows.

Definition 5. A SPHF for {Llpar} is a tuple of PPT algorithms (PGen, hashkg, projkg, hash, projhash),
which are defined as follows:

PGen(1λ): Takes in a security parameter λ and generates the global parameters pp together with the lan-
guage parameters lpar. We assume that all algorithms have access to pp.

hashkg(lpar): Takes in a language parameter lpar and outputs a hashing key hk.
projkg(lpar, hk, x): Takes in a hashing key hk, lpar, and a statement x and outputs a projection key hp,

possibly depending on x.
hash(lpar, hk, x): Takes in a hashing key hk, lpar, and a statement x and outputs a hash value H.
projhash(lpar, hp, x,w): Takes in a projection key hp, lpar, a statement x, and a witness w for x ∈ L and

outputs a hash value pH.

To shorten notation, we sometimes denote “hk ← hashkg(lpar); hp ← projkg(lpar, hk, x)” by (hp, hk) ←
kgen(lpar, x). A SPHF must satisfy the following properties:

Correctness. It is required that hash(lpar, hk, x) = projhash(lpar, hp, x,w) for all x ∈ L and their corre-
sponding witnesses w.

Smoothness. It is required that for any lpar and any x ̸∈ L, the following distributions are statistically
indistinguishable:

{(hp,H) : (hp, hk)← kgen(lpar, x),H← hash(lpar, hk, x)}
{(hp,H) : (hp, hk)← kgen(lpar, x),H← Ω} .

where Ω is the set of hash values.

Remark 1. For our application, we need a type of SPHF where hp depends on the statement. This type
of SPHF with such “non-adaptivity” in the smoothness property was formally defined by Gennaro and
Lindell in [GL06] and was later named GL-SPHF in [Ham16]. Throughout this work, we always mean
GL-SPHF when talking about SPHFs.

In the above definition, smoothness is only guaranteed for false statements. Hence, for trivial languages
where all statements are true, such notion of smoothness is vacuous. To argue security in this case, a
stronger notion of knowledge-smoothness is required which guarantees that if an adversary can compute
the hash value with non-negligible probability, it must know a witness for the statement used in the hash
computation. More formally,

Knowledge Smoothness. A projective hash function (PGen, hashkg, projkg, hash, projhash) for {Llpar} is
knowledge smooth if for any λ, for any PPT adversary A = (A1,A2), there exists a PPT extractor
ExtA such that

Pr

H = hash(lpar, hk, x)

∧ (x,w) /∈ Rlpar

:

(pp, lpar)← PGen(1λ); x← A1(lpar)

(hp, hk)← kgen(lpar, x);H← A2(lpar, hp, x)

w← ExtA(lpar, hp, x)

 ≤ negl(λ)

A PHF with knowledge smoothness is called extractable projective hash function (EPHF).

Remark 2. The notion of extractable projective hash functions was first proposed by Wee [Wee10]. While
our definition of extractability bears similarities with Wee’s definition, it is different in that no dual mode
property is required.

8

3 Extractable PHF

Since all the existing constructions of SPHFs over groups are based on a framework called diverse vector
space (DVS), here we first recall this framework and then show that DVS-based SPHFs are knowledge
smooth in the AGM [FKL18].

3.1 Diverse Vector Space (DVS).

Intuitively, a DVS [BBC+13, ABP15, Ham16] is a way to represent a language L ⊆ X as a subspace L̂ of
some vector space of some finite field. In the seminal work [CS02], Cramer and Shoup showed that such
languages automatically admit SPHFs.

To briefly recap the notion of DVS, let R = {(x,w)} be a relation with L = {x : ∃w, (x,w) ∈ R}. Let
pp be system parameters, including say the description of a bilinear group. A (pairing-based) DVS V is
defined as V = (pp,X ,L,R, n, k,M,Θ,Λ), where M(x) is an n×k matrix, Θ(x) is an n-dimensional vector,
and Λ(x,w) a k-dimensional vector. In this work, we consider the case that the matrix M(x) may depend
on x (i.e., GL-DVS similarly to GL-SPHF). Moreover, as long as the equation Θ(x) = M(x) · Λ(x,w) is
consistent, it could be that different coefficients of Θ(x), M(x), and Λ(x,w) belong to different algebraic
structures. The most common case is that for a given bilinear group pp = (p,G1,G2,GT , ê, g1, g2), these
coefficients belong to either Zp, G1, G2, or GT as long as the consistency is preserved. A DVS V satisfies
the following properties [Ham16]:

– coordinate-independence of groups: the group in which each coordinate of Θ(x) lies is independent of
x.

– perfect completeness: for any (x,w) ∈ R, Θ(x) = M(x) ·Λ(x,w).
– statistical ε-soundness: ∀x ∈ X \ L, Pr[Θ(x) ∈ colspace(M(x))] ≤ ε.

3.2 Extractable PHF in the AGM.

Given a GL-DVS for L over some cyclic group G1, one can construct an efficient GL-SPHF for Llpar

with lpar = (M,Θ,Λ) as follows. First, sample a hashing key hk = α ←$ Zn
p and then define the pro-

jection key as hp = [γ(x)]1 ← projkg(lpar, hk, x) = α⊤[M(x)]1 ∈ G1×k
1 . The projection hash is pH ←

projhash(lpar, hp, x,w) = [γ(x)]1 · Λ(x,w) = α⊤[M(x)]1Λ(x,w) ∈ G1. For [Θ(x)]1 = [M(x)]1Λ(x,w) ∈ Gn
1 ,

the hash is H← hash(lpar, hk, x) = hk⊤ · [Θ(x)]1 = α⊤[M(x)]1Λ(x,w) ∈ G1. Thus, if x ∈ L, then H = pH. It
is known that if the underlying GL-DVS is 0-sound, then this is a perfectly smooth GL-SPHF, see Theorem
3.1.11 in [Ham16].

Different from above construction over cyclic groups, our SPHF construction deals with more com-
plex languages over bilinear groups. Namely, we are interested in SPHFs for languages Llpar with lpar =
(M,Θ,Λ) such that Θ(x) is in the target group, the coefficients of M(x) (resp. Λ(x,w)) belong to the
group Gι (resp. G3−ι) for some ι ∈ {1, 2}, and that [Θ(x)]T = [M(x)]ι[Λ(x,w)]3−ι. The construction of
SPHF for such languages called HFdvs is depicted in fig. 1.

– hashkg(lpar): sample α←$ Zn
p , and output hk← α;

– projkg(lpar, hk, x): [γ]⊤ι ← α⊤[M(x)]ι ∈ G1×k
⋆ ; return hp← [γ]⋆;

– hash(lpar, hk, x): return [H]T ← α⊤[Θ(x)]T ;
– projhash(lpar, hp, x,w): return [pH]T ← [γ]⊤ι [Λ(x,w)]3−ι;

Fig. 1: DVS-based SPHF construction HFdvs for Llpar with lpar = (M,Θ,Λ).

In the following theorem, we prove that HFdvs in fig. 1 is extractable against algebraic adversaries under
the discrete logarithm assumption. To that end, we restate the definition of knowledge smoothness for the
languages of our interest, namely {Llpar}, where lpar = (M,Θ,Λ), and

Llpar =
{
[Θ(x)]T : ∃[Λ(x,w)]3−ι s.t [Θ(x)]T = [M(x)]ι[Λ(x,w)]3−ι

}
Note that in this case, the extractor is supposed to extract only [Λ(x,w)]3−ι (and not w) such that
([Θ(x)]T , [Λ(x,w)]3−ι) ∈ Rlpar.The security guarantee is that for any PPT adversary A = (A1,A2) that

9

can compute a valid hash value for an adversarially chosen statement, there exists an efficient extractor
that can extract a valid witness for the statement.

In our application, we also need to make sure that the statement chosen by A satisfies some predicate 10.
To this end, we let A1 to select the statement by revealing the random coins aux of the statement, instead.
The actual statement is then generated by a deterministic instance generator IG that takes aux as input
and returns an instance x if the predicate holds.

Knowledge Smoothness. A projective hash function PHF = (PGen, hashkg, projkg, hash, projhash) for
{Llpar} defined by lpar = (M,Θ,Λ) is knowledge smooth if for any λ, for any PPT adversary A =
(A1,A2), there exists a PPT extractor ExtA such that Pr[ExpKSPHF,IG(A, λ)] ≤ negl(λ), where ExpKSPHF,IG(A, λ)
is defined in fig. 2.

1. (pp, lpar)← PGen(1λ);
2. aux← A1(lpar);
3. x← IG(aux); if x = ⊥, return 0; else x′ ← [Θ(x)]T ;
4. (hp, hk)← kgen(lpar, x′);
5. H← A2(lpar, hp, aux);
6. H′ = hash(lpar, hk, x′);
7. w′ ← ExtA(lpar, hp);

8. return
(
(H = H′) ∧ (x′,w′) /∈ Rlpar

)
;

Fig. 2: Knowledge smoothness experiment ExpKSPHF,IG(A, λ)

Theorem 1. Let Llpar be a language defined by language parameter lpar = (M,Θ,Λ). Under the discrete
logarithm assumption, HFdvs in fig. 1 is an extractable PHF (EPHF) against all PPT adversaries A =
(A1,A2), where A2 is algebraic.

