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Abstract—Numerous security vulnerability assessment tech-
niques urge precise and fast finite state machines (FSMs) extrac-
tion from the design under evaluation. Sequential logic locking,
watermark insertion, fault-injection assessment of a System-on-
a-Chip (SoC) control flow, information leakage assessment, and
reverse engineering at gate-level abstraction, to name a few,
require precise FSM extraction from the synthesized netlist of the
design. Unfortunately, no reliable solutions are currently available
for fast and precise extraction of FSMs from the highly unstruc-
tured gate-level netlist for effective security evaluation. The major
challenge in developing such a solution is precise recognition of
FSM state flip-flops in a netlist having a massive collection of
flip-flops. In this paper, we propose FSMx-Ultra, a framework for
extracting FSMs from extremely unstructured gate-level netlists.
FSMx-Ultra utilizes state-of-the-art graph theory concepts and
algorithms to distinguish FSM state registers from other registers
and then constructs gate-level state transition graphs (STGs) for
each identified FSM state register using automatic test pattern
generation (ATPG) techniques. The results of our experiments
on 14 open-source benchmark designs illustrate that FSMx-Ultra
can recover all FSMs quickly and precisely from synthesized
gate-level netlists of diverse complexity and size utilizing various
state encoding schemes.

Index Terms—FSM Automata Theory, FSM Extraction, Netlist
Analysis, Security Assessment

I. INTRODUCTION

Modern System-on-a-Chip (SoC) designs are sophisticated
entities and primarily composed of several functional units
known as hardware Intellectual Property (IP) cores that inter-
act with each other and collaborate to accomplish complex
tasks and provide the desired functionality. To reduce the
overall expenses and shorten the time-to-market (TMT) as
much as possible, the design firms extensively rely on third-
party vendors to develop, implement, integrate, and fabricate
their IP designs. As a result, the designer’s IPs get trans-
parent to numerous untrusted stakeholders. Therefore, IPs
eventually become vulnerable to tampering attacks [1] and
IP infringement [28]. Furthermore, researchers have shown
that SoC security may be at risk when deployed in operation
[2]. Attackers may use the design for test (DFT) structures to
their advantage or perform power, timing, and electromagnetic
emission-based analysis, inject faults to access the system
illegally, or leak sensitive and secret information such as the
keys used in cryptographic encryption and decryption [3]–[6].

Numerous security assessment techniques have been pro-
posed to evaluate and address the aforementioned threats over
the past years. These techniques have primarily concentrated
on protecting the device’s control flow, which is crucial to the
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entire system’s operation. Since control logic units are typi-
cally FSM-based, such techniques frequently require precise
recognition of all finite state machine (FSM) structures. For
instance, when translating from RTL to gate-level abstraction,
the Computer-Aided Design (CAD) tools may add more don’t-
care states to the design’s control FSM. Attackers might
use fault-injection techniques to gain access to the design’s
protected states via utilizing the don’t-care states [45]. Fur-
thermore, while integrating the DFT structures at the gate-level
abstraction, untrustworthy third-party IP (3PIP) vendors can
implant sequential Trojans into the design’s control FSM [7]–
[9]. Therefore, the overall system security can be improved via
identifying and addressing fault-injection and Trojan insertion-
based vulnerabilities linked to the extracted FSMs during the
pre-silicon design phases [45].

In addition, some FSM-based watermarking strategies em-
bed the authorship information in the states or transitions
which need precise FSM extraction to prevent IP infringement
[16], [17]. Other FSM-based methods for watermarking alter
the State Transition Graph (STG) of the FSM subtly for em-
bedding the watermark as a property [16], [17]. Furthermore,
partitioned FSM-based sequential logic locking strategies have
shown an enormous potential to be more resistant to oracle-
guided attacks than combinational logic locking while prevent-
ing overproduction [10]–[14]. Researchers have demonstrated
that it is essential to understand a design’s extracted FSM to
reduce the susceptibility to information leakage problems [15].
Additionally, in the hardware verification domain, equivalence
checking between the extracted FSMs from higher abstraction
levels (such as RTL) and gate-level netlist abstraction should
be conducted for secure design transformation and to reduce
the verification gap between specification and implementation
[18], apart from the security applications mentioned earlier.
However, because of the numerous shortcomings of the con-
temporary gate-level FSM extraction frameworks [26]–[29] as
discussed in Section III, many of these hardware protection
and validation schemes aimed at increasing the security of
an SoC can not be properly implemented in practice, un-
fortunately. Therefore, a fast, scalable and precise scheme is
essential for extracting all the states and transactions of FSMs
present in an SoC, particularly for the security-critical IPs.

