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Abstract—Security against side-channel assisted attacks re-
mains a focus and concern in the ongoing standardization process
of quantum-computer-resistant cryptography algorithms. Hiding
and masking techniques are currently under investigation to
protect the Post-Quantum Cryptography (PQC) algorithms in
the NIST PQC standardization process against sophisticated
side-channel attacks. Between hiding and masking, masking
is emerging as a popular option due to its simplicity and
minimized cost of implementation compared with hiding, which
often requires duplication of hardware resources and advanced
analysis and design techniques to implement correctly. This work
presents a pure hardware implementation of masked CCA2-
secure Kyber-512, a candidate chosen by NIST to be standard-
ized. A novel hiding technique that leverages the advantages
of FPGAs over micro-controllers and is demonstrably secure
against Simple Power Analysis (SPA) and Differential Power
Analysis (DPA) side-channel attacks is presented. Finally, a novel
hybrid hiding-masking approach is presented that achieves a
reduced hardware resource and clock-cycle penalty compared
with previously reported figures for similar PQC candidates.
The Test Vector Leakage Assessment (TVLA) is adopted to
demonstrate the absence of side-channel leakage.

Keywords—FPGA, Hiding, Masking, Post-Quantum Cryptog-
raphy, Security

I. INTRODUCTION

Quantum computing – specifically Shor’s algorithm [1] –
presents an existential threat to some standard cryptographic
algorithms. To combat this, post-quantum cryptography (PQC)
algorithms have been in development and are nearing math-
ematical and cryptanalytic maturity. Ongoing standardization
efforts including the National Institute of Standards and Tech-
nology (NIST) PQC standardization process have chosen one
PEK/KEMs algorithm (i.e., CRYSTALS-Kyber) and three dig-
ital signature algorithms (i.e., CRYSTALS-Dilithium, Falcon,
and SPHINCS+). CRYSTALS-Kyber [2] is a lattice-based
key-encapsulation mechanism (KEM), an IND-CCA2-secure
KEM based on the learning-with-errors problem over module
lattices. Several FPGA hardware implementations of Kyber
have been presented in the literature [3]–[6]. However, the
robustness of these implementations to side-channel analysis
(SCA) is unknown.

Side-channel leakage of private information – including
private key material – is a consistent concern for robust cyber-
security. Otherwise cryptanalytically sound algorithms (e.g.,
AES, SHA) have been broken by side-channel attacks such as

simple power analysis (SPA), differential power analysis [7],
correlation power analysis [8], and machine learning [9].
Embedded devices that are provisioned with the selected PQC
candidate may be deployed for dozens of years, and therefore
should be hardened to these types of attacks. While no proof
exists that can demonstrate full side-channel security, the Test
Vector Leakage Assessment (TVLA) [10] can give an accurate
representation of the likelihood that an implementation leaks
private information.
Contributions: In this work, we present a masked pure
hardware SCA-resistant implementation of CRYSTALS-Kyber
on an FPGA. We compare our implementation’s resources
with a state-of-the-art hardware implementation to demonstrate
differences in resource utilization to provide provable SCA
resistance. Finally, we demonstrate that the implementation
is SCA-resistant using the TVLA. In showing this, we also
demonstrate the following:

• A novel approach to hiding using parallel processing
and pipelining that proves effective and shows no side-
channel leakage in testing. Our approach also results
in significant savings in clock cycles compared with
unprotected implementation.

• We apply hiding techniques to show overheads of 1.83x
and 1.6x in clock cycles and hardware resources, re-
spectively, compared with a baseline implementation of
Kyber-512.

• We combine hiding and masking techniques to show an
efficient design with only 1.08x and 1.06x overheads in
clock cycles and hardware resources, respectively, com-
pared with our hiding-only implementation to demon-
strate a feasible low penalty masking technique.

• We verify the security of our approach with the TVLA
on multiple power traces and show that it is within the
bounds to have a 99.99999% probability of being SCA-
resistant.

• All designs and data sets are open source and available
at (link hidden for blind review).

II. LITERATURE REVIEW

In this section, we present a short review of the CRYSTALS-
Kyber KEM, masking, the use of pipelining as a counter-
measure against DPA side-channel attacks, and the effects of



TABLE I
PARAMETER SETS FOR THE THREE SECURITY LEVELS OF KYBER AND

SIZES IN BYTES FOR PUBLIC KEY (PK), SECRET KEY (SK), AND
CIPHERTEXT (CT).