Proof. We prove the theorem for ι = 1; the other case goes exactly in the same way. Let A = (A1,A2)
be any PPT adversary against the knowledge smoothness of HFdvs and assume that A2 is algebraic. Let
x be the statement output by A1 on input lpar = (M,Θ,Λ). A2 returns a hash value H ∈ GT , and by
its algebraic nature, A2 also provides coefficients that “explain” these elements as linear combinations
of the input. Let [x]1 = [x1,xI ,xJ]1 = [1,M(x),γ]1 and [y]2 = [1]2 be the input vectors in G1 and G2,
respectively. Let [z]T = [Θ(x)]T be A2’s input vector in GT . The coefficients returned by A2([x]1, [y]2, [z]T)
are s =

(
(Ai)i , (Bi)i

)
such that

H =
∑

i∈[1+|I+J|]

ê (xi, y)
Ai +

∑
i∈[|z|]

Bizi.

Let Ext be the extractor that runs the algebraic adversary A2 and returns [Λ(x,w)]2 := [AJ]2. We can
show that this is a valid witness for [Θ(x)]T as long as the hash value H returned by A2 is a correct hash.
In other words, if A2 can output H such that H = α⊤[Θ(x)]T , and Θ(x) ̸= M(x)Λ(x,w), we can construct
an algorithm B that exploits A2 and breaks the discrete logarithm problem. To do this, B on challenge
input Z = [z]ι proceeds as follows. First, it uses Dlpar to sample lpar = (M,Θ,Λ). Second, it samples
r, s←$ Zn

p and implicitly sets α := z · r+ s. Third, it computes hp = [M(x)⊤α]1 and runs A2(lpar, hp, x).
Once received A2’s output H, B returns z = (α− s)r−1, where α is computed as follows:

α⊤Θ(x)− γ⊤AJ = A1 +M(x)AI +Θ(x)B

⇒ α⊤(Θ(x)−M(x)AJ) = A1 +M(x)AI +Θ(x)B

⇒ α⊤ =
(
A1 +M(x)AI +Θ(x)B

)(
Θ(x)−M(x)AJ

)−1

⊓⊔
10 For example, for x = (cm, G, y), the predicate checks if G(v) ̸= y, where v is committed in cm.

10

4 WE for Functional Commitment

In this section we define our notion of witness encryption for functional commitments. In standard witness
encryption we require semantic security for false statements; in our notion we require semantic security for
false statements on committed inputs. The decryption algorithm requires an opening proof of the succinct
functional commitment w.r.t. a function and output specified at encryption time. Like other variants of
WE [BL20, CDK+21], loses the pure “non-deterministic” flavor of WE since it requires the existence of
a commitment to the decryption witness. We refer to the introduction for further intuitions about the
notion.

Definition 6 (Witness Encryption for Functional Commitments). Let FC = (Setup,Commit,Open,Verify)
be a functional commitment scheme for a circuit class CC. A witness encryption for FC, denoted by WEFC,
for circuit class CC is a tuple of polynomial-time algorithms WEFC = (Setup,Commit,Open,Verify,Enc,Dec),
where Setup,Commit,Open, and Verify are defined by FC and

Encryption. Enc(ck, cm,β,y,m) is a probabilistic algorithm that takes as input the commitment key ck
(including C ∈ CC), a statement x = (cm,β,y), and a bitstring m, and outputs an encryption of m
under x.

Decryption. Dec(ck, ct, cm,β,y, op) is a deterministic algorithm that on input ck, a ciphertext ct, a
statement x = (cm,β,y), and an opening proof op, decrypts ct into a message m, or returns ⊥.

We require two properties, correctness and semantic security.

(Perfect) Correctness. For all λ ∈ N, C ∈ CC, ck← Setup(1λ, C), message m, we have:

Pr

Dec(ck, ct, cm,β, C(α,β), op) = m :

(cm, d)← Commit(ck,α; r)

ct← Enc(ck, cm,β, C(α,β),m)

op← Open(ck, cm, d,β)

 = 1

Semantic Security. For any λ, any C ∈ CC, and PPT adversary A = (A1,A2), AdvssWE,FC,C,A(λ) =
negl(λ), where AdvssWE,FC,C,A(λ) :=∣∣∣∣∣∣∣Pr

b′ = b :

(ck, td)← Setup(1λ, C); (α, r,β,y,m0,m1)← A1(ck)

(cm, d)← Commit(ck,α; r); b←$ {0, 1}; ct← Enc(ck, cm,β,y,mb)

if C(α,β) = y then ct := ⊥; b′ ← A2(ct)

− 1/2

∣∣∣∣∣∣∣
5 Our Construction

In this section we present our construction of WE for functional commitments and then discuss possible
instantiations using state-of-the-art functional commitments.

5.1 Building WEFC from Extractable Projective Hash

Let FC = (Setup,Commit,Open,Verify) be a (succinct) functional commitment scheme for CC, where the
verification circuit is linear (i.e., of degree one) in the opening proof. Let EPHF = (PGen, hashkg, projkg,
hash, projhash) be an extractable projective hash function. The key idea of the construction is to use EPHF
for the language defined by the verification circuit of FC. Since this circuit is affine in the opening proof
op, and we know how to construct PHF for affine languages, the witness encryption just uses EPHF in a
straightforward way. Note that because the language is trivial, we need knowledge smoothness rather than
standard smoothness.

Construction. Let lpar = ck be the language parameter that defines Llpar corresponding to the verifica-
tion circuit of FC as follows:

Llpar = {x = (cm,β,y)|∃op : Verify(ck, cm, op,β,y) = 1}

Due to linearity of this circuit in the opening op, there exists a matrix [Mlpar,x]⋆ and a vector [Θlpar,x]⋆
11

such that
[Θlpar,x]T = [Mlpar,x · õp]T

11 The star ⋆ means that the elements are not necessarily in the same group.

11

where õp is derived from op by replacing its group elements with their discrete logarithms. Let σ : GT →
{0, 1}ℓ be a generic deterministic injective encoding that maps group elements in GT into ℓ-bit strings, and
that has an efficient inversion algorithm σ−1. Our WE for functional commitments WEFC = (Enc,Dec) for
Llpar can be described as follows:

Enc(ck, cm,β,y,m). Let x = (cm,β,y). To encrypt a bit message m ∈ {0, 1}, select a uniformly random
vector hk ∈ Z1×ν

p , where ν is the number of rows of Mlpar,x, sample a random r ←$ {0, 1}ℓ, and compute
the ciphertext ct = (hp, r, ĉt), where

hp = [hk ·Mlpar,x]⋆, H = [hk ·Θlpar,x]T , ĉt = ⟨σ(H), r⟩ ⊕m

Dec(ck, ct, cm,β,y, op). On input a ciphertext ct = (hp, r, ĉt), first compute pH = [hp · õp]T , and then
output the message m ∈ {0, 1} computed as m = ⟨σ(pH), r⟩ ⊕ ĉt.

Theorem 2. Let FC be a functional commitment scheme for circuit class CC with computational evaluation-
binding property. Let EPHF be an extractable projective hash function. The construction of WEFC described
above is a WEFC for CC.

Proof. Perfect correctness follows directly from correctness of FC and EPHF. To prove semantic security, we
show a reduction from evaluation-binding of FC to semantic security of WEFC. To do so, let us assume that
WEFC is not semantically secure. By definition, there exists an efficient adversary A that, for a maliciously
chosen (false) statement x = (cm,β,y) 12, where cm = Commit(ck,α; r) (all known toA), it can distinguish,
with non-negligible advantage, encryptions of 0 and 1 under x. We first show how to construct an efficient
algorithm B that uses A to compute a hash value H = hash(lpar, hk, x).

Before giving the description of B, let us first recall the classic Goldreich-Levin theorem [GL89] based
on which we construct B.
Theorem 3 (Goldreich-Levin). Let ϵ > 0. Fix some x ∈ {0, 1}n and let Ax be a PPT algorithm such
that Pr[Ax(r) = ⟨r, x⟩|r ←$ {0, 1}n] ≥ 1/2+ ϵ. There exists a decoding algorithm DAx(·) with oracle access
to Ax that runs in poly(n, 1/ϵ)-time and outputs a list L ⊆ {0, 1}n such that |L| = poly(n, 1/ϵ) and x ∈ L
with probability at least 1/2.

The fact that A can distinguishes ct0 and ct1 under x = (cm,β,y) with non-negligible advantage
implies that

Pr

b′ = b :

b←$ {0, 1}; hk←$ Z1×ν
p ; r ←$ {0, 1}ℓ;

hp = [hk ·Mlpar,x]⋆;H = [hk ·Θlpar,x]T ; ĉt = ⟨σ(H), r⟩ ⊕ b;
b′ ← A(hp, r, ĉt)

 ≥ 1/2 + ϵ

for some ϵ = 1/p(λ), where p is a polynomial. We first construct an algorithm B̄ that on input (hp, r)
for r ←$ {0, 1}ℓ, it uses A to predict the value of ⟨r, σ(H)⟩. B̄ proceeds as follows: on input (hp, r), it
samples b←$ {0, 1} and runs A on input (hp, r, b). If A correctly guesses b, B̄ outputs 0, and otherwise 1.
By construction, it is easy to see that B̄ outputs ⟨r, σ(H)⟩ with probability at least 1/2 + ϵ. Using B̄ and

Goldreich-Levin decoding algorithm DB̄(hp,·) in theorem 3, we now construct B that on input lpar, hp and
x, computes σ(H) as follows:

– Runs DB̄(hp,·) so that to answer an oracle query r ∈ {0, 1}ℓ, B outputs B̄(hp, r).
– Let L ⊆ {0, 1}ℓ be the list that DB̄(hp,·) outputs. B returns σ(H)←$ L.

To analyze the success probability of B, let K be the set of hashing keys hk ∈ Z1×ν
p such that for hp ←

projkg(lpar, hk, x), and H← hash(lpar, hk, x),

Pr[B̄(hp, r) = ⟨r, σ(H)⟩|r ←$ {0, 1}ℓ] ≥ 1/2 + ϵ/2.