Although precise extraction of a design’s control FSMs is
crucial for numerous security and verification applications,
the methods and algorithms for FSM extraction reported
in the literature primarily focus on extracting FSMs from
higher levels of design abstraction (such as RTL) [19], [20].
However, because of design flattening and several optimization
stages (e.g., area, power, and performance) performed by the
CAD tools, the FSM state registers are mixed with non-FSM
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registers during synthesis. As a result, it is challenging to
distinguish the FSM state registers and identify the additional
don’t-care states and don’t-care transitions included at the
gate-level abstraction succeeding logic synthesis from highly
unstructured gate-level netlists. Moreover, identifying all gates
in the prospective FSM state registers’ feedback loop using
the cycle (loop) identification technique [40] exhibits polyno-
mial time complexity. As a result, retrieving every state and
transition of a large design’s FSMs becomes very difficult.
Identifying an FSM from an accumulator or other analogous
arithmetic logic blocks with similar feedback loop properties
is another challenge in the precise control FSM extraction
process. Several recent research works have proposed methods
for extracting FSMs from flattened gate-level netlists [26]–
[29]. Nevertheless, they are associated with several drawbacks
when applied to large-scale and control-intensive benchmarks.

In this paper, we propose a framework named Finite State
Machine Extractor Ultra (FSMx-Ultra) to reconstruct FSMs
from synthesized gate-level netlists automatically while taking
a short time for computation with 100% accuracy. FSMx-Ultra
utilizes state-of-the-art efficient graph algorithms and various
industry-standard CAD tools based on the proposed mathe-
matical metrics in [29] to recover the control FSMs of designs
with diverse sizes and complexity. The FSMx-Ultra framework
is a rethought version of the recently proposed novel graph
theory-based FSMx framework [29]. More specifically, our
major contributions in this paper are as follows:

• Developing FSMx-Ultra, a completely automated frame-
work for fast, scalable, and accurate control FSM extrac-
tion from highly unstructured gate-level netlists (either
flattened or hierarchical) obtained after logic synthesis;

• Utilizing the state-of-the-art graph theory concepts and
the Input Similarity Metric (ISM) and FSM Probability
Metric (FPM), presented in [29], to isolate the non-FSM
registers with 100% accuracy;

• Extracting human-readable individual gate-level STGs for
each of the recognized control FSMs present in the highly
unstructured gate-level netlists;

• Demonstrating the efficacy of the FSMx-Ultra framework
on 14 open-source benchmarks from [21] with different
sizes, complexity, and state encoding schemes.

The remainder of the paper is organized as follows. In
Section II, we provide an overview and definitions of the
terminologies used in the entire paper. Section III discusses the
shortcomings of the contemporary FSM extraction techniques
and the underlying motivation behind our work. Section IV
provides a detailed overview of our proposed FSMx-Ultra
framework. The experimental results with elaborated algo-
rithmic complexity analysis and efficacy of FSMx-Ultra are
presented in Section V. Section VI presents the potential
applications of the proposed FSMx-Ultra framework. Finally,
the paper gets concluded with Section VII.

II. PRELIMINARIES AND DEFINITIONS

Finite State Machine (FSM): From a mathematical stand-
point, a Finite State Machine (FSM) can be described as a 6-
tuple element (S, I, O, s0, ϕ, λ). Here, S is a finite collection
of states, I is a finite set of inputs, O is a finite set of outputs

generated from the FSM, s0 is the reset (or initial) state of the
FSM, λ is the output logic function, and ϕ : S × I → S is the
state transition function that defines the next state of the FSM.
In Fig. 1, the generic architecture of a typical FSM is depicted.
Three primary components form the high-level architecture of
an FSM: (i) the State Register (also termed as State Memory)
storing the current state of the FSM and implementing S, (ii)
the combinational State Transition Logic implementing ϕ, and
(iii) the Output Logic of the FSM realizing λ.

Fig. 1: Architecture of a typical FSM. The black dashed line
is present only in the generic architecture of Mealy FSM. The
state transition logic and the state register form the minimum
extraction region of the FSM.

