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Abstract. Decentralized Multi-Client Functional Encryption (DMCFE) extends the basic functional
encryption to multiple clients that do not trust each other. They can independently encrypt the multiple
inputs to be given for evaluation to the function embedded in the functional decryption key. And
they keep control on these functions as they all have to contribute to the generation of the functional
decryption keys.
As any encryption scheme, all the FE schemes provide privacy of the plaintexts. But the functions
associated to the functional decryption keys might be sensitive too (e.g. a model in machine learning).
The function-hiding property has thus been introduced to additionally protect the function evaluated
during the decryption process. But it was not properly defined for previous definitions of DMCFE.
In this paper, we provide a formal definition of DMCFE with complete function-hiding security game.
We thereafter propose a concrete construction of function-hiding DMCFE for inner products, with
strong security guarantees: the adversary is allowed to adaptively query multiple challenge ciphertexts
and multiple challenge keys. Previous constructions were proven secure for a single challenge ciphertext
only, in the selective setting (i.e. provided before the setup).

Keywords: Functional Encryption, Inner Product, Function-Hiding

1 Introduction

Functional Encryption. Public-Key Encryption (PKE) has become so indispensable that without
this building block, secure communication over the Internet would be unfeasible nowadays. However,
this concept of PKE limits the access to encrypted data in an all-or-nothing fashion: once the
recipients have the secret key, they will be able to recover the original data; otherwise, no information
is revealed. The concept of Functional Encryption (FE), originally introduced by Boneh, Sahai and
Waters [48, 20], overcomes this limitation: a decryption key can be generated under some specific
function F , namely a functional decryption key, and enable the evaluation F (x) from an encryption
of a plaintext x in order to provide a finer control over the leakage of information about x.

Since its introduction, FE has provided a unified framework for prior advanced encryption notions,
such as Identity-Based Encryption [49, 27, 19] or Attribute-Based Encryption [48, 36, 47, 14, 46], and
has become a very active domain of research. Abdalla et al. [3] proposed the first FE scheme (ABDP
scheme) that allows computing the inner product between a functional vector in the functional
decryption key and a data vector in the ciphertext, coined IPFE. The interests in FE then increased,
either in improving existing constructions for concrete function classes, e.g. inner products [11, 16, 21]
and quadratic functions [15, 32, 13, 41], or in pushing the studies of new advanced notions [34] as well
as the relationship to other notions in cryptography [12, 18]. While FE with a single encryptor, i.e.
single-client FE, is of great theoretical interest, there is also a motivation to investigate a multi-user
setting, which might be applicable in practical applications when the data is an aggregation of
information coming from multiple sources.

Extensions of FE in the Multi-User Setting. Goldwasser et al. [33, 35] initiated the study of
Multi-Input Functional Encryption (MIFE) and Multi-Client Functional Encryption (MCFE). In
MCFE particularly, the encrypted data is broken into a vector (x1, . . . , xn) and a client i among n
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clients uses their encryption key eki to encrypt xi, under some (usually time-based) tag tag. Given
a vector of ciphertexts (ct1 ← Enc(ek1, tag, x1), . . . , ctn ← Enc(ekn, tag, xn)), a decryptor holding a
functional decryption key dkF can decrypt and obtain F (x1, . . . , xn) as long as all ct1, . . . , ctn are
generated under the same tag. No information beyond F (x1, . . . , xn) is leaked, especially concerning
the individual secret component xi, and combinations of ciphertexts under different tags provide
no further information either. Furthermore, encrypting xi under different tag

′ ̸= tag might bear a
different meaning with respect to a client i and thus controls the possibilities constituting ciphertext
vectors1. This necessitates the encryption keys eki being private. The notion of MCFE can be seen
as an extension of FE where multiple clients can contribute into the ciphertext vector independently
and non-interactively, where encryption is done by private encryption keys. After their introduction,
MIFE/MCFE motivated a plethora of works on the subject, notably for the concrete function class
of inner products [30, 24, 25, 4, 2, 1, 40, 26, 5, 43].

Decentralized Multi-Client Functional Encryption The setup of MCFE requires some authority (a
trusted third party) responsible for the setup and generation of functional decryption keys. The
authority possesses a master secret key msk that can be used to handle the distribution of private
encryption keys eki and deriving functional decryption keys dkF . When clients do not trust each
other, this centralized setting of authority might be a disadvantage. The need for such a central
authority is completely eliminated in the so-called Decentralized Multi-Client Functional Encryption
(DMCFE) introduced by Chotard et al. [24]. In DMCFE, only during the setup phase do we need
interaction for generating parameters that will be needed by the clients later. The key generation
is done independently by different senders, each has a secret key ski. Agreeing on a function F ,
each sender generates their partial functional key dkF,i using ski, the description of F , and a
tag tag-f. Originally in [24], the tag tag-f can contain the description of F itself. Using DMCFE,
the need of an authority for distributing functional keys is completely removed, with minimal
interaction required during setup. The seminal work of [24] constructed the first DMCFE for
computing inner products, where n clients can independently contribute to the ciphertext vector
(ct1 ← Enc(ek1, tag, x1), . . . , ctn ← Enc(ekn, tag, xn)) and n senders can independently contribute to
the partial functional keys dky,1 ← DKeyGen(sk1, tag-f, y1), . . . , dky,n ← DKeyGen(skn, tag-f, yn) of
some vector y = (y1, . . . , yn). For the function class to compute inner products, many follow-up
works improve upon the work of [24] on both aspects of efficiency as well as security, or by giving
generic transformation to (D)MCFE from single-client FE [40, 2, 1]. All these works follow essentially
the syntax of (D)MCFE in [24].

Function Privacy in FE. Standard security notions of all primitives mentioned above ensure
that adversaries do not learn anything about the content of ciphertexts beyond what is revealed by
the functions for which they possess decryption keys. However, it is not required that functional
decryption keys hide the function they decrypt. In practice, this can pose a serious problem because
the function itself could contain confidential data. For example, the evaluated function may represent
an artificial neural network. Training such networks is often time-consuming and expensive, which
is why companies offer their use as a paid service. However, to ensure that customers continue to
pay for the use of the product, it is crucial that the concrete parameters of the network (i.e. the
computed function) remain secret. This additional security requirement for functional encryption
schemes is known as the so-called function-hiding property.

In particular, function-hiding functional encryption schemes for restricted function classes (such
as inner products) have proven to be an important technical building block for the construction

1 In contrast, MIFE involves no tags and thus a large amount of information can be obtained by arbitrarily combining
ciphertexts to decrypt under some functional decryption key.
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of functional encryption schemes for broader function classes: Lin [41] employed a function-hiding
FE scheme for inner products to obtain a FE scheme for quadratic functions. A different technique
was also introduced by Gay in [32] equally aiming at constructing FE for quadratic functions.
With several technical novelties, Agrawal et al. [8, 10] were able to generalize the aforementioned
constructions to obtain MIFE for quadratic functions.

1.1 Related Works

Generalizations of DMCFE In [26], Chotard et al. generalized DMCFE and defined the notion of
Dynamic Decentralized Functional Encryption (DDFE) that allows participants to join at various
stages during the lifetime of a system, while maintaining all decentralized features of DMCFE. The
setup of DDFE can be non-interactive and decentralized, while that of DMCFE is interactive. The
authors of [26] provided a concrete construction for DDFE for the function class computing inner
products, which is provably secure in an indistinguishability-based model where the challenges must
be submitted selectively and can handle only static corruption of private keys.
Besides, more multi-user FE primitives have been defined, such as ad hoc multi-input functional
encryption [7] and multi-authority attribute-based encryption [22]. Interestingly, Agrawal et al. [9]
recently proposed the very general notion of Multi-Party Functional Encryption (MPFE). The
important concept behind MPFE is to cover all existing notions of FE in the multi-user setting,
including DDFE/(D)MCFE. Moreover, as pointed out in [9], DDFE/(D)MCFE as presented in prior
works cannot provide function-hiding. With delicate abstractions, MPFE captures the possibility of
specifying public and private inputs for both ciphertext along with function keys, thus making it
feasible to express function-hiding. In [9], Agrawal et al. proposed a construction for function-hiding
DDFE, by specializing the syntax of MPFE, for the function class of inner products. Their scheme
is provably secure in an indistinguishability-based model where the single challenge ciphertext and
challenge key must be submitted selectively and can handle only static corruption of private keys.

Enhancements of FE with Function-Hiding Bishop et al. [17] presented the first FE scheme that
guaranteed a weak variant of the function-hiding property. Shortly afterwards, the construction was
lifted to fully function-hiding security by Datta et al. [28, 29]. This was further improved in terms of
efficiency and/or computational hardness assumptions by works of Tomida et al. [50], Kim et al. [37]
and Kim et al. [38]. The constructions of [17, 28, 50] all leverage the power of dual pairing vector
spaces (DPVSes) developed by Okamoto and Takashima in [44, 45, 46].
In 2017, Lin [41] used a somewhat different approach that led to much simpler constructions.
Roughly, she employs two instances of the public-key inner product FE scheme from DDH by
Abdalla et al. [3] to hide both messages and keys at the same time. Using pairings, it is possible to
decrypt both “layers” of ABDP encryption simultaneously and to produce exactly an encoding of
the output inner product. This approach immediately generalizes to MIFE schemes, but it requires
multilinear maps. Using the same blueprint but exploiting the specific algebraic properties of the
MIFE scheme more carefully, Abdalla et al. [4] were able to construct function-hiding MIFE from
standard bilinear maps. As mentioned earlier, Agrawal et al. [9] came up with the first construction
of function-hiding MCFE for inner products which is inspired by the function-hiding MIFE scheme
for inner products by Datta et al. [30]. Following the approach of Chotard et al. [26], they are then
able to lift that scheme to function-hiding inner-product DDFE.

1.2 Our Contributions

Given the current state of the art, to the best of our knowledge, the only known (D)MCFE candidate
that supports function-hiding comes from [9]. However, their FH-DDFE yields a construction for
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function-hiding DMCFE (FH-DMCFE) in an implicit manner. In this paper, we investigate the
problem of constructing directly FH-DMCFE for the function class of inner products, taking into
account previous (non function-hiding) DMCFE in [24, 40, 2, 1] as well as the more general DDFE
in [26, 9]. We aim at improving the resultant FH-DMCFE from the FH-DDFE of [9]:

1. We revisit the notion of FH-DMCFE and provide a new syntax, which is adapted from the one
employed in previous works, together with a detailed function-hiding indistinguishability-based
security model. A technical overview is given in Section 3.1 and the formal definitions are
presented in Section 4.

2. For the function class computing inner products, we present candidates for FH-DMCFE based on
pairings. Our constructions are provably secure in the ROM against multiple adaptive challenge
encryption queries and multiple adaptive challenge key-generation queries, under static corruption.
An overview highlighting our main technical ideas and the details of our achieved security level
are given in Section 3.2, while the main constructions are presented in Section 6.

3. Our main technical contribution for achieving adaptive security on challenge ciphertexts and
challenge keys is Lemma 8, which is proven and can find other applications in the DPVS setting.
This lemma allows us to swap two coordinates of a vector in a basis, which leads to a local
change in its product with some target vector in the dual basis, as long as we do not violate a
global condition that binds the mentioned vector to many others.

Table 1 compares our candidates with existing works.

Scheme Type
Challenge

Corr. Incompl.†

ciph key

[9, Section 6.2] FH-MCFE sing, sel mult, sel stat ✗

[9, Section 6.3] FH-DDFE sing, sel mult, sel stat ✗

Section 6.2 FH-DMCFE mult, adap mult, adap stat ✗

Section 6.3 FH-DMCFE mult, adap mult, adap stat ✓

† Tolerating these incomplete queries yields a stronger security model, e.g. see [25]
for more details.

Table 1: We compare our constructions with existing works, in terms of the type of primitives
(column Type), the number of allowed challenges and whether they can be adaptively queried
(column Chall., including both ciphertexts and keys as we are in function-hiding), the corruption
model (column Corr.), and whether the adversary is allowed to omit some honest components
in challenge queries (✓) or not (✗) (column Incompl., see condition 1 in the technical overview).
All schemes are defined for the function class F IP = {Fy : Zn

q → Zq;x 7→ ⟨x,y⟩ ∈ R(Zq)} where
n, q ∈ N, q is prime and |R(Zq)| = poly(log q). The shorthands (mult, sing, sel, adap, dyn, stat) denote
multiple challenges, single challenges, selective challenges, adaptive challenges, dynamic corruption,
static corruption.

2 Preliminaries

We write [n] to denote the set {1, 2, . . . , n} for an integer n. For any q ≥ 2, we let Zq denote the ring
of integers with addition and multiplication modulo q. For a prime q and an integer N , we denote by
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GLN (Zq) the general linear group of of degree N over Zq. We write vectors as row-vectors, unless
stated otherwise. For a vector x of dimension n, the notation x[i] indicates the i-th coordinate of x,
for i ∈ [n]. We will follow the implicit notation in [31] and use JaK to denote ga in a cyclic group
G of prime order q generated by g, given a ∈ Zq. This implicit notation extends to matrices and
vectors having entries in Zq. We use the shorthand ppt for “probabilistic polynomial time”. In the
security proofs, whenever we use an ordered sequence of games (G0,G1, . . . ,Gi, . . . ,GL) indexed by
i ∈ {0, 1, . . . , L}, we refer to the predecessor of Gj by Gj−1, for j ∈ [L].

2.1 Hardness Assumptions

We state the assumptions needed for our constructions.

Definition 1. In a cyclic group G of prime order q, the Decisional Diffie-Hellman (DDH)
problem is to distinguish the distributions

D0 = {(J1K , JaK , JbK , JabK)} D1 = {(J1K , JaK , JbK , JcK)}.

for a, b, c
$← Zq. The DDH assumption in G assumes that no ppt adversary can solve the DDH

problem with non-negligible probability.

Definition 2. In the bilinear setting (G1,G2,Gt, g1, g2, gt, e, q), the Symmetric eXternal Diffie-
Hellman (SXDH) assumption makes the DDH assumption in both G1 and G2.

2.2 Dual Pairing Vector Spaces

Our constructions rely on the Dual Pairing Vector Spaces (DPVS) framework in prime-order
bilinear group setting (G1,G2,Gt, g1, g2, gt, e, q) and G1,G2,Gt are all written additively. The DPVS
technique dates back to the seminal work by Okamoto-Takashima [44, 45, 46] aiming at adaptive
security for ABE as well as IBE, together with the dual system methodology introduced by Waters [51].
In [39], the setting for dual systems is composite-order bilinear groups. Continuing on this line of
works, Chen et al. [23] used prime-order bilinear groups under the SXDH assumption. Let us fix
N ∈ N and consider GN

1 having N copies of G1. Any x = J(x1, . . . , xN )K1 ∈ GN
1 is identified as the

vector (x1, . . . , xN ) ∈ ZN
q . There is no ambiguity because G1 is a cyclic group of order q prime.

The 0-vector is 0 = J(0, . . . , 0)K1. The addition of two vectors in GN
1 is defined by coordinate-wise

addition. The scalar multiplication of a vector is defined by t · x := Jt · (x1, . . . , xN )K1, where t ∈ Zq

and x = J(x1, . . . , xN )K1. The additive inverse of x ∈ GN
1 is defined to be −x := J(−x1, . . . ,−xN )K1.

Viewing ZN
q as a vector space of dimension N over Zq with the notions of bases, we can obtain

naturally a similar notion of bases for GN
1 . More specifically, any invertible matrix B ∈ GLN (Zq)

identifies a basis B of GN
1 , whose i-th row bi is

q
B(i)

y
1
, where B(i) is the i-th row of B. The canonical

basis A of GN
1 consists of a1 := J(1, 0 . . . , 0)K1 ,a2 := J(0, 1, 0 . . . , 0)K1 , . . . ,aN := J(0, . . . , 0, 1)K1.

It is straightforward that we can write B = B · A for any basis B of GN
1 corresponding to an

invertible matrix B ∈ GLN (Zq). We write x = (x1, . . . , xN )B to indicate the representation of

x in the basis B, i.e. x =
∑N

i=1 xi · bi. By convention the writing x = (x1, . . . , xN ) concerns
the canonical basis A. For the conciseness at some point when we focus on the indices in an
ordered list L of length ℓ, we write x = (xL[1], . . . , xL[ℓ])B[L]. Treating GN

2 similarly, we can

furthermore define a product of two vectors x = J(x1, . . . , xN )K1 ∈ GN
1 ,y = J(y1, . . . , yN )K2 ∈ GN

2

by x× y :=
∏N

i=1 e(x[i],y[i]) = J⟨(x1, . . . , xN ), (y1, . . . , yN )⟩Kt. Given a basis B = (bi)i∈[N ] of GN
1 ,

we define B∗ to be a basis of GN
2 by first defining B′ := (B-1)⊤ and the i-th row b∗

i of B∗ is
q
B′(i)y

2
.

It holds that B · (B′)⊤ = IN the identity matrix and bi × b∗
j = Jδi,jKt for every i, j ∈ [N ], where
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δi,j = 1 if and only if i = j. We call the pair (B,B∗) a pair of dual orthogonal bases of (GN
1 ,GN

2 ). If

B is constructed by a random invertible matrix B
$← GLN (Zq), we call the resulting (B,B∗) a pair

of random dual bases. A DPVS is a bilinear group setting (G1,G2,Gt, g1, g2, gt, e, q,N) with dual
orthogonal bases. In this work, we also use extensively basis changes over dual orthogonal bases of a
DPVS to argue the steps of switching key as well as ciphertext vectors to semi-functional mode in
our proofs. The details of such basis changes are recalled in Appendix A.5.

3 Technical Overview

3.1 Syntax and Security Notions for FH-DMCFE

Syntax. In [24] and its follow-up works [25, 2, 1, 40, 26] on DMCFE, the syntax of DMCFE is given
by five algorithms (Setup,Enc,DKeyGen,DKeyComb,Dec) where Setup allows n clients and n senders
initialize and agree upon their encryption keys (eki)i as well as their secret keys (ski)i, respectively

2.
Each client can perform an encryption Enc(eki, tag, xi)→ cti on their private component xi using
their private eki, under some tag tag. Each sender can independently generate a partial functional
key DKeyGen(ski, tag-f, F )→ dkF,i using their private ski on a common function F , under some
tag tag-f. These partial functional keys can be combined by DKeyComb((dkF,i)i, tag-f)→ dkF . The
decryption is run on (cti)i using the combined key dkF . All these prior works do not consider
function-hiding property for DMCFE and thus the syntax therein, for which the complete function
F is given at the time of partial key generation, needs certain refinements to be able to capture the
privacy of functions.

Very recently, Agrawal et al. introduced MPFE in [9] so as to cover all existing notions of FE in
the multi-user setting, including DMCFE. Up to this purpose, the syntax of MPFE presented in [9]
can be specialized to describe DMCFE schemes. However, when translating MPFE into DMCFE,
for example see [9, Section 4], the induced syntax also passes the complete description of F in the
public part (coined “ypub,i” in [9] for each sender i) of the argument to the key-generation algorithm.
Thus it falls back on the syntactical problem we mentioned above. We emphasize that later in [9,
Section 6.3], Agrawal et al. constructed a function-hiding DDFE scheme for inner products that
includes FH-DMCFE as a particular case but their security level as an FH-DMCFE is against one
selective challenge ciphertext under static corruption.

Therefore, our starting point is to devise a concrete syntax for DMCFE that can formalize the
function-hiding property. For simplicity, we do not consider the algorithm DKeyComb for combining
partial functional keys into a fully functional key. In the work of [24], this algorithm DKeyComb is
merely for efficiency enhancement. The decryption by Dec now receives all partial keys (dki)i in
order to decrypt the ciphertext components (cti)i. The syntax for Enc stays the same. Concerning
DKeyGen, it is more appropriate to formalize function-hiding if each sender i does not receive the
complete description of F by default, but only a piece of information that, together with other
senders, can be used to determine F . For this reason, we encode the function F using n parameters
(y1, . . . , yn), and for the generation of the i-th partial key of the i-th sender, only yi is needed. We
implicitly use a deterministic encoding to encode F into (y1, . . . , yn)

3. Last but not least, the tag
tag-f to be used at the time of DKeyGen contains only generic public information of F , e.g. its
purpose, and not its specific parameters. We refer to Section 4 for the formal definitions.

2 This setup procedure is centralized in MCFE and interactive in DMCFE.
3 The description of such an encoding might very well depend on the functionality that is under consideration. For
instance, in the case of inner products Fy :

(
Z∗
q

)n → Zq that is defined as Fy(x) := ⟨x,y⟩, the n parameters of Fy

is simply y.
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Security. Intuitively, security requires that all ppt adversaries cannot guess a randomly chosen bit
b

$← {0, 1} with non-negligible probability in the following game: initially, the adversary receives the
public parameters of the system. It then can adaptively query three oracles: a left-or-right encryption
oracle OEnc, a left-or-right key-generation oracle OKeyGen, and a corruption oracle OCorrupt which
provides encryption and secret keys (eki, ski) for any i of its choice. This is corresponding to the
original corruption model in [24] and to the best of our knowledge, other works on the subject of
DMCFE either identify ski = eki, e.g. [1], or ski contains eki, e.g. [40]. Therefore corrupting one type
of keys has impacts on the other. Finally, the adversary submits its guess b′ for b.
Given the security game defined as above, we cannot yet prove function-hiding security for any
DMCFE schemes, due to the fact that there are attacks that help the adversary trivially win the
game. This problem is fundamental to FE in general and to (D)MCFE in particular, as put forth
by Chotard et al. in [24]. Therefore, we must restrict what kind of queries an adversary can ask
during the security game, and this restriction is checked in the Finalize procedure of the game4.
Most importantly, all complete ciphertexts of messages (xb1, . . . , x

b
n) and complete decryption keys

for functions F b that the adversary obtained via (OEnc,OKeyGen) must satisfy

F 0(x01, . . . , x
0
n) = F 1(x11, . . . , x

1
n) . (1)

The ensemble of conditions to be checked during Finalize will determine if an adversary is admissible
or not, and its guess b′ is taken into account only if it is admissible. We refer to Definition 4 for the
formal definition of function-hiding security for DMCFE.

3.2 Function-Hiding DMCFE for Inner Products

After defining the function-hiding security for DMCFE in Section 4, with various levels of security
and relations among them (see Lemma 6 and Lemma 7), we turn our attention to FH-DMCFE for
the function class computing inner products. As mentioned in Section 3.1, our goal is to improve
upon the DDFE for inner products in [9, Section 6.3], when being viewed as a DMCFE. Our result is
twofold. We first give an intermediate construction in Section 6.1 that is function-hiding against one
adaptive challenge, under static corruption and the following constraint on the adversary’s queries:

1. (Complete queries contraint - Condition 1 in Definition 4) If there exists a challenge ciphertext
(or key) query for any honest component, then all honest challenge ciphertext (or key) components
must be queried.

Afterwards, we can apply similar techniques introduced in [42] and [4] to the construction in
Section 6.1 and make it function hiding against multiple adaptive challenges.
Later, in Section 6.3, we give a generic transformation that makes our construction from Section 6.1
an FH-DMCFE against multiple adaptive ciphertext challenges, under static corruption but without
the preceding constraint. Similarly, we also first treat the single-challenge case then transform it
into a fully function-hiding DMCFE. Given below are the high-level ideas of our construction.

Construction based on SXDH. Our construction relies on the notion of Dual Pairing Vector
Spaces (DPVSes, see Section 2.2). In the following we highlight the main ideas of our backbone
construction in Section 6.1. Our function class of interest is for computing inner products F IP = {Fy}
where Fy :

(
Z∗
q

)n → Zq is defined as Fy(x) := ⟨x,y⟩. The parameter vector of Fy is simply
y = (y1, . . . , yn) ∈ Zn

q . We use DPVSes in the bilinear group setting (G1,G2,Gt, e, g1, g2, gt). We
use two hash functions H1 : Tag → G1 and H2 : Tag → G2 to process the encryption and key

4 For general functionality, the restriction might not be efficiently decidable, but in our concrete schemes for inner
products, it is indeed the case.
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generation tags. Given tag for encryption and tag-f for key generation, we denote JωK1←H1(tag)
and JµK2←H2(tag-f). We employ two sets of secret sharings of 0, namely (si)i in the key and (ti)i
in the ciphertext, so that they will cancel when all keys of the same tag-f and all ciphertexts of the
same tag are combined. This can be done by using JωK1 to randomize a secret sharing (t̃i)i of 0,
which is generated at setup and embedded in the encryption keys eki, so as to obtain JtiK1 :=

q
ωt̃i

y
1
.

