
Shielding Probabilistically Checkable Proofs:
Zero-Knowledge PCPs from Leakage Resilience

Mor Weiss
Bar-Ilan University

mor.weiss@biu.ac.il

Abstract

Probabilistically Checkable Proofs (PCPs) allow a randomized verifier, with oracle access to
a purported proof, to probabilistically verify an input statement of the form “x ∈ L” by query-
ing only few proof bits. Zero-Knowledge PCPs (ZK-PCPs) enhance standard PCPs to addition-
ally guarantee that the view of any (possibly malicious) verifier querying a bounded number
of proof bits can be efficiently simulated up to a small statistical distance.

The first ZK-PCP construction of Kilian, Petrank and Tardos (STOC 1997), and following
constructions employing similar techniques, necessitate that the honest verifier make several
rounds of queries to the proof. This undesirable property, which is inherent to their technique,
translates into increased round complexity in cryptographic applications of ZK-PCPs.

We survey two recent ZK-PCP constructions – due to Ishai, Yang and Weiss (TCC 2016-A),
and Hazay, Venkitasubramaniam, and Weiss (ITC 2021) – in which the honest verifier makes a
single round of queries to the proof. Both constructions use entirely different techniques com-
pared to previous ZK-PCP constructions, by showing connections to the seemingly-unrelated
notion of leakage resilience. These constructions are incomparable to previous ZK-PCP construc-
tions: while on the one hand the honest verifier only makes a single round of queries to the
proof, these ZK-PCPs either obtain a smaller (polynomial) ratio between the query complex-
ity of the honest and malicious verifiers, or obtain a weaker ZK guarantee in which the ZK
simulator is not necessarily efficient.

Contents

1 Introduction 3
1.1 Non-Adaptive ZK-PCPs . 6

1.1.1 The ZK-PCPs of Hazay et al. [HVW21a] . 6
1.1.2 The ZK-PCPs of Ishai et al. [IWY16] . 7

1.2 Comparison Between Different ZK-PCP Constructions 9
1.3 Related Notations, Extensions, and Cryptographic Applications 10

2 Preliminaries 12
2.1 PCPs and ZK-PCPs . 13

2.1.1 Restrictions, Extensions and Generalizations 15

3 ZK-PCPs from LR Encodings: The Construction of [HVW21a] 18
3.1 Main Building Block: Reconstructable Probabilistic Encdoings (RPEs) 20
3.2 The ZK-PCP Construction . 21
3.3 ZK-PCPs with Square-Root Gap . 23

4 ZK-PCPs from LR Circuits: The Construction of [IWY16] 24
4.1 Leakage-Resilient Circuit Compilers (LRCCs) . 26
4.2 A SAT-Respecting LRCC for Arithmetic Circuits . 29

4.2.1 Proof of Lemma 39 . 33
4.3 A SAT-Respecting LRCC Against “Useful” Leakage 42
4.4 The Witness-Indistinguishable PCP . 45

5 Discussion 47

2

1 Introduction

Proofs are a cornerstone of cryptography. They are an essential component of many cryptographic
systems, guaranteeing correct execution in the presence of mutually-distrusting parties. Their
applications range from mundane tasks such as proving one’s identity when signing into an email
account, to general tasks such as proving honest behaviour in distributed systems, i.e., attesting
that one had followed its prescribed algorithm.

Due to their centrality, in the past decades a long line of works have studied the notion of
proofs, extending it far beyond the traditional notion to also allow for interaction between a prover
P and a verifier V , as well as randomization. Various variants have arisen, depending on differ-
ent properties of the system, such as the amount and type of communication allowed between
the prover and verifier, their computational powers, and the type of randomness (for example,
whether the verifier’s random coin tosses are private or public). These advances have reshaped
theoretical computer science.

Our focus is on Probabilistically Checkable Proofs (PCPs) [ALM+92, AS92] augmented with a
cryptographic Zero-Knowledge (ZK) property that is very useful when such proofs are used in
cryptographic applications. These zero-knowledge PCPs combine aspects of (interactive) zero-
knowledge proofs and PCPs, concepts which we now discuss.

Probabilistically Checkable Proofs (PCPs). A Probabilistically Checkable Proof (PCP) for a lan-
guage L allows a randomized verifier V to verify a statement of the form “x ∈ L”, while querying
only few bits of an oracle proof π that was generated by a prover P .1 More specifically, V is given
x as input, and P – who is usually required to be efficient – may be given additional information
needed to efficiently generate the proof, e.g., a witness in the case of an NP language. More gener-
ally, for an NP-language L the PCP will usually be designed for some specific NP-relationR (x,w)
associated with L. In standard PCPs the prover is deterministic, whereas the verifier is random-
ized. (This is necessary since the verifier only queries few proof bits.) The verifier accepts true
claims with probability 1, whereas the soundness error – namely the probability that a false claim
is accepted – is small, regardless of the purported proof π∗ given to the verifier. The celebrated
PCP theorem [ALM+92, AS92, Din06] asserts that any NP language has a PCP system with sound-
ness error 1/2 in which the verifier V reads only a constant number of proof bits. Moreover, V is
non-adaptive, namely its queries are determined solely by its randomness.

Interactive and Zero-Knowledge Proofs. Interactive Proofs (IPs) [GMR85] are a different kind of
proof system, in which the efficient probabilistic verifier V interacts with a prover P , whose goal
is to convince V that x ∈ L for a joint input x. Such proofs are extremely powerful, compared
to classical proofs: any PSPACE language has an interactive proof with a polynomial-time veri-
fier [Sha90], whereas classic proofs with a polynomial-time verifier only exist for NP languages.
Zero-Knowledge (ZK) Proofs [GMR85] are an important and useful generalization of IPs for NP, en-
hancing them to also guarantee privacy of the NP witness. These proofs carry no extra knowledge
other than being convincing, in the sense that any information V can infer from its interaction with
P , it could have (efficiently) computed given only the input x. This holds even in the presence of
a malicious verifier V∗, namely a verifier who arbitrarily deviates from the protocol. It is important
to note that while proofs are prominently used to protect the verifier (guaranteeing it would reject

1The prover entity is not traditionally included as part of a PCP system. Explicitly introducing this entity will
be useful when PCPs are used for cryptographic applications, which necessitate efficient proof generation (given an
appropriate witness, in the case of NP languages).

3

false claims), ZK is designed to protect the prover, guaranteeing that its private information (the
NP witness, in this case) remains entirely hidden.

Zero-Knowledge PCPs. Zero-Knowledge PCP (ZK-PCP) [KPT97] are proofs systems that combine
the advantages of PCPs and ZK proofs. These are PCPs with the additional guarantee that the
view – encompassing all the knowledge which the verifier posses of the interaction – of any (pos-
sibly malicious) verifier V∗ who queries an a-priori bounded number of proof bits can be efficiently
simulated given only the input, up to a small statistical distance.

ZK-PCPs differ from traditional PCPs in several respects. First, whereas the PCP prover is
traditionally deterministic, in ZK-PCPs the proof is randomized, and this is inherent to obtaining
ZK. Second, ZK-PCPs are used to protect the prover’s private information (e.g., an NP witness)
against malicious verifiers. More specifically, the system is associated with an a-priori query bound
q∗, where ZK holds only against verifiers V∗ who query at most q∗ proof bits. We stress that this
is the only restriction on V∗, and no further assumptions or limitations are made on its computa-
tional power or the manner in which it operates. It is important to note that bounding the query
complexity is inherent in systems with efficient provers – an essential requirement for such sys-
tems to be useful for cryptographic applications. Indeed, the proof has polynomial length len, so
any (efficient) verifier running in time len could read the entire proof, thus necessarily learning
some information about the witness. Finally, we note that ZK against query-bounded verifiers is
a stronger guarantee than Honest-Verifier ZK (HVZK), namely ZK only against the honest verifier.
This is because the honest verifier is always query bounded.

The models also differ in the main parameters of interest. Specifically, for PCPs these consist of
the randomness and query complexities of the verifier (i.e., the number of coins it tosses and the
number of queries it makes to the proof), which also determine the proof length. Moreover, it is
standard to consider a constant soundness error – with a verifier that queries a constant number of
proof bits – since this setting has strong connections to proving hardness of approximation results.
We currently have PCPs whose length is quasi-linear length in the witness length, with a constant
soundness error (which can be amplified through repetition), and a non-adaptive honest verifier
that queries a constant number of proof bits [BGH+04, Din06].

On the other hand, for ZK-PCPs we desire the soundness error to be negligible (in the input
length, or some security parameter) as is standard in cryptographic systems, and thus the query
complexity is necessarily polylogarithmic. The query bound q∗ on malicious verifiers is another
important parameter of the system, and would ideally be much larger than the query complexity
of the honest verifier, e.g., polynomial in the input length. Thus, the query gap between the query
complexity needed to verify the proof, and the number of queries a malicious verifier can make
without violating ZK, would be exponential. Finally, we would like the honest verifier to be non-
adaptive, namely to make a single round of queries to the proof. This should be contrasted with
adaptive verifiers whose queries might depend on the oracle answers to previous queries, and
who therefore necessarily make several rounds of queries to the proof. As we will shortly explain,
whereas the verifier in traditional PCPs is non-adaptive, the honest verifier in certain ZK-PCP
constructions is (inherently) adaptive. We note that similar to traditional PCPs, the proof length is
also of interest.

The focus on these parameters in ZK-PCP constructions stems from their effect on the proper-
ties and parameters of cryptographic systems using ZK-PCPs. Specifically, the query complexity
and adaptivity of the honest verifier translates into communication and round complexities; the
query-bound on malicious verifiers corresponds to the privacy guarantee of the resultant system;
and in distributed proof systems (as in, e.g., [IWY16]) the proof length and query bound translate
into the total number of parties and the number of corrupted parties, respectively.

4

ZK-PCP Constructions. The first ZK-PCP for NP, due to Kilian, Petrank and Tardos [KPT97],2

obtained a negligible soundness error with an honest verifier that queries q = polylog (|x|) proof
bits, and ZK against verifiers making q∗ = p (|x|) queries to the proof for a fixed polynomial p
that is much smaller than the proof length, but is much larger than q. Later works [IMS12, IW14]
simplified the system, making it more modular, and also generalized it to other proof models
(specifically, PCPs of proximity with zero knowledge [IW14]). While obtaining a desirable expo-
nential query gap, the honest verifier in all these constructions is adaptive, namely it makes several
rounds of queries to the proof, a severe limitation when the system is used in cryptographic ap-
plications.3 Unfortunately, the honest verifier’s adaptivity is inherent to these constructions, as we
now explain.

These ZK-PCP constructions follow the blue-print of [KPT97], who show a 2-step compiler
from a standard non-ZK PCP into a ZK-PCP. In the first step, the PCP is transformed into a PCP
with HVZK – a weak ZK guarantee that holds only for the honest verifier. In the second step,
HVZK is “boosted” into full-fledged ZK, against any (possibly malicious) query-bounded veri-
fier V∗. This is obtained by forcing – through modifications made to the proof – V∗’s queries to
be distributed similarly to the queries of the honest verifier V .4 (We stress that these works do
not make any assumptions on the query pattern of V∗, but rather by appropriately constructing
the proof they guarantee that any query pattern will be “harmless” in the sense that it reveals no
information about the NP witness.) This restriction on the verifier’s queries is imposed by combin-
ing an information-theoretic analogue of a standard cryptographic commitment, called a “locking
scheme” [KPT97], with a modified version of the PCP obtained in the first step. The proof gener-
ated in this second step requires adaptive verification, due to the structure of the modified version
of the proof, as well as the use of locking schemes.

The second step can be very roughly (and somewhat inaccurately) illustrated through the fol-
lowing example: Alice is trying to locate a particular CD cd in Bob’s CD collection, which Bob has
mixed in the following way: (1) the CDs were taken out of their cases and randomly placed back
into the cases (where Bob knows which case contains which CD), and then (2) each CD case was
locked in a transparent box. To get cd, Alice must first ask Bob in which case he put cd. Once this is
known, she can locate the box in which this CD case is, but still needs to ask Bob for the key which
unlocks the box. Since Alice cannot predict in which case cd is, she must first wait for Bob’s answer
to her first query, before making her second query.5 In the ZK-PCP, step (1) of randomly mixing
the CDs corresponds to the modifications performed to the proof to guarantee that V∗’s queries
are “harmless”, specifically that V∗ cannot “cherry pick” specific locations in the HVZK PCP gen-
erated in the first step of the compiler. Moreover, step (2) of locking CDs in boxes corresponds to
locking proof symbols in locking schemes, and even the process of unlocking (given the key) in
itself is adaptive.

The cost of ZK in these ZK-PCPs is high: it incurs adaptive verification, even if the underlying
PCP can be verified non-adaptively, which is indeed the case for traditional (non-ZK) PCPs. This
naturally gives rise to the following research goal:

2Earlier constructions, e.g. [DFK+92], obtained only limited ZK guarantees such as HVZK.
3Another line of works obtain non-adaptive verification by “pushing” adaptivity to the prover side; see Section 1.3.

We note that having adaptive proof generation has similar disadvantages to having adaptive verification.
4This is in fact a gross over-simplification – for example, V∗ can query many more proof bits compared to V .

Somewhat more accurately, these works effectively force V∗’s queries to be distributed similarly to a “repeated” ver-
sion of V (obtained by emulating V multiple times with independent random coins). We refer the interested reader
to [IW14, Wei16] for more details.

5The PCP-version of this example will have Bob somehow write down the list of pairs (CD, CD case), as well as the
keys, in the oracle proof.

5

Design ZK-PCPs with a non-adaptive honest verifier, and ZK against malicious query-bounded verifiers.

Obtaining non-adaptive verification is motivated by the goal of matching the parameters of non-
ZK PCPs, as well as by cryptographic applications of ZK-PCPs, in which adaptive verification
translates into increased complexity of the resultant system.

The question of designing non-adaptive ZK-PCPs had remained open for nearly 20 years, until
Ishai, Weiss and Yang [IWY16] gave the first construction of a non-adaptive ZK-PCP, which was
followed by the non-adaptive ZK-PCP of Hazay, Venkitasubramaniam and Weiss [HVW21a]. The
focus of this survey is on describing and comparing these constructions.

1.1 Non-Adaptive ZK-PCPs

We survey two recent works [IWY16, HVW21a] that construct ZK-PCPs for NP with a non-adaptive
honest verifier, obtained through a novel connection to the seemingly unrelated field of leakage-
resilient cryptography. These constructions differ drastically from the ZK-PCP constructions de-
scribed above. This is not surprising, since adaptive verification is inherent to the latter, so obtain-
ing non-adaptive verification necessitates an entirely new approach.

Malicious Verifiers Through the Leakage-Resilience Lens. Recall that the ZK-PCPs of [KPT97,
IMS12, IW14] are obtained from a PCP with weak ZK guarantees (specifically, HVZK) by effec-
tively restricting the malicious verifier, i.e., forcing its queries to be distributed similarly to the queries
of (multiple independent copies of) the honest verifier. The ZK-PCPs of [IWY16, HVW21a] take
a different approach: instead of forcing a certain structure on V∗’s queries, they classify the type
of information which an arbitrary query-bounded V∗ obtains by querying the proof, and modify
the proof to guarantee this type of information reveals nothing about the underlying NP witness.
Their insight is that the partial information obtained by deviating from the honest verifier’s query
pattern constitutes leakage on the proof and consequently, on the underlying witness.6 Accordingly,
they employ tools from the leakage-resilience literature to protect the witness and proof.

The works of [IWY16, HVW21a] differ in the method they use to protect against leakage. Hazay
et al. [HVW21a] chose to protect the proof itself, whereas Ishai et al. [IWY16] protect the process of
proof generation from the witness. Put differently, the latter protect computation against leakage,
for which they employ leakage-resilient circuits, whereas the former protect information (the proof,
once it has been generated), by using an appropriate leakage-resilient encoding. Consequently,
these works differ in their requirements from the underlying PCP, and in the parameters and prop-
erties of the resultant ZK-PCP. We now elaborate on these differences (see also Table 1).

1.1.1 The ZK-PCPs of Hazay et al. [HVW21a]

Hazay et al. [HVW21a] construct a non-adaptive ZK-PCP in which the ratio between the bound q∗

on the query complexity of a malicious verifier, and the query complexity q of the honest verifier,
is polynomial.

6In a broader cryptographic context, leakage roughly refers to the information an adversary obtains by deviating from
the assumed adversarial model for which the system was designed. For example, so-called “side channel” attacks – such
as measuring the power consumption of an object – exploit adversarial capabilities which were not taken into account
when designing the system (adversarial and attack models traditionally disregard such information, that is obtained
from the physical implementation, and is not part of the more abstract model description). Similarly, a malicious verifier
querying a PCP is capable of querying more – and different sets of – proof bits compared to the honest verifier for which
the system was designed.

6

The leakage-resilient primitive they employ is a Leakage-Resilient Encoding (LRE). Roughly, an
LRE consists of a randomized efficient encoding procedure Enc mapping a bit string m to an en-
coding c, and an efficient deterministic decoder algorithm that given an encoding c of m, outputs
m. The leakage-resilience guarantee is that for any pair m,m′, if c ← Enc (m) , c′ ← Enc (m′), then
any small subset of bits in c, c′ are identically distributed. (They actually need a stronger leakage-
resilience guarantee, see Section 3.1.) Non-explicit constructions of such encodings easily follow
from the existence of linear error-correcting codes with sufficiently “good” parameters, such as
random linear codes (see, e.g., [CCG+07]). In Section 3, we also describe an explicit construction
of such encodings.

The leakage-resilience guarantee of an LRE is restricted to protecting the codeword once it has
been encoded, and does not protect the encoding procedure itself (as opposed to leakage-resilient cir-
cuits, see below). Therefore to obtain PCPs with full-fledged ZK against arbitrary query-bounded
verifiers, the underlying PCP should possess a zero-knowledge property, which is weaker than
full-fledged ZK, but stronger than the HVZK property used in [KPT97, IMS12, IW14]. Specifi-
cally, they use a ZK-PCP variant over a large alphabet, which is much easier to obtain compared to
full-fledged ZK for standard PCPs, in which the proof is binary.

A ZK-PCP variant over a large alphabet can be thought of as a (standard) PCP which is di-
vided into “regions”, each corresponding to a single symbol in the large alphabet, where ZK is
guaranteed only as long as the verifier queries “full” regions (i.e., all bits in the region). Thus, a
malicious verifier does not have to follow the honest verifier’s query pattern, but ZK holds only
against verifiers querying at most q∗ full regions, for some a-priori bound q∗. Such ZK-PCPs are
constructed from general secure multi-party computation protocols in [IKOS07].

Given a ZK-PCP variant over a large alphabet, [HVW21a] design an alphabet reduction that
preserves ZK. (Naïve alphabet reduction techniques do not preserve ZK; see Section 3.) This re-
duction uses the underlying PCP (P ′,V ′) as a black box, transforming it into a ZK-PCP (P,V) in
which the proof is over bits. The high-level idea is to interpret each symbol of a proof π′ generated
by P ′ as a bit string, and encode it using the LRE. V then emulates V ′, answering an oracle query
i by reading the entire encoding of the i’th symbol from its proof, decoding it, and then providing
V ′ with the resultant symbol as the oracle answer.

Hazay et al. [HVW21a] then apply their alphabet reduction to the ZK-PCP variant of [IKOS07]
to obtain the following (see Theorem 14 in Section 3 for the formal statement):7

Informal Theorem 1. There exists a constant ϵ ∈ (0, 1) such that for any ZK parameter q∗ ∈ N and any
NP-language L there exists a ZK-PCP for L with ZK against q∗-query bounded verifiers, and a negligible
soundness error with a non-adaptive honest verifier that queries (q∗)ϵ proof bits.

1.1.2 The ZK-PCPs of Ishai et al. [IWY16]

Ishai et al. [IWY16] construct a non-adaptive ZK-PCP in which the ratio between the bound q∗ on
the query complexity of a malicious verifier, and the query complexity q of the honest verifier, is
exponential, but ZK holds with an inefficient simulator.

Their starting point is a standard PCP with no zero-knowledge guarantees. Consequently, to
obtain full-fledged ZK, they rely on a stronger leakage-resilient tool. To describe their construction,
it would be easier to consider the NP-relationR = R (x,w) associated with the NP-languageL, and
its corresponding verification circuit C. We will assume without loss of generality that a witness
w for x has canonical form, namely it consists of the entire wire values of C given input x,w′, for

7The system described in Informal Theorem 1 requires a tighter analysis of the ZK-PCP variant of [IKOS07], which
[HVW21a] provide. See Section 3 and [HVW21a] for further details.

7

some w′ such that C (x,w′) = 1. (In particular, w′ is the information that we wish to keep secret.)
The PCP prover generates the proof from this canonical NP witness w. Therefore, each proof bit is
an information bit on w, i.e., on the wire values of C when evaluated on x,w′. This can be thought
of as leakage on the computation in C, whose purpose is to reveal information about the secret input
w′ of C. While in general leakage on the wire values of C might reveal information on the secret
input w′, there are tools to compile C into a leakage-resilient circuit Ĉ that resists such leakage.

However, it is well known that one cannot protect circuits against general polynomial-time
leakage [BGI+01]. Consequently, leakage-resilient circuits are associated with a restricted leakage
class from which leakage functions can be chosen, and the circuit only resists leakage computed by
a function from the class. The main observation of [IWY16] is that every PCP system naturally has
such a restricted class LEAK of leakage functions associated with it. Indeed, while V∗ can choose
which proof bits to query, it has no control over the type of functions applied to w to generate the
proof bits – these functions are determined solely by the prover algorithm. Specifically, for every
subset I of at most q∗ indices in the proof, the corresponding leakage function ℓI ∈ LEAK applies
the PCP prover function to w, then outputs the restriction of the proof to the indices in I.

The main building block is therefore a Leakage-Resilient Circuit compiler (LRCC) – a compiler
that transforms a given circuit C into a leakage-resilient circuit Ĉ – that resists leakage from the
class LEAK associated with the underlying PCP system. Informally, an LRCC is associated with a
function class LEAK (the leakage class) and a (randomized) input encoding scheme E = (Enc,Dec),
and compiles a deterministic circuit C into a deterministic circuit Ĉ that emulates C’s operation
over encoded inputs. Ĉ is guaranteed to emulate C on properly encoded inputs, and is leakage
resilient in the sense that for any pair of inputs z, z′ for C such that C (z) = C (z′), and any ℓ ∈
LEAK, the output of ℓ on the wire values of Ĉ when evaluated on a random encoding ẑ ← Enc (z)

is statistically close to its output when Ĉ is evaluated on a random encoding ẑ′ ← Enc (z′).8 In
particular, if the prover generated the proof from the wire values ŵ of Ĉ (instead of the wire values
w of C), then V∗’s queries to the proof – which constitute leakage from LEAK on ŵ – would reveal
no information about w′.

This observation gives a general blue-print for compiling traditional PCPs into ZK-PCPs: given
a PCP system (P ′,V ′) with an associated leakage class LEAK as described above, and a compiler
that transforms a given circuit into one that resists leakage from LEAK, the ZK-PCP system (P,V)
operates as follows. P on input x,w generates the leakage-resilient version Ĉx of the circuit Cx =

C (x, ·) (i.e., C with x hard-wired into it), uses w to generate the entire wire values ŵ of Ĉx, then
emulatesP ′ on ŵ to generate a PCP π. V given input x and oracle access to π generates Ĉx similarly
to P , and emulates V ′ on π to check that Ĉx is satisfiable. In particular, whereas the claim which V
set out to verify can be phrased as “Cx is satisfiable”, the underlying PCP system (P ′,V ′) is used
to verify a different claim, namely that the leakage-resilient circuit Ĉx is satisfiable.