By an averaging argument, the probability that a random hk←$ Z1×ν
p is in K is at least ϵ. This indicates

that with probability at least ϵ, the hashing key hk chosen in the knowledge smoothness experiment of EPHF
lies in K and hence the oracle B̄(hp, ·) satisfies the requirement in theorem 3. This subsequently indicates

that the list L returned by DB̄(hp,·) contains σ(H) with probability at least 1/2. Therefore, B computes
σ(H), and thus H with probability at least ϵ· 1

2
· 1
|L| which is 1

q(λ)
for some polynomial q. Due to extractability

of the EPHF, there should exist an efficient extractor ExtB for B such that for cm = Commit(ck,α; r) and
x = (cm,β,y), ExtB can extract a valid witness w = op such that (x,w) ∈ Rlpar with probability at least

1
q(λ)

. The above reduction can subsequently be invoked by a computational evaluation-binding adversary

to break this property with non-negligible probability by outputting (α, r,β,y, op). This completes the
proof. ⊓⊔
12 Note that x is false in the sense that for cm = Commit(ck,α; r), we have C(α,β) ̸= y. With respect

to the language Llpar corresponding to the verification of functional commitments, such statements are
always true however.

12

5.2 Instantiations

Let C : Dµα×Dµβ → Dκ be a polynomial-time circuit that on input (α,β), outputs y = C(α,β). In a SFC
for C, α can be seen as the committer’s secret input, and β as the verifier’s public input. In the following,
we give two instantiations of functional commitments that satisfy the required properties.

Libert et al.’s FC. The seminal work of Libert et al. [LRY16] constructs FC for linear functions
C : Zµα

p × Zµβ
p → Zκ

p where µα = µβ = n and κ = 1, and the linear function C(·,β) defined as C(α,β) =∑n
i=1 αiβi. While the original construction is over bilinear groups of composite order, here to keep it

consistent with the algebraic structure of EPHF in section 3.2, we describe the construction over prime
order groups (see [LM19]).

Let ê : G1 ×G2 → GT be a bilinear pairing with group order p. The construction is as follows.

Setup(1λ, C) samples u←$ Zp and returns ck as

ck :=
(
{[uj]1}j∈[2n]\{n+1}, {[uj]2}j∈[n]

)
.

The trapdoor key is defined as td := [un+1]1.
Commit(ck,α; r) returns cm = [r]1 +

∑
j∈[n] αj · [uj]1 and d = (α, r).

Open(ck, cm, d,β) parses d as d = (α, r) and for y = ⟨α,β⟩, returns opy =
∑

i∈[n] βi ·Wi, where

Wi = [un−i+1r]1 ·
∑

j∈[n],j ̸=i

αj · [un+1−i+j]1.

Verify(ck, cm, opy,β, y) returns 1 if

ê(cm,
∑
i∈[n]

βi · [u
n+1−i]2)

?
= ê(opy, [1]2) · ê([u]1, [u

n]2)
y

It is clear that the verification is linear in the opening proof. To show the construction provides perfect
ZK property of definition 3, an efficient simulator S = (S1,S2) can be constructed as follows: S1(td) first
generates cm := Commit(ck,0; r) and defines aux := r. Now, for any adversarially chosen vector α, and
any query β, S2(td, aux,β, y = ⟨α,β⟩) returns op = (r

∑
i∈[n] βi · [un+1−i]1) · ([un+1]1)

−y ∈ G1.

Lipmaa and Pavlyk’s FC. Recently, Limpaa and Pavlyk [LP20] proposed a SFC for a class of circuits
C : Dµα × Dµβ → Dκ based on the SNARK construction of Groth16 [Gro16] for C∗—a compiled version
of C. In Groth’s SNARK, the argument consists of three group elements π = ([A]1, [B]2, [C]1). The key
idea in SFC of [LP20] is as follows: first, express the first two elements [A]1, [B]2 as sums of two elements
where the first depends only on the secret data and the second depends only on the public data (i.e.,
β and the output C(α,β)). That is, [A]1 = [As]1 + [Ap]1 and [B]2 = [Bs]2 + [Bp]2. Next, write [C]1 as
[Csp]1 + [Cp]1, where [Cp]1 depends only on the public data and [Csp]1 depends on both the public and
the secret data. Now, a functional commitment to α is cm = ([As]1, [Bs]2) and the opening to C(·,β) is
op = [Csp]1. To verify an opening op, the verifier computes [Ap]1, [Bp]2, and [Cp]1, and then runs the
SNARK verifier on the argument ([As]1 + [Ap]1, [Bs]2 + [Bp]2, [Csp]1 + [Cp]1). The construction is shown
to be perfectly zero-knowledge as defined in [LP20], but it is not hard to show that it satisfies our stronger
definition (i.e., definition 3) as well. In fact, given td = (u, v) as the trapdoor of the commitment key,
S1(td) generates the commitment as the first step of the SNARK simulation in [LP20] and defines aux as
the discrete logarithm of the commitment. Now, S2 can utilises aux and answer oracle queries for different
circuits C(·,β) by performing the rest of the SNARK simulation. Given that the verification in the SNARK
of [Gro16] is linear in the opening [Csp]1 makes this functional commitment an appropriate instantiation
for our construction of WEFC.

6 From WEFC to Reusable Non-Interactive MPC

6.1 Preliminaries on mrNISC

Here we first recall the definition of mrNISC schemes in [BL20] and their construction based on WEZK-CM.
We then show how our notion of WEFC can be used as a replacement of WEZK-CM in their construction.

There are two rounds in mrNISC-style variant of secure multiparty computation protocols, input en-
coding phase and evaluation phase. In the first round, parties publish encodings of their secret inputs on
a public bulletin board, without any coordination with other parties. This happens once and for all. Next,
in the second round, any subset of parties can compute a function on their inputs by publishing only one
message each. More formally, a mrNISC scheme is defined by the following three algorithms:

13

Input Encoding (x̂i, si)← Commit(1λ, xi) by which a party Pi encodes its private input xi and publishes
the encoding x̂i.

Computation Encoding ηi ← Encode(z, {x̂j}j∈J , si) by which each party Pi among a subset of parties
{Pj}j∈J generates and publishes a computation encoding ηi. This allows parties in J to compute a
functionality f described by z (i.e., f(z, ⋆)) on their private inputs.

Output y = Eval(z, {x̂j}j∈J , {ηj}j∈J) which deterministically computes the output y (required to be
f(z, {x̂j}j∈J) by the correctness property).

The construction of mrNISC in [BL20] is based upon the work of [GLS15], where they follow the round
collapsing approach for constructing 2-round MPC protocols used in [GGHR14]. Let

∏
be an L-round

MPC protocol. The round collapsing approach collapses
∏

into a 2-round protocol
∏

as follows. For
ℓ ∈ [L], let mℓ

i denote the message published by party Pi in round ℓ of
∏
. Let xi and ri be respectively

the secret input and random tape of Pi used to execute
∏
. In the first round of

∏
, each party Pi commits

to its private input (xi, ri) and broadcasts the resulting commitment cmi. In the second round, each party
Pi garbles its next-step message function F ℓ

i in
∏

for each round ℓ ∈ [L]. Note that the resulting garbled
circuit, denoted by F̂ ℓ

i , should take as input all the messages m<ℓ = {mℓ
j}l<ℓ,j∈[n] of all parties up to

round ℓ−1, and outputs the next message mℓ
i of Pi in

∏
. To do so, each Pi should provide a way for other

parties to compute the labels of F̂ ℓ
i that correspond to the correct messages in

∏
, where a message ml

j

is correct if it is computed from Pi’s committed messages (xi, ri) in the first round. To this end, [GLS15]
suggests the following mechanism: let k0 and k1 be two labels for an input wire in Pi’s garbled circuit F̂ ℓ

i .
Suppose that F̂ ℓ

i takes as input the t’th bit y = ml
j,t of a message from Pj (where ml

j is output by Pj ’s

garbled circuit F̂ l
j), and provides a way for all parties to obtain the valid label ky. The key idea in [GLS15]

is to use a general-purpose WE to produce a ciphertext cty ← WE.Enc(xy, ky) for y ∈ {0, 1} under the
statement xy that “there exists a NIZK proof πy that proves y = ml

j,t is computed correctly”. Again,
correct computation here means that y is computed from Pj ’s committed messages (xi, ri) in the first
round, and in accordance to the partial transcript of messages m<l. The two ciphertexts (ct0, ct1) are part
of what Pi in the garbled circuit F̂ l−1

i outputs. Furthermore, to allow all parties to (publicly) obtain the
correct label ky, Pj ’s garbled circuit F̂ l

j additionally outputs a NIZK proof πy that y = ml
j,t is correctly

computed. Correctness of
∏

follows from correctness of WE. Security also follows from the fact that k1−y

remains hidden by the soundness of NIZK and semantic security of WE. Furthermore, the ZK property of
NIZK guarantees the privacy of parties.