The same technique is done for the decentralized generation of (si)i := (µs̃i)i, i.e. by using µ to
randomize a pre-generated secret sharing (s̃i)i. Additionally, we need more coordinates for the
goal of multiple adaptive challenge ciphertexts and challenge keys. More specifically, the ciphertext
components ci and the partial key components di are as follows:

ci = ( xi ω 0 0 0 0 ti )Bi

di = ( yi si 0 0 0 0 µ )B∗
i

Turning to its security, we first notice that Lemma 6 proves that in the weakly function-hiding
setting5 and static corruption, security against one challenge is equivalent to security against multiple
challenges; Furthermore, Lemma 7 proves that under static corruption, an FH-DMCFE scheme that
is weakly function-hiding (against multiple challenges) can be made function-hiding with a constant
loss in efficiency and security. We thus can focus on proving the security of our scheme in the
(weakly) function-hiding one-challenge setting, while the challenge (key and ciphertext) can be
adaptively queried, and the corruption is static.
We emphasize that our one-challenge security notion means there exists only one tag∗ to OEnc
having (x0i )i ̸= (x1i )i, while for other tagℓ ̸= tag∗ it holds that (x0i )ℓ,i = (x1ℓ,i)i. We denote by (cℓ,i)i
the ciphertext components for (xℓ,i)i under these non-challenge tagℓ. In the same manner, there
exists only one tag-f∗ to OKeyGen having (y0i )i ̸= (y1i )i, while for other tag-fk ̸= tag-f∗ it holds
that (y0i )k,i = (y1k,i)i. We denote by (dk,i)i the key components for (yk,i)i under these non-challenge
tag-fk. To summarize, starting from the game with the challenge bit b = 0, the information that an
adversary will obtain consists of:

cℓ,i = ( xℓ,i ωℓ 0 0 0 0 tℓ,i )Bi

dk,i = ( yk,i sk,i 0 0 0 0 µk )B∗
i

ci = ( x0
i ω 0 0 0 0 ti )Bi

di = ( y0
i si 0 0 0 0 µ )B∗

i

.

The challenge (ci,di)i are queried adaptively, and the set of corrupted i is declared up front. Our
goal is to switch (x0i , y

0
i )i in (ci,di)i to (x1i , y

1
i )i.

The key technique in our proof is using basis changes in DPVS, where for each i, the dual bases
(Bi,B

∗
i ) are used to express the ciphertexts (ci, cℓ,i) and the keys (di,dk,i), respectively. Because

we know in advance which i is corrupted, whose keys (eki, ski) will be revealed to the adversary,
the basis changes are applied only to the honest i whose keys are never revealed. This is indeed
possible, i.e. we can focus on the honest components and are able to switch (x0i , y

0
i )i in (ci,di)i to

(x1i , y
1
i )i, because the admissibility following Definition 4 dictates that in the case of inner products,

we have x0i = x1i and y0i = y1i for all corrupted i. We perform the switching in multiple steps, the

changes are indicated by boxed components.

Pre-processing Our idea for changing (x0i , y
0
i )i to (x1i , y

1
i )i for honest i is applying basis changes on

the coordinates (1, 2) of (Bi,B
∗
i ) to modify (ci,di). However, this will have affects on (cℓ,i,dk,i), i.e.

the non-challenge vectors as well. The crucial point is that our simulation should always preserve the
decryption not only between the challenge key and the challenge ciphertext, but also between the
combination of challenge and non-challenge vectors. Therefore, as a pre-processing step, we isolate

5 That is, we change the requirement (1) to F 0(x0
1, . . . , x

0
n) = F 1(x0

1, . . . , x
0
n) = F 1(x1

1, . . . , x
1
n).
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the values (xℓ,i, yk,i) as well as (ω, sk,i) in (cℓ,i,dk,i) so that the subsequent changes on (Bi,B
∗
i )

targeting (ci,di) will not affect theses values:

cℓ,i = ( 0 0 xℓ,i 0 ωℓ 0 tℓ,i )Bi

dk,i = ( 0 0 yk,i yk,i sk,i sk,i µk )B∗
i

ci = ( x0
i ω 0 x0

i 0 ω ti )Bi

di = ( y0
i si y0

i 0 si 0 µ )B∗
i

.

This pre-processing step will rely on the SXDH assumption in (G1,G2) and is computational.

Complexity leveraging under formal changes We arrive at a game in which only the challenge vectors
(ci,di) have non-trivial values at coordinate (1, 2). We now proceed to mod (x0i , y

0
i )i into (x1i , y

1
i )i

for honest i. Our key observation is that: thanks to the static corruption, we know since the very
beginning for which i the keys are never leaked, therefore we can perform formal basis changes for
those (Bi,B

∗
i ) that will guarantee a perfect transition from (x0i , y

0
i )i to (x1i , y

1
i )i in (ci,di). The fact

that i is honest is crucial as such formal basis changes essentially modify the basis vectors, which
can be recognized by the adversary if (eki, ski) are corrupted by encrypting/generating on their own
the ciphertext/key components, then performing products with the simulated challenge vectors.
Intuitively, those basis changes will shift the basis vectors by a factor that depends on y0i , y

1
i , and

x0i y
0
i − x1i y

1
i .

A pitfall in the above idea is that all basis changes must be performed at setup time, i.e. the
simulator cannot change the bases during the course of query-response of the game. Therefore, we
first consider the selective version of the games where (x0i , y

0
i )i and (x1i , y

1
i )i are known in advance,

then the formal basis changes (defined using those selective challenge ciphertext and key values) give
us a perfectly indistinguishable transition from (x0i , y

0
i )i into (x1i , y

1
i )i for honest i

6. Finally, we apply
a complexity leveraging on these selective games, which preserves the perfect indistinguishability
and arrive at:

cℓ,i = ( 0 0 xℓ,i 0 ωℓ 0 tℓ,i )Bi

dk,i = ( 0 0 yk,i yk,i sk,i sk,i µk )B∗
i

ci = ( x1
i ω 0 x0

i 0 ω ti )Bi

di = ( y1
i s′i y0

i 0 si 0 µ )B∗
i

.

We remark that under these formal basis changes, the secret share si at coordinate 2 is modified
into a new secret sharing s′i := si − (x0i y

0
i − x1i y

1
i )/ω.

Post-processing After switching from (x0i , y
0
i )i to (x1i , y

1
i )i in (ci,di), at coordinates (1, 2), we have

to move (xℓ,i, yk,i) as well as (ωℓ, sk,i) back to these positions to be correctly in the game whose
challenge bit is b = 1. We exploit the function-hiding property, which implies that for all ℓ, k we
have

n∑
i=1

xℓ,iy
0
i =

n∑
i=1

xℓ,iy
1
i and

n∑
i=1

x0i yk,i =

n∑
i=1

x1i yk,i .

This implies ∑
honest i

xℓ,iy
0
i =

∑
honest i

xℓ,iy
1
i and

∑
honest i

x0i yk,i =
∑

honest i

x1i yk,i

due to the constraint that x0i = x1i and y0i = y1i for all corrupted i. As a byproduct from the
above observation, the new secret shares s′i for honest i resulted from the switching also satisfies

6 We recall that there is nothing to be done concerning the corrupted i due to the admissibility.
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∑
honest i s

′
i =

∑
honest i si. Thus, after a preparatory swapping (feasible using DDH as ci[2] = ci[6]

and cℓ,i[2] = cℓ,i[6]):

cℓ,i = ( 0 0 xℓ,i 0 ωℓ 0 tℓ,i )Bi

dk,i = ( 0 sk,i yk,i yk,i sk,i 0 µk )B∗
i

ci = ( x1
i ω 0 x0

i 0 ω ti )Bi

di = ( y1
i s′i y0

i 0 si 0 µ )B∗
i

However, if we move xℓ,i back to coordinate 1 in cℓ,i, then globally there is no difference because∑
honest i xℓ,iy

0
i =

∑
honest i xℓ,iy

1
i but the local term is changed from xℓ,iy

0
i to xℓ,iy

1
i , for di[1] ̸= di[3].

We develop a technical tool to deal with this situation, where we need to conduct local perturbations
without impacting the vectors’ global relation, called secret-sharing swapping. Using this tool in
conjunction with the current static corruption setting, we can handle in parallel such perturbations
for all honest i and successfully move back (xℓ,i, yk,i) as well as (ωℓ, sk,i). At the end a cleaning is
needed to formally make the vectors conform to the security game for b = 1:

cℓ,i = ( xℓ,i ωℓ 0 0 0 0 tℓ,i )Bi

dk,i = ( yk,i sk,i 0 0 0 0 µk )B∗
i

ci = ( x1
i ω 0 0 0 0 ti )Bi

di = ( y1
i si 0 0 0 0 µ )B∗

i

and the proof is completed. Section 5 states and proves Lemma 8 for secret-sharing swappping. For
our FH-DMCFE, we refer to Section 6.1 for the construction and Theorem 9 for the proof.

Achieving security against incomplete queries. In Section 6.3, we enhance our constructions
from Section 6.1 so as to relax the complete queries constraint 1. All over again, we can focus on
first building DMCFE schemes that achieve (weakly) function-hiding property against one adaptive
challenge ciphertext and challenge key, under static corruption, then applying Lemma 6 and Lemma 7.
Our main idea naturally extends the work by Abdalla et al. [1] and uses pseudorandom functions
(PRF) together with IND-CPA secure symmetric encryption (SE) in order to transform a DMCFE
that is secure under the complete queries constraint 1 and remove this constraint. The setup now
generates 2n2 keys for each pair (i, j) ∈ [n]× [n]. Each group of n2 keys are used for the ciphertext
components and key components, respectively. For instance, when generating the i-th ciphertext
component for (x0i , x

1
i ) under tag, the underlying DMCFE’s component cti is encrypted using the

SE while the key being the XOR-ing of all PRF evaluations on tag using the keys w.r.t (i, j) for
j ∈ [n]. The ciphertext also contains the “expected contribution” of i in other j-th components,
i.e. the PRF evaluations on tag using the keys w.r.t (j, i). This increases the ciphertext size by
an Θ(n) factor and the total communication is now Θ(n2). Intuitively, for any j, only when all
i-th ciphertext components are obtained, can the key for SE decryption be computed (as all pairs
(j, i) are now present) and allow SE decryption to cti. Otherwise, we employs the PRF security on
the missing i-th component to switch the SE key to a uniformly random, then apply its IND-CPA
security so as to replace x0i by x1i . This can be done in the static corruption setting in which we know
in advance for which honest i whose (eki, ski) are not revealed and is omitted in the adversary’s
challenge queries. We also need the weakly function-hiding property as during our hybrids there are
mixings of left- and right-challenge (key with ciphertext) queries. In the end, only when all i-th
ciphertext components are obtained can we perform the SE decryption to obtain the (cti)i∈[n] of
the underlying DMCFE. We refer to Section 6.3 for more details.

4 Function-Hiding Decentralized Multi-Client FE

We introduce the notion of function-hiding decentralized multi-client functional encryption (FH-DMCFE).
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Definition 3 (Decentralized Multi-Client Functional Encryption). Let λ ∈ N and n =
n(λ) : N → N be a function. Let F = {f : D1 × · · · × Dn → R} be a function family, where each
f ∈ F is defined by n parameters in Param1 × · · · × Paramn

7. Furthermore, let Tag denote a set of
tags used for ciphertext and function components. A decentralized multi-client functional encryption
(DMCFE) scheme E for F between n senders (Si)i∈[n] and a functional decrypter FD consists of the
four algorithms (Setup,DKeyGen,Enc,Dec) defined below:

Setup(1λ): This is a protocol between the senders (Si)i∈[n] that eventually generate their own secret
keys ski and encryption keys eki, as well as the public parameter pp. We will assume that all the
secret and encryption keys implicitly contain pp.

DKeyGen(ski, tag-f, yi): On input a user secret key ski, a tag tag-f ∈ Tag, and parameter yi ∈ Parami,
this algorithm outputs a partial functional decryption key dktag-f,i.

Enc(eki, tag, xi): On input an encryption key eki, a tag tag and a message xi ∈ Di, this algorithm
outputs a ciphertext cttag,i.

Dec(d, c): On input a list of functional decryption keys d := (dktag-f,i)
n
i=1 and a list of ciphertexts

c := (cttag,i)
n
i=1, this algorithm outputs an element d ∈ R or a symbol ⊥.

For efficiency, prior papers (such as [24, 25, 2, 1, 40, 26]) considered an additional fifth algorithm
DKeyComb((dktag-f,i)i∈[n]) that, given n partial decryption keys (dktag-f,i)i∈[n] generated for the same
tag tag-f, outputs a succinct functional decryption key dktag-f which can be passed to Dec(dktag-f , c).
Also, the algorithm DKeyGen (called DKeyGenShare in [24]) usually receives only two arguments, a
secret key ski and a tag tag-f containing a description of the corresponding function. However, in the
context of function-hiding DMCFE, we consider it more appropriate if each party does not receive
the complete description of the function by default, but only the part of the description necessary
for the computation of its partial decryption key. For this reason, we decompose the description
of a function into n parameters (y1, . . . , yn) ∈ Param1 × · · · × Paramn while yi contains only the
information necessary for the computation of the i-th partial decryption key dktag-f,i. On the other
hand, the tag tag-f is intended to only include the generic public purpose of the function.

Correctness. E is correct if for all λ ∈ N, (x1, . . . , xn) ∈ D1 × · · · ×Dn, f ∈ F having parameters
(yi)

n
i=1 ∈ Param1 × · · · × Paramn, and any tag, tag-f ∈ Tag, we have

Pr

d = f(x1, . . . , xn)

∣∣∣∣∣∣∣∣∣∣
(pp, (ski)i∈[n], (eki)i∈[n])←Setup(1λ)

cttag,i←Enc(eki, tag, xi)

dktag-f,i←DKeyGen(ski, tag-f, yi)

d := Dec((dktag-f,i)i∈[n], (cttag,i)i∈[n])

 = 1

where the probability is taken over the random coins of the algorithms.

Security. We define the function-hiding security for DMCFE. In the seminal work by Chotard
et al. [24] and its follow-up study [26], the security notion does not cover the function-hiding
requirement for DMCFE or its more general sibling Dynamic Decentralized Functional Encryption
(DDFE). Until recently, the work by Agrawal et al. [9] abstracted out DMCFE into the notion
of Multi-Party Functional Encryption (MPFE). The authors of [9] also used MPFE to spell out
the function-hiding security for MCFE as well as for DDFE. The latter does capture DMCFE as a
particular case but as our current work focuses on DMCFE, we introduce the detailed function-hiding
security for DMCFE, without going through all the abstraction of MPFE nor of DDFE.

7 Implicitly, we use a deterministic encoding p : F → Param1 × · · · ×Paramn in order to associate each function to its
parameters.
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Definition 4 (Function-Hiding Security). For a DMCFE scheme E, a function class F and a

ppt adversary A we define the experiment Expadap-dyn-fh-b
E,F ,A (1λ) as shown in Figure 1. The oracles

OEnc, ODKeyGen and OCorrupt can be called in any order and any number of times. The adversary
A is NOT admissible with respect to C,QEnc,QDKGen, denoted by adm(A) = 0, if either one of the
following holds:

1. (Complete queries constraint) There exists tag ∈ Tag so that OEnc(i, tag, x0i , x1i ) have been asked
for some but not all i ∈ H := [n]\C, or there exists tag-f ∈ Tag such that OKeyGen(i, tag-f, y0i , y1i )
have been asked for some but not all i ∈ H := [n] \ C.

2. There exist two distinct tuples of the form (i, tag, ·, ·) in QEnc or two distinct tuples of the form
(i, tag-f, ·, ·) in QDKGen.

3. There exists a tuple (i, tag, x0i , x
1
i ) ∈ QEnc such that i ∈ C and x0i ̸= x1i , or there exists

(i, tag-f, y0i , y
1
i ) ∈ QDKGen such that i ∈ C and y0i ̸= x1i .

4. (Function-hiding) There exist tag, tag-f ∈ Tag, two vectors (x0i )i∈[n], (x
1
i )i∈[n] ∈ D1 × · · · × Dn

and two functions f0, f1 ∈ F having parameters (y0i , y
1
i )

n
i=1 such that

• (i, tag, x0i , x
1
i ) ∈ QEnc and (i, tag-f, y0i , y

1
i ) ∈ QDKGen for all i ∈ H,

• x0i = x1i and y0i = y1i for all i ∈ C, and
• f0(x01, . . . , x

0
n) ̸= f1(x11, . . . , x

1
n).

Otherwise, we say that A is admissible w.r.t C, QEnc and QDKGen and write adm(A) = 1. We call E
function-hiding secure against adaptive challenges and dynamic corruption of clients if for all ppt
adversaries A,

Advadap-dyn-fh
E,F ,A (1λ) :=∣∣∣Pr [Expadap-dyn-fh-0

E,F ,A (1λ) = 1
]
− Pr

[
Expadap-dyn-fh-1

E,F ,A (1λ) = 1
]∣∣∣

is negligible in λ.

Initialize(1λ):
C,QEnc,QDKGen←∅
(pp, (ski)i∈[n], (eki)i∈[n])←Setup(1λ)
Return pp

OEnc(i, tag, x0
i , x

1
i ):

QEnc←QEnc ∪ {(i, tag, x0
i , x

1
i )}

Return ct←Enc(eki, tag, x
b
i )

ODKeyGen(i, tag-f, y0
i , y

1
i ):

QDKGen←QDKGen ∪ {(i, tag-f, y0
i , y

1
i )}

Return dkf,i←DKeyGen(ski, tag-f, y
b
i )

OCorrupt(i):
C←C ∪ {i}; return (ski, eki)

Finalize(b′):

If adm(A) = 1, return β←b′

Else, return β
$← {0, 1}

Fig. 1: Security game Expadap-dyn-fh-b
E,F ,A (1λ) for Definition 4

Weaker notions. One may define weaker variants of indistinguishability by restricting the access
to the oracles and imposing stronger admissibility conditions.

• Security against Static Corruption: The experimentExpadap-stat-fh-b
E,F ,A (1λ) is the same asExpadap-dyn-fh-b

E,F ,A (1λ)
except that all queries to the oracle OCorrupt must be submitted before Initialize is called.
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• Security against Selective Challenges: The experimentExpsel-dyn-fh-b
E,F ,A (1λ) is the same asExpadap-dyn-fh-b

E,F ,A (1λ)
except that all queries to the oracle OEnc must be submitted before Initialize is called.

• One-time Security: The experiment Exp1chal-adap-dyn-fh-b
E,F ,A (1λ) is the same as Expadap-dyn-fh-b

E,F ,A (1λ)
except that the adversary must declare up front to Initialize two additional “challenge” tags
tag∗, tag-f∗ ∈ Tag such that for all tag, tag-f ∈ Tag:
◦ if (i, tag, x0i , x

1
i ) ∈ QEnc and tag ̸= tag∗, then x0i = x1i ,

◦ if (i, tag-f, y0i , y
1
i ) ∈ QDKGen and tag-f ̸= tag-f∗, then y0i = y1i .

• Weakly Function-Hiding: We can weaken the function-hiding property by changing condition 4
for adm(A) = 0. More specifically, we replace it by the following condition 4’ :

4’. (Weakly Function-hiding) There exist tag, tag-f ∈ Tag, (x0i )i∈[n] and (x1i )i∈[n] in D1×· · ·×Dn

and two functions f0, f1 ∈ F having parameters (y0i , y
1
i )

n
i=1 such that

◦ (i, tag, x0i , x
1
i ) ∈ QEnc and (i, tag-f, y0i , y

1
i ) ∈ QDKGen for all i ∈ H,

◦ x0i = x1i and y0i = y1i for all i ∈ C, and
◦ f0(x01, . . . , x

0
n) ̸= f1(x11, . . . , x

1
n) OR

f0(x01, . . . , x
0
n) ̸= f1(x01, . . . , x

0
n) OR

f1(x01, . . . , x
0
n) ̸= f1(x11, . . . , x

1
n).

Phrased differently, we require for an adversary A to be admissible that

f0(x01, . . . , x
0
n) = f1(x01, . . . , x

0
n) = f1(x11, . . . , x

1
n)

for all tag ∈ Tag, vectors (x0i )i∈[n], (x
1
i )i∈[n] ∈ D1 × · · · × Dn and functions (f0, f1) specified by

parameters (y0i , y
1
i )

n
i=1, where x0i = x1i and y0i = y1i for all i ∈ C, and (i, tag, x0i , x

1
i ) ∈ QEnc and

(i, tag-f, y0i , y
1
i ) ∈ QDKGen for all i ∈ H. The experiment in this weak function-hiding model is

denoted by Expadap-dyn-wfh-b
E,F ,A (1λ).

As usual, one can also consider experiments that implement a combination of the above restrictions.
To emphasize the difference from weakly function-hiding, we sometimes refer to (standard) function-
hiding as fully function-hiding.

Remark 5. The complete queries constraint 1 in the definition of non-admissible adversaries was
first introduced in [24]. In the successive studies [25, 26] and in other results on the subject [6, 30, 2, 1],
this condition can be removed. In Section 6.1, we first give a concrete construction satisfying the
security notion as defined by Definition 4 having the foregoing constraint. Afterwards, in Section 6.3,
we present a generic transformation to leverage the aforementioned construction so that it is secure
even when condition 1 is not enforced.

Lemma 6 uses a standard hybrid reduction to prove that in the weakly function-hiding setting,
single-challenge security is equivalent to multi-challenge security. The proof is given in Appendix B.1
for completeness.

Lemma 6. Let E = (Setup,DKeyGen,Enc,Dec) be a DMCFE scheme for the function class F . If E
is single-challenge weakly function-hiding (against static corruption), then it is also weakly function-
hiding (against static corruption). More specifically, for any ppt adversary A, there exists a ppt
algorithm B such that

Advadap-stat-wfh
E,F ,A (1λ) ≤ max(qe, qk) ·Adv1chal-adap-stat-wfh

E,F ,B (1λ) ,

where qe and qk denote the maximum numbers of different tags tag and tag-f that A can query to
OEnc and ODKeyGen respectively.
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The works of [42] and [4] present generic transformations that turn weakly function-hiding (multi-
input) functional encryption schemes into full-fledged function-hiding schemes. A similar transfor-
mation, stated in Lemma 7, is also applicable in the case of FH-DMCFE. The proof is very similar
to [42, 4] but given in Appendix B.2 for completeness.

Lemma 7. Let F IP
n denote the function class containing inner products of length n and let E be a

weakly function-hiding DMCFE scheme for F IP
2n. Then there exists a (fully) function-hiding DMCFE

scheme E ′ for F IP
n . More precisely, for any ppt adversary A, there exists a ppt algorithm B such that

Advxxx-yyy-fh
E ′,F IP

n ,A (1λ) ≤ 3 ·Advxxx-yyy-wfh

E,F IP
2n,B

(1λ) ,

where xxx ∈ {adap, sel} and yyy ∈ {dyn, stat}.

5 Secret-Sharing Swapping Lemma

In this section we state and prove a technical lemma that will be the basis of our results and may
be of independent interest, with various applications.