Algorithm Parameters
(k,N,q)

PK, SK, CT
(size in bytes)

Kyber-512 2, 256, 3329 800, 1632, 768
Kyber-768 3, 256, 3329 1184, 2400, 1088
Kyber-1024 4, 256, 3329 1568, 1568, 3168

measurement techniques on the success rates of DPA side-
channel attacks. A good, more general review of the NIST-
approved cryptography algorithms can be found in [11].

A. Notations

Let q ∈ N be a prime and Zq be the ring of integers modulo
q. The ring of polynomials for some integer N is defined
Rq = Zq[x]/(x

N + 1). The polynomials have n coefficients,
with each coefficient being modulo q. Regular font-weight
lowercase letters (a) represent single polynomials, polynomial
vectors boldface lowercase (a), and a matrix of polynomials
boldface capitals (A). Multiplication in any ring is denoted
using the · operator, and the ⊕ operator denotes bit-wise XOR.

B. CRYSTALS-Kyber

Kyber is a lattice-based IND-CCA2-secure KEM in the
CRYSTALS suite, including the signature scheme Dilithium
[12]. It guarantees security based on the hardness of the
learning-with-errors (LWE) problem over module lattices [13].
The parameters for the different instantiations of Kyber, the
polynomial length n = 256 and prime modulus q = 3329
are fixed. An additional parameter k determines the size of
polynomial vectors and security level. ei is a vector of noise
polynomials sampled from the Centered Binomial Distribu-
tion. Table I lists all the parameters for the different security
levels of Kyber. More rigorous mathematical descriptions of
Kyber can be found here [2], [14].

C. Power Analysis

Power Analysis is a well-studied attack vector against cryp-
tosystems. Measuring the current consumption of unprotected
algorithms can reveal secret information about the algorithm’s
design and long secrets stored on the device.

Current consumption fluctuations resulting from charge and
discharge cycles of transistors are observable within a 1%
error margin with high sample rate oscilloscopes [15]. At the
register level, the Hamming Weights of intermediate compu-
tational values are distinguishable with high accuracy. In the
Hamming Weight model, observed power traces can be defined
as L = HW (op)+e, where HW (op) represents the Hamming
Weight of the result of an operation, and e is noise present
in the system caused by electromagnetic radiation emanating
from other components present on the device. Power analysis
techniques yield accurate results when the system noise is low.

Various techniques for power analysis have emerged over
the years, namely, simple (SPA), Differential (DPA), and

Fig. 1. Flowchart of Kyber KEM subroutines.

Correlation (CPA) Power Analysis. SPA is typically the sim-
plest to implement. It involves analyzing the traces of current
measurements collected by an oscilloscope. A trace here is the
series of current values sampled over a period. The different
stages of an unprotected program are identifiable without
much analysis. Code branching related to inputs in unsafe
implementations is often the easiest target as it reveals much
about the program flow given some input by the user. The most
effective countermeasures against SPA have been constant-
time execution and avoiding conditional branch execution. Ad-
ditionally, shortening the trace length of a routine is reportedly
successful [15].

When the fluctuations in the traces are more subtle, more
complex techniques like DPA are required. DPA operates on
the differences between averages of two datasets separated
by a random partitioning function. The datasets take known
fixed and random inputs, respectively. When the random inputs
are correct, a correlation function is needed to highlight
correlations between the two datasets. When the inputs are
correlated, the result of the correlation function is higher in
magnitude. Uncorrelated inputs have a resulting magnitude
closer to zero [15], [16]. Popular countermeasures against DPA
often involve introducing noise in the form of randomness to
the intermediate values such that correlation functions cannot
reveal any correlations between the long-term secret key and
malicious random inputs.

Heinz and Poppelman demonstrated that using a naive



redundant number representation is unsafe against DPA. They
presented an updated efficient implementation that guaranteed
the randomness of intermediate values, which was provably
secure against DPA. They used the TVLA to demonstrate
reduced side-channel leakage [16].

Pundir et al. presented a framework for power side-channel
analysis. They highlight Masking, Threshold Implementation,
and manipulating the signal-to-noise ratio (SNR) by introduc-
ing noise into the system to suppress signal information in
power traces as successful countermeasures against DPA for
AES and post-quantum candidate Saber [17].