Unfortunately, this blue-print does not actually work. The reason is that the internal system
(P ′,V ′) is used to prove a different statement, namely that Ĉx is satisfiable. For (P,V) to be sound,
it should be the case that Ĉx is satisfiable only if Cx is. This, however, is not generally guaranteed
by LRCCs, as we now explain. Recall that the LRCC is correct for properly encoded inputs, in

8We note that the leakage-resilience literature often considers stateful circuits C whose internal state is secret, and
should be protected against leakage, but we will only need the simpler form of leakage resilience for stateless circuits,
in which we wish to hide the circuit’s input. Additionally, the leakage-resilient circuit Ĉ is often allowed to have
randomized, leak-free components. Instead, we require that Ĉ be deterministic, where the needed randomness will be
provided as part of its input encoding. As will become evident shortly, this is necessary both for correctness – to allow
the verifier to generate Ĉ on its own – as well as for soundness.

8

the sense that on such inputs, Ĉ emulates C. However, LRCCs in general have no guarantee for
inputs which are not properly encoded. This is not just an artifact of the definition, but is rather
essential for leakage resilience to hold in existing constructions. A main technical contribution
of [IWY16] is in defining and constructing an LRCC that also guarantees soundness, in the sense
that the leakage-resilient circuit Ĉ is satisfiable (even by using invalid encodings as inputs) only if
the original circuit C is satisfiable.

To turn this into an actual construction, one needs to design a sound LRCC for a leakage class
LEAK associated with some standard PCP system. The most common leakage classes considered
in the literature are either the “Only Computation Leaks” (OCL) model that assumes leakage is
“local” in the sense that different “regions” of the circuit leak independently [MR04], or classes
of functions that are “computationally simple” [ISW03], i.e., from a low complexity class such as
AC0. It is known that the leakage classes associated with a PCP system cannot be of the former
type [ARW17], so Ishai et al. [IWY16] focus on the latter. Specifically, they show that the PCP sys-
tem of Arora and Safra [AS92] has the property that “small” subsets of proof bits can be generated
using the class LEAK of AC0 circuits (i.e., constant-depth polynomial-sized circuits with ∧,∨,¬
gates of unbounded fan-in and fan-out) augmented with a small number of ⊕ gates. (See sec-
tion 4.3 for a formal definition of this leakage class.) Then, they use correlation bounds of Lovett
and Srivinasan [LS11] to show that their sound LRCC resists leakage from LEAK. This yields the
following result, where a witness-indistinguishable PCP is a ZK-PCP in which the ZK property
holds with an inefficient simulator (see Theorem 23 in Section 4 for the formal statement).

Informal Theorem 2. For any ZK parameter q∗ ∈ N and any NP-language L there exists a witness-
indistinguishable PCP for L with witness-indistinguishability against q∗-query bounded verifiers, and a
negligible soundness error with a non-adaptive honest verifier that queries polylog (q∗) proof bits.

Assuming the existence of one-way functions (a minimal assumption in cryptography), as
well as a Common Random String (CRS) that is available to both parties, and using a standard
cryptographic technique – the so-called “FLS technique” [FLS90] – the witness-indistinguishable
PCP of Informal Theorem 2 can be transformed into a ZK-PCP system where ZK holds against
computationally-bounded query-bounded verifiers in the CRS model. (We refer the interested reader
to [IWY16] for further details, including a formal definition of the model.)

1.2 Comparison Between Different ZK-PCP Constructions

The ZK-PCPs of [HVW21a] (Informal Theorem 1) obtain ZK with efficient simulation as in the
ZK-PCPs of [KPT97, IW14], with a query gap of q∗/(q∗)ϵ. The query gap is inherited directly from
the underlying ZK-PCP variant of [IKOS07], which requires the honest verifier to query Ω ((q∗)ϵ)
proof symbols to obtain a negligible soundness error. Therefore, the query gap could potentially be
improved by replacing the underlying building block with a ZK-PCP variant with a larger query
gap.

On the other hand, the witness-indistinguishable PCPs of [IWY16] (Informal Theorem 2) ob-
tain an exponential query gap, similar to the ZK-PCPs of [KPT97, IW14]. This is possible be-
cause the underlying (non-ZK) PCP has a negligible soundness error with an honest verifier that
queries a poly-logarithmic number of proof bits. However, the construction is only witness-
indistinguishable, which is weaker than ZK (see Section 2.1.1). [IWY16] show that unless NP =
BPP, obtaining ZK-PCPs (i.e., with efficient simulation) using their technique would require a
new and entirely different approach towards designing and analyzing security of leakage-resilient
circuits. We further note that while the techniques of [KPT97, HVW21a] extend also to PCPs of

9

Proximity (see Section 2.1.1 for a description of this model, and [IW14, HVW21a] for the construc-
tions), the technique of [IWY16] does not seem to readily lend itself to designing zero-knowledge
(or even witness-indistinguishable) PCPs of proximity.

Finally, all the aforementioned ZK-PCP constructions [KPT97, IW14, IWY16, HVW21a] have
polynomial-length proofs (whereas traditional PCPs can have quasi-linear length). However, while
a polynomial blowup in proof length is inherent to the constructions of [KPT97, IW14] due to their
use of locking schemes, this is not the case for the leakage resilience based constructions [IWY16,
HVW21a], which could potentially have shorter proofs. This is an additional advantage of taking
the leakage resilience based approach. The discussion is summarized in Table 1.

Underlying LR ZK Query Underlying Honest
Primitive Quality Ratio PCP Verification

[IWY16] Circuits WI Exponential Any standard PCP Non adaptive
[HVW21a] Encoding ZK Square-Root ZK-PCP, large alphabet Non adaptive

[KPT97, IW14] —- ZK Exponential Any standard PCP Adaptive

Table 1: Comparison of Existing ZK-PCP constructions.
Here, “Underlying LR primitive” refers to the type of building block used in the leakage resilience based
constructions; “WI” stands for witness-indistinguishable; “ZK quality” refers to the efficiency of the ZK
simulator (which is efficient in ZK systems and inefficient in WI systems); “Query ratio” is q∗/q, where q∗ is
the bound on the query complexity of a malicious verifier (ZK holds against any verifier querying at most q∗

proof bits), and q is the query complexity of the honest verifier (needed to achieve soundness); “Underlying
PCP” describes the properties which the transformations needs the underlying PCP system to have; and
“Honest verification” refers to the adaptivity of the honest verifier.

1.3 Related Notations, Extensions, and Cryptographic Applications

Many different variants of proof systems, and ZK proof systems, have been considered in the
literature (see, e.g., Thaler’s survey [Tha22], and references therein). We briefly mention two no-
table notions that are closely related to ZK-PCPs; see also Table 2. The first is Interactive Oracle
Proofs (IOPs) [BCS16, RRR16] (a special case of IOPs appeared earlier in [BCGV16]) which com-
bine aspects of IPs and PCPs. Specifically, in an IOP the verifier and prover interact as in an IP,
but the verifier has oracle access to prover messages as in PCPs. These proof systems have re-
ceived increasing attention, partly due to their uses in blockchain applications. Unlike ZK-PCPs,
which can be obtained from standard PCPs through generic compilers, existing ZK-IOPs (see,
e.g., [BCGV16, BCL22] and references therein) are constructed in an ad-hoc manner, in which ZK
is “tailored” to a specific non-ZK IOP. (It is of course preferable to have a generic compiler, since
it can be used to enhance any new IOP construction to also guarantee ZK.) The second notion is
PCPs of Proximity (PCPPs) [DR04, BGH+04, Din06] – a generalization of PCPs in which the verifier
does not read its entire input. Instead, V has oracle access to x, π, and wishes to check whether
x is close to L in relative Hamming distance. Zero-Knowledge PCPPs (ZK-PCPPs) [IW14] extend
ZK-PCPs to the PCPP realm. They guarantee that the view of any verifier V∗ making q∗ queries
to the input and the proof can be efficiently simulated, up to a small statistical distance, by making
only q∗ queries to the input. Ishai and Weiss [IW14] construct ZK-PCPPs for NP with comparable
parameters to the ZK-PCPs of [KPT97, IMS12], where soundness holds for inputs which are δ-far
from the language, for δ which is constant or inverse polylogarithmic. The honest verifier in their
construction is adaptive. Hazay et al. [HVW21a] show how to extend their techniques to the set-

10

ting of PCPPs, constructing ZK-PCPPs for NP with a polynomial query gap with a non-adaptive
honest verifier.

P ↔ V Access to # Prover Access to Soundness ZK Variant
Comm. Prover Messages Messages Input Guarantee Hides

IP Yes Full Multiple Full Full Witness
PCP No Oracle Single Full Full Witness
IOP Yes Oracle Multiple Full Full Witness

PCPP No Oracle Single Oracle Promise (input) Witness, input (partial)
IOPP Yes Oracle Multiple Full Promise (witness) Witness (partial)

Table 2: Comparison Between Different Probabilistic Proof Systems.
IOPPs are IOPs of Proximity, considered in, e.g., [BCF+16], in which the verifier has full access to the input,
and oracle access to the witness. Here, “P ↔ V Comm.” refers to whether there is direct communication
between the prover and verifier (in particular, whether the verifier can send messages to the prover); “Access
to Prover Messages” states whether the verifier reads prover messages in full, or has oracle access to them;
similarly, “Access to Input” indicates whether the verifier reads the input in full, or only has oracle access
to it; ”Soundness Guarantee” refers to the type of inputs which are guaranteed to be rejected, where ”Full”
means that all inputs not in the languages are rejected, whereas ”Promise (input)” means that only inputs
that are far (in relative Hamming distance) from the language are guaranteed to be rejected, and “Promise
(witness)” only guarantees that V rejects when given oracle access to a witness which is far (in relative
Hamming distance) from all valid witnesses for the input; “ZK Variant Hides” of a system X states, for the
ZK variant ZK-X of system X , which input of the prover remains hidden from the verifier, where ”Witness”
means verification reveals no information about the underlying NP witness, and ”Witness, input (partial)”
(resp. “Witness (partial)”) roughly means that a verifier making q queries to the input and proof(s) (resp.
witness) learns only q physical bits of the input (resp., witness).

ZK-PCPs (and ZK-PCPPs) are motivated not only from a purely-theoretical perspective as a
natural model of a proof system, but also from their usefulness for cryptographic applications.
Specifically, they enable modular design of cryptographic proofs systems, by separating a “clean”
information-theoretic proof system component, from the cryptographic assumptions (such as hard-
ness assumptions or an augmented model of computation) which can then be used to trans-
form – i.e., “compile” through a cryptographic compiler – the information-theoretic system into a
computationally-secure system than can be implemented. Thus, one can design, analyze and op-
timize the information-theoretic proof system, then apply different cryptographic compilers to
obtain different properties of the resultant system. This paradigm has been extremely successful,
and is widely used. For example, ZK-PCPs are the underlying combinatorial building blocks in
constructions of succinct zero-knowledge arguments [BCG+13].

ZK-PCPs and ZK-PCPPs also have more direct cryptographic applications both to 2-party and
multiparty scenarios which require highly efficient verification methods on secret data. In the
2-party setting, these include constructions of constant-round (or noninteractive in the random-
oracle model) black-box arguments for NP with statistical ZK [IMS12] (whereas constructions
based on non-ZK PCPs are not black-box [Kil92, Mic94]). ZK-PCPPs can additionally be used
to design 2-party and multiparty black-box commit-and-prove protocols for NP [IW14]. While
these applications only require a weaker ZK guarantee (specifically, ZK against the honest veri-
fier), applications in multiparty settings require full-fledged ZK against malicious verifiers. These
include constructions of certifiable versions of verifiable secret sharing from ZK-PCPPs, as well as
sublinear ZK proofs in a distributed setting from ZK-PCPs. (Various other notions of ZK proofs
in a distributed setting have been considered recently.) In the latter application, the prover and

11

verifier are aided by multiple (potentially corrupted) servers. The motivation for this distributed
setting is to minimize the round complexity, and underlying assumptions, of sublinear ZK proofs.
Specifically, using PCPs with ZK against malicious verifiers, [IWY16] construct distributed 3-round
witness-indistinguishable proofs (respectively, ZK proofs in the computational setting with a com-
mon random string) for NP, which are unconditionally secure (respectively, based on the existence
of one-way functions) in which the total communication involving the verifier is sublinear in the in-
put length. This should be contrasted with standard sublinear ZK arguments, that require at least 4
rounds of interaction, and require the existence of collision resistant hash functions [Kil92, IMS12].

2 Preliminaries

Basic notations. We denote the security parameter by κ. A function µ : N → N is negligible if for
every positive polynomial p (·) and all sufficiently large κ’s it holds that µ (κ) < 1

p(κ) , and negl(κ)

denotes the set of all negligible functions. We use the asymptotic notations O (·) and Ω (·), where
Õ (n) and Ω̃ (n) denote n ·poly (log)n and n/poly (log)n ,respectively. We use the abbreviation PPT
to denote Probabilistic Polynomial-Time, and denote by [n] the set of elements {1, . . . , n}. For a
string s of length n, and a subset I ⊆ [n], we denote by s|I the restriction of s to the coordinates in
I .

We usually denote vectors using boldface letters (e.g., a), or as a⃗. For a pair x,y of vectors, ⟨x,y⟩
denotes their inner product, and Ham (x,y) to denote their Hamming distance, i.e., Ham (x,y) =
|{i : xi ̸= yi}|. For functions f, g, we denote their composition as (f ◦ g) (x) := f (g (x)). The
composition of families F,G of functions is defined as F ◦G := {f ◦ g : f ∈ F, g ∈ G}.

For a distribution D, sampling according to D is denote by X ← D, or X ∈R D. For a pair of
random variables X,Y , we use X ≡ Y to denote that X,Y are identically distributed. For random
variables Xκ and Yκ over a finite domain Ω, the statistical distance between them is defined as

SD(Xκ, Yκ) =
1

2

∑
w∈Ω

∣∣Pr[Xκ = w]− Pr[Yκ = w]
∣∣.

Xκ and Yκ are ϵ-statistically close if their statistical distance is at most ϵ(κ). Ensembles {Xκ}κ , {Yκ}κ
are statistically close, denoted Xκ ≈ Yκ, if there exists an ϵ(κ) = negl(κ) such that Xκ, Yκ are ϵ (κ)-
close for every κ. We say that {Xκ}κ , {Yκ}κ are computationally indistinguishable if they have a
negl(κ) computational distance, i.e., for every PPT distinguisherD there exists an ϵ(κ) = negl(κ) such
that for every κ:

|Pr [D (Xκ) = 1]− Pr [D (Yκ) = 1]| ≤ ϵ (κ) .

Languages and Relations. We will consider NP-relations R = R (x,w), and the corresponding
NP-languages L = {x : ∃w s.t. (x,w) ∈ R}. We sometimes write RL to refer to the NP-relation
whose corresponding language is L.

Encoding Schemes and Leakage-Resilient Encoding Schemes. Our constructions will rely on
encodings schemes with leakage-resilience properties. We now provide a simple definition of an
encoding scheme, and refer the reader to Section 3.1 for a more detailed discussion of the notion.

Definition 3. Let k, n ∈ N. An Encoding Scheme over an alphabet Σ is a pair (Enc,Dec) where Enc is a
PPT algorithm, and Dec is a (deterministic) polynomial-time algorithm, that satisfy the following.

• Syntax. Enc on input a secret x ∈ Σk outputs a codeword c ∈ Σn. Dec on input c ∈ Σn outputs
x ∈ Σk or a special error symbol ⊥.

12

• Correctness. There exists a t ≥ 0 such that the following holds for every x ∈ Σk, and every c ∈ Σn: if
there exists cx ∈ Supp (Enc (x)) such that Ham (c, cx) ≤ t then Dec (c) = x, otherwise Dec outputs
⊥.

A note on terminology. In this section and in Section 3, we use k, n respectively to denote
the input and output lengths of Enc, as is customary in the context of error-correcting codes. In
Section 4, the input and output lengths are denoted by n, n̂, respectively, which is sometimes used
in the context of leakage resilience.

We now define two useful properties of encoding schemes. The first is that the scheme is linear.
The second is that the scheme is onto, meaning any c ∈ Σn can be interpreted as the encodings of
some x ∈ Σk, in the sense that c would be decoded to x.

Definition 4. An encoding scheme (Enc,Dec) over a field F is linear if for every k: (1) k divides n; and (2)
there exists a decoding vector d such that for every x ∈ Fk: (1) every x ∈ Supp (Enc (x)) can be partitioned
into k sub-vectors x =

(
x1, ...,xk

)
, such that Dec (x) =

(
⟨d,x1⟩, ..., ⟨d,xk⟩

)
.

(Enc,Dec) is onto, if Dec is defined (i.e., does not output ⊥) for every c ∈ Σn.

Section 4 will use a parameterized notion of encoding schemes. In such encoding schemes, the
encoding and decoding algorithms are given an additional input 1σ, which is used as a security
parameter. The encoding length can then depend also on σ (and not only on k), and we require
that for every σ the resultant scheme is an encoding scheme. A parameterized encoding scheme is
onto (linear, respectively) if it is onto (linear, respectively) for every σ.

We now define leakage resilience of distributions and encodings.

Definition 5 (Leakage Resilience – Distributions and Encoding Schemes). Let LEAK be a family
of functions, and ϵ > 0. For a finite set D, a pair of distributions X,Y over D are (LEAK, ϵ)-leakage
resilient if for any function ℓ ∈ LEAK with domain D it holds that SD (ℓ (X) , ℓ (Y)) ≤ ϵ.

A randomized function f : Σn → Σm is (LEAK, ϵ)-leakage resilient if for every x, y ∈ Σn, the
distributions f (x) , f (y) are (LEAK, ϵ)-leakage resilient.

An encoding scheme (Enc,Dec) is (LEAK, ϵ)-leakage resilient if for every large enough σ ∈ N,
Enc (·, 1σ) is (LEAK, ϵ)-leakage resilient.

For the construction of Section 3 we will be particularly interested in probing-resilient encoding
schemes, namely ones that are leakage resilient against leakage functions that probe bits of the
codeword.

For a function family LEAK, we sometimes use the term “leakage family LEAK”, or “leakage
class LEAK”, and refer to functions in LEAK as “leakage functions”.

2.1 PCPs and ZK-PCPs

The probabilistic proof system we focus on in this work is Probabilistically Checkable Proofs (PCPs)
with zero-knowledge guarantees. We first describe the (standard, non-zero-knowledge) notion of
PCPs.

At a high level, PCPs allow a randomized verifier to probabilistically verify the validity of some
input statement by querying few bits of a purported proof to which it has oracle access. PCPs can
be defined (and have been studied) in relation to various complexity classes (e.g., DTIME (n)). In
this work, we focus on PCPs for NP since cryptographic applications usually require proof systems
for NP (and this also simplified the presentation). In the context of complexity theory, the system
consists solely of the verifier and the proof oracle, where the proof generation process is implicit.
However, cryptographic applications necessitate that proof generation be efficient, given the NP

13

witness. Thus, we define PCPs as a system consisting of efficient prover and verifier. (This is by
now standard in the literature of PCPs for cryptographic applications, e.g., [KPT97], as well as
other proof systems such as interactive oracle proofs [BCS16, RRR16].)

More specifically, a PCP system for a language L ∈ NP consists of a polynomial-time prover
P that given x ∈ L and a corresponding witness generates a proof π for x, and a PPT verifier
V having direct access (“oracle access”) to individual symbols of π. V will read only part of its
proof string π (called oracle), where the queries to π are determined by V’s input and coin tosses.
Formally,

Definition 6 (PCP). A Probabilistically Checkable Proof (PCP) for a language L ∈ NP consists of a
polynomial-time prover P and a PPT verifier V such that there exists a negligible function ngl = negl(κ)
for which the following holds:

• Syntax: The proverP has input 1κ, x, w (κ is the security parameter), and outputs a proof π ∈ {0, 1}∗
for x. The verifier V has input 1κ, x, and oracle access to π. It makes q queries to π, and outputs either
0 or 1 (representing reject or accept, respectively). q is called the query complexity of the system,
and the system is called a q-query PCP.

• Semantics: The system satisfies the following semantic properties:

– Completeness: For every (x,w) ∈ RL, and every proof π ∈ P (1κ, x, w),

Pr[Vπ(1κ, x) = 1] = 1

where the probability is over the randomness of V .

– Soundness: For every x /∈ L and every oracle π∗,

Pr[Vπ∗
(1κ, x) = 1] ≤ negl(κ)

where the probability is over the coin tosses of the verifier. negl(κ) is called the soundness error
of the system.

Zero-Knowledge PCPs (ZK-PCPs). Intuitively, ZK-PCPs are PCPs in which the witness remains
entirely hidden throughout the verification procedure, in the sense that even a malicious verifier
which deviates from the specified verification procedure learns nothing but the validity of the
claim. Achieving this property requires some modifications to the standard notion of a PCP. First,
the prover must now be probabilistic. Indeed, completeness of the PCP requires (intuitively, at least)
that the proof encode the witness. That is, certain proof bits will carry some information about the
witness, and by querying them a malicious verifier V∗ may learn information about the witness.
Allowing randomized proof generation is akin to having a probabilistic prover in zero-knowledge
interactive proofs (whereas in standard interactive proofs the prover may be deterministic).

Second, while we do not impose any restrictions on the query pattern (i.e., the strategy) of a
malicious verifier V∗, we impose a bound on its query complexity, namely the number of queries it
makes to the proof. To see why imposing some restriction is needed, recall that cryptographic ap-
plications necessitate an efficient honest prover, meaning the proof will have polynomial length.
Therefore, a polynomial-time verifier V∗ that is unrestricted in its access to the proof could po-
tentially read the entire proof and thus necessarily learn information about the witness (since, as
noted above, the proof carries information about the witness). There are several possible methods
of restricting V∗ to reading only part of the proof (e.g., requiring its runtime to be smaller than the
proof length), where the one used in the literature is to restrict its query complexity to some a-priori

14

bound q∗ which is known prior to proof generation (in particular, the proof length may depend
on q∗). One advantage of restricting the query complexity is that it allows us to obtain information
theoretic ZK, namely that ZK holds against malicious verifiers with unbounded computational power,
so long as the verifier makes at most q∗ queries to the proof. It is also more inline with the main
efficiency measures of standard PCPs, which focus on the query (and randomness) complexity.

To define ZK-PCPs, we first formalize the restriction on the query complexity of the verifier.

Definition 7 (Query-bounded verifier). We say that a (possibly malicious) verifier V∗ with oracle access
to a proof π is q∗-query-bounded if it makes at most q∗ queries to π.

As noted above, we will allow a malicious verifier to be computationally unbounded. More-
over, we will allow its query bound q∗ to be much larger than that of the honest verifier. Ideally, the
honest verifier will only make polylog (q∗) queries,9 and the proof will have length poly (q∗). An-
other aspect in which we allow a malicious verifier to be more powerful than the honest verifier is
adaptivity: whereas we would like the honest verifier to be non-adaptive – namely, make a single
round of queries to the proof (as in standard PCPs), we allow a malicious verifier to be adaptive –
i.e., make several rounds of queries to the proof. This is formalized in the following definition.

Definition 8 (Adaptive and-non adaptive verifiers). We say that a (possibly malicious) verifier V∗ is
non adaptive if its queries are determined solely by its input x and randomness (in particular, V∗ can make
all its queries to the proof in a single round). Otherwise, we say that V∗ is adaptive (in particular, the
queries of an adaptive verifier may depend on the answers to previous queries).