Lemma 8 (Secret-Sharing Swapping). Let λ ∈ N and H = H(λ),K = K(λ), L = L(λ) ∈ N
where H,K,L : N→ N are functions. Let (Bi,B

∗
i )i∈[H] be two random dual bases of dimension 9 in

(G1,G2,Gt, g1, g2, gt, e, q). All basis vectors are kept secret.
We consider any public values (xi, xℓ,i, x

′
ℓ,i, y

0
i , y

1
i , yk,i, R,Rk)i∈[H],k∈[K],ℓ∈[L] such that

∑H
i=1 xiy

0
i =∑H

i=1 xiy
1
i . With random r, rℓ, ρi, ρℓ,i, πi, πk,i, σi, σk,i

$← Zq such that
∑H

i=1 σi = R and
∑H

i=1 σk,i =
Rk, for all k ∈ [K], the following distributions are computationally indistinguishable under the
SXDH assumption:

D0 :=



(cℓ,i = (xℓ,i, x′ℓ,i, rℓ, 0, ρℓ,i, 0, 0, 0, 0)Bi)ℓ∈[L](
ci = (xi , 0, r, 0, ρi, 0, 0, 0, 0)Bi

)
i∈[H](

di = (y1i , y0i , σi, πi, 0, 0, 0, 0, 0)B∗
i

)
i∈[H](

dk,i = (yk,i, yk,i, σk,i, πk,i, 0 0, 0, 0, 0)B∗
i

)
i∈[H],k∈[K]


;

D1 :=



(cℓ,i = (xℓ,i, x′ℓ,i, rℓ, 0, ρℓ,i, 0, 0, 0, 0)Bi)ℓ∈[L](
ci = (0, xi , r, 0, ρi, 0, 0, 0, 0)Bi

)
i∈[H](

di = (y1i , y0i , σi, πi, 0, 0, 0, 0, 0)B∗
i

)
i∈[H](

dk,i = (yk,i, yk,i, σk,i, πk,i, 0, 0, 0, 0, 0)B∗
i

)
i∈[H],k∈[K]


.

More specifically, we have:∣∣∣∣ Pr
samp∼D0

[A(samp)→ 1]− Pr
samp∼D1

[A(samp)→ 1]

∣∣∣∣ ≤ 12 ·AdvSXDH
G1,G2

(1λ)

for any specific ppt A with fixed (R, (xi, (xℓ,i, x
′
ℓ,i)

L
ℓ=1, y

0
i , y

1
i , (yk,i, Rk)

K
k=1)

H
i=1).

The proof of Lemma 8 can be found in Appendix B.3. Below we give the main ideas of the
demonstration.
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Game G0: The vectors are sampled according to D0.
Game G1: (Random 0-Secret Sharing)

cℓ,i = ( xℓ,i x′
ℓ,i rℓ 0 ρℓ,i 0 0 0 0 )Bi

ci = ( xi 0 r 0 ρi 0 0 0 r′ )Bi

di = ( y1
i y0

i σi πi 0 0 0 0 τi )B∗
i

dk,i = ( yk,i yk,i σk,i πk,i 0 0 0 0 0 )B∗
i

Game G2: (Formal Duplication from 1 to 7 and from 2 to 8 in B∗
i )

cℓ,i = ( xℓ,i x′
ℓ,i rℓ 0 ρℓ,i 0 0 0 0 )Bi

ci = ( xi 0 r 0 ρi 0 0 0 r′ )Bi

di = ( y1
i y0

i σi πi 0 0 y1
i y0

i τi )B∗
i

dk,i = ( yk,i yk,i σk,i πk,i 0 0 yk,i yk,i 0 )B∗
i

Game G3: (Computational Swapping between 1 and 7 in ci using 5-randomness in Bi)

cℓ,i = ( xℓ,i x′
ℓ,i rℓ 0 ρℓ,i 0 0 0 0 )Bi

ci = ( 0 0 r 0 ρi 0 xi 0 r′ )Bi

di = ( y1
i y0

i σi πi 0 0 y1
i y0

i τi )B∗
i

dk,i = ( yk,i yk,i σk,i πk,i 0 0 yk,i yk,i 0 )B∗
i

Game G4: (Formal Duplication from 7 to 6 in Bi)

cℓ,i = ( xℓ,i x′
ℓ,i rℓ 0 ρℓ,i 0 0 0 0 )Bi

ci = ( 0 0 r 0 ρi xi xi 0 r′ )Bi

di = ( y1
i y0

i σi πi 0 0 y1
i y0

i τi )B∗
i

dk,i = ( yk,i yk,i σk,i πk,i 0 0 yk,i yk,i 0 )B∗
i

Game G5: ∆yi := y1
i − y0

i (Formal Swapping)

cℓ,i = ( xℓ,i x′
ℓ,i rℓ 0 ρℓ,i 0 0 0 0 )Bi

ci = ( 0 0 r 0 ρi xi 0 xi r′ )Bi

di = ( y1
i y0

i σi πi 0 ∆yi y1
i y0

i τi )B∗
i

dk,i = ( yk,i yk,i σk,i πk,i 0 0 yk,i yk,i 0 )B∗
i

Game G6: (Formal Quotient)

cℓ,i = ( xℓ,i x′
ℓ,i rℓ 0 ρℓ,i 0 0 0 0 )Bi

ci = ( 0 0 r 0 ρi r′ 0 xi r′ )Bi

di = ( y1
i y0

i σi πi 0 xi∆yi/r
′ y1

i y0
i τi )B∗

i

dk,i = ( yk,i yk,i σk,i πk,i 0 0 yk,i yk,i 0 )B∗
i

Game G7: τ
′
i := τi + xi∆yi/r

′ (Formal Cancelling)

cℓ,i = ( xℓ,i x′
ℓ,i rℓ 0 ρℓ,i 0 0 0 0 )Bi

ci = ( 0 0 r 0 ρi 0 0 xi r′ )Bi

di = ( y1
i y0

i σi πi 0 xi∆yi/r
′ y1

i y0
i τ ′

i )B∗
i

dk,i = ( yk,i yk,i σk,i πk,i 0 0 yk,i yk,i 0 )B∗
i

Game G8: αi := −(xi∆yi)/(r
′τ ′

i) (Formal Randomizing)

cℓ,i = ( xℓ,i x′
ℓ,i rℓ 0 ρℓ,i 0 0 0 0 )Bi

ci = ( 0 0 r 0 ρi 0 0 xi r′ )Bi

di = ( y1
i y0

i σi πi 0 0 y1
i y0

i τ ′
i )B∗

i

dk,i = ( yk,i yk,i σk,i πk,i 0 0 yk,i yk,i 0 )B∗
i

Game G9: Undo G3, G2, G1 (Cleaning) – Vectors sampled according to D1.

cℓ,i = ( xℓ,i x′
ℓ,i rℓ 0 ρℓ,i 0 0 0 0 )Bi

ci = ( 0 xi r 0 ρi 0 0 0 0 )Bi

di = ( y1
i y0

i σi πi 0 0 0 0 0 )B∗
i

dk,i = ( yk,i yk,i σk,i πk,i 0 0 0 0 0 )B∗
i

Fig. 2: Games for proving Lemma 8
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Proof (Main ideas). The sequence of games is given in Figure 2. We explain the main steps in
our proof (see Appendix B.3) as follows. We start from the game where the sample given to the

adversary A follows D0. Our first step is to exploit the fact that r
$← Zq is a uniformly random

value and all the secret shares σi in di sum to a known constant R, i.e.
∑H

i=1 σi = R. This helps

us perform a computational basis change on (Bi,B
∗
i ) and introduce a value r′

$← Z∗
q in ci[9] and a

random secret sharing of 0 namely (τi)
H
i=1 in (di[9])

H
i=1:

ci = ( xi 0 r 0 ρi 0 0 0 r′ )Bi

di = ( y1
i y0

i σi πi 0 0 0 0 τi )B∗
i

This change goes indistinguishable under the SXDH assumption, thanks to the fact that all vectors
are kept secret. Moreover, we can only introduce a random secret sharing (τi)

H
i=1 of 0 because this

computational change intuitively “extracts” a 0-secret sharing from (σi)
H
i=1 into the 9-th coordinates

of di, which is the only way to preserve the relation
∑H

i=1 σi = R and keep the summation over
i ∈ [H] of products between c-vectors and d-vectors invariant.

Next, we prepare the swapping of xi in ci: we duplicate (y1i , y
0
i ) (respectively, (yk,i, yk,i)) from

coordinates (1, 2) to coordinates (7, 8) in di (respectively, in dk,i). Afterwards, we use computational
basis changes to move xi from coordinate 1 to coordinate 7 in ci. We emphasize that all the basis
changes we do so far allow simulating cℓ,i so that they are not effected. We are now in a game where
the adversary receives the vectors of the form in Game G3 of Figure 2. The goal of this isolation of xi
is to do the swapping in coordinates (7, 8) and avoid having affects on coordinates (1, 2), otherwise
we risk modifying coordinates (1, 2) of cℓ,i,dk,i and change the global view of A. An astute reader
might wonder why we cannot use the same computational change as we have used to move xi between
coordinates (1, 7) of ci. The main reason is that di[1] = di[7] = y1i and dk,i[1] = dk,i[7] = yk,i,
whereas di[1] ̸= di[2] and for this latter case we do not know how a computational change for such
a swap would look like if we do it in place.

Given that (xi, y
0
i , y

1
i ) are now isolated to coordinates (7, 8), we use formal changes in our subsequent

transitions to swap xi from coordinate 7 to 8 in ci for the sake of a perfect indistinguishability
in the views of A. The formal argument starts by a formal duplication of xi from coordinate 7 to
coordinate 6, which will affect all vectors in Bi. The other cℓ,i stays invariant because cℓ,i[6] = 0
thus the duplication changes nothing. Furthermore, the current formal duplication changes the dual
vectors by adding their 6-th coordinates to their 7-th one; Fortunately, all d-vectors have 0 at their
6-th slot and therefore are kept invariant. The adversary is now given the vectors of the form in
Game G4 of Figure 2. The succeeding step swaps xi in coordinates (7, 8) by performing another
formal basis change to substract the copy of xi in ci[6] from ci[7] and add the same copy to ci[8].
Again, this affects all vectors in Bi but because cℓ,i[6] = cℓ,i[7] = cℓ,i[8] = 0, we have cℓ,i staying
unchanged. In the dual basis, the difference between the 7-th and 8-th coordinates will move into
the 6-th coordinate, for all d-vectors. This introduces ∆yi := y1i − y0i in the 6-th coordinate of di

and no modifications to dk,i for dk,i[7] = dk,i[8] = yk,i. The form of the vectors is now:

cℓ,i = ( xℓ,i x′
ℓ,i rℓ 0 ρℓ,i 0 0 0 0 )Bi

ci = ( 0 0 r 0 ρi xi 0 xi r′ )Bi

di = ( y1
i y0

i σi πi 0 ∆yi y1
i y0

i τi )B∗
i

dk,i = ( yk,i yk,i σk,i πk,i 0 0 yk,i yk,i 0 )B∗
i

An ensuing problem is the cleaning of the 6-th coordinate of ci,di. To clean ci[6], we first need a
quotient done by a formal basis change to make ci[6] = ci[9] = r′, but this leads to two problems:
(1) r′ must be non-zero, because in either of the dual pair of bases there will be a factor 1/r′ and (2)
the basis change depends on xi that will be needed since the beginning of the game, before giving
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the sample to A. We solve (1) since by constraining r′
$← Z∗

q from the first computational changes.
To deal with (2), we notice that we are in the middle of a formal argument thus we can guess xi
since the beginning and the loss by this guess does not amplify the difference of advantages, as it
is 0 due to the perfectly indistinguishable nature. After making ci[6] = ci[9] = r′, a formal basis
change can be done to make all c-vectors having 0 at their 6-th coordinate, by substracting the
9-th from the 6-th (for cℓ,i[6] this is trivial). However, in the dual basis it leads to

di = ( y1
i y0

i σi πi 0 xi∆yi/r
′ y1

i y0
i τ ′

i )B∗
i

dk,i = ( yk,i yk,i σk,i πk,i 0 0 yk,i yk,i 0 )B∗
i

where τ ′i := τi + xi∆yi/r
′. Our key observation that due to the constraint

∑H
i=1 xiy

0
i =

∑H
i=1 xiy

1
i ,

the values (τ ′i)
H
i=1 := (τi + xi∆yi/r

′)Hi=1 will stay a random secret sharing of 0. Therefore, if τ ′i ̸= 0
we can perform a formal basis change to clean di[6] by substracting some multiple of di[9] = τ ′i . This
is feasible because, all over again, we are in the middle of a formal argument : we guess from the
beginning xi∆yi/r

′, sample the two 0-secret sharings τi, τ
′
i ≠ 0 and continue the simulation only if

τ ′i − τi = xi∆yi/r
′. This ensures that we will continue the simulation only if all τ ′i ≠ 0, then perform

a formal basis change based on αi := −(xi∆yi)/(r
′τ ′i) to arrive at a game whose vectors for A are:

cℓ,i = ( xℓ,i x′
ℓ,i rℓ 0 ρℓ,i 0 0 0 0 )Bi

ci = ( 0 0 r 0 ρi 0 0 xi r′ )Bi

di = ( y1
i y0

i σi πi 0 0 y1
i y0

i τ ′
i )B∗

i

dk,i = ( yk,i yk,i σk,i πk,i 0 0 yk,i yk,i 0 )B∗
i

Given that xi is in ci[8] and di[8] = di[2] = y0i , a computational swap would move back xi to the
2-nd coordinate of ci without any problem. At the end, we redo the duplication in di,dk,i as well as
the removal of r′ and the random 0-secret shares (τ ′i)i, in order to make the vectors follow D1. ⊓⊔

6 An Adaptively Secure FH-DMCFE for Inner Products

6.1 A Function-Hiding DMCFE Secure Against One Adaptive Challenge with
Complete Queries and Static Corruption

This section presents a function-hiding DMCFE scheme E = (Setup,DKeyGen,Enc,Dec) for the
function class F IP = {Fy} where Fy :

(
Z∗
q

)n → Zq is defined as Fy(x) := ⟨x,y⟩. We work in the
prime-order bilinear group setting (G1,G2,Gt, g1, g2, gt, e, q) and G1,G2,Gt are all written additively.
We employ two full-domain hash functions H1 : Tag→ G1 and H2 : Tag→ G2.

The details of E go as follows:

Setup(1λ): Choose n pairs of dual orthogonal bases (Bi,B
∗
i ) for i ∈ [n], where (Bi,B

∗
i ) is a pair

of dual bases for (G14
1 ,G14

2 ). For each i ∈ [n], we denote j-th row of Bi (resp. B∗
i ) by bi,j

(resp. b∗
i,j). Generate two random n-out-of-n secret sharings of 0, namely (s̃i)i, (t̃i)i

$← Zn
q such

that
∑n

i=1 s̃i =
∑n

i=1 t̃i = 0. Then, output the secret keys ski and the encryption keys eki as
follows:

ski := (b∗
i,1, s̃iB

∗
i,2 +B∗

i,8, b∗
i,9)

eki := (bi,1, bi,10, Bi,2 + t̃iBi,8)

where Bi,k (respectively B∗
i,k) denotes the k-th row of the basis changing matrix Bi (respectively

B∗
i ) for i ∈ [n].
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DKeyGen(ski, tag-f, yi): Parse ski = (b∗
i,1, s̃iB

∗
i,2+B∗

i,12, b
∗
i,8). Compute H2(tag-f)→ JµK2 ∈ G2 and

sample πi
$← Zq. Then compute and output

di = yib
∗
i,1 + (s̃iB

∗
i,2 +B∗

i,8) · JµK2 + πib
∗
i,9

= (yi, s̃iµ, 0, 0, 0, 0, 0, µ, πi, 0, 0, 0, 0, 0)B∗
i
.

Enc(eki, tag, xi): Parse eki = (bi,1, bi,10, Bi,2 + t̃iBi,8). Compute H(tag)→ JωK1 ∈ G1 and sample

a random scalar ρi
$← Zq. Finally, compute and output

ci = xibi,1 + ρibi,10 + (Bi,2 + t̃iBi,8) · JωK1
= (xi, ω, 0, 0, 0, 0, 0, t̃iω, 0, ρi, 0, 0, 0, 0)Bi .

Dec(d, c): Parse d := (di)i∈[n] and c := (ci)i. Compute JoutKt =
∏n

i=1 ci × di, then find and output
the discrete log out.

Correctness. The correctness property is demonstrated as follows:

JoutKt =
n∏

i=1

ci × di =
n∏

i=1

q
xiyi + s̃iµω + t̃iωµ

y
t

=

t

⟨x,y⟩+ ωµ ·
n∑

i=1

(s̃i + t̃i)

|

t

= J⟨x,y⟩Kt ,

and we are using the fact that
∑n

i=1 s̃i =
∑n

i=1 t̃i = 0.

Security. Theorem 9 states that the scheme is function-hiding under static corruption and a
single adaptive challenge. As discussed in Remark 5, we prove the security while employing the
constraint that if an adversary queries for an honest component, either for some ciphertext (or for
some key), then all honest components of the same ciphertext (or key) must also be queried. In
Section 6.3, we show how to circumvent this constraint.

Theorem 9. The DMCFE scheme E = (Setup,DKeyGen,Enc,Dec) is adaptively one-challenge
function-hiding in the ROM, under static corruption, if the SXDH assumption holds for G1 and
G2. More specifically, let qe denote the number of challenge queries for identical messages, and qk
denote the number of functional key queries. Then, for any ppt adversary A against E, we have the
following bound:

Adv1chal-adap-stat-fh
E,F ,A (1λ) ≤ (26qe + 14qk + 32) ·AdvSXDH

G1,G2
(1λ)

Proof (Main ideas). In Figure 3, we present the sequence of games used to prove Theorem 9,

where we start from G0 corresponding to Exp1chal-adap-stat-fh-0
E,F ,A (1λ), until arriving at G8 which equals

Exp1chal-adap-stat-fh-1
E,F ,A (1λ). The changes that make the transition between games are highlighted by a

frame. The full proof can be found in Appendix B.4.

The general plan for the proof can be revisited in the technical overview of Section 3.2, where
we describe the purpose of the pre-processing (G2 → G3), the main complexity leveraging step
(G3 → G4), and the post-processing (G4 → G6). Whereas the pre-processing and the complexity
leveraging is rather straightforward, the subsequent post-processing procedure, where we essentially
undo the changes of the pre-processing, is technically much more involved. Now equipped with the
necessary tool (Lemma 8), we can describe it in more detail. We recall that in G4 (i.e. after the
switch from (x0i , y

0
i ) to (x1i , y

1
i ) and before the pre-processing), we are roughly in the following state

(coordinates used for purely technical aspects are omitted):
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Game G0:
∑n

i=1 s̃i =
∑n

i=1 t̃i = 0, H(tagℓ)→ JωℓK1, H1(tag
∗)→ JωK1, H2(tag-fk)→ JµkK2, H2(tag-f

∗)→ JµK2

cℓ,i = ( xℓ,i ωℓ 0 0 0 0 0 t̃iωℓ 0 ρℓ,i 04 )Bi

dk,i = ( yk,i s̃iµk 0 0 0 0 0 µk πk,i 0 04 )B∗
i

ci = ( x0
i ω 0 0 0 0 0 t̃iω 0 ρi 04 )Bi

di = ( y0
i s̃iµ 0 0 0 0 0 µ πi 0 04 )B∗

i

Game G1:
∑n

i=1 sk,i =
∑n

i=1 si =
∑n

i=1 tℓ,i =
∑n

i=1 ti = 0 (Randomization)

cℓ,i = ( xℓ,i ωℓ 0 0 0 0 0 tℓ,i 0 ρℓ,i 04 )Bi

dk,i = ( yk,i sk,i 0 0 0 0 0 µk πk,i 0 04 )B∗
i

ci = ( x0
i ω 0 0 0 0 0 ti 0 ρi 04 )Bi

di = ( y0
i si 0 0 0 0 0 µ πi 0 04 )B∗

i

Game G2: (Random 0-Secret Sharings)

cℓ,i = ( xℓ,i ωℓ 0 0 0 0 rℓ tℓ,i 0 ρℓ,i 04 )Bi

dk,i = ( yk,i sk,i 0 0 0 0 σk,i µk πk,i 0 04 )B∗
i

ci = ( x0
i ω 0 0 0 0 r ti 0 ρi 04 )Bi

di = ( y0
i si 0 0 0 0 σi µ πi 0 04 )B∗

i

Game G3: (Pre-Processing, see Figure 5 for details)

cℓ,i = ( 0 0 xℓ,i 0 ωℓ 0 rℓ tℓ,i 0 ρℓ,i 04 )Bi

dk,i = ( 0 0 yk,i yk,i sk,i sk,i σk,i µk πk,i 0 04 )B∗
i

ci = ( x0
i ω 0 x0

i 0 ω r ti 0 ρi 04 )Bi

di = ( y0
i si y0

i 0 si 0 σi µ πi 0 04 )B∗
i

Game G4: s
′
i := si − (x1

i y
1
i − x0

i y
0
i )/ω (Complexity Leveraging)

ci = ( x1
i ω 0 x0

i 0 ω r ti 0 ρi 04 )Bi

di = ( y1
i s′i y0

i 0 si 0 σi µ πi 0 04 )B∗
i

Game G5: (Swapping)

dk,i = ( 0 sk,i yk,i yk,i sk,i 0 σk,i µk πk,i 0 04 )B∗
i

Game G6: (Secret-Sharing Swapping (Lemma 8), see Figure 6 for details)

cℓ,i = ( xℓ,i ωℓ 0 0 0 0 rℓ tℓ,i 0 ρℓ,i 04 )Bi

dk,i = ( yk,i sk,i yk,i 0 sk,i 0 σk,i µk πk,i 0 04 )B∗
i

Game G7: (Cleaning, see Figure 7 for details)

cℓ,i = ( xℓ,i ωℓ 0 0 0 0 0 tℓ,i 0 ρℓ,i 04 )Bi

dk,i = ( yk,i sk,i 0 0 0 0 0 µk πk,i 0 04 )B∗
i

ci = ( x1
i ω 0 0 0 0 0 ti 0 ρi 04 )Bi

di = ( y1
i s′i 0 0 0 0 0 µ πi 0 04 )B∗

i

Game G8:
∑n

i=1 s̃i =
∑n

i=1 t̃i = 0 (De-Randomization)

cℓ,i = ( xℓ,i ωℓ 0 0 0 0 0 t̃iωℓ 0 ρℓ,i 04 )Bi

dk,i = ( yk,i s̃iµk 0 0 0 0 0 µk πk,i 0 04 )B∗
i

ci = ( x1
i ω 0 0 0 0 0 t̃iω 0 ρi 04 )Bi

di = ( y1
i s̃iµ 0 0 0 0 0 µ πi 0 04 )B∗

i

Fig. 3: Games for proving Theorem 9
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cℓ,i = ( 0 0 xℓ,i 0 ωℓ 0 tℓ,i )Bi

dk,i = ( 0 0 yk,i yk,i sk,i sk,i µk )B∗
i

ci = ( x1
i ω 0 x0

i 0 ω ti )Bi

di = ( y1
i s′i y0

i 0 si 0 µ )B∗
i

Our aim is to move (xℓ,i, yk,i) as well as (ωℓ, sk,i) back to positions (1, 2) of (cℓ,i,dk,i) to be correctly
in the game whose challenge bit is b = 1. First, we note that it is easy to move sk,i to coordinate 2,
as all ciphertexts ci and cℓ,i have equal entries in their facing coordinates (2, 6): ci[2] = ci[6] = ω
and cℓ,i[2] = cℓ,i[6] = 0. Therefore, the entries (2, 6) of dk,i can be swapped under DDH in G2 which
is applied in G5. Unfortunately, the story is not that easy for the remaining three cases xℓ,i, yk,i and
ωℓ. For example, when moving xℓ,i back to coordinate 1, we change the local inner product ⟨cℓ,i,di⟩
since in general di[3] = y0i ̸= y1i = di[1]. Nevertheless, under the function-hiding property, the global
inner product over all i ∈ [n] is invariant for ℓ:

n∑
i=1

xℓ,iy
0
i =

n∑
i=1

xℓ,iy
1
i

In particular, the admissibility condition of Definition 4 gives:∑
honest i

xℓ,iy
0
i =

∑
honest i

xℓ,iy
1
i . (2)

due to the constraint that x0i = x1i and y0i = y1i for all corrupted i. Thus, there is some hope that
the local inner products may be randomized in a way that an adversary cannot efficiently detect
local changes while preserving the global inner product. It turns out that this hope is justified,
though by a complicated proof. The centerpiece is the secret-sharing swapping (Lemma 8) from
Section 5. Before going into the details of how this lemma can be applied, we mention that similar
to (2) for xℓ,i, there are connections that help to move back yk,i and ωℓ. Specifically, we have (even
under standard security without the function-hiding property):

n∑
i=1

x0i yk,i =
n∑

i=1

x1i yk,i ,

and in particular: ∑
honest i

x0i yk,i =
∑

honest i

x1i yk,i . (3)

Additionally, we also make use of the equation∑
honest i

ωℓsi =
∑

honest i

ωℓs
′
i , (4)

where s′i = di[2] since G4, while noting that s′i = si for all i ∈ C because of the admissibility of
function-hiding setting.
From G5 to G6, we need to apply the secret sharing swapping in a specific order.
We first remark that because we are in the static corruption setting, the secret shares (si, sk,i)i∈H
and (ti, tℓ,i)i∈H sum to fixed values, i.e.∑

i∈H
sk,i = µk

∑
i∈H

s̃i,
∑
i∈H

si = µ
∑
i∈H

s̃i and
∑
i∈H

tℓ,i = ωℓ

∑
i∈H

t̃i,
∑
i∈H

ti = ω
∑
i∈H

t̃i
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while
∑

i∈H s̃i and
∑

i∈H t̃i are known from setup, the two common constant µ, ω, µk, ωℓ
$← Zq are

given by the RO. We remark that for applying the secret-sharing swapping lemma, we also change
the random secret sharings in the d-vectors and in the c-vectors from shiftings (µs̃i, µks̃i)i and
(ωt̃i, ωℓt̃i)i of secret sharing of 0, where (s̃i)i, (t̃i)i are generated at setup, to random independent
secret sharings (si, sk,i)i and (ti, tℓ,i)i, respectively. This can be done using DDH and its random
self-reducibility, while noting that we can embed the sum of the honest shares, which is fixed due
to static corruption, into the exponents of group elements to correctly simulate the honest key
components. The embedding works by first generating all except one (randomly self-reduced) honest
shares, then use linearity on the exponent to define the last one. The simulation works because for
honest i, we never have to compute in the clear the exponents.