D. Masking

First-order masking is a technique that can be used to avoid
directly handling the sensitive secret polynomial sk. Instead,
two statistically independent polynomials sk1 and sk2, both
the same length as sk, are used in computation such that the
decryption result is, x1 = A ·sk1+e1, and x2 = A ·sk2+e2.
The relationship between the message m, the decryption result,
and x1 and x2 is such that m = x1+x2 in arithmetic masking
or m = x1⊕x2 in Boolean masking. From the perspective of a
side-channel observer, sk1, sk2, and subsequently x1, and x2

should not reveal any information about the long-term secret
sk. For our purposes sk1 and sk2 are generated using the
random mask R [18] such that: sk1 = sk ⊕R, and sk2 = R.

Oder et al. [19] demonstrated the general application of
the dual-rail masking technique for Ring-LWE implementa-
tions. They point out that all Arithmetic-to-Boolean (A2B)
conversion algorithms take in power-of-2 coefficients as inputs
[19], [20]. Previously, this had been a major challenge in
implementing masking for algorithms like Kyber because of
the prime modulus q compared to Saber [21] and other im-
plementations with a power-of-2 modulus. Algorithm 1 shows
Oder et al.’s routine for converting coefficients to power-of-2
during the message decode routine Poly tomsg. The routine
MSB returns the most significant bit of the input coefficient
and A2B is the arithmetic-to-binary (A2B) conversion of
Debraize [22]. Q is the fixed prime modulus parameter of
Kyber. The implementation shown is verified to be safe against
side-channel power analysis attacks and is later applied to
other PQC implementations [20].

Pessl and Prokop showed the application of masking tech-
niques of Oder et al. to Kyber and NewHope. They demon-
strated their implementation was resistant against fault injec-
tion through clock glitches and power analysis side-channel
attacks on a micro-controller. Algorithm 2 shows a masked
decode routine as adapted by Pessl and Prokop for Kyber [19],
[20].

Our implementation extends the work of Oder et al. and
Pessl and Prokop. Specifically, our work provides an inex-
pensive hardware implementation of the dual-rail masking
techniques which were previously implemented in software
and executed on the Cortex-M4 micro-controller for Kyber-
512. In addition, we modify and optimize the initial software
designs for hardware by leveraging the architectural benefits
of the FPGA fabric. These modifications then lead to a

Algorithm 1 TransformPower2 routine converts coefficients
to power-of-2 for A2B conversion [19].

procedure TRANSFORMPOWER2(x1, x2)
y1 ← {0, 1}16
y2 ← x1 − y1
y2 ← y2 + x2

z1 ← y1 −Q
[z1, z2]← A2B(z1, y2)
k1 ← MSB(z1)⊕ 1
k2 ← MSB(z2)
k′1 ← {0, 1}16
k′′1 ← k1 − k′1
k′2 ← {0, 1}16
k′′2 ← k2 − k′2
r ← {0, 1}16
c1 ← (((((((r + y1) − k1Q) − k2Q) + 2k′1k

′
2Q) +

2k′1k
′′
2Q) + 2k′′1k

′
2Q) + 2k′′1k

′′
2Q)

c2 ← (y2 − {0, 1}16)
return c1, c2

end procedure

Algorithm 2 Masked Decode (Poly tomsg) [20].
procedure MDECODE(c1, c2)

c1 ← c1 − ⌊Q4 ⌋
[y1, y2]← TransformPower2(c1, c2)
y1 ← y1 − ⌊Q2 ⌋
[y′1, y

′
2]← A2B(y1, y2)

m1 ← MSB(y′1)
m2 ← MSB(y′2)
return m1,m2

end procedure

new proposed efficient pipelined approach to masking, along
with other hiding techniques. Our implementation is directly
applicable to Kyber-{768 and 1024} without modification.

E. Pipelining as a Power Analysis Countermeasure

Standaert et al. [23] demonstrated a successful correlation
power analysis attack on an FPGA. It was observed that when
carefully applied, pipelining can be an effective countermea-
sure against DPA. While the outer stages of the pipeline remain
partially predictable, the inner stages effectively function as
noise generators. Depending on the exact implementation, the
noise may not be sufficient to rule out the possibility of
a successful DPA. Still, it is undeniable that it reduces the
correlation between predictions and measurements.

Additional experimental results show that loop unrolling
can further increase the robustness of pipelining as a DPA
countermeasure. Observations also showed that resetting the
internal state of registers results in leakage and therefore
should be avoided for secure implementations [23].