We are now ready to define ZK-PCPs. Similar to zero-knowledge interactive proofs (and, more
generally, cryptographic protocols), we formalize zero knowledge by requiring the existence of
an efficient simulator algorithm that, given the input 1κ, x, can simulate the view of the verifier,
namely the verifier’s input, random coins, and the oracle answers (the queries of the verifier can
be computed from these values). Intuitively, this guarantees zero knowledge because the view
of the verifier captures the entire “knowledge” it obtained through verification, and in particular
by querying the proof oracle. Since the view can be simulated from the input alone, without any
access to the NP witness, this implies that the view contains no information about the witness. We
now formalize this intuition.

Notation 9. For a PCP system (P,V) and a (possibly malicious) verifier V∗, we use ViewV∗,P (κ, x, w) to
denote the view of V∗ when it has input 1κ, x and oracle access to a proof that was randomly generated by P
on input (1κ, x, w).

Definition 10 (ZK-PCP). We say that a PCP system (P,V) forL is a (q∗, ε)-Zero-Knowledge PCP (ZK-
PCP) if for every (possibly malicious and adaptive) q∗-query-bounded verifier V∗ there exists a PPT simu-
lator Sim, such that for every (x,w) ∈ R, Sim(1κ, x) is distributed ε-statistically close to ViewV∗,P (x,w).

One prevalent approach for designing simulators (which we will use) is to have the simulator
emulate the verifier V∗, simulating the answers to V∗’s oracle queries.

2.1.1 Restrictions, Extensions and Generalizations

Definition 10 can be restricted, or alternatively, generalized, in several ways, as we now discuss.

9Traditional PCPs can be verified with a constant number of queries, achieving a constant soundness error. However,
since cryptographic applications usually necessitate a negligible soundness error, the query complexity of the honest
verifier is necessarily polylogarithmic in the security parameter κ, or in q∗.

15

A taxonomy based on ZK quality. While we define a statistical notion of ZK as the default for
ZK-PCPs, one can also consider stronger or weaker forms of ZK. Specifically, we can require a
stronger perfect ZK guarantee in which the simulated view is distributed identically to the real
view of the verifier.

Notation 11. We say that a ZK-PCP has q∗-ZK if it has perfect ZK against q∗-query bounded verifiers.

Alternatively, we can settle for a weaker computational ZK guarantee which only holds against
computationally-bounded verifiers V∗, where the simulated view is computationally indistinguish-
able from the real view. One particular relaxation of ZK which we consider in this work is Witness-
Indistinguishability which does not require that the ZK simulator be efficient. This can be obtained
by removing the requirement that Sim be PPT in Definition 10, but the following alternative for-
mulation would be more useful.

Definition 12 (WI-PCP). We say that a PCP system (P,V) for L is a (q∗, ε)-Witness-Indistinguishable
PCP (WI-PCP) if for every (possibly malicious and adaptive) q∗-query-bounded verifier V∗, for any x ∈ L,
and any pair of corresponding witnesses w1, w2 such that (x,w1) , (x,w2) ∈ RL:

SD (ViewV∗,P (x,w1) ,ViewV∗,P (x,w2)) ≤ ε.

There are also various flavors of ZK based on different qualities of the ZK simulator. These
include, for example, whether the simulator is straight-line – i.e., it emulates the verifier without
having to rewind it, and whether the simulator interacts with the verifier as a black-box. The
ZK-PCP constructions described in this work have straight-line, black-box simulators.

Honest-Verifier ZK. Another natural restriction of the definition is by considering zero knowl-
edge only against the honest verifier V . Such systems are called Honest-Verifier ZK (HVZK). As we
explain below, it is fairly simple to obtain an HVZK PCP system from a standard PCP system
(e.g., such a system was presented already in the paper of Kilian, Petrank and Tardos on ZK-
PCPs [KPT97], and a weaker construction with a large soundness error was presented in [DFK+92]).
However, such a restriction is generally too weak to be used in cryptographic applications, for ex-
ample, to prove honest behaviour in cryptographic protocols, in which case the verifying party
might be maliciously corrupted. To see why settling for HVZK simplifies the problem consider-
ably, notice that HVZK is preserved under standard soundness amplification techniques. More
specifically, assume we have an HVZK PCP system with a large soundness error (obtaining such
systems is relatively easy given known techniques such as “MPC-in-the-head” [IKOS07]). Sound-
ness can then be amplified by having the prover generate many fresh, independent copies of the
proof, and having the honest verifier repeat the verification procedure several times, each time
using a fresh proof copy. HVZK of this verification procedure easily reduces to the HVZK of the
original system. However, this amplification does not preserve full-fledged ZK (i.e., against mali-
cious verifiers) even if the original system is ZK against malicious verifiers. Indeed, the reason is
that the query complexity – even of the honest verifier – increases through this transformation,
and in particular would exceed the ZK query bound of the original system. Thus, a malicious ver-
ifier that “concentrates” all its queries to a single proof copy might be able to violate the ZK of the
underlying system.

Verifier Adaptivity. In non-ZK PCP constructions, the honest verifier is non-adaptive. In con-
trast, the classic ZK-PCP of [KPT97], and all consequent ZK-PCPs – except the ones based on leakage
resilience [IWY16, HVW21a] – have an adaptive honest verifier. As discussed in Section 1, this is be-
cause, very roughly, they enhance an HVZK PCP to have full-fledged ZK, by modifying the proof

16

such that even honest verification requires multiple rounds of queries to the proof. Moreover, this
is inherent to their technique of using “locking schemes” [KPT97]. Having a non-adaptive honest
verifier is a major advantage of leakage resilience based ZK-PCPs (see Table 1 for a comparison
of existing ZK-PCP systems), since having non-adaptive honest verification is a desirable feature
of the system. Indeed, an adaptive honest verifier translates into multiple interaction rounds in
cryptographic applications of ZK-PCPs.

Notation 13. We say that a ZK-PCP system (P,V) is a non-adaptive ZK-PCP if the honest verifier V is
non-adaptive.

We note that an orthogonal measure of adaptivity is whether a malicious verifier is restricted to
being non-adaptive. Unlike having a non-adaptive honest verifier, guaranteeing ZK only against
non-adaptive malicious verifiers is an undesirable restriction of the system, since it means there are
no guarantees against adaptive verifiers.

Universal vs. Non-Universal Simulation. Definition 10 requires ZK to hold with a non-universal
simulator, requiring, for every malicious verifier V∗, the existence of a simulator SimV∗ . A stronger
possible definition would require the existence of a universal simulator Sim that can simulate the
view of any query-bounded verifier V∗. We note that all the ZK-PCPs described in this work (in
fact, to the best of our knowledge, all existing ZK-PCP constructions) satisfy this stronger defini-
tion.

The Alphabet. Similar to PCPs, ZK-PCPs are defined as bit-strings. One could also consider a
relaxed notion in which the proof is over some larger alphabet Σ (and this indeed has been done
in the PCP context). We note, however, that while for standard PCPs the choice of alphabet affects
only the parameters of the scheme (but not its its semantic properties), this is not the case for zero-
knowledge PCPs. Indeed, any PCP over Σ can be transformed to a PCP over {0, 1} by replacing
each symbol with a bit-string representation of it, without violating completeness or soundness.10

However, as we explain in Section 3, doing so for a ZK-PCP does not preserve ZK against malicious
verifiers. ZK-PCPs over a large alphabet Σ can still be useful as a building block for obtaining
ZK-PCPs (with proofs over {0, 1}), see Section 3.

PCPs of Proximity. A useful generalization of PCPs are PCPs of Proximity (PCPPs), that allow
verification of an input claim while reading only a small portion of it. This is formalized by giving
the verifier oracle access to the input, similar to how it accesses the proof. Of course, in this case
the verifier cannot be expected to distinguish a true claim from a claim that is false, but very close
to being true (e.g., a 3-CNF for which there exists an assignment that satisfies all but a tiny fraction
of the clauses). Instead, soundness is defined similarly to correctness of promise problems: any
input which is sufficiently far from the corresponding NP language will be rejected with high
probability. PCPPs are an important building block in PCP constructions, and a useful notion in
its own right. There are PCPP constructions matching the properties of the best-known standard
PCPs [BS08, Mie09].

Zero-Knowledge PCPPs (ZK-PCPPs) [IW14] have a stronger ZK guarantee than ZK-PCPs: while
ZK-PCPs guarantee that the witness remains entirely hidden through verification, ZK-PCPPs ad-
ditionally guarantee that the input itself remains mostly hidden, in the sense that the verifier

10More elaborate alphabet reduction techniques have been used also in the context of traditional PCP, but with the
goal of improving the system’s parameters, e.g., in [Din06].

17

(even a malicious one) learns only few physical input bits. This is formalized using the simula-
tion paradigm as in ZK-PCPs, where instead of giving the entire input to the simulator, it has
oracle access to it, and is restricted to making q∗ queries (where q∗ is the query complexity of the
verifier).

Certain techniques for constructing ZK-PCPs extend also to PCPPs, while others do not (or, at
least, it is not clear how to extend them). In particular, the original ZK-PCP construction of [KPT97]
can be extended to also apply to ZK-PCPPs [IW14], and the ZK-PCPs based on leakage-resilient
encodings described in Section 3 also applies to PCPPs (see [HVW21a] for a full description of the
construction). On the other hand, the construction of ZK-PCPs from LR circuits (Section 4) does
not seem to easily extend to the PCPP realm.

3 ZK-PCPs from LR Encodings: The Construction of [HVW21a]

The main result of this section is a construction of ZK-PCPs for NP with a non-adaptive honest
verifier and a polynomial query gap (between the query complexity of the honest and malicious
verifiers) due to [HVW21a]:

Theorem 14 (ZK-PCPs for NP, Formal statement of Informal Theorem 1). There exists a constant
ϵ ∈ (0, 1) such that for any ZK parameter q∗ ∈ N there exists a non-adaptive (q∗)ϵ-query Ω (q∗)-ZK-PCP
for NP.

We describe a simplified version of the construction of [HVW21a] which nonetheless suffices
for designing ZK-PCPs. The interested reader is referred to [HVW21a] for a description of the
more general paradigm which employs an equivocal notion of secret sharing instead of the weaker
leakage-resilient encodings used here.

The construction employs Leakage-Resilient (LR) Encodings. The starting point is a ZK-PCP
variant (P ′,V ′) over a large alphabet Σ, namely where the proof π′ is over Σ. To obtain a stan-
dard ZK-PCP (P,V) – i.e., one in which the proof π is over bits – we need an alphabet reduction.
That is, we are looking for a transformation that replaces each symbol π′

i ∈ Σ with a bit-string
“segment” segmi ∈ {0, 1}∗. Then, given a proof π′ = (π′

1, . . . , π
′
N), the resultant proof would be

π = (segm1, . . . , segmN).
As mentioned in Section 2.1.1, the naive alphabet reduction which replaces each symbol of Σ

with a bit string representing it does not preserve ZK. Indeed, this alphabet reduction necessarily
increases the query complexity of the honest verifier V , who will need to query q · |segm| proof bits
(where q is the query complexity of V ′). Thus, a malicious verifier – whose query complexity is at
least as that of the honest verifier – with oracle access to the resultant proof π may query subsets of
bits in many segments segmi, effectively learning partial information about many proof symbols (in
particular, more than the ZK guarantee of π′), and violating ZK. Therefore, we need an alphabet
reduction which preserves ZK.

Viewed through the leakage-resilience lens, the information which a malicious verifier obtains
on a symbol π′

i ∈ Σ by querying bits of segmi constitutes probing leakage on segmi, and consequently
also on π′

i. Thus, intuitively, ZK can be guaranteed by protecting the segments segmi from probing
leakage. This gives a general blueprint for a ZK alphabet reduction: replace each symbol σ of
Σ with its binary representation sσ, then encode sσ using a probing-resilient encoding. While
this roughly describes the alphabet reduction of [HVW21a], there are a few subtleties, as we now
describe.

18

Simulation Strategy for Malicious Verifiers. A probing-resilient encoding can only protect against
probing of a sufficiently small subset of bits of the encoding, namely against probing of some a-
priori fixed fraction τ of bits. (Indeed, since the message can be decoded from the encoding, an
adversary that probes the entire encoding necessarily learns the underlying message.) However,
a malicious verifier V∗ may query an entire segment segmi

11 – or, more generally, more than a τ -
fraction of it – in which case the probing-resilience of the encoding cannot be used. We solve this
issue in the simulation by dividing the segments segmi into two types: “heavy” and “light” seg-
ments. Intuitively, heavy segments are ones from which V∗ queried many bits, in particular, more
than a τ -fraction. Light segments are segments that are not heavy. We use the probing-resilience of
the underlying encoding to claim that V∗ learns no information about the symbols encoded in the
light segments, and use the ZK guarantee of the underlying ZK-PCP system (P ′,V ′) to simulate
the symbols encoded in heavy segments. This gives us a simulation strategy for (P,V): simulate
heavy symbols using the simulator of the underlying system (P ′,V ′), and simulate light symbols
using random and independent encoding of an arbitrary value (e.g., the all-zeros string).

Simulating Partially-Leaked Symbols. The simulation strategy defined in the previous para-
graph necessitates that the simulator Sim knows in advance which segments are heavy and which
are light, since this determines how to generate the answer to a query. Whether or not a segment
is heavy is a function of the entire query pattern of V∗. Thus, this proof strategy only works against
non-adaptive malicious verifiers, namely ones which make a single round of queries to the proof.
(Indeed, in this case Sim learns all of V∗’s queries before it needs to simulate the oracle answers.)
ZK against adaptive malicious verifiers, namely ones which make several rounds of queries to the
proof, where each query may depend on the answers to the previous queries, requires a somewhat
different simulation strategy, and a stronger LR guarantee from the probing-resilient encoding, as
we now explain.

The high-level idea is as follows. At the onset of the simulation, Sim treats all segments as
light, answering queries using random and independent encodings of 0⃗. At certain points in the
simulation, a certain segment i may become heavy – namely, the number of queries V∗ made to
it exceeds the probing threshold τ . At this point, Sim uses the simulator Sim′ of the underlying
ZK-PCP system (P ′,V ′) to simulate the symbol π′

i. To continue with the simulation, Sim must
now generate an encoding of π′

i which is (1) consistent with the bits already probed from the i’th
segment; and (2) is distributed as a random encoding of π′

i subject to (1). For this, we need the
underlying probing-resilient encoding to be equivocal – allowing one to efficiently sample from this
distribution. Such encodings are called Reconstructable Probabilistic Encodings (RPEs) [CDMW08,
CDMW18].

Putting It Together. We are now ready to describe the full alphabet reduction (see Section 3.2,
and Figure 1 in particular) that transforms a ZK-PCP variant (P ′,V ′) over alphabet Σ into a ZK-
PCP (P,V) (over bits). The reduction employs an RPE (see Section 3.1). For proof generation,
the prover P first runs P ′ to generate a proof π′ = (π′

1, . . . , π
′
N) over Σ. Then, it replaces each

proof symbol π′
i with its binary representation si, and uses the RPE to encode si into a segment

segmi. P outputs the proof π = (segm1, . . . , segmN). The verifier V , given oracle access to π,
verifies the proof by emulating V ′. Whenever V ′ queries a symbol π′

q of π′, V queries segmq from
π, RPE-decodes it to obtain the binary representation sq of a symbol σq ∈ Σ, and provides σq to

11This is because the query bound q∗ imposed on the malicious verifier is expected to be much larger than the length
of the encoding. Indeed, q∗ should be at least as large as the query complexity of the honest verifier, which would need
to read at least a few symbols of the original PCP, i.e., a few full encodings of symbols of the original PCP.

19

V ′ as the answer of the oracle. When the emulation ends, V outputs whatever V ′ outputs. In the
following sections, we describe the RPE building block (Section 3.1), and analyze the resultant
ZK-PCP scheme (Section 3.2).

3.1 Main Building Block: Reconstructable Probabilistic Encdoings (RPEs)

The main building block of the ZK-preserving alphabet reduction is an encoding scheme with
equivocation properties called Reconstructable Probabilistic Encoding (RPE) [CDMW08, BDKM16,
BDG+18, CDMW18]. In this section, we formally define these objects.

Codes, or encoding schemes, are extensively used in computer science, the most notable ex-
ample being Error-Correcting Codes (ECCs), which are used to guarantee that the data can still be
recovered even if faults occur (i.e., some of the symbols of the data are erased or corrupted). A
code consists of an encoding procedure Enc which maps a message to a codeword, and a decoding
procedure Dec which decodes the message from a (possibly corrupted) codeword. In the context
of error-correction, Enc,Dec are usually deterministic. Most ECCs are linear codes, where the code
is defined by a generator matrix, and encoding simply multiplies the generator matrix with the mes-
sage. The main parameters of interest for such codes are: (1) the rate of the code – the ratio between
the length of the encoding (also known as a codeword) and the length of the original message; (2) its
distance – namely the minimal distance between a pair of codewords12; and (3) the alphabet size
(where most ECCs are binary). There are numerous extensions and generalizations of ECCs that
guarantee additional properties beyond error correction.

We will be interested in a generalized notion of an ECC which also guarantees probing-resilience
in the sense that few codeword symbols reveal no information (in an information-theoretic sense)
on the encoded message. Of course, such a guarantee cannot be satisfied if encoding is determin-
istic. Probing-resilient encodings therefore allow for a randomized encoding procedure, where each
message has a subset of codewords to which it can be mapped, and encoding chooses one of them
at random. It is fairly simple to obtain such a leakage-resilient encoding from a linear code, as long
as its generator matrix has a “good” structure. (See, e.g., [ISVW13] for a description of the needed
properties and how encoding works.)

As explained above, probing-resilience alone is insufficient to guarantee ZK against adaptive
malicious verifiers. Instead, we rely on a stronger equivocation property which guarantees that
as long as the probing threshold τ had not been violated, the probed bits can be efficiently “ex-
plained” as the bits in an encoding of any arbitrary message msg. Intuitively, an RPE is an encoding
scheme (se defined in Section 2) which is probing-resilient, and is additionally associated with a
resampling/reconstruction algorithm Rec that can “explain” the probed bits. Formally:

Definition 15 (Reconstructable Probabilistic Encoding (RPE)). Let k, n, ℓ ∈ N. A (k, n, ℓ)-Reconstructable
Probabilistic Encoding (RPE) is a triple (Enc,Dec,Rec) where Enc,Rec are PPT algorithms, and Dec is
a (deterministic) polynomial-time algorithm, that satisfy the following.

• Syntax. Enc on input a secret x ∈ {0, 1}k outputs a codeword c ∈ {0, 1}n. Dec on input c ∈ {0, 1}n
outputs x ∈ {0, 1}k or a special error symbol ⊥. Rec on input a secret x, a set I ⊂ [n] of size |I| ≤ ℓ,
and ℓ bits (ci)i∈I , outputs c′ ∈ {0, 1}n.

• Correctness. There exists a t ≥ 0 such that the following holds for every x ∈ {0, 1}k, and every
c ∈ {0, 1}n: if there exists cx ∈ Supp (Enc (x)) such that Ham (c, cx) ≤ t then Dec (c) = x,
otherwise Dec outputs ⊥.

12The distance between a pair of codewords is the number of coordinates in which they differ.

20

Construction 16 (Alphabet reduction for ZK-PCPs). Let κ be a security parameter.
Building blocks:

• A PCP system (P ′,V ′) over alphabet Σ of size |Σ| = 2k.

• An RPE (Enc,Dec,Rec) for secrets in {0, 1}k.

Prover algorithm. P has input 1κ, x, w. It runs P ′ with input 1κ, x, w to obtain a proof π′ = (π′
1, . . . , π

′
N) over

Σ. For every proof symbol π′
i, let si denote its bit-string representation, then P encodes segmi ← Enc (si). Finally,

P outputs the proof π = (segm1, . . . , segmN).

Verifier algorithm. V is given input 1κ, x and oracle access to π. It runs V ′ with input 1κ, x, and emulates the
oracle π′ for V ′ as follows. Whenever V ′ reads a symbol σ from π′, V reads the entire encoding of σ from π. Then, it
uses Dec to recover the symbol σ, which it gives to V ′ as the answer of the oracle. When the emulation terminates,
V outputs whatever V ′ outputs.

Figure 1: Alphabet Reduction For ZK-PCPs [HVW21a]

• ℓ-Secrecy (of partial views). For every pair of secrets x, x′, and any subset I ⊆ [n] such that
|I| ≤ ℓ, Enc (x) |I ≡ Enc (x′) |I .

• ℓ-Reconstruction (from partial views). For any secret x, any subset I ⊆ [n] of size |I| ≤ ℓ, and
any set (c′i)i∈I of bits, Rec

(
x, I, (c′i)i∈I

)
is distributed identically to an encoding c ∈ Supp (Enc (x))

that is random subject to being consistent with (c′i)i∈I .

A few remarks are in order. First, our constructions can make due with a relaxed RPE notion
in which the secrecy and reconstruction properties hold statistically with statistical distance ϵ. (In
this case, the resultant ZK-PCP will have statistical ZK with a statistical error of roughly N · ϵ,
where N denotes the proof length, see [HVW21a] for details.) Second, while we define RPEs for
a single message length k, the notion naturally generalizes to families of codes such that for every
k ∈ N there exists a code whose codewords have length n = n (k); and there exists a uniform
algorithm that given 1k as input, generates the encoding, decoding and resampling procedures for
message length k. We will only consider (efficiently encodable and decodable) families of codes in
this work. For simplicity and clarity of the definitions, we do not explicitly refer to a family of
codes, but k should be understood as a general input length parameter. (This is standard in the
literature.) Finally, we note that non-explicit constructions of RPEs follow easily from the existence
of linear error-correcting codes with sufficiently “good” parameters, which are satisfied by random
linear codes (see, e.g., [CCG+07]). Indeed, such codes posses the secrecy property of RPEs, which
guarantees that for every subset of ℓ codeword symbols, the resultant system of linear equations
has a solution for any possible secret. This gives an efficient reconstructor Rec. We note that the
final ZK-PCP construction will use an explicit RPE construction due to [GM10, BDG+18].

3.2 The ZK-PCP Construction

We now describe the alphabet reduction for ZK-PCPs, which uses RPEs to transform a ZK-PCP
variant over a large alphabet to a ZK-PCP (over bits).

Construction 16 transforms a PCP system over a large alphabet into a PCP (over bits). The
following theorem of [HVW21b, Theorem 9] states that if the underlying PCP system is ZK, and
the RPE is secure, then the resultant scheme is also ZK.

21

Theorem 17 (ZK-PCPs from LR encodings [HVW21a]). Assume Construction 16 is instantiated with:

• A (q∗, ϵ)-ZK-PCP (P ′,V ′) over alphabet Σ for a language L.

• A (k, n, ℓ)-RPE (Enc,Dec,Rec).

Then Construction 16 is a ((q∗ + 1) · (ℓ+ 1)− 1, ϵ)-ZK-PCP for L.
Moreover, the transformation preserves the soundness and completeness of (P ′,V ′). Furthermore, if

(P ′,V ′) has proofs of length N that can be verified non-adaptively with q′ queries, then Construction 16 has
proofs of length N · n that can be verified non-adaptively with q = q′ · n queries.

Proof. Completeness follows directly from a combination of the completeness of (P ′,V ′) and the
correctness of the RPE (which guarantees that V perfectly emulates the proof oracle for V ′). The
claim regarding q follows directly from the construction.

Soundness. Let x∗ /∈ L, and let π∗ be a purported proof oracle for V . We show that V rejects x∗

with the same probability as V ′. We partition π∗ into N length-n segments π∗,1 · · ·π∗,N , where the
i’th segment π∗,i contains the bits in locations (i− 1)n + 1, . . . , i · n. (Notice that the i’th segment
in an honestly-generated proof would contain the RPE-encoding of the i’th symbol in a proof over
Σ.) Then the correctness of the RPE implies that for every 1 ≤ i ≤ N there exists a σi ∈ Σ such
that Dec

(
π∗,i) = σi (indeed, if Dec

(
π∗,i) =⊥ then we set σi to some arbitrary symbol in Σ). Let

π∗′ = (σ1, . . . , σN) ∈ ΣN , and notice that when V has oracle access to π∗, it emulates V ′ with oracle
access to π∗′. The soundness of (P ′,V ′) therefore guarantees that V ′ (and consequently also V)
accepts with probability ϵ.