Moore FSM and Mealy FSM: FSMs can be classified into
two major categories considering the type of the output logic:
Moore FSM [24], and Mealy FSM [25]. If the output logic of
the FSM relies not only on the current state of the FSM but
also on the inputs (mathematically λ : S × I → O), then the
FSM is denoted as a Mealy FSM. Conversely, if the output
logic of an FSM depends solely on the present state of the
FSM, then the FSM is defined as a Moore FSM. The output
logic of a Moore FSM can be presented mathematically as λ :
S → O. As shown in Fig. 1, the output logic of a Moore FSM
is driven only by the FSM state register. However, the output
logic of a Mealy FSM is controlled by both the state register
and the primary inputs (shown as the dashed line in Fig. 1).
FSM Minimum Extraction Region: The minimum extraction
region of an FSM is primarily composed of two parts of the
FSM: (i) the State Register and (ii) the pure combinational
State Transition Logic, as defined in the existing literature
[26]. The purple-colored bounding box pictured in Fig. 1
represents the minimum extraction region of the FSM. An
accurate extraction mechanism of the minimum extraction
region of the FSM is required for analyzing the FSM to yield
the state transition graph (STG) of the FSM automatically.
Control FSM: When an FSM serves as the control unit of a
design, it is termed a control FSM. We provide this definition
to distinguish control FSMs from counters. Control FSMs
control and sequence operations that take place in the datapath
of the design by activating control signals precisely at the
required time for action. On the contrary, a counter is typically
utilized to count in a pre-defined sequence. For instance, a 3-
bit binary counter can generate the count sequence 0, 1, 2,
3, 4, 5, 6, 7, repeatedly providing a specific count value at a
particular active edge of the clock signal driving the counter.
State Transition Graph (STG): From mathematical perspec-
tive, the State Transition Graph (STG) of a control FSM is
defined as a directed graph where each node (or vertex) of the
graph represents a particular state s ∈ S and each edge of the
graph represents a certain transition between two states, t =
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Fig. 2: State transition graph (STG) of a certain control FSM.
The nodes and edges of the graph represent the states and
transitions between two states of the FSM, respectively.

T (si, sj) from the current state si to its next state sj [45].
The current state si and the next state sj can also be termed
as source state and destination state respectively for the state
transition T (si, sj). In Fig. 2, the state transition graph of a
particular control FSM is depicted. As shown in the figure,
the STG has 4 nodes implying the FSM contains 4 states:
‘00’, ‘01’, ‘10’, and ‘11’. It is also obvious from the figure
that there are a total of 8 edges, i.e., state transitions in the
FSM. For instance, the state transition T (‘01’, ‘10’) implies
that the control FSM switches to the destination state ‘10’
from the source state ‘01’ due to single or multiple transition
conditions determined by the state transition logic.
Reset State: The Reset State of an FSM is defined as the entry
state to the other states existing in the FSM according to FSM
automata theory [34]. As the name implies, the reset state of
an FSM represents a particular state to which an FSM switches
when the reset condition is applied. The reset condition forces
the control FSM to transit to the reset state irrespective of the
current state of the FSM. For the control FSM depicted in Fig.
2, the ‘00’ state is the reset state.
State Encoding Schemes: States of a particular control FSM
can be encoded using three major schemes: Binary, Gray, and
One-Hot. Using a particular state encoding technique in the
design solely relies on the design’s optimization goal, such
as the design’s performance, area, or power consumption.
In the binary state encoding scheme, all states of the FSM
are enumerated serially initiating from 0 in order of their
appearance and will be implemented as a state register having
| log2(|S|)| numbered flip-flops in hardware, where |S| is
the number of states of the FSM. However, in the one-hot
state encoding approach, the FSM states are encoded so that
all state encoding bits except one are equal to 0 at any
point. Consequently, the control FSM state register can be
implemented with a register having |S| numbered flip-flops.
Finally, in the Gray encoding technique, the states of the FSM
are encoded so that the bit difference between the binary
represented state encoding values of two consecutive states
is 1. The Gray encoding of the states of an FSM results in
implementing a state register with a bit width of | log2(|S|)|
bits, similar to the binary state encoding method. The four
states of the control FSM shown in Fig. 2 can be encoded as 2-
bit vectors: ‘00’, ‘01’, ‘10’, and ‘11’, respectively, if the binary
encoding scheme is applied. The same states can be encoded
as ‘00’, ‘01’, ‘11’, and ‘10’ if the Gray encoding technique is
employed. Last but not least, if the one-hot encoding approach
is utilized, the states need to be encoded with 4-bit vectors:
‘0001’, ‘0010’, ‘0100’, and ‘1000’, respectively.

The power, performance, and area of an FSM are affected
by choice of the state encoding scheme. The state encoding
choice of the control FSMs influences the overall hardware
implementation of a particular design significantly [35]–[37].

