
Function-Hiding Dynamic Decentralized Functional Encryption for
Inner Products

Ky Nguyen, David Pointcheval, and Robert Schädlich

DIENS, École normale supérieure, CNRS, Inria, PSL University, Paris, France

Abstract. Decentralized Multi-Client Functional Encryption (DMCFE) extends the basic functional
encryption to multiple clients that do not trust each other. They can independently encrypt the multiple
inputs to be given for evaluation to the function embedded in the functional decryption key. And
they keep control on these functions as they all have to contribute to the generation of the functional
decryption keys.

Dynamic Decentralized Functional Encryption (DDFE) is the ultimate extension where one can dy-
namically join the system and the keys and ciphertexts can be built by dynamic subsets of clients.
As any encryption scheme, all the FE schemes provide privacy of the plaintexts. But the functions
associated to the functional decryption keys might be sensitive too (e.g. a model in machine learning).
The function-hiding property has thus been introduced to additionally protect the function evaluated
during the decryption process.

In this paper, we provide new proof techniques, to analyse our new concrete constructions of function-
hiding DMCFE and DDFE for inner products, with strong security guarantees: the adversary can
adaptively query multiple challenge ciphertexts and multiple challenge keys. Previous constructions
were proven secure in the selective setting only.

Keywords: Functional Encryption, Inner Product, Function-Hiding

1 Introduction

Functional Encryption. Public-Key Encryption (PKE) has become so indispensable that without
this building block, secure communication over the Internet would be unfeasible nowadays. However,
this concept of PKE limits the access to encrypted data in an all-or-nothing fashion: once the
recipients have the secret key, they will be able to recover the original data; otherwise, no information
is revealed. The concept of Functional Encryption (FE), originally introduced by Boneh, Sahai and
Waters [SW05, BSW11], overcomes this limitation: a decryption key can be generated under some
specific function F , namely a functional decryption key, and enable the evaluation F (x) from an
encryption of a plaintext x in order to provide a finer control over the leakage of information about
x.

Since its introduction, FE has provided a unified framework for prior advanced encryption notions,
such as Identity-Based Encryption [Sha84, Coc01, BF01] or Attribute-Based Encryption [SW05,
GPSW06, OSW07, ALdP11, OT12b], and has become a very active domain of research. Abdalla
et al. [ABDP15] proposed the first FE scheme (ABDP scheme) that allows computing the inner
product between a functional vector in the functional decryption key and a data vector in the cipher-
text, coined IPFE. The interests in FE then increased, either in improving existing constructions
for concrete function classes, e.g. inner products [ALS16, BBL17, CLT18] and quadratic func-
tions [BCFG17, Gay20, AS17, Lin17], or in pushing the studies of new advanced notions [GVW15]
as well as the relationship to other notions in cryptography [AJ15, BV15]. While FE with a single
encryptor, i.e. single-client FE, is of great theoretical interest, there is also a motivation to investi-
gate a multi-user setting, which might be applicable in practical applications when the data is an
aggregation of information coming from multiple sources.

2

Extensions of FE in the Multi-User Setting. Goldwasser et al. [GGG+14, GKL+13] initiated
the study of Multi-Input Functional Encryption (MIFE) and Multi-Client Functional Encryption
(MCFE). In MCFE particularly, the encrypted data is broken into a vector (x1, . . . , xn) and a
client i among n clients uses their encryption key eki to encrypt xi, under some (usually time-
based) tag tag. Given a vector of ciphertexts (ct1 ← Enc(ek1, tag, x1), . . . , ctn ← Enc(ekn, tag, xn)),
a decryptor holding a functional decryption key dkF can decrypt and obtain F (x1, . . . , xn) as long
as all ct1, . . . , ctn are generated under the same tag. No information beyond F (x1, . . . , xn) is leaked,
especially concerning the individual secret component xi, and combinations of ciphertexts under
different tags provide no further information either. Furthermore, encrypting xi under different
tag′ ̸= tag might bear a different meaning with respect to a client i and thus controls the possibilities
constituting ciphertext vectors1. This necessitates the encryption keys eki being private. The notion
of MCFE can be seen as an extension of FE where multiple clients can contribute into the ciphertext
vector independently and non-interactively, where encryption is done by private encryption keys.
After their introduction, MIFE/MCFE motivated a plethora of works on the subject, notably for
the concrete function class of inner products [DOT18, CDG+18a, CDG+18b, ACF+18, ABKW19,
ABG19, LT19, CDSG+20, ACGU20, NPP22].

Decentralized Multi-Client Functional Encryption. The setup of MCFE requires some authority (a
trusted third party) responsible for the setup and generation of functional decryption keys. The
authority possesses a master secret key msk that can be used to handle the distribution of private
encryption keys eki and deriving functional decryption keys dkF . When clients do not trust each
other, this centralized setting of authority might be a disadvantage. The need for such a central
authority is completely eliminated in the so-called Decentralized Multi-Client Functional Encryption
(DMCFE) introduced by Chotard et al. [CDG+18a]. In DMCFE, only during the setup phase do we
need interaction for generating parameters that will be needed by the clients later. The key generation
is done independently by different senders, each has a secret key ski. Agreeing on a function F ,
each sender generates their partial functional key dkF,i using ski, the description of F , and a tag
tag-f. Originally in [CDG+18a], the tag tag-f can contain the description of F itself. Using DMCFE,
the need of an authority for distributing functional keys is completely removed, with minimal
interaction required during setup. The seminal work of [CDG+18a] constructed the first DMCFE for
computing inner products, where n clients can independently contribute to the ciphertext vector
(ct1 ← Enc(ek1, tag, x1), . . . , ctn ← Enc(ekn, tag, xn)) and n senders can independently contribute to
the partial functional keys dky,1 ← DKeyGen(sk1, tag-f, y1), . . . , dky,n ← DKeyGen(skn, tag-f, yn) of
some vector y = (y1, . . . , yn). For the function class to compute inner products, many follow-up
works improve upon the work of [CDG+18a] on both aspects of efficiency as well as security, or by
giving generic transformation to (D)MCFE from single-client FE [LT19, ABKW19, ABG19]. All
these works follow essentially the syntax of (D)MCFE in [CDG+18a].

Repetitions under One Tag. Involving tags at the time of encryption and key generation restricts
that only ciphertexts and partial functional keys having the same tag can be combined in the notion
of DMCFE. This raises a natural question: what security can we guarantee when one client uses
the same tag on multiple data? We call such multiple usages of the same tag in a DMCFE system
repetitions. In the formal security model of (D)MCFE in [CDG+18a] and subsequent works [LT19],
once the adversary makes a query for (i, tag), further queries for the same pair (i, tag) will be
ignored. This means repetitions are not taken into account. The authors of [CDG+18a] argued that
it is the responsibility of the users not to use the same tag twice. However, a security notion for

1 In contrast, MIFE involves no tags and thus a large amount of information can be obtained by arbitrarily combining
ciphertexts to decrypt under some functional decryption key.

3

DMCFE that captures a sense of protection even when repetitions mistakenly/maliciously happen
will be preferable, e.g. this is indeed studied in some other works [ABKW19, ABG19]. In addition,
when repetitions are allowed for ciphertexts, in the security model, MCFE encompasses MIFE, where
there is no tag, by just replacing tags by a constant value.

Dynamic Decentralized Functional Encryption. In [CDSG+20], Chotard et al. generalized DMCFE
and defined the notion of Dynamic Decentralized Functional Encryption (DDFE) that allows partic-
ipants to join at various stages during the lifetime of a system, while maintaining all decentralized
features of DMCFE. Notably, the setup of DDFE is non-interactive and decentralized, while that
of DMCFE can be interactive. When joining a DDFE system, each participant i can run a local
setup algorithm, which uses some public parameters that is set by a global setup algorithm, so as to
generate their own secret key ski. A set UM of clients can use eki to independently encrypt their data,
contributing to a list of ciphertexts (cti)i∈UM

. Furthermore, a set UK of senders can use their ski to
independently contribute to a list of partial functional keys (dki)i∈UK

. In the end, a DDFE scheme
allows aggregating data from different sources by decrypting (cti)i∈UM

using (dki)i∈UK
, which are

fabricated in a completely decentralized manner by clients and senders, while requiring no trusted
third party with a master secret key. Being dynamic, a DDFE scheme does not demand in advance
a fixed number of clients in UM nor a fixed number of senders in UK .
The authors of [CDSG+20] provided a concrete construction of DDFE for the function class computing
inner products, which is provably secure in an indistinguishability-based model where the challenges
must be submitted selectively and can handle only static corruption of private keys. The notion
of DDFE was revisited in a recent work on the notion of Multi-Party Functional Encryption
(MPFE) [AGT21b].

Function Privacy in FE. Standard security notions of all primitives mentioned above ensure
that adversaries do not learn anything about the content of ciphertexts beyond what is revealed by
the functions for which they possess decryption keys. However, it is not required that functional
decryption keys hide the function they decrypt. In practice, this can pose a serious problem because
the function itself could contain confidential data. For example, the evaluated function may represent
an artificial neural network. Training such networks is often time-consuming and expensive, which
is why companies offer their use as a paid service. However, to ensure that customers continue to
pay for the use of the product, it is crucial that the concrete parameters of the network (i.e. the
computed function) remain secret. This additional security requirement for functional encryption
schemes is known as the so-called function-hiding property.
In particular, function-hiding functional encryption schemes for restricted function classes (such as
inner products) have proven to be an important technical building block for the construction of
functional encryption schemes for broader function classes: Lin [Lin17] employed a function-hiding
FE scheme for inner products to obtain a FE scheme for quadratic functions. A different technique
was also introduced by Gay in [Gay20] equally aiming at constructing FE for quadratic functions.
With several technical novelties, Agrawal et al. [AGT21a, AGT22] were able to generalize the
aforementioned constructions to obtain MIFE for quadratic functions.

1.1 Related Works

Other Notions of FE in the Multi-User Setting. Many more multi-user FE primitives have been
defined, such as ad hoc multi-input functional encryption [ACF+20] and multi-authority attribute-
based encryption [Cha07]. Interestingly, Agrawal et al. [AGT21b] recently proposed the very general
notion of Multi-Party Functional Encryption (MPFE). The important concept behind MPFE is to
cover all existing notions of FE in the multi-user setting, including DDFE/(D)MCFE. Moreover, as

4

pointed out in [AGT21b], DDFE/(D)MCFE as presented in prior works cannot provide function-
hiding. With delicate abstractions, MPFE captures the possibility of specifying public and private
inputs for both ciphertext along with function keys, thus making it feasible to express function-hiding.
In [AGT21b], Agrawal et al. proposed a construction for function-hiding DDFE from pairings, by
specializing the syntax of MPFE, for the function class of inner products. Their scheme achieves
indistinguishability-based security in the random oracle model (ROM), where multiple challenge
ciphertexts and challenge keys must be submitted selectively and can handle only static corruption
of private keys.

Enhancements of FE with Function-Hiding. Bishop et al. [BJK15] presented the first FE scheme
that guaranteed a weak variant of the function-hiding property. Shortly afterwards, the construction
was lifted to fully function-hiding security by Datta et al. [DDM16, DDM17]. This was further
improved in terms of efficiency and/or computational hardness assumptions by works of [TAO16,
KKS17, KLM+18]. The constructions of [BJK15, DDM16, TAO16] all leverage the power of dual
pairing vector spaces (DPVSes) developed by Okamoto and Takashima in [OT10, OT12a, OT12b].

In 2017, Lin [Lin17] used a somewhat different approach that led to much simpler constructions.
Roughly, she employs two instances of the public-key inner-product FE scheme from DDH by
Abdalla et al. [ABDP15] to hide both messages and keys at the same time. Using pairings, it is
possible to decrypt both “layers” of ABDP encryption simultaneously and to produce exactly an
encoding of the output inner product. This approach immediately generalizes to MIFE schemes,
but it requires multilinear maps. Using the same blueprint but exploiting the specific algebraic
properties of the MIFE scheme more carefully, Abdalla et al. [ACF+18] were able to construct
function-hiding MIFE from standard bilinear maps. As mentioned earlier, Agrawal et al. [AGT21b]
came up with the first construction of function-hiding MCFE for inner products which is inspired
by the function-hiding MIFE scheme for inner products by Datta et al. [DOT18]. Following the
approach of Chotard et al. [CDSG+20], they are then able to lift that scheme to function-hiding
inner-product DDFE.

(D)MCFE Constructions without Random Oracles. In the seminal work of [CDG+18a], the proposed
(D)MCFE schemes were proven secure in the ROM. In [LT19], Libert and Titiu presented the first
(D)MCFE that are provably secure under the Learning with Errors assumption in the standard
model. Concerning the more general DDFE, all known constructions [CDSG+20, AGT21b] need
ROs. Regarding the function-hiding regime, there is a very recent work by Shi and Vanjani [SV23]
that presents an FH-MCFE for inner products whose security does not require the ROM. Their
techniques include a generic transformation from single-client to multi-client functional encryption,
preserving the function-hiding property and leading to the first FH-MCFE with adaptive security
without relying on the ROM. We are not aware of any FH-DMCFE or FH-DDFE constructions
without using the ROM.

1.2 Our Contributions

Given the current state of the art, to the best of our knowledge, the only known (D)MCFE candidate
that supports function-hiding comes from [AGT21b]. However, their FH-DDFE yields a construction
for FH-DMCFE in an implicit manner. In this paper, we first investigate the problem of constructing
directly FH-DMCFE for the function class of inner products, taking into account previous (non
function-hiding) DMCFE in [CDG+18a, LT19, ABKW19, ABG19] as well as the more general DDFE
in [CDSG+20, AGT21b]. Then, using our new FH-DMCFE, we give a candidate for FH-DDFE based
on pairings with improved security in comparison with the so far only FH-DDFE from [AGT21b]:

5

1. For the function class computing inner products, we present candidates for FH-DMCFE based on
pairings. Our constructions are provably secure in the ROM against multiple adaptive challenge
encryption queries and multiple adaptive challenge key-generation queries, under static corruption.
Furthermore, our security model for FH-DMCFE allows repetitions and thus our construction
stays secure even if multiple queries for the same client/sender under the same tag are made
by the adversary. And this also encompasses MIFE variants, where some tags are ignored. An
overview highlighting our main technical ideas and the details of our achieved security level are
given in Section 3.1, while the main constructions are presented in Section 5.

2. More importantly, we leverage our FH-DMCFE to construct an FH-DDFE based on pairings
that is provably secure in the ROM against multiple adaptive challenge encryption queries and
multiple adaptive challenge key-generation queries, under static corruption. This advances the
feasibility of DDFE in terms of functionality and security, as to the best of our knowledge all prior
(function-hiding or non function-hiding) DDFE schemes [CDSG+20, AGT21b] achieved only
selective security with respect to challenge ciphertexts and challenge keys, with the additional
one key-label restriction, which excludes repetitions for key queries. Our key ideas to circumvent
the selective security in [CDSG+20, AGT21b] are based on information-theoretic properties of
DPVS as well as a different proving approach. A high-level overview and the technical details
are given in Sections 3.2 and 6, respectively.

3. Our main technical contribution for achieving adaptive security on possibly repetitive challenge
ciphertexts and challenge keys is Lemma 12, which is proven and can find other applications in
the DPVS setting. This lemma allows us to modify of a family of vectors in a basis, which leads
to a local change in its products with some target family in the dual basis, as long as we do
not violate a global condition that binds the mentioned vectors to many others. All possible
repetitions of vectors in a family are considered. For details, see Section 4.

4. As a side contribution, we also propose a new proof technique to analyse a generic conversion
from FH-DDFE that is only secure against complete queries to FH-DDFE that can deal with
incomplete queries (Remark 7), for both the function-hiding and non function-hiding setting.
Tolerating these incomplete queries yields a stronger security model, e.g. see [CDG+18b] for
more details. Our results then beat the one of [ABG19] in terms of efficiency (linear instead of
quadratic ciphertexts) and the one of [CDSG+20] in terms of security (by preserving adaptive
security).

2 Preliminaries

For integers m and n with m < n, we write [m;n] to denote the set {z ∈ Z : m ≤ z ≤ n} and set
[n] := [1;n]. For any q ≥ 2, we let Zq denote the ring of integers with addition and multiplication
modulo q. For a prime q and an integer N , we denote by GLN (Zq) the general linear group of
of degree N over Zq. We write vectors as row-vectors, unless stated otherwise. For a vector x
of dimension n, the notation x[i] indicates the i-th coordinate of x, for i ∈ [n]. We will follow
the implicit notation in [EHK+13] and use JaK to denote ga in a cyclic group G of prime order q
generated by g, given a ∈ Zq. This implicit notation extends to matrices and vectors having entries
in Zq. We use the shorthand ppt for “probabilistic polynomial time”.

2.1 Hardness Assumptions

We state the assumptions needed for our constructions.

6

Definition 1. In a cyclic group G of prime order q, the Decisional Diffie-Hellman (DDH)
problem is to distinguish the distributions

D0 = {(J1K , JaK , JbK , JabK)} D1 = {(J1K , JaK , JbK , JcK)}.

for a, b, c
$← Zq. The DDH assumption in G assumes that no ppt adversary can solve the DDH

problem with non-negligible probability.

Definition 2. In the bilinear setting (G1,G2,Gt, g1, g2, gt, e, q), the Symmetric eXternal Diffie-
Hellman (SXDH) assumption makes the DDH assumption in both G1 and G2.

2.2 Dual Pairing Vector Spaces

Our constructions rely on the Dual Pairing Vector Spaces (DPVS) framework in prime-order
bilinear group setting (G1,G2,Gt, g1, g2, gt, e, q) and G1,G2,Gt are all written additively. The
DPVS technique dates back to the seminal work by Okamoto-Takashima [OT10, OT12a, OT12b]
aiming at adaptive security for ABE as well as IBE, together with the dual system methodology
introduced by Waters [Wat09]. In [LW10], the setting for dual systems is composite-order bilinear
groups. Continuing on this line of works, Chen et al. [CLL+13] used prime-order bilinear groups
under the SXDH assumption. Let us fix N ∈ N and consider GN

1 having N copies of G1. Any
x = J(m1, . . . ,mN)K1 ∈ GN

1 is identified as the vector (m1, . . . ,mN) ∈ ZN
q . There is no ambiguity

because G1 is a cyclic group of order q prime. The 0-vector is 0 = J(0, . . . , 0)K1. The addition of
two vectors in GN

1 is defined by coordinate-wise addition. The scalar multiplication of a vector
is defined by t · x := Jt · (m1, . . . ,mN)K1, where t ∈ Zq and x = J(m1, . . . ,mN)K1. The additive
inverse of x ∈ GN

1 is defined to be −x := J(−m1, . . . ,−mN)K1. Viewing ZN
q as a vector space of

dimension N over Zq with the notions of bases, we can obtain naturally a similar notion of bases
for GN

1 . More specifically, any invertible matrix B ∈ GLN (Zq) identifies a basis B of GN
1 , whose

i-th row bi is
q
B(i)

y
1
, where B(i) is the i-th row of B. The canonical basis A of GN

1 consists of
a1 := J(1, 0 . . . , 0)K1 ,a2 := J(0, 1, 0 . . . , 0)K1 , . . . ,aN := J(0, . . . , 0, 1)K1. It is straightforward that we
can write B = B ·A for any basis B of GN

1 corresponding to an invertible matrix B ∈ GLN (Zq). We

write x = (m1, . . . ,mN)B to indicate the representation of x in the basis B, i.e. x =
∑N

i=1mi ·bi. By
convention the writing x = (m1, . . . ,mN) concerns the canonical basis A. For the conciseness at some
point when we focus on the indices in an ordered list L of length ℓ, we write x = (mL[1], . . . ,mL[ℓ])B[L].

Treating GN
2 similarly, we can furthermore define a product of two vectors x = J(m1, . . . ,mN)K1 ∈

GN
1 ,y = J(k1, . . . , kN)K2 ∈ GN

2 by x × y :=
∏N

i=1 e(x[i],y[i]) = J⟨(m1, . . . ,mN), (k1, . . . , kN)⟩Kt.
Given a basis B = (bi)i∈[N] of GN

1 , we define B∗ to be a basis of GN
2 by first defining B′ := (B-1)⊤

and the i-th row b∗
i of B∗ is

q
B′(i)y

2
. It holds that B · (B′)⊤ = IN the identity matrix and

bi × b∗
j = Jδi,jKt for every i, j ∈ [N], where δi,j = 1 if and only if i = j. We call the pair (B,B∗)

a pair of dual orthogonal bases of (GN
1 ,GN

2). If B is constructed by a random invertible matrix

B
$← GLN (Zq), we call the resulting (B,B∗) a pair of random dual bases. A DPVS is a bilinear

group setting G = (G1,G2,Gt, g1, g2, gt, e, q) with dual orthogonal bases. We denote by DPVSGen
the algorithm that takes as inputs G, a unary 1N , and some random coins r ∈ {0, 1}∗, then outputs
a pair of random matrices (B,B′) that specify dual bases (B = JBK1 ,B

∗ = JB′K2) of (GN
1 ,GN

2).
Without loss of generality, when the random coins r are fixed we assume that DPVSGen(G, 1N ; r)
runs in deterministic time poly(log q).
In this work, we also use extensively basis changes over dual orthogonal bases of a DPVS to argue
the steps of switching key as well as ciphertext vectors to semi-functional mode in our proofs. The
details of such basis changes are recalled in Appendix A.5.

7

2.3 Function-Hiding Dynamic Decentralized Functional Encryption

In this section we recall the notion of Dynamic Decentralized Functional Encryption with function
privacy, namely Function-Hiding Dynamic Decentralized Functional Encryption (FH-DDFE). This
notion was defined in [AGT21b, Section 6.1] as a special case of the Multi-Party Functional
Encryption notion. In Appendix A.1, we adapt this syntax into the case of FH-DMCFE, which is
also a particular case of FH-DDFE, so as to better capture the function-hiding property compared
to previous works on non-function hiding DMCFE, e.g. [CDG+18a, LT19, ABKW19, ABG19].

Definition 3 (Function-Hiding Dynamic Decentralized Functional Encryption). Let λ be
a security parameter. In the following all domains and sets are indexed by λ, we omit the indices for
clarity. Let K,M, ID be a key space, message space, and identity space, where K = Kpri×Kpub,M =

Mpri ×Mpub. We consider the function class F = {f :
⋃

i∈N (ID×K)i ×
⋃

i∈N (ID×M)i → R}
for some set R. A function-hiding dynamic decentralized functional encryption scheme E for F
consists of five algorithms (GSetup, LSetup,KeyGen,Enc,Dec):

GSetup(1λ): Take 1λ as input and output a set of public parameters pp. All other algorithms take
pp implicitly as inputs.

LSetup(pp): Take as input pp, output a public key pki and a secret key ski.
KeyGen(ski, k = (kpri, kpub)): Given a secret key ski and k ∈ K, output dki.
Enc(ski,m = (mpri,mpub)): Given a secret key ski and m ∈M, output cti.
Dec((dki)i∈UK

, (cti)i∈UM
): Given (dki)i∈UK

, (cti)i∈UM
for UK ,UM ⊆ ID, output either an element in

R or ⊥.

Correctness. E is correct if for all λ ∈ N, for all UK ,UM ⊆ ID, for all (i, ki)i∈UK
∈
⋃

i∈N (ID×K)i,
for all (i,mi)i∈UM

∈
⋃

i∈N (ID×M)i, we have

Pr

d = f((i, ki)i∈UK
, (i,mi)i∈UM

)

∣∣∣∣∣∣∣∣∣∣∣∣

(pp)←GSetup(1λ)

(pki, ski)←LSetup(pp)

cti←Enc(ski,mi)

dki←KeyGen(ski, ki)

d := Dec((dki)i∈UK
, (cti)i∈UM

)

 = 1

where the probability is taken over the random coins of the algorithms.

Security. We recall the function-hiding security for DDFE below.

Definition 4 (Function-Hiding Security). For a DDFE scheme E, a function class F and a
ppt adversary A we define the experiment Expfh

E,F ,A(1
λ) as shown in Figure 1 and set H := [n] \ C.

The oracles OEnc, OKeyGen and OCorrupt can be called in any order and any number of times.
We recall that for the queries to OEnc and OKeyGen, namely (i, k(0)

i , k(1)

i) and (i,m(0)

i ,m(1)

i), there
are private parts k(b)

i,pri,m
(b)

i,pri and public parts k(b)

i,pub,m
(b)

i,pub in the keys as well as in the messages.

We always require k(0)

i,pub = k(1)

i,pub = kpub and m(0)

i,pub = m(1)

i,pub = mpub because the public data is not
hidden. The adversary A is NOT admissible with respect to C,QEnc,QKGen, denoted by adm(A) = 0,
if one of the following holds:

1. There exists a tuple (i,m(0)

i ,m(1)

i) ∈ QEnc such that i ∈ C and m(0)

i ̸= m(1)

i
2, or there exists

(i, k(0)

i , k(1)

i) ∈ QKGen such that i ∈ C and k(0)

i ̸= k(1)

i .

2 This condition was introduced in [CDG+18a] then used in all other works on (D)MCFE [CDG+18a, LT19, ABKW19,
ABG19] and later on DDFE [CDSG+20, AGT21b]. We are not aware of any (even non function-hiding) DDFE, or
(D)MCFE, scheme in the literature which is proven secure under weaker constraint, i.e. more attacks are considered
admissible.

8

2. (Function-hiding) For b ∈ {0, 1}, there exist (i, k(b)

i)i∈UK
∈
⋃

i∈N (ID×K)i and (i,m(b)

i)i∈UM
∈⋃

i∈N (ID×M)i such that
• (i,m(0)

i ,m(1)

i) ∈ QEnc and (i, k(0)

i , k(1)

i) ∈ QKGen for all i ∈ H,
• m(0)

i = m(1)

i and k(0)

i = k(1)

i for all i ∈ C, and
• f (0)((i, k(0)

i)i∈UK
, (i,m(0)

i)i∈UM
) ̸= f (1)((i, k(1)

i)i∈UK
, (i,m(1)

i)i∈UM
).

Otherwise, we say that A is admissible w.r.t C, QEnc and QDKGen and write adm(A) = 1. We call E
function-hiding secure if for all ppt adversaries A,

Advfh
E,F ,A(1

λ) :=

∣∣∣∣Pr [b′ = b
]
− 1

2

∣∣∣∣
is negligible in λ.

Initialize(1λ):

b
$← {0, 1}

H, C,QEnc,QKGen←∅
(pp)←GSetup(1λ)
Return pp

OHonestGen(i):
(pki, ski)←LSetup(pp)
H←H∪ {i}
Return pki

Finalize(b′):

If adm(A) = 1, return β←(b′
?
= b)

Else, return 0

OKeyGen(i, k(0)

i , k(1)

i):

QKGen←QKGen ∪ {(i, k(0)

i , k(1)

i)}
Return dki←KeyGen(ski, k

(b)

i)
OEnc(i,m(0)

i ,m(1)

i):

QEnc←QEnc ∪ {(i,m(0)

i ,m(1)

i)}
Return ct←Enc(ski,m

(b)

i)
OCorrupt(i):

If i /∈ H:
(pki, ski)←LSetup(pp)
Return ski

H←H \ {i}; C←C ∪ {i}
Return ski

Fig. 1: Security game Expfh
E,F ,A(1

λ) for Definition 4

Weaker Notions. One may define weaker variants of indistinguishability by restricting the access
to the oracles and imposing stronger admissibility conditions.

• Security against Static Corruption: The experiment Expstat-fh
E,F ,A(1

λ) is the same as Expfh
E,F ,A(1

λ)
except that all queries C = {i} to the oracle OCorrupt must be submitted before Initialize is called.
The challenger then performs LSetup(pp)→ (pki, ski) for each i ∈ C and return (pki, ski)i∈C .

• Security against Selective Challenges: The experiment Expsel-fh
E,F ,A(1

λ) is the same as Expfh
E,F ,A(1

λ)
except that all queries to the oracle OEnc must be submitted before Initialize is called.

• One-time Security: The experiment Exp1chal-fh
E,F ,A (1λ) is Expfh

E,F ,A(1
λ) except that the adversary

must declare up front to Initialize additional public information for challenge messages and
challenge keys mpub, kpub so that:

◦ if (i,m(0)

i ,m(1)

i) ∈ QEnc and m(0)

i,pub = m(1)

i,pub ̸= mpub, then m(0)

i = m(1)

i ,

◦ if (i, k(0)

i , k(1)

i) ∈ QKGen and k(0)

i,pub = k(1)

i,pub ̸= kpub, then k(0)

i = k(1)

i .

• Weakly Function-Hiding: We can weaken the function-hiding property by changing condition 2
for adm(A) = 0. More specifically, we replace it by the following condition 2’ :

2’. (Weakly Function-Hiding) For b ∈ {0, 1}, there exist (i, k(b)

i)i∈UK
∈
⋃

i∈N (ID×K)i and

(i,m(b)

i)i∈UM
∈
⋃

i∈N (ID×M)i such that

9

◦ (i,m(0)

i ,m(1)

i) ∈ QEnc and (i, k(0)

i , k(1)

i) ∈ QKGen for all i ∈ H,
◦ m(0)

i = m(1)

i and k(0)

i = k(1)

i for all i ∈ C, and
◦ f (0)((i, k(0)

i)i∈UK
, (i,m(0)

i)i∈UM
) ̸= f (1)((i, k(1)

i)i∈UK
, (i,m(1)

i)i∈UM
) OR

f (0)((i, k(0)

i)i∈UK
, (i,m(0)

i)i∈UM
) ̸= f (1)((i, k(0)

i)i∈UK
, (i,m(0)

i)i∈UM
) OR

f (1)((i, k(0)

i)i∈UK
, (i,m(0)

i)i∈UM
) ̸= f (1)((i, k(1)

i)i∈UK
, (i,m(1)

i)i∈UM
).

The experiment in this weak function-hiding model is denoted by Expwfh
E,F ,A(1

λ).

We define the function family F IP
N1,...,Nn

of bounded-norm inner-product functionalities that will be
used in our FH-DMCFE scheme.

Definition 5 (Inner-Product Functionality). Let λ ∈ N. Let B = B(λ), n = n(λ), N1(λ), . . . , Nn(λ)
be polynomials and Di = [−B;B]Ni for i ∈ [n]. We denote by F ip

N1,...,Nn
= {fy1,...,yn

: y1 ∈
D1, . . . ,yn ∈ Dn} the family of functions where fy1,...,yn

: D1 × · · · × Dn → Z is defined as
fy1,...,yn

(x1, . . . ,xn) :=
∑n

i=1⟨xi,yi⟩.

Below is the dynamic version F ip
dyn that will be used in our FH-DDFE scheme. Previous works on

DDFE [CDSG+20, AGT21b] use the same functionality.

Definition 6 (Dynamic Inner Product Functionality). Let λ ∈ N. We define the Dynamic
Inner-Product Functionality F ip

dyn that contains

f :
⋃
i∈N

(
ID×

(
[−B,B]Ni ×Kpub

))i ×⋃
i∈N

(
ID×

(
[−B,B]Ni ×Mpub

))i → R
where ID = {0, 1}poly(λ) is an identity space, 2ID denotes the power set of ID, Tag = {0, 1}poly(λ) is a
tag space, Kpub =Mpub = 2ID×Tag, and R ⊂ Z is polynomially large while B = B(λ), Ni = Ni(λ) :
N→ N are polynomials so that for all (i, ki = (yi,UK,i, tag-fi))i∈UK

, (i,mi = (xi,UM,i, tagi))i∈UM

f((i, ki)i∈UK
, (i,mi)i∈UM

) =

{ ∑
i∈[n]⟨xi,yi⟩ if condition (∗) holds

⊥ otherwise
.

Condition (∗) holds if:

• UK = UM , |UK | = |UM | = n.
• For all i ∈ UK , UK,i = UK ; For all i ∈ UM , UM,i = UM .
• There is tag-f such that for all i ∈ UK , tag-fi = tag-f.
• There is tag such that for all i ∈ UM , tagi = tag.