Zero Knowledge. Let q∗∗ = (q∗ + 1) · (ℓ+ 1) − 1, and let V∗ be a (possibly malicious and
adaptive) q∗∗-query bounded verifier. For simplicity of the description, we assume V∗ makes its
queries one at a time, and never repeats queries (this is without loss of generality). We describe a
simulator Sim for V∗, which relies on the simulator Sim′ of the underlying ZK-PCP system (P ′,V ′),
and emulates a proof oracle π∗ for V∗ as follows:

1. π∗ ∈ {0, 1}N ·n is the concatenation of N segments segm1, . . . , segmN ∈ {0, 1}n, which Sim
initializes as random and independent RPE-encoding of 0k, by computing segmi ← Enc

(
0k
)
.

Sim additionally maintains N counters Cnt1, . . . ,CntN , initialize to 0, and N sets I1, . . . , IN ,
initialized to ∅.

2. Sim answers each oracle query Q of V∗ as follows. Assume that Q is a query to the j’th bit of
the i’th segment (meaning Q queries the (i− 1)n+ j’th bit of the proof).

(a) If Cnti < ℓ, or Cnti ≥ ℓ+1, then Sim answers with the j’th bit of segmi, increases Cnti by
1, and adds j to Ii.

(b) Otherwise, Cnti = ℓ, meaning V∗ has already queried ℓ bits from the encoding in the
i’th segment. In this case, Sim uses Sim′ to simulate the i’th symbol σi of a proof of
the underlying ZK-PCP system. Then, Sim resamples an encoding of σi by computing
segm′

i ← Rec (σi, Ii, (segmi) |Ii) (this resamples a fresh encoding of σi consistently with
the oracle answers already simulated), sets segmi := segm′

i, and provides the j’th bit of
segmi as the answer of the oracle. Finally, it increases Cnti by 1.

We now prove that the simulated and real views of V∗ are ϵ-statistically close, using a hybrid
argument.

H0: This is the view of V∗ in the simulation described above.

22

H0
1: H0

1 is obtained from H0 by replacing the simulated answers of Sim′ with the actual proof
symbols of a proof π′ honestly generated by P ′.

ThenH0 andH0
1 are ϵ-statistically close by the (q∗, ϵ)-ZK of (P ′,V ′).

Indeed, since Sim′ is used to simulate the i’th proof symbol only when Cnti = ℓ, i.e., only on
the ℓ + 1 query to the i’th segment, and since q∗∗ = (q∗ + 1) (ℓ+ 1) − 1, Sim′ is only used to
simulate at most q∗ symbols, and so the (adaptive) ZK of (P,V) implies that the simulated
answers are ϵ-statistically close to the corresponding symbols in a real proof π′.

Hi
1, 1 ≤ i ≤ N : Hi

1 is obtained fromHi−1
1 by replacing the simulated answers of Sim with the actual

bits in the i’th section of the proof π. (In particular, these are bits in random RPE-encodings
of π′

1, . . . , π
′
N .)

ThenHi−1
1 andHi

1 are identically distributed by the ℓ-secrecy or ℓ-reconstruction of the RPE.

To see why this holds, we consider two cases depending on whether or not V∗ made more
than ℓ queries to the i’th segment. If V∗ made at most ℓ queries to the i’th segment, then all
queries in Hi−1

1 were answered according to an RPE-encoding of 0k, whereas all queries
in Hi

1 were answered according to an RPE-encoding of (the binary representation of) π′
i.

The bits queried in the i’th segment (and consequently, also the entire hybrids) are therefore
identically distributed by the ℓ-secrecy of the RPE.

If, on the other hand, V∗ made more than ℓ queries to the i’th segment, then the first ℓ queries
inHi−1

1 were answered according to an RPE-encoding of 0k, and the remaining queries were
answered using a resampled encoding of (the binary representation of) π′

i, resampled con-
sistently with the answers to the first ℓ queries; whereas inHi

1 all queries to the i’th segment
were answered according to a random encoding of (the binary representation of) π′

i. In this
case, the distributions are identically distributed by the ℓ-reconstruction of the RPE.

We conclude the proof by noting thatHN
1 is distributed identically to the real view of V∗.

Remark 18 (ZK-PCPs from weaker primitives). We note that if one only requires that ZK hold against
malicious non-adaptive verifiers, then it suffices for the underlying ZK-PCP system over Σ to have ZK
against non-adaptive verifiers. Additionally, the reduction can be instantiated with an RPE in which secrecy
and reconstruction hold statistically with some error ϵ′, in which case the overall simulation error will be
ϵ+ ϵ′ (N − q∗). We refer the interested reader to [HVW21b] for a proof of these claims.

3.3 ZK-PCPs with Square-Root Gap

In this section we describe the
√
q∗-query q∗-ZK-PCPs of [HVW21a] (i.e., the system has q∗-ZK with

an honest verifier that makes
√
q∗ queries), which are obtained by appropriately instantiating the

building blocks of Construction 16. These are the only known PCPs to date that have full-fledged
ZK with a non-adaptive honest verifier. We first describe how we instantiate the building blocks.

The Building Blocks. Hazay et al. [HVW21a] instantiate Construction 16 with a ZK-PCP of [IKOS07]
(using an improved soundness analysis given in [HVW21a]), and an RPE based on linear codes.

More specifically, the ZK-PCP over Σ is obtained using the “MPC-in-the-head” technique. It
has perfect ZK against malicious verifiers querying at most a constant fraction of proof symbols
(for an a-priori bounded constant), where the honest verifier obtains a negligible soundness error
by non-adaptively querying only a square-root of the proof symbols. We note that the original

23

soundness analysis of [IKOS07] required the honest verifier to make as many queries as a malicious
verifier, but this analysis was recently improved by [HVW21a].

Theorem 19 (Non-adaptive ZK-PCPs over large alphabets with
√
Q-gap, implicit in [IKOS07]). For

any L ∈ NP, any Q ≥ 3, and any input length n, there exists an alphabet Σ of size |Σ| = 2poly(n,logQ)

for which there exists a ZK-PCP for L over Σ, with negl(Q) soundness error with a non-adaptive honest
verifier that makes logQ ·

√
Q queries, proofs of length Q, and perfect Ω (Q)-ZK.

The RPE which [HVW21a] use is obtained by applying a general observation of [GM10, BDG+18]
– that the existence of linear codes implies the existence of RPEs – to the linear codes of Decatur
et al. [DGR99]. Specifically, Ball et al. [BDG+18, Lemma 2] prove the following, where a code
C ⊆ {0, 1}n is linear if its encoding procedure simply multiplies the input with a public generator
matrix, and the distance of the code is minc∈C Ham (c, 0n) (i.e., the minimal weight of a non-zero
codeword):

Lemma 20 (RPEs from linear error-correcting codes [BDG+18]). If there exists a linear error-correcting
code C ⊆ {0, 1}n with messages in {0, 1}k and distance d, then there exists a (k, n, d− 1)-RPE.

To obtain an RPE with good parameters, we apply Lemma 20 to any explicit family of linear
codes with constant rate and constant relative distance (e.g., the codes of [DGR99, Thoerem 2.1],
which already posses secrecy from partial views)13. In particular, we have

Corollary 21 (RPEs). For every message length k ∈ N, there exists a (k,O (k) ,Ω (k))-RPE.

A ZK-PCP with Square-Root Query Gap. With these building blocks in place, we are ready to
prove Theorem 14.
Proof of Theorem 14: We instantiate Theorem 17 with the ZK-PCP system of Theorem 19 and the
RPE of Corollary 21. We assume without loss of generality that q∗ ≥ n (where n is the input length).
Since we set Q below to be polynomially-related to q∗ (and consequently also to n), there exists a
constant c such that the PCP of theorem 19 is over an alphabet of size 2Q

c
. Let α = 1/ (c+ 1), then

we instantiate Theorem 19 with Q := (q∗)α, and set k = Qc in Corollary 21. Then Theorem 17
guarantees that the resultant ZK-PCP has proofs of length Q · O (Qc) = O

(
Qc+1

)
= (q∗)α·(c+1) =

O (q∗) with perfect ZK against (possibly malicious and adaptive) verifiers making Ω (Q) ·Ω (Qc) =
Ω (q∗) queries, and a negl(Q) = negl(q∗) soundness error with a non-adaptive honest verifier whose
query complexity is logQ ·

√
Q · O (Qc) = Õ

(
Qc+1/2

)
= Õ

(
(q∗)(c+1/2)/(c+1)

)
. The theorem now

follows for any ϵ which is larger than (c+ 1/2) / (c+ 1) (and for a sufficiently large q∗).

Theorem 14 allows one to choose the ZK query bound q∗. Hazay et al. [HVW21a] also give
an alternative formulation of Theorem 14, in which the square-root query gap obtained by the
ZK-PCP system is more clearly manifested.

Corollary 22 (ZK-PCP with
√
n query gap, Corollary 10 of [HVW21b]). There exists a constant c > 0

such that there exists ZK-PCP with perfect Ω
(
nc+1

)
-ZK, and negl(n) soundness error with an honest

verifier that non-adaptively queries Õ
(
nc+1/2

)
proof bits, where n denotes the input length.

Proof. We instantiate Theorem 17 with the ZK-PCP system of Theorem 19 and the RPE of Corol-
lary 21. Setting Q = n in Theorem 19, let c be a constant such that the PCP of theorem 17 is over an

13We note that the construction of [DGR99] relies on Toeplitz matrices of logarithmic size which generate codes with
good parameters. Such a matrix can be efficiently found by traversing all these matrices by some pre-defined order, and
using the first matrix satisfying the desired properties.

24

alphabet of size nc. We set k = nc in Corollary 21. Then Theorem 17 guarantees that the resultant
ZK-PCP has proofs of length n ·O (nc) = O

(
nc+1

)
with perfect ZK against (possibly malicious and

adaptive) verifiers making Ω (n) · Ω (nc) = Ω
(
nc+1

)
queries, and a negl(n) soundness error with a

non-adaptive honest verifier whose query complexity is log n ·
√
n ·O (nc) = Õ

(
nc+1/2

)
.

4 ZK-PCPs from LR Circuits: The Construction of [IWY16]

The main result of this section is a construction of witness-indistinguishable PCPs for NP with a
non-adaptive honest verifier and an exponential query gap (between the query complexity of the
honest and malicious verifiers), which was given in [IWY16]:

Theorem 23 (WI-PCPs for NP, formal statement of Informal Theorem 2). Let n ∈ N be an input
length parameter. For any query bound q∗ = poly (n) there exists a non-adaptive poly (log q∗, κ)-query
(q∗, negl(q∗))-WI-PCP for NP with negl(κ) soundness error, where κ is a statistical security parameter.

The WI-PCP system is constructed from leakage-resilient circuits. Historically, this construction
was presented before the ZK-PCPs of Section 3, and was the first to show a connection between
ZK-PCPs and leakage resilience. Moreover, it was the first construction of PCPs with (relaxed)
ZK against malicious verifiers with non-adaptive honest verification. Compared to the ZK-PCPs of
Section 3, the scheme we describe in this section has the advantage of obtaining an exponential
query gap: the scheme is ZK against q∗-query bounded verifiers, but the honest verifier only needs
to query polylog (q∗) proof bits to verify the proof (setting κ = polylog (q∗)). However, the PCP
system described in this section obtains a weaker form of ZK called Witness Indistinguishability
(WI) in which the ZK simulator is not guaranteed to be efficient. The construction of Section 3 has
the added feature of being simpler.

The main building-block in the transformation of [IWY16] are leakage-resilient circuits – a
stronger primitive than the leakage-resilient encodings used by [HVW21a]. Indeed, leakage-resilient
encodings only protect information, whereas leakage-resilient circuits protect computations. Thus,
while Hazay et al. [HVW21a] could only use leakage-resilient encodings to protect the proof once
it was already generated, Ishai et al. [IWY16] employ leakage-resilient circuits to protect proof gener-
ation itself. When used in the context of proof generation, these leakage-resilient circuits in effect
amplify leakage resilience: from a relatively low leakage bound on the witness, to a much larger
leakage bound on the entire computation. This amplification results in an exponential query gap,
which eluded the ZK-PCPs of Section 3.

High-Level Idea: Leakage-Resilient Proof Generation. The goal of the prover P is to convince
the verifier V that x ∈ L, where P has a corresponding witness w. Recall from Section 1.1.2 that
one way of doing so is to emulate the verification circuit C of the corresponding NP-relation RL
on (x,w), where V then checks that this computation was executed correctly. Indeed, without loss
of generality we can assume that RL has a canonical form in which the witness consists of the
entire wire values of C. In particular, in a PCP system the prover would generate the PCP from
the entire wire values of C, which we denote by [C, x,w]. While this might blatantly violate ZK
(e.g., w itself is part of [C, x,w], and the PCP might explicitly contain these wire values), the main
observation of [IWY16] is that by querying few proof bits, V is leaking on a computation – namely,
the evaluation of C on (x,w). Therefore, one can use leakage-resilient circuits to guarantee that
this leakage gives V no information on the witness w (i.e., C’s input).

Concretely, one can first replace C with a leakage-resilient version Ĉ, then have V check the com-
putation executed in Ĉ. If V were reading directly from the wire values of Ĉ, then we would need

25

Ĉ to resist probing leakage (similar to Section 3). However, V is actually probing bits in the PCP
π, which was generated by applying the prover algorithm to the wire values of Ĉ. Therefore, V
obtains more evolved forms of leakage on these wire values, and we thus need leakage resilience
against a wider class of potential leakage functions. Still, V cannot obtain any leakage that it wants
on the wire values of Ĉ, but rather it is restricted to whatever the prover computes on these wire
values during proof generation. In particular, by restricting the types of functions the prover ap-
plies to the wire values of Ĉ, we can “control” the type of information which even a malicious
verifier V∗ obtains on the witness. (Indeed, V∗ can deviate from an honest verification strategy by
choosing to read different – and a larger number of – proof bits than the honest verifier, but cannot
affect the proofs generation itself.) This gives a general blue-print for transforming standard PCPs
into ZK-PCPs: the prover and verifier both hard-wire x into the verification circuit C, to obtain a
circuit Cx. Then, they generate the LR-version of it Ĉx. Then, P randomly encodes the witness w

as ŵ14, and generates the PCP from the wire values
[
Ĉ, ŵ

]
. Finally, the verifier V runs the PCP

verifier to verify the proof.

Achieving Soundness. While (for an appropriate choice of the family of leakage functions) the
blue-print described above would indeed yield ZK proofs, they would not be sound. The reason
is that soundness of the original PCP relied on the fact that C (x, ·) is satisfiable only if x ∈ L, i.e.,
there exists a corresponding witness w such that (x,w) ∈ RL. This, however, is not preserved
in the leakage-resilient version Ĉx of C (x, ·). In fact, in many (if not all) existing constructions,
Ĉx is necessarily satisfiable – leakage resilience relies on this fact! To understand why this is the
case, and how we can still achieve soundness, we need to first take a closer look at how these LR
constructions work.

4.1 Leakage-Resilient Circuit Compilers (LRCCs)

In this section we describe the main building block used in the ZK-PCPs of this section: Leakage-
Resilient Circuits Compilers (LRCCs). Compared to the LR encodings used in Section 3, LRCCs
offer a stronger LR guarantee: they protect computation rather than information. More specifically,
LRCCs are compilers which transform a given circuit C into a functionally-equivalent circuit Ĉ
which is leakage resilient in the sense that leakage on the wire values of Ĉ reveals no information
on its input. Of course, this cannot be obtained if the input of C is given to Ĉ in the clear, since then
leakage on the wire values reveals information about the input. Instead, the LRCC is associated
with a (LR) encoding scheme, which is used to encode the inputs to (and intermediate values in
the computation of) the LR circuit Ĉ.

We first define the circuit model which we use, then define circuit compilers, and finally define
leakage-resilient circuit compilers.

Circuit Model. An (arithmetic) circuit C over the field F and the set X = {x1, ..., xn} of variables
is a directed acyclic graph whose vertices are called gates and whose edges are called wires, and are
labeled with functions over X . Every gate in C of in-degree 0 has out-degree 1 and is either an input
gate labeled by a variable from X ; or a constant gate constα labeled by a constant α ∈ F. Gates of in-
degree 2 and out-degree 1 are labeled by one of the operations +,−,× (i.e., addition, subtraction,

14Recall that a LR circuit operates on encoded inputs, see also Section 4.1 below.

26

and multiplication over F).15 The size |C| of a circuit C is the sum of the number of wires, input
gates, and output gates, in C. The depth of C is the number of gates on the longest path from
inputs to outputs. We also consider Boolean circuits, with ∧,∨ gates (replacing the +,−,× gates of
arithmetic circuits), const0 and const1 gates, and ¬ gates with in- and out-degree 1.

We define several circuit complexity classes, which restrict the size and depth of boolean and
arithmetic circuits. Specifically,

Notation 24. SHALLOW (d, s) denotes the class of all depth-d, size-s arithmetic circuits over F. Simi-
larly, BOOL (d, s) denotes the class of all depth-d, size-s boolean circuits. Somewhat abusing notation, we
use the same notations to denote the families of functions computable by circuits in the respective class
of circuits. AC0 denotes all constant-depth and polynomial-sized boolean circuits over unbounded fan-in
and fan-out (i.e., in-degree and out-degree) ∧,∨,¬, const0 and const1 gates.

Definition 25 (Satisfiable Circuits). A circuit C : Fn → F is satisfiable if there exists an x ∈ Fn such
that

C (x) =

{
1 C is boolean
0 C is arithmetic

Circuit Compilers. We define the notion of a circuit compiler. Informally, it consists of an encod-
ing scheme and a compiler algorithm, that compiles a given circuit C into a circuit Ĉ that emulates
the operation of C over encoded inputs. Formally,

Definition 26 (Circuit compiler over F). A circuit compiler over F is a pair (Comp, (Enc,Dec)) such
that the following holds:

• Syntax:

– (Enc,Dec) is an encoding scheme, where Enc is a PPT algorithm that on input a vector x ∈ Fn,
and 1len,16 outputs a vector x̂, and Dec is a polynomial-time algorithm. We assume that x̂ ∈ Fn̂

for some n̂ = n̂ (n, len).
– Comp is a polynomial-time algorithm that on input an arithmetic circuit C over F outputs an

arithmetic circuit Ĉ.

• correctness: For any arithmetic circuit C, and any input x for C, we have Pr
[
Ĉ (x̂) = C (x)

]
= 1,

where x̂← Enc
(
x, 1|C|).

As discussed above, we will need circuit compilers that are also “sound” in the sense that
the compiled circuit Ĉ is satisfiable only if the original circuit C is satisfiable. We stress that this
property should hold even when the inputs of Ĉ are not valid encodings according to Enc.

Definition 27 (SAT-respecting circuit compiler). A circuit compiler (Comp, (Enc,Dec)) is SAT-respecting
if for every circuit C : Fn → F, if Ĉ = Comp (C) is satisfiable then C is satisfiable. That is,

• For arithmetic C: if there exists an x̂∗ ∈ Fn̂ such that Ĉ (x̂∗) = 0, then there exists an x ∈ Fn such
that C (x) = 0.

• For Boolean C: if there exists an x̂∗ ∈ {0, 1}n̂ such that Ĉ (x̂∗) = 1, then there exists an x ∈ {0, 1}n
such that C (x) = 1.

15Jumping ahead, we will use an LRCC of [FRR+10], which employs additional gates (e.g., to duplicate values in the
circuit). Since we do not explicitly use these additional gates, we omit their description to simplify the presentation.

16This additional parameter is a length parameter, which is used to determine the amount of random masks needed
to protect the computation from leakage, see Definition 29 below.

27

Leakage-Resilient Circuit Compilers. We now define Leakage-Resilient circuit compilers. An
LRCC is associated with a class LEAK of leakage functions, and guarantees that when the input
to Ĉ is properly encoded, then leakage from LEAK on the wire values of Ĉ reveals no informa-
tion about the input and internal computations, except for the output of Ĉ. This is formalized by
requiring that the wire values are distributed statistically close for every pair of inputs x, x′ such
that C (x) = C (x′). We first set some notation.

Notation 28. For a Circuit C, a leakage function ℓ : F|C| → Fm for some m ∈ N, and an input x for C,
[C, x] denotes the wire values of C when evaluated on x, and ℓ [C, x] denotes the output of ℓ on [C, x].

Definition 29 (LRCC). Let F be a finite field, LEAK be a function class, S (n) : N→ N be a size function,
and ϵ (n) : N → R+. A circuit compiler (Comp, (Enc,Dec)) is (LEAK, ϵ (n) , S (n))-leakage resilient if
for all sufficiently large n’s, every arithmetic circuit C : Fn → Fm (for some m) of size |C| ≤ S (n), every
ℓ ∈ LEAK of input length

∣∣∣Ĉ∣∣∣, and every x, x′ ∈ Fn such that C (x) = C (x′), we have

SD
(
ℓ
[
Ĉ, x̂

]
, ℓ

[
Ĉ, x̂′

])
≤ ϵ (n)

where x̂← Enc
(
x, 1|C|) and x̂′ ← Enc

(
x′, 1|C|).

LRCCs for boolean circuits are defined similarly.

A few remarks are in order. First, we note that the LR guarantee of Definition 29 is a relaxed
version of the standard notion. Specifically, while Definition 29 only guarantees indistinguishabil-
ity – namely, leakage functions cannot distinguish between the wire values of Ĉ when evaluated
on two different inputs (so long as C has the same output on both), the standard definition (e.g.,
in [ISW03, FRR+10, DF12, MV13]) is simulation-based. That is, the standard definition requires the
existence of a PPT simulator which, for every circuit C, every input x for C, and any leakage
function ℓ ∈ LEAK, can simulate the leakage on the wire values of Ĉ given only the description
of C and its output C (x). To see why this guarantee is stronger, notice that if for some input x
there exists no x′ such that C (x) = C (x′) then Definition 29 provides no secrecy guarantee for
x. Moreover, Definition 29 is equivalent to a slightly modified version of the standard definition
– specifically, in which there exists a simulator as specified above, but it is not guaranteed to be
efficient. Indeed, given C,C (x) the simulator could find on its own an x′ such that C (x) = C (x′),
then simulate the leakage by computing ℓ

[
Ĉ, x̂′

]
. We focus on the relaxed version because it cap-

tures the security guarantee which we achieve. (In fact, Ishai et al. [IWY16] give strong indications
that SAT-respecting LRCCs for “useful” leakage, with the stronger LR guarantee with efficient sim-
ulation, do not exist – see Section 1.2.)

Second, we note that for simplicity, the error in Definitions 27 and 29 depends (only) on the
input length n. This can be naturally extended such that the error depends also on a security
parameter κ, which is given as input to Comp.

Gadget-Based LRCCs. A leading technique in constructing LRCCs – which is the one employed
in all LRCCs described in this work – is gadget-based. Such constructions employ a double-layer of
encoding,17 where the LRCC (Comp,E) is associated with an internal encoding scheme

(
Encin,Decin

)
,

17Recall from Section 1.1.2 that standard LRCCs in the literature are described as randomized circuits that generate
the needed randomness internally (sometimes, using “opaque” gates which are assumed to be leak-free), whereas we
describe the LR circuit as deterministic, and provide the needed randomness as part of the input to the circuit. For this
reason, we need to use a double layer of encoding, which is usually implicit in the literature.