The main problem in the above construction of [GLS15] is the lack of general-purpose WE from
standard assumptions. Benhamouda and Lin [BL20] overcome this problem by observing that not a WE
for general NP language, but a WE scheme for a particular language corresponding to the verification
circuit of a NIZK proof that proves the correctness of computation over committed information suffices to
realize the above construction. This variant of WE, denoted by WEZK-CM in this work, consists of a triple
WEZK-CM = (COM,NIZK,WE) and is defined for a NP language L such that a statement x = (cm, G, y) is in
L iff there exists an accepting NIZK proof π (as the witness for x) w.r.t. crs that proves cm is a commitment
of some value v and that G(v) = y. As provided in the construction of [GLS15] (but based on stronger
assumption of general-purpose WE), WEZK-CM should support all polynomial computations; i.e., it should
be that G in the statements x = (cm, G, y) can be any arbitrary polynomial-sized circuit. Moreover, the
commitments in WEZK-CM should be reusable in the sense that generating unbounded number of NIZK
proofs and WE ciphertexts w.r.t. commitments should not reveal any information about the committed
(secret) values, except what is revealed by the statements. Equipped with this property then allows to make
the construction of [GLS15] reusable by replacing ri with a PRF seed si that generates pseudo-random
tapes for an unbounded number of computations. The key idea in the construction of WEZK-CM in [BL20]
is to use a NIZK proof system that has a linear-decision verification. Given such NIZK is then sufficient
to realize WEZK-CM using a WE for linear languages which can be constructed efficiently based on smooth
projective hash functions (SPHFs). In more details, let Θ = Mπ be the linear equation corresponding to
the verification of NIZK for a statement x = (cm, G, y), such that Θ and M only depend on x and thus are
known at the time of encryption. One can now encrypt a message straightforwardly by using an SPHF for
this relation such that only one who can compute the hash value using a valid witness π (i.e., Θ = Mπ)
can retrieve the message.

6.2 Our mrNISC construction.

We now show how one can replace WEZK-CM with WEFC in the aforementioned construction. Let FC be a
succinct functional commitment for circuit class CC, and WEFC = (Setup,Commit,Open,Verify,Enc,Dec)
be a WEFC for CC constructed as in section 5. Besides WEFC, the construction uses the following building
blocks:

14

Hardwired Values. 1λ, ℓ, i, z, {x̂j = cmj}j∈J , si = (xi, fki, di), stE
ℓ+1
i , {msgEℓ+1

i,j }j∈J .

Circuit Inputs. (m<ℓ−1,mℓ−1), where m<ℓ−1 are the protocol messages of the first ℓ− 2 rounds with
corresponding garble labels stEℓ

i , and mℓ−1 are the messages of the ℓ − 1 round with corresponding
garble labels {msgEℓ

i,j}j∈J .

Procedure. 1. For j ∈ J and k ∈ [νm], define the circuits Gℓ
j and Gℓ

j,k as follows:

Gℓ
j(xj , fkj) = Nextj(z, xj ,PRF(fkj , z||[νr]),m<ℓ−1,mℓ−1) ; Gℓ

j,k := k-th bit of Gℓ
j

2. Compute the ℓ-th round message mℓ
i = mℓ

i,1|| . . . ||mℓ
i,νm of Pi, and proofs of correct openings opℓi,k for

each bit k ∈ [νm]:

mℓ
i := Gℓ

i(xi, fki) ; op
ℓ
i,k ← Open(ck, cmi, si, G

ℓ
i,k) for k ∈ [νm].

3. For j ∈ J and k ∈ [νm], encrypt labels msgEℓ+1
i,j [k, b] so that the valid message mℓ

j can be used to

obtain msgEℓ+1
i,j [mℓ

j] = {msgEℓ+1
i,j [k,mℓ

j,k]}k∈[νm]:

ctℓ+1
i,j,k,b ← Enc(ck, cmj , G

ℓ
j,k, b,msgEℓ+1

i,j [k, b])a for b ∈ {0, 1}.

Circuit Output. (stEℓ+1
i [m<ℓ−1||mℓ−1], {ctℓ+1

i,j,k,b}j,k,b,m
ℓ
i , {opℓi,k}k).

a The ciphertexts are set to be empty strings for ℓ = L.

Fig. 3: Circuit Fℓ
i for the construction of mrNISC based on WEFC

– A semi-malicious output-delayed simulatable L-round MPC protocol
∏

= (Next,Output) for f (see def-
inition 7).

– A garbled circuit scheme GC = (Gen,Garble,Eval, Sim) for CC (see definition 10).

The construction is as follows:

Input Encoding. For a binary input xi and PRF key fki ←$ {0, 1}λ, party Pi commits to xi||fki as
(cmi, di)← Commit(ck, (xi||fki); ri). It then sets x̂i := cmi and si := (xi, fki, di).

Computation Encoding. To encode a computation f(z, ⋆), each party Pi for ℓ ∈ [L] generates input
labels (stEℓ

i , {msgEℓ
i,j}j∈J) ← Gen(1λ) and garbles the evaluation function Fℓ

i (defined in fig. 3) as

F̂ℓ
i ← Garble((stEℓ

i , {msgEℓ
i,j}j∈J),F

ℓ
i). Finally, it sets ηi := {F̂ℓ

i}ℓ∈[L].

Output. The output is computed by recovering the input labels and then evaluating the garbled circuits
on them in L iteration. That is, for ℓ = 1, . . . , L:

1. For i ∈ J ,(
stE′ℓ+1

i , {ctℓi,j,k,b}j,k,b,mℓ
i , {opℓi,k}k

)
:= Eval(F̂i, (stE

′ℓ
i , {msgEℓ

i,j [m
ℓ−1
j]}j∈J)).

2. If ℓ ̸= L, then for i, j ∈ J and k ∈ [νm],

msgEℓ+1
i,j [mℓ

j] :=
{
Dec(ck, ctℓ+1

i,j,k,mℓ
j,k
, cmj , G

ℓ
j,k,m

ℓ
j,k, op

ℓ
i,j,k)

}
After all the messages m = {mℓ

j}j∈J,ℓ∈[L] of the inner MPC are recovered, the final output is computed
as y := Output(z,m).

The correctness of the construction follows straightforwardly from the correctness of the underlying
building blocks. For security, we refer to [BL20] as the proof is similar to the security of the mrNISC
construction in [BL20]. Here, we only state the theorem.

Theorem 4. Let PRF be a pseudorandom function, GC be a garbled circuit with simulatability property
(see 10),

∏
be a semi-malicious output-delayed simulatable MPC protocol (see 7), and WEFC be a WEFC

for CC with semantic security (see 4). The mrNISC scheme described above is semi-maliciously private as
defined in A.3.

15

6.3 On the Instantiation of our mrNISC Construction

The main advantage of our mrNISC construction compared to the one in [BL20] is that our approach
admits an input encoding phase with much shorter communication since we use succinct commitments.
This is especially important since commitments are supposed to be stored in a public bulletin board to be
re-used in several future computations. Next, we discuss the requirements to instantiate our scheme.

In order to instantiate our mrNISC construction, we notice that it is possible to use a WEFC for circuits
in NC1, rather than a WEFC for arbitrary polynomial-time computations.

To see this, we observe that in the concrete example of MPC protocols based on Beaver’s technique
for multiplication gates, it is possible to write the gate computations as a linear combination of some
Beaver triples. Namely, the next-message function Nextj is a linear function over a finite field and can
be computed in NC1. Second, in order to define the function Gℓ

j , one needs to compose Nextj with the
function computing the PRF used in the mrNISC construction. One can use a PRF that is computable
in NC1. Finally, the last step consists into extracting the output bit-by-bit, which comes for free if Gℓ

j is
computed via a boolean circuit.

As observed, in Section 5.2, the state of the art of functional commitments that we can use to instantiate
our WEFC construction (i.e., those having a pairing-based verification linear in the proof elements) can
only support a class of linearizable functions [LP20] over a large finite field. These are functions where
outputs can be written as

∑
i,j ϕi(α)ψj(β) for some efficiently computable polynomials ϕi, ψj , but do not

seem powerful enough to capture boolean circuits in the class NC1. We leave the construction of such
more expressive functional commitments based on pairings and with linear verification as an interesting
open problem. Given the very recent progress in enhancing the expressivity of functional commitments
(see Section 1.4), we believe it might be a feasible achievement.

7 Other Application Scenarios

In this section we show that our notion of WEFCcan be versatile; we describe how it can be used in other
scenarios besides mrNISC.

7.1 Targeted Broadcast

As a first application scenario, we discuss how to apply WEFC to a targeted broadcast with “special
properties”. See last item in section 1.2 for a description of the problem, but a quick summary is: we aim
at encrypting a message with respect to some attributes (not necessarily known before encryption time);
only users holding those attributes can decrypt (we discuss later how they are granted).

This subsection proceeds in three parts. We first give a flavor of our approach template, which we call
“commit-and-receive” since it involves a commitment to user attributes which allows them to decrypt to
compatible messages. We then argue what properties make this approach interesting compared to the more
standard targeted broadcast setting. Finally we compare to alternative approaches in more detail.

Our Approach: Commit-and-Receive. We now describe our general approach. To better provide
an intuition for it, we start with a flavor of which settings it is suitable for; this is best introduced through
a specific toy example. Consider a sophisticated programming contest where participants are asked to
write a program solving a specific algorithmic problem. To evaluate each submission, it is common for the
organizers to execute the program against several test cases (not public before submission deadline). If
submission passes enough test-cases, the sender can receive instructions to move on to the next stage (or
receive a digital prize, e.g. a full copy of TAOCP13). If the participants want to keep their code secret, can
their program still be tested and receive the instructions/prize? There are arguably other natural settings
besides this one 14.

13 The Art Of Computer Programming (TAOCP) by Donald E. Knuth https://www-cs-faculty.

stanford.edu/~knuth/taocp.html.
14 Another straightforward example for our setting is that of lotteries. Each party commits to a lottery

number (or through an identifier sampled in some manner), then a draw occurs and only the winner(s)
can obtain a certain message, e.g., a digital prize or some other message. The lottery setting while
simple is actually quite concretely practical, for instance in proofs of stake [DPS19]. The problem of
commit-and-receive can be seen as a a more general version of the primitive “Encryption to the Current
Winner” (ECW) defined in [CDK+21] in the context of proofs of stake. In fact the solution described
in this section can be leveraged as a construction for ECW with short commitments.