Remark 7. (Security against Complete Challenges) Our FH-DDFE construction in Section 6
for F ip

dyn will use an intermediate step proven secure in a weaker model with an additional constraint

termed complete challenges. Specifically, the experiment Exppos-fh
E,F ,A(1

λ) is the same as Expfh
E,F ,A(1

λ)
except that we add the following condition 3 for adm(A) = 0:

3. There exists mpub = (UM , tag) such that a query OEnc(i, (m(0)

i,pri,mpub), (m
(1)

i,pri,mpub)) has been
asked for some but not all i ∈ H ∩ UM , or there exists kpub = (UK , tag-f) such that a query
OKeyGen(i, (k(0)

i,pri, kpub), (k
(1)

i,pri, kpub)) has been asked for some but not all i ∈ H ∩ UK .

Lemma 8 uses a standard hybrid reduction to prove that in the weakly function-hiding setting,
single-challenge security is equivalent to multi-challenge security. The proof is given in Appendix B.1
for completeness.

10

Lemma 8. Let E = (GSetup, LSetup,KeyGen,Enc,Dec) be a DDFE scheme for the function class
F . If E is single-challenge weakly function-hiding, then it is also weakly function-hiding. More
specifically, for any ppt adversary A, there exists a ppt algorithm B such that

Advxxx-wfh
E,F ,A (1λ) ≤ (qe + qk) ·Adv1chal-xxx-wfh

E,F ,B (1λ) ,

where qe and qk denote the maximum numbers of different mpub and kpub that A can query to OEnc
and OKeyGen respectively, and xxx ⊆ {stat, sel, pos}.

The works of [LV16] and [ACF+18] present generic transformations that turn weakly function-hiding
(multi-input) functional encryption schemes into full-fledged function-hiding schemes. A similar
transformation, stated in Lemma 9, is also applicable in the case of FH-DDFE. The proof is given in
Appendix B.2.

Lemma 9. If there exists a weakly function-hiding DDFE scheme E for F ip
dyn, then there exists a

(fully) function-hiding DDFE scheme E ′ for F ip
dyn. More precisely, for any ppt adversary A, there

exists a ppt algorithm B such that

Advxxx-fh
E ′,F ip

dyn,A
(1λ) ≤ 3 ·Advxxx-wfh

E,F ip
dyn,B

(1λ) ,

where xxx ⊆ {stat, sel, 1chal, pos}.

All-or-Nothing Encapsulation (AoNE). The notion of AoNE is a particular functionality of
DDFE introduced by Chotard et al. [CDSG+20]. In the transformation of [CDG+18b, Section 5.2],
AoNE appears under the name Secret Sharing Layer (SSL). In [AGT21b], AoNE also serves as a
building block for their FH-DDFE scheme. In this paper we follow the syntax of [AGT21b] and
regard AoNE as an FH-DDFE for a specific functionality. We remark that in [CDSG+20], a separate
indistinguishability-based security notion is defined, but because there is no concepts of keys in AoNE,
the security notion of [CDSG+20] is equivalent to the function-hiding security from Definition 4
when viewing AoNE as an FH-DDFE.

Definition 10 (All-or-Nothing Encapsulation). Let λ ∈ N. We define the All-or-Nothing
Encapsulation (AoNE) as FH-DDFE schemes for the functionality that contains

f : ∅×
⋃
i∈N

(ID× (D ×Mpub))
i → R

where ID = {0, 1}poly(λ) is an identity space, 2ID denotes the power set of ID, Tag = {0, 1}poly(λ) is a
tag space,Mpub = 2ID × Tag, and R = {0, 1}∗ so that for all (i)i∈UK

, (i,mi = (xi,UM,i, tagi))i∈UM

f((i)i∈UK
, (i,mi)i∈UM

) =

{
(xi)i∈UM

if condition (∗) holds
⊥ otherwise

.

Condition (∗) holds if:

• For all i ∈ UM , UM,i = UM .
• There is tag such that for all i ∈ UM , tagi = tag.

From [CDSG+20], it holds that AoNE can be constructed generically from identity-based encryption,
or from bilinear maps under the Decisional Bilinear Diffie-Hellman (DBDH) assumption. The first
construction is secure in the standard model, but ciphertexts have size linear in |UM |. On the other
hand, the size of ciphertexts in the construction from DBDH is are independent of |UM |, but the
security proof resorts to the ROM.

11

3 Technical Overview

3.1 Function-Hiding DMCFE for Inner Products

Specializing FH-DMCFE using FH-DDFE. In [CDG+18a] and its follow-up works [CDG+18b,
ABKW19, ABG19, LT19, CDSG+20] on DMCFE, the syntax of DMCFE is given by (Setup,Enc,DKeyGen,
DKeyComb,Dec) where Setup allows n clients and n senders initialize and agree upon their encryp-
tion keys (eki)i as well as their secret keys (ski)i, respectively. Each client can perform an encryption
Enc(eki, tag, xi)→ cti on their private component xi using their private eki, under some tag tag.
Each sender can independently generate a partial functional key DKeyGen(ski, tag-f, F)→ dkF,i
using their private ski on a common function F , under some tag tag-f. The decryption is run on
(cti)i using the combined key dkF . All these prior works do not consider function-hiding property
for DMCFE and thus the syntax therein needs certain refinements to be able to capture the privacy
of functions. Our very first step is to specialize the FH-DDFE notion from Definition 3 to the case
of FH-DMCFE. The complete definition as well as detailed security model for FH-DMCFE, because
the algorithms’ names are modified from the FH-DDFE, are given in Appendix A.1.

As an intermediate step, we focus on constructing an FH-DMCFE scheme whose proof of security is
done in a model with certain restrictions. Specifically, we consider the case where the adversary is
allowed to ask only complete challenges, one adaptive challenge query, under static corruption, and
all their queries, with possibly repetitions, are subject to the weakly function-hiding condition:

• Weakly function-hiding (Condition 5 in Definition 18): All queries satisfy F (0)(x(0)

1 , . . . , x(0)
n) =

F (1)(x(0)

1 , . . . , x(0)
n) = F (1)(x(1)

1 , . . . , x(1)
n).

• Complete queries constraint (Condition 4 in Definition 18): If there exists a ciphertext (or key)
query for any honest component w.r.t some tag tag (or tag-f), then all honest ciphertext (or
key) components must be queried at least once for this tag.

• One challenge constraint (Condition 3 in Definition 18): There exists only one tag∗ to the
encryption oracle OEnc having x(0)

i ̸= x(1)

i , while for other tag ≠ tag∗ it holds that x(0)

i = x(1)

i .
Similarly, there exists only one tag-f∗ to the key generation oracle OKeyGen having y(0)

i ̸= y(1)

i ,
while for other tag-f ̸= tag-f∗ it holds that y(0)

i = y(1)

i .
• Static corruption (Condition 1 in Definition 18): All corruption queries must be declared up
front.

Construction based on SXDH. Our construction relies on the notion of Dual Pairing Vector
Spaces (DPVSes, see Section 2.2). In the following we highlight the main ideas of our backbone
construction in Section 5. We use DPVSes in the bilinear group setting (G1,G2,Gt, g1, g2, gt, e, q).

Our function class of interest is for computing inner products F ip
N1,...,Nn

that is defined in Definition 5.
Each sender can use their secret key ski to independently generate a partial functional decryption
key for yi ∈ ZNi

q , and each client can use their encryption key eki to independently encrypt their

data xi ∈ ZNi
q . We use two hash functions H1 : Tag → G1 and H2 : Tag → G2 to process the

encryption and key generation tags. Given tag for encryption and tag-f for key generation, we
denote JωK1←H1(tag) and JµK2←H2(tag-f). We employ two sets of secret sharings of 0, namely
(si)i in the key and (ti)i in the ciphertext, so that they will cancel when all keys of the same tag-f
and all ciphertexts of the same tag are combined. This can be done by using JωK1 to randomize
a secret sharing (t̃i)i of 0, which is generated at setup and embedded in the encryption keys eki,
so as to obtain JtiK1 :=

q
ωt̃i

y
1
. The same technique is done for the decentralized generation of

(si)i := (µs̃i)i, i.e. by using JµK2 to randomize a pre-generated secret sharing (s̃i)i. Additionally, we
need more coordinates for the goal of repeated adaptive challenge ciphertexts and challenge keys.
More specifically, the ciphertext components ci and the partial key components di are as follows:

12

ci = (xi ω 0Ni 0Ni ti 0 ρi aux. 0-coords)Bi

di = (yi si 0Ni 0Ni µ πi 0 aux. 0-coords)B∗
i

where πi, ρi
$← Zq are randomness. The auxiliary coordinates that are not used in real ciphertexts

and keys, thus containing 0’s, are for proving security.
We recall that our one-challenge security notion means there exists only one tag∗ to the encryption
oracle OEnc having (x(0,j)

i)i ̸= (x(1,j)

i)i, while for other tagℓ ̸= tag∗ it holds that (x(0,j)

ℓ,i)ℓ,i = (x(1,j)

ℓ,i)i.

We denote by (c(j′)
ℓ,i)i the ciphertext components for (x(j′)

ℓ,i)i under these non-challenge tagℓ, with

possible different repetitions x(j′)
ℓ,i for different j′. In the same manner, there exists only one tag-f∗

to the key-generation oracle OKeyGen having (y(0,j̃)

i)i ̸= (y(1,j̃)

i)i, while for other tag-fk ̸= tag-f∗ it

holds that (y(0,j̃)

k,i)k,i = (y(1,j̃)

k,i)i. We denote by (d(j̃′)
k,i)i the key components for (y(j̃′)

k,i)i under these

non-challenge tag-fk, with possible different repetitions y(j̃′)
k,i for different j̃′. To summarize, starting

from the game with the challenge bit b
$← {0, 1}, an adversary will obtain:

c(j′)
ℓ,i = (x(j′)

ℓ,i ω 0Ni 0Ni tℓ,i 0 ρ(j′)
ℓ,i aux. 0-coords)Bi

c(j)

i = (x(b,j)

i ω 0Ni 0Ni ti 0 ρ(j)

i aux. 0-coords)Bi

d(j̃)

i = (y(b,j̃)

i si 0Ni 0Ni µ π(j̃)

i 0 aux. 0-coords)B∗
i

d(j̃′)
k,i = (y(j̃′)

k,i sk,i 0Ni 0Ni µk π(j̃′)
k,i 0 aux. 0-coords)B∗

i

.

The challenges (c(j)

i ,d(j̃)

i)i are queried adaptively, while the set of corrupted i is declared up front.
We allow repetitions at a position i under the same tag, indexed by (j, j′) for ciphertext tags
(tag∗, tagℓ) and by (j̃, j̃′) for functional key tags (tag-f∗, tag-fk), in that order. Our goal is to switch

(x(b,j)

i ,y(b,j̃)

i)i in (ci,di)i to (x(1,j)

i ,y(1,j̃)

i)i so that the game does not depend on b
$← {0, 1} and the

adversary’s advantage becomes 0. We recall that the secret sharings (si, ti, sk,i, tℓ,i)i,k,ℓ depend only
on the tags and a fixed secret sharing generated from setup time, hence they are the same across
repetitions under the same tag.

Concrete Interpretation of the Function-Hiding Admissibility. A step of vital importance in our

proof is a concrete interpretation of the admissible adversaries against an FH-DMCFE for F ip
N1,...,Nn

.
The general definition of admissible adversaries for FH-DDFE is given in Definition 4, and we
specialized these conditions in the case of FH-DMCFE in Definition 18:

• Condition 1 of Definition 18 restricts that if a client i ∈ [n] is corrupted by the adversary then
the challenge queries at i must be on equal messages x(0,j)

i = x(1,j)

i and function parameters

y(0,j̃)

i = y(1,j̃)

i . This condition is inspired from a similar admissibility condition for (D)MCFE from
the works [CDG+18a, CDSG+20] and the function-hiding admissibility condition from [AGT22].

• Finally, condition 2 dictates that: let b
$← {0, 1} be the challenge bit, then

f
y
(0,j̃i)
1 ,...,y

(0,j̃i)
n

(x
(0,j1)

1 , . . . ,x(0,jn)
n) = f

y
(1,j̃i)
1 ,...,y

(1,j̃i)
n

(x
(1,j1)

1 , . . . ,x(1,jn)
n) (1)

for all possible combinations (x
(b,j1)

1 , . . . ,x(b,jn)
n) as well as all possible combinations (y

(b,j̃1)

1 , . . . ,y(b,j̃n)
n),

over the potentially repetitive ciphertext challenges (i, tag∗,x(0,j)

i ,x(1,j)

i) and (i, tag-f∗,y(0,j̃)

i ,y(1,j̃)

i)
at each position i. We emphasize that for each i, the number of ciphertext repetitions Ji (J̃i
for keys) might differ and the combination is specified by (j1, . . . , jn) ∈ [J1] × · · · × [Jn], or
(j̃1, . . . , j̃n) ∈ [J̃1]× · · · × [J̃n] for keys. Moreover, condition 2 implies that for each client i ∈ [n],
for all queries (i, tag∗,x(0,j)

i ,x(1,j)

i) and (i, tag-f∗,y(0,j̃)

i ,y(1,j̃)

i), it must hold that:

⟨x(0,j)

i ,y(0,j̃)

i ⟩ − ⟨x(1,j)

i ,y(1,j̃)

i ⟩ = ⟨x(0,j′)
i ,y(0,j̃′)

i ⟩ − ⟨x(1,j′)
i ,y(1,j̃′)

i ⟩ (2)

13

for every repetitions j, j′ ∈ [Ji] and every j̃, j̃′ ∈ [J̃i].

This concrete interpretation will play a crucial role in the proof of Theorem 13 for function-hiding
security of our FH-DMCFE scheme.

A Key Lemma - Secret Sharing Swapping. Back to the weakly function-hiding of our FH-DMCFE
scheme, the condition (1) from fully function-hiding becomes

f
y
(0,j̃i)
1 ,...,y

(0,j̃i)
n

(x
(0,j1)

1 , . . . ,x(0,jn)
n) = f

y
(1,j̃i)
1 ,...,y

(1,j̃i)
n

(x
(0,j1)

1 , . . . ,x(0,jn)
n)

= f
y
(1,j̃i)
1 ,...,y

(1,j̃i)
n

(x
(1,j1)

1 , . . . ,x(1,jn)
n) (3)

over all combinations of repetitive components among ciphertexts and keys. The same adaptation
also applies to condition (2) in this weakly function-hiding setting:{

⟨x(0,j)

i ,y(0,j̃)

i ⟩ − ⟨x(0,j)

i ,y(1,j̃)

i ⟩ = ⟨x(0,j′)
i ,y(0,j̃′)

i ⟩ − ⟨x(0,j′)
i ,y(1,j̃′)

i ⟩
⟨x(0,j)

i ,y(0,j̃)

i ⟩ − ⟨x(1,j)

i ,y(1,j̃)

i ⟩ = ⟨x(0,j′)
i ,y(0,j̃′)

i ⟩ − ⟨x(1,j′)
i ,y(1,j̃′)

i ⟩
(4)

for each client i ∈ [n] and for every repetitions j, j′ ∈ [Ji] and every j̃, j̃′ ∈ [J̃i]. Condition (3) implies

that, for the challenge bit b
$← {0, 1}

f
y
(b,j̃1)
1 −y

(1,j̃1)
1 ,...,y

(b,j̃n)
n −y

(1,j̃n)
n

(x
(b,j1)

1 , . . . ,x(b,jn)
n)

(∗)
=

H∑
i=1

⟨x(b,ji)

i ,y
(b,j̃i)

i − y
(1,j̃i)

i ⟩

= 0

where H denotes the number of honest i and (∗) comes from condition 1 of Definition 18 on

corrupted i. This leads to our idea to treat each term ⟨x(b,ji)

i ,y
(b,j̃i)

i − y
(1,j̃i)

i ⟩ as some i-th share in a

secret sharing of 0, which depends on some adversarial vectors (x
(b,ji)

i ,y
(b,j̃i)

i)ni=1. By combining with
condition (4), we prove a computational lemma in the DPVS setting that states:

Given the adversarially chosen vectors (x
(b,ji)

i ,y
(b,j̃i)

i)ni=1, under appropriately crafted random
dual bases (Bi,B

∗
i) for DPVS and conditions (3) as well as (4), given ci-vectors in Bi encoding

x
(b,ji)

i and di-vectors encoding (y
(b,j̃i)

i ,y
(1,j̃i)

i), under the SXDH assumption, we are able to modify

ci-vectors and di-vectors so that ci × di changes from ⟨x(b,ji)

i , y
(b,j̃i)

i ⟩ to ⟨x(b,ji)

i , y
(1,j̃i)

i ⟩.

The formal statement is presented in Lemma 12. We remark that because we want to apply this
lemma in the context with multiple families of vectors (c(j)

i ,d(j̃)

i)i, where at a position i ∈ [n] there

might be repetitions of c(j)

i or d(j̃)

i , Lemma 12 also takes into account those details. An overview of
the proof for Lemma 12 is given in Section 4, all relevant details can be found in Appendix B.3.

Finishing the Proof. Being armed with Lemma 12, we are ready to tackle the security proof of our

FH-DMCFE from Section 5. In the following the changes in vectors are put in boxed. First of all,
because we consider only static corruption, the changes are made only for honest position i, whose
(eki, ski) are never revealed to the adversary.
After some pre-processing steps to switch the secret sharings (si, ti, sk,i, tℓ,i)i,k,ℓ from being shifted
by the hash values of tags to being independently randomly chosen secret sharing of 0, we begin by
exploiting the computational subspace indistinguishability of DPVS to prepare the vectors:

14

c(j′)
ℓ,i = (x(j′)

ℓ,i ω 0Ni 0Ni tℓ,i 0 ρ(j′)
ℓ,i aux. 0-coords)Bi

c(j)

i = (x(b,j)

i ω 0Ni 0Ni ti 0 ρ(j)

i aux. 0-coords)Bi

d(j̃)

i = (y(b,j̃)

i si y(1,j̃)

i 0Ni µ π(j̃)

i 0 aux. 0-coords)B∗
i

d(j̃′)
k,i = (y(j̃′)

k,i sk,i y(j̃′)
k,i 0Ni µk π(j̃′)

k,i 0 aux. 0-coords)B∗
i

.

This computational property of DPVS was introduced in the seminal works by Okamoto and
Takashima [OT10, OT12a, OT12b]. Under the DDH assumption, this subspace indistinguishability
allows us to introduce chosen values into certain coordinates of some vectors in a basis (in this case

d(j̃)

i and d(j̃′)
k,i in B∗

i), as long as the corresponding coordinates in all given vectors in the dual basis

are 0 (in this case c(j)

i and c(j′)
ℓ,i in Bi). Next, we apply Lemma 12:

c(j′)
ℓ,i = (0Ni ω x(j′)

ℓ,i 0Ni tℓ,i 0 ρ(j′)
ℓ,i aux. 0-coords)Bi

c(j)

i = (0Ni ω x(b,j)

i 0Ni ti 0 ρ(j)

i aux. 0-coords)Bi

d(j̃)

i = (y(b,j̃)

i si y(1,j̃)

i 0Ni µ π(j̃)

i 0 aux. 0-coords)B∗
i

d(j̃′)
k,i = (y(j̃′)

k,i sk,i y(j̃′)
k,i 0Ni µk π(j̃′)

k,i 0 aux. 0-coords)B∗
i

.

The applications are performed via a sequence of hybrids over distinct tags, including the challenge
tag∗ and non-challenge tagℓ, that are queried to OEnc, up to repetitions j, j′ at each position i. As
an example, we can verify that the interpreted admissibility as conditions (3) and (4), together with
the static corruption ensuring all basis vectors of an honest i are hidden, satisfy the hypothesis

of Lemma 12 and permit us to swap x(b,j)

i for each honest i. The swapping x(j′)
ℓ,i can be checked

similarly. We then employ again the subspace indistinguishability

c(j′)
ℓ,i = (0Ni ω x(j′)

ℓ,i x(j′)
ℓ,i tℓ,i 0 ρ(j′)

ℓ,i aux. 0-coords)Bi

c(j)

i = (0Ni ω x(b,j)

i x(1,j)

i ti 0 ρ(j)

i aux. 0-coords)Bi

d(j̃)

i = (y(b,j̃)

i si y(1,j̃)

i 0Ni µ π(j̃)

i 0 aux. 0-coords)B∗
i

d(j̃′)
k,i = (y(j̃′)

k,i sk,i y(j̃′)
k,i 0Ni µk π(j̃′)

k,i 0 aux. 0-coords)B∗
i

and perform a sequence of hybrids over distinct tags to OKeyGen to apply Lemma 12 for swapping
the keys’ contents:

c(j′)
ℓ,i = (0Ni ω x(j′)

ℓ,i x(j′)
ℓ,i tℓ,i 0 ρ(j′)

ℓ,i aux. 0-coords)Bi

c(j)

i = (0Ni ω x(b,j)

i x(b,j)

i ti 0 ρ(j)

i aux. 0-coords)Bi

d(j̃)

i = (y(b,j̃)

i si 0Ni y(1,j̃)

i µ π(j̃)

i 0 aux. 0-coords)B∗
i

d(j̃′)
k,i = (y(j̃′)

k,i sk,i 0Ni y(j̃′)
k,i µk π(j̃′)

k,i 0 aux. 0-coords)B∗
i

.

The very last step uses subspace indistinguishability for cleaning the first and third columns of
ciphertexts as well as keys, leading to a game independent of the challenge b

$← {0, 1}.
Removing the usage of random oracles in FH-DMCFE/FH-DDFE. In a concurrent work,
Shi and Vanjani [SV23] propose the first FH-MCFE for inner products using pairings that is provably
secure in the standard model. An important building-block in their FH-MCFE is the primitive of
correlated pseudorandom functions (Cor-PRFs) from [BIK+17, ABG19, SW21]. In the setting of
MCFE, the functional key generation is centralized and the secret sharing of 0 (similar to our (si)i)
can be generated using a maser secret key, while the counterpart in ciphertexts (similar to our (ti)i)
can be computed independently by each client using a Cor-PRF, whose key is given in eki. This helps
remove the reliability on the RO to randomize a pre-determined secret sharing and allows proving
security in the standard model. However, all these secret shares, (si)i or (ti)i, must be multiplied by
a fixed randomness at decryption time (similar to our ω or µ respectively) so as to enable correct
decryption. Moving to the decentralized setting of DMCFE, or the dynamic setting of DDFE, we

15

believe that it will be delicate to make ciphertext and key components agree on such a randomness
while using Cor-PRF.

3.2 Function-Hiding DDFE for Inner Products

In this section, we describe the main ideas in the construction of our FH-DDFE scheme for the
inner product functionality. Our goal is to achieve adaptive security for both encryption and key-
generation queries under static corruption. As a starting point, we attempt to follow the blueprint
of [AGT21b]. They provide a construction of a function-hiding DDFE scheme proven secure under
selective key-generation and encryption queries as well as static corruption. Furthermore, their
proof uses an additional assumption about the adversary termed one key-label restriction.3 The
construction proceeds in two steps. First, the authors build an FH-MCFE scheme secure against
complete challenges. Subsequently, they lift this scheme to FH-DDFE. Inspecting their transformation,
we identify the following key challenges:

1. Decentralized generation of decryption keys: In a DMCFE or DDFE, several users generate partial
decryption keys and decryption is only possible when all parts are available. The difficulty lies in
the fact that the adversary can corrupt users and learn their secret keys. However, this should
not allow generating decryption keys for honest users.

2. Non-interactive generation of secret keys: Being dynamic, DDFE aims at allowing users to join
the system at any time without interaction with the other users, whereas the number of users is
fixed in (D)MCFE.

3. Security against incomplete queries: The security proof for the MCFE of [AGT21b] assumes that
for each tag tag, the adversary either does not ask encryption queries for any honest client, or
it asks at least one query for each honest client. In this case, we say that the adversary asks
only complete queries. The security of the final DDFE scheme does not rely on this assumption
anymore.

In the remainder of this section, we discuss how the authors of [AGT21b] address these challenges
and explain our modifications that allow us to prove adaptive security without the one key-label
restriction.

Challenge 1: Decentralized Generation of Decryption Keys. The authors of [AGT21b] deal with the
first challenge in a natural way by employing a concrete MCFE scheme whose decryption keys consist
of n shares, each corresponding to one client. In our conversion, we formalize this fact by directly
starting from a DMCFE scheme. As the DDFE scheme essentially inherits the security level of the
underlying (D)MCFE, it is important to compare the security levels of these schemes.
Most importantly, the function-hiding MCFE scheme in [AGT21b] is only selectively secure, whereas
our DMCFE enjoys adaptive security. Although the construction was already described in Section 3.1,
it is instructive to compare it explicitly with the MCFE of [AGT21b]. The starting points are very
similar. Given a tuple (i,xi, tag), the encryption algorithms of both schemes define an extended
vector of the form x̂i = (xi, tag, · · ·) and return an encryption of x̂i using a single-input function-
hiding FE scheme for inner products. Similarly, partial keys for a tuple (i,yi, tag-f) are created by
choosing a random secret sharing (si)i∈[n] of 0, defining ŷi = (yi, si, · · ·) and returning a key for ŷi

that is generated using the same single-input FE scheme.4

3 The one key-label restriction is an additional constraint on the adversary in the security game of FH-DDFE for the
inner-product functionality F ip

dyn. Specifically, an adversary satisfies the one key-label restriction if their queries

satisfy the following additional condition: The query OKeyGen(i, (k0
pri, kpub), (k

1
pri, kpub)) for kpub = (∗, tag-f) is

made only once for each pair (i, tag-f).
4 We recall that keys in the MCFE of [AGT21b] implicitly have this modular structure, even if the notion of partial
key is not properly defined for MCFE schemes in general.

16

The admissibility for adversaries in the function-hiding security game for (D)MCFE specifies global
conditions of the form

∑n
i=1⟨x0

i ,y
0
i ⟩ =

∑n
i=1⟨x1

i ,y
1
i ⟩. However, nothing is guaranteed for the relation

between ⟨x0
i ,y

0
i ⟩ and ⟨x1

i ,y
1
i ⟩. For this reason, it happens during the security proof that some inputs

xi or yi that the adversary queries to the encryption or key-generation oracle must be “mixed” and
embedded in the responses to prior or subsequent queries. In the adaptive setting, this can lead to
the situation that the simulator needs to embed values into decryption keys or ciphertexts before
they are actually queried by the adversary. In the MCFE of [AGT21b], this problem is solved by
resorting to selective security. In this case, the simulator knows all the inputs from the beginning and
can use them whenever necessary. In contrast, we provide a concrete instantiation of the underlying
single-input FE scheme based on DPVS. If the simulator gets into a situation where it would have to
use inputs that have not yet been queried by the adversary, we make it guess them. Even though this
makes the simulator inefficient, the adversary cannot exploit this fact due to information-theoretic
properties of the DPVS setting. We emphasize that this technique cannot be applied to black-box
instantiations of the inner-product FE scheme because they provide only computational security in
general.
On the negative side, the security model of our DMCFE scheme suffers from the restrictions that the
adversary can ask challenge (“left-or-right”) queries only for one tag. This constraint does not exist
in the MCFE of [AGT21b]. The intuitive reason is that the above-mentioned information-theoretic
arguments force us to consider queries one-by-one while the security proof in [AGT21b] deals with
all queries at the same time in a uniform way. Fortunately, a simple hybrid argument shows that
one-challenge and multi-challenge security are equivalent in the weak function-hiding setting. Details
can be found in Lemmas 8. Intuitively, in the standard setting (without function-hiding) the proof
can be done by a sequence of hybrids over the different public inputs queried to the encryption oracle.
However, this approach does not directly generalize to the function-hiding setting. The problem is
that now both encryption and key-generation queries depend on the challenge bit b ∈ {0, 1}. Since
ciphertexts and keys can be arbitrarily combined in general, such a sequence of hybrids leads to
a situation where an adversary is able to mix ciphertexts that encrypt the left message with keys
generated for the right function or vice versa. However, the function-hiding admissibility does not
provide any security guarantees in the case of such mixed decryption. Therefore, we cannot change
ciphertexts and keys one by one anymore. We solve this problem by means of a standard technique.
First, we prove security in the weakly function-hiding setting. This model provides us exactly with
the necessary guarantee for mixed decryptions, which allows us to subsequently swap keys and
ciphertexts. Afterwards, we apply a standard transformation that turns weakly function-hiding FE
schemes for inner products into schemes that enjoy full-fledged function-hiding security. Previous
works [LV16, ACF+18] presented the transformation for single-input and multi-input FE schemes.
For completeness, we argue the case of DDFE in Lemma 9.
Last but not least, our FH-DMCFE scheme does not require the one key-label restriction gracefully
using our core Lemma 12, in the context of swapping multiple families of vectors (c(j)

i ,d(j̃)

i)i, where

at a position i ∈ [n] there might be repetitions of c(j)

i or d(j̃)

i (see Section 3.1). The proof heavily
relies on information-theoretic properties of DPVS and we refer to Section 4 for general ideas therein.

Challenge 2: Non-Interactive Generation of Secret Keys. To overcome the second challenge, it is
natural to look for a way to generate the secret keys of the users without interaction. However,
a dynamic set of users (i.e. users can join the system at any time) is only meaningful if the
corresponding function class of the scheme supports dynamically chosen support sets. Such a case is
not considered in the (D)MCFE setting, as the set of clients [n] is fixed up front. Therefore, it is not
enough to set up one instance of the underlying (D)MCFE, but one needs to emulate an independent
instance for each support.

17

Let ID be a set of identities. Recall that in the MCFE of [AGT21b], the secret information about a
user i ∈ ID consists of a secret key for a single-input function-hiding FE scheme and a secret share
si ∈ Zq. For the former, they equip user i with a key Ki for a family of pseudorandom functions
{FK}K . If the user wants to obtain a secret key w.r.t some support U ⊆ ID, it evaluates FKi(U)→ ri
and runs the setup algorithm of the single-input FE scheme with fixed random coins ri. For the
secret share si, the authors of [AGT21b] use a technique introduced in [CDSG+20] under the name
decentralized sum (DSUM). Basically, this technique uses a clever interleaving of a non-interactive
key exchange (NIKE) scheme and a PRF to generate a fresh share si for each support U .
Our construction follows exactly this blueprint. That is, we employ a PRF to generate a fresh DPVS
instance for each user-support pair (i,U) and a DSUM instance to generate random sharings. Recall
from Section 3.1 that our DMCFE scheme embeds secret sharings in both ciphertexts and keys. For
this reason, we use the DSUM technique twice, in encryption and key generation generation. To
guarantee the independence of the secret sharings, we add some salt to the PRF in both applications.

Challenge 3: Security against Incomplete Queries. To overcome the third challenge, the authors
of [AGT21b] make use of a technique called all-or-nothing encapsulation (AoNE) that was previously
introduced in [CDSG+20]. Roughly, AoNE allows all parties of a (previously fixed) group to
encapsulate individual messages, that can all be extracted by everyone if and only if all parties of the
group have sent their contribution. Otherwise, no message is revealed. In the DDFE constructions
of [CDSG+20, AGT21b], such an AoNE layer is added on top of both ciphertexts and keys. Intuitively,
this approach allows the following reasoning: if an adversary makes encryption queries for all (honest)
clients under some tag tag (i.e. the query is “complete”), then the AoNE scheme allows to obtain all
ciphertexts, and we can rely on the security of the DDFE scheme that is secure against complete
challenges. On the other hand, if the adversary queries only some but not all honest clients (i.e.
the query is “incomplete”), then the security of the AoNE scheme guarantees that the adversary
does not learn anything about the encapsulated messages. While this construction is well known,
previous DDFE constructions prove only selective security, even if the employed AoNE scheme is
adaptively secure. Specifically, the constructions of [CDSG+20, AGT21b] already resort to selective
security to deal with the second challenge. For simplicity, their security proof then also exploits
selective security to handle incomplete queries. Nevertheless, we believe it is important to show
that this AoNE layer indeed preserves adaptive security if the underlying DDFE, which is secure
against complete challenges, has this property. To our knowledge, the only known conversion with
this property has been presented in [ABG19]. The drawback of that construction is that ciphertexts
grow quadratically in the number of clients. So, in conclusion, we show that the AoNE technique of
[CDSG+20] achieves the same security level as [ABG19], while having ciphertexts of only linear size
if an appropriate instantiation for the AoNE scheme is used.