The number of state register flip-flops in the binary state
encoding scheme is minimal. However, the complexity of the
state transition logic increases as the required logic increases.
The one-hot encoding scheme increases the number of flip-
flops required for the state register. Nevertheless, the one-
hot encoding technique simplifies the required logic for the
FSM’s output and state transition logic. As a result, the
combinational circuits present in a typical FSM get more
straightforward, reducing the FSM’s overall propagation delay.
Hence, in turn, the FSM gets compatible with higher clock
frequencies, and the timing performance of the design gets
improved [35]–[37]. The main drawback of using the one-
hot approach is that more flip-flops are required to implement
the state register, so the hardware implementation of the FSM
requires more area than the other state encoding practices.
The Gray encoding approach of the FSM aids in minimizing
overall power consumption, reducing the complexity of the
state transition logic, and making the asynchronous control
signals of the FSM resilient against glitches [35]–[38] while
keeping the number of state register flip-flops minimum.
Flattened Netlist and Hierarchical Netlist: The gate-level
netlist of a design is a complex interconnection of logic gates
via connecting wires. The gate-level netlist of a particular
design is obtained using logic synthesis, and the logic gates
present in the netlist come from the standard cell library
used during the logic synthesis process. The standard cell
library contains numerous sequential cells (flip-flops and
latches), non-sequential cells (NAND gates, NOR gates, XOR
gates, compound gates, tristate buffers, inverters, etc.), and
sometimes even macros (memory blocks, IO pads, etc.). The
synthesized gate-level netlist of a design is highly unstructured
and seems like a sea of logic gates, and the netlist may or may
not preserve the modular hierarchy of the design. If the netlist
does not preserve any design hierarchy, causes mixing of logic
blocks, and allows further optimization by the logic synthesis
tool via flattening, then the netlist is termed as Flattened
Netlist. However, if the designer specifies explicitly not to
flatten the synthesized gate-level netlist by the synthesis tool,
then the synthesis tool will yield a gate-level netlist preserving
the design’s modular hierarchy, and mixing logic blocks will
not take place. In that scenario, the obtained gate-level netlist
after logic synthesis is defined as Hierarchical Netlist. Genus
from Cadence and Design Compiler from Synopsys are two
widely used industry-grade logic synthesis tools.

Fig. 3: Directed graph representation of a certain gate-level
netlist. The nodes of the graph represent the gates present in
the netlist, and the edges of the graph portray the interconnec-
tions between two connected gates of the netlist.

Netlist Graph: A synthesized gate-level netlist can be mod-
eled as a complex directed graph from the mathematical
viewpoint. The netlist directed graph can be defined mathe-
matically as a 2-tuple entity G = (V, E) where V is the number
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of logic gates i.e. number of nodes, and E is the number
of interconnections between two connected gates existing in
the netlist i.e. number of edges. In Fig. 3, the netlist graph
representation of a particular gate-level netlist is depicted.
Nodes of the graph stand for the logic gates present in the
netlist, and edges of the graph imply the interconnections
between two connected gates of the gate-level netlist. Graph
representation of the netlist makes it suitable for applying
existing state-of-the-art efficient graph algorithms to perform
topological analysis on the highly unstructured netlist.

III. RELEVANT WORK AND MOTIVATION

Precise recognition of FSM structures and isolating the
control FSM state registers from the non-FSM registers are
challenging in a flattened gate-level netlist due to multi-level
optimizations during logic synthesis. The method proposed in
[26] was the first extraction scheme of FSMs from a gate-
level netlist using topological analysis based on the structural
facts of the FSMs to the best of our knowledge. However,
this proposed method is associated with several drawbacks,
unfortunately. The technique can not successfully isolate con-
trol FSMs from accumulators or similar logic blocks since
it relies entirely on identifying flip-flops with combinational
feedback loops. In addition, the scheme fails to analyze gate-
level netlists containing multiple control FSMs and is only
applicable to small-sized gate-level netlists.

A strongly connected component (SCC) based control FSM
identification methodology was proposed in [27], mounting
on [39] to address these limitations. Mathematically, an SCC
region is defined as the region of a graph with at least a single
cycle (loop). This FSM extraction scheme only aims to identify
and analyze the flip-flops having pure combinational feedback
loops to detect FSMs present in an SCC region since FSM
structures always exist inside SCC regions. Consequently,
it fails to isolate control FSM state registers from counter
registers since counters have very high structural similarities
with control FSMs. Moreover, the approach proposed in [27]
did not present any methodology to extract STGs of the
recognized FSMs, which does not ensure that the identified
registers represent FSMs in practice. Finally, this scheme
assumes that control signals generated from the FSMs can be
identified in the netlist by examining whether the control signal
is connected to the selection pin of a particular multiplexer.
However, this method did not clarify how the control output
signals can be identifiable in a highly unstructured netlist.

The authors presented an FSM extraction methodology in
[28], which considers two structural properties of a control
FSM: self and cross flip-flop (FF) influence characteristics.
This technique can not perfectly isolate control FSMs from
counters despite considering these two structural properties of
control FSMs and proposing a scheme for removing counters
from the FSM candidates after topological analysis on the
gate-level netlist. Furthermore, this approach requires addi-
tional manual analysis of the set of final FSM candidates
to determine which FSMs are control FSMs. Unfortunately,
none of the proposed FSM recognition schemes can extract
human-readable gate-level STGs separately for each detected
control FSM since these entirely depend on identifying SCCs
for FSM region localization. An SCC region may contain

multiple FSMs inside, and in that scenario, the proposed
scheme will yield a single and composite STG that mingles
all the individual STGs of the FSMs. Additionally, the loop
identification technique for detecting potential FSM state FFs
using [40] exhibits polynomial time complexity and hence
has scalability issues even in analyzing medium-sized netlists.
Finally, the STG generation technique of the detected FSMs
presented in [28] possesses inherent scalability issues since it
performs the exhaustive gate-level simulation of the extracted
state transition logic of the potential FSM candidates.