28

and Comp outputs a circuit Ĉ in which the gates and wires of the circuit C over F are replaced with
gadgets and bundles. A bundle b is an encoding (according to Encin) of some b ∈ F, representing the
value of a wire in C; and a gadget Gg is a (boolean or arithmetic) circuit over F which operates over
bundles and emulates the operation of the corresponding gate g. More specifically, in addition to
taking as input bundle-encodings of g’s inputs, Gg has additional masking inputs. These masking
inputs are encodings (according to Encin) of some masking values in F∗ with a specific, pre-determined
structure (for example, in [FRR+10] a masking value is the all-0 string), which are used to obtain
LR. We associate with Gg a setWFg ⊂ F∗ (for Well-Formed) which consists of all encodings of mask-
ing values with the “correct” structure. We say that the masking inputs of Gg are well formed if they
are inWFg (otherwise we say they are ill-formed). A gadget Gg is guaranteed to emulate g when its
inputs are valid encodings of inputs for g, and its masking inputs are well-formed. For example,
if g = ×, then for every x1, x2 ∈ F, for every bundle encodings xi ← Encin (xi) , i = 1, 2, and for
every well-formed masking input bundles m, Gg (x1,x2,m) encodes x1 × x2.

Leakage resilience of Ĉ will follow from a combination of the leakage resilience of the inter-
nal encoding scheme Encin, and the following leakage-resilience guarantee of the gadgets. If the
masking inputs are uniformly distributed over Encin (WFg), then given any valid encodings as
standard inputs to the gadget: (1) the outputs are random subject to encoding the correct output
(as determined by the standard inputs and the gate operation); and (2) the internal wire values of
G can be reconstructed (i.e., regenerated) in a low complexity class, where the reconstructed and
actual wire values are statistically close.

The masking inputs for all gadgets of Ĉ are provided as part of the inputs to Ĉ, using the
double-layered encoding, as we now explain. To simplify the description, we focus on describing
how this is done for the LRCC of [FRR+10] (see Remark 30 below on how the double-layered
encoding extends to other LRCCs as well). In the LRCC of [FRR+10], the masking values for all
gates g are simply the all-0 string, and different gates only differ in the length of the string (i.e.,
the number of 0’s). Let M denote the upper bound on the number of masking values used by
any gate g. Then E = (Enc,Dec) where Enc takes as input an x ∈ F∗, and a size bound S, and
outputs an encoding (x,m) = Encin

(
x, 0M·S). For a given a circuit C of size |C| ≤ S, its leakage-

resilient version Ĉ = Comp (C) takes as input encodings of the form (x,m), where x are the input
bundles of Ĉ, and m are used as the masking inputs of the gadgets of Ĉ. Since each gadget uses at
most M encodings from m, and Ĉ has at most S gadgets, m contains sufficiently-many encodings
(according to Encin) of 0 to enable the evaluation of all gadgets of Ĉ.

The computation in Ĉ is executed over encodings, so the outcome of this computation – at least
as it was described above – results in an encoding of the output of C. Since Ĉ should have the same
output as C, the final step in Ĉ consists of a decoder which decodes the output.

Remark 30. We note that the double-layer encoding idea described above naturally extends to other LRCCs
as well. Indeed, all that is needed is that all gadgets use the same masking values (differing only in the
number of masking values they use). In fact, this idea can also be used if different gadgets use different
masking values, in which case m can include S sets of masking inputs, each set containing masking inputs
for every possible gate g, from which Ĉ can choose the appropriate masking inputs for each gate. This will
result in a correct and leakage resilient (albeit less efficient) construction.

4.2 A SAT-Respecting LRCC for Arithmetic Circuits

In this section we describe a SAT-respecting LRCC of [IWY16] for arithmetic circuits, which is based
on the LRCC of [FRR+10]. We first explain why the LRCC of [FRR+10] (and similar LRCCs) are
not SAT-respecting.

29

Why are standard LRCCs not SAT-Respecting? Recall that an LRCC is SAT-respecting if for
every circuit C, the following holds: if its leakage-resilient variant Ĉ is satisfiable, then so is C.
This is not the case for many LRCCs, and specifically for gadget-based ones such as [FRR+10, DF12,
MV13].18 Indeed, in such LRCCs correctness of the computation relies on the assumption that the
masking inputs of the gadgets are well-formed.19 However, Ĉ does not necessarily emulate C if
its masking inputs are ill-formed. In fact, in these LRCCs one can force the output of Ĉ to be any
desired value by appropriately choosing the masking values. This property is crucial for leakage
resilience, since the security proof uses such ill-formed masking inputs to switch the input from
x to a different x′. Therefore, the main challenge in obtaining the SAT-respecting property is to
guarantee that the masking inputs are well-formed while still allowing the security reduction to
use ill-formed masking inputs.

Checking Validity of Encodings While Preserving Leakage Resilience. The main technical in-
gredient in the SAT-respecting LRCC of [IWY16] is their component which checks well-formedness
of encodings in a leakage-resilient manner. The technique is reminiscent of the “2-key trick”
of [NY90] (used to convert a CPA-secure encryption scheme into a CCA-secure one) where they
hold two copies of C, and in the security reduction one of the copies is used to achieve the SAT-
respecting property, whereas the other is used to obtain leakage resilience. This component is tai-
lored to the LRCC of [FRR+10], exploiting the fact that well-formed masking inputs of [FRR+10]
are simply encodings of the all-0 string.

More specifically, the SAT-respecting LRCC of [IWY16] consists of 3 parts. The first is two
copies Ĉ1, Ĉ2 of the circuit Ĉ, obtained using the LRCC of [FRR+10]. The second is a mask-
checking component C0−check, which checks that at least one of the copies Ĉ1, Ĉ2 uses well-formed
masking inputs. The important point is that, for the security proof to go through, C0−check must
hide which of the copies uses well-formed masking inputs. (This is because in the security proof
first Ĉ1 and then Ĉ2 use ill-formed masking inputs; for the hybrids to be indistinguishable it
must be the case that one cannot distinguish between the two cases.) As it turns out, this can
be achieved by replacing C0−check with its leakage-resilient version Ĉ0−check (obtained using the
LRCC of [FRR+10]). This now introduces a further complication since Ĉ0−check has masking in-
puts of its own, whose well-formedness must be verified. Indeed, if Ĉ0−check is allowed to use any
masking inputs, then it is no longer guaranteed to emulate C0−check. In particular, by using ill-
formed masking inputs in Ĉ0−check one can flip its output, thus causing it to accept even when the
masking inputs of both Ĉ1, Ĉ2 are ill-formed, rendering the Ĉ0−check component completely useless.
The third component – a mask decoder Cdec – is used to guarantee that Ĉ0−check uses well-formed
masking inputs. Using a double-layer of mask checking (i.e., checking the masks of Ĉ1, Ĉ2, and
then checking the masks of the mask-checker) is helpful because the computations in Ĉ0−check are
not directly related to the inputs of Ĉ1, Ĉ2. As such, the masking inputs of Ĉ0−check can be checked
directly by simply decoding them (and checking that all decoded values are 0) without violating
LR. We now formally describe each of the components, and the resultant SAT-respecting LRCC.

18One exception is the LRCC of [ISW03] which resists AC0 leakage [BIS19], but this leakage class does not seem
sufficiently strong to contain the function one needs to apply to an NP witness to obtain a PCP.

19As noted above, in the leakage-resilience literature, such encodings are usually assumed to be generated by leak-free
components, or opaque gates, whose outputs are guaranteed to be distributed according to the correct distribution (i.e.,
be well-formed), and whose internal wires are unavailable to the leakage function. To eliminate this trust assumption,
we instead have these encodings provided as part of the input, and check their validity to achieve the SAT-respecting
property.

30

The Mask Checker Ĉ0−check. The mask checker verifies that at least one of the copies Ĉ1, Ĉ2 uses
well-formed masking inputs, while hiding which one. Recall that in the LRCC of [FRR+10] well-
formed masking inputs are encodings of the all-0 string. Thus, if m⃗1, m⃗2 denote the masking values
whose encodings are used in Ĉ1, Ĉ2, it suffices to check that m1

j × m2
l = 0 for every j, l.20 We

construct C0−check in two stages. We first describe a “binarization” component T which checks that
a given field element is 0, then use it to construct C0−check.

Notation 31 (“Binarization” component T). T : F → F is defined as T (z) = −
∏

0̸=a∈F (z − a),
computed using O (|F|) constant and × gates arranged in O (log |F|) layers. Notice that

T (z) =

{
1 if z = 0
0 if z ̸= 0

Notation 32 (Mask Checker C0−check). Let M ∈ N. The mask checker C0−check : FM×FM → F is defined
as follows. C0−check (y, z) =

∏
i,j∈[M] T (yi × zj), computed using a multiplication tree of size O

(
M2

)
and

depth O (logM) (on top of the multiplication trees used to compute T). Notice that

C0−check (y, z) = 1⇔ T (yi, zj) = 1 ∀i, j ∈ [M]⇔ y = 0M ∨ z = 0M.

The mask decoder Cdec. As noted above, the mask decoder simply decodes the masking inputs
used in Ĉ0−check, and checks that all decoded values are 0. Decoding is done using the decoder Decin

of the internal encoding procedure of [FRR+10]. We note that this encoding procedure is linear,
and so decoding is done simply by computing the inner product of the input encoding with some
fixed vector (e.g., the all-1 vector). In particular, for each encoding length n̂, the corresponding
decoding circuit Decin can be implemented using O (n̂) gates arranged in O (log n̂) layers.

Notation 33 (Mask Decoder Cdec). Let M0 ∈ N, and let n̂ denote the encoding length of
(
Encin,Decin

)
.

The mask decoder Cdec :
(
Fn̂

)M0 → F, on input r = (r1, ..., rM0) (where ri ∈ Fn̂ for every 1 ≤ i ≤ M0)
outputs

∏
i∈[M0]

T
(
Decin (ri)

)
. Notice that Cdec outputs 1 if and only if all ri’s are well-formed, otherwise

it outputs 0. Cdec is computed using O (M0)-many × gates, arranged in a tree of depth O (logM0) (on top
of the sub-circuits T ◦ Decin).

The SAT-Respecting LRCC. Having defined the three components of the SAT-respecting LRCC,
we are now ready to describe the compiler itself, which is given in Figure 2.

Remark 35 (Setting the parameters). Let M⋆ = M⋆ (σ) denote the maximal number of masking inputs
used in a gadget of Comp⋆, and S0 (M

′) denote the size of C0−check on inputs of length M′. Then M (σ) =
σ ·M⋆ and M0 (σ) = M⋆ · S0 (M) = M⋆ · S0 (σ ·M⋆).

The following claim summarizes the properties of Construction 34. Roughly, it states that if
the internal encoding scheme used in Construction 34 is leakage resilient against a leakage family
LEAKE, then Construction 34 is a SAT-respecting LRCC against a slightly weaker leakage family
LEAK. Formally,

Claim 36 (SAT-respecting LRCC over F). Let LEAK,LEAKE be families of functions, S (n) :
N → N be a size function, and ϵ (n) : N → R+. Let Ein =

(
Encin,Decin

)
be a linear, onto,

(LEAKE, ϵ (n))-leakage-resilient encoding scheme with parameters n, σ and n̂ = n̂ (n, σ), such that

20This check assumes that any masking input is a valid encoding – according to Encin – of some masking value (i.e.,
that the internal encoding scheme is onto). This is indeed the case for the internal encoding scheme used in [FRR+10].

31

Construction 34 (SAT-Respecting LRCC). Let σ be a security parameter, and M = M (σ) ,M0 = M0 (σ) :
N→ N (the value of these parameters will be set in Remark 35 below). Let (Comp⋆, (Enc⋆,Dec⋆)) denote the LRCC
of [FRR+10], and let

(
Encin : Fn × {1}∗ → Fn̂in(n,σ),Decin

)
denote the internal encoding scheme which it employs.

The SAT-respecting LRCC (Comp,E = (Enc,Dec)) is defined as follows.

The Encoding Scheme. Enc : Fn × {1}∗ → F2n̂in+2M̂+2M̂0 on input x, 1σ outputs an encoding (x̂1, x̂2), where
x̂i ← Encin

((
x, 0M+M0

)
, 1σ

)
, and n̂in, M̂, M̂0 denote the lengths of encodings of messages of length m,M,M0,

respectively. Dec on input (x̂1, x̂2) , 1σ computes Decin (x̂1, 1σ), and discards the last M +M0 field elements. We
use n̂ = n̂ (n, σ) to denote the length of encodings output by Enc. For (x̂1, x̂2) ← Enc (x, 1σ), we interpret
x̂i =

(
x̂ini , r

i, ri,0
)
, where x̂ini encodes x, and ri, ri,0 encode 0M, 0M0 , respectively.a

The Compiler Comp. On input a circuit C : Fn → F, the compiler Comp outputs the circuit Ĉ : Fn̂(n,|C|) → F
that on input

(
x̂in1 , r

1, r1,0
)
,
(
x̂in2 , r

2, r2,0
)

operates as follows.

• Let C1 = C2 = C denote two copies of C, let Ĉi = Comp⋆ (Ci) for i = 1, 2, and Ĉ0−check =
Comp⋆ (C0−check).

• Ĉ computes

f := T
(
Ĉ1

(
x̂in1 , r

1
)
− Ĉ2

(
x̂in2 , r

2
))
× Ĉ0−check

((
r1, r2

)
, r1,0

)
× Cdec

(
r1,0

)
.

(Notice that f = 1 if and only if (1) Ĉ1

(
x̂in1 , r

1
)
= Ĉ2

(
x̂in2 , r

2
)
, and (2) the masking inputs used in at least

one of them, as well as in Ĉ0−check, are well-formed. Otherwise, f = 0.)

• Ĉ outputs(
1− f

((
x̂in1 , r

1, r1,0
)
,
(
x̂in2 , r

2, r2,0
)))

+ f
((
x̂in1 , r

1, r1,0
)
,
(
x̂in2 , r

2, r2,0
))
· Ĉ1

(
x̂in1 , r

1
)

(Notice that the output is Ĉ1

(
x̂in1 , r

1, r1,0
)

if f = 1, otherwise it is 1.)

aWe note that r2,0 is not used by the leakage-resilient circuit, but is included in x̂2 because the same internal encoding scheme
Encin is used to generate both x̂1 and x̂2.

Figure 2: SAT-Respecting LRCC [IWY16]

32

LEAKE = LEAK ◦ SHALLOW
(
7, O

(
n̂4 (1, S (n)) · S (n)

))
. Then there exists a SAT-respecting,

(LEAK, 4ϵ (n) · (n̂ (1,S (n)) + 1) · S (n) , S (n))-LRCC over F. Moreover, for every C : Fn → F, the
compiled circuit Ĉ has size

∣∣∣Ĉ∣∣∣ = O
(
|F|2 · n̂4 (1,S (n)) · |C|2

)
.

Proof. The SAT-respecting property follows from Lemma 38. The leakage-resilience property fol-
lows from Lemma 39. As for the size

∣∣∣Ĉ∣∣∣ of the leakage-resilient version Ĉ of C, in each of the

copies Ĉ1, Ĉ2 each gate is replaced with a size-O
(
n̂2 (1, S (n))

)
gadget (this is the size of gad-

gets generated by Comp⋆, see Fact 37 below), So
∣∣∣Ĉ1

∣∣∣ , ∣∣∣Ĉ2

∣∣∣ ≤ O
(
n̂2 (1, S (n)) · |C|

)
. Since each

gadget uses at most O (n̂ (1,S (n))) masking inputs (see Fact 37 below), then C0−check contains
O
(
n̂2 (1, S (n)) · |C|2

)
“binarization” components T , each of size at most O (|F|), arranged in a

tree with O
(
n̂2 (1, S (n)) · |C|2

)
multiplications, so |C0−check| ≤ O

(
|F| · n̂2 (1, S (n)) · |C|2

)
, and

consequently
∣∣∣Ĉ0−check

∣∣∣ ≤ O
(
|F| · n̂4 (1, S (n)) · |C|2

)
. Finally, Cdec contains a decoding sub-circuit

for each of the O (n̂ (1, S (n))) masking inputs used in the O
(
|F| · n̂2 (1,S (n)) · |C|2

)
gadgets of

Ĉ0−check. Because E is linear, each of these decoding sub-circuits consists of n̂ (1,S (n)) × gates
followed by n̂ (1, S (n)) + gates. In addition, Cdec contains a “binarization” component T of size
O (|F|) for each decoding sub-circuit, followed by O

(
|F| · n̂3 (1,S (n)) · |C|2

)
× gates, so overall

|Cdec| ≤ O
(
|F|2 · n̂3 (1, S (n)) · |C|2

)
.

The proof of Claim 36 used the following fact regarding the LRCC of [FRR+10].

Fact 37. Each gadget generated by the LRCC (Comp⋆,E⋆) of [FRR+10] has size at most O
(
n̂2 (1, S (n))

)
,

and uses at most O (n̂ (1,S (n))) masking inputs.

Lemma 38. If Ein is linear and onto, then Construction 34 is SAT-respecting.

Proof. Assume that Ĉ (x̂) = 0 for some x̂ ∈ Fn̂, and denote x̂ =
((
x̂∗1, r

1, r1,0
)
,
(
x̂∗2, r

2, r2,0
))

. We
show that there exists an x ∈ Fn such that C (x) = 0. Since Ĉ (x̂) = 0 then by the definition of Ĉ, we
have (1) f = 1, and (2) Ĉ1

(
x̂∗1, r

1
)
= 0. By (1), Ĉ1

(
x̂∗1, r

1
)
= Ĉ2

(
x̂∗2, r

2
)
, and Cdec, C0−check output 1.

Notation 33 then guarantees that r1,0 is well-formed which – by the correctness of Comp⋆ – guaran-
tees that Ĉ0−check emulates C0−check. (Here, we also use the fact that Cdec is independent of all other
components of, and inputs to, Ĉ.) Moreover, since the encoding scheme is onto then r1, r2 define
inputs to C0−check which cause it to output 1 (because Ĉ0−check outputs 1, and its masking inputs
are well-formed). Notation 32 then guarantees that at least one of r1, r2 is well-formed. Assuming
(without loss of generality) that r1 is well-formed, then the correctness of Comp⋆ guarantees that
Ĉ1 emulates C, so 0 = Ĉ1

(
x̂∗1, r

1
)
= C (x), where x ∈ Fn is obtained by computing x = Decin (x̂∗1)

(x is well-defined because Ein is onto).

Lemma 39. If Ein is (LEAKE, ϵ (n))-leakage resilient, then for every function class LEAK such that
LEAK ◦ SHALLOW

(
7, O

(
n̂5 (S (n)) · S (n)

))
⊆ LEAKE, every circuit C : Fn → F of size

|C| ≤ S (n), and every x, y ∈ Fn such that C (x) = C (y), it holds that
[
Ĉ, x̂

]
and

[
Ĉ, ŷ

]
are (LEAK, 4ϵ (n) · (n̂ (1, S (n)) + 1) · S (n))-leakage resilient, where x̂ ← Enc

(
x, 1|C|) and ŷ ←

Enc
(
y, 1|C|).

33

4.2.1 Proof of Lemma 39

In this section we prove the leakage-resilience property of Construction 34. The analysis follows
a (by now standard) proof paradigm for gadget-based LRCCs, but is more complex (compared to,
e.g., the analysis in [FRR+10]) because of the mask-checker and mask-decoder components.

High-Level Description of the Leakage-Resilience Argument. Recall that the goal is to prove
that leakage functions in some leakage class LEAK cannot distinguish between the wire values
of Ĉ when evaluated on (encodings of) two different inputs x, y. This is achieved by reduction to
the leakage resilience of the underlying encoding scheme E against leakage classes in a somewhat
larger leakage class LEAKE. The wire bundles of Ĉ are divided into two sets: internal bundles that
are part of the internal computations in a gadget, and external bundles that connect two gadgets.
The proof uses a hybrid argument in which we first replace all the internal bundles from carrying
the real encodings to “simulated” encodings, and then replace all external bundles from encodings
of the real values to encodings of random values. We then prove leakage resilience by showing that
each pair of adjacent hybrids are computationally indistinguishable.

More specifically, consider two hybrid distributions H,H′ in which we replace some external
bundle i. Proving thatH ≈ H′ is by reduction to the leakage resilience of the underlying encoding
scheme, where we show that if H and H′ are distinguishable by a function ℓ ∈ LEAK, then there
exists a function ℓE ∈ LEAKE that can distinguish between encodings of two different values v, v′.
The idea is that given an encoding e of either v or v′, ℓE would use e to generate the entire hybrid
distribution (which would be eitherH orH′, depending on whether e encodes v or v′, respectively),
then evaluate ℓ. It turns out that the only wires of H,H′ that depend on e are the internal wire
bundles of the (at most two) gadgets that “touch” bundle i, in the sense that bundle i is either an
input or output bundle of the gadget. Thus, while all other wire bundles can be hard-wired into
ℓE, it would still need to generate the internal wire bundles of the gadget(s) that touch bundle i. In
particular, the computational complexity of ℓE would be higher than that of ℓ, which causes a loss
in leakage resilience. It is therefore imperative that the internal wire values of the gadgets could be
generated from their inputs and outputs by a function in a low complexity class. These functions
are called local reconstructors. The crucial point here is that the local reconstructor is given not only
the gadget’s inputs, but also its outputs (otherwise, it would be impossible to generate the internal
wires in a low complexity class, because some of the gadgets perform complex computations).
Before delving deeper into the details of the analysis, we first set the needed terminology regarding
gadgets and their local reconstructors.

Properties of Gadgets. The analysis will use two properties of gadgets. The first is local recon-
structibility: for every pair of “legal” input and output encodings, the internal wires of the gadget
(as determined by the input-output pair, and its masking inputs), can be simulated in a low com-
plexity class.

Definition 40 (Local reconstructibility). Let G be a gadget andWF denote its set of well-formed masking
inputs. A pair (x,y) of encodings is plausible for G if G (x,m) = y for some m ∈ WF . For ϵ > 0, and
familiesLEAK,FG of functions, G is (LEAK, ϵ)-reconstructible byFG if the following holds. There exists
a distribution REC over functions rec such that:

• Supp (REC) ⊆ FG .

• rec takes as input G’s inputs and output, and simulates the masking inputs, and internal wires, of G.

34

• The following distributions are (LEAK, ϵ)-leakage resilient for any plausible pair (x,y) for G: (1)
rec (x,y) for rec ← REC; and (2) the actual distribution of the wires of G (as determined by the
distribution of the masking inputs), conditioned on x,y.

We will need the following result of [FRR+10] which shows that all gadgets in their LRCC
(Comp⋆,E⋆) are locally reconstructible in a low complexity class.

Lemma 41 (Gadgets are locally reconstructible [FRR+10]). 21 Let σ ∈ N be a security parameter, let
n : N × N → N be a length parameter, let ϵ (n) : N → R+, and let LEAK,LEAKE be families of func-
tions such that LEAKE = LEAK ◦ SHALLOW (3, O (n̂ (1, σ))). Let (Comp⋆,E⋆) denote the LRCC
of [FRR+10], and let Ein denote the internal encoding scheme which it uses. If Ein is (LEAKE, ϵ (n))-
leakage resilient, then all gadgets used in (Comp⋆,E⋆) are (LEAK, n̂ (1, σ) · ϵ (n))-reconstructible by
SHALLOW

(
2, O

(
n̂2 (1, σ)

))
.

The second property is that gadgets are re-randomizing in the sense that the encodings at the
output of each gadget are uniform subject to encoding the “correct” value. Formally,

Definition 42 (Gadget Re-Randomization). A gadget G with setWF of well-formed masking inputs is
re-randomizing if for every standard input x = Enc (x), when the masking input is sampled m ← WF
then G (x,m) is random subject to encoding the correct output (as determined by x, and the gate which G
emulates).