We consider both observations made by Standaert et al.
First, our hiding-only and hiding-plus-masking implemen-
tations do not reset internal registers between operations.
Second, we use a combination of loop unrolling as a hiding



technique and efficient pipelining as a countermeasure. Our
findings are reported in section IV.

F. Measurement Techniques
According to Mazur and Novotny, while experimenting on

AES, the success rate of DPA depends on the measurement
setup. Removing decoupling capacitors which tend to filter
the output signal, plays a significant role in improving the
success rate of the DPA. In addition, replacing switched-mode
power supplies with linear power supplies improves the odds
of success [24]. However, DPA is still possible without either
modification while requiring more power traces.

Sun, Yan, and Zambreno highlight a significant amount
of power analysis research on FPGAs has been theoretical,
simulated [23], or experimental using customized hardware
far removed from what would be found in real-world systems
[25]–[28]. Our work is verified through practical experimen-
tation, and we probe the target FPGA device without any
physical change to the circuitry in our measurement setup.

G. Related Works
Several implementations exist for CRYSTAL-Kyber on the

FPGA. Many of them have focused on improving area effi-
ciency. However, provably secure designs remain few. Most
published works on securing Kyber have been on the micro-
controller [3], [29]–[32].

Jati et al. have presented an area-efficient design of Kyber
secure against fault injection and power analysis on the FPGA.
The authors argued that masking and other previously known
techniques for protecting against side-channel-assisted attacks
are expensive, so they proposed alternatives to guarantee
security. Their design significantly reduced the area occupied
by hashing functions using a common SHA3 core to perform
all SHA3-(256,512) and SHAKE256 routines. They also used
custom hashing functions based on a stripped-down version
of AES-128 to detect fault injections. Jati et al. also used
Random clock delays, address randomization, and instruction
randomization to protect against side-channel assisted attacks
[6].

The random clock delays would misalign power traces,
making calculating any correlations in the time domain dif-
ficult. Address randomization shuffles coefficients with each
round of execution, making using correlations functions dif-
ficult. Their instruction randomization, similar to out-of-order
execution, would also further misalign coefficients on power
traces. No experimental validation was given to demonstrate
side-channel resistance. Nevertheless, the proposed counter-
measures are sound.

III. DESIGN & IMPLEMENTATION

A. Design
The implemented design combines both hiding and masking

to improve side-channel resistance. Two designs were imple-
mented for this work. The first used only hiding techniques and
the second combined masking with hiding techniques. Results
are presented showing the resistance against DPA for both
implementations.

Fig. 2. Kyber KEM Encapsulation and Decapsulation Architecture. Solid
and dashed lines show data flow in encapsulation and decapsulation modes
respectively.

Fig. 3. Dual-rail first-order masking implementation for Kyber decapsulation.



Algorithm 3 Secure branch execution in Fujisaki-Okamoto
transform.

1: if c = c′ then
2: SS ← H(k′||H(c′))
3: else
4: SS ← H(z||H(c′))
5: end if

1) Hiding Techniques: Power analysis attacks are depen-
dent on direct correlations between underlying computations
and observed device power draw. For SPA attacks, compu-
tations of individual coefficients of the secret vector sk are
directly observed. In some cases, observations can be seen
with the naked eye on power traces collected while the design
is running. For this reason, implementations securing against
such attacks avoid, for example, code branch executions de-
pendent on the intermediate values and or directly handling
the coefficients of the secret vector (masking).

The code snippet shown in Algorithm 3 demonstrates how
the Fujisaki-Okamoto transformation maintains constant-time
execution in the event of decryption failure by producing an
incorrect shared key SS. To an attacker attempting a decryp-
tion oracle attack, [33], the observed power trace is not directly
distinguishable between that of successful decryption and the
production of correct SS. The attacker, in this case, would
require further knowledge about the expected output to know
that a decryption failure has occurred; this would require more
than a single trace. The hiding techniques implemented rely on
parallel processing and pipelining as security measures. Both
these approaches prevent the processing of secret coefficients
independently.

Parallel processing. The goal of this approach is to prevent
coefficients from being handled independently. This technique
is applied primarily to the ‘Unpack SK’ and polynomial
addition and subtraction modules. Each of these modules
processes up to eight arithmetic operations in parallel per clock
cycle. For an attacker observing the power trace, any observed
changes in the traces are the result of eight parallel operations
[23].