Most recently, a novel graph theory-based framework named
FSMx has been proposed in [29] for fast and precise extraction
of all control FSMs present in a flattened gate-level netlist to
overcome the mentioned limitations of existing state-of-the-
art FSM extraction schemes proposed in [26]–[28]. FSMx is
much more accurate and roughly 10 times faster on average
compared to existing approaches [26]–[28]. However, the
framework still suffers from several drawbacks. First of all,
the FSMx framework can only analyze flattened netlists to
extract all control FSMs present. It can not handle gate-
level netlists preserving the hierarchy of the design. There are
numerous applications where flattening, mixing logic blocks,
and further design optimization is strictly prohibited. For
example, designers opt for threshold implementation (TI)
[42]–[44] to make cryptographic hardware resilient against
differential power analysis (DPA) attacks. In that scenario,
designers explicitly specify not to flatten the gate-level netlist
during logic synthesis, impeding the sharing of logic blocks of
the design. As a result, the obtained gate-level netlist conserves
the hierarchy of the design, and the FSMx framework can not
extract control FSMs from such a netlist. Secondly, the frame-
work has inherent scalability issues since it uses exhaustive
gate-level simulation to extract STGs of the detected control
FSMs. Exhaustive gate-level simulation is entirely prohibited
if the number of primary inputs of a design is high or even
moderate. Therefore, the framework fails to extract STG of
the control FSM if the number of primary inputs of the
extracted state transition logic is high or the state transition
logic is too complex. Finally, the FSMx framework can not
extract STGs from benchmarks with a massive number of FSM
state FFs. For instance, the memory controller IP core [60]
contains a control FSM state register with 66 state FFs, and
the framework fails to handle such a scenario. Furthermore,
the framework is not scalable to complex benchmarks with a
massive number of gates. Hence, there is no guarantee that the
proposed framework can extract control FSMs and STGs in
every possible use case. To conclude, several issues still need
to be resolved for the general adoption of FSMx [29].

Our proposed FSMx-Ultra framework is an extended version
of the FSMx framework [29] and intended towards addressing
its aforementioned drawbacks. Fast, precise, and automatic
extraction of all control FSMs from hierarchical and flattened
netlists with their corresponding human-readable gate-level
STGs have motivated us in developing FSMx-Ultra frame-
work. We primarily focus on extracting control FSMs from
synthesized gate-level netlists using standard cell technology
libraries. However, the concepts of our proposed FSMx-Ultra
framework can be easily expanded to support netlists synthe-
sized using Field Programmable Gate Array (FPGA) libraries.



5

IV. FSMX-ULTRA FRAMEWORK

The high-level overview of our proposed FSMx-Ultra
framework is presented in Fig. 4. From a bird’s-eye view, the
framework comprises two major modules: the Netlist Graph
Analyzer module and the Gate-Level State Transition Graph
Extractor module. The primary purpose of the Netlist Graph
Analyzer module is to generate the graph representation of the
synthesized gate-level netlist and then to perform the topo-
logical analysis of the netlist graph based on state-of-the-art
efficient graph algorithms. The synthesized gate-level netlist
is obtained after logic synthesis of the input Register-Transfer
Level (RTL) design using any commercial state-of-the-art
synthesis tool and can be either flattened or hierarchical.
Although we have used Cadence Genus as the logic synthesis
tool in our experiments, Design Compiler from Synopsys can
also be used. The Gate-Level State Transition Graph Extractor
module is intended for yielding the individual STGs for each
of the recognized control FSMs using Automatic Test Pattern
Generation (ATPG) techniques. The standard cell technology
library in .lib format is required during synthesis and is also
used by the Netlist Graph Analyzer module. Moreover, the
standard cell technology library in .v format is required by
the TetraMAX tool from Synopsys for generating test patterns.
Finally, state encoding information of the control FSMs from
the RTL design is needed by the Gate-Level State Transition
Graph Extractor module to decide how many test pattern files
will be generated by the ATPG tool. It is an essential task
to extract gate-level STGs of the control FSMs. The state
encoding information of a control FSM incorporates the name
of the state variable representing a control FSM, the width of
the state variable implying the size of the state register, and the
state encoding scheme used for the control FSM. Analysis of
the synthesis report from Design Compiler or the extracted
RTL state transition graph of a control FSM by Cadence
JasperGold provides such essential information.

Fig. 4: Overview of the FSMx-Ultra framework. The frame-
work analyzes the input synthesized gate-level netlist of a
particular RTL design and yields the state transition graphs
of the detected control FSMs.