Now, given all the ingredients for the lemma, the swappings are done specifically as follows:

1. First, we switch ωℓ from coordinate 6 back to coordinate 2 of cℓ,i, while di[2] = s′i,di[6] = si, and

dk,i[2] = dk,i[6] = sk,i. We employ condition (4), use r, rℓ
$← Zq (introduced in G2) in ci[7], cℓ,i[7]

as the fixed randomness, together with the secret shares are σi, σk,i in di[7],dk,i[7] summing to
a fixed constant over all i ∈ H, which we also introduced from previous games.

2. Secondly, we switch yk,i from coordinate 4 back to coordinate 1 of dk,i, while ci[1] = x1i ,ci[4] = x0i ,

and cℓ,i[1] = cℓ,i[4] = xℓ,i. We employ condition (3), use µ, µk
$← Zq (by the RO) in di[8],dk,i[8]

as the fixed randomness (namely “r, rℓ” in the lemma’s statement, we are in the dual basis in
this swapping), together with the secret shares are tℓ,i = cℓ,i[8], ti = ci[8] summing to a fixed
constant over all i ∈ H, which we know up front thanks to static corruption.

3. Finally, we switch xℓ,i from coordinate 3 back to coordinate 1 of cℓ,i, while di[1] = y1i ,di[3] = y0i ,

and dk,i[1] = dk,i[3] = yk,i. We employ condition (2), use r, rℓ
$← Zq (introduced from previous

games) in ci[7], cℓ,i[7] as the fixed randomness, together with the secret shares are σi, σk,i in
di[7],dk,i[7] summing to a fixed constant over all i ∈ H, which we also introduced from previous
games.

After this three applications of Lemma 8, it remains cleaning (Game G7) and un-programming the
products (µks̃i, µs̃i, ωℓt̃i, ωt̃i) using DDH (Game G8). The view of the adversary in G8 corresponds
to b = 1 in the security experiment. ⊓⊔

6.2 An FH-DMCFE Secure Against Multiple Adaptive Challenges with Complete
Queries and Static Corruption

In this section, we lift the scheme from Section 6.1 to a function-hiding DMCFE secure against
multiple challenges. We denote the function class containing inner products of length n by F IP

n . Let
E = (Setup,DKeyGen,Enc,Dec) denote the DMCFE scheme from Section 6.1 for the function class
F IP
2n. From an application of Theorem 9, it follows that E is function-hiding against one challenge.

Lemma 6 implies that the same scheme is weakly function-hiding even against multiple challenges.
We emphasize that whether a scheme is weakly or fully function-hiding in the single-challenge setting,
an application of Lemma 6 always yields weakly function-hiding security in the multi-challenge case.
Therefore, we have to apply the generic transformation of Lemma 7 to E afterwards. This yields
a new scheme E ′ = (Setup′,DKeyGen′,Enc′,Dec′) which preserves the multi-challenge security and
additionally satisfies the fully function-hiding property. We describe the resulting scheme E ′:

Setup′(1λ): Choose 2n pairs of dual orthogonal bases (Bi,B
∗
i )i∈[2n] where (Bi,B

∗
i ) is a pair of dual

bases for (G14
1 ,G14

2 ). Sample two random 2n-out-of-2n secret sharings of 0 denoted (s̃i)i, (t̃i)i ∈
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Z2n
q and output the secret keys ski and the encryption keys eki for i ∈ [n] as follows:

ski := (b∗
i,1, s̃iB

∗
i,2 +B∗

i,8, b∗
i,9, s̃n+iB

∗
n+i,2 +B∗

n+i,8, b∗
n+i,9)

eki := (bi,1, bi,10, Bi,2 + t̃iBi,8, bn+i,10, Bn+i,2 + t̃n+iBn+i,8)

DKeyGen′(ski, tag-f, yi): Parse ski = (b∗
i,1, s̃iB

∗
i,2+B∗

i,8, b
∗
i,9, s̃n+iB

∗
n+i,2+B∗

n+i,8, b
∗
n+i,9). Compute

H2(tag-f)→ JµK2 ∈ G2 and sample πi, πn+i
$← Zq. Then compute

di = yib
∗
i,1 + (s̃iB

∗
i,2 +B∗

i,8) · JµK2 + πib
∗
i,9

= (yi, s̃iµ, 0, 0, 0, 0, 0, µ, πi, 0, 0, 0, 0, 0)B∗
i

dn+i = (s̃n+iB
∗
n+i,2 +B∗

n+i,8) · JµK2 + πn+ib
∗
n+i,9

= (0, s̃n+iµ, 0, 0, 0, 0, 0, µ, πn+i, 0, 0, 0, 0, 0)B∗
n+i

and output (di,dn+i).
Enc′(eki, tag, xi): Parse eki = (bi,1, bi,10, Bi,2 + t̃iBi,8, bn+i,10, Bn+i,2 + t̃n+iBn+i,8). Compute

H(tag)→ JωK1 ∈ G1 and sample two random scalars ρi, ρn+i
$← Zq. Finally, compute

ci = xibi,1 + ρibi,10 + (Bi,2 + t̃iBi,8) · JωK1
= (xi, ω, 0, 0, 0, 0, 0, t̃iω, 0, ρi, 0, 0, 0, 0)Bi

cn+i = ρn+ibn+i,10 + (Bn+i,2 + t̃n+iBn+i,8) · JωK1
= (0, ω, 0, 0, 0, 0, 0, t̃n+iω, 0, ρn+i, 0, 0, 0, 0)Bn+i

and output (ci, cn+i).
Dec′(d, c): Parse d := (di,dn+i)i∈[n] and c := (ci, cn+i)i∈[n]. Compute JoutKt =

∏2n
i=1 ci × di, then

find and output the discrete log out.

6.3 Adaptive Security against Static Corruption with Incomplete Queries

In this section, we present a generic transformation to make our DMCFE schems from Section 6.1
secure in a function-hiding setting where the adversary can omit to query some honest components,
either in the challenge ciphertext or in the challenge functional key. We first give the formal
definition of this stronger security model in Appendix A.1, adapted from Definition 4 by removing
the constraint 1 on complete queries for admissible adversaries.

The transformation. We adapt the transformation in [1, Section 4]. Their transformation turns
any DMCFE scheme (without function-hiding property), which is secure under the restriction that
all honest challenge ciphertext components are queried, into a DMCFE scheme that is secure even
when the adversary can omit some honest client in the challenge ciphertext queries. The transforma-
tion from [1, Section 4] makes use of symmetric-key encryption schemes as well as pseudorandom
functions, but it deals only with incomplete challenge ciphertexts as per [1, Definition 2.7]. Naturally,
we can extend the ideas of [1] to cover additionally the incomplete challenge functional keys in
our function-hiding setting for DMCFE. We refer to the technical overview Achieving security
against incomplete queries. in Section 3.2 for the main ideas.

We remark that our transformation incurs an increase of ciphertext’s size to Θ(n) due to the fact
that there are n additional PRF evaluations in ct′i, and therefore the total cost of communication
is Θ(n2). In the work by Chotard et al. [26], the authors introduced the notion of All-or-Nothing
Encapsulation (AoNE) that encapsulates data in way only when all encapsulated components
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are gathered can we decapsulate and recover the orginal pieces of data. In [26], AoNE can be
constructed in the bilinear group setting and is suitable for our constructions from Section 6.1. More
importantly, in their IP-DDFE construction of [26, Section 7.2], Chotard et al. used AoNE in a
generic way in order to deal with incomplete queries, while keeping the total communication O(n) at
the cost of selective (ciphertext) challenges under static corruption. We can apply the same generic
transformation using AoNE as in [26, Section 7.2] to deal with incomplete queries, in the selective
multiple (ciphertext and key) challenges under static corruption.
We use a symmetric-key scheme SE = (EncSE,DecSE) and a pseudorandom function PRF. We recall
the syntax and security notions for pseudorandom functions in Appendix A.2 and for symmetric-key
encryption schemes in Appendix A.3. We refer to the technical overview in Section 3.2 and provide a
proof of security in Appendix B.5. Our transformation preserves the weakly function-hiding property
(implied by the fully FH) in the one adaptive challenge keys and ciphertexts, under static corruption
(revisit Section 3.2 for the intuition), that is statisfied from Section 6.1. Suppose we have a DMCFE
scheme E = (Setup,DKeyGen,Enc,Dec). We transform E into E ′ = (Setup′,DKeyGen′,Enc′,Dec′) as
follows:

Setup′(1λ): Run Setup(1λ) to obtain the keys (ski, eki)i∈[n]. Then, sample 2n2 PRF keys, specifically kcti,j , k
dk
i,j

$←
{0, 1}λ for i, j ∈ [n]. Finally define

sk′i = (ski, {kdki,j , kdkj,i}j∈[n]); ek′i = (eki, {kcti,j , kctj,i}j∈[n])

DKeyGen′(sk′i, tag-f, yi): Parse sk′i = (ski, {kdki,j , kdkj,i}j∈[n]).
Compute dki ← DKeyGen(ski, tag-f, yi). Then, compute PRF(kdkj,i, tag-f) for j ∈ [n], then, Kdk

i (tag-f) :=
⊕j∈[n]PRF(k

dk
i,j , tag-f), and dk′i := EncSE(K

dk
i (tag-f), dki). Output (dk′i, {PRF(kdkj,i, tag-f)}j∈[n]).

Enc′(ek′i, tag, xi): Parse ek′i = (eki, {kcti,j , kctj,i}j∈[n]). Compute cti←Enc(eki, tag, xi). Then, compute PRF(kctj,i, tag)
for j ∈ [n], Kct

i (tag) := ⊕j∈[n]PRF(k
ct
i,j , tag), and ct′i := EncSE(Ki(tag), cti). Output (ct′i, {PRF(kctj,i, tag)}j∈[n]).

Dec′(d, c): Parse

d = (dk′i, {PRF(kdkj,i, tag-f)}j∈[n])i∈[n], c = (ct′i, {PRF(kctj,i, tag)}j∈[n])i∈[n] .

Then, for each j ∈ [n], compute

Kct
j (tag) = ⊕i∈[n]PRF(k

ct
j,i, tag); ctj = DecSE(K

ct
j (tag), ct

′
j)

Kdk
j (tag-f) = ⊕i∈[n]PRF(k

dk
j,i, tag-f); dkj = DecSE(K

dk
j (tag-f), dk′j) .

Finally, compute and output Dec((dki)i∈[n], (cti)i∈[n]).
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A Additional Definitions

A.1 Function-Hiding Security of DMCFE against Incomplete Queries

Definition 10 (Function-Hiding Security against Incomplete Queries). For a DMCFE

scheme E, a function class F and a ppt adversary A we define the experiment Expadap-dyn-any-fh-b
E,F ,A (1λ)

that is the same as the one shown in Figure 1, except that we define a new notion of admissible
adversaries admany that is given below. The oracles OEnc, ODKeyGen and OCorrupt can be called
in any order and any number of times. The adversary A is NOT admissible with respect to
C,QEnc,QDKGen, denoted by admany(A) = 0, if either one of the following holds:

1. There exist two distinct tuples of the form (i, tag, ·, ·) in QEnc or two distinct tuples of the form
(i, tag-f, ·, ·) in QDKGen.

2. There exists a tuple (i, tag, x0i , x
1
i ) ∈ QEnc such that i ∈ C and x0i ̸= x1i , or there exists

(i, tag-f, y0i , y
1
i ) ∈ QDKGen such that i ∈ C and y0i ̸= x1i .

3. There exist tag, tag-f ∈ Tag, two vectors (x0i )i∈[n], (x
1
i )i∈[n] ∈ D1 × · · · × Dn and two func-

tions f0, f1 ∈ F having parameters (y0i , y
1
i )

n
i=1 such that

• (i, tag, x0i , x
1
i ) ∈ QEnc and (i, tag-f, y0i , y

1
i ) ∈ QDKGen for all i ∈ H,

• x0i = x1i and y0i = y1i for all i ∈ C, and
• f0(x01, . . . , x

0
n) ̸= f1(x11, . . . , x

1
n).

Otherwise, we say that A is admissible w.r.t C, QEnc and QDKGen and write admany(A) = 1. The
scheme E is function-hiding against incomplete adaptive challenges and dynamic corruption if for
all ppt adversaries A,

Advadap-dyn-any-fh
E,F ,A (1λ) :=∣∣∣Pr [Expadap-dyn-any-fh-0

E,F ,A (1λ) = 1
]
− Pr

[
Expadap-dyn-any-fh-1

E,F ,A (1λ) = 1
]∣∣∣

is negligible in λ. Weaker notions can be derived in a similar manner as for Definition 4.

A.2 Pseudorandom Functions

Let families of sets D = {Dλ}λ∈N andR = {Rλ}λ∈N represent domains and ranges. Let K = {Kλ}λ∈N
be a family of sets where PRF keys are chosen. A pseudorandom function is defined by efficient
algorithms PRF = (KeyGen,Eval), where KeyGen takes as input a security parameter 1λ and outputs
a uniformly random key K ∈ K; Eval is a deterministic algorithm that inputs a key K ∈ K and an
element x ∈ D to output a range element z ∈ R.

Security. A pseudorandom function PRF is said to be secure if for sufficiently large λ ∈ N, for all
ppt adversary A, the following advantage is negligible in λ:

AdvPRF
A (1λ) :=

∣∣∣∣Pr [ExprPRFA (1λ) = 1
]
− 1

2

∣∣∣∣
where ExprPRFA (1λ) is depicted in Fig. 4, Fun(D,R) denotes the family of functions going from D to
R, and the probability is taken over the random coins of A.
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ExprPRFA (1λ):

b
$← {0, 1}

K←KeyGen(1λ)

RF(·) $← Fun(D,R)
b′←AOChal(·)(pp)

Output b′
?
= b

The oracle OChal is defined as follows:

OChal(x∗) :=

{
Eval(K,x∗) if b = 1

RF(x∗) if b = 0

Fig. 4: PRF security game.

A.3 IND-CPA Secure Symmetric Encryption

We recall the syntax of symmetric encryption schemes and their IND-CPA security. In the transfor-
mation, if the key space is larger than the message space we can use one-time pad for simplicity;
Otherwise applying a pseudorandom generator to stretch the keys would be suitable as well.

A symmetric key encryption scheme SE = (SEnc, SDec) over K ×M, for a key space K and a
message spaceM set up according to a security parameter λ ∈ N, is defined as follows:

– SEnc(K,m) receives a key K ∈ K and a message m ∈M, then outputs a ciphertext ct.

– SDec(K, ct) receives a key K ∈ K and a ciphertext ct, then outputs an element inM.

Correctness. For allK ∈ K andm ∈M, Pr[SDec(K,SEnc(K,m)) = m] = 1 where the probability
is taken over K.

IND-CPA Security. Let SE = (SEnc, SDec) be a symmetric key encryption over K ×M. Then
SE is IND-secure if for sufficiently large λ ∈ N and all ppt adversary A, the following quantity is
negligible in λ:

Advind-cpa
SE,A (λ) :=

∣∣∣∣∣∣Pr
b′ = b :

b
$← {0, 1};K $← K

b′←AOChal(·, ·)(1λ)

− 1

2

∣∣∣∣∣∣ ,

where OChal(m0,m1) outputs ct←SEnc(K,mb), and the probability is taken over the random coins
of A.

A.4 Decisional Separation Diffie-Hellman (DSDH) Assumption

Definition 11. In a cyclic group G of prime order q, the Decisional Separation Diffie-Hellman
(DSDH) problem is to distinguish the distributions

D0 = {(x, y, J1K , JaK , JbK , Jab+ xK)} D1 = {(x, y, J1K , JaK , JbK , Jab+ yK)}

for any x, y ∈ Zq, and a, b
$← Zq. The DSDH assumption in G assumes that no ppt adversary can

solve the DSDH problem with non-negligible probability.

A.5 Dual Pairing Vector Spaces

Basis changes. In this work, we use extensively basis changes over dual orthogonal bases of
a DPVS. We again use GN

1 as a running example. Let (A,A∗) be the dual canonical bases of
(GN

1 ,GN
2 ). Let (U = (ui)i,U

∗ = (u∗
i )i) be a pair of dual bases of (GN

1 ,GN
2 ), corresponding to an
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invertible matrix U ∈ ZN×N
q . Given an invertible matrix B ∈ ZN×N

q , the basis change from U w.r.t
B is defined to be B := B ·U, which means:

(x1, . . . , xN )B =

N∑
i=1

xibi = (x1, . . . , xN ) ·B = (x1, . . . , xN ) ·B ·U

= (y1, . . . , yN )U where (y1, . . . , yN ) := (x1, . . . , xN ) ·B .

Under a basis change B = B ·U, we have

(x1, . . . , xN )B = ((x1, . . . , xN ) ·B)U ; (y1, . . . , yN )U =
(
(y1, . . . , yN ) ·B-1

)
B

.

The computation is extended to the dual basis change B∗ = B′ ·U∗, where B′ =
(
B-1
)⊤

:

(x1, . . . , xN )B∗ =
(
(x1, . . . , xN ) ·B′)

U∗ ; (y1, . . . , yN )U∗ =
(
(y1, . . . , yN ) ·B⊤

)
B∗

.

In can be checked that (B,B∗) remains a pair of dual orthogonal bases. When we consider a basis
change B = B ·U, if B = (bi,j)i,j affects only a subset J ⊆ [N ] of indices in the representation w.r.t
basis U, we will write B as the square block containing (bi,j)i,j for i, j ∈ J and implicitly the entries
of B outside this block is taken from IN .

B Supporting Materials - Deferred Proofs

B.1 Proof of Lemma 6

Lemma 6. Let E = (Setup,DKeyGen,Enc,Dec) be a DMCFE scheme for the function class F . If E
is single-challenge weakly function-hiding (against static corruption), then it is also weakly function-
hiding (against static corruption). More specifically, for any ppt adversary A, there exists a ppt
algorithm B such that

Advadap-stat-wfh
E,F ,A (1λ) ≤ max(qe, qk) ·Adv1chal-adap-stat-wfh

E,F ,B (1λ) ,

where qe and qk denote the maximum numbers of different tags tag and tag-f that A can query to
OEnc and ODKeyGen respectively.

Proof. For convenience, we introduce slight modifications of the experiments Expadap-stat-wfh-b
E,F ,A (1λ)

and Exp1chal-adap-stat-wfh-b
E,F ,A (1λ), denoted by Expadap-stat-wfh

E,F ,A (1λ) and Exp1chal-adap-stat-wfh
E,F ,B (1λ), where

the bit b is chosen at random from {0, 1} during the execution of Initialize(1λ). Let A be a ppt

adversary in the experiment Expadap-stat-wfh
E,F ,A (1λ). We denote the qe distinct tags that can occur

in a query to OEnc by tag1, . . . , tagqe . Similarly, we denote the qk tags that can occur in queries
to ODKeyGen by tag-f1, . . . , tag-fqk . Let q := max(qe, qk). We construct a ppt adversary B playing

against Exp1chal-adap-stat-wfh
E,F ,B (1λ) that uses black-box access to A. B simulates the view of A as follows:

• Initialization: Recall that in the static security model, the set C ⊂ [n] of corrupted clients must
be declared before the setup.
Upon A calling Initialize(1λ, C), B samples a random value j

$← [q], runs the initialization
procedure

Initialize(1λ, C, tag∗ := tagj , tag-f
∗ := tag-fj)
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of its own experiment Exp1chal-adap-stat-wfh
E,F ,B (1λ) and forwards the response (consisting of the public

parameters pp as well as the encryption keys {eki}i∈C and secret keys {ski}i∈C) to A.
Note that if j > qe (or j > qk), B submits a challenge tag tagj (resp. tag-fj) that is never part
of a query to OEnc or ODKeyGen.

• Encryption queries: Recall that tagℓ refers to the ℓ-th distinct tag received during an encryption
query.
Upon A querying OEnc(i, tagℓ, x0ℓ,i, x1ℓ,i), B behaves as follows:

1. If ℓ < j, B queries the oracle OEnc of Exp1chal-adap-stat-wfh
E,F ,B (1λ) on input (i, tagℓ, x

1
i , x

1
i ) and

forwards the response to A.
2. If ℓ = j, B queries OEnc(i, tagℓ, x0ℓ,i, x1ℓ,i) and forwards the response to A.
3. If ℓ > j, B queries OEnc(i, tagℓ, x0ℓ,i, x0ℓ,i) and forwards the response to A.

• Key-generation queries: Recall also that tag-fk refers to the k-th distinct tag received during a
key-generation query.
Upon A querying ODKeyGen on input (i, tagk, y

0
k,i, y

1
k,i), B does the following:

1. If k < j, B queries the oracleODKeyGen ofExp1chal-adap-stat-wfh
E,F ,B (1λ) on input (i, tag-fk, y

1
k,i, y

1
k,i)

and forwards the response to A.
2. If k = j, B queries ODKeyGen(i, tag-fk, y0k,i, y1k,i) and forwards the response to A.
3. If k > j, B queries ODKeyGen(i, tag-fk, y0k,i, y0k,i) and forwards the response to A.

• Finalize: Upon a calling Finalize(b′), B passes the same bit b′ to its own Finalize procedure.

We note that thanks to the weakly function-hiding setting, A is an admissible adversary against
Expadap-stat-wfh

E,F ,A (1λ) if and only if B is an admissible adversary against Exp1chal-adap-stat-wfh
E,F ,B (1λ).

We define a sequence of hybrid games H0,H1, . . . ,Hq where we modify the definition of the oracles

OEnc and ODKeyGen in Expadap-stat-wfh
E,F ,A (1λ). Specifically, in Hj a query OEnc(i, tagℓ, x0ℓ,i, x1ℓ,i) is

answered by an encryption of x1ℓ,i if ℓ ≤ j and by an encryption of x0ℓ,i if ℓ > j. Similarly, a query

(i, tag-fk, y
0
k,i, y

1
k,i) to ODKeyGen is answered by a partial decryption key for y1k,i if k ≤ j and by a

partial decryption key for y0k,i if k > j. We denote by Hj = 1 the event where the hybrid game

outputs 1. Observe that Advadap-stat-wfh
E,F ,A (1λ) = |Pr[Hq = 1]− Pr[H0 = 1]|.