For SPA attacks that rely on differences in the traces based
on the hamming weights of the inputs and the difference
between non-zero and partial zero inputs, the power trace of-
fers no information about individual coefficients. Similarly, for
DPA that relies on statistical techniques to identify leakages,
no information is leaked about any single coefficient [23].
Therefore, we consider this approach to be secure for both
attack methods. However, this approach is not without penalty
since additional hardware resources are required. On the other
hand, a coefficient vector of 256 elements can be processed
efficiently in 32 clock cycles only.

Pipelining. Repeatedly used modules such as the Mont-
gomery and Barrett reduction are protected using pipelining.
Listing 1 shows the relevant Verilog code for a pipelined Mont-
gomery reduction. Both Barrett and Montgomery reduction
modules are implemented with a 4-stage pipeline to reduce the

1 l o c a l p a r a m K = 4 ;
2

3 r e g [K− 1 : 0 ] s t a t e = 0 ;
4

5 a s s i g n reduce done = s t a t e [K− 1 ] ;
6

7 a lways @( posedge c l k )
8 s t a t e <= { s t a t e [K− 2 : 0 ] , ce } ;
9

10 a lways @( posedge c l k ) b e g i n
11 a <= i C o e f f s a ;
12 u <= a * $ s i g n e d (KYBER QINV) ;
13 t <= u * $ s i g n e d (KYBER Q) ;
14 o C o e f f s <= $ s i g n e d ( f i f o o u t − t ) >>> 1 6 ;
15 end
16

17 S h i f t R e g # ( .MSB(K−1) ) FIFO [ 3 1 : 0 ] (
18 . c l k ( c l k ) ,
19 . d i n ( i C o e f f s a ) ,
20 . dou t ( f i f o o u t )
21 ) ;

Listing 1. Code snippet showing pipelined Montgomery Reduction. K is the
number of pipeline stages. KYBER Q and KYBER QINV are fixed constants.

Fig. 4. The figure shows overlapping operations in Barrett and Montgomery
modular reduction operations. The overlap in operation makes observing
Hamming Weights of intermediate values difficult.

initialization interval from 4 to 1. A shift register is required
to forward the input coefficient, which is used in the first and
last stages of the pipeline. Reducing the initialization interval
also has the benefit of significantly improving the throughput.
When processed sequentially, a 256-element coefficient vector
is processed in 1024 clock cycles while pipelining requires
only 259. This implementation can further be optimized when
synthesized to efficient DSP resources.

Pipelining is applied in 21 pipeline stages to a larger module
Poly tomsg in IND-CPA decryption. Without pipelining, the
Poly tomsg operation requires 6656 clock cycles to complete.
With pipelining and masking applied, the operation can be
reduced to 274 clock cycles only.

Considering the security of pipelining as a hiding technique,
in any k-stage pipeline, only the first and last k−1 coefficients
are exposed at the beginning and end of the operation. The
number of potentially vulnerable clock cycles for a given
operation with an input of N coefficients is 2k − 2. The
remaining N − k − 1 clock cycles effectively function as a
noise generator. The noise generation is a result of processing
multiple coefficients per clock cycle. The instantaneous current



consumption is uncorrelated to any one coefficient, or set of
registers [23].

The basis of the security of pipelining is similar to that
of parallel processing. Both techniques rely on hiding by
processing multiple coefficients per clock cycle.

2) Masking Techniques: The dual rail masking technique
is applied to the IND-CPA decryption algorithm as shown in
Figure 3. The implementation follows a pipelined version of
Algorithm 2. A Pseudo-Random Number Generator (PRNG)
is added to generate the random values R = {0, 1}11. The
masked secret vectors are produced as sk1 = sk ⊕ R and
sk2 = R. We use only random numbers R < 212 because
larger values resulted in decryption errors. The remainder of
the decapsulation process, as shown in Figure 1, is unchanged.

A series of PRNGs are used to generate the randomness
required to implement the masking algorithm. A suitable
PRNG core1 with good statistical properties was chosen [34].
One caveat to the hiding techniques described earlier, used
in conjunction with masking, is that operations requiring
randomness will require multiple random numbers per clock
cycle. In the case of parallel processing, the PRNGs required
are as many as half the coefficients processed in parallel.
The relationship depends on the number of stages requiring
random numbers in pipelining. These observations become
limiting factors for the degree of parallelism achievable and
an unavoidable overhead cost of pipelining.