The Hybrid Argument. Let C : Fn → F be an arithmetic circuit of size |C| ≤ S (n), and let
x, y ∈ Fn. We show that for every ℓ ∈ LEAK,

SD
(
ℓ
[
Ĉ, x̂

]
, ℓ

[
Ĉ, ŷ

])
≤ ϵ′ (n)

where ϵ′ (n) := 4ϵ (n) · (n̂ (1,S (n)) + 1) · S (n). We bound the statistical distance using a hybrid
argument. We define:

Hx :=
([

Ĉ1, x̂1, r
1
]
,
[
Ĉ2, x̂2, r

2
]
,
[
Ĉ0−check, r

1, r2, r1,0
]
,
[
Cdec, r1,0

])
Hy :=

([
Ĉ1, ŷ1, r

1
]
,
[
Ĉ2, ŷ2, r

2
]
,
[
Ĉ0−check, r

1, r2, r1,0
]
,
[
Cdec, r1,0

])
Hy,x :=

([
Ĉ1, ŷ1, r

1
]
,
[
Ĉ2, x̂2, r

2
]
,
[
Ĉ0−check, r

1, r2, r1,0
]
,
[
Cdec, r1,0

])
and notice thatHx are the wire values of Ĉ on input an encoding of x,Hy are the wire values of Ĉ
on input an encoding of y, andHy,x is a hybrid distribution, consisting of the wire values of Ĉ when
the first copy Ĉ1 has input (an encoding according to Encin) of x, whereas the second copy Ĉ2 has
input (an encoding according to Encin) of y. We note thatHy,x is only used in the proof – it is never
obtained in an actual evaluation of Ĉ. The proof proceeds by showing that for every ℓ ∈ LEAK,
SD (ℓ (Hx) , ℓ (Hy,x)) and SD (ℓ (Hy,x) , ℓ (Hy)) are upper bounded by 2ϵ (n) · (n̂ (1,S (n)) + 1) ·S (n),
through a sequence of hybrids.

21Faust et al. [FRR+10] actually prove a stronger result, where some of the gadgets have local reconstructors in lower
complexity classes than the one stated here, and indistinguishability holds regardless of the leakage resilience of E. For
clarity reasons, we chose to give a simplified and weaker version of their results which nonetheless suffices for our
needs.

35

Bounding SD (ℓ (Hx) , ℓ (Hy,x)) for a leakage function ℓ. The difference between these distribu-
tions is that inHx both copies Ĉ1, Ĉ2 of (the leakage-resilient version of) C are evaluated on input x,
whereas inHy,x the first is evaluated on y (and the second on x). We bound the statistical distance
through a sequence of hybrids, defined as follows.

Hx
in: this hybrid distribution replaces the internal wires of gadgets, and is obtained by: (1) evalu-

ating Ĉ honestly on x̂ ← Enc
(
x, 1|C|); (2) picking local reconstructors for all gadgets of Ĉ1

(such reconstructors exist by Lemma 41), and re-computing their internal wires using these
reconstructors; and (3) re-evaluating Ĉ0−check on the new masking inputs generated for the
gadgets of Ĉ1, by re-computing the internal wires of all gadgets G′ of Ĉ0−check whose inputs
are masking inputs used in gadgets of Ĉ1 – but without changing the masking inputs these
G′ gadgets use, or their outputs.22 (Crucially, since re-evaluating Ĉ0−check does not influence
its masking inputs, this does not influence the computation in Cdec, so there is no need to
re-evaluate it.)

Hx
ext: this distribution replaces the external wires (i.e., wires connecting gadgets), and is obtained

as follows:

• Generating the wires of Ĉ2: encode x̂ =
((
x̂1, r

1, r1,0
)
,
(
x̂2, r

2, r2,0
))
← Enc

(
x, 1|C|), and

honestly evaluate Ĉ2 on x̂2 with masking inputs r2.

• Generating the wires of Ĉ1: pick a random encoding out ← Encin
(
1, 1|C|) for the output

of Ĉ1, and honestly compute the wires of the output decoder of Ĉ1. (As discussed in
Section 4.1, Ĉ1 contains an output decoder, which is needed because the computations in
Ĉ1 are executed over encodings.) Then, pick a random input z ∈R Fn for Ĉ1 and encode
ẑ1 ← Encin

(
z, 1|C|). Next, pick random encodings (according to Encin) for the outputs

of all gadgets (except the gadgets whose outputs are the inputs of the output decoder,
since the outputs of these gadgets have already been fixed). This effectively determines
the standard inputs, and outputs, of all gadgets of Ĉ1. Next, pick local reconstructors
for all gadgets of Ĉ1, and use them to compute the internal wires of the gadgets. The
reconstructors determine the (possibly ill-formed) masking inputs of the gadgets, which
we denote by r1′. r1′ together with r2 form the standard inputs of Ĉ0−check.

• Generating the wires of Ĉ0−check: Evaluates Ĉ0−check on r1′, r2, with masking inputs r1,0.
• Generating the wires of Cdec: Evaluate Cdec on r1,0.

• Use the outputs of Ĉ1, Ĉ2, Ĉ0−check, Cdec to generate the flag f, and the output of Ĉ.
• Hx

ext consists of the concatenation of all these wire values.

Hy,x
ext : this hybrid is generated similarly to Hx

ext, except that instead of evaluating Ĉ on an en-
coding of x, we use the internal encoding scheme to generate encodings of

(
ŷ1, r

1, r1,0
)

and(
x̂2, r

2, r2,0
)

(where ŷ1, x̂2 encode y, x, respectively), and use them as inputs to Ĉ1, Ĉ2, respec-
tively.

Hy,x
in : this hybrid is generated similarly toHx

in, except that instead of evaluating Ĉ on an encoding
of x, we use

(
ŷ1, r

1, r1,0
)

and
(
x̂2, r

2, r2,0
)

as inputs to Ĉ1, Ĉ2, respectively.

We now bound the statistical distance between the outputs of leakage functions on each pair
of adjacent hybrids. The following notation will be useful.

22Lemma 44 below shows that this is possible.

36

Notation 43. We say that a gadget G′ of Ĉ0−check is connected to a gadget G1 Ĉ1 (alternatively, a gadget
G2 of Ĉ2) if an input of G′ is a masking input of G1 (alternatively, G2).

Bounding SD (ℓ (Hx) , ℓ (Hx
in)): we show that SD (ℓ (Hx) , ℓ (Hx

in)) ≤ ϵ (n) · n̂ (1, S (n)) · S (n) for
all ℓ ∈ LEAK′ such that LEAK′ ◦ SHALLOW

(
5, O

(
n̂5 (1, S (n)) · S (n)

))
⊆ LEAKE. We use a hy-

brid argument, replacing the internal wires of the M ≤ S (n) gadgets of Ĉ1 one at a time. We define
hybridsH0, ...,HM whereHi is obtained by evaluating Ĉ on (an encoding of) x, then recomputing
the internal wires of the first i gadgets of Ĉ1 using their local reconstructors. Additionally, we re-
compute the internal wires of gadgets G′ of Ĉ0−check connected to one of these i gadgets, but without
changing the masking inputs of G′ (this is possible by Lemma 44 below). Then H0 = Hx,HM = Hx

in.
To show that SD (ℓ (Hx) , ℓ (Hx

in)) ≤ ϵ (n) · n̂ (1, S (n)) · S (n) for all ℓ ∈ LEAK′, we show that for
every m ∈ [M], and any ℓ ∈ LEAK′, it holds that SD (ℓ (Hm) , ℓ (Hm−1)) ≤ ϵ (n) ·n̂ (1, S (n)). Denote
the m’th gadget by G. We use Lemma 41 to show that this follows from the leakage resilience of
the internal encoding scheme Ein. For this, we will need to generate – in a low complexity class
– the entire hybrid distributions given only the (either real or reconstructed) internal wires of G.
The problem is that since the internal wires of G contain also its masking inputs, changing them af-
fects also computations in Ĉ0−check. The following lemma from [IWY16] states that the influence of
modifying the masking inputs of G can be blocked, specifically: (1) that it only affects the internal
wires of gadgets G′ of Ĉ0−check connected to G, and more importantly (2) these internal wire values
can be reconstructed without changing the masking inputs used in G′.

Lemma 44 (Restating of Lemma 3.13 of [IWY15]). Let G′ be a gadget of Ĉ0−check connected to gadgets
of Ĉ1, Ĉ2. Then for any fixed well-formed inputs r1, r2 from gadgets of Ĉ1, Ĉ2 (respectively), and any fixed
well-formed masking inputs m for G′, the following holds. For any r1′, the internal wires of G′ on input
r1′, r2,m can be computed in SHALLOW

(
2, O

(
n̂2 (1, S (n))

))
given r1′ and the output out of G′ when

evaluated on input r1, r2 and masking inputs m.

Using an averaging argument, we can fix all wires of Ĉ2, and all wires of Ĉ1 except the internal
wires of G (its input and output wires can be fixed). Lemma 44 (which can be used because Ĉ2 and
Ĉ0−check use well-formed masking inputs) shows that we can further fix all wires of Ĉ0−check and
Cdec, except for the internal wires of all gadgets G′ of Ĉ0−check connected to G (crucially, the masking
inputs of these gadgets can be fixed).

Consequently, given the wire values of G (either the real values WR, or the reconstructed
wires WS), we can generate the entire hybrid distribution (either Hm−1 or Hm, respectively)
in SHALLOW

(
2, O

(
n̂5 (1,S (n)) · S (n)

))
by recomputing the internal wires of each of the (at

most) O
(
n̂3 (1, S (n)) · S (n)

)
gadgets of Ĉ0−check connected to G. (Here, we use Fact 37 – G uses

at most n̂ (1, S (n)) masking inputs; Ĉ2 has at most O (n̂ (1,S (n)) · S (n)) gadgets, each using
at most n̂ (1, S (n)) masking inputs; and each masking input of G is connected to every mask-
ing input used in Ĉ2.) Using Lemma 44, the internal wires of each G′ can be computed in
SHALLOW

(
2, O

(
n̂2 (1, S (n))

))
, and all these computations can be done in parallel. Therefore,

the hybrid distributions can be generated in SHALLOW
(
2, O

(
n̂5 (1,S (n))

)
· S (n)

)
. By the as-

sumption of Claim 36, Ein is (LEAKE, ϵ (n))-leakage resilient, which by Lemma 41 implies that
WR,WS are (LEAK′′, ϵ (n) · n̂ (1,S (n)))-leakage resilient for any class LEAK′′ of leakage func-
tions such that LEAK′′ ◦ SHALLOW (3, O (n̂ (1,S (n)))) ⊆ LEAKE. We now claim thatHm−1,Hm

are (LEAK′, ϵ (n) · n̂ (1,S (n)))-leakage resilient for every family LEAK′ of leakage functions such
that LEAK′ ◦ SHALLOW

(
2, O

(
n̂5 (1,S (n)) · S (n)

))
⊆ LEAK′′, i.e., for any LEAK′ such that

LEAK′ ◦ SHALLOW
(
5, O

(
n̂5 (1, S (n)) · S (n)

))
⊆ LEAKE. Indeed, this follows from the follow-

37

ing lemma of [FRR+10] (by choosing F to be a singleton containing the function described above
which generatesHm−1,Hm fromWR,WS).

Lemma 45 ([FRR+10]). Let n ∈ N, let WR,WS be distributions over Fn, let LEAK,F be families of
functions, and let ϵ > 0. Let D be a distribution over functions in F of input length n. For f ← D,
let W ′

R := f (WR) ,W ′
S := f (WS). If WR,WS are (LEAK, ϵ)-leakage resilient, then W ′

R,W ′
S are

(LEAK′, ϵ)-leakage resilient for any family LEAK′ of leakage functions such that LEAK′ ◦ F ⊆ LEAK.

Using Lemma 45, for any ℓ ∈ LEAK′ we have

SD (ℓ (Hm) , ℓ (Hm−1)) = SD (ℓ (WS) , ℓ (WR)) ≤ ϵ (n) · n̂ (1,S (n)) .

Bounding SD (ℓ (Hx
ext) , ℓ (Hx

in)): We show that SD (ℓ (Hx
ext) , ℓ (Hx

in)) ≤ ϵ (n) · S (n) for all
ℓ ∈ LEAK′ such that LEAK′ ◦ SHALLOW

(
4, O

(
n̂4 (1, S (n)) · S (n)

))
⊆ LEAKE. We again use a

hybrid argument, this time replacing the M ≤ S (n) inputs bundles of Ĉ1 (i.e., bundles correspond-
ing to input wires of C), and bundles at the output of gadgets of Ĉ1 (except for bundles that are
used as input of the output decoder of Ĉ1). We define hybrids H0, ...,HM , where Hi is generated
as follows. We evaluate Ĉ on a random encoding of x. Then, we replace the first i bundles with
random encodings of random values, except if one of these bundles corresponds to the output wire
of C, in which case we replace it with a random encoding of 1. Finally, we recompute the internal
wires of the gadgets of Ĉ1 using their gadget reconstructors (Lemma 41), and recompute (using
Lemma 44) the internal wires (except the masking inputs and outputs) of all gadgets G′ of Ĉ0−check

connected to one of these gadgets. In particular, since the inputs of Ĉ0−check contain also mask-
ing inputs used in gadgets of Ĉ1, this re-computation of wires of Ĉ0−check uses the masking inputs
generated by the reconstructors (for any gadget of Ĉ1 whose internal wires were re-constructed).
Then H0 = Hx

in and HM = Hx
ext. Therefore, to prove that SD (ℓ (Hx

ext) , ℓ (Hx
in)) ≤ ϵ (n) · S (n) for

all ℓ ∈ LEAK′, it suffices to prove that SD (ℓ (Hm) , ℓ (Hm−1)) ≤ ϵ (n) for all m ∈ [M]. Let Go
(Gi) denote the gadget whose output (input) is the m’th bundle. (If the m’th bundle is an input
bundle, then we consider only the gadget Gi.) Using an averaging argument, we can fix all wires
in Hm,Hm−1 except for: the m’th bundle; the masking inputs, outputs, and internal wires of Go;
the masking inputs, and internal wires, of Gi, as well as its input wire corresponding to the m’th
bundle; and the internal wires of all gadgets G′ of Ĉ0−check connected to Go or Gi (except for the
masking inputs and the output of G′, which can be fixed, see Lemma 44).

Let b denote the value encoded by the m’th bundle in Hx
in. Let WR ← Encin

(
b, 1S(n)

)
, and

WS ← Encin
(
r, 1S(n)

)
for a random r (except when the m’th bundle corresponds to the out-

put wire of C, in which case we set WS ← Encin
(
1, 1S(n)

)
). Then WR,WS are distributed

identically to the m’th bundle in Hm−1,Hm, respectively. We define a distribution F over
SHALLOW

(
4, O

(
n̂4 (1, S (n)) · S (n)

))
as follows. Sampling a function f ← F is done by sam-

pling reco, reci from the distribution over reconstructors for Go,Gi, respectively (see Definition 40).
The function f has all the hard-wired values of Hm−1 hard-wired into it. On input e ∈ Fn̂(1,S(n)),
f performs the following: (1) evaluates reco on the (hard-wired) inputs of Go, and the output e
(this reconstructs the masking inputs, and internal wires, of Go); (2) evaluates reci on e as one of
the inputs, and the other (hard-wired) input and output of Gi; and finally (3) for every gadget G′

of Ĉ0−check connected to Go or Gi, generates its internal wires using Lemma 44 (without changing
the output or masking inputs of G′). Then f ∈ SHALLOW

(
4, O

(
n̂4 (1,S (n)) · S (n)

))
. Indeed,

by Lemma 41, reco, reci ∈ SHALLOW
(
2, O

(
n̂2 (1,S (n))

))
(and given e, they can be evaluated in

parallel). Moreover, given the internal wires of Go,Gi, the wires that need to be computed in a gad-
get G′ connected to them are computable in SHALLOW

(
2, O

(
n̂2 (1,S (n))

))
(by Lemma 44, and

38

since the masking inputs of Ĉ2 and Ĉ0−check are well-formed). We conclude by noting that there are
at most O

(
n̂2 (1,S (n))

)
· S (n) such gadgets, and they can be evaluated in parallel.

DenoteW ′
R := f (WR) ,W ′

S := f (WS)) for f ← F , thenW ′
R ≡ Hm−1 andW ′

S ≡ Hm because
the gadgets are re-randomizing (which, in particular, guarantees that these equivalences hold de-
spite the fact some of the values in the computation were fixed in advance). By the assumption of
Lemma 39,WR,WS – which are encodings according to Ein – are (LEAKE, ϵ (n))-leakage resilient.
Therefore, by Lemma 45, W ′

R,W ′
S (and consequently also Hm−1,Hm) are (LEAK′, ϵ (n))-leakage

resilient for any LEAK′ such that LEAK′ ◦ SHALLOW
(
4, O

(
n̂4 (1, S (n)) · S (n)

))
⊆ LEAKE.

Bounding SD (ℓ (Hx
ext) , ℓ (H

y,x
ext)): We show that SD (ℓ (Hx

ext) , ℓ (H
y,x
ext)) = 0 for every ℓ. Indeed,

Hx
ext ≡ H

y,x
ext because the hybrids are independent of the input for Ĉ1 (since the input is re-sampled

as a fresh z ∈R Fn in both hybrids).
Bounding SD

(
ℓ (Hy,x

ext) , ℓ
(
Hy,x

in

))
: We show that SD

(
ℓ (Hy,x

ext) , ℓ
(
Hy,x

in

))
≤ ϵ (n) · S (n) for all

ℓ ∈ LEAK′ where LEAK′ ◦SHALLOW
(
4, O

(
n̂4 (1, S (n)) · S (n)

))
⊆ LEAKE. The proof is similar

to the proof that SD (ℓ (Hx
ext) , ℓ (Hx

in)) ≤ ϵ (n) · S (n), because the argument was independent of the
actual inputs used in Ĉ1, Ĉ2 (as long as both hybrids use the same input in each copy).

Bounding SD
(
ℓ
(
Hy,x

in

)
, ℓ (Hy,x)

)
: We show that SD

(
ℓ
(
Hy,x

in

)
, ℓ (Hy,x)

)
≤ ϵ (n)·n̂ (1,S (n))·S (n)

for all ℓ ∈ LEAK′, where LEAK′ ◦ SHALLOW
(
5, O

(
n̂5 (1, S (n)) · S (n)

))
⊆ LEAKE. The proof is

similar to the proof that SD (ℓ (Hx) , ℓ (Hx
in)) ≤ ϵ (n) · n̂ (1,S (n)) · S (n), because the argument was

independent of the actual inputs used in Ĉ1, Ĉ2.

Bounding SD (ℓ (Hy) , ℓ (Hy,x)) for a leakage function ℓ. The argument here follows the same
blueprint as the one used to bound SD (ℓ (Hx) , ℓ (Hy,x)), but is more involved because we now
need to switch the input of the second copy Ĉ2. In particular, the wire values in this hybrid argu-
ment will no longer correspond to the values in an actual evaluation of Ĉ2. While the computations
in Ĉ1 will still be executed honestly, we will no longer be able to claim that reconstructing the in-
ternal wires of gadgets of Ĉ2 (or the external wires connecting gadgets of Ĉ2) does not affect the
computations in Ĉ0−check and Cdec. This is because the manner in which Ĉ0−check uses the masking
inputs from Ĉ1, Ĉ2 is not symmetric, and in particular, resampling the masking inputs used in Ĉ2

(as is done by the local reconstructors of gadgets of Ĉ2) will affect the computations in Ĉ0−check,
and will necessitate reevaluating it. This, in turn, will affect the masking inputs used in Ĉ0−check,
which will affect the computations in Cdec. However, we cannot simply re-evaluate Ĉ0−check and
Cdec in the hybrid argument. Indeed, this would require evaluating circuits of large depth, and the
leakage resilience guarantee will therefore deteriorate significantly. Instead, Ishai et al. [IWY16]
use an alternative method of locally reconstructing the needed wire values of Ĉ0−check, Cdec. Specif-
ically, they show a low-depth reconstructor for the gadgets G′ of Ĉ0−check connected to gadgets
of Ĉ2, which generates the “correct” distribution if the input of G′ from Ĉ1, and G′’s output, are
well formed. In particular, this implies that the internal wires of G′ can be reconstructed without
modifying its output. They also show a low-depth reconstructor for each decoding circuit of Cdec,
that generates the “correct” distribution if its inputs are well formed (again, without changing the
output of these decoding circuits). Specifically, we will use the following results from [IWY16].

Lemma 46 (Local reconstructors for Ĉ0−check, Cdec, restatement of Lemmas 3.17 and 3.18 of [IWY15]).
There exists a distribution REC over SHALLOW

(
2, O

(
n̂2 (1,S (n))

))
such that the following holds for

any gadget G′ of Ĉ0−check connected to a gadget of Ĉ1 or Ĉ2. For every plausible pair
((
r1,0, r2,0

)
, c
)

for G′
such that r1,0 is well formed, when rec ← REC then rec

(
r1,0, r2,0, c

)
is distributed identically to the wire

values of G′ in a real execution, conditioned on the input-output pair
((
r1,0, r2,0

)
, c
)
. In particular, c and

the masking inputs computed by rec are well-formed.

39

Moreover, for a fixed rec ∈ Supp (REC), and any fixed well-formed r1,0, c, there exists a function
recr

1,0,c,rec
Dec ∈ SHALLOW (2, O (n̂ (1, S (n)))) such that the following holds for any input r2,0 of G′. If((
r1,0, r2,0

)
, c
)

is a plausible pair for G′, then recr
1,0,c,rec

Dec

(
r2,0

)
generates the wire values of the decoding

sub-circuits of Cdec whose inputs are the masking inputs of G′ which rec generated. In particular, because
the masking inputs generated by rec are well-formed, the outputs of these decoding sub-circuits are 0.

The proof now follows using a hybrid argument. The hybrids are similar to the ones used
to bound SD (ℓ (Hx) , ℓ (Hy,x)), except that we will need to regenerate the internal wires of
Ĉ0−check, Cdec using the reconstructors of Lemma 46. We now define the hybrids.

Hy
in: this hybrid distribution replaces the internal wires of gadgets (similar to Hx

in), and is ob-
tained by: (1) evaluating Ĉ honestly on ŷ ← Enc

(
y, 1|C|); (2) picking local reconstructors

for all gadgets of Ĉ2, and re-computing their internal wires using these reconstructors; (3) re-
computing the internal wires of Ĉ0−check using rec ← REC, where REC is the distribution of
Lemma 46; and (4) re-computing the internal wires of Cdec using the functions recr

1,0,c,rec
Dec de-

fined in Lemma 46 (here, r1,0, c are determined by the re-computed wires values of Ĉ0−check).

Hy
ext: this distribution replaces the external wires (similar toHx

ext), and is obtained as follows:

• Generating the wires of Ĉ1: encode ŷ =
((
ŷ1, r

1, r1,0
)
,
(
ŷ2, r

2, r2,0
))
← Enc

(
y, 1|C|), and

honestly evaluate Ĉ1 on ŷ1 with masking inputs r1.

• Generating the wires of Ĉ2: pick a random input z ∈R Fn for Ĉ2, and generate random
encodings out ← Encin

(
1, 1|C|), ẑ1 ← Encin

(
z, 1|C|) for the output and input of Ĉ2.

Next, pick random encodings (according to Encin) for the outputs of all gadgets (except
the gadgets whose outputs are the inputs of the output decoder, since the outputs of
these gadgets have already been fixed). Then, pick local reconstructors for all gadgets
of Ĉ2, and use them to compute the internal wires of the gadgets. The reconstructors
determine the (possibly ill-formed) masking inputs r2′ of the gadgets, which (together
with r1) form the standard inputs of Ĉ0−check.