The advantage of B against the single-challenge weakly function-hiding experiment of E is

Adv1chal-adap-stat-wfh
E,F ,B (1λ)

=
∣∣∣Pr [Exp1chal-adap-stat-wfh

E,F ,B (1λ) = 1 | b = 0
]

− Pr
[
Exp1chal-adap-stat-wfh

E,F ,B (1λ) = 1 | b = 1
] ∣∣∣

=
1

q
·

∣∣∣∣∣
q∑

j=1

(
Pr
[
Exp1chal-adap-stat-wfh

E,F ,B (1λ) = 1 | b = 0,B picks j
]

−Pr
[
Exp1chal-adap-stat-wfh

E,F ,B (1λ) = 1 | b = 1,B picks j
]) ∣∣∣∣∣

(∗)
≥ 1

q
·

∣∣∣∣∣∣
q∑

j=1

(
Pr
[
Hj = 1

]
− Pr

[
Hj−1 = 1

])∣∣∣∣∣∣
=

1

q
·
∣∣Pr [Hq = 1

]
− Pr

[
H0 = 1

]∣∣
=

1

q
·Advadap-stat-wfh

E,F ,A (1λ)
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where (∗) comes from the observation that conditioned on [b = 0] (resp. [b = 1]) and [B picks j],

Exp1chal-adap-stat-wfh
E,F ,B (1λ) = 1 is identical to Hj = 1 (resp. Hj−1 = 1), where B is simulating the

challenger for A. ⊓⊔

B.2 From Weak to Full Function-Hiding

Lemma 7. Let F IP
n denote the function class containing inner products of length n and let E be a

weakly function-hiding DMCFE scheme for F IP
2n. Then there exists a (fully) function-hiding DMCFE

scheme E ′ for F IP
n . More precisely, for any ppt adversary A, there exists a ppt algorithm B such that

Advxxx-yyy-fh
E ′,F IP

n ,A (1λ) ≤ 3 ·Advxxx-yyy-wfh

E,F IP
2n,B

(1λ) ,

where xxx ∈ {adap, sel} and yyy ∈ {dyn, stat}.

Proof. Let E = (Setup,DKeyGen,Enc,Dec). Then we define the DMCFE scheme E ′ = (Setup′,Enc′,DKeyGen′,Dec′)
for F IP

n as follows:

• Setup: Setup′(1λ) runs

(pp, {ski, eki}i∈[2n])← Setup(1λ)

and outputs (pp′ = pp, {sk′i = (ski, skn+i), ek
′
i = (eki, ekn+i)}).

• Key Generation: DKeyGen′(sk′i, tag-f, yi) parses sk
′
i = (ski, skn+i) and runs

dktag-f,i ← DKeyGen(ski, tag-f, yi)

dktag-f,n+i ← DKeyGen(skn+i, tag-f, 0) .

Finally, it outputs dk′tag-f,i := (dktag-f,i, dktag-f,n+i).
• Encryption: Enc′(ek′i, tag, xi) parses ek

′
i = (eki, ekn+i) and runs

cttag,i ← Enc(eki, tag, xi)

cttag,n+i ← Enc(ekn+i, tag, 0) .

Finally, it outputs ct′tag,i := (cttag,i, cttag,n+i).
• Decryption: Dec((dk′tag-f,i)i∈[n], (ct

′
tag,i)i∈[n]) parses the n decryption keys and ciphertexts

dk′tag-f,i := (dktag-f,i, dktag-f,n+i)

ct′tag,i := (cttag,i, cttag,n+i) .

Finally, it outputs d← Dec((dktag-f,i)i∈[2n], (cttag,i)i∈[2n]).

The correctness of E ′ follows immediately from that of E and the fact that ⟨(x ∥ 0), (y ∥ 0)⟩ = ⟨x,y⟩
for x = (xi)i∈[n], y = (yi)i∈[n] and 0 = (0, . . . , 0) ∈ Zn

q .
Furthermore, we show that E ′ enjoys the (full-fledged) function-hiding property. Towards this, we

consider a sequence of hybrid games G0, . . . ,G3 where G0 equals Expxxx-yyy-fh-0
E,F ,A (1λ) and G3 equals

Expxxx-yyy-fh-1
E,F ,A (1λ).

Game G0: This is Expxxx-yyy-fh-0
E,F ,A (1λ). We denote the ℓ-th distinct tag that occurs in a query to

OEnc by tagℓ. Similarly, tag-fk refers to the k-th distinct tag in a query to ODKeyGen. Queries
to OEnc and ODKeyGen are answered as follows:
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• Upon A querying OEnc(i, tagℓ, x0ℓ,i, x1ℓ,i), the challenger computes

ctℓ,i ← Enc(eki, tagℓ, x
0
ℓ,i)

ctℓ,n+i ← Enc(ekn+i, tagℓ, 0) .

Then it returns ct′ℓ,i := (ctℓ,i, ctℓ,n+i).
• Upon A querying ODKeyGen(i, tag-fk, y0k,i, y1k,i), the challenger computes

dkk,i ← DKeyGen(ski, tag-fk, y
0
k,i)

dkk,n+i ← DKeyGen(skn+i, tag-fk, 0) .

Then it returns dk′k,i := (dkk,i, dkk,n+i).
In other words, the ciphertexts (ct′ℓ,i)i∈[n] encrypt the vector (x0

ℓ ∥ 0), and the partial decryption

keys (dk′k,i)i∈[n] allow for the computation of the inner product with the vector (y0
k ∥ 0).

Game G1: We modify the definition of OEnc and ODKeyGen as follows:
• Upon A querying OEnc(i, tagℓ, x0ℓ,i, x1ℓ,i), the challenger computes

ctℓ,i ← Enc(eki, tagℓ, 0)

ctℓ,n+i ← Enc(ekn+i, tagℓ, x
1
ℓ,i) .

Then it returns ct′ℓ,i := (ctℓ,i, ctℓ,n+i).
• Upon A querying ODKeyGen(i, tag-fk, y0k,i, y1k,i), the challenger computes

dkk,i ← DKeyGen(ski, tag-fk, y
0
k,i)

dkk,n+i ← DKeyGen(skn+i, tag-fk, y
1
k,i) .

Then it returns dk′k,i := (dkk,i, dkk,n+i).
Thus, the ciphertexts (ct′ℓ,i)i∈[n] encrypt the vector (0 ∥ x1

ℓ) (as opposed to (x0
ℓ ∥ 0) in G0),

and the partial decryption keys (dk′k,i)i∈[n] allow for the computation of the inner product
with the vector (y0

k ∥ y1
k) (as opposed to (y0

k,0) in G0). The admissibility of A states that
⟨x0

ℓ ,y
0
k⟩ = ⟨x1

ℓ ,y
1
k⟩ which implies that

⟨x0
ℓ ∥ 0,y0

k ∥ 0⟩ = ⟨x0
ℓ ∥ 0,y0

k ∥ y1
k⟩ = ⟨0 ∥ x1

ℓ ,y
0
k ∥ y1

k⟩ .

Then it follows by the weak function-hiding property of E ′ that there exists a ppt adversary B
such that |Pr[G1 = 1]− Pr[G0 = 1]| ≤ Advxxx-yyy-wfh

E,F IP
2n,B

(1λ).

Game G2: We modify the definition of OEnc and ODKeyGen again.
• Upon A querying OEnc(i, tagℓ, x0ℓ,i, x1ℓ,i), the challenger computes

ctℓ,i ← Enc(eki, tagℓ, x
1
ℓ,i)

ctℓ,n+i ← Enc(ekn+i, tagℓ, 0) .

Then it returns ct′ℓ,i := (ctℓ,i, ctℓ,n+i).
• Upon A querying ODKeyGen(i, tag-fk, y0k,i, y1k,i), the challenger computes

dkk,i ← DKeyGen(ski, tag-fk, y
1
k,i)

dkk,n+i ← DKeyGen(skn+i, tag-fk, y
1
k,i) .

Then it returns dk′k,i := (dkk,i, dkk,n+i).
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That is, the challenger provides a ciphertext of (x1
ℓ ∥ 0) and a decryption key for (y1

k ∥ y1
k), as

opposed to (0 ∥ x1
ℓ ) and (y0

k ∥ y1
k) in G1. Notice that

⟨0 ∥ x1
ℓ ,y

0
k ∥ y1

k⟩ = ⟨0 ∥ x1
ℓ ,y

1
k ∥ y1

k⟩ = ⟨x1
ℓ ∥ 0,y1

k ∥ y1
k⟩ .

Then it follows by the weak function-hiding property of E ′ that there exists a ppt adversary B
such that |Pr[G2 = 1]− Pr[G1 = 1]| ≤ Advxxx-yyy-wfh

E,F IP
2n,B

(1λ).

Game G3: We modify the definition of ODKeyGen as follows. (The definition of OEnc is as in G2.)
• Upon A querying ODKeyGen(i, tag-fk, y0k,i, y1k,i), the challenger computes

dkk,i ← DKeyGen(ski, tag-fk, y
1
k,i)

dkk,n+i ← DKeyGen(skn+i, tag-fk, 0) .

Then it returns dk′k,i := (dkk,i, dkk,n+i).
Thus, the challenger provides a decryption key for (y1

k ∥ 0), as opposed to (y1
k ∥ y1

k) in G2. We
have

⟨x1
ℓ ∥ 0,y1

k ∥ y1
k⟩ = ⟨x1

ℓ ∥ 0,y1
k ∥ 0⟩ .

As above, it follows by the weak function-hiding property of E ′ that there exists a ppt adversary
B such that |Pr[G3 = 1]− Pr[G2 = 1]| ≤ Advxxx-yyy-wfh

E,F IP
2n,B

(1λ). Note that G3 equals the experiment

Expxxx-yyy-fh-1
E,F ,A (1λ).

Therefore, by a hybrid argument, we conclude that∣∣∣Pr [Expxxx-yyy-fh-0
E,F ,A (1λ) = 1

]
− Pr

[
Expxxx-yyy-fh-1

E,F ,A (1λ) = 1
]∣∣∣

≤ 3 ·Advxxx-yyy-wfh

E,F IP
2n,B

(1λ) .

B.3 Proof of Lemma 8

Lemma 8 (Secret-Sharing Swapping). Let λ ∈ N and H = H(λ),K = K(λ), L = L(λ) ∈ N
where H,K,L : N→ N are functions. Let (Bi,B

∗
i )i∈[H] be two random dual bases of dimension 9 in

(G1,G2,Gt, g1, g2, gt, e, q). All basis vectors are kept secret.
We consider any public values (xi, xℓ,i, x

′
ℓ,i, y

0
i , y

1
i , yk,i, R,Rk)i∈[H],k∈[K],ℓ∈[L] such that

∑H
i=1 xiy

0
i =∑H

i=1 xiy
1
i . With random r, rℓ, ρi, ρℓ,i, πi, πk,i, σi, σk,i

$← Zq such that
∑H

i=1 σi = R and
∑H

i=1 σk,i =
Rk, for all k ∈ [K], the following distributions are computationally indistinguishable under the
SXDH assumption:

D0 :=



(cℓ,i = (xℓ,i, x′ℓ,i, rℓ, 0, ρℓ,i, 0, 0, 0, 0)Bi)ℓ∈[L](
ci = (xi , 0, r, 0, ρi, 0, 0, 0, 0)Bi

)
i∈[H](

di = (y1i , y0i , σi, πi, 0, 0, 0, 0, 0)B∗
i

)
i∈[H](

dk,i = (yk,i, yk,i, σk,i, πk,i, 0 0, 0, 0, 0)B∗
i

)
i∈[H],k∈[K]


;

D1 :=



(cℓ,i = (xℓ,i, x′ℓ,i, rℓ, 0, ρℓ,i, 0, 0, 0, 0)Bi)ℓ∈[L](
ci = (0, xi , r, 0, ρi, 0, 0, 0, 0)Bi

)
i∈[H](

di = (y1i , y0i , σi, πi, 0, 0, 0, 0, 0)B∗
i

)
i∈[H](

dk,i = (yk,i, yk,i, σk,i, πk,i, 0, 0, 0, 0, 0)B∗
i

)
i∈[H],k∈[K]


.
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More specifically, we have:∣∣∣∣ Pr
samp∼D0

[A(samp)→ 1]− Pr
samp∼D1

[A(samp)→ 1]

∣∣∣∣ ≤ 12 ·AdvSXDH
G1,G2

(1λ)

for any specific ppt A with fixed (R, (xi, (xℓ,i, x
′
ℓ,i)

L
ℓ=1, y

0
i , y

1
i , (yk,i, Rk)

K
k=1)

H
i=1).

Proof (of Lemma 8). The sequence of games is given in Figure 2. The changes that make the

transition between games are highlighted by a frame. In the vectors, we write 0t to denote t
consecutive coordinates containing 0. The details of the transition are given as follows:

Game G0: The vectors are sampled according to D0.

Game G1: We perform a computational basis change, making use of the randomness r
$← Zq at

coordinate 3 of (ci)
H
i=1 and of σi

$← Zq at coordinate 3 of (di)
H
i=1 so as to introduce a new

non-zero r′
$← Z∗

q and secret sharing (τi)
H
i=1 of 0 with only non-zero τi, at coordinate 9 in (ci)

H
i=1

and (di)
H
i=1. We recall that it holds

∑H
i=1 σi = R for some fixed public value R. We proceed in

two steps:

Game G0.1: We first use the subspace-indistinguishability to introduce r′
$← Z∗

q at coordinate 9
of ci, while keeping di[9] = cℓ,i[9] = dk,i[9] = 0. Given a DSDH instance (JaK1 , JbK1 , JcK1) in
G1 where δ := c− ab is either 0 or 1, the basis changing matrices are:

Bi =

1 a

0 1


3,9

·Hi; B∗
i =

 1 0

−a 1


3,9

·H∗
i .

All vectors changed under these bases are secret. We compute Bi using JaK1 and write the
c-vectors as follows:

ci = (xi, 0, r, 0, ρi, 03, 0)Bi + (0, 0, br′, 0, 0, 03, cr′)Hi

= (xi, 0, r + br′ , 0, ρi, 03, δr′ )Bi

cℓ,i = (xℓ,i, x′ℓ,i, rℓ, 0, ρℓ,i, 03, 0)Bi .

We cannot compute b∗
i,3 but can write the d-vectors in H∗ and observe that they stay

invariant in B∗
i as the 9-th coordinate is 0:

di = (y1i , y0i , σi, πi, 05)H∗
i
= (y1i , y0i , σi, πi, 05)B∗

i

dk,i = (yk,i, yk,i, σk,i, πk,i, 05)H∗
i
= (yk,i, yk,i, σk,i, πk,i, 05)B∗

i
.

If δ = 0 we are in G0 else we are in G0.1, while updating r to r + br′. The difference in
advantages is |Pr[G0.1 = 1]− Pr[G0 = 1]| ≤ 2 ·AdvDDH

G1
(1λ).

Game G0.2: We use DSDH in G2 to introduce any chosen secret sharing (τi)i∈[H] of 0, i.e.∑H
i=1 τi = 0, such that τi ̸= 0 for all i. Given a DSDH instance (JaK2 , JbK2 , JcK2) in G2 where

δ := c− ab is either 0 or 1, the bases (Bi,B
∗
i ) are changed following:

Bi =

 1 0

−a 1


3,9

·Hi; B∗
i =

1 a

0 1


3,9

·H∗
i .
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All vectors changed under these bases are secret. We compute B∗
i using JaK2 and write the

d-vectors as follows:

di = (y1i , y0i , σi, πi, 04, 0)B∗
i
+ (0, 0, bτi, 0, 04, cτi)H∗

i

= (y1i , y0i , σi + bτi , πi, 04, δτi )B∗
i

dk,i = (yk,i, yk,i, σk,i, πk,i, 04, 0)Bi .

The secret shares (σi)
H
i=1 are updated to (σi + bτi)

H
i=1 and still satisfy:

H∑
i=1

(σi + bτi) =

(
H∑
i=1

σi

)
+ b

(
H∑
i=1

τi

)
= R .

We cannot compute bi,9 but can write the c-vectors in H, for r′′, rℓ
$← Zq, r

′ $← Z∗
q :

ci = (xi, 0, r′′, 0, ρi, 03, r′)Hi = (xi, 0, r′′ + ar′, 0, ρi, 03, r′)Bi

cℓ,i = (xℓ,i, x′ℓ,i, rℓ, 0, ρℓ,i, 03, 0)Hi = (xℓ,i, x′ℓ,i, rℓ, 0, ρℓ,i, 03, 0)Bi ,

while simulating r := r′′ + ar′ perfectly uniformly at random in Zq. If δ = 0 we are in G0.1,
else we are in G0.2 = G1. The difference in advantages is |Pr[G1 = 1] − Pr[G0.1 = 1]| ≤
2 ·AdvDDH

G2
(1λ).

After G0.2 = G1, the vectors are now:

cℓ,i = (xℓ,i, x′ℓ,i, rℓ, 0, ρℓ,i, 03, 0)Bi ; ci = (xi, 0, r , 0, ρi, 03, r′ )Bi

di = (y1i , y0i , σi , πi, 0, 03, τi )B∗
i
; dk,i = (yk,i, yk,i, σk,i, πk,i, 0, 03, 0)B∗

i

and in total |Pr[G1 = 1]− Pr[G0 = 1]| ≤ 2 ·AdvDDH
G2

(1λ) + 2 ·AdvDDH
G1

(1λ).
Game G2: We perform a formal basis change to duplicate (y1i , y

0
i ) (respectively (yk,i, yk,i)) from

coordinates (1, 2) to coordinates (7, 8) of di (respectively of dk,i). The bases are changed following:

Bi =


1 0 0 0

0 1 0 0

1 0 1 0

0 1 0 1


1,2,7,8

·Hi; B∗
i =


1 0 −1 0

0 1 0 −1

0 0 1 0

0 0 0 1


1,2,7,8

·H∗
i .

We write the vectors as follows, observing that the c-vectors stay invariant because their
coordinates (7, 8) are 0 and the duplication is done correctly for the d-vectors:

cℓ,i = (xℓ,i, x′ℓ,i, rℓ, 0, ρℓ,i, 0, 02, 0)Hi = (xℓ,i, x′ℓ,i, rℓ, 0, ρℓ,i, 0, 02, 0)Bi

ci = (xi, 0, r, 0, ρi, 0, 02, r′)Hi = (xi, 0, r, 0, ρi, 0, 02, r′)Bi

di = (y1i , y0i , σi, πi, 04, τi)H∗
i
= (y1i , y0i , σi, πi, 02, y1i , y0i , τi)B∗

i

dk,i = (yk,i, yk,i, σk,i, πk,i, 04, 0)H∗
i
= (yk,i, yk,i, σk,i, πk,i, 0

2, yk,i, yk,i , 0)B∗
i
.

We are in G1 in bases (Hi,H
∗
i ) and in G2 in bases (Bi,B

∗
i ). The change is formal and we have

Pr[G2 = 1] = Pr[G1 = 1].
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Game G3: We perform a computational change to swap xi from coordinate 1 to coordinate 7 of
ci. Given a DSDH instance (JaK1 , JbK1 , JcK1) in G1 where δ := c− ab is either 0 or 1, the bases
(Bi,B

∗
i ) are changed following:

Bi =


1 0 0

−a 1 a

0 0 1


1,5,7

·Hi; B∗
i =


1 a 0

0 1 0

0 −a 1


1,5,7

·H∗
i .

All vectors changed under these bases are secret. We compute Bi using JaK1 and write the
c-vectors as follows:

ci = (xi, 0, r, 0, ρi, 0, 0, 0, r′)Bi + (−cxi, 0, 0, 0, bxi, 0, cxi, 0, 0)Hi

= (xi − δxi , 0, r, 0, ρi + bxi , 0, δxi , 0, r′)Bi

cℓ,i = (xℓ,i, x′ℓ,i, rℓ, 0, ρℓ,i, 0, 0, 0, 0)Bi .

We cannot compute b∗
i,1 and b∗

1,7 due to the lack of JaK2, but the d-vectors can be written in
H∗

i indeed they stay invariant: for instance we consider di, the same holds for dk,i

di = (y1i , y0i , σi, πi, 0, 0, y1i , y0i , τi)H∗
i

= (y1i , y0i , σi, πi,−ay1i + ay1i , 0, y1i , y0i , τi)B∗
i

= (y1i , y0i , σi, πi, 0, 0, y1i , y0i , τi)B∗
i
.

If δ = 0 we are in G2, else we are in G3, while updating ρi to ρi + bxi. We have |Pr[G3 =
1]− Pr[G2 = 1]| ≤ 2 ·AdvDDH

G1
(1λ).

Game G4: We perform a formal duplication to have a copy of xi in coordinate 6 from coordinate 7
of di. The bases are changed following:

Bi =

 1 0

−1 1


6,7

·Hi; B∗
i =

1 1

0 1


6,7

·H∗
i .

All vectors are kept secret. We write the c-vectors to observe the duplication:

ci = (0, 0, r, 0, ρi, 0, xi, 0, r′)Hi = (0, 0, r, 0, ρi, xi , xi, 0, r′)Bi

cℓ,i = (xℓ,i, x′ℓ,i, rℓ, 0, ρℓ,i, 04)Hi = (xℓ,i, x′ℓ,i, rℓ, 0, ρℓ,i, 04)Bi ,

where cℓ,i stays invariant because cℓ,i[7] = 0. In the dual bases, di[6] = dk,i[6] = 0 means the
writings of di,dk,i are the same in H∗ as in B∗

i . We are in G3 in bases (Hi,H
∗
i ) and in G4 in

bases (Bi,B
∗
i ). The change is formal and we have Pr[G4 = 1] = Pr[G3 = 1].

Game G5 : We perform a formal change, using formal basis changes to swap xi from coordinate 7
to coordinate 8 in ci. The bases are changed following:

Bi =


1 1 −1

0 1 0

0 0 1


6,7,8

·Hi; B∗
i =


1 0 0

−1 1 0

1 0 1


6,7,8

·H∗
i .
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We write the c-vectors to observe the duplication:

ci = (02, r, 0, ρi, xi, xi, 0, r
′)Hi = (02, r, 0, ρi, xi, xi − xi, xi , r

′)Bi

= (02, r, 0, ρi, xi, 0, xi , r
′)Bi

cℓ,i = (xℓ,i, x′ℓ,i, rℓ, 0, ρℓ,i, 04)Hi = (xℓ,i, x′ℓ,i, rℓ, 0, ρℓ,i, 04)Bi ,

where cℓ,i stays invariant because its 6-th coordinate is 0. Moreover, in the dual basis, the
d-vectors change as follows:

di = (y1i , y0i , σi, πi, 0, 0, y1i , y0i , τi)H∗
i

= (y1i , y0i , σi, πi, 0, y1i − y0i , y1i , y0i , τi)H∗
i

dk,i = (yk,i, yk,i, σk,i, πk,i, 0, 0, yk,i, yk,i, 0)H∗
i

= (yk,i, yk,i, σk,i, πk,i, 0, yk,i − yk,i, yk,i, yk,i, 0)B∗
i

= (yk,i, yk,i, σk,i, πk,i, 0, 0, yk,i, yk,i, 0)B∗
i
.

We are in G4 in bases (Hi,H
∗
i ) and in G5 in bases (Bi,B

∗
i ). The change is formal and we have

Pr[G5 = 1] = Pr[G4 = 1].

The vectors, when we arrive at G5, are of the form:

cℓ,i = (xℓ,i, x′ℓ,i, rℓ, 0, ρℓ,i, 0, 0, 0, 0)Bi ; ci = (0, 0, r, 0, ρi, xi, 0, xi, r′)Bi

di = (y1i , y
0
i , σi, πi, 0, ∆yi, y

1
i , y

0
i , τi)B∗

i
;dk,i = (yk,i, yk,i, σk,i, πk,i, 0, 0, yk,i, yk,i, 0)B∗

i

where ∆yi := y1i − y0i , (τi)
H
i=1 is a random secret sharing of 0, with τi ≠ 0 for all i, and r′

$← Z∗
q .