16

https://www-cs-faculty.stanford.edu/~knuth/taocp.html
https://www-cs-faculty.stanford.edu/~knuth/taocp.html

We aim at providing a solution for a generalized version of the setting above with particular attention
at minimizing round interaction. We call our approach “Commit-and-Receive”15 and we show how it can
be naturally built through our primitive WEFC.

Our approach, described through the lens of the application example above: consider a party R inter-
ested in receiving some message (e.g. a digital good) from a sender S. The latter would like the message to
be received by R only if some data DR held by R satisfy a certain policy (e.g. the tests determined which
programs will pass the contest or the drawn lottery number). The data DR are committed beforehand and
the policy is not chosen adaptively and thus possibly not known at commitment time. After each partici-
pant has published a commitment cmi to their program, the organizers can broadcast c⃗t := (ct1, . . . , ctℓ)
with

cti ←WEFC.Enc(ck, cmi, Ftests,m)

where m contains further instructions or a digital prize and Ftests is a function checking if tests are passed.
The participants whose solutions do not pass the tests will not be able to decrypt their respective ciphertext.

Motivating our approach: more flexibility, more privacy, less trust. We argue that the
approach to targeted broadcasting we just described is of interest because of three properties:

1) Flexible attestation What is left undiscussed above is how, in general, the list of commitments
(cm1, cm2, . . .) available to the sender is updated or comes to be. Will a party with a special authority
have to issue each of them or could commitments be registered through some form of consensus? A
commit-and-receive approach is flexible in that respect because it enables different solutions in that
spectrum. We call the process of updating this list attestation since, once in the list, commitments are
close to handles for some user’s identity, which becomes attested once part of the list.
In fig. 4 we give some intuitive examples of how this process may work, from the more centraliz-
ing/requiring trust in specific parties, to the more decentralized. We assume an abstract informal
interface AddUserComm/VfyUpdUsers for adding a user commitment to the list and verify&update
such list.
The first approach (fig. 4a) shows the case where users may receive explicit attestation by one in a
network of authorities. This is close to the approach common in ABE—standard ABE corresponds to
the special case where there is only one authority. In some settings, we may do without an authority
by allowing users to perform attestation by showing their data satisfy a minimal general property
(fig. 4b), e.g. the format of an identification document (this is not the property required for decryption
but one common to all committed values). Pushing this to extreme, users can also be allowed to register
themselves (fig. 4c). We expand on application scenarios and other caveats in appendix C.

2) No key escrow Our approach does not require a party holding a global secret that allows decryption
of all ciphertexts. In this respect, some of our examples in fig. 4 resemble the approach used in
registration-based encryption which achieve the special case of IBE (rather than general attributes)
without a master secret key [GHMR18].

3) Attribute-hiding Since the users’ communication handles—their commitments—have hiding proper-
ties, they may be able to keep their content completely secret. This is true in self-attestation approaches
(fig. 4b and fig. 4c) where no authority has access to their attributes through an attestation procedure
where they explicitly show attributes or through a master secret that acts as a trapdoor.

Comparing Commit-and-Receive to Alternative Approaches

A naive solution based on zero-knowledge As a starting point of comparison, we observe that an-
other simple solution to the problem could have the receiving parties publish a (possibly zero-knowledge)
proof that their data satisfy the policy. The sender could then send the information only to the par-
ties with a valid proof. However, this solution clearly requires additional rounds of interaction if the
policy is not known at commitment time or is adaptively chosen. This is, for example, the case in
a programming contest (test cases cannot be known in advance), lotteries or whenever we want to
reuse that same commitment stage for multiple rounds. Notice that this solution is different than the
one we propose in fig. 4b since there we are not proving the property required for decryption but a
once-and-for-all simple property of the data D (e.g., the format of structure of the data).

FHE Compact FHE [Gen09] could be used as a non-interactive solution, but at the price of significantly
worse efficiency in some settings. For example, in the programming contest case, each participant can
generate an FHE key-pair and encrypt their submission with respect to it. The organizers can then
run cti ← FHE.Eval(pk, ct

(i)
subm, G

∗
m) where G∗

m(P) is a function that returns m if P passes the tests

15 The name is a variant of “commit-and-prove” as used in [CFQ19, Lip16].

17

AddUserComm(D)→ (cm′, σ)

One of the valid authorities

first produces and then signs

a commitment cm′
to the data

VfyUpdUsers(cm, σ)→ pp′users

Signature of authority is checked;

if valid, the commitment list

is updated appropriately

(a) Attestation through authority. It assumes there is a pre-established agreement on which
entities are authorized to approve attestation after seeing a commitment.

AddUserComm(D)→ (cm′, auxadd)

cm′ ← FC.Commit(ck, D)

// ZK proof of valid structure of data

πfmt ← ZK.Prove(Rfmt, D, . . .)

return
(
cm′

, πfmt

)

VfyUpdUsers(cm, πfmt)→ pp′users

if ZK proof verifies then

return ppusers ∪ {cm
′}

else

return ppusers

(b) Self-attestation with minimal validation

AddUserComm(D)→ cm′

return cm′ ← FC.Commit(ck, D)

VfyUpdUsers(ppusers, cm
′)→ pp′users

// no checks

return ppusers ∪ {cm
′}

(c) Self-attestation

Fig. 4: Examples of flexibility in attestation (informally described). We assume all protocols in
the interface take as input static public parameters such as commitment keys, etc. We denote
by D the committed data. The set ppusers denotes the list of already registered commitments
= (cm1, cm2, . . .).

and ⊥ otherwise. This solution satisfies the same security goal as the one based on WEFC—as a circuit
private FHE ensures that cti does not reveal information on m—but requires communication at least
linear in the length of the committed data. In particular, in our example each participant must send
an FHE encryption of P , which is at least |P |-bits long, whereas by using WEFC they only need to
send a succinct commitment to their solution P .

ABE Our application is closely related to the “targeted broadcast” in [GPSW06] (based on ciphertext-
policy ABE) and in general to “Decentralized” ABE [LW11]. Differences in approach and scope are
the following. First, we want to account for a wider class of settings where it is acceptable for users
to self-attest or the attesting could work through other mechanisms: by design, our approach keeps
abstract the attribute registration stage (i.e., how user commitments are registered). This allows more
flexibility than ABE and its variants where there is a clear structure of authority/authorities providing
access keys. Second, differently from ABE, our solutions do not have secrets (e.g., the master secret
key) that allow to decrypt all ciphertexts. Tradeoffs in Communication Complexity: The ciphertext
size in our approach grows in the number of commitments that are of interest for a certain plaintext.
This may not be practical in large networks and where there is no way to discriminate users (and
respective commitments) of interest for a given plaintext. This, however, does not necessarily make
this approach worse than other systems. In particular, (non-threshold) ABE systems have a ciphertext
size that depends on the policy/attribute size. Our ciphertexts do not. They may then offer better
bandwidth for the setting of large computations/data with a modest amount of users.

7.2 Simple Contingent Payment for Services

The next application setting we describe has to do with a form of conditional payments. Imagine we
want to incentivize the availability of some large data (Internet Archive, Wikipedia, etc.). One approach
to (publicly) check data availability uses some variant of this approach: for the data D there exists a
public, succinct commitment (e.g., a Merkle Tree or a functional commitment compatible with WEFC in
our case); once every epoch, a verifier samples random indices r1, . . . , rm ←$ [|D|]; a storage provider

18

shows an opening (e.g., Merkle tree paths) to the values D[r1], . . . , D[rm]. If carried out enough times and
appropriately choosing m, this procedure can guarantee data availability with low communication [JK07].
Notice that the use of succinct commitments is essential in such an application: if verification requires the
same amount of storage as the data D, one may be better off storing D.

There are several approaches to incentivizing availability without the need of interaction from the
party interested in keeping the data available (which we call stakeholder in the remainder). Several of
these approaches involve embedding incentives in the mining process in a blockchain (e.g., Filecoin) or
letting a smart contract (e.g., on Ethereum) unlock a reward16 if the verification process above succeeds.
Other solutions apply threshold cryptography requiring a set of parties to be available and act as decryptor
oracles [KAS+18]. Through WEFC, we can achieve a simpler solution that does not rely on threshold
networks, a specific blockchain architecture or smart contracts (convenient both in terms of gas costs,
simplicity and communication complexity on chain) . The solution is as follows. The stakeholder produces
a vector of random indices r⃗ as above and produces the ciphertext

ct←WEFC.Enc(ck, cmD, Fr⃗, kca$h)

17 where cmD is a commitment to the data, Fr⃗ is a selector function—Fr⃗(D) := (D[r1], . . . , D[rm])—and
kca$h is the message we are encrypting, that is a secret that allows access to the reward (e.g., a Bitcoin
private key). Further subtleties of this approach are discussed in appendix D. We believe the solution above
can be applied generically to other natural settings.

An important note is that for the approach above to work we need a stronger variant of WEFC in
which (a) the encryptor does not need to know the output of the function used in the statement, and (2)
security has an extractability flavor which ensures that a successful decryptor will actually know the output
of Fr⃗(D) for committed data D. In appendix B, we define this variant of WEFC and show that our same
construction of Section 5 can be proven to have this stronger property.