Requiring multiple random numbers while working with
PRNGs presents a set of challenges. First, PRNGs by nature
repeat their output sequence unless re-seeded. Second, the
PRNGs have identical outputs when seeded with the same
seed. The PRNGs are organized in a master-slave arrangement
to overcome these challenges and guarantee randomness. A
single master PRNG IP, re-seeded with each round of ex-
ecution and instantiated outside the Kyber-512 IP, supplies
a stream of random seeds to the slave PRNG cores within
the Kyber-512 IP. Seed buffers are placed close to the slave
PRNGs. The size of the buffers is proportional to the number
of PRNG IPs in the module, which is half the number of
the random number required per clock cycle. Only half the
number of generators is required because each slave 32-bit
PRNG produces 2 16-bit random numbers. The slave PRNG
cores internally have unique fixed random seeds as a guarantee
for randomness.

B. Setup

We use the Xilinx Virtex-7 FPGA platform for our test-
ing and implementation. The hiding-plus-masking Kyber-512
CCAKEM IP is instantiated together with a separate PRNG
IP Core. The Kyber-512 core is clocked at 100 MHz. We
reuse common modules as much as possible to reduce the
utilization of hardware resources. In addition, for the hiding-
plus-masking implementation we only duplicate smaller mod-
ules and serialize larger modules like the NTT core. We do

1We acknowledge that incorporating a true random number generator with
better statistical properties would likely improve the security of our masking
implementation. We leave that as an exercise outside the scope of this work.

TABLE II
FPGA-HOST PC COMMUNICATION UART API.

command prefix payload bytes
device reset x - 0
device enable e - 0
set mode m operation mode 1
set rand bytes ciphertext r random bytes 32
set public key secret key k public key 800
set rand bytes ciphertext c ciphertext 736
set public key secret key s secret key 1632
get ciphertext t ciphertext 736
get shared secret a shared secret 32

this to achieve a good trade-off between hardware resource
usage and additional clock cycles. A Tektronix MDO 3 series
oscilloscope is used for capturing power traces from the
FPGA development board. A probe is attached to the current
output of the VCCAUX IO and VCCBRAM power rails.
We expected this probe placement closely mimics measuring
current across a shunt as done in similar studies on the
Cortex M4 microcontroller boards [18]. Xilinx Vivado 2019.1
and Xilinx SDK 2019.1 are used to generate the IP cores
and writing the bitstream to the FPGA development board.
The control program running on the Microblaze processor
on the FPGA implements an interface with the Simple Serial
version 1.1 of the ChipWhisperer platform. This choice offers
a convenient communication and control interface API when
capturing traces on the host PC. On the host PC, a Python
script communicates with the oscilloscope to automate trace
capturing over the USB VISA interface. Captured traces
are transferred from the oscilloscope directly over the USB
connection. The script also arms the oscilloscope and waits
for a trigger signal from the FPGA board to trigger the trace
capture on the oscilloscope. On the FPGA board, we use the
XADC GPIO pins to output the necessary capture signals
which are connected to the data probes on the oscilloscope.

C. Evaluation

The Test Vector Leakage Assessment (TVLA) has been
put forward as a standard leakage assessment test. The test
has known limitations, including risks of false positives and
negatives. It is tempting to consider the TVLA a pass/fail
security test. However, it is vital not to overestimate the
meaning of the result. We use the TVLA only to measure
side-channel leakage emanating from correlations of inputs.

The test measures and evaluates side-channel leakage while
maintaining a separation between the implementation and the
device under test [10]. The test itself is a non-specific statistical
test highlighting variations in power and EM traces attributed
to some leakage of sensitive data over multiple traces. In gen-
eral, independent leakage is assumed [35]. TVLA computes
the univariate Welch’s t-test for each point on a trace by the
following equation: TV LA = (µr − µf )/

√
σ2
r/nr + σ2

f/nf ,
where µr, σr, and nr are the mean, standard deviation, and
number of traces collected for Tr; and likewise for trace set
Tf . The two sets Tr and Tf represent the sets of traces
collected with random inputs and fixed inputs, respectively.