We present our results in form of a generic conversion that turns any one-challenge DDFE scheme
secure against complete queries into one that is also secure against incomplete queries. The formal
description of the conversion is provided in Appendix B.7. Security is stated in Lemma 16. On an
intuitive level, our simulator initially guesses whether or not the encryption queries for the challenge
public input k∗pub (or m∗

pub) will be complete. If the guess was “complete” and this guess turns
out to be correct at the end of the game, then the simulator attacks the underlying DDFE scheme
that is assumed to be secure against complete queries. If the guess was “incomplete” and the guess
is correct, then the simulator attacks the security of the AoNE scheme. If the guess was incorrect
(which happens with probability 1/2), then the simulator aborts with a random bit. In this way, we
can upper bound the advantage of a distinguisher between two successive hybrids in terms of the
advantages that efficient adversaries can achieve against the underlying AoNE and DDFE schemes.
We point out that this conversion crucially relies on the one-challenge setting. Due to the guess

18

on the (in)completeness of the query, we lose a factor 1/2 in the security proof. Thus, a hybrid
argument over a polynomial number of incomplete queries would incur an exponential security loss.
Therefore, it is important to add security against incomplete queries in the one-challenge model,
while noticing that security against incomplete non-challenge queries follows trivially. Afterwards,
one can obtain security against multiple challenges using the sequence of hybrids described above.
We think that this corrects a subtle flaw in the proof of [SV23, Theorem 5] where the authors present
a similar conversion in the MCFE setting. Nevertheless, by using our workaround via one-challenge
security their result remains correct.

4 Secret-Sharing Swapping Lemma

In this section we state and prove a technical lemma that will be the basis of our results and may
be of independent interest, with various applications. A simple version is presented in Lemma 11,
then the full indistinguishability property is stated in its corollary, Lemma 12.

Lemma 11 (Single Secret-Sharing Swapping). Let λ ∈ N and H = H(λ),K = K(λ), L =
L(λ), J = J(λ), Ni = Ni(λ) ∈ N where i ∈ H and H,K,L, J,Ni : N → N are polynomials. Let
(Bi,B

∗
i)i∈[H] be two random dual bases of dimension 4Ni + 4 in (G1,G2,Gt, g1, g2, gt, e, q). All basis

vectors are kept secret.

For each i ∈ [H], consider public vectors (xi,x
(rep)

ℓ,i ,x(rep)′

ℓ,i ,y(0,j)

i ,y(1,j)

i ,y(rep)

k,i)
rep,j∈[J]
k∈[K],ℓ∈[L] of length Ni such

that
∑H

i=1⟨xi,y
(0,j)

i ⟩ =
∑H

i=1⟨xi,y
(1,j)

i ⟩ and ⟨xi,y
(1,j)

i − y(0,j)

i ⟩ is a constant for all j ∈ [J], i ∈ [H].

Let (R,Rk)j∈[J],k∈[K] be some public scalars. Given r, rℓ, ρi, ρ
(rep)

ℓ,i , π(j)

i , π(rep)

k,i , σi, σk,i
$← Zq such that∑H

i=1 σi = R and
∑H

i=1 σk,i = Rk, for all k ∈ [K], the following distributions are computationally
indistinguishable under the SXDH assumption:

D0 :=

(u(rep)

ℓ,i = (x(rep)

ℓ,i , x(rep)′

ℓ,i , rℓ, 0, ρ(rep)

ℓ,i , 0Ni , 0Ni , 0)Bi)
rep∈[J]
i∈[H],ℓ∈[L](

ui = (xi , 0Ni , r, 0, ρi, 0Ni , 0Ni , 0)Bi

)
i∈[H](

v(j)

i = (y(1,j)

i , y(0,j)

i , σi, π(j)

i , 0, 0Ni , 0Ni , 0)B∗
i

)j∈[J]
i∈[H](

v(rep)

k,i = (y(rep)

k,i , y(rep)

k,i , σk,i, π(rep)

k,i , 0, 0Ni , 0Ni , 0)B∗
i

)rep∈[J]
i∈[H],k∈[K]

;

D1 :=

(u(rep)

ℓ,i = (x(rep)

ℓ,i , x(rep)′

ℓ,i , rℓ, 0, ρ(rep)

ℓ,i , 0Ni , 0Ni , 0)Bi)
rep∈[J]
i∈[H],ℓ∈[L](

ui = (0Ni , xi , r, 0, ρi, 0Ni , 0Ni , 0)Bi

)
i∈[H](

v(j)

i = (y(1,j)

i , y(0,j)

i , σi, π(j)

i , 0, 0Ni , 0Ni , 0)B∗
i

)j∈[J]
i∈[H](

v(rep)

k,i = (y(rep)

k,i , y(rep)

k,i , σk,i, π(rep)

k,i , 0, 0Ni , 0Ni , 0)B∗
i

)rep∈[J]
i∈[H],k∈[K]

.

More specifically, we have:∣∣∣∣ Pr
samp∼D0

[A(samp)→ 1]− Pr
samp∼D1

[A(samp)→ 1]

∣∣∣∣ ≤ (2Ni + 8) ·AdvSXDH
G1,G2

(1λ)

for any ppt A with fixed
(
xi, (x

(rep)

ℓ,i ,x(rep)′

ℓ,i)Lℓ=1, R,y(0,j)

i ,y(1,j)

i , (y(rep)

k,i , Rk)
K
k=1

)j∈[J]
i∈[H]

.

The proof of Lemma 11 can be found in Appendix B.3. Below we give the main ideas of the
demonstration.

19

Game G0: The vectors are sampled according to D0.

Game G1: (Random 0-Secret Sharing) ∀ j ∈ [J] :
∑H

i=1 τi = 0

u(rep)

ℓ,i = (x(rep)

ℓ,i x(rep)′

ℓ,i rℓ 0 ρ(rep)

ℓ,i 0Ni 0Ni 0)Bi

ui = (xi 0Ni r 0 ρi 0Ni 0Ni r′)Bi

v(j)

i = (y(1,j)

i y(0,j)

i σi π(j)

i 0 0Ni 0Ni τi)B∗
i

v(rep)

k,i = (y(rep)

k,i y(rep)

k,i σk,i π(rep)

k,i 0 0Ni 0Ni 0)B∗
i

Game G2: (Formal Duplication from coordinates [1, Ni], [Ni + 1, 2Ni] to [2Ni + 4, 3Ni + 3], [3Ni + 4, 4Ni + 3] in B∗
i)

u(rep)

ℓ,i = (x(rep)

ℓ,i x(rep)′

ℓ,i rℓ 0 ρ(rep)

ℓ,i 0Ni 0Ni 0)Bi

ui = (xi 0Ni r 0 ρi 0Ni 0Ni r′)Bi

v(j)

i = (y(1,j)

i y(0,j)

i σi π(j)

i 0 y(1,j)

i y(0,j)

i τi)B∗
i

v(rep)

k,i = (y(rep)

k,i y(rep)

k,i σk,i π(rep)

k,i 0 y(rep)

k,i y(rep)

k,i 0)B∗
i

Game G3: (Computational Swapping between [1, Ni] and [2Ni + 4, 3Ni + 3] in ui using (2Ni + 3)-randomness in Bi)

u(rep)

ℓ,i = (x(rep)

ℓ,i x(rep)′

ℓ,i rℓ 0 ρ(rep)

ℓ,i 0Ni 0Ni 0)Bi

ui = (0Ni 0Ni r 0 ρi xi 0Ni r′)Bi

v(j)

i = (y(1,j)

i y(0,j)

i σi π(j)

i 0 y(1,j)

i y(0,j)

i τi)B∗
i

v(rep)

k,i = (y(rep)

k,i y(rep)

k,i σk,i π(rep)

k,i 0 y(rep)

k,i y(rep)

k,i 0)B∗
i

Inside a complexity leveraging argument:
Game G4: (Formal Quotient on coordinates [2Ni + 4, 4Ni + 3] in Bi)

u(rep)

ℓ,i = (· · · 0Ni 0Ni 0)Bi

ui = (· · · 1Ni 0Ni r′)Bi

v(j)

i = (· · · (xi[m]y(1,j)

i [m])m (xi[m]y(0,j)

i [m])m τi)B∗
i

v(rep)

k,i = (· · · (xi[m]y(rep)

k,i [m])m (xi[m]y(rep)

k,i [m])m 0)B∗
i

Game G5: ∆y(j)

i := y(1,j)

i − y(0,j)

i , τ̃i := τi +
1
r′ ⟨xi,∆y(j)

i ⟩ (Formal Swapping)

u(rep)

ℓ,i = (· · · 0Ni 0Ni 0)Bi

ui = (· · · 0Ni 1Ni r′)Bi

v(j)

i = (· · · (xi[m]y(1,j)

i [m])m (xi[m]y(0,j)

i [m])m τ̃i)B∗
i

v(rep)

k,i = (· · · (xi[m]y(rep)

k,i [m])m (xi[m]y(rep)

k,i [m])m 0)B∗
i

Game G6: (Formal Quotient on coordinates [2Ni + 4, 4Ni + 3] in Bi)

u(rep)

ℓ,i = (x(rep)

ℓ,i x(rep)′

ℓ,i rℓ 0 ρ(rep)

ℓ,i 0Ni 0Ni 0)Bi

ui = (0Ni 0Ni r 0 ρi 0Ni xi r′)Bi

v(j)

i = (y(1,j)

i y(0,j)

i σi π(j)

i 0 y(1,j)

i y(0,j)

i τ̃i)B∗
i

v(rep)

k,i = (y(rep)

k,i y(rep)

k,i σk,i π(rep)

k,i 0 y(rep)

k,i y(rep)

k,i 0)B∗
i

Game G7: (Computational Swapping between [1, Ni] and [3Ni + 4, 4Ni + 3] in ui using (2Ni + 3)-randomness in Bi)

u(rep)

ℓ,i = (x(rep)

ℓ,i x(rep)′

ℓ,i rℓ 0 ρ(rep)

ℓ,i 0Ni 0Ni 0)Bi

ui = (0Ni xi r 0 ρi 0Ni 0Ni r′)Bi

v(j)

i = (y(1,j)

i y(0,j)

i σi π(j)

i 0 y(1,j)

i y(0,j)

i τ̃i)B∗
i

v(rep)

k,i = (y(rep)

k,i y(rep)

k,i σk,i π(rep)

k,i 0 y(rep)

k,i y(rep)

k,i 0)B∗
i

Game G8: Undo G2, G1 (Cleaning) – Vectors sampled according to D1.

u(rep)

ℓ,i = (x(rep)

ℓ,i x(rep)′

ℓ,i rℓ 0 ρ(rep)

ℓ,i 0Ni 0Ni 0)Bi

ui = (0Ni xi r 0 ρi 0Ni 0Ni 0)Bi

v(j)

i = (y(1,j)

i y(0,j)

i σi π(j)

i 0 0Ni 0Ni 0)B∗
i

v(rep)

k,i = (y(rep)

k,i y(rep)

k,i σk,i π(rep)

k,i 0 0Ni 0Ni 0)B∗
i

Fig. 2: Games for proving Lemma 11

20

Proof (Main ideas). The sequence of games is given in Figure 2. We explain the main steps in our
proof as follows. We start from the game where the sample given to the adversary A follows D0 and

the changes on vectors throughout the games are put in boxes. Our first step is to exploit the fact

that r
$← Zq is a uniformly random value and for each j ∈ [J] all the secret shares σi in v(j)

i sum to
a known constant R. This helps us perform a computational basis change on (Bi,B

∗
i) and introduce

a value r′
$← Z∗

q in ui[4Ni + 4] as well as a random secret sharing of 0, common for j ∈ [J], namely

(τi)
H
i=1, in (v(j)

i [4Ni + 4])Hi=1.

ui = (xi 0Ni r 0 ρi 0Ni 0Ni r′)Bi

v(j)

i = (y(1,j)

i y(0,j)

i σi π(j)

i 0 0Ni 0Ni τi)B∗
i

We need a DSDH (see Appendix A.4) instance J(a, b, c)K1 in G1 where c − ab is either 0 or 1 to

introduce the non-zero value r′
$← Z∗

q , following the subspace indistinguishability. The DSDH instance
does not depend on i nor j but because the basis change is computational, we can use J(a, b, c)K1
to compose linear combinations of vectors with coefficients depending on i and j. Those that are
written in (Hi,H

∗
i) will be changed accordingly into new writings in (Bi,B

∗
i), making (c− ab)r′

appear in ui[4Ni + 4] and from which we can conclude the indistinguishability using DSDH, whose
hardness is related to DDH. It is indispensible that we make this basis change only for honest i,
which are known statically, due to the fact that we need all basis vectors to be kept secret. Otherwise
by issuing a corruption the adversary will detect the simulation because we cannot simulate B∗

i

without JaK2. The randomness br′ is taken from r at coordinate (2Ni+1). We stress that this type of
computational changes under SXDH is important for our proof, especially when we aim at changing
only some vectors, e.g. in the above we do not want to touch u(rep)

ℓ,i nor v(rep)

k,i that can be left out of
the computation involving (c− ab)r′. Similarly a DSDH instance J(a, b, c)K2 in G2 is required when
introducing (τi)

H
i=1. More details can be found in the transition G0 → G1.

Another type of basis changes in DPVS that we will need is changing bases formally, i.e. writing the
u-vectors and v-vectors in (Hi,H

∗
i) according to the original game and the basis change will modify

all vectors into (Bi,B
∗
i), which corresponds to the next game. This type of basis changes modifies

all vectors and keeps the adversary’s views over two games perfectly identical. For instance, after G1,
we perform a formal duplication to go to G2 in which we duplicate coordinates [1, Ni], [Ni + 1, 2Ni]
to [2Ni + 4, 3Ni + 3], [3Ni + 4, 4Ni + 3] in vectors v(j)

i ,v(rep)

k,i for all i ∈ [H], k ∈ [K], j ∈ [J].

u(rep)

ℓ,i = (x(rep)

ℓ,i x(rep)′

ℓ,i rℓ 0 ρ(rep)

ℓ,i 0Ni 0Ni 0)Bi

ui = (xi 0Ni r 0 ρi 0Ni 0Ni r′)Bi

v(j)

i = (y(1,j)

i y(0,j)

i σi π(j)

i 0 y(1,j)

i y(0,j)

i τi)B∗
i

v(rep)

k,i = (y(rep)

k,i y(rep)

k,i σk,i π(rep)

k,i 0 y(rep)

k,i y(rep)

k,i 0)B∗
i

The duplication is done for all vectors v(j)

i ,v(rep)

k,i also across all repetitions rep ∈ [J]. On a more

technical detail, this formal basis change will affect all vectors u(rep)

ℓ,i ,ui as well, also across all
repetitions rep ∈ [J]. Roughly speaking, by the duality of (Bi,B

∗
i), this basis change will incur

“moving” coordinates [2Ni +4, 3Ni +3], [3Ni +4, 4Ni +3] to [1, Ni], [Ni +1, 2Ni] in the u-vectors. In
this simple G1 → G2 the moved coordinates contain 0 and that poses no problems. All calculation
can be found in the full proof of Appendix B.3.
After G2, we perform a computational basis change under SXDH in order to swap between [1, Ni]
and [2Ni + 4, 3Ni + 3] in ui. We again use a DSDH instance in G1 to perform this computational
basis change, where the randomness is taken from ρi at coordinate 2Ni + 3 in ui.

21

ui = (0Ni 0Ni r 0 ρi xi 0Ni r′)Bi

v(j)

i = (y(1,j)

i y(0,j)

i σi π(j)

i 0 y(1,j)

i y(0,j)

i τi)B∗
i

v(rep)

k,i = (y(rep)

k,i y(rep)

k,i σk,i π(rep)

k,i 0 y(rep)

k,i y(rep)

k,i 0)B∗
i

.

We remark that this change preserves the products ui × v(j)

i and ui × v(rep)

k,i for all k ∈ [K], j ∈ [J]
necessarily for the indistinguishability. Moreover, the computational basis change allows us to target
only the vectors (ui)i∈[H] while maintaining u(rep)

ℓ,i for ℓ ∈ [L], i ∈ [H] intact.
Once we arrive at G3, we have the required ingredients for the core of our proof. As mentioned
earlier, a formal basis keeps the adversary’s views over two games perfectly identical and this enables
us to use a complexity leveraging argument in the following. The goal of complexity leveraging is
to prove that the adversary’s views over two hybrids are perfectly identical, i.e. the difference in
advantages for winning the hybrids is 0 under efficient simulation. The security loss is 0 thanks to a
completely formal argument on top of two perfectly identical variants of the hybrids, for which the
adversary’s views are already identical. The links between underlying variants for which we need
identical views will be done using only formal basis changes. The possibility to perform these formal
changes accentuates the information-theoretic properties of DPVS. The main challenge is to handle
the situation that under those basis changes all vectors will be modified.
After G3, we want to perform some sort of swapping between coordinates [2Ni + 4, 3Ni + 3] and
[3Ni + 4, 4Ni + 3] of ui and reach G6 whose vectors are:

u(rep)

ℓ,i = (x(rep)

ℓ,i x(rep)′

ℓ,i rℓ 0 ρ(rep)

ℓ,i 0Ni 0Ni 0)Bi

ui = (0Ni 0Ni r 0 ρi 0Ni xi r′)Bi

v(j)

i = (y(1,j)

i y(0,j)

i σi π(j)

i 0 y(1,j)

i y(0,j)

i τ̃i)B∗
i

v(rep)

k,i = (y(rep)

k,i y(rep)

k,i σk,i π(rep)

k,i 0 y(rep)

k,i y(rep)

k,i 0)B∗
i
.

The complexity leveraging will be applied to the selective versions G∗
3 → G∗

4 → G∗
5 → G∗

6 and only
formal basis changes will be used in between. In these selective versions the simulator guesses the

values (xi[k],y
(1,j)

i ,y(0,j)

i)
j∈[J]
i∈[H],k∈[Ni]

and the hybrids are conditioned on a “good” event that happens
with fixed probability. This leads to an identical adversary’s view:

Pr[G∗
3 = 1] = Pr[G∗

4 = 1] = Pr[G∗
5 = 1] = Pr[G∗

6 = 1] . (5)

We briefly highlight the games’ ideas below:

• In G∗
3 → G∗

4 a formal basis change is applied to do a quotient by xi[k] for k ∈ [ni] over
all coordinates [2Ni + 4, 3Ni + 3] as well as [3Ni + 4, 4Ni + 3] of v-vectors. There are some
technicalities when defining the basis matrices to ignore the quotient when xi[k] = 0 and we
refer to equation (9) in the proof for more details.

• Then, in G∗
4 → G∗

5, we define a formal basis change that uses the fixed randomness r′ ∈ Z∗
q

in ui[4Ni + 4] to switch 1 to 0 at coordinates [2Ni + 4, 3Ni + 3] and 0 to 1 at coordinates
[3Ni + 4, 4Ni + 3] of all ui. The matrix definition is given in equation (10). We note that unlike
ui, u

(rep)

ℓ,i [4Ni + 4] = 0 hence these vectors stay invariant under this change.
– Dually, all v-vectors will be altered such that the difference of entries at two coordinates
(2Ni + 3+ k, 3Ni + 3+ k) for all k ∈ [Ni] will be “moved” to coordinates (4Ni + 4). For v(rep)

k,i

we have v(rep)

k,i [2Ni + 3 + k] = v(rep)

k,i [3Ni + 3 + k] and those differences are all 0, no matter

which repetition rep. The real challenge comes from the fact that we have one set of (ui)
H
i=1

but multiple sets of (v(j)

i)Hi=1 for each j ∈ [J], where v(j)

i [2Ni + 3 + k]− v(j)

i [3Ni + 3 + k] =
xi∆y(j)

i [k] := xi(y
(1,j)

i [k]− y(0,j)

i [k]) that could be non-zero.

22

– It is at this point that we need to use the secret sharing of 0 for each j ∈ [J], i.e. (τi)
H
i=1

using the hypothesis that
∑H

i=1⟨xi,y
(0,j)

i ⟩ =
∑H

i=1⟨xi,y
(1,j)

i ⟩ for all j ∈ [J]. More specifically,
adding a fixed multiple of ⟨xi, ∆y(j)

i ⟩ to τi, which is constant for whatever j, still keeps it a
sharing of 0 over all i ∈ [H] and the new τ̃i still does not depend on j. This “fixed multiple”

depends only on r′
$← Z∗

q and thus preserves the distribution of (τi)
H
i=1.

• Finally, in G∗
5 → G∗

6 we redo the quotient, still being in the selective variants conditioned on the
“good” event.

The probability calculation (see footnote 7) of the complexity leveraging makes use of the fact that
the “good” event happens with a fixed probability as well as property (5), leading to Pr[G3 = 1] =
Pr[G4 = 1] = Pr[G5 = 1] = Pr[G6 = 1]. Coming out of the complexity-leveraging argument, the very
last step consists in swapping xi from coordinates [3Ni + 4, 4Ni + 3] back to [1, Ni] (see G6 → G7)
and some cleaning in order to make the vectors follow D1 (see G7 → G8). ⊓⊔

Lemma 12 (Secret Sharing Swapping with Repetitions). Under the same hypotheses of

Lemma 11, additionally with repetitions u(j̃)

i for j̃ ∈ [J] so that

H∑
i=1

⟨x(j̃)

i ,y(0,j)

i ⟩ =
H∑
i=1

⟨x(j̃)

i ,y(1,j)

i ⟩ (6)

and for each i ∈ [H], ⟨x(j̃)

i ,y(1,j)

i −y(0,j)

i ⟩ = ci being a constant for all j̃, j ∈ [J], the following distribu-
tions are computationally indistinguishable under the SXDH assumption in (G1,G2,Gt, g1, g2, gt, e, q):

D0 :=

(u(rep)

ℓ,i = (x(rep)

ℓ,i , x(rep)′

ℓ,i , rℓ, 0, ρ(rep)

ℓ,i , 0Ni , 0Ni , 0)Bi)
rep∈[J]
i∈[H],ℓ∈[L](

u(j̃)

i = (x(j̃)

i , 0Ni , r, 0, ρ(j̃)

i , 0Ni , 0Ni , 0)Bi

)j̃∈[J]
i∈[H](

v(j)

i = (y(1,j)

i , y(0,j)

i , σi, π(j)

i , 0, 0Ni , 0Ni , 0)B∗
i

)j∈[J]
i∈[H](

v(rep)

k,i = (y(rep)

k,i , y(rep)

k,i , σk,i, π(rep)

k,i , 0, 0Ni , 0Ni , 0)B∗
i

)rep∈[J]
i∈[H],k∈[K]

;

D1 :=

(u(rep)

ℓ,i = (x(rep)

ℓ,i , x(rep)′

ℓ,i , rℓ, 0, ρ(rep)

ℓ,i , 0Ni , 0Ni , 0)Bi)
rep∈[J]
i∈[H],ℓ∈[L](

u(j̃)

i = (0Ni , x(j̃)

i , r, 0, ρ(j̃)

i , 0Ni , 0Ni , 0)Bi

)j̃∈[J]
i∈[H](

v(j)

i = (y(1,j)

i , y(0,j)

i , σi, π(j)

i , 0, 0Ni , 0Ni , 0)B∗
i

)j∈[J]
i∈[H](

v(rep)

k,i = (y(rep)

k,i , y(rep)

k,i , σk,i, π(rep)

k,i , 0, 0Ni , 0Ni , 0)B∗
i

)rep∈[J]
i∈[H],k∈[K]

.

More specifically, we have:∣∣∣∣ Pr
samp∼D0

[A(samp)→ 1]− Pr
samp∼D1

[A(samp)→ 1]

∣∣∣∣ ≤ (2Ni + 8) · J ·AdvSXDH
G1,G2

(1λ)

for any ppt A with fixed
(
xi, (x

(rep)

ℓ,i ,x(rep)′

ℓ,i)Lℓ=1, R,y(0,j)

i ,y(1,j)

i , (y(rep)

k,i , Rk)
K
k=1

)j∈[J]
i∈[H]

.

The proof is done via a sequence of hybrids over the repetitions j̃ where we separate the repetition
u(j̃)

i into isolated coordinates then apply Lemma 11. A full proof can be found in Appendix B.4.

23

5 Towards FH-DDFE: A Weakly Function-Hiding DMCFE for Inner Products

This section presents an FH-DMCFE scheme E = (Setup,DKeyGen,Enc,Dec) for the function class
F ip
N1,...,Nn

that is defined in Definition 5. We work in the prime-order bilinear group setting G =
(G1,G2,Gt, g1, g2, gt, e, q) and G1,G2,Gt are all written additively. We employ two full-domain hash
functions H1 : Tag→ G1 and H2 : Tag→ G2. The details of E go as follows:

Setup(1λ): Run DPVSGen(G, 15Ni+5; ri
$← {0, 1}∗) for i ∈ [n] to obtain n pairs of dual orthogonal

bases (Bi,B
∗
i) for i ∈ [n] of dimensions 5Ni + 5 for each (Bi,B

∗
i). For each i ∈ [n], we denote

j-th row of Bi (resp. B
∗
i) by bi,j (resp. b∗

i,j). Generate two random n-out-of-n secret sharings of

0, namely (s̃i)i, (t̃i)i
$← Zn

q such that
∑n

i=1 s̃i =
∑n

i=1 t̃i = 0. Then, output the secret keys ski
and the encryption keys eki as follows:

ski := (b∗
i,1, . . . ,b

∗
i,Ni

, s̃iB
∗
i,Ni+1 +B∗

i,3Ni+2, b∗
i,3Ni+3)

eki := (bi,1, . . . ,bi,Ni , bi,3Ni+4, Bi,Ni+1 + t̃iBi,3Ni+2)

where Bi,k (respectively B∗
i,k) denotes the k-th row of the basis changing matrix Bi (respectively

B∗
i) for i ∈ [n].

DKeyGen(ski, tag-f,yi): Parse ski = (b∗
i,1, . . . ,b

∗
i,Ni

, s̃iB
∗
i,Ni+1+B∗

i,3Ni+2,b
∗
i,3Ni+4). Compute H2(tag-f)→

JµK2 ∈ G2 and sample πi
$← Zq. Compute and output

di =

Ni∑
k=1

yi[k]b
∗
i,k + (s̃iB

∗
i,Ni+1 +B∗

i,3Ni+2) · JµK2 + πib
∗
i,3Ni+3

= (yi, s̃iµ, 0Ni , 0Ni , µ, πi, 0, 02Ni+1)B∗
i
.

Enc(eki, tag,xi): Parse eki = (bi,1, . . . ,bi,Ni , bi,3Ni+4, Bi,Ni+1 + t̃iBi,3Ni+2). Compute H1(tag)→
JωK1 ∈ G1 and sample a random scalar ρi

$← Zq. Finally, compute and output

ci =

Ni∑
k=1

xi[k]bi,1 + ρibi,3Ni+4 + (Bi,Ni+1 + t̃iBi,3Ni+2) · JωK1

= (xi, ω, 0Ni , 0Ni , t̃iω, 0, ρi, 02Ni+1)Bi .

Dec(d, c): Parse d := (di)i∈[n] and c := (ci)i. Compute JoutKt =
∏n

i=1 ci × di, then find and output
the discrete log out.

Correctness. The correctness property is demonstrated as follows:

JoutKt =
n∑

i=1

ci × di =

n∑
i=1

q
⟨xi,yi⟩+ s̃iµω + t̃iωµ

y
t

=

t
n∑

i=1

⟨xi,yi⟩+ ωµ ·
n∑

i=1

(s̃i + t̃i)

|

t

=

t
n∑

i=1

⟨xi,yi⟩

|

t

,

and we are using the fact that
∑n

i=1 s̃i =
∑n

i=1 t̃i = 0.

24

Security. Theorem 13 states that the scheme is weakly function-hiding under static corruption
and a single adaptive challenge, allowing repetitions. We recall that for the moment the security is
proven under the complete queries constraints (Condition 4 in Definition 18). This constraint does
not affect the resulting security of our FH-DDFE in Section 6 that uses the current FH-DMCFE. We
can apply a generic conversion to lift it from the final FH-DDFE and still preserve adaptive security.

Theorem 13. The DMCFE scheme E = (Setup,DKeyGen,Enc,Dec) is adaptively one-challenge
weakly function-hiding in the ROM, under static corruption, if the SXDH assumption holds for
G1 and G2. More specifically, let qe denote the maximum number of distinct tags for ciphertexts to
OEnc, qk denote the maximum number of distinct tags for keys to OKeyGen, J denote the maximum
number of repetitive challenge queries for possibly different messages, and J̃ denote the maximum
number of repetitive challenge queries for possibly different keys. Then, for any ppt adversary A
against E, we have the following bound:

Adv1chal-pos-stat-wfh
E,F ,A (1λ) ≤

((
(qe + 1)J + (qk + 1)J̃

)
· (2Ni + 8) + qk + qe + 8Ni + 2

)
·AdvSXDH

G1,G2
(1λ)

In Figure 5, we present the sequence of games used to prove Theorem 13, where we start from G0

corresponding to Exp1chal-pos-stat-wfh
E,F ,A (1λ), where b

$← {0, 1} is the random challenge bit, until arriving
at G6 that is totally independent of b. We recall that in our proof, we exploit fully the concrete
interpretation of admissible adversaries against FH-DMCFE for F ip

N1,...,Nn
and refer to paragraph

Concrete interpretation of the function-hiding admissibility in Section 3.1 for more details. The full
proof can be found in Appendix B.5, whose ideas are presented in Section 3.1.

6 Function-Hiding DDFE for Inner Products: Adaptive Security under Static
Corruption

This section presents a function-hiding DDFE scheme for the function class F ip
dyn defined in Definition 6.

As a first step, we show how to upgrade the one-challenge weakly function-hiding DMCFE scheme
from Section 5 to a DDFE scheme for the same security level in a semi black-box manner. Afterwards,
we remove several constraints in the security model inherited from the DMCFE scheme. Specifically,
we show how to handle multiple challenges, incomplete queries and lift to full-fledged function-hiding,
thus obtaining a FH-DDFE scheme with adaptive security under static corruption.
For the conversion from DMCFE to DDFE, we employ a slight modification of the DMCFE scheme
from Section 5 where encryption and secret keys contain complete information about their respective
DPVS. More precisely, let E ′ = (E ′.Setup, E ′.DKeyGen, E ′.Enc, E ′.Dec) be the DMCFE scheme of
Section 5 except that the Setup′ algorithm is defined as follows.

Setup(1λ): Run (Bi, B
∗
i)← DPVSGen(G, 15Ni+5) for i ∈ [n] and sample (s̃i)i∈[n], (t̃i)i∈[n]

$← Zn
q such

that
∑n

i=1 s̃i =
∑n

i=1 t̃i = 0. Then, output the encryption and secret keys eki := (Bi, t̃i), ski :=
(B∗

i , s̃i) for all i ∈ [n].

The following lemma states that E ′ preserves the security level of the original DMCFE scheme in
Section 5. Given the proof of Theorem 13, Lemma 14 is an immediate consequence of the modular
design of our scheme (i.e. different clients use independent DPVS instances) and the fact that we
consider only static corruption.

Lemma 14. The DMCFE scheme E ′ is adaptively one-challenge weakly function-hiding secure under
static corruption in the ROM if the SXDH assumption holds for (G1,G2). Moreover, the security
proof does not rely on the randomness of shares s̃i and t̃i for i ∈ C.