References

ABP15. Michel Abdalla, Fabrice Benhamouda, and David Pointcheval. Disjunctions for hash proof
systems: New constructions and applications. In Elisabeth Oswald and Marc Fischlin, editors,
EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 69–100. Springer, Heidelberg, April
2015.

ACL+22. Martin R. Albrecht, Valerio Cini, Russell W. F. Lai, Giulio Malavolta, and Sri Aravinda Kr-
ishnan Thyagarajan. Lattice-based SNARKs: Publicly verifiable, preprocessing, and recur-
sively composable - (extended abstract). In Yevgeniy Dodis and Thomas Shrimpton, editors,
CRYPTO 2022, Part II, volume 13508 of LNCS, pages 102–132. Springer, Heidelberg, August
2022.

BBC+13. Fabrice Benhamouda, Olivier Blazy, Céline Chevalier, David Pointcheval, and Damien
Vergnaud. New techniques for SPHFs and efficient one-round PAKE protocols. In Ran Canetti
and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 449–475.
Springer, Heidelberg, August 2013.

BCFL22. David Balbás, Dario Catalano, Dario Fiore, and Russell W. F. Lai. Functional commitments
for circuits from falsifiable assumptions. Cryptology ePrint Archive, Report 2022/1365, 2022.
https://eprint.iacr.org/2022/1365.

BF03. Dan Boneh and Matthew K. Franklin. Identity based encryption from the Weil pairing. SIAM
Journal on Computing, 32(3):586–615, 2003.

BFM88. Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its appli-
cations (extended abstract). In 20th ACM STOC, pages 103–112. ACM Press, May 1988.

BIOW20. Ohad Barta, Yuval Ishai, Rafail Ostrovsky, and David J. Wu. On succinct arguments and
witness encryption from groups. In Daniele Micciancio and Thomas Ristenpart, editors,
CRYPTO 2020, Part I, volume 12170 of LNCS, pages 776–806. Springer, Heidelberg, August
2020.

BJKL21. Fabrice Benhamouda, Aayush Jain, Ilan Komargodski, and Huijia Lin. Multiparty reusable
non-interactive secure computation from LWE. In Anne Canteaut and François-Xavier Stan-
daert, editors, EUROCRYPT 2021, Part II, volume 12697 of LNCS, pages 724–753. Springer,
Heidelberg, October 2021.

16 See respectively https://docs.filecoin.io/about-filecoin/what-is-filecoin/ and https://

thegraph.com/docs/en/about/
17 We use a slightly different syntax than the usual one, which we explain later (see also appendix B).

19

https://eprint.iacr.org/2022/1365
https://docs.filecoin.io/about-filecoin/what-is-filecoin/
https://thegraph.com/docs/en/about/
https://thegraph.com/docs/en/about/

BL20. Fabrice Benhamouda and Huijia Lin. Mr NISC: Multiparty reusable non-interactive secure
computation. In Rafael Pass and Krzysztof Pietrzak, editors, TCC 2020, Part II, volume
12551 of LNCS, pages 349–378. Springer, Heidelberg, November 2020.

CDK+21. Matteo Campanelli, Bernardo David, Hamidreza Khoshakhlagh, Anders K. Kristensen, and
Jesper Buus Nielsen. Encryption to the future: A paradigm for sending secret messages to
future (anonymous) committees. IACR Cryptol. ePrint Arch., page 1423, 2021.

CFQ19. Matteo Campanelli, Dario Fiore, and Anäıs Querol. LegoSNARK: Modular design and com-
position of succinct zero-knowledge proofs. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng
Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 2075–2092. ACM Press, November
2019.

CFT22. Dario Catalano, Dario Fiore, and Ida Tucker. Additive-homomorphic functional commitments
and applications to homomorphic signatures. In ASIACRYPT 2022, 2022. https://eprint.

iacr.org/2022/1331.
CGGN17. Matteo Campanelli, Rosario Gennaro, Steven Goldfeder, and Luca Nizzardo. Zero-knowledge

contingent payments revisited: Attacks and payments for services. In Bhavani M. Thuraising-
ham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 229–243.
ACM Press, October / November 2017.

CH20. Geoffroy Couteau and Dominik Hartmann. Shorter non-interactive zero-knowledge arguments
and ZAPs for algebraic languages. In Daniele Micciancio and Thomas Ristenpart, editors,
CRYPTO 2020, Part III, volume 12172 of LNCS, pages 768–798. Springer, Heidelberg, August
2020.

CS02. Ronald Cramer and Victor Shoup. Universal hash proofs and a paradigm for adaptive chosen
ciphertext secure public-key encryption. In Lars R. Knudsen, editor, EUROCRYPT 2002,
volume 2332 of LNCS, pages 45–64. Springer, Heidelberg, April / May 2002.

CVW18. Yilei Chen, Vinod Vaikuntanathan, and Hoeteck Wee. GGH15 beyond permutation branch-
ing programs: Proofs, attacks, and candidates. In Hovav Shacham and Alexandra Boldyreva,
editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages 577–607. Springer, Heidelberg,
August 2018.

dCP22. Leo de Castro and Chris Peikert. Functional commitments for all functions, with transparent
setup. Cryptology ePrint Archive, Paper 2022/1368, 2022. https://eprint.iacr.org/2022/

1368.
dec22. Decentralized storage. https://ethereum.org/en/developers/docs/storage/, 2022.
DH76. Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transactions

on Information Theory, 22(6):644–654, 1976.
DPS19. Phil Daian, Rafael Pass, and Elaine Shi. Snow white: Robustly reconfigurable consensus and

applications to provably secure proof of stake. In Ian Goldberg and Tyler Moore, editors, FC
2019, volume 11598 of LNCS, pages 23–41. Springer, Heidelberg, February 2019.

FJK21. Rex Fernando, Aayush Jain, and Ilan Komargodski. Maliciously-secure mrnisc in the plain
model. IACR Cryptol. ePrint Arch., page 1319, 2021.

FKL18. Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its applications.
In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992
of LNCS, pages 33–62. Springer, Heidelberg, August 2018.

Gen09. Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael Mitzenmacher,
editor, 41st ACM STOC, pages 169–178. ACM Press, May / June 2009.

GGH+13. Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters.
Candidate indistinguishability obfuscation and functional encryption for all circuits. In 54th
FOCS, pages 40–49. IEEE Computer Society Press, October 2013.

GGHR14. Sanjam Garg, Craig Gentry, Shai Halevi, and Mariana Raykova. Two-round secure MPC from
indistinguishability obfuscation. In Yehuda Lindell, editor, TCC 2014, volume 8349 of LNCS,
pages 74–94. Springer, Heidelberg, February 2014.

GGSW13. Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and its appli-
cations. In Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th ACM STOC,
pages 467–476. ACM Press, June 2013.

GHMR18. Sanjam Garg, Mohammad Hajiabadi, Mohammad Mahmoody, and Ahmadreza Rahimi.
Registration-based encryption: Removing private-key generator from IBE. In Amos Beimel
and Stefan Dziembowski, editors, TCC 2018, Part I, volume 11239 of LNCS, pages 689–718.
Springer, Heidelberg, November 2018.

GKW17. Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfuscation. In Chris Umans,
editor, 58th FOCS, pages 612–621. IEEE Computer Society Press, October 2017.

GL89. Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions. In 21st
ACM STOC, pages 25–32. ACM Press, May 1989.

20

https://eprint.iacr.org/2022/1331
https://eprint.iacr.org/2022/1331
https://eprint.iacr.org/2022/1368
https://eprint.iacr.org/2022/1368
https://ethereum.org/en/developers/docs/storage/

GL06. Rosario Gennaro and Yehuda Lindell. A framework for password-based authenticated key
exchange. ACM Transactions on Information and System Security, 9(2):181–234, 2006.

GLS15. S. Dov Gordon, Feng-Hao Liu, and Elaine Shi. Constant-round MPC with fairness and
guarantee of output delivery. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part II, volume 9216 of LNCS, pages 63–82. Springer, Heidelberg, August
2015.

GLW14. Craig Gentry, Allison B. Lewko, and Brent Waters. Witness encryption from instance inde-
pendent assumptions. In Juan A. Garay and Rosario Gennaro, editors, CRYPTO 2014, Part I,
volume 8616 of LNCS, pages 426–443. Springer, Heidelberg, August 2014.

GPSW06. Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for
fine-grained access control of encrypted data. In Ari Juels, Rebecca N. Wright, and Sabrina De
Capitani di Vimercati, editors, ACM CCS 2006, pages 89–98. ACM Press, October / November
2006. Available as Cryptology ePrint Archive Report 2006/309.

Gro16. Jens Groth. On the size of pairing-based non-interactive arguments. In Marc Fischlin and Jean-
Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 305–326.
Springer, Heidelberg, May 2016.

GS08. Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In
Nigel P. Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 415–432. Springer,
Heidelberg, April 2008.

GW11. Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all falsi-
fiable assumptions. In Lance Fortnow and Salil P. Vadhan, editors, 43rd ACM STOC, pages
99–108. ACM Press, June 2011.

Ham16. Fabrice Ben Hamouda-Guichoux. Diverse modules and zero-knowledge. PhD thesis, École
Normale Supérieure, Paris, France, 2016.

JK07. Ari Juels and Burton S. Kaliski Jr. Pors: proofs of retrievability for large files. In Peng Ning,
Sabrina De Capitani di Vimercati, and Paul F. Syverson, editors, ACM CCS 2007, pages 584–
597. ACM Press, October 2007.

JLS21. Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-founded
assumptions. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing, pages 60–73, 2021.