(a) VCCAUX IO (VCC) (b) VCCBRAM (VCC)

(c) VCCAUX IO (I) (d) VCCBRAM (I)

(e) VCCAUX IO (GND) (f) VCCBRAM (GND)

Fig. 5. Text vector leakage assessment of 40,000 fixed vs. random traces
for hiding-only Kyber-512 on VC707. The x and y-axes show time and t-
values respectively. (5a) Result of traces captured from the VCC terminal
of the VCCAUX IO power rail. (5b) Result of traces captured from the
VCC terminal of the VCCBRAM power rail. (5c) Result of traces captured
from the I (current) terminal of the VCCAUX IO power rail. (5d) Result of
traces captured from the I (current) terminal of the VCCBRAM power rail.
(5e) Result of traces captured from the GND terminal of the VCCAUX IO
power rail. (5f) Result of traces captured from the GND terminal of the
VCCBRAM power rail.

(a) VCCAUX IO (VCC) (b) VCCBRAM (VCC)

(c) VCCAUX IO (I) (d) VCCBRAM (I)

(e) VCCAUX IO (GND) (f) VCCBRAM (GND)

Fig. 6. Text vector leakage assessment of 40,000 fixed vs. random traces for
hiding-plus-masking Kyber-512 on VC707. The x and y-axes show time and
t-values respectively. (6a) Result of traces captured from the VCC terminal
of the VCCAUX IO power rail. (6b) Result of traces captured from the
VCC terminal of the VCCBRAM power rail. (6c) Result of traces captured
from the I (current) terminal of the VCCAUX IO power rail. (6d) Result of
traces captured from the I (current) terminal of the VCCBRAM power rail.
(6e) Result of traces captured from the GND terminal of the VCCAUX IO
power rail. (6f) Result of traces captured from the GND terminal of the
VCCBRAM power rail.

In our case, the inputs are a ciphertext and secret key pair run
through Kyber’s decryption algorithm. A pass or fail decision
is given for each timestep on the trace by testing for a null
hypothesis, such that of the two sets Tr and Tf are equivalent.
The null hypothesis is rejected with a confidence level of
99.99999% if the absolute value of the t-test is greater than
4.5. The confidence level and t-test threshold are known values
documented in literature for the TVLA test [36]. For each point
on the trace, a rejected null hypothesis is a fail, suggesting
the presence of some exploitable leakage from the underlying
computation. We use the TVLA, first to identify leakage on
traces measured on the oscilloscope, and second to confirm the
elimination of said leakage after the application of masking.

IV. RESULTS AND ANALYSIS

The focus of the results of TVLA presented is on the mag-
nitude of t-values. Higher t-values point towards a correlation
between the known fixed inputs and random inputs, while
lower values indicate a lower correlation. The t-test fails when

the t-values are larger than the 4.5 threshold. The result of the
test vector leakage assessment on the Poly tomsg routine
is shown in Figure 5 and Figure 6. Traces were captured
from the VCC, I , and GND terminals of the VCCAUX IO
and VCCBRAM power rails. Although we present the result
of 40,000 traces, we also collected results from 10 and 20
thousand traces.

Figure 5 shows the result of the hiding-only Kyber-512.
The hiding-only Kyber-512 failed TVLA at one point only
on the TVLA test on all traces collected from VCCAUX IO.
The traces collected from VCCBRAM also showed leakage
at different points in traces collected from VCC and GND.
The traces collected from VCC and I rails are more revealing
of the algorithm. Altogether the traces show fairly high t-
values but are not conclusive to point out significant leakage.
We conclude that the hiding-only countermeasure does offer
protection against power analysis.

Figure 6 shows the result of traces captured on hiding-
plus-masking Kyber-512. The Poly tomsg routine in the



TABLE III
FPGA RESOURCE UTILIZATION AND CLOCK CYCLE COUNTS.

Implementation Algorithm Process FPGA Freq LUTs Slices DSPs BRAMs Div IPs Cycle Counts
(MHz)

This work Kyber-512 Encaps Virtex7 VC707 100 153,939 107,804 53 264 0 88,176
(Hiding-only) Decaps Virtex7 VC707 100 143,112 81,746 60 294 0 126,619
This work Kyber-512 Encaps Virtex7 VC707 100 163,584 119,324 56 392 0 88,176
(Hiding-plus-masking) Decaps Virtex7 VC707 100 152,860 92,977 76 489.5 0 137,738
Huang et al. [3] Kyber-512 Encaps Artix7 AC701 155 80,322 141,825 54 200.5 2 49,015

Decaps Artix7 AC701 155 88,901 152,875 354 202 3 68,815
Huang et al. [3] Kyber-768 Encaps Artix7 AC701 155 97,085 153,867 36 200.5 2 77,481