25

Additionally, our DDFE scheme E employs a NIKE scheme N = (N .Setup,N .SharedKey) and
two families of pseudorandom functions denoted {FK}K∈K and {F ′

K}K∈K′ . The details of E =
(GSetup, LSetup,KeyGen,Enc,Dec) go as follows:

GSetup(1λ): On input the security parameter 1λ, choose a prime-order bilinear group setting
G = (G1,G2,Gt, g1, g2, gt, e, q), run N .pp← N .Setup(1λ) and return pp = (G,N .pp)

LSetup(pp, i): On input the public parameters pp and a user i ∈ ID, sample Ki
$← K, generate

(N .ski,N .pki)← N .KeyGen(N .pp) and return the key pair (ski := (N .ski,Ki), pki := N .pki).
KeyGen(ski, k): On input a secret key ski = (N .ski,Ki) and k = (yi, (UK , tag-f)) such that i ∈ UK ,

compute:

ri = FKi(UK)

(Bi, B
∗
i)← DPVSGen(G, 15Ni+5; ri)

K ′
i,j ← N .SharedKey(N .ski,N .pkj)

s̃i =
∑

j∈UK\{i}

(−1)j<iF ′
K′

i,j
(UK ∥ “key”)

di = E ′.DKeyGen(ski = (B∗
i , s̃i), tag-f,yi)

Finally, return dki := di.
Enc(ski,m): On input a secret key ski and m = (xi, (UM , tag-f)) such that i ∈ UM , compute:

ri = FKi(UM)

(Bi, B
∗
i)← DPVSGen(G, 15Ni+5; ri)

K ′
i,j ← N .SharedKey(N .ski,N .pkj)

t̃i =
∑

j∈UM\{i}

(−1)j<iF ′
K′

i,j
(UM ∥ “ct”)

ci ← E ′.Enc(eki = (Bi, t̃i), tag-f,xi)

Finally, return cti := ci.
Dec((ski)i∈UK

, (cti)i∈UM
): On input a list of decryption keys (dki = di)i∈UK

and a list of ci-
phertexts (cti = ci)i∈UM

, if UK ̸= UM abort with failure, otherwise compute and return
out← E ′.Dec((di)i∈UK

, (ci)i∈UM
).

Correctness. Using the correctness of the NIKE scheme N that gives K ′
i,j = K ′

j,i for all i, j ∈ UK ,
we have ∑

i∈UK

s̃i =
∑
i∈UK

∑
j∈UK\{i}

(−1)j<iF ′
K′

i,j
(UK ∥ “key”) = 0

∑
i∈UK

t̃i =
∑
i∈UK

∑
j∈UK\{i}

(−1)j<iF ′
K′

i,j
(UK ∥ “ct”) = 0 .

Thus, (s̃i)i∈UK
and (t̃i)i∈UK

are secret sharings of 0, and correctness of E follows from that of E ′.
Security. We show security in the following theorem.

Theorem 15. If N is IND-secure, {FK}K∈K and {F ′
K′}K′∈K′ are families of pseudorandom func-

tions and the SXDH assumption holds in (G1,G2), then E is adaptively one-challenge weakly
function-hiding secure under static corruption against complete queries in the ROM.

26

More precisely, let qh be the maximum number of queries to the oracle OHonestGen and let qu be an
upper bound on the number of distinct sets U ⊆ ID that occur in an encryption or key-generation
query. Then, for any ppt adversary A, there exist ppt algorithms B1, . . . ,B4 such that

Adv1chal-pos-stat-wfh

E,F ip
dyn,A

(1λ) ≤ qh ·Advprf
{FK},B1

(1λ) + q2h ·Advnike
N ,B2

(1λ)

+ q2h ·Advprf
{F ′

K′},B3
(1λ) + qu ·Adv1chal-pos-stat-wfh

E ′,F ip,B4
(1λ)

The proof of Theorem 15 can be found in Appendix B.6.

Security against multiple challenges and incomplete queries. By adding a layer of AoNE
encryption on top of both ciphertexts and keys, we can make E secure against incomplete queries.
While this technique is well known from [CDSG+20, AGT21b], we provide a new proof showing that
the conversion preserves adaptive security if both E and the AoNE scheme are adaptively secure.

Lemma 16. Assume there exist (1) a one-challenge, weakly function-hiding DDFE scheme Epos
for the function class F ip

dyn that is secure against complete queries, and (2) an AoNE scheme Eaone
whose message space contains the ciphertext space of Epos. Then there exists a one-challenge,
weakly function-hiding DDFE scheme E for the same function class F ip

dyn that is even secure against
incomplete queries.
More precisely, for any ppt adversary A, there exist ppt algorithms B and B′ such that

Adv1chal-xxx-wfh
E,F ip

dyn,A
(1λ) ≤ 6 ·Adv1chal-pos-xxx-wfh

Epos,F ip
dyn,B

(1λ) + 6 ·Advxxx-fh
Eaone,Faone,B′(1λ) ,

where xxx ⊆ {stat, sel}.

Details are given in Appendix B.7. We stress that this conversion crucially relies on the one-challenge
setting. Eventually, we apply Lemmas 8 and 9 to obtain a DDFE scheme that is secure against
multiple challenges in the fully function-hiding setting.

Acknowledgments

This work was supported in part by the French ANR Project ANR-19-CE39-0011 PRESTO and the
France 2030 ANR Project ANR-22-PECY-003 SecureCompute.

References

ABDP15. Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval. Simple functional encryption
schemes for inner products. In Jonathan Katz, editor, PKC 2015, volume 9020 of LNCS, pages 733–751.
Springer, Heidelberg, March / April 2015.

ABG19. Michel Abdalla, Fabrice Benhamouda, and Romain Gay. From single-input to multi-client inner-product
functional encryption. In Steven D. Galbraith and Shiho Moriai, editors, ASIACRYPT 2019, Part III,
volume 11923 of LNCS, pages 552–582. Springer, Heidelberg, December 2019.

ABKW19. Michel Abdalla, Fabrice Benhamouda, Markulf Kohlweiss, and Hendrik Waldner. Decentralizing inner-
product functional encryption. In Dongdai Lin and Kazue Sako, editors, PKC 2019, Part II, volume
11443 of LNCS, pages 128–157. Springer, Heidelberg, April 2019.

ACF+18. Michel Abdalla, Dario Catalano, Dario Fiore, Romain Gay, and Bogdan Ursu. Multi-input functional
encryption for inner products: Function-hiding realizations and constructions without pairings. In Hovav
Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part I, volume 10991 of LNCS, pages 597–627.
Springer, Heidelberg, August 2018.

ACF+20. Shweta Agrawal, Michael Clear, Ophir Frieder, Sanjam Garg, Adam O’Neill, and Justin Thaler. Ad hoc
multi-input functional encryption. In Thomas Vidick, editor, ITCS 2020, volume 151, pages 40:1–40:41.
LIPIcs, January 2020.

27

ACGU20. Michel Abdalla, Dario Catalano, Romain Gay, and Bogdan Ursu. Inner-product functional encryption with
fine-grained access control. In Shiho Moriai and Huaxiong Wang, editors, ASIACRYPT 2020, Part III,
volume 12493 of LNCS, pages 467–497. Springer, Heidelberg, December 2020.

AGT21a. Shweta Agrawal, Rishab Goyal, and Junichi Tomida. Multi-input quadratic functional encryption from
pairings. In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part IV, volume 12828 of LNCS,
pages 208–238, Virtual Event, August 2021. Springer, Heidelberg.

AGT21b. Shweta Agrawal, Rishab Goyal, and Junichi Tomida. Multi-party functional encryption. In Kobbi
Nissim and Brent Waters, editors, TCC 2021, Part II, volume 13043 of LNCS, pages 224–255. Springer,
Heidelberg, November 2021.

AGT22. Shweta Agrawal, Rishab Goyal, and Junichi Tomida. Multi-input quadratic functional encryption: Stronger
security, broader functionality. In Eike Kiltz and Vinod Vaikuntanathan, editors, TCC 2022, Part I,
volume 13747 of LNCS, pages 711–740. Springer, Heidelberg, November 2022.

AJ15. Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from compact functional encryp-
tion. In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part I, volume 9215 of
LNCS, pages 308–326. Springer, Heidelberg, August 2015.

ALdP11. Nuttapong Attrapadung, Benôıt Libert, and Elie de Panafieu. Expressive key-policy attribute-based
encryption with constant-size ciphertexts. In Dario Catalano, Nelly Fazio, Rosario Gennaro, and Antonio
Nicolosi, editors, PKC 2011, volume 6571 of LNCS, pages 90–108. Springer, Heidelberg, March 2011.

ALS16. Shweta Agrawal, Benôıt Libert, and Damien Stehlé. Fully secure functional encryption for inner products,
from standard assumptions. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part III,
volume 9816 of LNCS, pages 333–362. Springer, Heidelberg, August 2016.

AS17. Prabhanjan Ananth and Amit Sahai. Projective arithmetic functional encryption and indistinguishability
obfuscation from degree-5 multilinear maps. In Jean-Sébastien Coron and Jesper Buus Nielsen, editors,
EUROCRYPT 2017, Part I, volume 10210 of LNCS, pages 152–181. Springer, Heidelberg, April / May
2017.

BBL17. Fabrice Benhamouda, Florian Bourse, and Helger Lipmaa. CCA-secure inner-product functional encryption
from projective hash functions. In Serge Fehr, editor, PKC 2017, Part II, volume 10175 of LNCS, pages
36–66. Springer, Heidelberg, March 2017.

BCFG17. Carmen Elisabetta Zaira Baltico, Dario Catalano, Dario Fiore, and Romain Gay. Practical functional
encryption for quadratic functions with applications to predicate encryption. In Jonathan Katz and Hovav
Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 67–98. Springer, Heidelberg,
August 2017.

BF01. Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing. In Joe Kilian,
editor, CRYPTO 2001, volume 2139 of LNCS, pages 213–229. Springer, Heidelberg, August 2001.

BIK+17. Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan McMahan, Sarvar Patel,
Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for privacy-preserving machine
learning. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS
2017, pages 1175–1191. ACM Press, October / November 2017.

BJK15. Allison Bishop, Abhishek Jain, and Lucas Kowalczyk. Function-hiding inner product encryption. In Tetsu
Iwata and Jung Hee Cheon, editors, ASIACRYPT 2015, Part I, volume 9452 of LNCS, pages 470–491.
Springer, Heidelberg, November / December 2015.

BSW11. Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and challenges. In Yuval
Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 253–273. Springer, Heidelberg, March 2011.

BV15. Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from functional encryption. In
Venkatesan Guruswami, editor, 56th FOCS, pages 171–190. IEEE Computer Society Press, October 2015.

CDG+18a. Jérémy Chotard, Edouard Dufour Sans, Romain Gay, Duong Hieu Phan, and David Pointcheval. Decentral-
ized multi-client functional encryption for inner product. In Thomas Peyrin and Steven Galbraith, editors,
ASIACRYPT 2018, Part II, volume 11273 of LNCS, pages 703–732. Springer, Heidelberg, December 2018.

CDG+18b. Jérémy Chotard, Edouard Dufour Sans, Romain Gay, Duong Hieu Phan, and David Pointcheval. Multi-
client functional encryption with repetition for inner product. Cryptology ePrint Archive, Report
2018/1021, 2018. https://eprint.iacr.org/2018/1021.

CDSG+20. Jérémy Chotard, Edouard Dufour-Sans, Romain Gay, Duong Hieu Phan, and David Pointcheval. Dynamic
decentralized functional encryption. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020,
Part I, volume 12170 of LNCS, pages 747–775. Springer, Heidelberg, August 2020.

Cha07. Melissa Chase. Multi-authority attribute based encryption. In Salil P. Vadhan, editor, TCC 2007, volume
4392 of LNCS, pages 515–534. Springer, Heidelberg, February 2007.

CLL+13. Jie Chen, Hoon Wei Lim, San Ling, Huaxiong Wang, and Hoeteck Wee. Shorter IBE and signatures via
asymmetric pairings. In Michel Abdalla and Tanja Lange, editors, PAIRING 2012, volume 7708 of LNCS,
pages 122–140. Springer, Heidelberg, May 2013.

https://eprint.iacr.org/2018/1021

28

CLT18. Guilhem Castagnos, Fabien Laguillaumie, and Ida Tucker. Practical fully secure unrestricted inner product
functional encryption modulo p. In Thomas Peyrin and Steven Galbraith, editors, ASIACRYPT 2018,
Part II, volume 11273 of LNCS, pages 733–764. Springer, Heidelberg, December 2018.

Coc01. Clifford Cocks. An identity based encryption scheme based on quadratic residues. In Bahram Honary,
editor, 8th IMA International Conference on Cryptography and Coding, volume 2260 of LNCS, pages
360–363. Springer, Heidelberg, December 2001.

DDM16. Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay. Functional encryption for inner product with
full function privacy. In Chen-Mou Cheng, Kai-Min Chung, Giuseppe Persiano, and Bo-Yin Yang, editors,
PKC 2016, Part I, volume 9614 of LNCS, pages 164–195. Springer, Heidelberg, March 2016.

DDM17. Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay. Strongly full-hiding inner product encryption.
Theoretical Computer Science, 2017.

DOT18. Pratish Datta, Tatsuaki Okamoto, and Junichi Tomida. Full-hiding (unbounded) multi-input inner product
functional encryption from the k-Linear assumption. In Michel Abdalla and Ricardo Dahab, editors,
PKC 2018, Part II, volume 10770 of LNCS, pages 245–277. Springer, Heidelberg, March 2018.

EHK+13. Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar. An algebraic framework for
Diffie-Hellman assumptions. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume
8043 of LNCS, pages 129–147. Springer, Heidelberg, August 2013.

FHKP13. Eduarda S. V. Freire, Dennis Hofheinz, Eike Kiltz, and Kenneth G. Paterson. Non-interactive key exchange.
In Kaoru Kurosawa and Goichiro Hanaoka, editors, PKC 2013, volume 7778 of LNCS, pages 254–271.
Springer, Heidelberg, February / March 2013.

Gay20. Romain Gay. A new paradigm for public-key functional encryption for degree-2 polynomials. In Aggelos
Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas, editors, PKC 2020, Part I, volume 12110
of LNCS, pages 95–120. Springer, Heidelberg, May 2020.

GGG+14. Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz, Feng-Hao Liu, Amit Sahai,
Elaine Shi, and Hong-Sheng Zhou. Multi-input functional encryption. In Phong Q. Nguyen and Elisabeth
Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 578–602. Springer, Heidelberg, May
2014.

GKL+13. S. Dov Gordon, Jonathan Katz, Feng-Hao Liu, Elaine Shi, and Hong-Sheng Zhou. Multi-input functional
encryption. Cryptology ePrint Archive, Report 2013/774, 2013. https://eprint.iacr.org/2013/774.

GPSW06. Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for fine-grained
access control of encrypted data. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati,
editors, ACM CCS 2006, pages 89–98. ACM Press, October / November 2006. Available as Cryptology
ePrint Archive Report 2006/309.

GVW15. Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption for circuits from LWE.
In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS,
pages 503–523. Springer, Heidelberg, August 2015.

KKS17. Sungwook Kim, Jinsu Kim, and Jae Hong Seo. A new approach for practical function-private inner product
encryption. Cryptology ePrint Archive, Report 2017/004, 2017. https://eprint.iacr.org/2017/004.

KLM+18. Sam Kim, Kevin Lewi, Avradip Mandal, Hart Montgomery, Arnab Roy, and David J. Wu. Function-hiding
inner product encryption is practical. In Dario Catalano and Roberto De Prisco, editors, SCN 18, volume
11035 of LNCS, pages 544–562. Springer, Heidelberg, September 2018.

Lin17. Huijia Lin. Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5 PRGs. In
Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages
599–629. Springer, Heidelberg, August 2017.

LT19. Benôıt Libert and Radu Titiu. Multi-client functional encryption for linear functions in the standard
model from LWE. In Steven D. Galbraith and Shiho Moriai, editors, ASIACRYPT 2019, Part III, volume
11923 of LNCS, pages 520–551. Springer, Heidelberg, December 2019.

LV16. Huijia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation from DDH-like assumptions on
constant-degree graded encodings. In Irit Dinur, editor, 57th FOCS, pages 11–20. IEEE Computer Society
Press, October 2016.

LW10. Allison B. Lewko and Brent Waters. New techniques for dual system encryption and fully secure HIBE
with short ciphertexts. In Daniele Micciancio, editor, TCC 2010, volume 5978 of LNCS, pages 455–479.
Springer, Heidelberg, February 2010.

NPP22. Ky Nguyen, Duong Hieu Phan, and David Pointcheval. Multi-client functional encryption with fine-grained
access-control. In Asiacrypt ’22. Springer-Verlag, 2022. https://ia.cr/2022/215.

NR97. Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-random functions. In
38th FOCS, pages 458–467. IEEE Computer Society Press, October 1997.

OSW07. Rafail Ostrovsky, Amit Sahai, and Brent Waters. Attribute-based encryption with non-monotonic access
structures. In Peng Ning, Sabrina De Capitani di Vimercati, and Paul F. Syverson, editors, ACM CCS
2007, pages 195–203. ACM Press, October 2007.

https://eprint.iacr.org/2013/774
https://eprint.iacr.org/2017/004
https://ia.cr/2022/215

29

OT10. Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional encryption with general relations
from the decisional linear assumption. In Tal Rabin, editor, CRYPTO 2010, volume 6223 of LNCS, pages
191–208. Springer, Heidelberg, August 2010.

OT12a. Tatsuaki Okamoto and Katsuyuki Takashima. Adaptively attribute-hiding (hierarchical) inner product
encryption. In David Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of
LNCS, pages 591–608. Springer, Heidelberg, April 2012.

OT12b. Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure unbounded inner-product and attribute-based
encryption. In Xiaoyun Wang and Kazue Sako, editors, ASIACRYPT 2012, volume 7658 of LNCS, pages
349–366. Springer, Heidelberg, December 2012.

Sha84. Adi Shamir. Identity-based cryptosystems and signature schemes. In G. R. Blakley and David Chaum,
editors, CRYPTO’84, volume 196 of LNCS, pages 47–53. Springer, Heidelberg, August 1984.

SV23. Elaine Shi and Nikhil Vanjani. Multi-Client Inner Product Encryption: Function-Hiding Instantiations
Without Random Oracles. In International Conference on Practice and Theory of Public-Key Cryptography
(PKC), 2023. https://nikhilvanjani.github.io/publication/mcipe/.

SW05. Amit Sahai and Brent R. Waters. Fuzzy identity-based encryption. In Ronald Cramer, editor, EURO-
CRYPT 2005, volume 3494 of LNCS, pages 457–473. Springer, Heidelberg, May 2005.

SW21. Elaine Shi and Ke Wu. Non-interactive anonymous router. In Anne Canteaut and François-Xavier
Standaert, editors, EUROCRYPT 2021, Part III, volume 12698 of LNCS, pages 489–520. Springer,
Heidelberg, October 2021.

TAO16. Junichi Tomida, Masayuki Abe, and Tatsuaki Okamoto. Efficient functional encryption for inner-product
values with full-hiding security. In Matt Bishop and Anderson C. A. Nascimento, editors, ISC 2016,
volume 9866 of LNCS, pages 408–425. Springer, Heidelberg, September 2016.

Wat09. Brent Waters. Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions. In
Shai Halevi, editor, CRYPTO 2009, volume 5677 of LNCS, pages 619–636. Springer, Heidelberg, August
2009.

https://nikhilvanjani.github.io/publication/mcipe/

30

A Additional Definitions

A.1 Function-Hiding Decentralized Multi-Client FE

We introduce the notion of function-hiding decentralized multi-client functional encryption (FH-DMCFE).

Definition 17 (Decentralized Multi-Client Functional Encryption). Let λ ∈ N and n =
n(λ) : N → N be a function. Let F = {f : D1 × · · · × Dn → R} be a function family, where each
f ∈ F is defined by n parameters in Param1 × · · · × Paramn

5. Furthermore, let Tag denote a set of
tags used for ciphertext and function components. A decentralized multi-client functional encryption
(DMCFE) scheme E for F between n senders (Si)i∈[n] and a functional decrypter FD consists of the
four algorithms (Setup,DKeyGen,Enc,Dec) defined below:

Setup(1λ): This is a protocol between the senders (Si)i∈[n] that eventually generate their own secret
keys ski and encryption keys eki, as well as the public parameter pp. We will assume that all the
secret and encryption keys implicitly contain pp.

DKeyGen(ski, tag-f, yi): On input a user secret key ski, a tag tag-f ∈ Tag, and parameter yi ∈ Parami,
this algorithm outputs a partial functional decryption key dktag-f,i.

Enc(eki, tag, xi): On input an encryption key eki, a tag tag and a message xi ∈ Di, this algorithm
outputs a ciphertext cttag,i.

Dec(d, c): On input a list of functional decryption keys d := (dktag-f,i)
n
i=1 and a list of ciphertexts

c := (cttag,i)
n
i=1, this algorithm outputs an element d ∈ R or a symbol ⊥.

For efficiency, prior papers (such as [CDG+18a, CDG+18b, ABKW19, ABG19, LT19, CDSG+20])
considered an additional fifth algorithm DKeyComb((dktag-f,i)i∈[n]) that, given n partial decryption
keys (dktag-f,i)i∈[n] generated for the same tag tag-f, outputs a succinct functional decryption key
dktag-f which can be passed to Dec(dktag-f , c). Also, the algorithm DKeyGen (called DKeyGenShare
in [CDG+18a]) usually receives only two arguments, a secret key ski and a tag tag-f containing
a description of the corresponding function. However, in the context of function-hiding DMCFE,
we consider it more appropriate if each party does not receive the complete description of the
function by default, but only the part of the description necessary for the computation of its partial
decryption key. For this reason, we decompose the description of a function into n parameters
(y1, . . . , yn) ∈ Param1 × · · · × Paramn while yi contains only the information necessary for the
computation of the i-th partial decryption key dktag-f,i. On the other hand, the tag tag-f is intended
to only include the generic public purpose of the function.

Correctness. E is correct if for all λ ∈ N, (x1, . . . , xn) ∈ D1 × · · · ×Dn, f ∈ F having parameters
(yi)

n
i=1 ∈ Param1 × · · · × Paramn, and any tag, tag-f ∈ Tag, we have

Pr

d = f(x1, . . . , xn)

∣∣∣∣∣∣∣∣∣∣
(pp, (ski)i∈[n], (eki)i∈[n])←Setup(1λ)

cttag,i←Enc(eki, tag, xi)

dktag-f,i←DKeyGen(ski, tag-f, yi)

d := Dec((dktag-f,i)i∈[n], (cttag,i)i∈[n])

 = 1

where the probability is taken over the random coins of the algorithms.

5 Implicitly, we use a deterministic encoding p : F → Param1 × · · · ×Paramn in order to associate each function to its
parameters.

31

Security. We define the function-hiding security for DMCFE. In the seminal work by Chotard et
al. [CDG+18a] and its follow-up study [CDSG+20], the security notion does not cover the function-
hiding requirement for DMCFE or its more general sibling Dynamic Decentralized Functional
Encryption (DDFE). Until recently, the work by Agrawal et al. [AGT21b] abstracted out DMCFE
into the notion of Multi-Party Functional Encryption (MPFE). The authors of [AGT21b] also used
MPFE to spell out the function-hiding security for MCFE as well as for DDFE. The latter does
capture DMCFE as a particular case but as our current work focuses on DMCFE, we introduce the
detailed function-hiding security for DMCFE, without going through all the abstraction of MPFE
nor of DDFE.

Definition 18 (Function-Hiding Security). For a DMCFE scheme E, a function class F and a
ppt adversary A we define the experiment Expfh

E,F ,A(1
λ) as shown in Figure 3 and set H := [n] \ C.

The oracles OEnc, ODKeyGen and OCorrupt can be called in any order and any number of times.
The adversary A is NOT admissible with respect to C,QEnc,QDKGen, denoted by adm(A) = 0, if
either one of the following holds:

1. There exists a tuple (i, tag, x(0)

i , x(1)

i) ∈ QEnc such that i ∈ C and x(0)

i ̸= x(1)

i , or there exists
(i, tag-f, y(0)

i , y(1)

i) ∈ QDKGen such that i ∈ C and y(0)

i ̸= y(1)

i .

2. (Function-hiding) There exist tag, tag-f ∈ Tag, two vectors (x(0)

i)i∈[n], (x
(1)

i)i∈[n] ∈ D1 × · · · × Dn

and two functions f (0), f (1) ∈ F having parameters (y(0)

i , y(1)

i)ni=1 such that

• (i, tag, x(0)

i , x(1)

i) ∈ QEnc and (i, tag-f, y(0)

i , y(1)

i) ∈ QDKGen for all i ∈ H,
• x(0)

i = x(1)

i and y(0)

i = y(1)

i for all i ∈ C, and
• f (0)(x(0)

1 , . . . , x(0)
n) ̸= f (1)(x(1)

1 , . . . , x(1)
n).

Otherwise, we say that A is admissible w.r.t C, QEnc and QDKGen and write adm(A) = 1. We call E
function-hiding secure if for all ppt adversaries A,

Advfh
E,F ,A(1

λ) :=

∣∣∣∣Pr [Expfh
E,F ,A(1

λ) = 1
]
− 1

2

∣∣∣∣
is negligible in λ.

Initialize(1λ):

b
$← {0, 1}

C,QEnc,QDKGen←∅
(pp, (ski)i∈[n], (eki)i∈[n])←Setup(1λ)
Return pp

OEnc(i, tag, x(0)

i , x(1)

i):

QEnc←QEnc ∪ {(i, tag, x(0)

i , x(1)

i)}
Return ct←Enc(eki, tag, x

(b)

i)

ODKeyGen(i, tag-f, y(0)

i , y(1)

i):

QDKGen←QDKGen ∪ {(i, tag-f, y(0)

i , y(1)

i)}
Return dkf,i←DKeyGen(ski, tag-f, y

(b)

i)

OCorrupt(i):
C←C ∪ {i}; return (ski, eki)

Finalize(b′):

If adm(A) = 1, return β←(b′
?
= b)

Else, return 0

Fig. 3: Security game Expfh
E,F ,A(1

λ) for Definition 18

32

Weaker Notions. One may define weaker variants of indistinguishability by restricting the access
to the oracles and imposing stronger admissibility conditions.

1. Security against Static Corruption: The experiment Expstat-fh
E,F ,A(1

λ) is the same as Expfh
E,F ,A(1

λ)
except that all queries to the oracle OCorrupt must be submitted before Initialize is called.

2. Security against Selective Challenges: The experiment Expsel-fh
E,F ,A(1

λ) is the same as Expfh
E,F ,A(1

λ)
except that all queries to the oracle OEnc must be submitted before Initialize is called.

3. One-time Security: The experiment Exp1chal-fh
E,F ,A (1λ) is the same as Expfh

E,F ,A(1
λ) except that the

adversary must declare up front to Initialize two additional “challenge” tags tag∗, tag-f∗ ∈ Tag
such that for all tag, tag-f ∈ Tag:

• if (i, tag, x(0)

i , x(1)

i) ∈ QEnc and tag ̸= tag∗, then x(0)

i = x(1)

i ,
• if (i, tag-f, y(0)

i , y(1)

i) ∈ QDKGen and tag-f ̸= tag-f∗, then y(0)

i = y(1)

i .

4. Security against Complete Challenges: The experiment Exppos-fh
E,F ,A(1

λ) is the same as Expfh
E,F ,A(1

λ)
except that we add the following condition for adm(A) = 0:
3. There exists tag ∈ Tag so that a query OEnc(i, tag, x(0)

i , x(1)

i) has been asked for some but
not all i ∈ H, or there exists tag-f ∈ Tag such that a query OKeyGen(i, tag-f, y(0)

i , y(1)

i) has
been asked for some but not all i ∈ H.

In other words, we require for an adversary A to be admissible that, for any tag, either A makes
no encryption (resp. key) query or makes at least one encryption (resp. key) query for each slot
i ∈ H.

5. Weakly Function-Hiding: We can weaken the function-hiding property by changing condition 2
for adm(A) = 0. More specifically, we replace it by the following condition 2’ :
2’. (Weakly Function-hiding) There exist tag, tag-f ∈ Tag, (x(0)

i)i∈[n] and (x(1)

i)i∈[n] in D1×· · ·×Dn

and two functions f (0), f (1) ∈ F having parameters (y(0)

i , y(1)

i)ni=1 such that
• (i, tag, x(0)

i , x(1)

i) ∈ QEnc and (i, tag-f, y(0)

i , y(1)

i) ∈ QDKGen for all i ∈ H,
• x(0)

i = x(1)

i and y(0)

i = y(1)

i for all i ∈ C, and
• f (0)(x(0)

1 , . . . , x(0)
n) ̸= f (1)(x(1)

1 , . . . , x(1)
n) OR

f (0)(x(0)

1 , . . . , x(0)
n) ̸= f (1)(x(0)

1 , . . . , x(0)
n) OR

f (1)(x(0)

1 , . . . , x(0)
n) ̸= f (1)(x(1)

1 , . . . , x(1)
n).

Phrased differently, we require for an adversary A to be admissible that

f (0)(x(0)

1 , . . . , x(0)
n) = f (1)(x(0)

1 , . . . , x(0)
n) = f (1)(x(1)

1 , . . . , x(1)
n) (7)

for all tag ∈ Tag, vectors (x(0)

i)i∈[n], (x
(1)

i)i∈[n] ∈ D1 × · · · × Dn and functions (f (0), f (1)) specified

by parameters (y(0)

i , y(1)

i)ni=1, where x(0)

i = x(1)

i and y(0)

i = y(1)

i for all i ∈ C, and (i, tag, x(0)

i , x(1)

i) ∈
QEnc and (i, tag-f, y(0)

i , y(1)

i) ∈ QDKGen for all i ∈ H. The experiment in this weak function-hiding
model is denoted by Expwfh

E,F ,A(1
λ).

A.2 Pseudorandom Functions (PRF)

Let X , Y and K be sets representing domain, range and key space, respectively. We assume that they
are implicitly indexed by the security parameter λ. Furthermore, let R be the set of all functions
with domain X and range Y . A family of functions {FK}K∈K that consists of efficiently computable
functions FK : X → Y is called pseudorandom (PRF) if for any ppt adversary A, the following
advantage is negligible in λ:

Advprf
FK ,A(1

λ) :=
∣∣∣Pr[AFK(·) = 1]− Pr[AR(·) = 1]

∣∣∣ ,

where K
$← K and R

$← R.
It is well-known that PRFs can be constructed under DDH, e.g. the Naor-Reingold construc-
tion [NR97].

33

A.3 Non-Interactive Key Exchange (NIKE)

A NIKE scheme N = (Setup,KeyGen, SharedKey) for a key space K is a tuple of three efficient
algorithms defined as follows:

Setup(1λ): On input the security parameter 1λ, the algorithm outputs the public parameters pp.
KeyGen(pp): On input the public parameters pp, the algorithm outputs a pair (sk, pk) consisting of

a secret key sk and the corresponding public key pk.
SharedKey(sk, pk′): On input a secret key sk and a (usually non-corresponding) public key pk′, the

algorithm deterministically outputs a shared key K ∈ K.

Correctness. A NIKE scheme is correct if, for all λ ∈ N, we have

Pr

Ki,j = Kj,i

∣∣∣∣∣∣∣∣∣
pp←Setup(1λ),

(pk1, sk1), (pk2, sk2)←KeyGen(pp),

K1,2←SharedKey(sk1, pk2),

K2,1←SharedKey(sk2, pk1)

 = 1 ,

where the probability is taken over the random coins of the algorithms.

Security. For a NIKE scheme N and a ppt adversary A we define the experiment Expnike-b
N ,A as

shown in Figure 4. The oracles OHonestGen, OReveal, OTest and OCorrupt can be called in any
order and any number of times. The adversary A is NOT admissible, denoted by adm(A) = 0, if
either one of the following holds:

1. There exist public keys pk1 and pk2 such that A made the following queries
• OCorrupt(pk1),
• OTest(pk1, pk2) or OTest(pk2, pk1)’

2. There exist public keys pk1 and pk2 such that A made the following queries
• OReveal(pk1, pk2) or OReveal(pk2, pk1),
• OTest(pk1, pk2) or OTest(pk2, pk1).

Otherwise, we say that A is admissible and write adm(A) = 1. We call N IND-secure if for any ppt
adversary A, the following advantage is negligible in λ:

Advnike
N ,A(1

λ) :=
∣∣∣Pr [Expnike-1

N ,A (1λ) = 1
]
− Pr

[
Expnike-0

N ,A (1λ) = 1
]∣∣∣ .

NIKE can be constructed based on a variant of the Decisional Bilinear Diffie-Hellman assumption
in the standard model [FHKP13, Section 4.3].

A.4 Decisional Separation Diffie-Hellman (DSDH) Assumption

Definition 19. In a cyclic group G of prime order q, the Decisional Separation Diffie-Hellman
(DSDH) problem is to distinguish the distributions

D0 = {(x, y, J1K , JaK , JbK , Jab+ xK)} D1 = {(x, y, J1K , JaK , JbK , Jab+ yK)}

for any x, y ∈ Zq, and a, b
$← Zq. The DSDH assumption in G assumes that no ppt adversary can

solve the DSDH problem with non-negligible probability.