KAS+18. Eleftherios Kokoris-Kogias, Enis Ceyhun Alp, Sandra Deepthy Siby, Nicolas Gailly, Linus
Gasser, Philipp Jovanovic, Ewa Syta, and Bryan Ford. CALYPSO: Auditable sharing of
private data over blockchains. Cryptology ePrint Archive, Report 2018/209, 2018. https:

//eprint.iacr.org/2018/209.
Kho22. Hamidreza Khoshakhlagh. (Commit-and-prove) predictable arguments with privacy. In

Giuseppe Ateniese and Daniele Venturi, editors, ACNS 22, volume 13269 of LNCS, pages 542–
561. Springer, Heidelberg, June 2022.

Lip16. Helger Lipmaa. Prover-efficient commit-and-prove zero-knowledge SNARKs. In David
Pointcheval, Abderrahmane Nitaj, and Tajjeeddine Rachidi, editors, AFRICACRYPT 16, vol-
ume 9646 of LNCS, pages 185–206. Springer, Heidelberg, April 2016.

LM19. Russell W. F. Lai and Giulio Malavolta. Subvector commitments with application to succinct
arguments. In Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part I,
volume 11692 of LNCS, pages 530–560. Springer, Heidelberg, August 2019.

LP20. Helger Lipmaa and Kateryna Pavlyk. Succinct functional commitment for a large class of
arithmetic circuits. In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020, Part III,
volume 12493 of LNCS, pages 686–716. Springer, Heidelberg, December 2020.

LRY16. Benôıt Libert, Somindu C. Ramanna, and Moti Yung. Functional commitment schemes: From
polynomial commitments to pairing-based accumulators from simple assumptions. In Ioannis
Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors, ICALP
2016, volume 55 of LIPIcs, pages 30:1–30:14. Schloss Dagstuhl, July 2016.

LW11. Allison B. Lewko and Brent Waters. Decentralizing attribute-based encryption. In Kenneth G.
Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 568–588. Springer, Heidel-
berg, May 2011.

RSW96. Ron Rivest, Adi Shamir, and David Wagner. Time lock puzzles and timed release cryptography.
Technical report, Technical report, MIT/LCS/TR-684, 1996.

Sha84. Adi Shamir. Identity-based cryptosystems and signature schemes. In G. R. Blakley and David
Chaum, editors, Advances in Cryptology, Proceedings of CRYPTO ’84, Santa Barbara, Califor-
nia, USA, August 19-22, 1984, Proceedings, volume 196 of Lecture Notes in Computer Science,
pages 47–53. Springer, 1984.

SW05. Amit Sahai and Brent R. Waters. Fuzzy identity-based encryption. In Ronald Cramer, editor,
EUROCRYPT 2005, volume 3494 of LNCS, pages 457–473. Springer, Heidelberg, May 2005.

21

https://eprint.iacr.org/2018/209
https://eprint.iacr.org/2018/209

Wee10. Hoeteck Wee. Efficient chosen-ciphertext security via extractable hash proofs. In Tal Rabin,
editor, CRYPTO 2010, volume 6223 of LNCS, pages 314–332. Springer, Heidelberg, August
2010.

22

Supporting Material

A Additional Preliminaries

A.1 Output-delayed Simulatable MPC

Here we give the formal definition of a special MPC protocol with output-delayed simulatability property
which guarantees that all the messages except the last one can be simulated for all-but-one honest parties
before knowing the output. This is required as the adversary in a mrNISC protocol learns the output only
when all the honest parties agreed to provide a computation encoding.

Definition 7 (MPC Protocol). Let F be a class of functions. An L-rounds MPC scheme
∏

=
(Next,Output) for F between n parties consists of two PPT algorithms:

Next message. mℓ
i := Nexti(1

λ, 1n, z, xi, ri,m
<ℓ) is the message broadcasted by party Pi in round ℓ ∈

L, on public input z, private input xi, randomness ri ∈ {0, 1}νr , and received messages m<ℓ =

{mℓ̃
j}j∈[n],ℓ̃<ℓ, where m

ℓ̃
j is the message broadcasted by Pj on round ℓ̃.

Output. y := Output(1λ, 1n, z,m) is the output of the MPC protocol based on public input z and the full
transcript m := m<L+1.

We require an L-round MPC protocol to be perfectly correct and semi-malicious output-delayed Sim-
ulatable as defined below.

Definition 8 (Perfect Correctness). An L-round MPC protocol
∏

= (Next,Output) for F is perfectly
correct if for any λ ∈ N, for any public input z, any inputs (x1, . . . , xn), and any f ∈ F ,

Pr
[
Output(1λ, 1n, z,m) = f(z, x1, . . . , xn) : r ←$ {0, 1}νr·n

]
= 1,

where r := (r1, . . . , rn), and m := m<L+1 such that mℓ
j = Nextj(1

λ, 1n, z, xj , rj ,m
<ℓ) for j ∈ [n] and

ℓ ∈ [L].

Definition 9 (Semi-Malicious Output-Delayed Simulatability). An L-round MPC protocol
∏

=
(Next,Output) for F is semi-malicious output-delayed simulatable, if there exists a PPT simulator S, such
that for any PPT adversary A and any f ∈ F , the view of A in the Ideal-Real experiments in fig. 5 are
indistinguishable.

A.2 Garbled Circuit

Definition 10 (Garbled Circuit). Let CC = {Cλ}λ∈N be a polynomial-size class of circuits with input
and output lengths n and l. A garbled circuit scheme GC for CC consists of four polynomial-time algorithms
GC = (Gen,Garble,Eval, Sim):

E← Gen(1λ): It generates input labels E = {E[i, b]}i∈[n],b∈{0,1} , where the input label E[i, b] corresponds
to the value b of the i-th input wire.

Ĉ ← Garble(E, C): Given input labels and a circuit C ∈ Cλ as input, it outputs a garbled circuit Ĉ.

y ← Eval(Ĉ,E′): On input a garbled circuit Ĉ and input labels E′, it outputs y ∈ {0, 1}l.
(C̃,E′)← Sim(1λ, y): Given the security parameter λ and a value y ∈ {0, 1}l, it outputs a garbled circuit

C̃ and input labels E′.

We require a garbled circuit to be perfectly correct and simulatable as defined below.

Definition 11 (Perfect Correctness). For any security parameter λ ∈ N, for any circuit C ∈ Cλ, any
input x ∈ {0, 1}n, any E← Gen(1λ), and any Ĉ ← Garble(E, C),

Pr[Eval(Ĉ, {E[i, xi]}i∈[n]) = C(x)] = 1,

Definition 12 (Simulatability). The following two distributions are computationally indistinguishable:{
(E, Ĉ) : E← Gen(1λ); Ĉ ← Garble(E, C)

}
λ,C∈Cλ,x∈{0,1}n

,{
(E′, Ĉ) : (E′, Ĉ)← Sim(1λ, C(x))

}
λ,C∈Cλ,x∈{0,1}n

ExpRealA,S(λ, f)

1. A chooses the number of parties n, the set of honest parties H ⊆ [n], the public input z, the
private inputs {xi}i∈[n] of all the parties and the randomnesses {ri}i∈H̄ of all the corrupt parties.

2. The challenger picks fresh randomness {ri}i∈H of honest parties, runs the MPC protocol with the
specified inputs and randomnesses, and sends the resulting transcript (m<L, {mL

i }i∈H̄) except
the last message of the honest parties to A.

3. A can send queries (Compute, Pi) to the challenger for i ∈ H and receive the last message mL
i of

Pi.

ExpIdealA,S(λ, f)

1. A chooses the number of parties n, the set of honest parties H ⊆ [n], the public input z, the
private inputs {xi}i∈[n] of all the parties and the random tapes {ri}i∈H̄ of all the corrupt parties.

2. Given the inputs and randomnesses of the corrupt parties, S outputs a transcript (m<L, {mL
i }i∈H̄)

of all but the last message of the honest parties to A.
3. A can send queries (Compute, Pi) to S for i ∈ H and receive the last message mL

i of Pi. If all
the honest parties have been queried, S is additionally given f(x1, . . . , xn) before answering the
query.

Fig. 5: Real and Ideal experiments for semi-malicious output-delayed simulatability

A.3 Security Definition of MrNISC

Definition 13 (Semi-malicious Privacy). A mrNISC scheme for a function f is called semi-malicious
private if there exists a PPT simulator S such that no PPT adversary A can distinguish the two experiments
defined in fig. 6.

B Output Extractable WEFC

Here we discuss the output extractable variant of WEFCmentioned in our application in section 7.2.

Model. The basic intuition of this primitive is that a party able to decrypt should know the output value
y = C(α,β). We model this through extraction and dub it “output” extractability.

The syntax of this primitive is almost the same as that in definition 6 except for a few changes.
The syntax of encryption is Enc(ck, cm,β,m) instead of Enc(ck, cm,β,y,m). The decryption algorithm
additionally takes as input y. Correctness stays the same mutatis mutandis.

We replace the security definition with the following one:

Output Extractability. For any λ, any C ∈ CC, any stateless PPT adversary A = (A1,A2), and any
polynomial q(·), there exists a PPT extractor E and a polynomial p(·), such that

Pr

b← A2(ck, ct) :

(ck, td)← Setup(1λ, C); (α, r,β,m0,m1)← A1(ck)

(cm, d)← Commit(ck,α; r); b←$ {0, 1}
ct← Enc(ck, cm,β,mb)

 ≥ 1

2
+

1

q(λ)

⇒ Pr

y← E(ck, ct)∧ C(α,β) = y
:

(ck, td)← Setup(1λ, C); (α, r,β,m0,m1)← A1(ck)

(cm, d)← Commit(ck,α; r); b←$ {0, 1}
ct← Enc(ck, cm,β,mb)

 ≥ 1

p(λ)

Above we assume the extractor has also access to the random coins of the adversary A2.