Decaps Artix7 AC701 155 110,260 167,293 292 202 3 102,113
Huang et al. [3] Kyber-1024 Encaps Virtex7 VC707 192 119,189 162,636 36 200.5 2 107,054

Decaps Virtex7 VC707 192 132,918 172,489 548 202 3 135,553
Xing and Li [32] Kyber-512 Encaps Artix7 AC701 161 7,412 2126 2 3 - 5,100

Decaps Artix7 AC701 161 7,412 2126 2 3 - 6,700
Xing and Li [32] Kyber-768 Encaps Artix7 AC701 161 7,412 2126 2 3 - 7,900

Decaps Artix7 AC701 161 7,412 2126 2 3 - 10,000
Xing and Li [32] Kyber-1024 Encaps Artix7 AC707 161 7,412 2126 2 3 - 11,300

Decaps Artix7 AC707 161 7,412 2126 2 3 - 13,900
Jati et al. [6] Kyber-512 Encaps Artix7 XC7A35T-2 258 7,151 - 2 - - 43,300

Decaps Artix7 XC7A35T-2 258 7,151 - 2 - - 47,700
Jati et al. [6] Kyber-768 Encaps Artix7 XC7A35T-2 258 7,151 - 2 - - 43,300

Decaps Artix7 XC7A35T-2 258 7,151 - 2 - - 47,700
Jati et al. [6] Kyber-1024 Encaps Artix7 XC7A35T-2 258 7,151 - 2 - - 43,300

Decaps Artix7 XC7A35T-2 258 7,151 - 2 - - 47,700

hiding-plus-masking implementation is pipelined such that the
measured traces show the result measured over 274 clock
cycles compared to the 6656 for unmasked hiding-only results.
The latency of the hiding-only routine is 0.014 ms, while
the hiding-plus-masked is only 0.0008 ms. The masked traces
are, therefore, significantly shorter. We observed smaller t-
values in all the masked results, except for the VCCBRAM
GND results. Additionally, the traces do not show any patterns
relatable to the algorithm. The small t-values resulted from the
pipelining and masking of the coefficients. We consider this
evidence enough that our combined pipeline and masking ap-
proach is an effective countermeasure against power analysis.

We make two observations. First, the hiding-plus-masking
implementation passes the TVLA at all points; No side-
channel leakage was detected. Second, an overall reduced
magnitude of the t-values in the leakage assessment results
compared to the unmasked hiding-only results. The values
sampled during trace collection came from the current con-
sumption of 21 pipeline stages. On the other hand, four
samples were captured per clock cycle for every coefficient in
the unmasked traces. The smaller values indicate a lesser cor-
relation between fixed and random inputs than the hiding-only
traces. Moreover, smaller t-values overall suggest improved
side-channel resistance against DPA.

We also show the utilization of FPGA resources and total
clock cycles for hiding-only and hiding-plus-masking Kyber-
512 in Table III. Our base design was inefficient and resource
intensive. However, our goal is to highlight the cost of our
masking approach, considering masking has been previously
dismissed as too expensive to implement on the FPGA. A
similar overhead factor can be expected when applied to more
efficient designs. The cost of masking has previously been
reported at 2x. We observe an overhead of 1.08x in terms of

the clock cycles compared to the hiding-only design. Much of
the savings come from pipelining. We also report an overhead
of 1.06x for hardware resources compared to the hiding-only
design—the savings result from reusing common hardware
modules in the design. We duplicated the hardware resources
for smaller modules to process the sk1 and sk2 in parallel. In
the case of larger modules, we run the modules twice for sk1
and then sk2.

V. CONCLUSIONS AND FUTURE WORK

In this work, we demonstrated the first masked pure-
hardware side-channel analysis resistant implementation
of the CRYSTALS-Kyber post-quantum cryptography key-
establishment mechanism. Further, we showed how the tech-
niques did not greatly impact resource utilization and per-
formance, while guaranteeing over 99.99999% probability
of security against SCA attacks. We achieved these metrics
using a novel combination of masking and hiding through
pipelining operations in regions of the algorithm that utilize
secret material.
Future Work: To extend the work presented in this paper, we
intend to demonstrate these techniques applied to the other
lattice-based KEM finalists, as well as the higher-bit security
implementations of Kyber (Kyber-768 and Kyber-1024).
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