It can be shown straightforwardly that given a cyclic group G and q, we have AdvDSDH
G (1λ) ≤

2 ·AdvDDH
G (1λ).

34

Initialize(1λ):

pp←Setup(1λ); H←∅
Return pp

OHonestGen():
(sk, pk)←KeyGen; H←H∪ {(sk, pk)}
Return pk

OReveal(pk1, pk2):
If ∃sk1 s.t. (sk1, pk1) ∈ H,

return K←SharedKey(sk1, pk2)
If ∃sk2 s.t. (sk2, pk2) ∈ H,

return K←SharedKey(sk2, pk1)
Return ⊥

OTest(pk1, pk2):
If {(sk1, pk1), (sk2, pk2)} ⊈ H,

return ⊥
If b = 0, return K

$← K
Else, return K←SharedKey(sk1, pk2)

OCorrupt(pk):
Recover sk s.t. (sk, pk) ∈ H
H ← H \ {(sk, pk)}
Return sk

Finalize(b′):

If adm(A) = 1, return β←(b′
?
= b)

Else, return β
$← {0, 1}

Fig. 4: Security game Expnike-b
N ,A for b ∈ {0, 1}

A.5 Dual Pairing Vector Spaces

Basis changes. In this work, we use extensively basis changes over dual orthogonal bases of
a DPVS. We again use GN

1 as a running example. Let (A,A∗) be the dual canonical bases of
(GN

1 ,GN
2). Let (U = (ui)i,U

∗ = (u∗
i)i) be a pair of dual bases of (GN

1 ,GN
2), corresponding to an

invertible matrix U ∈ ZN×N
q . Given an invertible matrix B ∈ ZN×N

q , the basis change from U w.r.t
B is defined to be B := B ·U, which means:

(x1, . . . , xN)B =
N∑
i=1

xibi = (x1, . . . , xN) ·B = (x1, . . . , xN) ·B ·U

= (y1, . . . , yN)U where (y1, . . . , yN) := (x1, . . . , xN) ·B .

Under a basis change B = B ·U, we have

(x1, . . . , xN)B = ((x1, . . . , xN) ·B)U ; (y1, . . . , yN)U =
(
(y1, . . . , yN) ·B-1

)
B

.

The computation is extended to the dual basis change B∗ = B′ ·U∗, where B′ =
(
B-1
)⊤

:

(x1, . . . , xN)B∗ =
(
(x1, . . . , xN) ·B′)

U∗ ; (y1, . . . , yN)U∗ =
(
(y1, . . . , yN) ·B⊤

)
B∗

.

In can be checked that (B,B∗) remains a pair of dual orthogonal bases. When we consider a basis
change B = B ·U, if B = (bi,j)i,j affects only a subset J ⊆ [N] of indices in the representation w.r.t
basis U, we will write B as the square block containing (bi,j)i,j for i, j ∈ J and implicitly the entries
of B outside this block are taken from the identity matrix IN .

B Supporting Materials - Deferred Proofs

B.1 From One-Challenge to Multi-Challenge - Proof of Lemma 8

Lemma 8. Let E = (GSetup, LSetup,KeyGen,Enc,Dec) be a DDFE scheme for the function class
F . If E is single-challenge weakly function-hiding, then it is also weakly function-hiding. More
specifically, for any ppt adversary A, there exists a ppt algorithm B such that

Advxxx-wfh
E,F ,A (1λ) ≤ (qe + qk) ·Adv1chal-xxx-wfh

E,F ,B (1λ) ,

35

where qe and qk denote the maximum numbers of different mpub and kpub that A can query to OEnc
and OKeyGen respectively, and xxx ⊆ {stat, sel, pos}.

Proof. Let A be a ppt adversary in the experiment Expxxx-wfh
E,F ,A (1λ) and b

$← {0, 1} be the challenge

bit. We denote the qe distinct mpub that can occur in a query to OEnc by m(1)

pub, ...,m
(qe)

pub. Similarly,

we denote the qk distinct kpub that can occur in queries to OKeyGen by k(1)

pub, ..., k
(qk)

pub. We define a
sequence of hybrid games:

Game G1,j for j ∈ [0; qk]: This hybrid is the same asExpxxx-wfh
E,F ,A (1λ) except that a queryOKeyGen(i,

(k0pri, k
(ℓ)

pub), (k
1
pri, k

(ℓ)

pub)) is answered by a partial decryption key for (k1pri, k
(ℓ)

pub) (as opposed to

(k0pri, k
(ℓ)

pub)) if ℓ ≤ j. Note that G1,0 = Expxxx-wfh
E,F ,A (1λ), conditioned on b = 0 as the challenge bit.

The indistinguishability between G1,j and G1,j−1 for j ∈ [qk] is proven in Lemma 20.
Game G2,j for j ∈ [0; qe]: This hybrid is the same as G1,qk except that a queryOEnc(i, (m0

pri,m
(ℓ)

pub),

(m1
pri,m

(ℓ)

pub)) is answered by an encryption of (m1
pri,m

(ℓ)

pub) (as opposed to (m0
pri,m

(ℓ)

pub)) if ℓ ≤ j.

Note that G2,0 = G1,qk and G2,qe = Expxxx-wfh
E,F ,A (1λ), conditioned on b = 1 as the challenge bit.

The indistinguishability between G2,j and G2,j−1 for j ∈ [qe] is proven in Lemma 21.

For any hybrid Gt,j , with t ∈ [2], j ∈ [0, qe] ∪ [0, qk], we define the event Gt,j = 1 to indicate that A
outputs 1 in Gt,j . We calculate the advantage as follows:

Advxxx-wfh
E,F ,A (1λ)

=
1

2
·
∣∣∣Pr[A outputs 1 in Expxxx-wfh

E,F ,A (1λ) | b = 1
]

−Pr
[
A outputs 1 in Expxxx-wfh

E,F ,A (1λ) | b = 0
]∣∣∣

=
1

2
·
∣∣Pr [G2,qe = 1]− Pr [G1,0 = 1]

∣∣
=

1

2
·

∣∣∣∣∣∣
qk∑
j=1

(
Pr [G1,j = 1]− Pr [G1,j−1 = 1]

)
+

qe∑
j=1

(
Pr [G2,j = 1]− Pr [G2,j−1 = 1]

)∣∣∣∣∣∣
≤ 1

2
·

 qk∑
j=1

∣∣Pr [G1,j = 1]− Pr [G1,j−1 = 1]
∣∣+ qe∑

j=1

∣∣Pr [G2,j = 1]− Pr [G2,j−1 = 1]
∣∣

≤ (qk + qe) ·Adv1chal-xxx-wfh
E,F ,B (1λ) ,

where the last inequality is a consequence of Lemmas 20 and 21. ⊓⊔

Lemma 20. If E is weakly function-hiding, then we have for each j ∈ [qk] that∣∣Pr [G1,j = 1]− Pr [G1,j−1 = 1]
∣∣ ≤ 2 ·Adv1chal-xxx-wfh

E,F ,B (1λ) .

Proof. Let A be an adversary trying to distinguish between G1,j and G1,j−1. We construct a ppt
adversary B playing against Exp1chal-xxx-wfh

E,F ,B (1λ) that uses black-box access to A. B simulates the
view of A as follows:

• Initialization: Upon A calling Initialize(1λ), B runs the initialization procedure

Initialize(1λ, k∗pub := k(j)

pub,m
∗
pub := m(j)

pub)

of Exp1chal-xxx-wfh
E,F ,B (1λ) and forwards the response to A.

36

• Encryption Queries: Upon A querying OEnc(i, (m0
pri,m

(ℓ)

pub), (m
1
pri,m

(ℓ)

pub)), B queries the ora-

cle OEnc of Exp1chal-xxx-wfh
E,F ,B (1λ) on input (i, tagℓ, (m

0
pri,m

(ℓ)

pub), (m
0
pri,m

(ℓ)

pub)) and forwards the
response to A. We emphasize that the returned ciphertext will be on the 0-side in this sequence
of hybrids.

• Key-generation Queries:
Upon A querying OKeyGen on input (i, (k0pri, k

(ℓ)

pub), (k
1
pri, k

(ℓ)

pub)), B does:

1. If ℓ < j, B queries (i, (k1pri, k
(ℓ)

pub), (k
1
pri, k

(ℓ)

pub)) to the oracle OKeyGen of Exp1chal-xxx-wfh
E,F ,B (1λ)

and forwards the response to A.
2. If ℓ = j, B queries OKeyGen(i, (k0pri, k

(j)

pub), (k
1
pri, k

(j)

pub)) and forwards the response to A.
3. If ℓ > j, B queries OKeyGen(i, (k0pri, k

(ℓ)

pub), (k
0
pri, k

(ℓ)

pub)) and forwards the response to A.
• Corruption Queries: Upon A querying OCorrupt(i), B queries OCorrupt of Exp1chal-xxx-wfh

E,F ,B (1λ)
on the same input i and forwards the response to A.

• Finalize: Upon A calling Finalize(b′), B passes the same bit b′ to its own Finalize procedure.

We note that thanks to the weakly function-hiding setting (more precisely, the first equality of 7),
A is an admissible adversary in G1,j and G1,j−1 if and only if B is an admissible adversary against
Exp1chal-xxx-wfh

E,F ,B (1λ). Moreover, we observe that B simulates G1,j−1 to A if b = 0, and G1,j otherwise.
Thus, we calculate

|Pr [G1,j = 1]− Pr [G1,j−1 = 1]| =
∣∣∣Pr[B outputs 1 in Exp1chal-xxx-wfh

E,F ,B (1λ) | b = 1
]

−Pr
[
B outputs 1 in Exp1chal-xxx-wfh

E,F ,B (1λ) | b = 0
]∣∣∣

≤ 2 ·Adv1chal-xxx-wfh
E,F ,B (1λ)

and the lemma is concluded. ⊓⊔

Lemma 21. If E is weakly function-hiding, then we have for each j ∈ [qe] that∣∣Pr [G2,j = 1]− Pr [G2,j−1 = 1]
∣∣ ≤ 2 ·Adv1chal-xxx-wfh

E,F ,B (1λ) .

Proof. Let A be an adversary trying to distinguish between G2,j and G2,j−1. We construct a ppt
adversary B playing against Exp1chal-xxx-wfh

E,F ,B (1λ) that uses black-box access to A. B simulates the
view of A as follows:

• Initialization: Upon A calling Initialize(1λ), B runs the initialization procedure

Initialize(1λ, k∗pub := k(j)

pub,m
∗
pub := m(j)

pub)

of Exp1chal-xxx-wfh
E,F ,B (1λ) and forwards the response to A.

• Encryption Queries: Upon A querying OEnc(i, (m0
pri,m

(ℓ)

pub), (m
1
pri,m

(ℓ)

pub)), B behaves as follows:

1. If ℓ < j, B queries (i, (m1
pri,m

(ℓ)

pub), (m
1
pri,m

(ℓ)

pub)) to the oracle OEnc of Exp1chal-xxx-wfh
E,F ,B (1λ)

and forwards the response to A.
2. If ℓ = j, B queries OEnc(i, (m0

pri,m
(ℓ)

pub), (m
1
pri,m

(ℓ)

pub)) and forwards the response to A.
3. If ℓ > j, B queries OEnc(i, (m0

pri,m
(ℓ)

pub), (m
0
pri,m

(ℓ)

pub)) and forwards the response to A.
• Key-generation Queries: Upon A querying OKeyGen(i, (k0pri, k

(ℓ)

pub), (k
1
pri, k

(ℓ)

pub)), B queries (i,

(k1pri, k
(ℓ)

pub), (k
1
pri, k

(ℓ)

pub)) the oracle OEnc of Exp1chal-xxx-wfh
E,F ,B (1λ) and forwards the response to A.

We emphasize that the returned key components will be on the 1-side in this sequence of hybrids.
• Corruption Queries: Upon A querying OCorrupt(i) for some i ∈ [n], B queries the oracle
OCorrupt of Exp1chal-xxx-wfh

E,F ,B (1λ) on the same input i and forwards the response (eki, ski) to A.

37

• Finalize: Upon A calling Finalize(b′), B passes the same bit b′ to its own Finalize procedure.

We note that thanks to the weakly function-hiding setting (more precisely, the second equality of 7),
A is an admissible adversary in G2,j and G2,j−1 if and only if B is an admissible adversary against
Exp1chal-xxx-wfh

E,F ,B (1λ). Moreover, we observe that B simulates G2,j−1 if b = 0, and G2,j otherwise. Using
the same calculation as in Lemma 20, we conclude that∣∣Pr [G2,j = 1]− Pr [G2,j−1 = 1]

∣∣ ≤ 2 ·Adv1chal-xxx-wfh
E,F ,B (1λ)

and the proof is completed. ⊓⊔

B.2 From Weakly to Fully Function-Hiding - Proof of Lemma 9

Lemma 9. If there exists a weakly function-hiding DDFE scheme E for F ip
dyn, then there exists a

(fully) function-hiding DDFE scheme E ′ for F ip
dyn. More precisely, for any ppt adversary A, there

exists a ppt algorithm B such that

Advxxx-fh
E ′,F ip

dyn,A
(1λ) ≤ 3 ·Advxxx-wfh

E,F ip
dyn,B

(1λ) ,

where xxx ⊆ {stat, sel, 1chal, pos}.

Proof. Given E = (GSetup, LSetup,KeyGen,Enc,Dec), we define the fully function-hiding scheme
E ′ = (GSetup′, LSetup′,KeyGen′,Enc′,Dec′) for F ip

dyn as follows:

• GSetup: GSetup′(1λ) runs (pp)← GSetup(1λ) and outputs the public parameters pp.
• LSetup: LSetup′(pp) runs (pki, ski)←LSetup(pp) and outputs (pk′i, sk

′
i) := (pki, ski).

• Key Generation: KeyGen′(sk′i, ki = (yi,UK,i, tag-fi)) parses sk
′
i = ski, runs dki ← KeyGen(ski, k =

(yi ∥ 0Ni ,UK,i, tag-fi)) and outputs dk′i := dki.
• Encryption: Enc′(ek′i,mi = (xi,UM,i, tagi)) parses ek′i = eki, computes a ciphertext cti ←
Enc(eki,mi = (xi ∥ 0Ni ,UM,i, tagi)) and outputs ct′i := cti.

• Decryption: Dec((dk′i)i∈UK
, (ct′i)i∈UM

) outputs d← Dec((dk′i)i∈UK
, (ct′i)i∈UM

).

The correctness of E ′ follows immediately from that of E and the fact that〈(
xi

∥∥ 0Ni
)
i∈[n] ,

(
yi

∥∥ 0Ni
)
i∈[n]

〉
=
〈
(xi)i∈[n], (yi)i∈[n]

〉
,

where we denote (zi)i∈[n] := (z1 ∥ . . . ∥ zn) for arbitrary vectors z1, . . . , zn. Furthermore, we
show that E ′ enjoys the function-hiding property. Towards this, we consider a sequence of hybrid
games G0, . . . ,G3 where G0 equals Expxxx-fh

E ′,F ip
dyn,A

(1λ), where the challenge bit is 0, and G3 equals

Expxxx-fh
E ′,F ip

dyn,A
(1λ), where the challenge bit is 1, and A is a ppt adversary. For i ∈ [3], we denote the

event Gi = 1 to signify that A outputs 1 in the hybrid Gi.

Game G0: This is Expxxx-fh
E ′,F ip

dyn,A
(1λ) conditioned on the challenge bit b = 0. We recall that in this

specific functionality F ip
dyn, there is the concept of tags in the public information of keys and

ciphertexts. We denote the ℓ-th distinct tag that occurs in a query to OEnc by tagℓ. Similarly,
tag-fk refers to the k-th distinct tag in a query to OKeyGen. Queries to OEnc and OKeyGen are
answered as follows:

38

• Upon A querying
OEnc(i, (x(0)

i ,UM,i, tagi), (x
(1)

i ,UM,i, tagi))

the challenger queries to its weakly function-hiding oracle for

ctℓ,i ← Enc(i, (x(0)

i ∥ 0
Ni ,UM,i, tagi), (x

(0)

i ∥ 0
Ni ,UM,i, tagi))

and returns ct′ℓ,i := ctℓ,i.
• Upon A querying OKeyGen(i, (y(0)

i ,UK,i, tag-fi), (y
(1)

i ,UK,i, tag-fi)), the challenger queries to
its weakly function-hiding oracle for

dkk,i ← KeyGen(i, (y(0)

i ∥ 0
Ni ,UK,i, tag-fi), (y

(0)

i ∥ 0
Ni ,UK,i, tag-fi))

and returns dk′k,i := dkk,i.
We note that Ni are included in pki which can be known to the simulator via queries to
OHonestGen, upon requests from A. In other words, the ciphertexts (ct′ℓ,i)i∈UM

encrypt the

vector (x(0)

i ∥ 0Ni)i∈UM
, and the partial decryption keys (dk′k,i)i∈UK

allow for the computation of

the inner product with the vector (y(0)

i ∥ 0Ni)i∈UK
.

Game G1: We modify the definition of OEnc and OKeyGen as follows:
• Upon A querying

OEnc(i, (x(0)

i ,UM,i, tagi), (x
(1)

i ,UM,i, tagi))

the challenger queries to its weakly function-hiding oracle for

ctℓ,i ← Enc(i, (0Ni ∥ x(1)

i ,UM,i, tagi), (0
Ni ∥ x(1)

i ,UM,i, tagi))

and returns ct′ℓ,i := ctℓ,i.
• Upon A querying OKeyGen(i, (y(0)

i ,UK,i, tag-fi), (y
(1)

i ,UK,i, tag-fi)), the challenger queries to
its weakly function-hiding oracle for

dkk,i ← KeyGen(i, (y(0)

i ∥ y
(1)

i ,UK,i, tag-fi), (y
(0)

i ∥ y
(1)

i ,UK,i, tag-fi))

and returns dk′k,i := dkk,i.
Thus, the ciphertexts (ct′ℓ,i)i∈UM

encrypt the vector (0Ni ∥ x(1)

i)i∈UM
(as opposed to (x(0)

i ∥
0Ni)i∈UM

in G0), and the partial decryption keys (dk′k,i)i∈UK
allow for the computation of the

inner product with the vector (y(0)

i ∥ y(1)

i)i∈UK
(as opposed to (y(0)

i ∥ 0Ni)i∈UK
in G0). Let

n := |UK | = |UM | in case of correct evaluation in F ip
dyn. The admissibility of A states that

⟨(x(0)

i)i∈[n], (y
(0)

i)i∈[n]⟩ = ⟨(x
(1)

i)i∈[n], (y
(1)

i)i∈[n]⟩ which implies that〈(
x(0)

i

∥∥ 0Ni
)
i∈[n] ,

(
y(0)

i

∥∥ 0Ni
)
i∈[n]

〉
=
〈(

x(0)

i

∥∥ 0Ni
)
i∈[n] ,

(
y(0)

i

∥∥ y(1)

i

)
i∈[n]

〉
=
〈(

0Ni
∥∥ x(1)

i

)
i∈[n] ,

(
y(0)

i

∥∥ y(1)

i

)
i∈[n]

〉
And our simulator’s queries are admissible in the weakly function-hiding model. Then it follows
by the weak function-hiding property of E ′ that there exists a ppt adversary B such that

|Pr[G1 = 1]− Pr[G0 = 1]| =
∣∣∣∣Pr[B outputs 1 in Expxxx-wfh

E,F ip
dyn,B

(1λ) | b = 1
]

−Pr
[
B outputs 1 in Expxxx-wfh

E,F ip
dyn,B

(1λ) | b = 0
]∣∣∣∣

≤ 2 ·Advxxx-wfh
E,F ip

dyn,B
(1λ)

The simulator’s queries change only the function’s contents while relaying UK , tag-fk queried by
A. The same will hold for the following hybrids.

39

Game G2: We modify the definition of OEnc and OKeyGen again.
• Upon A querying

OEnc(i, (x(0)

i ,UM,i, tagi), (x
(1)

i ,UM,i, tagi))

the challenger queries to its weakly function-hiding oracle for

ctℓ,i ← Enc(i, (x(1)

i ∥ 0
Ni ,UM,i, tagi), (x

(1)

i ∥ 0
Ni ,UM,i, tagi))

and returns ct′ℓ,i := ctℓ,i.
• Upon A querying OKeyGen(i, (y(0)

i ,UK,i, tag-fi), (y
(1)

i ,UK,i, tag-fi)), the challenger queries to
its weakly function-hiding oracle for

dkk,i ← KeyGen(i, (y(1)

i ∥ y
(1)

i ,UK,i, tag-fi), (y
(1)

i ∥ y
(1)

i ,UK,i, tag-fi))

and returns dk′k,i := dkk,i.

That is, the challenger provides a ciphertext of (x(1)

i ∥ 0Ni)i∈UM
and a decryption key for

(y(1)

i ∥ y
(1)

i)i∈UK
, as opposed to (0Ni ∥ x(1)

i)i∈UM
and (y(0)

i ∥ y
(1)

i)i∈UK
in G1. Let n := |UK | = |UM |

in case of correct evaluation in F ip
dyn. Notice that〈(

0Ni
∥∥ x(1)

i

)
i∈[n] ,

(
y(0)

i

∥∥ y(1)

i

)
i∈[n]

〉
=
〈(

0Ni
∥∥ x(1)

i

)
i∈[n] ,

(
y(1)

i

∥∥ y(1)

i

)
i∈[n]

〉
=
〈(

x(1)

i

∥∥ 0Ni
)
i∈[n] ,

(
y(1)

i

∥∥ y(1)

i

)
i∈[n]

〉
.

And our simulator’s queries are admissible in the weakly function-hiding model. Then it follows
by the weak function-hiding property of E ′ that there exists a ppt adversary B such that
|Pr[G2 = 1]− Pr[G1 = 1]| ≤ 2 ·Advxxx-wfh

E,F ip
dyn,B

(1λ).

Game G3: We modify the definition of OKeyGen as follows. (The definition of OEnc is as in G2.)
• Upon A querying OKeyGen(i, (y(0)

i ,UK,i, tag-fi), (y
(1)

i ,UK,i, tag-fi)), the challenger queries to
its weakly function-hiding oracle for

dkk,i ← KeyGen(i, (y(1)

i ∥ 0
Ni ,UK,i, tag-fi), (y

(1)

i ∥ 0
Ni , tag-fi))

and returns dk′k,i := dkk,i.

Thus, the challenger provides a decryption key for (y(1)

i ∥ 0Ni)i∈UK
, as opposed to (y(1)

i ∥ y
(1)

i)i∈UK

in G2. Let n := |UK | = |UM | in case of correct evaluation in F ip
dyn. We have〈(

x(1)

i

∥∥ 0Ni
)
i∈[n] ,

(
y(1)

i

∥∥ y(1)

i

)
i∈[n]

〉
=
〈(

x(1)

i

∥∥ 0Ni
)
i∈[n] ,

(
y(1)

i

∥∥ 0Ni
)
i∈[n]

〉
.

And our simulator’s queries are admissible in the weakly function-hiding model. As above, it
follows by the weak function-hiding property of E ′ that there exists a ppt adversary B such
that |Pr[G3 = 1] − Pr[G2 = 1]| ≤ 2 · Advxxx-wfh

E,F ip
dyn,B

(1λ). Note that G3 equals the experiment

Expxxx-fh
E ′,F ip

dyn,A
(1λ) conditioned on b = 1.

Using a hybrid argument, we conclude that:

Advxxx-fh
E ′,F ip

dyn,A
(1λ) =

1

2
|Pr[G3 = 1]− Pr[G0 = 1]| ≤ 1

2
·

3∑
i=1

|Pr[Gi = 1]− Pr[Gi−1 = 1]|

≤ 3 ·Advxxx-wfh
E,F ip

dyn,B
(1λ)

and the lemma is proved. ⊓⊔

40

B.3 Proof of Lemma 11 - Single Secret-Sharing Swapping

Lemma 11 (Single Secret-Sharing Swapping). Let λ ∈ N and H = H(λ),K = K(λ), L =
L(λ), J = J(λ), Ni = Ni(λ) ∈ N where i ∈ H and H,K,L, J,Ni : N → N are polynomials. Let
(Bi,B

∗
i)i∈[H] be two random dual bases of dimension 4Ni + 4 in (G1,G2,Gt, g1, g2, gt, e, q). All basis

vectors are kept secret.

For each i ∈ [H], consider public vectors (xi,x
(rep)

ℓ,i ,x(rep)′

ℓ,i ,y(0,j)

i ,y(1,j)

i ,y(rep)

k,i)
rep,j∈[J]
k∈[K],ℓ∈[L] of length Ni such

that
∑H

i=1⟨xi,y
(0,j)

i ⟩ =
∑H

i=1⟨xi,y
(1,j)

i ⟩ and ⟨xi,y
(1,j)

i − y(0,j)

i ⟩ is a constant for all j ∈ [J], i ∈ [H].

Let (R,Rk)j∈[J],k∈[K] be some public scalars. Given r, rℓ, ρi, ρ
(rep)

ℓ,i , π(j)

i , π(rep)

k,i , σi, σk,i
$← Zq such that∑H

i=1 σi = R and
∑H

i=1 σk,i = Rk, for all k ∈ [K], the following distributions are computationally
indistinguishable under the SXDH assumption:

D0 :=

(u(rep)

ℓ,i = (x(rep)

ℓ,i , x(rep)′

ℓ,i , rℓ, 0, ρ(rep)

ℓ,i , 0Ni , 0Ni , 0)Bi)
rep∈[J]
i∈[H],ℓ∈[L](

ui = (xi , 0Ni , r, 0, ρi, 0Ni , 0Ni , 0)Bi

)
i∈[H](

v(j)

i = (y(1,j)

i , y(0,j)

i , σi, π(j)

i , 0, 0Ni , 0Ni , 0)B∗
i

)j∈[J]
i∈[H](

v(rep)

k,i = (y(rep)

k,i , y(rep)

k,i , σk,i, π(rep)

k,i , 0, 0Ni , 0Ni , 0)B∗
i

)rep∈[J]
i∈[H],k∈[K]

;

D1 :=

(u(rep)

ℓ,i = (x(rep)

ℓ,i , x(rep)′

ℓ,i , rℓ, 0, ρ(rep)

ℓ,i , 0Ni , 0Ni , 0)Bi)
rep∈[J]
i∈[H],ℓ∈[L](

ui = (0Ni , xi , r, 0, ρi, 0Ni , 0Ni , 0)Bi

)
i∈[H](

v(j)

i = (y(1,j)

i , y(0,j)

i , σi, π(j)

i , 0, 0Ni , 0Ni , 0)B∗
i

)j∈[J]
i∈[H](

v(rep)

k,i = (y(rep)

k,i , y(rep)

k,i , σk,i, π(rep)

k,i , 0, 0Ni , 0Ni , 0)B∗
i

)rep∈[J]
i∈[H],k∈[K]

.

More specifically, we have:∣∣∣∣ Pr
samp∼D0

[A(samp)→ 1]− Pr
samp∼D1

[A(samp)→ 1]

∣∣∣∣ ≤ (2Ni + 8) ·AdvSXDH
G1,G2

(1λ)

for any ppt A with fixed
(
xi, (x

(rep)

ℓ,i ,x(rep)′

ℓ,i)Lℓ=1, R,y(0,j)

i ,y(1,j)

i , (y(rep)

k,i , Rk)
K
k=1

)j∈[J]
i∈[H]

.

Proof (of Lemma 11). The sequence of games is given in Figure 2. The changes that make the

transition between games are highlighted by a frame. In the vectors, we write 0t to denote t
consecutive coordinates containing 0. The details of the transition are given as follows:

Game G0: The vectors are sampled according to D0.
Game G1: We perform a computational basis change, making use of the randomness r

$← Zq at

coordinate 2Ni + 1 of (ui)
H
i=1 and of σi

$← Zq at coordinate 2Ni + 1 of (vi)
H
i=1 so as to introduce

a new non-zero r′
$← Z∗

q at coordinate 4Ni + 4 in (ui)
H
i=1 and secret sharings (τi)

H
i=1 of 0 with

only non-zero τi at coordinate 4Ni +4 of (v(j)

i)Hi=1, where j ∈ [J]. We recall that for each j ∈ [J],

it holds
∑H

i=1 σi = R for some fixed public value R. We proceed in two steps:
Game G0.1: We first use the subspace-indistinguishability to introduce r′

$← Z∗
q at coordinate

4Ni + 4 of ui, while keeping v(j)

i [4Ni + 4] = u(rep)

ℓ,i [4Ni + 4] = v(rep)

k,i [4Ni + 4] = 0. Given a
DSDH instance (JaK1 , JbK1 , JcK1) in G1 where δ := c− ab is either 0 or 1, the basis changing
matrices are:

Bi =

1 a

0 1

2Ni+1,4Ni+4

·Hi; B∗
i =

 1 0

−a 1

2Ni+1,4Ni+4

·H∗
i .

41

All vectors changed under these bases are secret. We compute Bi using JaK1 and write the
u-vectors as follows:

ui = (xi, 0Ni , r, 0, ρi, 0Ni , 0Ni , 0)Bi + (0Ni , 0Ni , br′, 0, 0, 0Ni , 0Ni , cr′)Hi

= (xi, 0Ni , r + br′ , 0, ρi, 0Ni , 0Ni , δr′)Bi

u(rep)

ℓ,i = (x(rep)

ℓ,i , x(rep)′

ℓ,i , rℓ, 0, ρℓ,i, 0Ni , 0Ni , 0)Bi .

We cannot compute b∗
i,2Ni+1 but can write the v-vectors in H∗ and observe that they stay

invariant in B∗
i as the (4Ni + 4)-th coordinate is 0:

v(j)

i = (y(1,j)

i , y(0,j)

i , σi, π(j)

i , 0, 0Ni , 0Ni , 0)H∗
i

= (y(1,j)

i , y(0,j)

i , σi, π(j)

i , 0, 0Ni , 0Ni , 0)B∗
i

v(rep)

k,i = (y(rep)

k,i , y(rep)

k,i , σk,i, πk,i, 0, 0Ni , 0Ni , 0)H∗
i

= (y(rep)

k,i , y(rep)

k,i , σk,i, πk,i, 0, 0Ni , 0Ni , 0)B∗
i
.

If δ = 0 we are in G0 else we are in G0.1, while updating r to r + br′6. The difference in
advantages is |Pr[G0.1 = 1]− Pr[G0 = 1]| ≤ 2 ·AdvDDH

G1
(1λ).

Game G0.2: We use DSDH in G2 to introduce any chosen secret sharing (τi)i∈[H] of 0, i.e.∑H
i=1 τi = 0, such that τi ≠ 0 for all i, for every j ∈ [J]. Given a DSDH instance

(JaK2 , JbK2 , JcK2) in G2 where δ := c − ab is either 0 or 1, the bases (Bi,B
∗
i) are changed

following:

Bi =

 1 0

−a 1

2Ni+1,4Ni+4

·Hi; B∗
i =

1 a

0 1

2Ni+1,4Ni+4

·H∗
i .

All vectors changed under these bases are secret. We compute B∗
i using JaK2 and write the

v-vectors as follows:

v(j)

i = (y(1,j)

i , y(0,j)

i , σi, π(j)

i , 0, 0Ni , 0Ni , 0)B∗
i
+ (0Ni , 0Ni , bτi, 0, 0, 0Ni , 0Ni , cτi)H∗

i

= (y(1,j)

i , y(0,j)

i , σi + bτi , π(j)

i , 0, 0Ni , 0Ni , δτi)B∗
i

v(rep)

k,i = (y(rep)

k,i , y(rep)

k,i , σk,i, πk,i, 0, 0Ni , 0Ni , 0)Bi .