Our goal in the next three games G6,G7,G8 is to clean coordinate 6 of ci,di. The main idea is to
consider the selective version G∗

j for j ∈ {5, 6, 7, 8}, where the values (xi, y
0
i , y

1
i )i∈[H] are guessed in

advance. We then use formal argument for the transitions G∗
j → G∗

j+1 for j ∈ {5, 6, 7} to obtain

Pr[G∗
5 = 1] = Pr[G∗

6 = 1] = Pr[G∗
7 = 1] = Pr[G∗

8 = 1] . (5)

In the end, we use a complexity leveraging argument to conclude that thanks to (5), we have
Pr[G5 = 1] = Pr[G6 = 1] = Pr[G7 = 1] = Pr[G8 = 1]. For the sequence G5 → G8, we make a guess for

the values (xi, y
0
i , y

1
i )i∈[H], choose r′

$← Z∗
q , two random secret sharings (τi)

H
i=1, (τ

′
i)

H
i=1 of 0, with

τi, τ
′
i ̸= 0 for all i, and define the event E that the guess is correct on the values (xi, y

0
i , y

1
i )i∈[H] and

τ ′i − τi = xi∆yi/r
′, where ∆yi := y1i − y0i . We describe the selective games below, starting from G∗

5,
where event E is assumed true:

Game G∗
6 : Knowing (xi, y

1
i , y

0
i )

H
i=1 in advance, we perform a formal quotient on coordinate 6 of ci

and of di. Without loss of generality we can assume xi ̸= 0, otherwise the vector ci is trivially
belonging to the distribution D1 since G0. The bases are changed following:

Bi =
[
r′

xi

]
6
·Hi; B∗

i =
[
xi
r′

]
6
·H∗

i .

The vectors ci and di change from Hi and H∗
i to Bi and B∗

i accordingly:

ci = (0, 0, r, 0, ρi, xi, 0, xi, r′)Hi = (0, 0, r, 0, ρi, r′ , 0, xi, r′)Bi

di = (y1i , y
0
i , σi, πi, 0, ∆yi, y

1
i , y

0
i , τi)H∗

i
= (y1i , y0i , σi, πi, 0, xi∆yi/r

′ , y1i , y
0
i , τi)B∗

i

while the vectors cℓ,i,dk,i have the same writings in Hi,H
∗
i as in Bi,B

∗
i because their 6-th

coordinates are 0. In summary, in bases (Hi,H
∗
i ) we have the vectors as in G∗

5, else we are in G∗
6.

The change is formal.
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Game G∗
7 : We perform a formal basis change to clean the 6-th coordinate of ci. The bases are

changed following:

Bi =

1 0

1 1


6,9

·Hi B∗
i =

1 −1
0 1


6,9

·H∗
i .

The vectors ci and di change from Hi and H∗
i to Bi and B∗

i accordingly:

ci = (0, 0, r, 0, ρi, r′, 0, xi, r′)Hi = (0, 0, r, 0, ρi, r′ − r′, 0, xi, r′)Bi

= (0, 0, r, 0, ρi, 0, 0, xi, r′)Bi

di = (y1i , y0i , σi, πi, 0, xi∆yi/r
′, y1i , y0i , τi)H∗

i

= (y1i , y0i , σi, πi, 0, xi∆yi/r
′, y1i , y0i , τi + xi∆yi/r

′ )B∗
i
.

The vectors cℓ,i,dk,i have the same writings in Hi,H
∗
i as in Bi,B

∗
i because their (6, 9)-th

coordinates are 0. In summary, in bases (Hi,H
∗
i ) we have the vectors as in G∗

6, else we are in G∗
7.

The change is formal.
Game G∗

8 : We perform a formal basis change to clean the 6-th coordinate of di. After G∗
7, the

vectors are of the form:

cℓ,i = (xℓ,i, x′ℓ,i, rℓ, 0, ρℓ,i, 04)Bi ; ci = (0, 0, r, 0, ρi, 0, 0, xi, r′)Bi

di = (y1i , y0i , σi, πi, 0, xi∆yi/r
′, y1i , y0i , τ ′i)B∗

i

dk,i = (yk,i, yk,i, σk,i, πk,i, 0, 0, yk,i, yk,i, 0)B∗
i
.

We recall that we are in the selective games and (xi, y
1
i , y

0
i )

H
i=1 are known in advance. For each i,

we define αi := −xi∆yi
r′τ ′i

, which is well-defined as r′τ ′i ̸= 0, and the bases (Hi,H
∗
i ) are changed to

(Bi,B
∗
i ) using:

Bi =

1 αi

0 1


6,9

·Hi B∗
i =

 1 0

−αi 1


6,9

·H∗
i .

It is important that all αi is defined only once for i, not depending on ℓ nor k, and therefore
they can be used for the unique basis changing matrices. The vectors ci and di change from Hi

and H∗
i to Bi and B∗

i accordingly:

cℓ,i = (xℓ,i, x′ℓ,i, rℓ, 0, ρℓ,i, 04)Hi = (xℓ,i, x′ℓ,i, rℓ, 0, ρℓ,i, 04)Bi

ci = (0, 0, r, 0, ρi, 0, 0, xi, r′)Hi = (0, 0, r, 0, ρi, 0, 0, xi, r′)Bi

di = (y1i , y0i , σi, πi, 0, xi∆yi/r
′, y1i , y0i , τ ′i)H∗

i

= (y1i , y0i , σi, πi, 0, xi∆yi/r
′ + αiτ

′
i , y1i , y0i , τ ′i)B∗

i

= (y1i , y0i , σi, πi, 0, 0, y1i , y0i , τ ′i)B∗
i

dk,i = (yk,i, yk,i, σk,i, πk,i, 0, 0, yk,i, yk,i, 0)H∗
i

= (yk,i, yk,i, σk,i, πk,i, 0, 0, yk,i, yk,i, 0)B∗
i
.

In bases (Hi,H
∗
i ) we have the vectors as in G∗

7, else we are in G∗
8. The change is formal and thus

Pr[G∗
8 = 1] = Pr[G∗

7 = 1].
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The above games demonstrate relation (5). We now employ the complexity leveraging argument. Let
us fix j ∈ {5, 6, 7}. For t ∈ {j, j+1} let Advt(A) := |Pr[Gt(A) = 1]−1/2| denote the advantage of a
ppt adversary A in game Gt. We build a ppt adversary B∗ playing against G∗

t such that its advantage
Adv∗

t (B∗) := |Pr[G∗
t (B∗) = 1]− 1/2| equals γ ·Advt(A) for t ∈ {j, j + 1}, for some constant γ.

The adversary B∗ first guesses for the values (xi, y
0
i , y

1
i )i∈[H], chooses r′

$← Z∗
q and two random

secret sharings (τi)
H
i=1, (τ

′
i)

H
i=1 of 0, with τi, τ

′
i ≠ 0 for all i, and define the event E that the guess

is correct on the values (xi, y
0
i , y

1
i )i∈[H] and τ ′i − τi = xi∆yi/r

′, where ∆yi := y1i − y0i . When B∗
guesses successfully and τ ′i − τi = xi∆yi/r

′ (call this event E), then the simulation of A’s view in Gt

is perfect. Otherwise, B∗ aborts the simulation and outputs a random bit b′. Since E happens with
some negligible probability γ and is independent of the view of A, we have:

Adv∗
t (B∗) =

∣∣Pr[G∗
t (B∗) = 1]− 1

2

∣∣
=
∣∣∣Pr[E] · Pr[G∗

t (B∗) = 1 | E] + Pr[¬E]
2 − 1

2

∣∣∣
=
∣∣∣γ · Pr[G∗

t (B∗) = 1 | E] + 1−γ−1
2

∣∣∣ (∗)= γ ·
∣∣Pr[Gt(A) = 1]− 1

2

∣∣ = γ ·Advt(A).

where (∗) comes from the fact that conditioned on E, B simulates perfectly Gt for A, therefore
Pr[Gt(A) = 1 | E] = Pr[G∗

t (B∗) = 1 | E], then we apply the independence between E and
Gt(A) = 1. This concludes that Pr[Gj = 1] = Pr[Gj+1 = 1] for any fixed j ∈ {5, 6, 7}, in particular
Pr[G5 = 1] = Pr[G8 = 1]. After G8, the vectors are now of the form:

cℓ,i = (xℓ,i, x′ℓ,i, rℓ, 0, ρℓ,i, 0, 0, 0, 0)Bi ; ci = (0, 0, r, 0, ρi, 0, 0, xi, r′)Bi

di = (y1i , y
0
i , σi, πi, 0, 0, y

1
i , y

0
i , τ

′
i)B∗

i
;dk,i = (yk,i, yk,i, σk,i, πk,i, 0, 0, yk,i, yk,i, 0)B∗

i
.

We redo the computational swap to move xi from coordinate 8 back to coordinate 2 of ci. The
calculation is similar, using basis changing matrices that affect coordinates (2, 5, 8). Given a DSDH
instance (JaK1 , JbK1 , JcK1) in G1 where δ := c− ab is either 0 or 1, the bases (Bi,B

∗
i ) are changed

following:

Bi =


1 0 0

a 1 −a

0 0 1


2,5,8

·Hi; B∗
i =


1 −a 0

0 1 0

0 a 1


2,5,8

·H∗
i .

All vectors are kept secret. We can compute completely Bi using JaK1 to simulate cℓ,i, ci:

cℓ,i = (xℓ,i, x′ℓ,i, rℓ, 0, ρℓ,i, 0, 0, 0, 0)Bi

ci = (0, 0, r, 0, ρi, 0, 0, xi, r′)Bi + (0, cxi, 0, 0, bxi, 0, 0,−cxi, 0)Hi

= (0, δxi , r, 0, ρi + bxi , 0, 0, (1− δ)xi , r′)Bi .

We can also write di,dk,i can be written in H∗
i and observed their transformation, for instance

di = (y1i , y0i , σi, πi, a(y0i − y0i ), 0, y1i , y0i , τ ′i)H∗
i
= (y1i , y0i , σi, πi, 0, 0, y1i , y0i , τ ′i)B∗

i
and

the same calculation can be done for dk,i. This induces an additive loss 2 · AdvDDH
G1

(1λ). We
redo the transition G0 → G1 to clean coordinates 9 of ci,di, which leads to an additive loss
2 ·AdvDDH

G2
(1λ) + 2 ·AdvDDH

G1
(1λ). Then, we redo the transition G1 → G2 to clean coordinates (7, 8)

of dk,i,di, which is formal. Finally we arrive at G9 whose vectors are sampled according to D1,
implying |Pr[G9]− Pr[G0]| ≤ 12 ·AdvSXDH

G1,G2
(1λ) and the proof is completed. ⊓⊔
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B.4 Proof of Theorem 9

Theorem 9. The DMCFE scheme E = (Setup,DKeyGen,Enc,Dec) is adaptively one-challenge
function-hiding in the ROM, under static corruption, if the SXDH assumption holds for G1 and
G2. More specifically, let qe denote the number of challenge queries for identical messages, and qk
denote the number of functional key queries. Then, for any ppt adversary A against E, we have the
following bound:

Adv1chal-adap-stat-fh
E,F ,A (1λ) ≤ (26qe + 14qk + 32) ·AdvSXDH

G1,G2
(1λ)

Proof. The proof is done via a sequence of hybrid games. The games are depicted in Figure 3.

Game G0: This is the experiment Exp1chal-adap-stat-fh-0
E,F ,A (1λ). Because we are in the one-challenge

setting with static corruption, the adversary will declare since Initialize the challenge ciphertext
tag tag∗, the challenge function tag tag-f∗ as well as the set C ⊂ [n] of corrupted clients. We
define H := [n] \ C. Knowing tag∗, tag-f∗, we index by ℓ ∈ [qe] the ℓ-th group of ciphertext
components queried to OEnc for tagℓ ̸= tag∗. Similarly, we index by k ∈ [qk] the k-th group of
key components queried to OKeyGen for tag-fk ̸= tag-f∗.

There are 2 secret sharings of 0, namely (s̃i)i and (t̃i)i, that we generate from Initialize. For the
tag tag-fk w.r.t non-challenge functional key queries, we denote H2(tag-fk)→ JµkK2 and define
sk,i := µk · s̃i. Similarly, for the only challenge functional key query to DKeyGen corresponding
to tag-f∗, we denote H2(tag-f

∗)→ JµK2 and define si := µ · s̃i. We remark that for all k ∈ [qk],
(sk,i)i is a secret sharing of 0, and the same holds for (si)i as well.

In the same manner, for the ℓ-th non-challenge tag tag, we write H1(tagℓ)→ JωℓK1 and tℓ,i := ωℓ · t̃i.
For the challenge tag tag∗, we denote H1(tag

∗)→ JωK1 and ti := ω · t̃i. In the end, the challenger
provides:

cℓ,i = (xℓ,i, ωℓ, 0, 0, 0, 0, 0, ωℓt̃i, 0, ρℓ,i, 0, 0, 0, 0, 0)Bi

dk,i = (yk,i, µks̃i, 0, 0, 0, 0, 0, µk, πk,i, 0, 0, 0, 0, 0, 0)B∗
i

ci = (x0i , ω, 0, 0, 0, 0, 0, ωt̃i, 0, ρi, 0, 0, 0, 0, 0)Bi

di = (y0i , µs̃i, 0, 0, 0, 0, 0, µ, πi, 0, 0, 0, 0, 0, 0)B∗
i

Note that the admissibility condition in Definition 4 requires that x0i = x1i (resp. y0i = y1i ) for all
queries to OEnc (resp. ODKeyGen) where i ∈ C. Therefore, we are already done for all i ∈ C. For
this reason, all transitions in this prove apply only to pairs of bases (Bi,B

∗
i ) where i ∈ H. This

means in particular that all basis vectors considered in the proof are hidden from the adversary.

Game G1: The vectors are now:

cℓ,i = (xℓ,i, ωℓ, 0, 0, 0, 0, 0, ωℓt̃i, 0, ρℓ,i, 04)Bi

dk,i = (yk,i, µks̃i, 0, 0, 0, 0, σk,i, µk, πk,i, 0, 04)B∗
i

ci = (x0i , ω, 0, 0, 0, 0, r, ωt̃i, 0, ρi, 04)Bi

di = (y0i , µs̃i, 0, 0, 0, 0, σi, µ, πi, 0, 04)B∗
i

In this game we replace the shifted secret shares of 0 in di,dk,i (respectively ci, cℓ,i), which
are si := µ · s̃i and sk,i := µk · s̃i (respectively ti := µ · t̃i and tℓ,i := ωℓ · t̃i), while H1(tag)→
JωK1 ,H1(tag)→ JωℓK1 ,H2(tag-f)→ JµK2 ,H2(tag-f)→ JµkK2 and H1,H2 are modeled as random
oracles. We proceed as follows:
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G0.1: We program H1 at the points tag, (tagℓ)ℓ∈[qe] by sampling ω, ωℓ
$← Zq and setting H1(tag) :=

JωK1 ,H1(tag-f) := JωℓK1. The same programmation is done for H2. This gives a perfect
simulation and Pr[G0.1] = Pr[G0].

G0.2: We replace the shifted shares in di,dk,i by random secret shares, while preserving their
sum. Our key observation is that: because we are in the static corruption model, all corrupted
i are known since the beginning. More specifically, the secret shares (s̃i)

n
i=1 are generated at

setup and
∑

i∈H s̃i = −
(∑

i∈C s̃i
)
is fixed since the beginning. Therefore, upon receiving the

challenge tag tag-f (that is declared up front by the adversary in the current one-challenge
setting) as well as all other non-challenge tags tag-fk, thanks to the programmation of the
RO from G0.1, all the sums:

R := µ
∑
i∈H

s̃i; Rk := µk

∑
i∈H

s̃i

are fixed in advance. We use this observation and the random-self reducibility of DDH in
G2 in a sequence of hybrids G0.1.k over k ∈ [qk + 1] ∪ {0} for changing the non-challenge key
query dk,i under tag-fk as well as changing the challenge key query di undef tag-f.

In the hybrid G0.1.k with 0 ≤ k ≤ qk, the first k non-challenge key queries dk,i are having a
random secret shares over i ∈ H:

dk,i = (yk,i, sk,i , 0, 0, 0, 0, σk,i, µk, πk,i, 0, 04)B∗
i

where sk,i
$← Zq and

∑
i∈H sk,i = Rk = µk ·

∑
i∈H s̃i. In the hybrid G0.1.qk+1 we change the

challenge key query di:

di = (y0i , si, 0, 0, 0, 0, σi, µ, πi, 0, 04)B∗
i

where si
$← Zq and

∑
i∈H si = R = µ ·

∑
i∈H s̃i. We have G0.1.0 = G0.1 and G0.1.qk+1 = G0.2.

We describe the transition from G0.1.k−1 to G0.1.k for k ∈ [qk + 1], using a DDH instance
(JaK2 , JbK2 , JcK2) where c − ab = 0 or a uniformly random value. Given a ppt adversary A
that can distinguish G0.1.k−1 from G0.1.k that differ at the k-th key query (being the challenge
key if k = qk + 1), we build a ppt adversary B that breaks the DDH:

– The adversary B uses JaK2 to simulate H2(tag-fk) (or H2(tag-f
∗) if we are in the last

transition to G0.1.qk+1). This implicitly sets µk := a.

– The adversary B samples s̃i
$← Zq for corrupted i, as well as other parameters to output

the corrupted keys (eki, ski) to A. Then, B computes and defines Sk := −
∑

i∈C s̃i.
– Let us denote H := |H| the number of honest i, For i among the first H − 1 honest clients
whose keys are never leaked, B uses the random-self reducibility to compute Jµks̃iK2 for
responding to the k-th key query dk,i (or the challenge di if k = qk + 1).

– First of all, for i among the first |H| − 1 honest, B samples αk,i, βk,i
$← Zq and implicitly

defines bk,i := αk,ib+ βk,i, ck,i := αk,ic+ βk,ia. We note that{
Jbk,iK2 = αk,i JbK2 + Jβk,iK2
Jck,iK2 = αk,i JcK2 + βk,i JaK2

are efficiently computable from the DDH instance. Then, B uses Jck,iK2 in the simulation
of dk,i (or di in the last hybrid).
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– Next, for the last H-th honest client, B computes and defines:

Jck,HK2 := Sk · JaK2 −
∑

i∈H\{H}

Jck,iK2 (6)

where Sk is known in clear from above and other honest Jck,iK2 can be computed as
explained. The adversary B then uses Jck,HK2 to simulation the H-th key component
of the k-th key query. We emphasize that we makes use of the static corruption in the
simulation for honest i, since we never have to compute the (ck,i)i∈H in the clear and can
embed the DDH instance so that on the exponents (of group elements) they sum to Sk.

It can be verified that if c− ab = 0, then B is simulating the k-th query where B simulates
dk,i[2] = µks̃i := abk,i and we are in G0.1.k−1; Else dk,i[2] = sk,i := ck,i is a totally uniformly
random value such that

∑
i∈H ck,i + µk

∑
i∈C s̃i = aSk + µk

∑
i∈C s̃i = 0 thanks to (6) and

the definition of Sk.
In the end we have |Pr[G0.1.k−1 = 1]− Pr[G0.1.k = 1]| ≤ AdvDDH

G2
(1λ) and thus |Pr[G0.2 =

1]− Pr[G0.1 = 1]| ≤ (qk + 1) ·AdvDDH
G2

(1λ).
G0.3: We replace the shifted shares ωt̃i, ωℓt̃i in ci, cℓ,i by random secret shares ti, tℓ,i for i ∈ H,

while preserving their sum. The random secret shares ti, tℓ,i are sampled uniformly at random
in Zq and satisfy: ∑

i∈H
ti = ω

∑
i∈H

t̃i;
∑
i∈H

tℓ,i = ωℓ

∑
i∈H

t̃i

where
∑

i∈H t̃i is fixed from the beginning due to the static corruption setting, and the
challenge tag is declared up front in the current one-challenge setting. We use the same
argument as from G0.1 to G0.2, using DDH in G1 and with (qe + 2) hydrids (to change qe
ciphertext queries then the 1 challenge ciphertext). This gives us |Pr[G0.3 = 1]− Pr[G0.2 =
1]| ≤ (qe + 1) ·AdvDDH

G1
(1λ).

After arriving at G0.3 the vectors are now having the form:

cℓ,i = (xℓ,i, ωℓ, 0, 0, 0, 0, 0, tℓ,i , 0, ρℓ,i, 04)Bi

dk,i = (yk,i, sk,i , 0, 0, 0, 0, 0, µk, πk,i, 0, 04)B∗
i

ci = (x0i , ω, 0, 0, 0, 0, 0, ti , 0, ρi, 04)Bi

di = (y0i , si , 0, 0, 0, 0, 0, µ, πi, 0, 04)B∗
i

as desired in G1. As a result G0.3 = G1 and the total difference in advantages is |Pr[G1 =
1]− Pr[G0 = 1]| ≤ (qk + 1) ·AdvDDH

G2
(1λ) + (qe + 1) ·AdvDDH

G1
(1λ).

Game G2: We perform a computational basis change so as to introduce new random values
r, rℓ

$← Zq and secret sharings (σi)i∈H, (σk,i)i∈H of 0, at coordinate 7.

cℓ,i = (xℓ,i, ωℓ, 0, 0, 0, 0, rℓ , tℓ,i, 0, ρℓ,i, 04)Bi

dk,i = (yk,i, sk,i, 0, 0, 0, 0, σk,i , µk, πk,i, 0, 04)B∗
i

ci = (x0i , ω, 0, 0, 0, 0, r , ti, 0, ρi, 04)Bi

di = (y0i , si, 0, 0, 0, 0, σi , µ, πi, 0, 04)B∗
i

We proceed in two steps:
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• G1.1: We use the subspace indistinguishability to introduce random values r, r1, . . . , rqe
$← Zq

in the 7-th coordinate of all c-vectors, while keeping di[7] = dk,i[7] = 0:

ci = (xℓ,i, ωℓ, 0, 0, 0, 0, rℓ , tℓ,i, 0, ρℓ,i, 04)Bi

cℓ,i = (x0i , ω, 0, 0, 0, 0, r , ti, 0, ρi, 04)Bi

Given a DSDH instance (JaK1 , JbK1 , JcK1) in G1 where δ := c− ab is either 0 or 1, the basis
changing matrices are:

Bi :=

1 a

0 1


2,7

B′
i :=

(
B−1

i

)⊤
=

 1 0

−a 1


2,7

Bi = Bi ·Hi B∗
i = B′

i ·H∗
i .

We compute Bi and write the c-vectors as follows:

cℓ,i = (xℓ,i, ωℓ, 0, 0, 0, 0, 0, tℓ,i, 0, ρℓ,i, 04)Bi

+ (0, brℓ, 0, 0, 0, 0, crℓ, 0, 0, 0, 04)Hi

= (xℓ,i, ωℓ + brℓ , 0, 0, 0, 0, δrℓ, tℓ,i, 0, ρℓ,i, 04)Bi

ci = (x0i , ω, 0, 0, 0, 0, 0, ti, 0, ρi, 04)Bi

+ (0, br, 0, 0, 0, 0, cr, 0, 0, 0, 04)Hi

= (x0i , ω + br , 0, 0, 0, 0, δr, ti, 0, ρi, 04)Bi

We implicitly update ω to ω + br and ωℓ to ωℓ + brℓ. We cannot compute b∗i,7 but can write
the d-vectors in H∗

i and observe that they stay invariant in B∗
i as their 7-th coordinate is 0:

di = (y0i , si, 0, 0, 0, 0, σi, µ, πi, 0, 04)H∗
i

= (y0i , si, 0, 0, 0, 0, σi, µ, πi, 0, 04)B∗
i

dk,i = (yk,i, sk,i, 0, 0, 0, 0, σk,i, µk, πk,i, 0, 04)H∗
i

= (yk,i, sk,i, 0, 0, 0, 0, σk,i, µk, πk,i, 0, 04)B∗
i

If δ = 0 we are in G1 else we are in G1.1. The difference in advantages is |Pr[G1.1 = 1]−Pr[G1 =
1]| ≤ 2 ·AdvDDH

G1
(1λ).