• Generating the wires of Ĉ0−check: for every gadget G′ of Ĉ0−check connected to a gadget of
Ĉ2, pick a reconstructor for it according to the distribution REC (Lemma 46) and use it
to compute the internal wires of G′. These reconstructors determine the inputs to the
decoding sub-circuits of Cdec.

• Generating the wires of Cdec: Use the functions of Lemma 46 to compute the internal wires
of the decoding sub-circuits of the Cdec.

• Use the outputs of Ĉ1, Ĉ2, Ĉ0−check, Cdec to generate the flag f, and the output of Ĉ.

• Hy
ext consists of the concatenation of all these wire values.

Hy,x
ext,2: this hybrid is generated similarly to Hy

ext, except that instead of evaluating Ĉ on an en-
coding of y, we use the internal encoding scheme to generate encodings of

(
ŷ1, r

1, r1,0
)

and(
x̂2, r

2, r2,0
)

(where ŷ1, x̂2 encode y, x, respectively), and use them as inputs to Ĉ1, Ĉ2, respec-
tively.

Hy,x
in,2: this hybrid is generated similarly toHy

in, except that instead of evaluating Ĉ on an encoding
of y, we use

(
ŷ1, r

1, r1,0
)

and
(
x̂2, r

2, r2,0
)

as inputs to Ĉ1, Ĉ2, respectively.

40

The indistinguishability of the hybrids now follows similarly to the proof bounding
SD (Hx,Hy,x), and we only sketch the difference.

Bounding SD
(
ℓ (Hy) , ℓ

(
Hy

in

))
: We show that SD

(
ℓ (Hy) , ℓ

(
Hy

in

))
≤ ϵ (n) · n̂ (1, S (n)) · S (n) for

all ℓ ∈ LEAK′ such that LEAK′ ◦SHALLOW
(
7, O

(
n̂4 (1,S (n)) · S (n)

))
⊆ LEAKE. We define the

hybrids H0, ...,HM , where Hi is obtained by: (1) evaluating Ĉ on (an encoding of) y, then recom-
puting the internal wires of the first i gadgets of Ĉ2 using their local reconstructors; (2) re-computing
the internal wires of Ĉ0−check that are influenced by this re-computation of the first i gadgets of Ĉ2

(i.e., gadgets of Ĉ0−check that are connected to one of these i gadgets); and (3) (using the functions
of Lemma 46) recomputing the internal wires of Cdec that were influenced by re-computing Ĉ0−check.
Then H0 = Hy,HM = Hy

in, and we show that SD (ℓ (Hm) , ℓ (Hm−1)) ≤ ϵ (n) · n̂ (1,S (n)) for every
m ∈ [M], and any ℓ ∈ LEAK′. Denote the m’th gadget by G. We can fix all wires of Ĉ1, all wires of
Ĉ2 except the internal wiresW of G (its input and output wires can be fixed), and all the internal
wires of Ĉ0−check, Cdec that are influenced by W . (These consist of the internal wires – but not the
output – of any gadget G′ of Ĉ0−check connected to G, and the internal wires – but not the outputs –
in the decoding sub-circuits of Cdec that decode masking inputs of G′.)

We now describe a distribution F over SHALLOW
(
4, O

(
n̂4 (1, S (n)) · S (n)

))
, where given

the wire values of G (either the real wire values WR or the reconstructed wires WS), f ∈ F
generates the entire hybrid distribution (either Hm−1 or Hm, respectively), as follows. For ev-
ery gadget G′ of Ĉ0−check connected to G, F chooses a reconstructor recG′ ← REC (see Lemma 46).
The function f has all the hard-wired values of Hm hard-wired into it. On input W it evalu-
ates the recG′ ’s on the masking inputs of G (as reported in W) and the hard-wired values, to
generate the internal wires (including the masking inputs) of G′, and then uses the functions
defined in Lemma 46 to reconstruct the internal wires of the decoding sub-circuits of Cdec that
decode the masking inputs of G′. Then f ∈ SHALLOW

(
4, O

(
n̂4 (1,S (n)) · S (n)

))
because by

Lemma 46 the reconstructors for the G′’s (the decoding sub-circuits, respectively) are computable
in SHALLOW

(
2, O

(
n̂2 (1, S (n))

))
(SHALLOW (2, O (n̂ (1,S (n)))), respectively); the reconstruc-

tors of all the (at most) O
(
n̂2 (1,S (n)) · S (n)

)
gadgets G′ can be computed in parallel); and the

reconstructors for all of the (at most) O
(
n̂3 (1,S (n)) · S (n)

)
decoding sub-circuits (each G′ is con-

nected to O (n̂ (1, S (n))) decoding sub-circuits) can be computed in parallel.
Since WR,WS are (LEAK′, ϵ (n) · n̂ (1, S (n)))-leakage resilient for any class LEAK′ of leak-

age functions such that LEAK′ ◦ SHALLOW (3, O (n̂ (1, σ))) ⊆ LEAKE (this follows from
Lemma 41 because Ein is (LEAKE, ϵ (n))-leakage resilient), Lemma 45 guarantees that Hm−1,Hm

are (LEAK′′, ϵ (n) · n̂ (1, S (n)))-leakage resilient for every family LEAK′′ of leakage functions such
that LEAK′′ ◦ SHALLOW

(
4, O

(
n̂4 (1,S (n)) · S (n)

))
⊆ LEAK′, i.e., for any LEAK′′ such that

LEAK′′ ◦ SHALLOW
(
7, O

(
n̂4 (1, S (n)) · S (n)

))
⊆ LEAKE.

Bounding SD
(
ℓ (Hy

ext) , ℓ
(
Hy

in

))
: We show that SD

(
ℓ (Hy

ext) , ℓ
(
Hy

in

))
≤ ϵ (n) · S (n) for all ℓ ∈

LEAK′ such that LEAK′ ◦ SHALLOW
(
6, O

(
n̂4 (1,S (n)) · S (n)

))
⊆ LEAKE. The proof is by a

hybrid argument in which we replace the input bundles of Ĉ2, and the bundles at the output of
gadget of Ĉ2, one at a time. More specifically, we define hybridsH0, ...,HM , whereHi is generated
from Hy

in, by: (1) replacing the first i bundles with random encodings of random values (except
for the bundle corresponding to the output of Ĉ2, which is set to a random encoding of 1); (2)
recomputing the internal wires of the first i gadgets of Ĉ2 using the gadget reconstructors; (3) re-
computing the internal wires of Ĉ0−check that are influenced by this re-computation of the first i
gadgets of Ĉ2; and (4) (using the functions of Lemma 46) recomputing the internal wires of Cdec
that were influenced by re-computing Ĉ0−check. Then H0 = Hy

in and HM = Hy
ext, and we show that

SD (ℓ (Hm) , ℓ (Hm−1)) ≤ ϵ (n) for all m ∈ [M] and ℓ ∈ LEAK′. We denote by Go (Gi) the gadget

41

whose output (input) is the m’th bundle, and fix all wires inHm,Hm−1 except for: the m’th bundle;
the masking inputs, outputs, and internal wires of Go; the masking inputs, and internal wires, of
Gi, as well as its input wire corresponding to the m’th bundle; the internal wires of all gadgets G′

of Ĉ0−check connected to Go or Gi; and the internal wires of the decoding sub-circuits of Cdec whose
inputs are masking inputs of one of these G′’s.

Let WR ← Encin
(
b, 1S(n)

)
(where b is the value encoded by the m’th bundle in Hy

in), and
WS ← Encin

(
r, 1S(n)

)
for a random r (except if m corresponds to the output bundle, in which case

WS ← Encin
(
1, 1S(n)

)
). We define a distribution F over SHALLOW

(
6, O

(
n̂4 (1,S (n)) · S (n)

))
as follows. Sampling a function f ← F is done by sampling reco, reci from the distribution over
reconstructors for Go,Gi, respectively (see Definition 40), and sampling reconstructors recG′ for the
gadgets of Ĉ0−check connected to Go or Gi. The function f has all the hard-wired values of Hm−1

hard-wired into it. On input e ∈ Fn̂(1,Sn), f : (1) evaluates reco on the (hard-wired) inputs of Go,
and the output e (this reconstructs the masking inputs, and internal wires, of Go); (2) evaluates reci
on e as one of the inputs, and the other (hard-wired) input and output of Gi; (3) for every gadget
G′ of Ĉ0−check connected to Go or Gi, uses recG′ to generate its internal wires; and finally (4) uses
the functions of Lemma 46 to generate the internal wires of the decoding sub-circuits that decode
the masking inputs used in the G′’s. Then f ∈ SHALLOW

(
6, O

(
n̂4 (1, S (n)) · S (n)

))
because the

reconstructors reco, reci ∈ SHALLOW
(
2, O

(
n̂2 (1, S (n))

))
(by Lemma 41) and can be evaluated

in parallel, the O
(
n̂2 (1,S (n)) · S (n)

)
reconstructors recG′ ∈ SHALLOW

(
2, O

(
n̂2 (1, S (n))

))
(by

Lemma 46), and can be evaluated in parallel, and the O
(
n̂3 (1,S (n)) · S (n)

)
reconstructors of the

decoding sub-circuits are each computable in SHALLOW (2, O (n̂ (1,S (n)))) (by Lemma 46) and
can be evaluated in parallel.

Consequently, if W ′
R := f (WR) ,W ′

S := f (WS) for f ← F , then W ′
R ≡ Hm−1,W ′

S ≡ Hm

and by Lemma 45,W ′
R,W ′

S are (LEAK′, ϵ (n))-leakage resilient for any LEAK′ such that LEAK′ ◦
SHALLOW

(
6, O

(
n̂4 (1, S (n)) · S (n)

))
⊆ LEAKE.

Bounding SD
(
ℓ (Hy

ext) , ℓ
(
Hy,x

ext,2

))
: it holds that SD

(
ℓ (Hy

ext) , ℓ
(
Hy,x

ext,2

))
= 0 for every ℓ be-

cause the hybrids are independent of the input for Ĉ2 (since the input is re-sampled as a fresh
z ∈R Fn in both).

Bounding SD
(
ℓ
(
Hy,x

ext,2

)
, ℓ

(
Hy,x

in,2

))
: We show that SD

(
ℓ
(
Hy,x

ext,2

)
, ℓ

(
Hy,x

in,2

))
≤ ϵ (n) ·S (n) for

all ℓ ∈ LEAK′ such that LEAK′ ◦ SHALLOW
(
6, O

(
n̂4 (1, S (n)) · S (n)

))
⊆ LEAKE. The proof is

similar to the proof that SD
(
ℓ (Hy

ext) , ℓ
(
Hy

in

))
≤ ϵ (n)·S (n), because the argument was independent

of the actual inputs used in Ĉ1, Ĉ2 (as long as both hybrids use the same input in each copy).
Bounding SD

(
ℓ
(
Hy,x

in,2

)
, ℓ (Hy,x)

)
: We show that SD

(
ℓ
(
Hy,x

in,2

)
, ℓ (Hy,x)

)
≤ ϵ (n) · n̂ (1, S (n)) ·

S (n) for all ℓ ∈ LEAK′ such that LEAK′ ◦ SHALLOW
(
7, O

(
n̂4 (1,S (n)) · S (n)

))
⊆ LEAKE. The

proof is similar to the proof that SD
(
ℓ (Hy) , ℓ

(
Hy

in

))
≤ ϵ (n)·n̂ (1,S (n))·S (n), because the argument

was independent of the actual inputs used in Ĉ1, Ĉ2.

Bounding SD (ℓ (Hx) , ℓ (Hy)) for ℓ ∈ LEAK′. From this analysis, we can now conclude using the
union bound that for every ℓ ∈ LEAK′ such that

LEAK′ ◦ SHALLOW
(
7, O

(
n̂5 (1,S (n)) · S (n)

))
⊆ LEAKE

it holds that
SD (ℓ (Hx) , ℓ (Hy)) ≤ 4ϵ (n) · S (n) · (n̂ (1,S (n)) + 1) .

42

4.3 A SAT-Respecting LRCC Against “Useful” Leakage

Ishai et al. [IWY16] use Construction 34 to devise a SAT-respecting LRCC which they later employ
in their WI-PCP construction (described in Section 4.4). This is done in two steps. First, since
the LRCC will be used to compile verification circuits of NP relations, we need the compiler to be
boolean. Second, we need to instantiate the internal encoding scheme E such that it would resist
leakage computable by functions that: (1) apply the PCP-prover algorithm, and then (2) restrict
the output to a small subset of bits. Indeed, this is exactly the “leakage” on the witness which a
query-bounded verifier (even a malicious one) obtains by querying the proof. We now provide
more details on each of these steps.

Step (1): A SAT-Respecting LRCC for Boolean Circuits. The high-level idea is to transform
the boolean circuit C : {0, 1}n → {0, 1} into a functionally-equivalent arithmetic circuit C3 over
F3 (i.e., the field with 3 elements), use Construction 34 over the field F3 to compile C3 into its
leakage-resilient version Ĉ3, and then output the boolean circuit Ĉ that emulates Ĉ3 using boolean
operations. This is an over-simplified description of the compiler, where the actual construction
needs to address several subtleties. We now describe each of these steps, and the subtleties that
arise, in more detail.

From Boolean to Arithmetic Operations. The circuit C3 is obtained from C by representing
each boolean operation using an appropriate polynomial over F3 in the natural way. While C3 is
guaranteed to be functionally equivalent to C on binary strings, two issues arise concerning the
SAT-respecting property. First, satisfiability over F2 means that C (x) = 1 for some x, whereas
satisfiability over F3 means C3 (y) = 0 for some y. In particular, we want the leakage-resilient
circuit to output 1 only if there exists an x such that C (x) outputs 1, whereas the SAT-respecting
property guarantees only that if Ĉ3 (ŷ) = 0 for some ŷ, then C3 (y) = 0 for some y. Therefore, we
need to “translate” a 1-output of C into a 0-output of C3, and a 0-output of C into a non-0-output
of C3. Thus, we will have that Ĉ3 = (ŷ) = 0 for some ŷ only if C3 (y) = 0 for some y. This brings
us to the second issue: while we would like to use the function-equivalence of C and C3 to claim
that if C3 (y) = 0 for some y ∈ Fn

3 then C (x) = 1 for some x ∈ Fn
2 , this is not necessarily the case,

because C3’s inputs are from Fn
3 and might not correspond to an input in Fn

2 . To overcome this
issue, we add to C3 an “input checker” component which checks that each of its n inputs is a bit.
We denote this “enhanced” version of C3 – which flips the output and checks validity of the inputs
– by C ′

3.
From Arithmetic Back To Boolean. Once we generate the leakage-resilient version Ĉ ′

3 of C ′
3,

we need to represent it using a boolean circuit. (Indeed, the original circuit C was boolean, and its
leakage-resilient version should also be a boolean circuit.) We do so by replacing each field element
with a binary string representing it, and implementing each gate over F3 by a boolean sub-circuit.
We also flip the output of Ĉ ′

3, so the resultant circuit would again be functionally-equivalent to
C. There are two important points that we need to handle. First, while we can represent field
elements using any (injective) encoding scheme, to preserve the SAT-respecting property it must
also be onto. Otherwise, the boolean circuit could potentially be satisfied using invalid encodings,
namely ones that do not encode any field element, and thus the computation in the boolean circuit
would not correspond to a computation in Ĉ ′

3. In particular, the boolean sub-circuits implementing
gates over F3 must be defined for all possible encodings – even ones that would not be used in an
honest evaluation of the circuit.

Second, these boolean sub-circuits should have small depth and size. The reason is the re-
duction from the leakage resilience of the final circuit Ĉ to the leakage resilience of Ĉ ′

3. More

43

specifically, the reduction proceeds by assuming that a leakage function ℓ in some class LEAK can
distinguish between the wire values

[
Ĉ, x̂

]
of Ĉ on an encoding x̂ of some input x, and its wire

values
[
Ĉ, x̂′

]
on the encoding x̂′ of some other input x′ such that C (x) = C (x′). It then uses

this to break the leakage resilience of Ĉ ′
3 for some leakage function ℓ3 in the leakage class LEAK3

against which the arithmetic LRCC is secure. This is done as follows: given the wire values of
Ĉ ′
3 on some input (these values are elements of F3), the reduction first replaces the field elements

with the corresponding encodings. The resultant values constitute only part of the wire values
of Ĉ. Specifically, these are the values of the wires between the sub-circuits emulating the gates over
F3, whereas Ĉ contains also the internal wires of these sub-circuits, namely wires which do not
appear in Ĉ ′

3. Thus, the leakage function ℓ3 must first generate these missing wires, and only then
can it evaluate ℓ. In particular, LEAK ⊂ LEAK3, where the difference between the two classes
depends on the complexity of the boolean sub-circuits implementing gates over F3. Fortunately,
these sub-circuits are both shallow and small.

In summary, Ishai et al. show [IWY15, Proposition 3.31] the following boolean LRCC.

Claim 47 (Boolean SAT-respecting LRCC). Let LEAK,LEAKE be families of functions, S (n) : N→ N
be a size function, and ϵ (n) : N → R+. Let Ein =

(
Encin,Decin

)
be a linear, onto, (LEAKE, ϵ (n))-

leakage-resilient encoding scheme with parameters n, σ and n̂ = n̂ (n, σ), such that LEAKE = LEAK ◦
BOOL

(
33, O

(
n̂6 (1,S (n)) · S2 (n)

))
. Then there exist constants c, c′ > 0 for which there exists a SAT-

respecting, (LEAK, c′ · ϵ (n) · (n̂ (1, c · S (n)) + 1) · c · S (n) ,S (n))-LRCC over {0, 1}. Moreover, for ev-
ery C : {0, 1}n → {0, 1}, the compiled circuit Ĉ has size

∣∣∣Ĉ∣∣∣ = O
(
n̂6 (1, c · S (n)) · |C|2

)
.

Step (2): Leakage Resilience Against “Useful” Leakage. The second component of the construc-
tion is an internal encoding scheme Ein – resisting leakage from a “useful” class of leakage functions
– with which we instantiate Claim 47. More specifically, the leakage class consists of AC0 circuits
(namely, constant-depth, polynomial-sized boolean circuits over unbounded fan-in and fan-out
∧,∨,¬ gates), augmented with a sublinear number of ⊕ gates of unbounded fan-in and fan-out. Formally,

Notation 48 (Lmn,d,s,⊕t leakage family). Let n, d, s ∈ N be length, depth and size parameters (respectively),
and let t ∈ N be a parity gate bound. The family Ln,d,s,⊕t consists of all functions computable by a boolean
circuit C : {0, 1}n → {0, 1} of size at most s and depth d, with unbounded fan-in and fan-out ∧,∨,¬,⊕
gates, out of which at most t are ⊕ gates. We denote Ld,s,⊕t = ∪n∈NLn,d,s,⊕t.

For a length parameter m ∈ N, and a function f : {0, 1}n → {0, 1}m, let fi (x1, ..., xn) , i ∈ [m] denote
the i’th output bit of f . We denote: Lmn,d,s,⊕t = {f : {0, 1}n → {0, 1}m : ∀1 ≤ i ≤ m, fi ∈ Ln,d,s,⊕t}, and

Lmd,s,⊕t := ∪n∈N
(
Lmn,d,s,⊕t

)
.

The encodings scheme we use encodes elements γ ∈ F3 as binary strings whose sum mod 3 is
γ. Formally:

Notation 49. For γ ∈ {0, 1, 2} and n ∈ N, Un
γ denotes the uniform distribution over{

v ∈ {0, 1}3n : #1 (v) ≡ γ mod 3
}

, where #1 (v) denotes the number of 1’s in v.

Definition 50. The encodings scheme E3 = (Enc3,Dec3) is defined as follows. For every γ ∈ F3,
Enc3 (γ, 1

n) samples from Un
γ , and Dec3 (v) returns (#1 (v) mod 3). We note that E3 is linear and onto.

Remark 51. Enc3 can be computed efficiently by repeating the following procedure n2 times. Pick v ∈
{0, 1}3n uniformly at random, compute t := #1 (v), and if t = γ then return v. If all iterations fail, return
a fixed vγ ∈ {0, 1}3n such that #1 (vγ) = γ. Then the output of Enc3 is thus statistically close to Un

γ .

44

Ishai et al. [IWY16] show that the encoding scheme of Definition 50 resists leakage from AC0
circuits augmented with few ⊕ gates:

Corollary 52 (Corollary 3.44 in [IWY15]). For every constant depth parameter d ∈ N there exist constants
c, ϵ ∈ (0, 1), such that for every constant l ∈ N there exists a minimal length parameter n0 ∈ N such that
for every n ≥ n0 the encoding scheme Enc3 (·, 1n) of Definition 50 is

(
L3n,d,nl,⊕nϵ , 2−nc)-leakage resilient.

Instantiating Claim 47 with the encoding scheme of Definition 50 as the internal encoding
scheme, and using Corollary 52, [IWY16] show the existence of a boolean LRCC resisting leak-
age from AC0 circuits with few ⊕ gates:

Theorem 53 (Boolean SAT-respecting LRCC for AC0 circuits with ⊕ gates, Theorem 3.37
in [IWY15]). Let n ∈ N be an input length parameter. For every positive constants d, c, polynomials
m = m (n) , t = (n), and polynomial size bound s = s (n), there exists a polynomial l (n), such that the
following holds. There exists a SAT-respecting

(
Lml,d,lc,⊕t, 2

−nc
, s (n)

)
-LRCC over {0, 1}, which on input

a circuit C : {0, 1}n → {0, 1} of size |C| ≤ s (n) outputs a circuit Ĉ of size
∣∣∣Ĉ∣∣∣ ≤ l (n).

4.4 The Witness-Indistinguishable PCP

In this section, we describe the WI-PCPs for NP of [IWY16], which rely on the boolean SAT-
respecting LRCC of Theorem 53. They use also a PCP system (P ′,V ′) for the language 3SAT of
all satisfiable 3CNF formulas, in which the prover algorithm can be implemented in a low com-
plexity class.

The high-level idea of the construction for an NP-relation R with verification circuit C is that
given input x, instead of verifying that Cx (·) := C (x, ·) is satisfiable (which holds if and only
if x ∈ L for the corresponding NP-language L), the verifier will check that the leakage-resilient
version Ĉx is satisfiable. For this, the prover and verifier will represent Ĉx as a 3CNF formula φ in
the natural way,23 then use the PCP system (P ′,V ′) to verify that φ ∈ 3SAT. The construction is
described in Figure 3.

The following theorem (which is a combination of [IWY15, Proposition 4.4] and [IWY15, Corol-
lary 4.10]) asserts the connection between the properties of the LRCC and the resultant PCP system
(P,V).

Theorem 55. Let n ∈ N be a length parameter, q∗ = q∗ (n) ,S = S (n) be query and size functions,
ϵ, ϵ′ ∈ [0, 1], and LEAK be a family of leakage functions. Assume that Construction 54 is instantiated with:

• A boolean SAT-respecting (LEAK, ϵ,S)-LRCC such that there exists a polynomial g (·) for which
|Comp (C)| ≤ g (|C|) for every circuit C, and

• A PCP system (P ′,V ′) for 3SAT with proofs of length len (n), such that for every (φ,W) ∈ 3SAT,
every subset Q of q∗ bits of an honestly-generated proof π = π (φ,W) is computable from W by a
function fφ,Q ∈ LEAK.

Then for every NP-relation R with verification circuit C of size |C| ≤ S, the PCP system (P,V) is a

(q∗, ϵ∗)-WI-PCP forR, where ϵ∗ = O
(
ϵ · q∗ · len2q∗ (t)

)
+e

−Ω
(
q∗·lenq

∗
(t)

)
and t = O (g (|C|)). Moreover,

if V ′ is non-adaptive, the so is V .