For each j ∈ [J], the secret shares (σi)
H
i=1 are updated to (σi + bτi)

H
i=1 and still satisfy:

H∑
i=1

(σi + bτi) =

(
H∑
i=1

σi

)
+ b

(
H∑
i=1

τi

)
= R

because (τi)
H
i=1 is a secret sharing of 0. We cannot compute bi,4Ni+4 but can write the

u-vectors in Hi, for r
′′, rℓ

$← Zq, r
′ $← Z∗

q :

ui = (xi, 0Ni , r′′, 0, ρi, 0Ni , 0Ni , r′)Hi = (xi, 0Ni , r′′ + ar′, 0, ρi, 0Ni , 0Ni , r′)Bi

u(rep)

ℓ,i = (x(rep)

ℓ,i , x(rep)′

ℓ,i , rℓ, 0, ρℓ,i, 0Ni , 0Ni , 0)Hi = (x(rep)

ℓ,i , x(rep)′

ℓ,i , rℓ, 0, ρℓ,i, 0Ni , 0Ni , 0)Bi ,

6 It is thanks to the randomness of r
$← Zq that allows us to update br′ without changing the distribution. When

applying this secret-sharing swapping lemma for our FH-DMCFE scheme, this random r is provided by the RO
while hashing the tags.

42

while simulating r := r′′ + ar′ perfectly uniformly at random in Zq. If δ = 0 we are in G0.1,
else we are in G0.2 = G1. The difference in advantages is |Pr[G1 = 1] − Pr[G0.1 = 1]| ≤
2 ·AdvDDH

G2
(1λ).

After G0.2 = G1, the vectors are now:

u(rep)

ℓ,i = (x(rep)

ℓ,i , x(rep)′

ℓ,i , rℓ, 0, ρℓ,i, 02Ni , 0)Bi ; ui = (xi, 0, r , 0, ρi, 02Ni , r′)Bi

v(j)

i = (y(1,j)

i , y(0,j)

i , σi , π(j)

i , 0, 02Ni , τi)B∗
i
; v(rep)

k,i = (y(rep)

k,i , y(rep)

k,i , σk,i, πk,i, 0, 02Ni , 0)B∗
i

and in total |Pr[G1 = 1]− Pr[G0 = 1]| ≤ 2 ·AdvDDH
G2

(1λ) + 2 ·AdvDDH
G1

(1λ).

Game G2: We perform a formal basis change to duplicate (y(1,j)

i ,y(0,j)

i) (respectively (y(rep)

k,i ,y
(rep)

k,i))

from coordinates [1, Ni], [Ni + 1, 2Ni] to [2Ni + 4, 3Ni + 3], [3Ni + 4, 4Ni + 3] of v(j)

i (respectively
of v(rep)

k,i). The bases are changed following using the following matrices (we denote Bi[row, col]
the entry at row row and column col of Bi)

Bi =

Bi[row, col] = 1 if row = col

Bi[row, col] = 1 if (row, col) ∈ {(2Ni + 4 + d, 1 + d) : d ∈ [0, Ni − 1]}
Bi[row, col] = 1 if (row, col) ∈ {(3Ni + 4 + d,Ni + 1 + d) : d ∈ [0, Ni − 1]}
Bi[row, col] = 0 otherwise

B′
i :=

(
B-1

i

)⊤
Bi = Bi ·Hi; B∗

i = B′
i ·H∗

i .

We write the vectors as follows, observing that the u-vectors stay invariant because their
coordinates [2Ni + 4, 3Ni + 3], [3Ni + 4, 4Ni + 3] are all 0 and the duplication is done correctly
for the v-vectors:

u(rep)

ℓ,i = (x(rep)

ℓ,i , x(rep)′

ℓ,i , rℓ, 0, ρℓ,i, 0Ni , 0Ni , 0)Hi = (x(rep)

ℓ,i , x(rep)′

ℓ,i , rℓ, 0, ρℓ,i, 0Ni , 0Ni , 0)Bi

ui = (xi, 0, r, 0, ρi, 0Ni , 0Ni , r′)Hi = (xi, 0, r, 0, ρi, 0Ni , 0Ni , r′)Bi

v(j)

i = (y(1,j)

i , y(0,j)

i , σi, π(j)

i , 0, 0Ni , 0Ni , τi)H∗
i
= (y(1,j)

i , y(0,j)

i , σi, π(j)

i , 0, y(1,j)

i , y(0,j)

i , τi)B∗
i

v(rep)

k,i = (y(rep)

k,i , y(rep)

k,i , σk,i, πk,i, 0, 0Ni , 0Ni , 0)H∗
i
= (y(rep)

k,i ,y
(rep)

k,i , σk,i, πk,i, 0, y(rep)

k,i ,y
(rep)

k,i , 0)B∗
i
.

We are in G1 in bases (Hi,H
∗
i) and in G2 in bases (Bi,B

∗
i). The change is formal and we have

Pr[G2 = 1] = Pr[G1 = 1].

Game G3: We perform a computational change to swap xi from coordinate [1, Ni] to [2Ni+4, 3Ni+3]
of ui, using the randomness ρi at coordinate 2Ni + 3. We proceed by a sequence of Ni + 1
hybrids, namely G2.k for k ∈ [0, Ni], such that G2.0 = G2 and in G2.k the first coordinates [1, k]
are swapped to [2Ni + 4, 2Ni + 3+ k], for k ≥ 1. For k ∈ [Ni], the transition from G2.k−1 to G2.k

is described below. Given a DSDH instance (JaK1 , JbK1 , JcK1) in G1 where δ := c− ab is either 0
or 1, the bases (Bi,B

∗
i) are changed following:

Bi =

1 0 0

−a 1 a

0 0 1

k,2Ni+3,2Ni+4+k−1

·Hi; B∗
i =

1 a 0

0 1 0

0 −a 1

k,2Ni+3,2Ni+4+k−1

·H∗
i .

43

All vectors changed under these bases are secret. We compute Bi using JaK1 and write the
u-vectors as follows:

ui = (0, .., 0,xi[k], ..,xi[Ni]︸ ︷︷ ︸
first (k−1)-th coords are 0

, 0Ni , r, 0, ρi, xi[1], ..,xi[k − 1], 0, .., 0︸ ︷︷ ︸
last (Ni−k+1)-th coords are 0

, 0Ni , r′)Bi

+ (0, .., 0,−cxi[k], 0, .., 0︸ ︷︷ ︸
k-th coord among Ni

, 0Ni , 0, 0, bxi[k], 0, .., 0, cxi[k], 0, .., 0︸ ︷︷ ︸
k-th coord among Ni

, 0Ni , 0)Hi

= (0, .., 0, xi[k]− δxi[k], ..,xi[Ni]︸ ︷︷ ︸
first (k−1)-th coords are 0

, 0Ni , r, 0, ρi + bxi[k],xi[1], ..,xi[k − 1], δxi , .., 0︸ ︷︷ ︸
last (Ni−k)-th coords are 0

, 0Ni , r′)Bi

u(rep)

ℓ,i = (x(rep)

ℓ,i , x(rep)′

ℓ,i , rℓ, 0, ρℓ,i, 0Ni , 0Ni , 0)Bi .

We cannot compute b∗
i,1+k and b∗

1,2Ni+4+k−1 due to the lack of JaK2, but the v-vectors can be

written in H∗
i indeed they stay invariant: for instance we consider vi, the same holds for v(rep)

k,i

v(j)

i = (y(1,j)

i , y(0,j)

i , σi, π(j)

i , 0, y(1,j)

i , y(0,j)

i , τi)H∗
i

= (y(1,j)

i , y(0,j)

i , σi, π(j)

i ,−ay(1,j)

i [k] + ay(1,j)

i [k], y(1,j)

i , y(0,j)

i , τi)B∗
i

= (y(1,j)

i , y(0,j)

i , σi, π(j)

i , 0, y(1,j)

i , y(0,j)

i , τi)B∗
i
.

If δ = 0 we are in G2.k−1, else we are in G2.k, while updating ρi to ρi+ bxi[k] that stays uniformly
random in Zq. We have |Pr[G2.k = 1] − Pr[G2.k−1 = 1]| ≤ 2 · AdvDDH

G1
(1λ) and in the end

|Pr[G3 = 1]− Pr[G2 = 1]| ≤ 2Ni ·AdvDDH
G1

(1λ).

The vectors, when we arrive at G3, are of the form:

u(rep)

ℓ,i = (x(rep)

ℓ,i , x(rep)′

ℓ,i , rℓ, 0, ρℓ,i, 0Ni , 0Ni , 0)Bi ; ui = (0Ni , 0Ni , r, 0, ρi, xi, 0Ni , r′)Bi

v(j)

i = (y(1,j)

i , y(0,j)

i , σi, π(j)

i , 0, y(1,j)

i , y(0,j)

i , τi)B∗
i
; v(rep)

k,i = (y(rep)

k,i ,y
(rep)

k,i , σk,i, πk,i, 0,y
(rep)

k,i ,y
(rep)

k,i , 0)B∗
i

where for each j ∈ [J], (τi)
H
i=1 is a random secret sharing of 0, with τi ̸= 0 for all i, and r′

$← Z∗
q .

Our goal in the next three games G4,G5,G6 is to swap xi from coordinates [2Ni + 4, 3Ni + 3] to
coordinates [3Ni +4, 4Ni +3] of ui, for all i ∈ [H]. The main idea is to consider the selective version

G∗
j for j ∈ {4, 5, 6}, where the values (xi[k],y

(1,j)

i ,y(0,j)

i)
j∈[J]
i∈[H],k∈[Ni]

are guessed in advance. We then

use formal argument for the transitions G∗
j → G∗

j+1 for j ∈ {3, 4, 5} to obtain

Pr[G∗
3 = 1] = Pr[G∗

4 = 1] = Pr[G∗
5 = 1] = Pr[G∗

6 = 1] . (8)

In the end, we use a complexity leveraging argument to conclude that thanks to (8), we have
Pr[G3 = 1] = Pr[G4 = 1] = Pr[G5 = 1] = Pr[G6 = 1]. For the sequence G3 → G6, we make a guess

for the values (xi[k],y
(1,j)

i ,y(0,j)

i)
j∈[J]
i∈[H],k∈[Ni]

, choose r′
$← Z∗

q , random secret sharings (τi, τ̃i)
H
i=1 of

0 for each j ∈ [J], with τi, τ̃i ̸= 0 for all i, and define the event E that the guess is correct on

(xi[k],y
(1,j)

i ,y(0,j)

i)
j∈[J]
i∈[H],k∈[Ni]

and

τ̃i − τi =
1

r′
⟨xi, ∆y(j)

i ⟩

where ∆y(j)

i := y(1,j)

i − y(0,j)

i . We describe the selective games below, starting from G∗
3, where event

E is assumed true:

Game G∗
3 : The selective version of G3, assuming event E is true.

44

Game G∗
4 : Knowing (xi[k],y

(1,j)

i ,y(0,j)

i)
j∈[J]
i∈[H],k∈[Ni]

in advance, we perform a formal quotient on

coordinates [2Ni + 4, 4Ni + 3] of ui and of v(j)

i . The bases are changed following:

Bi =

Bi[row, col] = 1 if row = col ≤ 2Ni + 3

Bi[row, col] = 1
xi[k]

if ∃k ∈ [2Ni] : row = col = 2Ni + 3 + k AND xi[k] ̸= 0

Bi[row, col] = 1 if ∃k ∈ [2Ni] : row = col = 2Ni + 3 + k AND xi[k] = 0

Bi[row, col] = 1 if row = col ≥ 3Ni + 3

Bi[row, col] = 0 otherwise

(9)

B′
i :=

(
B-1

i

)⊤
;Bi = Bi ·Hi; B∗

i = B′
i ·H∗

i .

We note that the matrices, which have dimensions (4Ni + 4)× (4Ni + 4), depend only on i and
not on j hence the basis change is well defined. The vectors change from Hi and H∗

i to Bi and
B∗

i accordingly:

u(rep)

ℓ,i = (· · · , 0, · · · , 0, 0, · · · , 0, 0)Bi ;ui = (· · · , 1, · · · , 1, 0, · · · , 0, r′)Bi

v(j)

i = (· · · ,xi[1]y
(1,j)

i [1], · · · ,xi[Ni]y
(1,j)

i [Ni],xi[1]y
(0,j)

i [1], · · · ,xi[Ni]y
(0,j)

i [Ni], τi)B∗
i

v(rep)

k,i = (· · · ,xi[1]y
(rep)

k,i [1], · · · ,xi[Ni]y
(rep)

k,i [Ni],xi[1]y
(rep)

k,i [1], · · · ,xi[Ni]y
(rep)

k,i [Ni], 0)B∗
i

In summary, in bases (Hi,H
∗
i) we have the vectors as in G∗

3, else we are in G∗
4. The change is

formal.

Game G∗
5 : In this game we perform a formal basis change to move all the values 1 from coordinates

[2Ni + 4, 3Ni + 3] to coordinates [3Ni + 4, 4Ni + 3] of ui. The bases are changed following:

Bi =

Bi[row, col] = 1 if row = col

Bi[row, col] = 1
r′ if ∃k ∈ [Ni] : (row, col) = (4Ni + 4, 2Ni + 3 + k) AND xi[k] ̸= 0

Bi[row, col] = 0 if ∃k ∈ [Ni] : (row, col) = (4Ni + 4, 2Ni + 3 + k) AND xi[k] = 0

Bi[row, col] = −1
r′ if ∃k ∈ [Ni] : (row, col) = (4Ni + 4, 3Ni + 3 + k) AND xi[k] ̸= 0

Bi[row, col] = 0 if ∃k ∈ [Ni] : (row, col) = (4Ni + 4, 3Ni + 3 + k) AND xi[k] = 0

Bi[row, col] = 0 otherwise

(10)

B′
i :=

(
B-1

i

)⊤
;Bi = Bi ·Hi; B∗

i = B′
i ·H∗

i .

45

We emphasize the the matrices are defined based on the knowledge of (xi[k])i∈[H],k∈[Ni] in this
selective hybrid. The vectors change from Hi and H∗

i to Bi and B∗
i accordingly:

u(rep)

ℓ,i = (· · · , 0, · · · , 0, 0, · · · , 0, 0)Bi

ui = (· · · , 1, · · · , 1, 0, · · · , 0, r′)Hi

= (· · · , 1− 1, · · · , 1− 1︸ ︷︷ ︸
only 1-coord is changed, 0-coord stays invariant

,

changed only if its Ni-th pred is 1︷ ︸︸ ︷
0 + 1, · · · , 0 + 1 , r′)Bi

v(j)

i = (· · · ,xi[1]y
(1,j)

i [1], · · · ,xi[Ni]y
(1,j)

i [Ni],xi[1]y
(0,j)

i [1], · · · ,xi[Ni]y
(0,j)

i [Ni], τi)H∗
i

= (· · · ,xi[1]y
(1,j)

i [1], · · · ,xi[Ni]y
(1,j)

i [Ni],xi[1]y
(0,j)

i [1], · · · ,xi[Ni]y
(0,j)

i [Ni],

τi +
1

r′

∑
xi[k] ̸=0

xi[k]∆y(j)[k])B∗
i

= (· · · ,xi[1]y
(1,j)

i [1], · · · ,xi[Ni]y
(1,j)

i [Ni],xi[1]y
(0,j)

i [1], · · · ,xi[Ni]y
(0,j)

i [Ni],

τi +
1

r′
⟨xi, ∆y(j)⟩)B∗

i

v(rep)

k,i = (· · · ,xi[1]y
(rep)

k,i [1], · · · ,xi[Ni]y
(rep)

k,i [Ni],xi[1]y
(rep)

k,i [1], · · · ,xi[Ni]y
(rep)

k,i [Ni], 0)H∗
i

= (· · · ,xi[1]y
(rep)

k,i [1], · · · ,xi[Ni]y
(rep)

k,i [Ni],xi[1]y
(rep)

k,i [1], · · · ,xi[Ni]y
(rep)

k,i [Ni],

0 +
1

r′

∑
xi[k′] ̸=0

xi[k
′](y(rep)

k,i [k
′]− y(rep)

k,i [k
′]))B∗

i

= (· · · ,xi[1]y
(rep)

k,i [1], · · · ,xi[Ni]y
(rep)

k,i [Ni],xi[1]y
(rep)

k,i [1], · · · ,xi[Ni]y
(rep)

k,i [Ni], 0)B∗
i
.

In summary, in bases (Hi,H
∗
i) we have the vectors as in G∗

4, else we are in G∗
5. We emphasize

that the secret sharings are updated to τ̃i := τi +
1
r′ ⟨xi, ∆y(j)

i ⟩ and are stil independent of j
thanks to the hypothesis that ⟨xi,y

(1,j)

i − y(0,j)

i ⟩ is a constant for all j ∈ [J], i ∈ [H]. The change
is formal.

Game G∗
6 : We perform once again a formal quotient as from G∗

3 to G∗
4, on coordinates [2Ni +

4, 4Ni + 3] of ui and of v(j)

i . The bases are changed following:

Bi =

Bi[row, col] = 1 if row = col ≤ 2Ni + 3

Bi[row, col] = 1
xi[k]

if ∃k ∈ [2Ni] : row = col = 2Ni + 3 + k AND xi[k] ̸= 0

Bi[row, col] = 1 if ∃k ∈ [2Ni] : row = col = 2Ni + 3 + k AND xi[k] = 0

Bi[row, col] = 0 otherwise

B′
i :=

(
B-1

i

)⊤
;Bi = Bi ·Hi; B∗

i = B′
i ·H∗

i .

We note that the matrices, which have dimensions (4Ni + 4)× (4Ni + 4), depend only on i and
not on j hence the basis change is well defined. The vectors change from Hi and H∗

i to Bi and

46

B∗
i accordingly:

u(rep)

ℓ,i = (· · · , 0, · · · , 0, 0, · · · , 0, 0)Bi

ui = (· · · , 0, · · · , 0, 1, · · · , 1, r′)Hi = (· · · , 0Ni ,xi, r
′)Bi

v(j)

i = (· · · ,xi[1]y
(1,j)

i [1], · · · ,xi[Ni]y
(1,j)

i [Ni],xi[1]y
(0,j)

i [1], · · · ,xi[Ni]y
(0,j)

i [Ni], τi)H∗
i

= (· · · ,y(1,j)

i ,y(0,j)

i , τi)B∗
i

v(rep)

k,i = (· · · ,xi[1]y
(rep)

k,i [1], · · · ,xi[Ni]y
(rep)

k,i [Ni],xi[1]y
(rep)

k,i [1], · · · ,xi[Ni]y
(rep)

k,i [Ni], 0)H∗
i

= (· · · ,y(rep)

k,i ,y
(rep)

k,i , 0)B∗
i
.

In summary, in bases (Hi,H
∗
i) we have the vectors as in G∗

5, else we are in G∗
6. The change is

formal.

The above games demonstrate relation (8). We now employ the complexity leveraging argument. Let
us fix j ∈ {3, 4, 5}. For t ∈ {j, j+1} let Advt(A) := |Pr[Gt(A) = 1]−1/2| denote the advantage of a
ppt adversary A in game Gt. We build a ppt adversary B∗ playing against G∗

t such that its advantage
Adv∗

t (B∗) := |Pr[G∗
t (B∗) = 1]− 1/2| equals γ ·Advt(A) for t ∈ {j, j + 1}, for some constant γ.

The adversary B∗ first guesses for the values (xi[k],y
(1,j)

i ,y(0,j)

i)
j∈[J]
i∈[H],k∈[Ni]

, chooses r′
$← Z∗

q , random

secret sharings (τi, τ̃i)
H
i=1 of 0 for each j ∈ [J], with τi, τ̃i ≠ 0 for all i. Then B defines the event E

that the guess is correct on (xi[k],y
(1,j)

i ,y(0,j)

i)
j∈[J]
i∈[H],k∈[Ni]

and

τ̃i − τi =
1

r′
⟨xi, ∆y(j)

i ⟩

where ∆y(j)

i := y(1,j)

i − y(0,j)

i . When B∗ guesses successfully and E happens, then the simulation of
A’s view in Gt is perfect. Otherwise, B∗ aborts the simulation and outputs a random bit b′. Since E
happens with some fixed probability γ and is independent of the view of A, we have:7

Adv∗
t (B∗) =

∣∣Pr[G∗
t (B∗) = 1]− 1

2

∣∣
=
∣∣∣Pr[E] · Pr[G∗

t (B∗) = 1 | E] + Pr[¬E]
2 − 1

2

∣∣∣
=
∣∣∣γ · Pr[G∗

t (B∗) = 1 | E] + 1−γ−1
2

∣∣∣ (∗)= γ ·
∣∣Pr[Gt(A) = 1]− 1

2

∣∣ = γ ·Advt(A).

where (∗) comes from the fact that conditioned on E, B simulates perfectly Gt for A, therefore
Pr[Gt(A) = 1 | E] = Pr[G∗

t (B∗) = 1 | E], then we apply the independence between E and
Gt(A) = 1. This concludes that Pr[Gj = 1] = Pr[Gj+1 = 1] for any fixed j ∈ {3, 4, 5}, in particular
Pr[G6 = 1] = Pr[G3 = 1]. After G6, the vectors are now of the form:

u(rep)

ℓ,i = (x(rep)

ℓ,i , x(rep)′

ℓ,i , rℓ, 0, ρℓ,i, 0Ni , 0Ni , 0)Bi ; ui = (0, 0, r, 0, ρi, 0Ni , xi, r′)Bi

v(j)

i = (y(1,j)

i ,y(0,j)

i , σi, π
(j)

i , 0,y(1,j)

i ,y(0,j)

i , τ ′i)B∗
i
; v(rep)

k,i = (y(rep)

k,i ,y
(rep)

k,i , σk,i, πk,i, 0,y
(rep)

k,i ,y
(rep)

k,i , 0)B∗
i
.

We redo the computational swap from G2 to G3 so as to move xi from coordinates [3Ni +4, 4Ni +3]
back to [Ni+1, 2Ni] of ui. The calculation is similar, using a sequence of Ni+1 hybrids G6.k, namely
G6.k for k ∈ [0, Ni], such that G6.0 = G6 and in G6.k the first coordinates [3Ni + 3, 3Ni + 3 + k] are
swapped to [Ni + 1, Ni + k], for k ≥ 1. For k ∈ [Ni], the transition from G6.k−1 to G6.k is described

7 This calculation is the core of our complexity levaraging argument, being built upon the previous information-
theoretic game transtions and the probability of event E.

47

below. Given a DSDH instance (JaK1 , JbK1 , JcK1) in G1 where δ := c− ab is either 0 or 1, the bases
(Bi,B

∗
i) are changed following:

Bi =

1 0 0

a 1 −a

0 0 1

Ni+k,2Ni+3,2Ni+4+k−1

·Hi; B∗
i =

1 −a 0

0 1 0

0 a 1

k,2Ni+3,3Ni+4+k−1

·H∗
i .

All vectors changed under these bases are secret. We compute Bi using JaK1 and write the u-vectors
as follows:

ui = (0Ni , xi[1], ..,xi[k − 1], 0, .., 0︸ ︷︷ ︸
last (Ni−k+1)-th coords are 0

, r, 0, ρi, 0Ni , 0, .., 0,xi[k], ..,xi[Ni]︸ ︷︷ ︸
first (k−1)-th coords are 0

, r′)Bi

+ (0Ni , 0, .., 0, cxi[k], 0, .., 0︸ ︷︷ ︸
k-th coord among Ni

, 0, 0, bxi[k], 0Ni , 0, .., 0,−cxi[k], 0, .., 0︸ ︷︷ ︸
k-th coord among Ni

, 0)Hi

= (0Ni ,xi[1], ..,xi[k − 1], δxi[k], .., 0︸ ︷︷ ︸
last (Ni−k)-th coords are 0

, r, 0, ρi + bxi[k], 0Ni , 0, .., 0, xi[k]− δxi[k], ..,xi[Ni]︸ ︷︷ ︸
first (k−1)-th coords are 0

, r′)Bi

u(rep)

ℓ,i = (x(rep)

ℓ,i , x(rep)′

ℓ,i , rℓ, 0, ρℓ,i, 0Ni , 0Ni , 0)Bi .

We cannot compute b∗
i,Ni+k and b∗

1,3Ni+4+k−1 due to the lack of JaK2, but the v-vectors can be

written in H∗
i indeed they stay invariant: for instance we consider vi, the same holds for v(rep)

k,i

v(j)

i = (y(1,j)

i , y(0,j)

i , σi, π(j)

i , 0, y(1,j)

i , y(0,j)

i , τi)H∗
i

= (y(1,j)

i , y(0,j)

i , σi, π(j)

i ,−ay(0,j)

i [k] + ay(0,j)

i [k], y(1,j)

i , y(0,j)

i , τi)B∗
i

= (y(1,j)

i , y(0,j)

i , σi, π(j)

i , 0, y(1,j)

i , y(0,j)

i , τi)B∗
i
.

If δ = 0 we are in G6.k−1, else we are in G6.k, while updating ρi to ρi + bxi[k] that stays uniformly
random in Zq. We have |Pr[G6.k = 1]− Pr[G6.k−1 = 1]| ≤ 2 ·AdvDDH

G1
(1λ) and in the end |Pr[G7 =

1]− Pr[G6 = 1]| ≤ 2Ni ·AdvDDH
G1

(1λ).

We redo the transition G0 → G1 to clean coordinates 4Ni + 4 of ui,v
(j)

i , which leads to an additive
loss 2 ·AdvDDH

G2
(1λ) + 2 ·AdvDDH

G1
(1λ). Then, we redo the transition G1 → G2 to clean coordinates

[2Ni + 4, 3Ni + 3], [3Ni + 4, 4Ni + 3] of v(rep)

k,i ,v
(j)

i , which is formal. Finally we arrive at G8 whose

vectors are sampled according to D1, implying |Pr[G8]− Pr[G0]| ≤ (2Ni + 8) ·AdvSXDH
G1,G2

(1λ) and
the proof is completed. ⊓⊔

B.4 Proof of Lemma 12 - Secret-Sharing Swapping with Repetitions

Lemma 12 (Secret Sharing Swapping with Repetitions). Under the same hypotheses of

Lemma 11, additionally with repetitions u(j̃)

i for j̃ ∈ [J] so that

H∑
i=1

⟨x(j̃)

i ,y(0,j)

i ⟩ =
H∑
i=1

⟨x(j̃)

i ,y(1,j)

i ⟩ (6)

48

and for each i ∈ [H], ⟨x(j̃)

i ,y(1,j)

i −y(0,j)

i ⟩ = ci being a constant for all j̃, j ∈ [J], the following distribu-
tions are computationally indistinguishable under the SXDH assumption in (G1,G2,Gt, g1, g2, gt, e, q):

D0 :=

(u(rep)

ℓ,i = (x(rep)

ℓ,i , x(rep)′

ℓ,i , rℓ, 0, ρ(rep)

ℓ,i , 0Ni , 0Ni , 0)Bi)
rep∈[J]
i∈[H],ℓ∈[L](

u(j̃)

i = (x(j̃)

i , 0Ni , r, 0, ρ(j̃)

i , 0Ni , 0Ni , 0)Bi

)j̃∈[J]
i∈[H](

v(j)

i = (y(1,j)

i , y(0,j)

i , σi, π(j)

i , 0, 0Ni , 0Ni , 0)B∗
i

)j∈[J]
i∈[H](

v(rep)

k,i = (y(rep)

k,i , y(rep)

k,i , σk,i, π(rep)

k,i , 0, 0Ni , 0Ni , 0)B∗
i

)rep∈[J]
i∈[H],k∈[K]

;

D1 :=

(u(rep)

ℓ,i = (x(rep)

ℓ,i , x(rep)′

ℓ,i , rℓ, 0, ρ(rep)

ℓ,i , 0Ni , 0Ni , 0)Bi)
rep∈[J]
i∈[H],ℓ∈[L](

u(j̃)

i = (0Ni , x(j̃)

i , r, 0, ρ(j̃)

i , 0Ni , 0Ni , 0)Bi

)j̃∈[J]
i∈[H](

v(j)

i = (y(1,j)

i , y(0,j)

i , σi, π(j)

i , 0, 0Ni , 0Ni , 0)B∗
i

)j∈[J]
i∈[H](

v(rep)

k,i = (y(rep)

k,i , y(rep)

k,i , σk,i, π(rep)

k,i , 0, 0Ni , 0Ni , 0)B∗
i

)rep∈[J]
i∈[H],k∈[K]

.

More specifically, we have:∣∣∣∣ Pr
samp∼D0

[A(samp)→ 1]− Pr
samp∼D1

[A(samp)→ 1]

∣∣∣∣ ≤ (2Ni + 8) · J ·AdvSXDH
G1,G2

(1λ)

for any ppt A with fixed
(
xi, (x

(rep)

ℓ,i ,x(rep)′

ℓ,i)Lℓ=1, R,y(0,j)

i ,y(1,j)

i , (y(rep)

k,i , Rk)
K
k=1

)j∈[J]
i∈[H]

.

Proof (Of Lemma 12). We describe the games to change the vectors’ distribution from D0 to D1

as follows.

Game G0: The vectors are sampled according to D0.

Game G1: We perform a sequence of hyrbids G0.j̃ for j̃ ∈ [0, J] where G0.0 = G0 and in the j̃-th

hybrid we switch the first j̃ repetitions of u(j̃)

i :

(u(rep)

ℓ,i = (x(rep)

ℓ,i , x(rep)′

ℓ,i , rℓ, 0, ρ(rep)

ℓ,i , 0Ni , 0Ni , 0)Bi)
rep∈[J]
i∈[H],ℓ∈[L](

u(j′)
i = (x(j′)

i , 0Ni , r, 0, ρ(j′)
i , 0Ni , 0Ni , 0)Bi

)
i∈[H]

if j′ > j̃(
u(j′)
i = (0Ni , x(j′)

i , r, 0, ρ(j′)
i , 0Ni , 0Ni , 0)Bi

)
i∈[H]

if j′ ≤ j̃(
v(j)

i = (y(1,j)

i , y(0,j)

i , σi, π(j)

i , 0, 0Ni , 0Ni , 0)B∗
i

)j∈[J]
i∈[H](

v(rep)

k,i = (y(rep)

k,i , y(rep)

k,i , σk,i, π(rep)

k,i , 0, 0Ni , 0Ni , 0)B∗
i

)rep∈[J]
i∈[H],k∈[K]

.

This means G0.J has all vectors sampled from D1 and the proof is completed. For j̃ ∈ [J], to go
from G0.j̃−1 to G0.j̃ we apply Lemma 11. This can be done in a black-box manner, where at each

application we target only the j̃-th repetition of each u(j̃)

i . We detail below how each transitions
from the proof of Lemma 11 is used:

• G0.j̃−1.0: This is G0.j̃−1.

49

• G0.j̃−1.1: We use the same calculation as in G0 → G1 in the proof of Lemma 11, noting that

it is completely computational and we can modify only the j̃-th repetition:

(
u(j′)
i = (x(j′)

i , 0Ni , r, 0, ρ(j′)
i , 0Ni , 0Ni , 0)Bi

)
i∈[H]

if j′ > j̃(
u(j̃)

i = (x(j̃)

i , 0Ni , r, 0, ρ(j̃)

i , 0Ni , 0Ni , r′)Bi

)
i∈[H](

u(j′)
i = (0Ni , x(j′)

i , r, 0, ρ(j′)
i , 0Ni , 0Ni , 0)Bi

)
i∈[H]

if j′ ≤ j̃ − 1(
v(j)

i = (y(1,j)

i , y(0,j)

i , σi, π(j)

i , 0, 0Ni , 0Ni , τ̃i)B∗
i

)j∈[J]
i∈[H](

v(rep)

k,i = (y(rep)

k,i , y(rep)

k,i , σk,i, π(rep)

k,i , 0, 0Ni , 0Ni , 0)B∗
i

)rep∈[J]
i∈[H],k∈[K]

.

where r′
$← Z∗

q and for all j ∈ [J], the secret sharing (τi)i in v-vectors satisfies:
∑H

i=1 τi = 0.

• G0.j̃−1.2: We perform a formal duplication on all v-vectors:

(
v(j)

i = (y(1,j)

i , y(0,j)

i , σi, π(j)

i , 0, y(1,j)

i , y(0,j)

i , τ̃i)B∗
i

)j∈[J]
i∈[H](

v(rep)

k,i = (y(rep)

k,i , y(rep)

k,i , σk,i, π(rep)

k,i , 0, y(rep)

k,i , y(rep)

k,i , 0)B∗
i

)rep∈[J]
i∈[H],k∈[K]

.

This is done for all i and and all repetitions rep ∈ [J]. Dually, the destination coordinates in
the u-vectors are all 0 hence they stay unchanged.