• G1.2: We use DSDH in G2 to introduce random secret shares of 0, (σi)i∈H and (σk,i)i∈H for
k ∈ [qk], in the 7-th coordinate of the d-vectors. Given a DSDH instance (JaK2 , JbK2 , JcK2) in
G2 where δ := c− ab is either 0 or 1, the bases are changed w.r.t the following matrices:

Bi :=

 1 0

−a 1


2,7

B′
i :=

(
B−1

i

)⊤
=

1 a

0 1


2,7

Bi = Bi ·Hi B∗
i = B′

i ·H∗
i .
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We compute B∗
i and write the d-vectors as follows:

dk,i = (yk,i, si, 0, 0, 0, 0, 0, µk, πk,i, 0, 04)B∗
i

+ (0, bσk,i, 0, 0, 0, 0, cσk,i, 0, 0, 0, 04)H∗
i

= (yk,i, sk,i + bσk,i , 0, 0, 0, 0, δσk,i, µk, πk,i, 0, 04)B∗
i

di = (y0i , si, 0, 0, 0, 0, 0, µ, πi, 0, 04)B∗
i

+ (0, bσi, 0, 0, 0, 0, cσi, 0, 0, 0, 04)H∗
i

= (y0i , si + bσi , 0, 0, 0, 0, δσi, µ, πi, 0, 04)B∗
i

The secret shares (sk,i)i∈H and (si)i∈H are updated to (sk,i + bσk,i)i∈H and (si + bσi)i∈H, by
adding a linear shift of (σk,i, σi)i∈H, and thus stay random independent secret shares of 0.

We cannot compute bi,7 but can write the c-vectors in Hi, for r
′, r′ℓ

$← Zq:

cℓ,i = (xℓ,i, r′ℓ, 0, 0, 0, 0, rℓ, tℓ,i, 0, ρℓ,i, 04)Hi

= (xℓ,i, r′ℓ + arℓ , 0, 0, 0, 0, rℓ, tℓ,i, 0, ρℓ,i, 04)Bi

ci = (x0i , r′, 0, 0, 0, 0, r, ti, 0, ρi, 04)Hi

= (x0i , r′ + ar, 0, 0, 0, 0, r, ti, 0, ρi, 04)Bi

while simulating ωℓ := r′ℓ + arℓ and ω := r′ + ar. If δ = 0 we are in G1.1 else we are in G1.2.
The difference in advantages is |Pr[G1.2 = 1]− Pr[G1.1 = 1]| ≤ 2 ·AdvDDH

G2
(1λ).

After G1.2 = G2, the vectors are now:

cℓ,i = (xℓ,i, ωℓ, 0, 0, 0, 0, rℓ , tℓ,i, 0, ρℓ,i, 04)Bi

dk,i = (yk,i, sk,i, 0, 0, 0, 0, σk,i , µk, πk,i, 0, 04)B∗
i

ci = (x0i , ω, 0, 0, 0, 0, r , ti, 0, ρi, 04)Bi

di = (y0i , si, 0, 0, 0, 0, σi , µ, πi, 0, 04)B∗
i

and in total |Pr[G2 = 1]− Pr[G1 = 1]| ≤ 2 ·AdvDDH
G2

(1λ) + 2 ·AdvDDH
G1

(1λ).
Game G3: We perform a sequence of basis changes to alter keys and ciphertexts as follows:

cℓ,i = (0, 0, xℓ,i , 0, ωℓ , 0, rℓ, tℓ,i, 0, ρℓ,i, 04)Bi

dk,i = (0, 0, yk,i , yk,i , sk,i , sk,i , σk,i, µk, πk,i, 0, 04)B∗
i

ci = (x0i , ω, 0, x0i , 0, ω , r, ti, 0, ρi, 04)Bi

di = (y0i , si, y0i , 0, si , 0, σi, µ, πi, 0, 04)B∗
i

We detail below the transition from game G2 to G3, which is depicted in Figure 5.
• G2.0 = G2.
• G2.1: We start with a formal basis change to duplicate the coordinates (1, 2) of di and dk,i

into their coordinates (3, 5), for i ∈ H and k ∈ [qk]:

dk,i = (yk,i, sk,i, yk,i , 0, sk,i , 0, σk,i, µk, πk,i, 0, 04)B∗
i

di = (y0i , si, y0i , 0, si , 0, σi, µ, πi, 0, 04)B∗
i
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Game G2.0 = G2:
∑n

i=1 si =
∑n

i=1 ti =
∑n

i=1 sk,i =
∑n

i=1 tℓ,i = 0, H(tagℓ)→ JωℓK1, H1(tag
∗)→ JωK1, H2(tag-fk)→

JµkK2, H2(tag-f
∗)→ JµK2

cℓ,i = ( xℓ,i ωℓ 0 0 0 0 rℓ tℓ,i 0 ρℓ,i 04 )Bi

dk,i = ( yk,i sk,i 0 0 0 0 σk,i µk πk,i 0 04 )B∗
i

ci = ( x0
i ω 0 0 0 0 r ti 0 ρi 04 )Bi

di = ( y0
i si 0 0 0 0 σi µ πi 0 04 )B∗

i

Game G2.1: (Formal Duplication)

dk,i = ( yk,i sk,i yk,i 0 sk,i 0 σk,i µk πk,i 0 04 )B∗
i

di = ( y0
i si y0

i 0 si 0 σi µ πi 0 04 )B∗
i

Game G2.2 : (Swapping)

cℓ,i = ( 0 0 xℓ,i 0 ωℓ 0 rℓ tℓ,i 0 ρℓ,i 04 )Bi

dk,i = ( yk,i sk,i yk,i 0 sk,i 0 σk,i µk πk,i 0 04 )B∗
i

di = ( y0
i si y0

i 0 si 0 σi µ πi 0 04 )B∗
i

Game G2.3 : (Formal Duplication)

cℓ,i = ( 0 0 xℓ,i 0 ωℓ 0 rℓ tℓ,i 0 ρℓ,i 04 )Bi

ci = ( x0
i ω 0 x0

i 0 ω r ti 0 ρi 04 )Bi

Game G2.4 = G3 : (Swapping)

cℓ,i = ( 0 0 xℓ,i 0 ωℓ 0 rℓ tℓ,i 0 ρℓ,i 04 )Bi

dk,i = ( 0 0 yk,i yk,i sk,i sk,i σk,i µk πk,i 0 04 )B∗
i

ci = ( x0
i ω 0 x0

i 0 ω r ti 0 ρi 04 )Bi

di = ( y0
i si y0

i 0 si 0 σi µ πi 0 04 )B∗
i

Fig. 5: Transition from G2 to G3 in the proof of Theorem 9.

The ciphertexts ci and cℓ,i for ℓ ∈ [qe] remain unchanged. Let (Hi,H
∗
i ) be a pair of random

dual bases. We change the bases w.r.t the following matrices:

Bi :=


1 0 0 0

0 1 0 0

1 0 1 0

0 1 0 1


1,2,3,5

B′
i :=

(
B−1

i

)⊤
=


1 0 −1 0

0 1 0 −1

0 0 1 0

0 0 0 1


1,2,3,5

Bi = Bi ·Hi B∗
i = B′

i ·H∗
i .
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The simulator can write:

cℓ,i = (xℓ,i, ωℓ, 0, 0, 0, 0, rℓ, tℓ,i, 0, ρℓ,i, 0
4)Hi

= (xℓ,i, ωℓ, 0, 0, 0, 0, rℓ, tℓ,i, 0, ρℓ,i, 04)Bi

dk,i = (yk,i, sk,i, 0, 0, 0, 0, σk,i, µk, πk,i, 0, 04)H∗
i

= (yk,i, sk,i, yk,i , 0, sk,i , 0, σk,i, µk, πk,i, 0, 04)B∗
i

ci = (x0i , ω, 0, 0, 0, 0, r, ti, 0, ρi, 04)Hi

= (x0i , ω, 0, 0, 0, 0, r, ti, 0, ρi, 04)Bi

di = (y0i , si, 0, 0, 0, 0, σi, µ, πi, 0, 04)H∗
i

= (y0i , si, y0i , 0, si , 0, σi, µ, πi, 0, 04)B∗
i

Thus, writing ciphertexts and keys in (Hi,H
∗
i ) corresponds to G2.0. Else we are in G2.1. As

the basis change is formal, we have Pr[G2.1 = 1] = Pr[G2.0 = 1].
• G2.2: We perform two computational swaps on the ciphertexts cℓ,i from OEnc. We demonstrate
how to swap the coordinates (1, 3). Swapping the coordinates (2, 5) can be done similarly.
Given a DSDH instance (JaK1 , JbK1 , JcK1) in G1 where δ := c− ab is either 0 or 1, the bases
(Bi,B

∗
i ) are changed w.r.t to the following matrices:

Bi :=


1 0 0

0 1 0

−a a 1


1,3,10

B′
i :=

(
B−1

i

)⊤
=


1 0 a

0 1 −a

0 0 1


1,3,10

Bi = Bi ·Hi B∗
i = B′

i ·H∗
i .

As Bi can be computed using JaK1, the simulator can write:

cℓ,i = (xℓ,i, ωℓ, 0, 0, 0, 0, rℓ, tℓ,i, 0, ρℓ,i, 04)Bi

+ (−c · xℓ,i, 0, c · xℓ,i, 0, 0, 0, 0, 0, 0, b · xℓ,i, 04)Hi

= ((1− δ) · xℓ,i, ωℓ, δ · xℓ,i, 0, 0, 0, rℓ, tℓ,i, 0, ρℓ,i + b · xℓ,i, 04)Bi

The random value ρℓ,i is implicitly updated to ρℓ,i + bxℓ,i. The challenge ciphertext ci which
remains unchanged in this hybrid can be written completely in Bi. The basis vectors b∗

i,1

and b∗
i,3 cannot be computed due to the lack of JaK2. However, the simulator can write keys

directly in H∗
i to observe how they will change:

dk,i = (yk,i, sk,i, yk,i, 0, sk,i, 0, σk,i, µk, πk,i, 0, 04)H∗
i

= (yk,i, sk,i, yk,i, 0, sk,i, 0, σk,i, µk, πk,i, 0 + yk,i − yk,i , 0
4)B∗

i

di = (y0i , si, y0i , 0, si, 0, σi, µ, πi, 0, 04)H∗
i

= (y0i , si, y0i , 0, si, 0, σi, µ, πi, 0 + y0i − y0i , 04)B∗
i

If δ = 0 we are not swapping, else we are swapping xℓ,i from the 1-st to the 3-rd coordinate
of cℓ,i. In the end, combining the two swappings gives us |Pr[G2.2 = 1] − Pr[G2.1 = 1]| ≤
4 ·AdvDDH

G1
(1λ).
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• G2.3: We continue with the challenge ciphertexts ci for i ∈ H. We duplicate the coordinates
(1, 2) into coordinates (4, 6). Consider the following basis changing matrices:

Bi :=


1 0 −1 0

0 1 0 −1

0 0 1 0

0 0 0 1


1,2,4,6

B′
i :=

(
B−1

i

)⊤
=


1 0 0 0

0 1 0 0

1 0 1 0

0 1 0 1


1,2,4,6

Bi = Bi ·Hi B∗
i = B′

i ·H∗
i .

Then the simulator can write:

cℓ,i = (0, 0, xℓ,i, 0, ωℓ, 0, rℓ, tℓ,i, 0, ρℓ,i, 0
4)Hi

= (0, 0, xℓ,i, 0, ωℓ, 0, rℓ, tℓ,i, 0, ρℓ,i, 04)Bi

dk,i = (yk,i, sk,i, yk,i, 0, sk,i, 0, σk,i, µk, πk,i, 0, 04)H∗
i

= (yk,i, sk,i, yk,i, 0, sk,i, 0, σk,i, µk, πk,i, 0, 04)B∗
i

ci = (x0i , ω, 0, 0, 0, 0, r, ti, 0, ρi, 04)Hi

= (x0i , ω, 0, x0i , 0, ω , r, ti, 0, ρi, 04)Bi

di = (y0i , si, y0i , 0, si, 0, σi, µ, πi, 0, 04)H∗
i

= (y0i , si, y0i , 0, si, 0, σi, µ, πi, 0, 04)B∗
i

Thus, writing ciphertexts and keys in (Hi,H
∗
i ) corresponds to G2.2, else we are in G2.3. As

the basis change is formal, we have Pr[G2.3 = 1] = Pr[G2.2 = 1].
• G2.4 = G3: Finally, we perform two computational swaps on the non-challenge functional
keys dk,i. We demonstrate how to swap coordinates (1, 4). Coordinates (2, 6) can be swapped
similarly. Given a DSDH instance (JaK2 , JbK2 , JcK2) in G2 where δ := c− ab is either 0 or 1,
we define:

Bi :=


1 0 a

0 1 −a

0 0 1


1,4,9

B′
i :=

(
B−1

i

)⊤
=


1 0 0

0 1 0

−a a 1


1,4,9

Bi = Bi ·Hi B∗
i = B′

i ·H∗
i .

The basis vector b∗
i,9 can be computed using JaK2. Then the simulator can write:

dk,i = (yk,i, sk,i, yk,i, 0, sk,i, 0, σk,i, µk, πk,i, 0, 04)B∗
i

+ (−c · yk,i, 0, 0, c · yk,i, 0, 0, 0, 0, b · yk,i, 0, 04)H∗
i

= ((1− δ)yk,i, sk,i, yk,i, δyk,i, sk,i, 0, σk,i, µk, πk,i + b · yk,i, 0, 04)B∗
i

The random value πk,i is implicitly updated to πk,i+ byk,i. The challenge secret key di can be
written completely in B∗

i . We cannot compute bi,1 and bi,4 due to the lack of JaK1. However,
the simulator can write ci and cℓ,i directly in Hi since their representation is invariant under
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the above basis change:

cℓ,i = (0, 0, xℓ,i, 0, ωℓ, 0, rℓ, tℓ,i, 0, ρℓ,i, 0
4
Hi

= (0, 0, xℓ,i, 0, ωℓ, 0, rℓ, tℓ,i, 0, ρℓ,i, 04)Bi

ci = (x0i , ω, 0, x0i , 0, ω, r, ti, 0, ρi, 04)Hi

= (x0i , ω, 0, x0i , 0, ω, r, ti, 0− ax0i + ax0i , ρi, 04)Bi

If δ = 0, then we are not swapping, else we are swapping the coordinates (1, 4) of dk,i. After
two swappings, we obtain |Pr[G2.4 = 1]− Pr[G2.3 = 1]| ≤ 4 ·AdvDDH

G2
(1λ).

In the end, we have

|Pr[G3 = 1]− Pr[G2 = 1]| ≤ 4 ·AdvDDH
G1

(1λ) + 4 ·AdvDDH
G2

(1λ) .

Game G4: We flip the bit in the first coordinates. More specifically, we transform (ci,di) into the
following form:

ci = (x1i , ω, 0, x0i , 0, ω, r, ti, 0, ρi, 04)Bi

di = (y1i , s′i , y0i , 0, si, 0, σi, µ, πi, 0, 04)B∗
i
,

where zi = x1i y
1
i −x0i y

0
i and s′i = si− zi/ω. As we are in the one-challenge setting, both challenge

tags, specifically tag for ciphertext and tag-f for functional key, are announced by the adversary
during Initialize thus we do not have to guess ω nor µ.
As in [24], we obtain adaptive security by employing the complexity leveraging technique: First,
we prove perfect security in the fully selective variant of the involved games, where the adversary
needs to announce both challenge messages and challenge functions before the setup. Then,
using a guessing argument, we obtain the same security guarantees in the adaptive games. The
guessing incurs an exponential security loss. However, as the security in the selective game is
perfect, i.e. the advantage of the adversary is exactly 0, the security loss is multiplied by a zero
term. So the overall adaptive security is preserved.
For the transition G3 → G4 we guess in advance (x1i , x

0
i , y

0
i , y

1
i )i∈H, program the RO of H1 to

output JωK1 for ω
$← Zq, on the challenge ciphertext tag tag∗, sample ω′

i, ω
′′
i

$← Z∗
q for all i ∈ H.

We define an event E to say that the guesses are correct when ω′
i = ωy0i , ω

′′
i = ωy1i .

Step 1. For j ∈ {3, 4} we denote by G∗
j the fully selective variant of Gj , where E is assumed true.

Using a formal basis change, we show that the advantage of any ppt adversary in distinguishing
between G∗

3 and G∗
4 is exactly 0. We remark that assuming E true implies ω ̸= 0, y0i ≠ 0, y1i ̸= 0.

Let (Hi,H
∗
i ) be a pair of random dual bases and zi := x1i y

1
i − x0i y

0
i . The basis change is done

w.r.t the following matrices:

Bi :=

 y1i /y
0
i 0

−zi/ω′
i 1


1,2

B′
i :=

(
B−1

i

)⊤
=

y0i /y1i zi/ω
′′
i

0 1


1,2

Bi = Bi ·Hi B∗
i = B′

i ·H∗
i .

The simulator can write:

ci = (x0i , ω, 0, x0i , 0, ω, r, ti, 0, ρi, 04)Hi

= (x1i , ω, 0, x0i , 0, ω, r, ti, 0, ρi, 04)Bi

di = (y0i , si, y0i , 0, si, 0, σi, µ, πi, 0, 04)H∗
i

= (y1i , si − zi/ω, y0i , 0, si, 0, σi, µ, πi, 0, 04)B∗
i
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Furthermore, we observe that ciphertexts cℓ,i and keys dk,i are invariant under this basis change
because their first two coordinates are 0. Thus, writing (ci,di) in (Hi,H

∗
i ) corresponds to G∗

4.
Else we are in G∗

3. Since the basis change is formal, we have Pr[G∗
4 = 1] = Pr[G∗

3 = 1].

Step 2. For j ∈ {3, 4} let Advj(A) := |Pr[Gj(A) = 1]− 1/2| denote the advantage of a ppt
adversary A in game Gj . We build a ppt adversary B∗ playing against G∗

j such that its advantage
Adv∗

j (B∗) := |Pr[G∗
j (B∗) = 1]− 1/2| equals γ ·Advj(A) for j ∈ {3, 4} and Pr[E] = γ.

B∗ first guesses xi,yi
$← Z2

q ∪ {⊥} for all i ∈ [n] which it sends to its fully selective game G∗
j .

That is, each guess xi is either a pair of values (x0i , x
1
i ) queried to OEnc, or ⊥ which means no

query to OEnc. Similarly, yi is either interpreted as a query (y0i , y
1
i ) to ODKeyGen or no query

to ODKeyGen. Then, adversary B programs the RO of H1 to output JωK1 for ω
$← Zq, on the

challenge tag tag∗, samples ω′
i, ω

′′
i

$← Z∗
q for all i ∈ H, and simulates the view of A using its own

oracles. When ω′
i = ωy0i , ω

′′
i = ωy1i (call this event E), then the simulation of A’s view in Gj is

perfect. Otherwise, B∗ aborts the simulation and outputs a random bit b′. Since E happens with
probability γ and is independent of the view of A, we have:

Adv∗
j (B∗) =

∣∣∣∣Pr[G∗
j (B∗) = 1]− 1

2

∣∣∣∣
=

∣∣∣∣Pr[E] · Pr[G∗
j (B∗) = 1 | E] +

Pr[¬E]

2
− 1

2

∣∣∣∣
=

∣∣∣∣γ · Pr[G∗
j (B∗) = 1 | E] +

1− γ − 1

2

∣∣∣∣
(∗)
= γ ·

∣∣∣∣Pr[Gj(A) = 1]− 1

2

∣∣∣∣
= γ ·Advj(A)

where (∗) comes from the fact that conditioned on E, B simulates perfectly Gj for A, therefore
Pr[Gj(A) = 1 | E] = Pr[G∗

j (B∗) = 1 | E], then we apply the independence between E and
[Gj(A) = 1]. Combining the above argument with Pr[G∗

4 = 1] = Pr[G∗
3 = 1] implies Pr[G4 = 1] =

Pr[G3 = 1].
Game G5: We perform a computational swapping on the coordinates (2, 6) of the non-challenge

functional keys dk,i. The challenge functional key di and the c-vectors remain unchanged.

dk,i = (0, sk,i , yk,i, yk,i, sk,i, 0, σk,i, µk, πk,i, 0, 04)B∗
i

Given a DSDH instance (JaK2 , JbK2 , JcK2) in G2 where δ := c− ab is either 0 or 1, we define:

Bi :=


1 0 −a

0 1 a

0 0 1


2,6,9

B′
i :=

(
B−1

i

)⊤
=


1 0 0

0 1 0

a −a 1


2,6,9

Bi = Bi ·Hi B∗
i = B′

i ·H∗
i .

The basis vector b∗
i,9 can be computed using JaK2. Then the simulator can write:

dk,i = (0, 0, yk,i, yk,i, sk,i, sk,i, σk,i, µk, πk,i, 0, 04)B∗
i

+ (0, c · sk,i, 0, 0, 0, − c · sk,i, 0, 0, b · sk,i, 0, 04)H∗
i

= (0, δ · sk,i, yk,i, yk,i, sk,i, (1− δ)sk,i, σk,i, µk, πk,i + b · sk,i, 0, 04)B∗
i
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Game G5.0 = G5:
∑n

i=1 si =
∑n

i=1 ti =
∑n

i=1 sk,i =
∑n

i=1 tℓ,i = 0, H(tagℓ)→ JωℓK1, H1(tag
∗)→ JωK1, H2(tag-fk)→

JµkK2, H2(tag-f
∗)→ JµK2

cℓ,i = ( 0 0 xℓ,i 0 ωℓ 0 rℓ tℓ,i 0 ρℓ,i 04 )Bi

dk,i = ( 0 sk,i yk,i yk,i sk,i 0 σk,i µk πk,i 0 04 )B∗
i

ci = ( x1
i ω 0 x0

i 0 ω r ti 0 ρi 04 )Bi

di = ( y1
i s′i y0

i 0 si 0 σi µ πi 0 04 )B∗
i

Game G5.1 : (Hybrids of Secret-Sharing Swapping (Lemma 8) for each cℓ,i)

cℓ,i = ( 0 ωℓ xℓ,i 0 0 0 rℓ tℓ,i 0 ρℓ,i 04 )Bi

dk,i = ( 0 sk,i yk,i yk,i sk,i 0 σk,i µk πk,i 0 04 )B∗
i

ci = ( x1
i ω 0 x0

i 0 ω r ti 0 ρi 04 )Bi

di = ( y1
i s′i y0

i 0 si 0 σi µ πi 0 04 )B∗
i

Game G5.2 : (Hybrids of Secret-Sharing Swapping (Lemma 8) for each dk,i)

cℓ,i = ( 0 ωℓ xℓ,i 0 0 0 rℓ tℓ,i 0 ρℓ,i 04 )Bi

dk,i = ( yk,i sk,i yk,i 0 sk,i 0 σk,i µk πk,i 0 04 )B∗
i

ci = ( x1
i ω 0 x0

i 0 ω r ti 0 ρi 04 )Bi

di = ( y1
i s′i y0

i 0 si 0 σi µ πi 0 04 )B∗
i

Game G5.3 = G6 : (Hybrids of Secret-Sharing Swapping (Lemma 8) for each cℓ,i)

cℓ,i = ( xℓ,i ωℓ 0 0 0 0 rℓ tℓ,i 0 ρℓ,i 04 )Bi

dk,i = ( yk,i sk,i yk,i 0 sk,i 0 σk,i µk πk,i 0 04 )B∗
i

ci = ( x1
i ω 0 x0

i 0 ω r ti 0 ρi 04 )Bi

di = ( y1
i s′i y0

i 0 si 0 σi µ πi 0 04 )B∗
i

Fig. 6: Transition from G5 to G6 in Theorem 9.

The random value πk,i is implicitly updated to πk,i + bsk,i. The challenge secret key di can be
written completely in B∗

i . We cannot compute bi,2 and bi,6 due to the lack of JaK1. However,
the simulator can write ci and cℓ,i directly in Hi since their representation is invariant under
the above basis change. If δ = 0, then we are in G4, else we are G5. Finally, we obtain
|Pr[G5 = 1]− Pr[G4 = 1]| ≤ 2 ·AdvDDH

G2
(1λ).

Game G6: We perform a sequence of basis changes to alter keys and ciphertexts as follows:

cℓ,i = (xℓ,i , ωℓ , 0, 0, 0, 0, rℓ, tℓ,i, 0, ρℓ,i, 04)Bi

dk,i = (yk,i , sk,i, yk,i, 0, sk,i, 0, σk,i, µk, πk,i, 0, 04)B∗
i

ci = (x1i , ω, 0, x0i , 0, ω, r, ti, 0, ρi, 04)Bi

di = (y1i , s′i, y0i , 0, si, 0, σi, µ, πi, 0, 04)B∗
i

We detail below the transition from game G5 to G6, which is depicted in Figure 6. The secret-
sharing swapping lemma (Lemma 8) is applied ubiquitously in this transition, we refer to the
overview of the proof in Section 6.1 for high-level ideas.