24

ExpRealA,S(λ, f)

A chooses the number of parties n, and the set of honest parties H ⊆ [n]. It then interacts with a
challenger C for an arbitrary number of iterations until it terminates. A can submit one query of the
following three types in every iteration.

1. CORRUPT INPUT ENCODING. Upon A sending a query (input, Pi, xi, ρi) for a corrupt party i ∈ H̄, C
records the input encoding x̂i generated as (x̂i, si) = Commit(xi; ρi) using input xi and randomness
ρi.

2. HONEST INPUT ENCODING. Upon A choosing the input (input, Pi, xi) for an honest party i ∈ H, C
generates (x̂i, si) = Commit(xi), and sends x̂i to A.

3. HONEST COMPUTATION ENCODING. Upon A querying (compute, Pi, z, I) for an honest party i ∈
H ∩ I, C checks if the input encodings {x̂j}j∈I for all participants have been generated, then it
sends the computation encoding αi ← Encode(z, {x̂j}j∈I , si) to A.

ExpIdealA,S(λ, f)

The ideal experiment is the same as above, except for the following differences.

1. CORRUPT INPUT ENCODING. Additionally send query (input, Pi, xi, ρi) to S.
2. HONEST INPUT ENCODING. Upon A choosing the input (input, Pi, xi) for an honest party i ∈ H, C

sends query (input, Pi) to S and forwards the simulated input encoding x̃i to A.
3. HONEST COMPUTATION ENCODING. Upon A querying (compute, Pi, z, I) for an honest party i ∈

H ∩I, if this is the last honest computation encoding, C sends the query (compute, Pi, z, I, y) with
the output y = f(z, {xt}t∈I) to S; otherwise, C sends the query (compute, Pi, z, I) without y. The
challenger forwards the simulated computation encoding α̃i to A.

Fig. 6: Real and Ideal experiments for semi-malicious output-delayed simulatability

Construction. For the construction of output extractable WEFC, we modify the language Llpar and
[Θlpar,x]T as follows:

Llpar = {x = (cm,β)|∃op,y : Verify(ck, cm, op,β,y) = 1}

[Θlpar,x]T = [Mlpar,x · (õp||y)]T
where õp is derived from op by replacing its group elements with their discrete logarithms. The new
construction xWEFC = (Setup,Commit,Open,Verify, xEnc, xDec) can be described as follows:

xEnc(ck, cm,β,m). Let x = (cm,β). To encrypt a bit message m ∈ {0, 1}, select a uniformly random vector
hk ∈ Z1×ν

p , where ν is the number of rows of Mlpar,x, sample a random r ←$ {0, 1}ℓ, and compute the
ciphertext ct = (hp, r, ĉt), where

hp = [hk ·Mlpar,x]⋆, H = [hk ·Θlpar,x]T , ĉt = ⟨σ(H), r⟩ ⊕m

xDec(ck, ct, cm,β,y, op). On input a ciphertext ct = (hp, r, ĉt), first compute pH = [hp ·(õp||y)]T , and then
output the message m ∈ {0, 1} computed as m = ⟨σ(pH), r⟩ ⊕ ĉt.

The proof of security is similar to the proof of theorem 2 with the observation that we can still rely on
the extractability of the underlying EPHF to extract the witness (õp||y) even though part of the witness
(i.e., y) consists of field elements. This comes from the fact that the extractor in the proof of theorem 1 can
always extract the representation of the witness as field elements efficiently. Below, we state the theorem.

Theorem 5. Let FC be a functional commitment scheme for circuit class CC with computational evaluation-
binding property. Let EPHF be an extractable projective hash function. The construction of xWEFC described
above is an output extractable WEFC for CC.

Instantiations. Both instantiations of functional commitments proposed in section 5.2 have the property
that their verification procedure is linear even if the function output is part of the opening proof. In other
words, the function output is not paired together with the actual opening proof in the verification. Hence,
they can be used to instantiate our output extractable variant of WEFC.

25

C More on Attestation Approaches

This section expands on the discussion in section 7.1 and fig. 4. We are motivated by providing a solution
depending as little as possible on trusted parties. As already mentioned, one solution to the problem
of targeted broadcast is CP-ABE (ciphertext-policy attribute-based encryption). The latter requires an
authority providing a key for a certain set of attributes. In the main text, we mention various approaches
where users can register/attest themselves the attributes that will allow them to decrypt for certain policies.
Here we elaborate more on them.

Self-Attestation: Where and Why

It may seem counterintuitive that there exist cases where we do not need to involve in this attestation
process. We observe, however, that there exist settings actually amenable to self-attestation.

Some level of self-attestation may be meaningful in settings where the opening allowing decryption:

– shows knowledge of a not easily available piece of information. For example, the information could be
a proof of the Riemann hypothesis and the encryptor would like to send information readable only to
those users holding such valid proof. The programming contest example also falls into this category.

– has to do with something not necessarily referring to a ground truth. An illustrative example are the
features one can choose for their own character at the beginning of a role-playing game (RPG)18.
The application could then for instance issue periodic messages, readable only by users with certain
features, but not others.

Full self-attestation. We can then ask where it would make sense to apply full self attestation (fig. 4c).
We notice that the first class of attributes described above can be completely self-attested: a key for that
attributes would just consist of a commitment to the solution to a difficult puzzle (e.g., the proof of the
Riemann Hypothesis, the solutions to all New York Times Sudokus of the last year, etc.). An adversary
would need to be able to come up with the right attributes to decrypt but this would deny the assumption
on their hardness.

A mitigation against Sybil attacks: one-time tokens. Not all self-attested settings have attributes that
are hard to find (e.g. our RPG example or the lottery one from earlier). Here an adversary could run a
Sybil attack and “spam” the system with commitments to different combinations of attributes. Potentially
this strategy can allow them to decrypt all ciphertexts (because there would probably exist at least some
of the adversarial commitments that open to data satisfying the ciphertext policy). To prevent such an
attack we can consider one (or multiple) entity/entities that can issue tokens for attestation (fig. 7). The
adversary can thus issue no more commitments than the tokens it received. Notice that such entity would
be trusted only to properly issue tokens to users but would not be trusted in other ways—it would not
be learned the opening of the commitment nor would be able to decrypt ciphertexts (as it is the case for
ABE authorities). Such entities could also be distributed and their authority could be revoked in case of
malfeasance.

AddUserComm(D, tokenadd)→ cm

cm′ ← FC.Commit(ck, D)

return
(
cm′

, tokenadd

)
VfyUpdUsers(Stokens)→ pp′users

if tokenadd ̸∈ Stokens

Stokens ← Stokens ∪ {tokenadd}

return ppusers ∪ {cm
′}

else

return ppusers

Fig. 7: Token-based attestation. Assumes an external mechanism for providing registration tokens
and maintaining a set Stokens of used ones.

18 Such features would involve for example gender, species (elf, human, etc...), background, weapon held,
etc.. These features are chosen once and for all and it is not important what they are. This is a toy
example, but we believe natural higher-impact examples could be found.

26

Partially validating opening through zero-knowledge once. Another problem to be solved for attributes
that are self-attesting is that they could have the wrong format. In the RPG example, we expect attributes
to contain only one value per field (see Footnote 18). This requirement can be enforced by letting the user
provide a zero-knowledge proof at the time of attestation that guarantees that the opening satisfies certain
format requirements fig. 4b. We stress this would not be the same as providing a proof for the fact that
the opening satisfies a decryption policy: we assume this offline validation to be simpler (e.g. just format
based) and known in advance (in contrast to decryption policies which are learned dynamically).

D Additional Subtleties in Contingent Payment Applications

Here we discuss some subtleties worth mentioning for the application in section 7.2. We stress that our
goal is to show that our primitive has the potential to be versatile, not to provide a full-fledged solution
to a specific application setting.

– It is important that the indices are not revealed to the storage provider, otherwise they could just
store the part of the file revealed by those indices. The indices themselves can be encrypted through a
time-released encryption so that they are only revealed after a certain amount of time [RSW96]. The
WEFC ciphertext itself should be time-release encrypted: there is no guarantee on hiding the function
used for encryption and the indices could be leaked as a consequence.

– This payment can be performed many times by simply releasing a large number of timed-released
encryptions as described above, each requiring more and more time to decrypt.

– We assume the payer is either trusted or there is a way to guarantee that a ciphertext contains a
payment, e.g. through a zero-knowledge proof.

– If there are several providers, we ignore the issue of how to guarantee fairness (“who gets the reward
first”). If the reward is a digital good naturally this problem does not occur as every honest party will
be able to decrypt it.

27

	Witness Encryption for Succinct Functional Commitments and Applications
	Introduction
	Our Work: WE For Succinct Functional Commitments
	Our Contributions
	Technical Overview
	Related Work

	Preliminaries
	Functional Commitment Schemes
	Smooth Projective Hash Functions

	Extractable PHF
	Diverse Vector Space (DVS).
	Extractable PHF in the AGM.

	WE for Functional Commitment
	Our Construction
	Building WEFC from Extractable Projective Hash
	Instantiations

	From WEFC to Reusable Non-Interactive MPC
	Preliminaries on mrNISC
	Our mrNISC construction.
	On the Instantiation of our mrNISC Construction

	Other Application Scenarios
	Targeted Broadcast
	Simple Contingent Payment for Services

	Additional Preliminaries
	Output-delayed Simulatable MPC
	Garbled Circuit
	Security Definition of MrNISC

	Output Extractable WEFC
	More on Attestation Approaches
	Additional Subtleties in Contingent Payment Applications