• G0.j̃−1.3: We use a computational swap between [1, Ni] and [3Ni + 4, 4Ni + 3] in u(j̃)

i using

(2Ni + 3)-randomness. It is important that the change is computational using DDH in G1,

therefore we can target only the j̃-th repetition of (u(j̃)

i)i. For all other (u
(j′)
i)i where j′ ̸= j̃

their coordinates remain intact and are 0. The computation on the v-vectors can be done
similarly as from G2 → G3 in the proof of Lemma 11.

(
u(j̃)

i = (0Ni , 0Ni , r, 0, ρ(j′)
i , x(j̃)

i , 0Ni , r′)Bi

)
i∈[H](

v(j)

i = (y(1,j)

i , y(0,j)

i , σi, π(j)

i , 0, y(1,j)

i , y(0,j)

i , τ̃i)B∗
i

)j∈[J]
i∈[H](

v(rep)

k,i = (y(rep)

k,i , y(rep)

k,i , σk,i, π(rep)

k,i , 0, y(rep)

k,i , y(rep)

k,i , 0)B∗
i

)rep∈[J]
i∈[H],k∈[K]

.

• G0.j̃−1.4: We now perform the complexity leveraging argument on coordinates [2Ni+4, 4Ni+4],

in the same manner to G3 → G4 → G5 → G6 in the proof of Lemma 11. The transitions are
all formal and affect all vectors in both Bi and B∗

i :

◦ For the u-vectors, only the j̃-th repetition has a non-zero (4Ni + 4)-th coordinate and
the swapping will make change only to (u(j̃)

i)i. Moreover, other quotient changes are on 0
coordinates for j′-th repetition whose j′ ̸= j̃ and incur no modifications.
◦ For the v-vectors, all quotient basis changes will modify their coordinates [2Ni+4, 4Ni+4]
with the same factor (x(j̃)

i [m])m. Later on, the formal swapping will modify the secret

sharings τi into τi +
1
r′ ⟨x

(j̃)

i , ∆y(j)

i ⟩, which stays a secret sharing of 0 and independent of

j′, j thanks to condition (6) as well as the fact that ⟨x(j̃)

i ,y(1,j)

i − y(0,j)

i ⟩ is constant for all
j′, j, for any fixed i ∈ [H].

50

• G0.j̃−1.5 = G0.j̃ : Finally we perform a computational swapping, after exiting the complexity

leveraging, then cleaning by reversing the transitions G0.j̃−1.0 → G0.j̃−1.2:

(u(rep)

ℓ,i = (x(rep)

ℓ,i , x(rep)′

ℓ,i , rℓ, 0, ρ(rep)

ℓ,i , 0Ni , 0Ni , 0)Bi)
rep∈[J]
i∈[H],ℓ∈[L](

u(j′)
i = (x(j′)

i , 0Ni , r, 0, ρ(j′)
i , 0Ni , 0Ni , 0)Bi

)
i∈[H]

if j′ > j̃(
u(j′)
i = (0Ni , x(j′)

i , r, 0, ρ(j′)
i , 0Ni , 0Ni , 0)Bi

)
i∈[H]

if j′ ≤ j̃(
v(j)

i = (y(1,j)

i , y(0,j)

i , σi, π(j)

i , 0, 0Ni , 0Ni , 0)B∗
i

)j∈[J]
i∈[H](

v(rep)

k,i = (y(rep)

k,i , y(rep)

k,i , σk,i, π(rep)

k,i , 0, 0Ni , 0Ni , 0)B∗
i

)rep∈[J]
i∈[H],k∈[K]

.

The computational changes help us target the necessary vectors, while the formal (de-
)duplication can be done without touching other u-vectors as the affected coordinates are 0.
We remark that the cleaning steps can be postponed until the very last G0.J−1.4 → G0.J−1.5 =
G0.J to save redundant security loss, while changing the definition of the hybrids.

After arriving at G0.J = G1, the vectors are following D1, the transitions are indistinguishable under
SXDH, and the proof is finished. ⊓⊔

B.5 Details about our FH-DMCFE in Section 5

Security The security of our scheme is proven below.

Theorem 13. The DMCFE scheme E = (Setup,DKeyGen,Enc,Dec) is adaptively one-challenge
weakly function-hiding in the ROM, under static corruption, if the SXDH assumption holds for
G1 and G2. More specifically, let qe denote the maximum number of distinct tags for ciphertexts to
OEnc, qk denote the maximum number of distinct tags for keys to OKeyGen, J denote the maximum
number of repetitive challenge queries for possibly different messages, and J̃ denote the maximum
number of repetitive challenge queries for possibly different keys. Then, for any ppt adversary A
against E, we have the following bound:

Adv1chal-pos-stat-wfh
E,F ,A (1λ) ≤

((
(qe + 1)J + (qk + 1)J̃

)
· (2Ni + 8) + qk + qe + 8Ni + 2

)
·AdvSXDH

G1,G2
(1λ)

Proof. The proof is done via a sequence of hybrid games. The games are depicted in Figure 5.

Game G0: This is the experiment Exp1chal-stat-fh
E,F ,A (1λ) of a ppt adversary A, where b

$← {0, 1} is the
challenge bit. Because we are in the one-challenge setting with static corruption, the adversary
will declare since Initialize the challenge ciphertext tag tag∗, the challenge function tag tag-f∗ as
well as the set C ⊂ [n] of corrupted clients. We define H := [n]\C. Knowing tag∗, tag-f∗, we index
by ℓ ∈ [qe] the ℓ-th group of ciphertext components queried to OEnc for tagℓ ̸= tag∗. Similarly,
we index by k ∈ [qk] the k-th group of key components queried to OKeyGen for tag-fk ̸= tag-f∗.
For the ciphertext and key queries, challenge or not, the adversary can issue repetitions and
we index the repetition by j′ ∈ [J] (respectively j̃′ ∈ [J̃]) for the non-challenge and by j ∈ [J]
(respectively j̃ ∈ [J̃]) for the challenge ciphertext (respectively key) components, where J, J̃ are
maximum numbers of repetitions at any position i ∈ [n] in ciphertext and key components in
that order.
There are 2 secret sharings of 0, namely (s̃i)i and (t̃i)i, that we generate from Initialize. For the
tag tag-fk w.r.t non-challenge functional key queries, we denote H2(tag-fk)→ JµkK2 and define
sk,i := µk · s̃i. Similarly, for the only challenge functional key query to KeyGen corresponding

51

Game G0:
∑n

i=1 s̃i =
∑n

i=1 t̃i = 0, H(tagℓ) → JωℓK1, H1(tag
∗) → JωK1, H2(tag-fk) → JµkK2, H2(tag-f

∗) → JµK2,
b

$← {0, 1} is the challenge bit

c(j′)
ℓ,i = (x(j′)

ℓ,i ωℓ 0Ni 0Ni t̃iωℓ 0 ρ(j′)
ℓ,i 02Ni+1)Bi

d(j̃′)
k,i = (yk,i s̃iµk 0Ni 0Ni µk π(j̃′)

k,i 0 02Ni+1)B∗
i

c(j)

i = (x(b,j)

i ω 0Ni 0Ni t̃iω 0 ρ(j)

i 02Ni+1)Bi

d(j̃)

i = (y(b,j̃)

i s̃iµ 0Ni 0Ni µ π(j̃)

i 0 02Ni+1)B∗
i

Game G1:
∑n

i=1 sk,i =
∑n

i=1 si =
∑n

i=1 tℓ,i =
∑n

i=1 ti = 0 (Randomization)

c(j′)
ℓ,i = (x(j′)

ℓ,i ωℓ 0Ni 0Ni tℓ,i 0 ρ(j′)
ℓ,i 02Ni+1)Bi

d(j̃′)
k,i = (yk,i sk,i 0Ni 0Ni µk π(j̃′)

k,i 0 02Ni+1)B∗
i

c(j)

i = (x(b,j)

i ω 0Ni 0Ni ti 0 ρ(j)

i 02Ni+1)Bi

d(j̃)

i = (y(b,j̃)

i si 0Ni 0Ni µ π(j̃)

i 0 02Ni+1)B∗
i

Game G2: (Subspace Indistinguishability)

d(j̃′)
k,i = (yk,i sk,i yk,i 0Ni µk π(j̃′)

k,i 0 02Ni+1)B∗
i

d(j̃)

i = (y(b,j̃)

i si y(1,j̃)

i 0Ni µ π(j̃)

i 0 02Ni+1)B∗
i

Game G3: (Secret Sharing Swapping - Lemma 12 - over OEnc tags)

c(j′)
ℓ,i = (0Ni ωℓ x(j′)

ℓ,i 0Ni tℓ,i 0 ρ(j′)
ℓ,i 02Ni+1)Bi

c(j)

i = (0Ni ω x(b,j)

i 0Ni ti 0 ρ(j)

i 02Ni+1)Bi

Game G4: (Subspace Indistinguishability)

c(j′)
ℓ,i = (0Ni ωℓ x(j′)

ℓ,i x(j′)
ℓ,i tℓ,i 0 ρ(j′)

ℓ,i 02Ni+1)Bi

c(j)

i = (0Ni ω x(b,j)

i x(1,j)

i ti 0 ρ(j)

i 02Ni+1)Bi

Game G5: (Secret Sharing Swapping - Lemma 12 - over OKeyGen tags)

d(j̃′)
k,i = (yk,i sk,i 0Ni yk,i µk π(j̃′)

k,i 0 02Ni+1)B∗
i

d(j̃)

i = (y(b,j̃)

i si 0Ni y(1,j̃)

i µ π(j̃)

i 0 02Ni+1)B∗
i

Game G6: (Cleaning)

c(j′)
ℓ,i = (0Ni ωℓ 0Ni x(j′)

ℓ,i tℓ,i 0 ρ(j′)
ℓ,i 02Ni+1)Bi

d(j̃′)
k,i = (0Ni sk,i 0Ni yk,i µk π(j̃′)

k,i 0 02Ni+1)B∗
i

c(j)

i = (0Ni ω 0Ni x(1,j)

i ti 0 ρ(j)

i 02Ni+1)Bi

d(j̃)

i = (0Ni si 0Ni y(1,j̃)

i µ π(j̃)

i 0 02Ni+1)B∗
i

Fig. 5: Games for proving Theorem 13

52

to tag-f∗, we denote H2(tag-f
∗)→ JµK2 and define si := µ · s̃i. We remark that for all k ∈ [qk],

(sk,i)i is a secret sharing of 0, and the same holds for (si)i as well.
In the same manner, for the ℓ-th non-challenge tag tag, we write H1(tagℓ)→ JωℓK1 and tℓ,i := ωℓ · t̃i.
For the challenge tag tag∗, we denote H1(tag

∗)→ JωK1 and ti := ω · t̃i. In the end, the challenger
provides the key and ciphertext components as follows: for the challenge bit b

c(j′)
ℓ,i = (x(j′)

ℓ,i , ωℓ, 0Ni , 0Ni , ωℓt̃i, 0, ρ(j′)
ℓ,i , 0

2Ni+1)Bi

d(j̃′)
k,i = (y(j̃′)

k,i , µks̃i, 0Ni , 0Ni , µk, πk,i, 0, 02Ni+1)B∗
i

c(j)

i = (x(b,j)

i , ω, 0Ni , 0Ni , ωt̃i, 0, ρ(j)

i , 02Ni+1)Bi

d(j̃)

i = (y(b,j̃)

i , µs̃i, 0Ni , 0Ni , µ, πi, 0, 02Ni+1)B∗
i

We index by (j, j′) (respectively (j̃, j̃′)) the repetitions of challenge and non-challenge ciphertext
components (respectively key components). Note that the admissibility condition in Definition 18
requires that x(0,j)

i = x(1,j)

i (resp. y0
i = y1

i) for all queries to OEnc (resp. ODKeyGen) where i ∈ C.
All transitions in this prove apply only to pairs of bases (Bi,B

∗
i) where i ∈ H. This means in

particular that all basis vectors considered in the proof are hidden from the adversary.
In the following we define event Gi = 1 to signify that “The output b′ of A satisfies b′ = b in Gi”.
We have Adv1chal-pos-stat-wfh

E,F ip
N1,...,Nn

,A
(1λ) = |Pr[G0 = 1]− 1

2 | and a probability calculation shows that for

two successive games Gi−1,Gi, |Pr[Gi = 1]− Pr[Gi−1 = 1]| is the difference in probabilities that
A outputs 1 in Gi versus that A outputs 1 in Gi−1. We now start the description of games.

Game G1: The vectors are now:

c(j′)
ℓ,i = (x(j′)

ℓ,i , ωℓ, 0Ni , 0Ni , ωℓt̃i, 0, ρ(j′)
ℓ,i , 02Ni+1)Bi

d(j̃′)
k,i = (y(j̃′)

k,i , µks̃i, 0Ni , 0Ni , µk, πk,i, 0, 02Ni+1)B∗
i

c(j)

i = (x(0,j)

i , ω, 0Ni , 0Ni , ωt̃i, 0, ρ(j)

i , 02Ni+1)Bi

d(j̃)

i = (y0
i , µs̃i, 0Ni , 0Ni , µ, πi, 0, 02Ni+1)B∗

i

In this game we replace the shifted secret shares of 0 in d(j̃)

i ,d(j̃′)
k,i (respectively ci, c

(j′)
ℓ,i), which

are si := µ · s̃i and sk,i := µk · s̃i (respectively ti := µ · t̃i and tℓ,i := ωℓ · t̃i), while H1(tag)→
JωK1 ,H1(tag)→ JωℓK1 ,H2(tag-f)→ JµK2 ,H2(tag-f)→ JµkK2 and H1,H2 are modeled as random
oracles. We proceed as follows:
G0.1: We program H1 at the points tag, (tagℓ)ℓ∈[qe] by sampling ω, ωℓ

$← Zq and setting H1(tag) :=
JωK1 ,H1(tag-f) := JωℓK1. The same programmation is done for H2. This gives a perfect
simulation and Pr[G0.1] = Pr[G0].

G0.2: We replace the shifted shares in d(j̃)

i ,d(j̃′)
k,i by random secret shares, while preserving their

sum. Our key observation is that: because we are in the static corruption model, all corrupted
i are known since the beginning. More specifically, the secret shares (s̃i)

n
i=1 are generated at

setup and
∑

i∈H s̃i = −
(∑

i∈C s̃i
)
is fixed since the beginning. Therefore, upon receiving the

challenge tag tag-f (that is declared up front by the adversary in the current one-challenge
setting) as well as all other non-challenge tags tag-fk, thanks to the programmation of the
RO from G0.1, all the sums:

R := µ
∑
i∈H

s̃i; Rk := µk

∑
i∈H

s̃i

are fixed in advance. We use this observation and the random-self reducibility of DDH in G2

in a sequence of hybrids G0.1.k over k ∈ [0, qk + 1] for changing the non-challenge key query

d(j̃′)
k,i under tag-fk as well as changing the challenge key query d(j̃)

i undef tag-f.

53

In the hybrid G0.1.k with 0 ≤ k ≤ qk, the first k non-challenge key queries d(j̃′)
k,i are having a

random secret shares over i ∈ H:

d(j̃′)
k,i = (y(j̃′)

k,i , sk,i , 0Ni , 0Ni , µk, πk,i, 0, 02Ni+1)B∗
i

where sk,i
$← Zq and

∑
i∈H sk,i = Rk = µk ·

∑
i∈H s̃i. In the hybrid G0.1.qk+1 we change the

challenge key query d(j̃)

i :

d(j̃)

i = (y0
i , si, 0Ni , 0Ni , µ, πi, 0, 02Ni+1)B∗

i

where si
$← Zq and

∑
i∈H si = R = µ ·

∑
i∈H s̃i. We note that the secret shares are the

same for all repetitions at position i under tag-f∗, or tag-fk. We have G0.1.0 = G0.1 and
G0.1.qk+1 = G0.2.

We describe the transition from G0.1.k−1 to G0.1.k for k ∈ [qk + 1], using a DDH instance
(JaK2 , JbK2 , JcK2) where c − ab = 0 or a uniformly random value. Given a ppt adversary A
that can distinguish G0.1.k−1 from G0.1.k that differ at the k-th key query (being the challenge
key if k = qk + 1), we build a ppt adversary B that breaks the DDH:
– The adversary B uses JaK2 to simulate H2(tag-fk) (or H2(tag-f

∗) if we are in the last
transition to G0.1.qk+1). This implicitly sets µk := a.

– The adversary B samples s̃i
$← Zq for corrupted i, as well as other parameters to output

the corrupted keys (eki, ski) to A. Then, B computes and defines Sk := −
∑

i∈C s̃i.
– Let us denote H := |H| the number of honest i. For i among the first H − 1 honest clients
whose keys are never leaked, B uses the random-self reducibility to compute Jµks̃iK2 for

responding to the k-th key query d(j̃′)
k,i (or the challenge d(j̃)

i if k = qk + 1).

– First of all, for i among the first |H| − 1 honest, B samples αk,i, βk,i
$← Zq and implicitly

defines bk,i := αk,ib+ βk,i, ck,i := αk,ic+ βk,ia. We note that{
Jbk,iK2 = αk,i JbK2 + Jβk,iK2
Jck,iK2 = αk,i JcK2 + βk,i JaK2

are efficiently computable from the DDH instance. Then, B uses Jck,iK2 in the simulation

of d(j̃′)
k,i (or d(j̃)

i in the last hybrid).
– Next, for the last H-th honest client, B computes and defines:

Jck,HK2 := Sk · JaK2 −
∑

i∈H\{H}

Jck,iK2 (11)

where Sk is known in clear from above and other honest Jck,iK2 can be computed as
explained. The adversary B then uses Jck,HK2 to simulation the H-th key component
of the k-th key query. We emphasize that we makes use of the static corruption in the
simulation for honest i, since we never have to compute the (ck,i)i∈H in the clear and can
embed the DDH instance so that on the exponents (of group elements) they sum to Sk.

It can be verified that if c− ab = 0, then B is simulating the k-th query where B simulates
d(j̃′)
k,i [Ni + 1] = µks̃i := abk,i and we are in G0.1.k−1; Else d(j̃′)

k,i [Ni + 1] = sk,i := ck,i is a totally
uniformly random value such that

∑
i∈H ck,i + µk

∑
i∈C s̃i = aSk + µk

∑
i∈C s̃i = 0 thanks

to (11) and the definition of Sk.
In the end we have |Pr[G0.1.k−1 = 1]− Pr[G0.1.k = 1]| ≤ AdvDDH

G2
(1λ) and thus |Pr[G0.2 =

1]− Pr[G0.1 = 1]| ≤ (qk + 1) ·AdvDDH
G2

(1λ).

54

G0.3: We replace the shifted shares ωt̃i, ωℓt̃i in c(j)

i , c(j′)
ℓ,i by random secret shares ti, tℓ,i for i ∈ H,

while preserving their sum. We recall that because multiple queries, even for the same i ∈ [n],
are authorized for the challenge ciphertext, the same ωt̃i (replaced by ti) will be used for all

c(j)

i for all j. The random secret shares ti, tℓ,i
$← Zq satisfy:∑

i∈H
ti = ω

∑
i∈H

t̃i;
∑
i∈H

tℓ,i = ωℓ

∑
i∈H

t̃i

where
∑

i∈H t̃i is fixed from the beginning due to the static corruption setting, and the
challenge tag is declared up front in the current one-challenge setting. We use the same
argument as from G0.1 to G0.2, using DDH in G1 and with (qe + 2) hydrids (to change qe
ciphertext queries then the 1 challenge ciphertext). This gives us |Pr[G0.3 = 1]− Pr[G0.2 =
1]| ≤ (qe + 1) ·AdvDDH

G1
(1λ).

After arriving at G0.3 the vectors are now having the form:

c(j′)
ℓ,i = (x(j′)

ℓ,i , ωℓ, 0Ni , 0Ni , tℓ,i , 0, ρ(j′)
ℓ,i , 02Ni+1)Bi ; d(j̃′)

k,i = (y(j̃′)
k,i , sk,i , 0Ni , 0Ni , µk, πk,i, 0, 02Ni+1)B∗

i

c(j)

i = (x(0,j)

i , ω, 0Ni , 0Ni , ti , 0, ρ(j)

i , 02Ni+1)Bi ; d(j̃)

i = (y0
i , si , 0Ni , 0Ni , µ, πi, 0, 02Ni+1)B∗

i

as desired in G1. As a result G0.3 = G1 and the total difference in advantages is |Pr[G1 =
1]− Pr[G0 = 1]| ≤ (qk + 1) ·AdvDDH

G2
(1λ) + (qe + 1) ·AdvDDH

G1
(1λ).

Game G2: We use DSDH in G2 to make y(j̃′)
k,i appear in coordinates [Ni + 2, 2Ni + 1] of d(j̃′), as

well as y(1,j̃)

i in coordinates [Ni + 2, 2Ni + 1] of d(j̃)

i .
We proceed by a sequence of Ni +1 hybrids, indexed by m ∈ [0, Ni], such that the first hybrid is

identical to G1 and in the m-th hybrid the first coordinates [Ni + 2, Ni + 1 +m] of d(j̃′)
i ,d(j̃)

i are
modified, for m ≥ 1. For m ∈ [Ni], the transition from the (m− 1)-th hybrid to the m-th hybrid
is described below. Given a DSDH instance (JaK2 , JbK2 , JcK2) in G2 where δ := c− ab is either 0
or 1, the bases (Bi,B

∗
i) are changed following:

Bi =

1 −a
0 1

Ni+1+m,3Ni+3

·Hi; B∗
i =

1 0

a 1

Ni+1+m,3Ni+3

·H∗
i .

The bases B∗
i can be computed using JaK2 and the key components can be written as follows:

d(j̃′)
k,i = (y(j̃′)

k,i , sk,i, y(j̃′)
k,i [1], ..,y

(j̃′)
k,i [m− 1], 0, .., 0︸ ︷︷ ︸

last (Ni−m+1)-th coords are 0

, 0Ni , µk, π(j̃′)
k,i , 02Ni+2)B∗

i

+ (0Ni+1, 0, .., 0, cy(j̃′)
k,i [m], 0, .., 0︸ ︷︷ ︸

m-th coord among Ni

, 0Ni+1, by(j̃′)
k,i [m], 02Ni+2)H∗

i

= (y(j̃′)
k,i , sk,i, y(j̃′)

k,i [1], ..,y
(j̃′)
k,i [m− 1], δy(j̃′)

k,i [m], .., 0︸ ︷︷ ︸
last (Ni−m)-th coords are 0

, 0Ni , µk, π
(j̃′)
k,i + by(j̃′)

k,i [m], 02Ni+2)B∗
i

d(j̃)

i = (y(b,j̃)

i , si, y(1,j̃)

i [1], ..,y(1,j̃)

i [m− 1], 0, .., 0︸ ︷︷ ︸
last (Ni−m+1)-th coords are 0

, 0Ni , µ, π(j̃)

i , 02Ni+2)B∗
i

+ (0Ni+1, 0, .., 0, cy(1,j̃)

i [m], 0, .., 0︸ ︷︷ ︸
m-th coord among Ni

, 0Ni+1, by(1,j̃)

i [m], 02Ni+2)H∗
i

= (y(b,j̃)

i , si, y(1,j̃)

i [1], ..,y(1,j̃)

i [m− 1], δy(1,j̃)

i [m], .., 0︸ ︷︷ ︸
last (Ni−m)-th coords are 0

, 0Ni , µ, π(j̃)

i + by(1,j̃)

i [m], 02Ni+2)B∗
i
.

55

We update π(j̃′)
k,i , π

(j̃)

i to π(j̃′)
k,i + by(j̃′)

k,i [m], π(j̃)

i + by(1,j̃)

i [m]. Even though bi,Ni+1+m cannot be
computed due to the lack of JaK1, the simulator can write the c-vectors in Hi to observe how
they are affected:

c(j′)
ℓ,i = (x(j′)

ℓ,i , ωℓ, 0Ni , 0Ni , tℓ,i, 0, ρ(j′)
ℓ,i , 02Ni+1)Hi

= (x(j′)
ℓ,i , ωℓ, 0Ni , 0Ni , tℓ,i, 0, ρ(j′)

ℓ,i + 0 · a, 02Ni+1)Bi

= (x(j′)
ℓ,i , ωℓ, 0Ni , 0Ni , tℓ,i, 0, ρ(j′)

ℓ,i , 02Ni+1)Bi

c(j)

i = (x(b,j)

i , ω, 0Ni , 0Ni , ti, 0, ρ(j)

i , 02Ni+1)Hi

= (x(b,j)

i , ω, 0Ni , 0Ni , ti, 0, ρ(j)

i , 02Ni+1)Bi .

If δ = 0 we are in the (m − 1)-th hybrid, else we are in the m-th hybrid. Totally, after Ni

transitions we arrive at G3 and obtain |Pr[G2 = 1]− Pr[G1 = 1]| ≤ 2Ni ·AdvDDH
G2

(1λ).
Game G3: After G2 the vectors are now:

c(j′)
ℓ,i = (x(j′)

ℓ,i , ωℓ, 0Ni , 0Ni , tℓ,i, 0, ρ(j′)
ℓ,i , 02Ni+1)Bi

d(j̃′)
k,i = (y(j̃′)

k,i , sk,i, y(j̃′)
k,i , 0Ni , µk, π(j̃′)

k,i , 0, 02Ni+1)B∗
i

c(j)

i = (x(b,j)

i , ω, 0Ni , 0Ni , ti, 0, ρ(j)

i , 02Ni+1)Bi

d(j̃)

i = (y(b,j̃)

i , si, y(1,j̃)

i , 0Ni , µ, π(j̃)

i , 0, 02Ni+1)B∗
i
.

We now swap x(b,j)

i ,x(j′)
ℓ,i from coordinates [1, Ni] to coordinates [Ni + 2, 2Ni + 1] in c(j)

i , c(j′)
ℓ,i ,

respectively. This can be done by a sequence of qe + 2 hybrids over the qe distinct tags tagℓ to
OEnc and the only challenge tag tag∗ that is declared at the beginning of the one-challenge
game. The first hybrid is the same as G3. The transition between each hybrid is done by an
application of Lemma 12. We first swap the challenge c(j)

i , then swap the non-challenge c(j′)
ℓ,i one

after another on an ordering over ωℓ, e.g. their order of appearances. We verify the constraints
required by Lemma 12.

Swapping the challenge x(b,j)

i :

• First of all, thanks to the weakly function-hiding admissibility (condition 2): for all j ∈
[J], j̃ ∈ [J̃]

H∑
i=1

⟨x(b,j)

i ,y(b,j̃)

i − y(1,j̃)

i ⟩ (1)=
n∑

i=1

⟨x(b,j)

i ,y(b,j̃)

i − y(1,j̃)

i ⟩ (2)= 0

where (1) comes from condition 1 that for corrupted i the challenge keys satisfy y(0,j̃)

i = y(1,j̃)

i ,
and (2) comes from the weakly function-hiding.

• Moreover, equation (2) makes sure that for each i ∈ H, the quantity

⟨x(b,j)

i ,y(b,j̃)

i ⟩ − ⟨x(b,j)

i ,y(1,j̃)

i ⟩

is a constant ci for any j ∈ [J], j̃ ∈ [J̃].

The sets of vectors, listed in the order of the lemma’s statement, are ((c(j′)
ℓ,i)

j′∈[J]
i∈H , (c(j)

i)
j∈[J]
i∈H ,

(d(j̃)

i)
j̃∈[J]
i∈H , (d(j̃′)

k,i)
j̃′∈[J]
i∈H,k∈[qk]). The 4Ni + 4 coordinates affected, in the order w.r.t the statement of

Lemma 12 so that they form a subspace of dimension 4Ni + 4, are ([1, Ni], [Ni + 2, 2Ni + 1], Ni +
1, 3Ni + 3, 3Ni + 4, [3Ni + 5, 5Ni + 5]). In the end, the security loss for this swapping is bounded
by (2Ni + 8) · J ·AdvSXDH

G1,G2
(1λ).

Swapping the non-challenge x(j′)
ℓ,i :

56

• First of all, thanks to the weakly function-hiding admissibility (condition 2): for all j′ ∈
[J], j̃ ∈ [J̃]

H∑
i=1

⟨x(j′)
ℓ,i ,y

(b,j̃)

i − y(1,j̃)

i ⟩ (1)=
n∑

i=1

⟨x(j′)
ℓ,i ,y

(b,j̃)

i − y(1,j̃)

i ⟩ (2)= 0

where (1) comes from condition 1 that for corrupted i the challenge keys satisfy y(0,j̃)

i = y(1,j̃)

i ,

and (2) comes from the weakly function-hiding while treating x(j′)
ℓ,i as the challenge.

• Moreover, equation (2) makes sure that for each i ∈ H, the quantity

⟨x(j′)
i ,y(b,j̃)

i ⟩ − ⟨x(j′)
i ,y(1,j̃)

i ⟩

is a constant ci for any j′ ∈ [J], j̃ ∈ [J̃].

The sets of vectors, listed in the order of the lemma’s statement, are ((c(j)

i)
j∈[J]
i∈H , (c(j′)

ℓ,i)
j′∈[J]
i∈H ,

(d(j̃)

i)
j̃∈[J]
i∈H , (d(j̃′)

k,i)
j̃′∈[J]
i∈H,k∈[qk]). The 4Ni + 4 coordinates affected, in the order w.r.t the statement

of Lemma 12 so that they form a subspace of dimension 4Ni + 4, are ([1, Ni], [Ni + 2, 2Ni +
1], Ni + 1, 3Ni + 3, 3Ni + 4, [3Ni + 5, 5Ni + 5]). Finally, the security loss for each swap over the
qe non-challenge tags to OEnc is upper bounded by: (2Ni + 8) · J ·AdvSXDH

G1,G2
(1λ). In total, we

have |Pr[G3 = 1]− Pr[G2 = 1]| ≤ (qe + 1) · (2Ni + 8) · J ·AdvSXDH
G1,G2

(1λ).

Game G4: After G3 the vectors are now:

c(j′)
ℓ,i = (0Ni , ωℓ, x(j′)

ℓ,i , 0Ni , tℓ,i, 0, ρ(j′)
ℓ,i , 0...)Bi ; c(j)

i = (0Ni , ω, x(b,j)

i , 0Ni , ti, 0, ρ(j)

i , 0...)Bi

d(j̃′)
k,i = (y(j̃′)

k,i , sk,i, y(j̃′)
k,i , 0Ni , µk, π(j̃′)

k,i , 0, 0...)B∗
i
; d(j̃)

i = (y(b,j̃)

i , si, y(1,j̃)

i , 0Ni , µ, π(j̃)

i , 0, 0...)B∗
i
.

In this G4, we use DSDH to make x(j̃)

ℓ,i appear in coordinates [2Ni + 2, 3Ni + 1] of c(j′)
i , as well as

x(1,j̃)

i in coordinates [2Ni + 2, 3Ni + 1] of c(j)

i .

We proceed by a sequence of Ni +1 hybrids, indexed by m ∈ [0, Ni], such that the first hybrid is
identical to G3 and in the m-th hybrid the first coordinates [2Ni + 2, 2Ni + 1 +m] of d(j̃′),d(j̃)

i

are modified, for m ≥ 1. For m ∈ [Ni], the transition from the (m− 1)-th hybrid to the m-th
hybrid is described below. Given a DSDH instance (JaK1 , JbK1 , JcK1) in G1 where δ := c− ab is
either 0 or 1, the bases (Bi,B

∗
i) are changed following:

Bi =

1
a 1

2Ni+1+m,3Ni+4

·Hi; B∗
i =

1 −a
0 1

2Ni+1+m,3Ni+4

·H∗
i .