A. Netlist Graph Analyzer

The Netlist Graph Analyzer module stands for performing
topological analysis based on existing state-of-the-art graph
algorithms to identify the portions of the input design netlist
representing potential control FSM structures. It can be par-
titioned into two major sub-modules, as shown in Fig. 4:

Netlist-to-Graph Representation Converter and Netlist Graph
Topological Analyzer. The Connected Components Report is
generated as an intermediary output from the first sub-module,
which is eventually taken as input to the second sub-module.

1) Netlist-to-Graph Representation Converter: This sub-
module aims to convert the input synthesized gate-level netlist
into a directed graph format appropriate for the application of
established graph algorithms, as depicted in Fig. 5. The sub-
module is composed of three stages: unrolling of the input
synthesized gate-level netlist, formation of the intermediate
representation of the input unstructured gate-level netlist, and
finally, generation of the graph presentation of the input
unstructured gate-level netlist.

Fig. 5: Netlist-to-Graph Representation Converter framework.
It generates the associated graph representations of the recog-
nized unstructured gate-level netlists from the input gate-level
netlist, which can be either hierarchical or flattened.

Gate-Level Netlist Unrolling: The first stage Gate-Level
Netlist Unroller takes the synthesized gate-level netlist as
input, and the synthesized gate-level netlist can be either
hierarchical or flattened. The presence of this netlist unrolling
stage is one of the major distinguishing features between
the FSMx and FSMx-Ultra frameworks. FSMx-Ultra can an-
alyze hierarchical netlists preserving design hierarchy for this
characteristic, which is absent in the FSMx framework. If a
flattened gate-level netlist of a particular RTL design (having
a single module containing the unstructured gate-level netlist
of the entire design) is provided as input, the Gate-Level Netlist
Unroller stage remains inactive. However, in the case of hav-
ing the hierarchical gate-level netlist of the RTL design (with
multiple modules having portions of the entire synthesized
netlist), this stage recognizes the design hierarchy, performs
unrolling operation, and thus decomposes the input netlist into
multiple smaller unstructured gate-level netlists. Each of the
obtained unstructured netlists is analyzed individually via the
later stages of Netlist-to-Graph Representation Converter.
Intermediate Representation of Netlist Formation: The sec-
ond stage Intermediate Gate Level Netlist Processor generates
an intermediate representation of the unstructured input gate-
level netlist, Structured Nets Report with Instances. It is highly
structured and acts as the input to the third stage, Graph
Representation Generator. The intermediate representation of
the netlist is used in later stages to reconstruct the fragments of
the input netlist representing FSM structures. First, the input
and output pins of all the cells in the input technology library
are detected. The intermediate representation of the netlist
contains the names of the standard cells, cell instance names,
pin names, pin types, and the names of the wires connected
to the pins in a well-structured manner.
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Netlist Graph Representation Generation: The final stage
Graph Representation Generator analyzes the obtained inter-
mediate representation of the gate-level netlist for constructing
the required directed graph of the netlist, Connected Com-
ponents Report. The directed netlist graph can be presented
using adjacency list representation. In this representation, a
netlist graph is denoted as an entity with numerous pairs
of nodes. Each node in a particular pair stands for a cell.
Moreover, each pair denotes a particular edge of the netlist
graph that implies the link between two interconnected cells
since a particular cell’s output is connected to another cell’s
input port. We can find the number of edges of the netlist
graph by simply counting the number of pairs. The number of
nodes of the netlist graph comes from the total cell count
mentioned in the synthesis report generated by the logic
synthesizer tool. The adjacency list format of the netlist graph
has been chosen to minimize the complexity of the employed
graph algorithms. For a flattened netlist, a single, gigantic and
complex netlist graph representation is generated by this sub-
module. Nonetheless, multiple relatively simpler and smaller
netlist graph representations are yielded by this sub-module if
a hierarchical netlist is analyzed due to the gate-level netlist
unrolling stage present. Analysis of multiple simpler and
smaller netlist graphs individually comes with more inherent
computational advantages than analysis of a single but highly
complex and gigantic netlist graph. Consequently, the FSMx-
Ultra framework extracts control FSMs from the hierarchical
netlist of a particular RTL design more quickly than the flat-
tened netlist of the same RTL design. We have demonstrated
this fact of the FSMx-Ultra framework in Section V-D.

Fig. 6: Netlist Graph Topological Analyzer framework. It
generates a list of FSM register candidates with the maximum
values of FPM. Later stages use these register candidates to
reconstruct the control FSM netlists.