23That is, φ will have a variable for each wire of Ĉx. It will contain, for each gate g of Ĉx, a sub-formula verifying that
the output wire of g is consistent with the input wires and the operation of g, and it will also check that the output wire
of Ĉx is 1. A satisfying assignment for φ is the wire values of Ĉx when evaluated on (an encoding of) a witness w for x.

45

Construction 54 (A Witness-Indistinguishable PCP). Let R = R (x,w) be an NP-relation with verification
circuit C.a

Building blocks:

• A PCP system (P ′,V ′) for 3SAT.

• A boolean LRCC (Comp,E = (Enc,Dec)).

Prover algorithm. P , on input (x,w) ∈ R, operates as follows:

• Computes Ĉx (·) = Comp (Cx), where Cx denotes the circuit C with x hard-wired into it.

• Samples a random encoding ŵ ← Enc
(
w, 1|Cx|

)
, and evaluates Ĉx on ŵ to generate the wire values W of

Ĉx.

• Constructs the 3CNF φx representing Ĉx.

• Computes a PCP π = P ′ (φx,W) for the claim “φx ∈ 3SAT”, and outputs π.

Verifier algorithm. V is given input x and oracle access to π. It computes Ĉx (·) = Comp (Cx), and constructs
the 3CNF formula φx. Then, V emulates V ′ with input φx and oracle access to π, and outputs whatever V ′ outputs.

aWe note that R is actually associated with a family {Cn} of circuits, where Cn is applied to inputs x ∈ {0, 1}n. Somewhat
abusing notation, we refer to all these circuits simply as “C”.

Figure 3: Witness-Indistinguishable PCPs from SAT-Respecting LRCCs [IWY16]

46

Furthermore, the system is (q∗, ϵ)-WI against non-adaptive (possibly malicious) verifiers. Moreover,
proofs generated by P have length len (t), and if V ′ has query complexity q (n) and tosses r (n) coins, then
V has query complexity q (t), tosses r (t) coins.

Proof. We first analyze the parameters of the system. The wire assignmentW to Ĉx has size |W| =∣∣∣Ĉx

∣∣∣ ≤ g (|Cx|) ≤ g (|C|), and |φx| = O
(∣∣∣Ĉx

∣∣∣) ≤ O (g (|C|)). Therefore, the internal PCP system
(P ′,V ′) is emulated using inputs of size t = g (|C|).

Completeness follows directly from the completeness of the building blocks.
Soundness follows from a combination of the soundness of (P ′,V ′) and the SAT-respecting

property of (Comp,E), Indeed, if x /∈ L, then Cx is not satisfiable, and so (by the SAT-respecting
property) Ĉx is not satisfiable, i.e., φx /∈ 3SAT. Therefore, by the soundness of (P ′,V ′) we have that
Pr

[
Vπ∗

(x) = 1
]
= Pr

[
V ′π∗

(φx) = 1
]

is negligible.
Witness-indistinguishability. Let x ∈ L, φx be the 3CNF formula representing Ĉx, and w1, w2

be two witnesses for x. We first show witness indistinguishability against non-adaptive verifiers.
Let V∗ be a non-adaptive q∗-query-bounded verifier, and let πi ← P (x,wi) for i = 1, 2. Since V∗’s
entire view can be generated from the oracle answers to its queries (and this cannot increase the
statistical distance), it suffices to show that SD (π1|Q, π2|Q) ≤ ϵ for every set Q of queries of V∗
such that size |Q| ≤ q∗, where πi|Q denotes the restriction of πi to the entries in Q. Since |C| =
|Cx| ≤ S, the leakage resilience of the LRCC guarantees that SD

(
ℓ
[
Ĉx, ŵ1

]
, ℓ

[
Ĉx, ŵ2

])
≤ ϵ for

every ℓ ∈ LEAK. We conclude the proof by noting that fφx,Q ∈ LEAK, and πi|Q = fφx,Q

[
Ĉx, ŵi

]
.

We have shown that (P,V) is (q∗, ϵ)-witness indistinguishable against non-adaptive verifiers V∗.
Using Theorem 56 below, this implies that (P,V) is (q∗, ϵ∗)-WI (even against adaptive verifiers), for

ϵ∗ = O
(
ϵ · q∗ · len2q∗ (t)

)
+ e

−Ω
(
q∗·lenq

∗
(t)

)
.

The proof of Theorem 55 used the following theorem, which is implicit in [CDD+01] (see
also [IWY15, Theorem 4.11]).

Theorem 56 (Implicit in [CDD+01]). Let (P,V) be a PCP system that is (q∗, ϵ)-WI against non-
adaptive verifiers, with proofs of length len. Then (P,V) is (q∗, ϵ∗)-WI against adaptive verifiers, where

ϵ∗ = O
(
ϵ · q∗ · len2q∗

)
+ e

−Ω
(
q∗·lenq

∗)
.

Theorem 23 now follows as a corollary of Theorem 55, using the SAT-respecting LRCC of The-
orem 53, and a PCP system of [AS92], whose prover algorithm can be implemented in a low com-
plexity class (the analysis of the prover complexity is due to [IWY15, Appendix B]):

Theorem 57 (PCPs for NP, [AS92]). 3SAT has a PCP system (P,V) with soundness error 1/2 with an
honest verifier that queries O

(
log2 n

)
proof bits. The proofs have length poly (n), where every proof bit can

be generated by an AC0 circuit with a single ⊕ gate of unbounded fan-in.

We are now ready to prove Theorem 23.
Proof (of Theorem 23): We instantiate Construction 54 with the PCP system (P ′,V ′) of Theorem 57
and the LRCC of Theorem 53. By Theorem 57, there exist constants d, c ∈ N such that every bit
in a proof generated by P ′ is computable from the NP witness in Ld,nc,⊕1, where n is the witness
length, and the proofs have length nc′′ , for some constant c′′.

Let R be an NP-relation with verification circuit C, then |C| = nc′ for some constant c′. We
instantiate Theorem 53 with parameters d∗ = d, s∗ = |C| , n∗ = n, t∗ = 1, m∗ = q∗,24 and c∗ ≥ c

24We use the superscript ∗ to denote the parameters of Theorem 53, and note that s∗, t∗,m∗ are in poly (n).

47

which is a sufficiently large constant whose value is set below, to obtain an LRCC (Comp,E). We
compute Ĉ = Comp (C), where

∣∣∣Ĉ∣∣∣ ≤ l (n) which, because |C| ≤ s∗, is
(
Lq

∗

d,lc(n),⊕1, 2
−nc∗

)
-LR

(where l (n) is the polynomial whose existence is guaranteed by Theorem 53).
Let φ denote the 3CNF representing Ĉ. Then by Theorem 57 (and using the fact that |W| =∣∣∣Ĉ∣∣∣ ≤ l (n)), every bit of a proof generated by P ′ for φ can be generated from a wire assignment

W in Lq
∗

d,lc(n),⊕1. Therefore, Theorem 55 guarantees that the system (P,V) of Construction 54 is

a non-adaptive WI-PCP system for R, with
(
q∗, O

(
2−nc∗ · q∗ · len2q∗ (l (n))

)
+ e

−Ω
(
q∗·lenq

∗
(l(n))

))
-

WI (where len (l (n)) denotes the proof length), and soundness error 1/2 with an honest verifier
that queries O

(
log2 (l (n))

)
= polylog (n) ≤ polylog (q∗) proof bits. We set c∗ to be sufficiently large,

such that the statistical LR error satisfies25

O
(
2−nc∗ · q∗ · len2q∗ (l (n))

)
+ e

−Ω
(
q∗·lenq

∗
(l(n))

)
= negl(q∗) ≤ negl(κ).

We conclude the proof by noting that soundness can be amplified to negl(κ) with only a poly (κ)
blowup in the query complexity of the honest verifier.

5 Discussion

The works of [IWY16, HVW21a] show a connection between ZK-PCPs and the seemingly-
unrelated field of leakage-resilient cryptography, and use it to circumvent an inherent limita-
tion of previous constructions – that the honest verifier is adaptive. Specifically, using tools from
the leakage-resilience literature, [IWY16, HVW21a] put forth two new paradigms of construct-
ing ZK-PCPs, yielding PCPs with ZK against malicious verifiers, in which the honest verifier is
non-adaptive. In the context of cryptographic applications of ZK-PCPs, non-adaptive verification
translates into fewer communication rounds. The paradigm of [HVW21a] also extends to ZK-PCPs
of proximity.

Despite this recent progress, several interesting questions remain open. The obvious open
problem is to obtain ZK-PCPs and ZK-PCPPs with an exponential query gap as in [KPT97, IW14]
but which can be verified non-adaptively. One possible approach is to design a ZK-PCP variant
over a large alphabet with negligible soundness error and an honest verifier that makes fewer
queries than [IKOS07] (hopefully, polylogarithmic). Another interesting research direction is to
extend the techniques of [IWY16, HVW21a] to other related proof systems, such as interactive ora-
cle proofs. Finding further applications of ZK-PCPs and ZK-PCPPs is also an interesting question.
Finally, though in this survey we have focused on other parameters of ZK-PCPs, reducing the
proof length is a fascinating open problem worthy of study. Whereas the locking-scheme-based
ZK-PCPs of [KPT97, IW14] inherently incur a polynomial blowup in proof length, another advan-
tage of the leakage-resilience-based approach is that it opens up the possibility of reducing the
proof length of ZK-PCPs, potentially even matching the proof length of non-ZK PCPs.

Acknowledgements

I am extremely grateful to Yuval Ishai for introducing me to the world of ZK-PCPs. I am also grate-
ful to all my collaborators on these works - Yuval Ishai, Carmit Hazay, Guang Yang, and Muthu

25Such a constant exists since we assume that q∗ = poly (n).

48

Venkitasubramaniam – for many enjoyable discussions, and the fruitful collaborations whose re-
sults are surveyed here.

The author is supported by the BIU Center for Research in Applied Cryptography and Cyber
Security in conjunction with the Israel National Cyber Bureau in the Prime Minister’s Office.

References

[ALM+92] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof verification and hardness of approximation problems. In 33rd Annual Sympo-
sium on Foundations of Computer Science, 1992, pages 14–23. IEEE Computer Society,
1992.

[ARW17] Amir Abboud, Aviad Rubinstein, and R. Ryan Williams. Distributed PCP theorems
for hardness of approximation in P. In 58th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2017, pages 25–36. IEEE Computer Society, 2017.

[AS92] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs; A new character-
ization of NP. In 33rd Annual Symposium on Foundations of Computer Science, 1992,
pages 2–13. IEEE Computer Society, 1992.

[BCF+16] Eli Ben-Sasson, Alessandro Chiesa, Michael A. Forbes, Ariel Gabizon, Michael Ri-
abzev, and Nicholas Spooner. On probabilistic checking in perfect zero knowledge.
Electron. Colloquium Comput. Complex., page 156, 2016.

[BCG+13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza.
SNARKs for C: verifying program executions succinctly and in zero knowledge. In
Advances in Cryptology - CRYPTO, 2013. Proceedings, Part II, volume 8043 of Lecture
Notes in Computer Science, pages 90–108. Springer, 2013.

[BCGV16] Eli Ben-Sasson, Alessandro Chiesa, Ariel Gabizon, and Madars Virza. Quasi-linear
size zero knowledge from linear-algebraic PCPs. In Theory of Cryptography - 13th Inter-
national Conference, TCC 2016-A, 2016, Proceedings, Part II, volume 9563 of Lecture Notes
in Computer Science, pages 33–64. Springer, 2016.

[BCL22] Jonathan Bootle, Alessandro Chiesa, and Siqi Liu. Zero-knowledge IOPs with linear-
time prover and polylogarithmic-time verifier. In Orr Dunkelman and Stefan Dziem-
bowski, editors, Advances in Cryptology - EUROCRYPT 2022 - 41st Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Proceedings, Part
II, volume 13276 of Lecture Notes in Computer Science, pages 275–304. Springer, 2022.

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs.
In Theory of Cryptography - 14th International Conference, TCC 2016-B, 2016, Proceedings,
Part II, volume 9986 of Lecture Notes in Computer Science, pages 31–60, 2016.

[BDG+18] Marshall Ball, Dana Dachman-Soled, Siyao Guo, Tal Malkin, and Li-Yang Tan. Non-
malleable codes for small-depth circuits. In 59th IEEE Annual Symposium on Founda-
tions of Computer Science, FOCS 2018, pages 826–837. IEEE Computer Society, 2018.

[BDKM16] Marshall Ball, Dana Dachman-Soled, Mukul Kulkarni, and Tal Malkin. Non-malleable
codes for bounded depth, bounded fan-in circuits. In Advances in Cryptology - EU-
ROCRYPT 2016 - 35th Annual International Conference on the Theory and Applications

49

of Cryptographic Techniques, 2016, Proceedings, Part II, volume 9666 of Lecture Notes in
Computer Science, pages 881–908. Springer, 2016.

[BGH+04] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vad-
han. Robust PCPs of proximity, shorter PCPs and applications to coding. In Pro-
ceedings of the 36th Annual ACM Symposium on Theory of Computing, 2004, pages 1–10.
ACM, 2004.

[BGI+01] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P.
Vadhan, and Ke Yang. On the (im)possibility of obfuscating programs. In Advances
in Cryptology - CRYPTO 2001, Proceedings, volume 2139 of Lecture Notes in Computer
Science, pages 1–18. Springer, 2001.

[BIS19] Andrej Bogdanov, Yuval Ishai, and Akshayaram Srinivasan. Unconditionally secure
computation against low-complexity leakage. In Advances in Cryptology - CRYPTO,
2019, Proceedings, Part II, volume 11693 of Lecture Notes in Computer Science, pages
387–416. Springer, 2019.

[BS08] Eli Ben-Sasson and Madhu Sudan. Short PCPs with polylog query complexity. SIAM
J. Comput., 38(2):551–607, 2008.

[CCG+07] Hao Chen, Ronald Cramer, Shafi Goldwasser, Robbert de Haan, and Vinod Vaikun-
tanathan. Secure computation from random error correcting codes. In Moni Naor, edi-
tor, Advances in Cryptology - EUROCRYPT 2007, 26th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, 2007, Proceedings, volume 4515
of Lecture Notes in Computer Science, pages 291–310. Springer, 2007.

[CDD+01] Ran Canetti, Ivan Damgård, Stefan Dziembowski, Yuval Ishai, and Tal Malkin. On
adaptive vs. non-adaptive security of multiparty protocols. In Advances in Cryptology
- EUROCRYPT 2001, International Conference on the Theory and Application of Crypto-
graphic Techniques, 2001, Proceeding, volume 2045 of Lecture Notes in Computer Science,
pages 262–279. Springer, 2001.

[CDMW08] Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee. Black-box
construction of a non-malleable encryption scheme from any semantically secure one.
In Theory of Cryptography, Fifth Theory of Cryptography Conference, TCC 2008, volume
4948 of Lecture Notes in Computer Science, pages 427–444. Springer, 2008.

[CDMW18] Seung Geol Choi, Dana Dachman-Soled, Tal Malkin, and Hoeteck Wee. A black-
box construction of non-malleable encryption from semantically secure encryption.
J. Cryptol., 31(1):172–201, 2018.

[DF12] Stefan Dziembowski and Sebastian Faust. Leakage-resilient circuits without compu-
tational assumptions. In Theory of Cryptography - 9th Theory of Cryptography Conference,
TCC 2012. Proceedings, volume 7194 of Lecture Notes in Computer Science, pages 230–
247. Springer, 2012.

[DFK+92] Cynthia Dwork, Uriel Feige, Joe Kilian, Moni Naor, and Shmuel Safra. Low commu-
nication 2-prover zero-knowledge proofs for NP. In Advances in Cryptology - CRYPTO,
1992, Proceedings, volume 740 of Lecture Notes in Computer Science, pages 215–227.
Springer, 1992.

50

[DGR99] Scott E. Decatur, Oded Goldreich, and Dana Ron. Computational sample complexity.
SIAM J. Comput., 29(3):854–879, 1999.

[Din06] Irit Dinur. The PCP theorem by gap amplification. In Proceedings of the 38th Annual
ACM Symposium on Theory of Computing, 2006, pages 241–250. ACM, 2006.

[DR04] Irit Dinur and Omer Reingold. Assignment testers: Towards a combinatorial proof of
the PCP-theorem. In 45th Symposium on Foundations of Computer Science FOCS, 2004,
Proceedings, pages 155–164. IEEE Computer Society, 2004.

[FLS90] Uriel Feige, Dror Lapidot, and Adi Shamir. Multiple non-interactive zero knowledge
proofs based on a single random string (extended abstract). In 31st Annual Symposium
on Foundations of Computer Science, 1990, Volume I, pages 308–317. IEEE Computer So-
ciety, 1990.

[FRR+10] Sebastian Faust, Tal Rabin, Leonid Reyzin, Eran Tromer, and Vinod Vaikuntanathan.
Protecting circuits from leakage: the computationally-bounded and noisy cases. In
Advances in Cryptology - EUROCRYPT 2010, 29th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, 2010. Proceedings, volume 6110 of
Lecture Notes in Computer Science, pages 135–156. Springer, 2010.

[GM10] Berndt M. Gammel and Stefan Mangard. On the duality of probing and fault attacks.
J. Electron. Test., 26(4):483–493, 2010.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity of
interactive proof-systems (extended abstract). In Proceedings of the 17th Annual ACM
Symposium on Theory of Computing, 1985, pages 291–304. ACM, 1985.

[HVW21a] Carmit Hazay, Muthuramakrishnan Venkitasubramaniam, and Mor Weiss. ZK-PCPs
from leakage-resilient secret sharing. In 2nd Conference on Information-Theoretic Cryp-
tography, ITC 2021, volume 199 of LIPIcs, pages 6:1–6:21. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021.

[HVW21b] Carmit Hazay, Muthuramakrishnan Venkitasubramaniam, and Mor Weiss. ZK-PCPs
from leakage-resilient secret sharing (full version). IACR Cryptol. ePrint Arch., 2021.
https://eprint.iacr.org/2021/606.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge
from secure multiparty computation. In Proceedings of the 39th Annual ACM Symposium
on Theory of Computing (STOC), 2007, pages 21–30. ACM, 2007.

[IMS12] Yuval Ishai, Mohammad Mahmoody, and Amit Sahai. On efficient zero-knowledge
PCPs. In Theory of Cryptography - 9th Theory of Cryptography Conference, TCC 2012.
Proceedings, volume 7194 of Lecture Notes in Computer Science, pages 151–168. Springer,
2012.

[ISVW13] Yuval Ishai, Amit Sahai, Michael Viderman, and Mor Weiss. Zero knowledge LTCs
and their applications. In Approximation, Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques - 16th International Workshop, APPROX 2013, and 17th
International Workshop, RANDOM 2013. Proceedings, volume 8096 of Lecture Notes in
Computer Science, pages 607–622. Springer, 2013.

51

https://eprint.iacr.org/2021/606

[ISW03] Yuval Ishai, Amit Sahai, and David A. Wagner. Private circuits: Securing hardware
against probing attacks. In Advances in Cryptology - CRYPTO 2003, 23rd Annual Inter-
national Cryptology Conference, Proceedings, volume 2729 of Lecture Notes in Computer
Science, pages 463–481. Springer, 2003.

[IW14] Yuval Ishai and Mor Weiss. Probabilistically checkable proofs of proximity with zero-
knowledge. In Theory of Cryptography - 11th Theory of Cryptography Conference, TCC.
Proceedings, volume 8349 of Lecture Notes in Computer Science, pages 121–145. Springer,
2014.

[IWY15] Yuval Ishai, Mor Weiss, and Guang Yang. Making the best of a leaky situation: Zero-
knowledge PCPs from leakage-resilient circuits (full version). IACR Cryptol. ePrint
Arch., 2015. http://eprint.iacr.org/2015/1055.

[IWY16] Yuval Ishai, Mor Weiss, and Guang Yang. Making the best of a leaky situation: Zero-
knowledge PCPs from leakage-resilient circuits. In Theory of Cryptography - 13th In-
ternational Conference, TCC 2016-A, Proceedings, Part II, volume 9563 of Lecture Notes in
Computer Science, pages 3–32. Springer, 2016.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended ab-
stract). In S. Rao Kosaraju, Mike Fellows, Avi Wigderson, and John A. Ellis, editors,
Proceedings of the 24th Annual ACM Symposium on Theory of Computing, pages 723–732.
ACM, 1992.

[KPT97] Joe Kilian, Erez Petrank, and Gábor Tardos. Probabilistically checkable proofs with
zero knowledge. In Proceedings of the Twenty-Ninth Annual ACM Symposium on the
Theory of Computing, 1997, pages 496–505. ACM, 1997.

[LS11] Shachar Lovett and Srikanth Srinivasan. Correlation bounds for poly-size AC0 circuits
with n1−o(1) symmetric gates. In Approximation, Randomization, and Combinatorial Op-
timization. Algorithms and Techniques - 14th International Workshop, APPROX 2011, and
15th International Workshop, RANDOM 2011. Proceedings, volume 6845 of Lecture Notes
in Computer Science, pages 640–651. Springer, 2011.

[Mic94] Silvio Micali. CS proofs (extended abstract). In 35th Annual Symposium on Foundations
of Computer Science, 1994, pages 436–453. IEEE Computer Society, 1994.

[Mie09] Thilo Mie. Short PCPPs verifiable in polylogarithmic time with O (1) queries. Ann.
Math. Artif. Intell., 56(3-4):313–338, 2009.

[MR04] Silvio Micali and Leonid Reyzin. Physically observable cryptography (extended ab-
stract). In Theory of Cryptography, First Theory of Cryptography Conference, TCC 2004,
Proceedings, volume 2951 of Lecture Notes in Computer Science, pages 278–296. Springer,
2004.

[MV13] Eric Miles and Emanuele Viola. Shielding circuits with groups. In Symposium on
Theory of Computing Conference, STOC, 2013, pages 251–260. ACM, 2013.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen
ciphertext attacks. In Proceedings of the 22nd Annual ACM Symposium on Theory of
Computing, 1990, pages 427–437. ACM, 1990.

52

http://eprint.iacr.org/2015/1055

[RRR16] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-round interactive
proofs for delegating computation. In Proceedings of the 48th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2016, pages 49–62. ACM, 2016.

[Sha90] Adi Shamir. IP=PSPACE. In 31st Annual Symposium on Foundations of Computer Science,
1990, Volume I, pages 11–15. IEEE Computer Society, 1990.

[Tha22] Justin Thaler. Proofs, arguments, and zero-knowledge. Manuscript, 2022. https:
//people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.pdf.

[Wei16] Mor Weiss. Secure computation and probabilistic checking. PhD Thesis, 2016.

53

https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.pdf
https://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.pdf

	Introduction
	Non-Adaptive ZK-PCPs
	The ZK-PCPs of Hazay et al. HazayVW21
	The ZK-PCPs of Ishai et al. IshaiWY16

	Comparison Between Different ZK-PCP Constructions
	Related Notations, Extensions, and Cryptographic Applications

	Preliminaries
	PCPs and ZK-PCPs
	Restrictions, Extensions and Generalizations

	ZK-PCPs from LR Encodings: The Construction of HazayVW21
	Main Building Block: Reconstructable Probabilistic Encdoings (RPEs)
	The ZK-PCP Construction
	ZK-PCPs with Square-Root Gap

	ZK-PCPs from LR Circuits: The Construction of IshaiWY16
	Leakage-Resilient Circuit Compilers (LRCCs)
	A SAT-Respecting LRCC for Arithmetic Circuits
	Proof of Lemma 39

	A SAT-Respecting LRCC Against ``Useful'' Leakage
	The Witness-Indistinguishable PCP

	Discussion