57

The basis Bi can be computed using JaK1 and the c-vectors are simulated below:

c(j′)
ℓ,i = (0Ni , ωℓ, x(j′)

ℓ,i , x(j′)
ℓ,i [1], ..,x

(j′)
ℓ,i [m− 1], 0, .., 0︸ ︷︷ ︸

last (Ni−m+1)-th coords are 0

, tℓ,i, 0, ρ(j′)
ℓ,i , 02Ni+1)Bi

+ (02Ni+1, 0, .., 0, cx(j′)
ℓ,i [m], 0, .., 0︸ ︷︷ ︸

m-th coord among Ni

, 02, bx(j′)
ℓ,i [m], 02Ni+2)Hi

= (0Ni , ωℓ, x(j′)
ℓ,i , x(j′)

ℓ,i [1], ..,x
(j′)
ℓ,i [m− 1], δx(j′)

ℓ,i [m], .., 0︸ ︷︷ ︸
last (Ni−m)-th coords are 0

, tℓ,i, 0, ρ(j′)
ℓ,i + bx(j′)

ℓ,i [m], 02Ni+1)Bi

c(j)

i = (0Ni , ω, x(b,j)

i , x(1,j)

i [1], ..,x(1,j)

i [m− 1], 0, .., 0︸ ︷︷ ︸
last (Ni−m+1)-th coords are 0

, ti, 0, ρ(j)

i , 02Ni+1)Bi

+ (02Ni+1, 0, .., 0, cx(1,j)

i [m], 0, .., 0︸ ︷︷ ︸
m-th coord among Ni

, 02, bx(1,j)

i [m], 02Ni+2)Hi

= (0Ni , ω, x(b,j)

i , x(1,j)

i [1], ..,x(1,j)

i [m− 1], δx(1,j)

i [m], .., 0︸ ︷︷ ︸
last (Ni−m+1)-th coords are 0

, ti, 0, ρ(j)

i + bx(1,j)

i [m], 02Ni+1)Bi .

Even though we cannot compute b∗
i,2Ni+1+m due to the lack of JaK2, the d-vectors can be written

directly in H∗
i :

d(j̃′)
k,i = (y(j̃′)

k,i , sk,i, y(j̃′)
k,i , 0Ni , µk, π(j̃′)

k,i , 0, 02Ni+1)H∗
i

= (y(j̃′)
k,i , sk,i, y(j̃′)

k,i , 0Ni , µk, π(j̃′)
k,i , 0 + a · 0, 02Ni+1)B∗

i

= (y(j̃′)
k,i , sk,i, y(j̃′)

k,i , 0Ni , µk, π(j̃′)
k,i , 0, 02Ni+1)B∗

i

d(j̃)

i = (y(b,j̃)

i , si, y(1,j̃)

i , 0Ni , µ, π(j̃)

i , 0, 02Ni+1)H∗
i

= (y(b,j̃)

i , si, y1
i , 0Ni , µ, π(j̃)

i , 0, 02Ni+1)B∗
i
.

If δ = 0 we are in the (m − 1)-th hybrid, else we are in the m-th hybrid. Totally, after Ni

transitions we arrive at G5 and obtain |Pr[G4 = 1]− Pr[G3 = 1]| ≤ 2Ni ·AdvDDH
G1

(1λ).
Game G5: After G4 the vectors are now:

c(j′)
ℓ,i = (0Ni , ωℓ, x(j′)

ℓ,i , x(j′)
ℓ,i , tℓ,i, 0, ρ(j′)

ℓ,i , 0...)Bi ; c(j)

i = (0Ni , ω, x(b,j)

i , x(1,j)

i , ti, 0, ρ(j)

i , 0...)Bi

d(j̃′)
k,i = (y(j̃′)

k,i , sk,i, y(j̃′)
k,i , 0Ni , µk, π(j̃′)

k,i , 0, 0...)B∗
i
; d(j̃)

i = (y(b,j̃)

i , si, y(1,j̃)

i , 0Ni , µ, π(j̃)

i , 0, 0...)B∗
i

We apply Lemma 12 to swap y(1,j̃)

i ,y(j̃′)
k,i from coordinates [Ni + 2, 2Ni + 1] to coordinates

[2Ni + 2, 3Ni + 1] of vectors d(j̃)

i ,d(j̃′)
k,i . This can be done by a sequence of qk + 2 hybrids over

the qk distinct tags tag-fk to OKeyGen and the only challenge tag tag-f that is declared at the
beginning of the one-challenge game. The first hybrid is the same as G5. The transition between
each hybrid is done by an application of Lemma 12. We first swap the challenge d(j̃)

i , then swap

the non-challenge d(j̃′)
k,i one after another on an ordering over µk, e.g. their order of appearances.

We verify the constraints required by Lemma 12.

Swapping the challenge y(1,j̃)

i :
• First of all, thanks to the weakly function-hiding admissibility (condition 2): for all j ∈
[J], j̃ ∈ [J̃]

H∑
i=1

⟨y(1,j̃)

i ,x(b,j)

i − x(1,j)

i ⟩ (1)=
n∑

i=1

⟨y(1,j̃)

i ,x(b,j)

i − x(1,j)

i ⟩ (2)= 0

58

where (1) comes from condition 1 that for corrupted i the challenge messages satisfy x(b,j)

i =
x(1,j)

i , and (2) comes from the weakly function-hiding.
• Moreover, equation (2) makes sure that for each i ∈ H, the quantity

⟨y(1,j̃)

i ,x(b,j)

i ⟩ − ⟨y(1,j̃)

i ,x(1,j)

i ⟩

is a constant ci for any j ∈ [J], j̃ ∈ [J̃].

The sets of vectors, listed in the order of the lemma’s statement, are ((d(j̃′)
k,i)

j̃′∈[J]
i∈H,k∈[qk], (d

(j̃)

i)
j̃∈[J]
i∈H ,

(c(j)

i)
j∈[J]
i∈H , (c(j′)

ℓ,i)
j′∈[J]
i∈H). The 4Ni + 4 coordinates affected, in the order w.r.t the statement of

Lemma 12 so that they form a subspace of dimension 4Ni + 4, are ([Ni + 2, 2Ni + 1], [2Ni +
2, 3Ni + 1], 3Ni + 2, 3Ni + 3, 3Ni + 4, [3Ni + 5, 5Ni + 5]). Finally this swap incurs a security loss
upper bounded by (2Ni + 8) · J̃ ·AdvSXDH

G1,G2
(1λ).

Swapping the non-challenge y(j̃′)
k,i :

• First of all, thanks to the weakly function-hiding admissibility (condition 2): for all j ∈
[J], j̃′ ∈ [J̃]

H∑
i=1

⟨y(j̃′)
k,i ,x

(b,j)

i − x(1,j)

i ⟩ (1)=
n∑

i=1

⟨y(j̃′)
k,i ,x

(b,j)

i − x(1,j)

i ⟩ (2)= 0

where (1) comes from condition 1 that for corrupted i the challenge messages satisfy x(b,j)

i =
x(1,j)

i , and (2) comes from the weakly function-hiding.
• Moreover, equation (2) makes sure that for each i ∈ H, the quantity

⟨y(1,j̃)

i ,x(b,j)

i ⟩ − ⟨y(1,j̃)

i ,x(1,j)

i ⟩

is a constant ci for any j ∈ [J], j̃ ∈ [J̃].

The sets of vectors, listed in the order of the lemma’s statement, are ((d(j̃)

i)
j̃∈[J]
i∈H , (d(j̃′)

k,i)
j̃′∈[J]
i∈H,k∈[qk],

(c(j)

i)
j∈[J]
i∈H , (c(j′)

ℓ,i)
j′∈[J]
i∈H). The 4Ni + 4 coordinates affected, in the order w.r.t the statement of

Lemma 12 so that they form a subspace of dimension 4Ni + 4, are ([Ni + 2, 2Ni + 1], [2Ni +
2, 3Ni + 1], 3Ni + 2, 3Ni + 3, 3Ni + 4, [3Ni + 5, 5Ni + 5]). Finally, the security loss for each swap
over the qe non-challenge tags to OEnc is upper bounded by: (2Ni + 8) · J̃ ·AdvSXDH

G1,G2
(1λ). In

total, we have |Pr[G5 = 1]− Pr[G4 = 1]| ≤ (qk + 1) · (2Ni + 8) · J̃ ·AdvSXDH
G1,G2

(1λ).
Game G6: After G5 the vectors are now:

c(j′)
ℓ,i = (0Ni , ωℓ, x(j′)

ℓ,i , x(j′)
ℓ,i , tℓ,i, 0, ρ(j′)

ℓ,i , 0...)Bi ; c(j)

i = (0Ni , ω, x(b,j)

i , x(1,j)

i , ti, 0, ρ(j)

i , 0...)Bi

d(j̃′)
k,i = (y(j̃′)

k,i , sk,i, 0Ni , y(j̃′)
k,i , µk, π(j̃′)

k,i , 0, 0...)B∗
i
; d(j̃)

i = (y(b,j̃)

i , si, 0Ni , y(1,j̃)

i , µ, π(j̃)

i , 0, 0...)B∗
i
.

We perform some cleanings to make the vectors independent of b. This is done in two steps:
G5.1: We use DSDH in G2 to clean y(j̃′)

i ,y(b,j̃)

i at coordinates [1, Ni] of vectors d
(j̃′)
i ,d(j̃)

i respec-
tively.
We proceed by a sequence of Ni + 1 hybrids, indexed by m ∈ [0, Ni], such that the first

hybrid is identical to G5 and in the m-th hybrid the first m coordinates [1,m] of d(j̃′)
i ,d(j̃)

i

are cleaned, for m ≥ 1. For m ∈ [Ni], the transition from the (m− 1)-th hybrid to the m-th
hybrid is described below. Given a DSDH instance (JaK2 , JbK2 , JcK2) in G2 where δ := c− ab
is either 0 or 1, the bases (Bi,B

∗
i) are changed following:

Bi =

1 a

0 1

Ni+1+m,3Ni+3

·Hi; B∗
i =

 1 0

−a 1

Ni+1+m,3Ni+3

·H∗
i .

59

The bases B∗
i can be computed using JaK2 and the key components can be written as follows:

d(j̃′)
k,i = (0, .., 0,y(j̃′)

k,i [m], ..,y(j̃′)
k,i [Ni]︸ ︷︷ ︸

first (m−1)-th coords are 0

, sk,i, 0Ni , y(j̃′)
k,i , µk, π(j̃′)

k,i , 0, 02Ni+1)B∗
i

+ (0, .., 0, cy(j̃′)
k,i [m], 0, .., 0︸ ︷︷ ︸

m-th coord among Ni

, 02Ni+2, by(j̃′)
k,i [m], 0Ni+2)H∗

i

= (0, .., 0, (1− δ)y(j̃′)
k,i [m], ..,y(j̃′)

k,i [Ni]︸ ︷︷ ︸
first (m−1)-th coords are 0

, sk,i, 0Ni , y(j̃′)
k,i , µk, π(j̃′)

k,i + by(j̃′)
k,i [m], 0, 02Ni+1)B∗

i

d(j̃)

i = (0, .., 0,y(b,j̃)

i [m], ..,y(b,j̃)

i [Ni]︸ ︷︷ ︸
first (m−1)-th coords are 0

, si, 0Ni , y(1,j̃)

i , µ, π(j̃)

i , 0, 02Ni+1)B∗
i

+ (0, .., 0, cy(b,j̃)

i [m], 0, .., 0︸ ︷︷ ︸
m-th coord among Ni

, 02Ni+2, by(b,j̃)

i [m], 0Ni+2)H∗
i

= (0, .., 0, (1− δ)y(b,j̃)

i [m], ..,y(b,j̃)

i [Ni]︸ ︷︷ ︸
first (m−1)-th coords are 0

, si, 0Ni , y(1,j̃)

i , µ, π(j̃)

i + y(b,j̃)

i [m], 0, 02Ni+1)B∗
i
.

We are updating π(j̃′)
k,i , π

(j̃)

i to π(j̃′)
k,i + by(j̃′)

k,i [m], π(j̃)

i + y(b,j̃)

i [m].

We cannot compute bi,3Ni+6 due to the lack of JaK1, but the c-vectors can be written in Hi

and the changes does not affect them into Bi:

c(j′)
ℓ,i = (0Ni , ωℓ, x(j′)

ℓ,i , x(j′)
ℓ,i , tℓ,i, 0, ρ(j′)

ℓ,i , 02Ni+1)Hi

c(j′)
ℓ,i = (0Ni , ωℓ, x(j′)

ℓ,i , x(j′)
ℓ,i , tℓ,i, 0− a · 0, ρ(j′)

ℓ,i , 02Ni+1)Bi

c(j′)
ℓ,i = (0Ni , ωℓ, x(j′)

ℓ,i , x(j′)
ℓ,i , tℓ,i, 0, ρ(j′)

ℓ,i , 02Ni+1)Bi

c(j)

i = (0Ni , ω, x(b,j)

i , x(1,j)

i , ti, 0, ρ(j)

i , 02Ni+1)Hi

c(j)

i = (0Ni , ω, x(b,j)

i , x(1,j)

i , ti, 0, ρ(j)

i , 02Ni+1)Bi .

If δ = 0 we are in the (m− 1)-th hybrid, else we are cleaning coordinate m and in the m-th
hybrid. After Ni transitions we clean all Ni coordinates and obtain |Pr[G5.1 = 1]− Pr[G5 =
1]| ≤ 2Ni ·AdvSXDH

G1,G2
(1λ).

G5.2 = G6: After G5.1 the vectors are now:

c(j′)
ℓ,i = (0Ni , ωℓ, x(j′)

ℓ,i , x(j′)
ℓ,i , tℓ,i, 0, ρ(j′)

ℓ,i , 02Ni+1)Bi

d(j̃′)
k,i = (0Ni , sk,i, 0Ni , y(j̃′)

k,i , µk, π(j̃′)
k,i , 0, 02Ni+1)B∗

i

c(j)

i = (0Ni , ω, x(b,j)

i , x(1,j)

i , ti, 0, ρ(j)

i , 02Ni+1)Bi

d(j̃)

i = (0Ni , si, 0Ni , y(1,j̃)

i , µ, π(j̃)

i , 0, 02Ni+1)B∗
i
.

We now use DSDH to clean x(j̃)

ℓ,i ,x
(b,j̃)

i at coordinates [Ni + 2, 3Ni + 1] of c(j′)
i , c(j)

i .

We proceed by a sequence of Ni + 1 hybrids, indexed by m ∈ [0, Ni], such that the first
hybrid is identical to G5.1 and in the m-th hybrid the first m coordinates [Ni +2, Ni +1+m]

of c(j′)
i , c(j)

i are cleaned, for m ≥ 1. For m ∈ [Ni], the transition from the (m− 1)-th hybrid
to the m-th hybrid is described below. Given a DSDH instance (JaK1 , JbK1 , JcK1) in G1 where

60

δ := c− ab is either 0 or 1, the bases (Bi,B
∗
i) are changed following:

Bi =

1
a 1

Ni+1+m,3Ni+4

·Hi; B∗
i =

1 −a
0 1

Ni+1+m,3Ni+4

·H∗
i .

The basis Bi can be computed using JaK1 and the ciphertext components can be written as
follows:

c(j′)
ℓ,i = (0Ni , ωℓ, 0, .., 0,x(j′)

ℓ,i [m], ..,x(j′)
ℓ,i [Ni]︸ ︷︷ ︸

first (m−1)-th coords are 0

, x(j′)
ℓ,i , tℓ,i, 0, ρ(j′)

ℓ,i , 02Ni+1)Bi

+ (0N+i+1, 0, .., 0, cx(j′)
ℓ,i [m], 0, .., 0︸ ︷︷ ︸

m-th coord among Ni

, 0Ni+2, bx(j′)
ℓ,i [m], 02Ni+1)Hi

= (0Ni , ωℓ, 0, .., 0, (1− δ)x(j′)
ℓ,i [m], ..,x(j′)

ℓ,i [Ni]︸ ︷︷ ︸
first (m−1)-th coords are 0

, x(j′)
ℓ,i , tℓ,i, 0, ρ(j′)

ℓ,i + bx(j′)
ℓ,i [m], 02Ni+1)Bi

c(j)

i = (0Ni , ω, 0, .., 0,x(b,j)

i [m], ..,x(b,j)

i [Ni]︸ ︷︷ ︸
first (m−1)-th coords are 0

, x(1,j)

i , ti, 0, ρ(j)

i , 02Ni+1)Bi

+ (0N+i+1, 0, .., 0, cx(b,j)

i [m], 0, .., 0︸ ︷︷ ︸
m-th coord among Ni

, 0Ni+2, bx(b,j)

i [m], 02Ni+1)Hi

= (0Ni , ω, 0, .., 0, (1− δ)x(b,j)

i [m], ..,x(b,j)

i [Ni]︸ ︷︷ ︸
first (m−1)-th coords are 0

, x(1,j)

i , ti, 0, ρ(j)

i + bx(b,j)

i [m], 02Ni+1)Bi .

Even though we cannot compute b∗
i,Ni+1+m due to the lack of JaK2, similar to the transition

G5 → G5.1, the d-vectors can be written in H∗
i and the basis changes does not modify them

when going into B∗
i . This is because d(j̃′)

k,i [Ni + 1 +m] = d(j̃)

i [Ni + 1 +m] = 0. If δ = 0 we
are in the (m − 1)-th hybrid, else we are cleaning coordinate m and in the m-th hybrid.
After Ni transitions we clean all Ni coordinates and obtain |Pr[G5.2 = 1]− Pr[G5.1 = 1]| ≤
2Ni ·AdvSXDH

G1,G2
(1λ).

In the end, we clean the coordinates and the vectors become:

c(j′)
ℓ,i = (0Ni , ωℓ, 0Ni , x(j′)

ℓ,i , tℓ,i, 0, ρ(j′)
ℓ,i , 02Ni+1)Bi

d(j̃′)
k,i = (0Ni , sk,i, 0Ni , y(j̃′)

k,i , µk, π(j̃′)
k,i , 0, 02Ni+1)B∗

i

c(j)

i = (0Ni , ω, 0Ni , x(1,j)

i , ti, 0, ρ(j)

i , 02Ni+1)Bi

d(j̃)

i = (0Ni , si, 0Ni , y(1,j̃)

i , µ, π(j̃)

i , 0, 02Ni+1)B∗
i

and we have |Pr[G6 = 1]− Pr[G5 = 1]| ≤ 4Ni ·AdvSXDH
G1,G2

(1λ).

61

The game G6 does not depend on the challenge bit b anymore and Pr[G6 = 1] = 1/2. The difference
in advantages is

Adv1chal-pos-stat-wfh

E,F ip
N1,...,Nn

,A
(1λ) = |Pr[G0 = 1]− 1

2
|

= |Pr[G0 = 1]− Pr[G6 = 1]|

≤
6∑

i=1

|Pr[Gi = 1]− Pr[Gi−1 = 1]|

≤
((

(qe + 1)J + (qk + 1)J̃
)
· (2Ni + 8) + qk + qe + 8Ni + 2

)
·AdvSXDH

G1,G2
(1λ)

and the proof is completed. ⊓⊔

B.6 Details about our FH-DDFE in Section 6

Security We prove the security of our FH-DDFE below.

Theorem 15. If N is IND-secure, {FK}K∈K and {F ′
K′}K′∈K′ are families of pseudorandom func-

tions and the SXDH assumption holds in (G1,G2), then E is adaptively one-challenge weakly
function-hiding secure under static corruption against complete queries in the ROM.

More precisely, let qh be the maximum number of queries to the oracle OHonestGen and let qu be an
upper bound on the number of distinct sets U ⊆ ID that occur in an encryption or key-generation
query. Then, for any ppt adversary A, there exist ppt algorithms B1, . . . ,B4 such that

Adv1chal-pos-stat-wfh

E,F ip
dyn,A

(1λ) ≤ qh ·Advprf
{FK},B1

(1λ) + q2h ·Advnike
N ,B2

(1λ)

+ q2h ·Advprf
{F ′

K′},B3
(1λ) + qu ·Adv1chal-pos-stat-wfh

E ′,F ip,B4
(1λ)

Proof. The proof is done via a sequence of hybrid games.

Game G0: This is the game Exp1chal-pos-stat-wfh
E,F ,A (1λ).

Game G1: In all key-generation and encryption queries of the form (i, ∗, ∗) with i ∈ H, we replace
FKi with a random function Ri. By the security of the PRF, we have |Pr[G1 = 1]− Pr[G0 = 1]| ≤
qh ·Advprf

{FK},B1
(1λ).

Game G2: For all i, j ∈ H, we chooseK ′
i,j = K ′

j,i
$← K′ instead ofK ′

i,j ← N .SharedKey(N .ski,N .pkj)
when replying to key-generation and encryption queries. The indistinguishability directly follows from
the security of the NIKE scheme. Specifically, we have |Pr[G2 = 1]−Pr[G1 = 1]| ≤ q2h ·Advnike

N ,B2
(1λ).

Game G3: For all i, j ∈ H, we replace F ′
K′

i,j
= F ′

K′
j,i

with a random function R′
i,j = R′

j,i in all

key-generation and encryption queries. The indistinguishability directly follows from the security of
the PRF. More precisely, we have that |Pr[G2 = 1]− Pr[G1 = 1]| ≤ q2h ·Advprf

{F ′
K′},B3

(1λ).

Note that in G3, for each set U that occurs in an encryption or key-generation query, (s̃i)i∈U∩H
and (t̃i)i∈U∩H are uniformly random subject to the condition that

∑
i∈U∩H s̃i = −

∑
i∈U∩C s̃i and∑

i∈U∩H t̃i = −
∑

i∈U∩C t̃i.

Let U1, . . . ,Uqu denote the qu different sets that occur in an encryption or key-generation query
where they are sorted e.g. ascending in the order in which they are queried for the first time. For
κ ∈ [0; qu], we define the hybrids Ĝκ as follows:

62

Game Ĝκ for κ ∈ [0; qu] : This game is the same as G3 except that the generation of ciphertexts and
secret keys is modified as follows. Upon receiving a queryOKeyGen(i, (y0

i , (Uj , tag-f)), (y1
i , (Uj , tag-f))),

the simulator computes

di ←

{
E ′.DKeyGen(eki, tag-f, y0i) if j ≤ κ

E ′.DKeyGen(eki, tag-f, ybi) if j > κ .

Similarly, upon receiving a query of the form OEnc(i, (x0
i , (Uj , tag)), (x1

i , (Uj , tag))), the simulator
computes

ci ←

{
E ′.Enc(eki, tag, x0i) if j ≤ κ

E ′.Enc(eki, tag, xbi) if j > κ .

Note that Ĝ0 = G3 and Ĝqu is independent of the bit b. For κ ∈ [qu], we have |Pr[Ĝκ = 1]−Pr[Ĝκ−1 =

1]| ≤ Adv1chal-pos-stat-wfh
E ′,F ip,B4

(1λ) by Lemma 14. ⊓⊔

B.7 From Complete to Incomplete Challenges - Proof of Lemma 16

Lemma 16. Assume there exist (1) a one-challenge, weakly function-hiding DDFE scheme Epos
for the function class F ip

dyn that is secure against complete queries, and (2) an AoNE scheme Eaone
whose message space contains the ciphertext space of Epos. Then there exists a one-challenge,
weakly function-hiding DDFE scheme E for the same function class F ip

dyn that is even secure against
incomplete queries.
More precisely, for any ppt adversary A, there exist ppt algorithms B and B′ such that

Adv1chal-xxx-wfh
E,F ip

dyn,A
(1λ) ≤ 6 ·Adv1chal-pos-xxx-wfh

Epos,F ip
dyn,B

(1λ) + 6 ·Advxxx-fh
Eaone,Faone,B′(1λ) ,

where xxx ⊆ {stat, sel}.

Proof. Let Epos = (pGSetup, pLSetup, pKeyGen, pEnc, pDec) be a one-challenge, weakly function-
hiding DDFE scheme for the function class F ip

dyn that is secure against complete queries, and let
Eaone = (aGSetup, aLSetup, aEnc, aDec) be a DDFE scheme for the AoNE functionality Faone. We
construct a one-challenge, weakly function-hiding DDFE scheme E for the function class F ip

dyn that
is secure against incomplete queries. The details of E = (GSetup, LSetup,KeyGen,Enc,Dec) go as
follows:

GSetup(1λ): On input the security parameter 1λ, run

pPP← pGSetup(1λ); aPP← aGSetup(1λ)

and return PP := (pPP, aPP)
LSetup(PP, i): On input PP and a user i ∈ ID, generate

(pSKi, pPKi)← pLSetup(pPP); (aSKi, aPKi)← aLSetup(aPP)

and return (SKi := (pSKi, aSKi),PKi := (pPKi, aPKi)).
KeyGen(SKi, k): On input a secret key SKi and k = (kpri, kpub), compute

pDKi ← pKeyGen(pSKi, k); aDKi ← aEnc(aSKi, (i, (pDKi, kpub)))

and return DKi := aDKi.

63

Enc(SKi,m): On input a secret key SKi and m = (mpri,mpub), compute:

pCTi ← pEnc(pSKi,m); aCTi ← aEnc(aSKi, (pCTi,mpub))

and return CTi := aCTi.

Dec((DKi)i∈UK
, (CTi)i∈UM

): On input a set of secret keys (DKi)i∈UK
and a set of ciphertexts

(CTi)i∈UM
, compute

(pDKi)i∈UK
← aDec((aDKi)i∈U); (pCTi)i∈UM

← aDec((aCTi)i∈U) .

If one of these decryption processes returns ⊥, return the same value. Otherwise, return
out← pDec({pDKi}i∈UK

, {pCTi}i∈UM
).

The correctness of E follows immediately from the correctness of Epos and Eaone. Turning to its
security, we introduce a sequence of hybrids G0, . . . ,G4. For i ∈ [0; 4], we denote AdvGi(A) :=
|Pr[Gi = 1]− 1/2|. To improve readability, we introduce the shorthands(

Expip
B ,Advip

B

)
:=

(
Exppos-xxx-wfh

Epos,F ip
dyn,B

(1λ),Advpos-xxx-wfh

Epos,F ip
dyn,B

(1λ)

)
(Expaone

B′ ,Advaone
B′) :=

(
Expxxx-wfh

Eaone,Faone,B′(1λ),Advxxx-wfh
Eaone,Faone,B′(1λ)

)
.

The hybrid games are defined as follows.

Game G0: This game equals Exp1chal-xxx-wfh
F ,F ,A (1λ), i.e. AdvG0 = Adv1chal-xxx-wfh

E,F ,A (1λ).

Recall that one-challenge security states that the adversary must declare up front to Initialize
additional public information for challenge messages and challenge keys m∗

pub = (U∗
M , tag∗), k∗pub =

(U∗
K , tag-f∗) so that:

• if (i,m(0)

i ,m(1)

i) ∈ QEnc and m(0)

i,pub = m(1)

i,pub ̸= m∗
pub, then m(0)

i = m(1)

i ,

• if (i, k(0)

i , k(1)

i) ∈ QKGen and k(0)

i,pub = k(1)

i,pub ̸= k∗pub, then k(0)

i = k(1)

i .

We define events E0 and E1 as follows:

(E0) A has asked queries of the form OKeyGen(i, (∗, k∗pub), (∗, k∗pub)) for all or no i ∈ H ∩ U∗
K .

(E1) A has asked queries of the form OKeyGen(i, (∗, k∗pub), (∗, k∗pub)) for some but not all i ∈ H∩U∗
K ,

i.e. E1 = ¬E0.

Game G1: This is the same as G0 except that the simulator chooses a random bit d
$← {0, 1}

during Initialize. Upon A calling Finalize, if (d = 0 and E1 happens) or (d = 1 and E0 happens), the
simulator outputs a random bit and aborts. Note that the simulator’s behavior is independent of
the bit d before Finalize is called. Therefore, we have AdvG1(A) = 1/2 ·AdvG0(A).
Game G2: If d = 1, then the simulation works exactly as in the previous game. Otherwise, the
simulator acts as an adversary B in the game Expip

B . Specifically, if d = 0, the simulation works as
follows:

• Initialization: Upon A calling Initialize(1λ,m∗
pub, k

∗
pub), B chooses a random bit b

$← {0, 1}, runs

pPP← Expip
B .Initialize(1

λ); aPP← Eaone.GSetup(1λ)

and returns PP := (pPP, aPP).

64

• User-Generation Queries: Upon A querying OHonestGen(i) for some i ∈ ID, B queries and
computes

pPKi ← Expip
B .OHonestGen(i); (aSKi, aPKi)← Eaone.LSetup(i) ,

adds i to H and returns PKi := (pPKi, aPKi).
• Corruption Queries: Upon A querying OCorrupt(i) for some i ∈ ID, if i /∈ H, then B first calls
OHonestGen(i). Then it queries pSKi ← Expip

B .OCorrupt(i) and returns SKi := (pSKi, aSKi)
where aSKi is known from the corresponding query to OHonestGen.

• Encryption Queries: Upon A querying OEnc(i, (m0
pri,mpub), (m

1
pri,mpub)), B queries and com-

putes

pCTi ← Expip
B .OEnc(i, (m

b
pri,mpub), (m

b
pri,mpub)); aCTi ← Eaone.Enc(aSKi, (i, (pCTi,mpub)))

and returns CTi := aCTi.
• Key-Generation Queries: Upon A querying ODKeyGen on input (i, (k0pri, kpub), (k

1
pri, kpub)), B

does the following:
◦ If kpub = k∗pub, B queries

pDKi ← Expip
B .OKeyGen(i, (k

b
pri, k

∗
pub), (k

1
pri, k

∗
pub)); aDKi ← Eaone.Enc(aSKi, (i, (pDKi, k

∗
pub)))

and returns DKi := aDKi.
◦ If kpub ̸= k∗pub, then k0pri = k1pri and B queries

pDKi ← Expip
B .OKeyGen(i, (k

1
pri, k

∗
pub), (k

1
pri, k

∗
pub)); aDKi ← Eaone.Enc(aSKi, (i, (pDKi, k

∗
pub)))

and returns DKi := aDKi.
• Finalize: Upon A calling Finalize(b′), B forwards the same bit to its own challenger by calling
Expip

B .Finalize(b
′).

In the end, we have |AdvG2(A)−AdvG1(A)| ≤ Advip
B .

Game G3: We do a similar modification in the simulation for the case d = 1. That is, for
queries of the form OKeyGen((i, (k0pri, k∗pub), (k1pri, k∗pub))), the simulator now outputs a key for

(k1pri, k
∗
pub) instead of (kbpri, k

∗
pub). The indistinguishability between G3 and G2 reduces to the security

of Eaone. We construct a reduction B′ that acts as an adversary in the experiment Expaone
B′ . B′

replaces all Eaone algorithms with calls to the respective oracles of Expaone
B′ , in a similar way as

B does with calls to oracles of Expip
B in G2. In particular, upon A querying ODKeyGen on input

(i, (k0pri, kpub), (k
1
pri, kpub)), B does the following:

• If kpub = k∗pub, B queries

pDKb
i ← Epos.KeyGen(pSKi, (k

b
pri, k

∗
pub))

pDK1
i ← Epos.KeyGen(pSKi, (k

1
pri, k

∗
pub))

aDKi ← Expaone
B′ .OEnc(i, (pDKb

i , k
∗
pub), (pDK

1
i , k

∗
pub))

and returns DKi := aDKi.
• If kpub ̸= k∗pub, then k0pri = k1pri and B queries

pDKi ← Epos.KeyGen(pSKi, (k
1
pri, kpub))

aDKi ← Expaone
B′ .OEnc(i, (pDKi, kpub), (pDKi, kpub))

and returns DKi := aDKi.

In the end, we have |AdvG3(A)−AdvG2(A)| ≤ Advaone
B′ .

65

Game G4: We answer queries of the form OEnc((i, (m0
pri,m

∗
pub), (m

1
pri,m

∗
pub))) by encryptions of

(m1
pri,m

∗
pub) as opposed to (mb

pri,m
∗
pub) using a similar sequence of hybrids as G1, G2 and G3, but

with flipped roles of the oracles OKeyGen and OEnc. Note that G4 is independent of the bit b. In
the end, we obtain AdvG3(A) ≤ 2 · (AdvG4(A) +Advip

B +Advaone
B′)

To conclude, we compute

Adv1chal-xxx-wfh
E,F ip

dyn,A
(1λ) = AdvG0(A)

= 2 ·AdvG1(A)

≤ 2 · (AdvG2(A) +Advip
B)

≤ 2 · (AdvG3(A) +Advip
B +Advaone

B′)

≤ 4 ·AdvG4(A) + 6 ·Advip
B + 6 ·Advaone

B′

= 6 ·Advip
B + 6 ·Advaone

B′ ,

where the last equality follows from the fact that G4 is independent of b. ⊓⊔

	Function-Hiding Dynamic Decentralized Functional Encryption for Inner Products