2) Netlist Graph Topological Analyzer: This sub-module
is intended for performing graph algorithmic analysis on the
graph representation of the netlist Connected Components
Report obtained from the previous sub-module. The high-
level overview of the Netlist Graph Topological Analyzer
framework is presented in Fig. 6. Analyzing the input graph
representation report generated by the previous sub-module,
this framework first constructs the Netlist Graph, which is
often highly complex with a large number of nodes and edges
in case of practical benchmarks, as illustrated in Table I.
Next, all the flip-flops are identified in this netlist graph, and
registers are formed by grouping them. Then, the Tarjan’s
Strongly Connected Components Algorithm with Nuutila’s

Modifications [41] algorithm is applied on the obtained Netlist
Graph. The main reason behind choosing this algorithm is its
memory efficiency while keeping similar time complexity to
the proposed Tarjan’s algorithm for finding SCC regions [39].

This stage decomposes the whole netlist graph into smaller
sub-graphs representing the graph’s strongly connected com-
ponent (SCC) regions. We are only interested in analyzing the
SCC regions of the graph since these regions contain potential
FSM structures mathematically. This process resembles the
divide-and-conquer approach and makes a clear distinction
between FSMx-Ultra and FSMx proposed in [29]. Perform-
ing analysis on smaller sub-graphs has more computational
advantages than analyzing the entire giant graph, especially
for larger netlist graphs. It is one of the underlying reasons
that explain why FSMx-Ultra is so much faster compared to
FSMx, which is also evident from the experimental results
shown in Table I. Detailed algorithmic complexity analysis
from the mathematical viewpoint is presented in Section V-A.

In the next stage, the number of SCC regions is minimized.
A single flip-flop, a part of a particular register, with a
combinational feedback loop can also form a separate SCC
region while other flip-flops of that register exist in another
SCC region. Hence, these SCC regions can be merged to form
a single SCC region instead of two (the modified SCC). In
this way, a list of minimized SCC regions is constructed. This
minimization process also helps to improve overall run-time.
Finally, structural analysis (marked by the orange bounding
box in Fig. 6) is performed on each of the SCC regions present
in the minimized SCC region list using the novel graph theory-
based approach, and mathematical metrics presented in [29]
and a list of FSM register candidates is obtained as the output
from this sub-module.

(a) FSM of a sequence detector [30] (b) A 4-bit accumulator [31]

Fig. 7: An FSM and accumulator example [29].

The structural analysis stage on the modified SCC regions
is crucial for precisely identifying the control FSM register
candidates. The central point to be noted here is that this
sort of analysis is performed on sub-graphs representing
SCC regions by FSMx-Ultra. However, FSMx performs this
analysis on the entire netlist graph. Hence, its overall time
complexity is higher than FSMx-Ultra. The structural truths of
accumulators, data registers, control FSMs, and counters were
thoroughly investigated in [29], and three essential properties
were found based on the implementations of these entities.
Those properties (P) were used to derive and formulate two
important mathematical metrics for isolating FSM registers
from the non-FSM ones, and FSMx did not require any further
post-processing stage or human decision [29].

The first property (P-I) states that data (D) inputs of
potential state FFs are driven by dissimilar standard cells
[29]. This property can effectively separate data registers
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from counters, accumulators, and control FSMs. The data
registers form the essential part of the data flow in a design.
Therefore, similar standard cells tend to drive the D-inputs
of flip-flops, constituting a data register after logic synthesis
[32]. Counter and accumulator register FFs also exhibit this
property occasionally, which is apparent from Fig. 7b. On the
contrary, dissimilar standard cells tend to drive the D-inputs of
the control FSM FFs since those represent the control flow of
a design [32]. It is also evident from Fig. 7a. P-I was utilized
to develop a metric called Input Similarity Metric (ISM) in
[29] to calculate the D-input similarity of the FFs present in
a particular register which was denoted as follows:

ISM =
max(N1, N2, N3, ....)

N
× 100% (1)

Here, N represents the size of a certain register which
implies that it consists of a total of N FFs. Among the N FFs,
N1 FFs have one type, N2 FFs have another type of cells
driving their corresponding D-inputs, and it goes on similarly.
The maximum of all these values was taken since we want to
consider the maximum similarity in the worst-case scenario.
As depicted in Fig. 7a, the control FSM has an ISM of 50%.
It is because a 2-input OR gate drives the D-input of a FF
of the FSM register. Additionally, the D-input of the other
FF gets driven by a 3-input OR gate. This scenario makes
to have max(N1, N2) = 1 and N = 2 (as the control FSM
consists of 2 FFs). Conversely, as illustrated in Fig. 7b, the 4-
bit accumulator has an ISM of 100%. The underlying reason
behind this is the presence of four 2-input XOR gates in the
adder block, which drive the four FFs of the accumulator
register. It means that a single type of standard cell is driving
all four FFs. In other words, we get N = max(N1) = 4. We
have set ISM = 85% as the threshold R for eliminating the
non-FSM registers similar to it was done for FSMx [29].