• G5.0 = G5.
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• G5.1: We apply Lemma 8 in hybrids on ℓ ∈ [qe], moving from one to the next for swapping ωℓ

back to coordinate 2 in cℓ,i for i ∈ H. The 9 coordinates affected, in the order w.r.t the state-
ment of Lemma 8 so that they form a subspace of dimension 9, are (2, 5, 7, 9, 10, 11, 12, 13, 14).
In the ℓ-th hybrid, we apply the lemma while keeping the same variable names for all c-vectors
and d-vectors as in the proof of Theorem 9, except that we swap the names of ci and cℓ,i.
Coordinates (2, 5) of di contain the values (s′i, si). For a correct application of the lemma,
we need to check that

∑
i∈H s′i =

∑
i∈H si. We have

∑
i∈H

s′i =
∑
i∈H

(
si −

x1i y
1
i − x0i y

0
i

ω

)

=

(∑
i∈H

si

)
− 1

ω

(∑
i∈H

x1i y
1
i

)
+

1

ω

(∑
i∈H

x0i y
0
i

)
=
∑
i∈H

si

and we use the fact that
∑

i∈H x1i y
1
i =

∑
i∈H x0i y

0
i from the admissibility condition of

Definition 4.

In the end |Pr[G5.1 = 1]− Pr[G5.0 = 1]| ≤ 12qe ·AdvSXDH
G1,G2

(1λ).
• G5.2: We apply Lemma 8 in hybrids on k ∈ [qk], moving from one to the next for swapping
yk,i back to coordinate 1 in dk,i. The 9 coordinates affected, in the order w.r.t the statement
of Lemma 8 so that they form a subspace of dimension 9, are (1, 4, 8, 10, 9, 11, 12, 13, 14).

We remark that the lemma is applied on the dual bases, i.e. G1 and G2 are swapped. Hence,
we must check that

∑
i∈H yk,ix

0
i =

∑
i∈H yk,ix

1
i . Again, this is true thanks to the admissibility

condition of Definition 4. Moreover, the family of vectors (cℓ,i)ℓ,i satisfy the requirement
in Lemma 8 that coordinates (1, 3) in these vectors are the same (they are 0). In the end
|Pr[G5.2 = 1]− Pr[G5.1 = 1]| ≤ 12qk ·AdvSXDH

G1,G2
(1λ).

• G5.3 = G6: We apply Lemma 8 in hybrids on ℓ ∈ [qe], moving from one to the next for swapping
xℓ,i back to coordinate 1 in cℓ,i. The 9 coordinates affected, in the order w.r.t the statement
of Lemma 8 so that they form a subspace of dimension 9, are (1, 3, 7, 9, 10, 11, 12, 13, 14).
For a correct application, we must check that

∑
i∈H xℓ,iy

0
i =

∑
i∈H xℓ,iy

1
i which is satisfied

thanks to the admissibility of Definition 4.

Finally, |Pr[G5.3 = 1]− Pr[G5.2 = 1]| ≤ 12qe ·AdvSXDH
G1,G2

(1λ).

In the end, we have |Pr[G6 = 1]− Pr[G5 = 1]| ≤ (24qe + 12qk) ·AdvSXDH
G1,G2

(1λ).

Game G7: We perform a computational basis change to clean coordinates (3, 4, 5, 6, 7).

cℓ,i = (xℓ,i, ωℓ, 0, 0, 0, 0, 0, tℓ,i, 0, ρℓ,i, 04)Bi

dk,i = (yk,i, sk,i, 0, 0, 0, 0, 0, µk, πk,i, 0, 04)B∗
i

ci = (x1i , ω, 0, 0, 0, 0, 0, ti, 0, ρi, 04)Bi

di = (y1i , s′i, 0, 0, 0, 0, 0, µ, πi, 0, 04)B∗
i

The subsequence of Games from G6 to G7 is depicted in Figure 7. We detail the transitions
below.

• G6.0 = G6.
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Game G6.0 = G6:

cℓ,i = ( xℓ,i ωℓ 0 0 0 0 rℓ tℓ,i 0 ρℓ,i 04 )Bi

dk,i = ( yk,i sk,i yk,i 0 sk,i 0 σk,i µk πk,i 0 04 )B∗
i

ci = ( x1
i ω 0 x0

i 0 ω r ti 0 ρi 04 )Bi

di = ( y1
i s′i y0

i 0 si 0 σi µ πi 0 04 )B∗
i

Game G6.1: (Formal Step)

cℓ,i = ( xℓ,i ωℓ 0 0 0 0 rℓ tℓ,i 0 ρℓ,i 04 )Bi

dk,i = ( yk,i sk,i 0 0 0 0 σk,i µk πk,i 0 04 )B∗
i

ci = ( x1
i ω 0 x0

i 0 ω r ti 0 ρi 04 )Bi

di = ( y1
i s′i y0

i − y1
i 0 si − s′i 0 σi µ πi 0 04 )B∗

i

Game G6.2: (Subspace)

cℓ,i = ( xℓ,i ωℓ 0 0 0 0 rℓ tℓ,i 0 ρℓ,i 04 )Bi

dk,i = ( yk,i sk,i 0 0 0 0 σk,i µk πk,i 0 04 )B∗
i

ci = ( x1
i ω 0 x0

i 0 ω r ti 0 ρi 04 )Bi

di = ( y1
i s′i 0 0 0 0 σi µ πi 0 04 )B∗

i

Game G6.3: (Subspace)

cℓ,i = ( xℓ,i ωℓ 0 0 0 0 rℓ tℓ,i 0 ρℓ,i 04 )Bi

dk,i = ( yk,i sk,i 0 0 0 0 σk,i µk πk,i 0 04 )B∗
i

ci = ( x1
i ω 0 0 0 0 r ti 0 ρi 04 )Bi

di = ( y1
i s′i 0 0 0 0 σi µ πi 0 04 )B∗

i

Fig. 7: Transition from G6 to G7 in Theorem 9.

• G6.1: We start with a formal basis change to alter the d-vectors as follows:

dk,i = (yk,i, sk,i, 0, 0, 0, 0, σk,i, µk, πk,i, 0, 04)B∗
i

di = (y1i , s′i, y0i − y1i , 0, si − s′i , 0, σi, µ, πi, 0, 04)B∗
i

The c-vectors remain unchanged. Let (Hi,H
∗
i ) be a pair of random dual bases. We change

the bases w.r.t the following matrices:

Bi :=


1 0 0 0

0 1 0 0

−1 0 1 0

0 −1 0 1


1,2,3,5

B′
i :=

(
B−1

i

)⊤
=


1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1


1,2,3,5

Bi = Bi ·Hi B∗
i = B′

i ·H∗
i .
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The simulator can write:

dk,i = (yk,i, sk,i, yk,i, 0, sk,i, 0, σk,i, µk, πk,i, 0, 04)H∗
i

= (yk,i, sk,i, 0, 0, 0, 0, σk,i, µk, πk,i, 0, 04)B∗
i

di = (y1i , s′i, y0i , 0, si, 0, σi, µ, πi, 0, 04)H∗
i

= (y1i , s′i, y0i − y1i , 0, si − s′i , 0, σi, µ, πi, 0, 04)B∗
i

The c-vectors are invariant under this basis change as their coordinates (3, 5) are 0. Thus,
writing ciphertexts and keys in (Hi,H

∗
i ) corresponds to G6.0. Else we are in G6.1. As the

basis change is formal, we have Pr[G6.1 = 1] = Pr[G6.0 = 1].
• G6.2: We clean coordinates (3, 5) of di using DSDH in G2.

di = (y1i , s′i, 0, 0, 0, 0, σi, µ, πi, 0, 04)B∗
i

We demonstrate the cleaning of coordinate 1. Coordinate 5 can be done similarly. Given a
DSDH instance (JaK2 , JbK2 , JcK2) in G2 where δ := c− ab is either 0 or 1, the bases (Bi,B

∗
i )

are changed w.r.t to the following matrices:

Bi :=

1 a

0 1


3,9

B′
i :=

(
B−1

i

)⊤
=

 1 0

−a 1


3,9

Bi = Bi ·Hi B∗
i = B′

i ·H∗
i .

As B∗
i can be computed using JaK2, the simulator can write:

di = (y1i , s′i, y0i − y1i , 0, si − s′i, 0, σi, µ, πi, 0, 04)B∗
i

+ (0, 0, − c(y0i − y1i ), 0, 0, 0, 0, 0, b(y0i − y1i ), 0, 04)H∗
i

= (y1i , s
′
i, (1− δ)(y0i − y1i ), 0, si − s′i, 0, σi, µ, πi + b(y0i − y1i ), 0, 0

4)B∗
i

The random value πi is implicitly updated to πi + b(y0i − y1i ). The remaining keys dk,i which
are not changed in this hybrid can be written completely in B∗

i . The basis vector bi,3 cannot
be computed due to the lack of JaK1. However, the simulator can write c-vectors directly in
Hi, as they are invariant under this basis change because their 3-rd coordinate is 0:

cℓ,i = (xℓ,i, ωℓ, 0, 0, 0, 0, rℓ, tℓ,i, 0, ρℓ,i, 04)Hi

= (xℓ,i, ωℓ, 0, 0, 0, 0, rℓ, tℓ,i, 0, ρℓ,i, 04)Bi

ci = (x1i , ω, 0, x0i , 0, ω, r, ti, 0, ρi, 04)Hi

= (x1i , ω, 0, x0i , 0, ω, r, ti, 0, ρi, 04)Bi

If δ = 1 we are cleaning the 3-rd coordinate of di, else we change nothing. In the end,
combining the two cleanings gives us |Pr[G6.2 = 1]− Pr[G6.1 = 1]| ≤ 4 ·AdvDDH

G2
(1λ).

• G6.3: We employ a second subspace indistinguishability to clean coordinates (4, 6) of ci:

ci = (x1i , ω, 0, 0, 0, 0, r, ti, 0, ρi, 04)Bi
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The remaining ciphertexts and keys are not changed. We demonstrate how to clean coordinate
4. Coordinate 6 can be done similarly. Given a DSDH instance (JaK1 , JbK1 , JcK1) in G1 where
δ := c− ab is either 0 or 1, we define:

Bi :=

 1 0

−a 1


4,10

B′
i :=

(
B−1

i

)⊤
=

1 a

0 1


4,10

Bi = Bi ·Hi B∗
i = B′

i ·H∗
i .

The basis vector bi,4 can be computed using JaK1. Then the simulator can write:

ci = (x1i , ω, 0, x0i , 0, ω, r, ti, 0, ρi, 04)Bi

+ (0, 0, 0, − cx0i , 0, 0, 0, 0, 0, bx0i , 04)Hi

= (x1i , ω, 0, (1− δ)x0i , 0, ω, r, ti, 0, ρi + bx0i , 04)Bi

The random value ρi is implicitly updated to ρi + bx0i . The remaining ciphertexts cℓ,i which
are not changed in this hybrid can be written completely in Bi. The basis vector b∗

i,4 cannot
be computed due to the lack of JaK2. However, d-vectors are invariant under this basis change
because their 3-rd coordinate is 0. So the simulator can write them directly in H∗

i .

If δ = 0, then we do nothing, else we are cleaning the 4-th coordinate of ci. After two
cleanings, we obtain |Pr[G6.3 = 1]− Pr[G6.2 = 1]| ≤ 4 ·AdvDDH

G1
(1λ).

• G6.4: We clean coordinate 7 of all vectors.

cℓ,i = (xℓ,i, ωℓ, 0, 0, 0, 0, 0, tℓ,i, 0, ρℓ,i, 04)Bi

dk,i = (yk,i, sk,i, 0, 0, 0, 0, 0, µk, πk,i, 0, 04)B∗
i

ci = (x1i , ω, 0, 0, 0, 0, 0, ti, 0, ρi, 04)Bi

di = (y1i , s′i, 0, 0, 0, 0, 0, µ, πi, 0, 04)B∗
i

The transition from G6.3 to G6.4 is inverse to that from G1 to G2. Thus, we obtain |Pr[G6.4 =
1]− Pr[G6.3 = 1]| ≤ 2 ·AdvDDH

G2
(1λ) + 2 ·AdvDDH

G1
(1λ).

In the end, we have

|Pr[G7 = 1]− Pr[G6 = 1]| ≤ 6 ·AdvDDH
G1

(1λ) + 6 ·AdvDDH
G2

(1λ) .

Game G8: We redo the transition G1 → G2 to switch back the random independent secret shares
(si, sk,i)i and (ti, tℓ,i) to shifted secret shares (µs̃i, µks̃i)i and (ωt̃i, ωℓt̃i), respectively. This incurs
an additive loss |Pr[G8 = 1]− Pr[G7 = 1]| ≤ (qe + 1) ·AdvDDH

G1
(1λ) + (qk + 1) ·AdvDDH

G2
(1λ).

The game G8 is Exp1chal-adap-stat-fh-1
E,F ,A (1λ). The difference in advantages is

|Pr[G8 = 1]− Pr[G0 = 1]| ≤
8∑

i=1

|Pr[Gi = 1]− Pr[Gi−1 = 1]|

≤ (26qe + 14qk + 32) ·AdvSXDH
G1,G2

(1λ)

and the proof is completed. ⊓⊔
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B.5 Security Theorems for Section 6.3

The following theorem states the weakly function-hiding security against incomplete adaptive one-
challenge under static corruption of the scheme E ′ obtained from the transformation of Section 6.3.

Theorem 12. Let E = (Setup,DKeyGen,Enc,Dec) be a DMCFE scheme that is weakly function-
hiding against complete adaptive one-challenge under static corruption following Definition 4.
Let SE = (EncSE,DecSE) be an IND-CPA secure symmetric-key encryption. Let PRF be a secure
pseudorandom function. Then, the DMCFE scheme E ′ obtained from the above transformation
using (E , SE,PRF) is weakly function-hiding against incomplete adaptive one-challenge under static
corruption following Definition 10.

We state a corollary of Theorem 12 by a direct application of Lemma 6 to achieve multi-challenge
security for E ′ (in the static corruption model), then of Lemma 7 to achieve fully function-hiding
property.

Corollary 13. Let E = (Setup,DKeyGen,Enc,Dec) be a DMCFE scheme that is weakly function-
hiding against complete adaptive one-challenge under static corruption following Definition 4.
Let SE = (EncSE,DecSE) be an IND-CPA secure symmetric-key encryption. Let PRF be a secure
pseudorandom function. Then, there exists a DMCFE scheme constructed from (E ,SE,PRF) that
is function-hiding against incomplete adaptive multi-challenge under static corruption following
Definition 10.

Proof (Of Theorem 12 - Sketch). Suppose that there exists a ppt adversary A breaking the security

game Exp1chal-adap-stat-w-any-fh-b
E,F ,A (1λ) of E ′. Then, there exists ppt adversaries B,B′,B′′ that break

Exp1chal-adap-stat-wfh-b
E,F ,A (1λ) of E , IND-CPA security of SE, and security of PRF, respectively, and their

advantages is lower bounded by that of A, up to a factor polynomial in λ.
The main idea follows the approach of [1, Theorem 4.1], i.e we guess if the challenge ciphertext and
the challenge functional key (in the one-challenge setting) by A are complete or not. In the former

case, we reduce to the security of Exp1chal-adap-stat-wfh-b
E,F ,A (1λ) of E . In the latter case, we apply the

IND-CPA security of SE and security of PRF in a hybrid argument.
We define the following games:

Game G∗
b(A): This game is similar asExp1chal-adap-stat-w-any-fh-b

E,F ,A (1λ), for b ∈ {0, 1} being the challenge
bit, except that our simulator guesses uniformly at random and independently i∗e ∈ {0, 1, . . . , n}
and i∗k ∈ {0, 1, . . . , n}. Intuitively when i∗e = 0 (resp. i∗k = 0), it means the challenge ciphertext (resp.
the challenge functional key) by A are complete; Otherwise, it means the honest i∗e-th component
of the challenge ciphertext (resp. the honest i∗k-th component of the challenge functional key) is
not queried by A. Since we are in the static corruption setting, the simulator can keep track of the
queries for honest components since the beginning.
If either i∗e or i∗k is not a correct guess, a random result is output. We can verify that

Pr[G∗
b(A) = 1] =

1

(n+ 1)2
Pr[Exp1chal-adap-stat-w-any-fh-b

E ′,F ,A (1λ) = 1] .

In the case i∗e = i∗k = 0, we can rely on the security against complete challenges of E . In other
words, there exists a ppt adversary B such that

|Pr[G∗
0(A) = 1 | i∗e = i∗k = 0]− Pr[G∗

1(A) = 1 | i∗e = i∗k = 0]|

≤
∣∣∣Pr[Exp1chal-adap-stat-wfh-0

E,F ,B (1λ) = 1]− Pr[Exp1chal-adap-stat-wfh-1
E,F ,B (1λ) = 1]

∣∣∣
= Adv1chal-adap-stat-wfh

E,F ,B (1λ) .
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It remains to deal with the cases of incomplete queries.
Game Hct

ρ (A) for ρ ∈ {0, . . . , n}: This game is used to argue the difference: for a fixed j ∈ [n]

|Pr[G∗
0(A) = 1 | i∗e = j ∧ i∗k = 0]− Pr[G∗

1(A) = 1 | i∗e = j ∧ i∗k = 0]| for j ∈ [n] .

If the guess i∗e = j ∈ [n] is correct, then the j-th honest component of the challenge ciphertext is
not queried. The game Hct

ρ (A) is the same as G∗
0, except that all challenge ciphertext components

(i, x0i , x
1
i , tag) of i ≤ ρ is answered by the 0-part of the query, while those of i > ρ is answered by

the 1-part of the query. It holds that H0 = G∗
0.

For ρ ∈ {0, . . . , n}, we claim that∣∣Pr[Hct
ρ−1(A) = 1 | i∗e = j ∧ i∗k = 0]− Pr[Hct

ρ (A) = 1 | i∗e = j ∧ i∗k = 0]
∣∣

≤ Advind-cpa
SE,B′ (1λ) + 2 ·AdvPRF

B′′ (1λ) .

This comes from the observation that conditioned on the event i∗e = j ∧ i∗k = 0 is correct, then the
j-th component is not queried to the left-or-right challenge oracle. Moreover, the PRF evaluation
PRF(kctρ,j , tag) only appears in the query (ρ, ·, ·, tag) of the challenge ciphertext query. More details
follow hereafter.

To go from Hct
ρ−1(A) to Hct

ρ (A), firstly, we use the PRF security to switch PRF(kctρ,j , tag) to a
uniformly random, which is possible because j ∈ H and the PRF key is not revealed (conditioned
on i∗e = j ∧ i∗k = 0 is correct). Next, this uniformly random ⊕-term makes Kct

i (tag) uniformly
random, and we can apply the IND-CPA security of SE to switch (ρ, ·, ·, tag) to the encryption
of the 1-part of the query. Finally, we come back to PRF(kctρ,j , tag) for the query (ρ, ·, ·, tag) (now
encrypting the 1-part), using again the PRF security.

During (Hct
ρ )

n
ρ=0, we remark that we are using the weakly function-hiding condition in admany as we

are switching the challenge ciphertext but keep the challenge functional key honestly generated for
(y0i )i (as i

∗
k = 0). After arriving at Hct

n , where the challenge ciphertext is switched to an encryption
of (x1i )i, we now need to switch the key to (y1i )i as well, so as to arrive at G∗

1. Because once A
corrupts a client, it receives both the encryption key and the secret key of that client, under the
condition that i∗e = j ∧ i∗k = 0 is correct, the secret key skj of j ∈ H is not known to A either.
Therefore, we can switch PRF(kdkρ′,j , tag), for ρ′ ∈ {0, . . . , n}, to a uniformly random during the

computation of Kdk
ρ′ (tag-f), then apply the IND-CPA of SE on the query (ρ′, ·, ·, tag-f), then switch

back to PRF(kdkρ′,j , tag-f). This incurs another sequence of n + 1 hybrids on ρ′ ∈ {0, . . . , n} for

changing y0i into y1i .

In the end, for a fixed j ∈ [n]

|Pr[G∗
0(A) = 1 | i∗e = j ∧ i∗k = 0]− Pr[G∗

1(A) = 1 | i∗e = j ∧ i∗k = 0]|

≤ 2n ·Advind-cpa
SE,B′ (1λ) + 4n ·AdvPRF

B′′ (1λ) .

Game Hdk
ρ (A) for ρ ∈ {0, . . . , n}: This game is used to argue the difference: for a fixed j ∈ [n]

|Pr[G∗
0(A) = 1 | i∗e = 0 ∧ i∗k = j]− Pr[G∗

1(A) = 1 | i∗e = 0 ∧ i∗k = j]| .

The argument is totally symmetric to the previous one and we obtain:

|Pr[G∗
0(A) = 1 | i∗e = 0 ∧ i∗k = j]− Pr[G∗

1(A) = 1 | i∗e = 0 ∧ i∗k = j]|

≤ 2n ·Advind-cpa
SE,B′ (1λ) + 4n ·AdvPRF

B′′ (1λ) .
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The case i∗e = je ∧ i∗k = jk for je, jk ∈ [n]: By generalizing our above arguments for any fixed
i∗k ̸= 0, je ̸= 0:

|Pr[G∗
0(A) = 1 | i∗e = j ∧ i∗k = jk]− Pr[G∗

1(A) = 1 | i∗e = j ∧ i∗k = jk]|

≤ 2n ·Advind-cpa
SE,B′ (1λ) + 4n ·AdvPRF

B′′ (1λ) .

We remark that conditioned on i∗e = je∧ i∗k = jk is correct, i.e. the honest je-th challenge ciphertext
component and the honest jk-th challenge key component are not queried, we can switch on both
the ct-side (w.r.t (x0i , x

1
i )) and the dk-side (w.r.t (y0i , y

1
i )) of the ρ-th component, relying on the

PRF security as well as the IND-CPA of SE.

Finally, we achieve∣∣∣Pr[Exp1chal-adap-stat-w-any-fh-0
E ′,F ,A (1λ) = 1]− Pr[Exp1chal-adap-stat-w-any-fh-1

E ′,F ,A (1λ) = 1]
∣∣∣

= (n+ 1)2 · |Pr[G∗
0(A) = 1]− Pr[G∗

1(A) = 1]|

=

∣∣∣∣∣∣
n∑

i∗e=0

n∑
i∗k=0

(Pr[G∗
0(A) = 1 | i∗e = je ∧ i∗k = jk]− Pr[G∗

1(A) = 1 | i∗e = je ∧ i∗k = jk])

∣∣∣∣∣∣
≤ Adv1chal-adap-stat-wfh

E,F ,B (1λ)

+
n∑

i∗e=1

|Pr[G∗
0(A) = 1 | i∗e = je ∧ i∗k = 0]− Pr[G∗

1(A) = 1 | i∗e = je ∧ i∗k = 0]|

+

n∑
i∗k=1

|Pr[G∗
0(A) = 1 | i∗e = 0 ∧ i∗k = jk]− Pr[G∗

1(A) = 1 | i∗e = 0 ∧ i∗k = jk]|

+
n∑

i∗e=1

n∑
i∗k=1

|Pr[G∗
0(A) = 1 | i∗e = je ∧ i∗k = jk]− Pr[G∗

1(A) = 1 | i∗e = je ∧ i∗k = jk]|

≤ Adv1chal-adap-stat-wfh
E,F ,B (1λ) + 2n2 ·Advind-cpa

SE,B′ (1λ) + 4n2 ·AdvPRF
B′′ (1λ)

+ 2n2 ·Advind-cpa
SE,B′ (1λ) + 4n2 ·AdvPRF

B′′ (1λ)

+ 2n3 ·Advind-cpa
SE,B′ (1λ) + 4n3 ·AdvPRF

B′′ (1λ)

= Adv1chal-adap-stat-wfh
E,F ,B (1λ) + (4n2 + 2n3) ·

(
Advind-cpa

SE,B′ (1λ) + 2 ·AdvPRF
B′′ (1λ)

)
and the proof is completed. ⊓⊔
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