The second property (P-II) is presented as potential state
FFs must contain pure combinational self-feedback loops in
[29]. It implies that each FF of a particular FSM register
should influence itself via at least one combinational feedback
loop. From the graph theory perspective, the same FF should
be reachable through a combinational logic starting from a par-
ticular FF. It can also be observed in Fig. 7a. Mathematically, it
gives birth to a parameter named Self-influence Parameter and
a register with N FFs must have a self-influence parameter of
N [29]. However, this property also exists in the accumulator
structure [27], which is evident for the 4-bit accumulator
example presented in Fig. 7. Hence, a clear distinction is
required between FSM and accumulator structures. The third
property (P-III) was presented to accomplish such an objective
and narrated as potential state FFs of a prospective FSM
register should influence the rest of the state FFs and must also
be influenced by the other state FFs of that register [29]. This
property is absent in accumulator structures and emphasizes
the cross-influence characteristics of control FSM structures
which ultimately helps in finding another parameter called
Cross-influence Parameter. A potential FSM state register of
size N should have N(N – 1) as the value of this parameter. P-II
and P-III were combined to develop the second mathematical
metric named FSM Probability Metric (FPM) in [29] which

calculates the probability of a register present in the SCC
region of being an FSM. FPM was defined as follows:

FPM =
S + C

N2
× 100% (2)

Here, S is the number of self-influence paths, and C repre-
sents the number of cross-influence paths. Finally, N stands for
the size of the register. For the FSM of the sequence detector,
shown in Fig. 7a, we get N = 2, S = 2 and C = 2. Hence,
it exhibits an FPM of 100%. On the other hand, the 4-bit
accumulator shown in Fig. 7b has an FPM of only 25% since
for it N = 4, S = 4 and C = 0. This noticeable difference
between the FPM values of the accumulator and the control
FSM can be used to remove accumulator structures.

In the structural analysis stage of the modified SCC regions
after the minimization process, we deconstruct a particular
modified SCC region into two directed acyclic graphs (DAGs),
namely Combinational DAG and Sequential DAG. Since these
DAG portions do not contain any cycle (loop) inside, anal-
ysis of those provides tremendous computational advantages
inherently [29]. Analysis of a cyclic graph directly is com-
putationally more expensive. The sequential DAG contains all
the edges of the SCC region sub-graph, with one node of the
edge representing a sequential cell (FF or latch) and the other
one standing for a non-sequential cell. Conversely, the rest
of the edges of that modified SCC region is accommodated
by the combinational DAG. Let us assume that the modified
SCC can be represented as a sub-graph, G = (V, E). Hence,
E gets minimized to Ec holding only the edges between two
non-sequential cells, analytically. The remaining portion of E
belongs to the sequential DAG. It contains only the edges
between a sequential cell and a non-sequential cell. Moreover,
V gets partitioned into two parts. The first part, Vs, holds all
the sequential cells (i.e., flip-flops and latches). The remaining
nodes Vc holding the rest of the non-sequential cells form the
second portion. Next, ISM is calculated based on Eq. 1, and the
sequential DAG is minimized mounting on the obtained ISM
value. All the registers with ISM exceeding the threshold R
are discarded by FSMx-Ultra. We term the registers remaining
in the minimized form of the sequential DAG as Potential
State Registers. In different words, utilizing the ISM, potential
state FF vertices Vr are extracted from Vs via minimization.
Logically, Vr is only a small fraction of Vs in number.

Lastly, the starting and ending points of the FFs of the
potential state registers are detected. Then, we apply Depth-
First Search (DFS) on the combinational DAG to analyze self-
influence and cross-influence among the FFs of a particular
register. Moreover, registers having Vr are analyzed instead
of considering the entire Vs. These two actions help to
improve the overall run-time of FSMx-Ultra. Additionally,
those simplify post-processing methods for precise extraction
of the control FSM Netlists [29]. We adopted the same FPM-
based post-processing method as FSMx. The FSM Register
Candidates Report contains all the names and sizes of the
potential state registers. Moreover, the obtained FPM and
the extracted FSM candidates region (having FF names and
other gates for a potential FSM register) are also included.
If a flattened gate-level netlist is analyzed by FSMx-Ultra,
then a single FSM Register Candidates Report is generated.
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Nonetheless, in the case of analyzing hierarchical gate-level
netlists, such a report is generated multiple times due to the
unrolling stage presented in Section IV-A. This report is an
important input for the subsequent stages of FSMx-Ultra.

B. Gate-Level State Transition Graph Extractor

The primary objective of this module is the automatic ex-
traction of the associated state transition graphs (STGs) of the
recognized control FSMs. The extracted STGs by our proposed
FSMx-Ultra framework are human-readable and identical to
the STGs generated by the recently proposed FSMx framework
[29]. Additionally, the Gate-Level State Transition Graph
Extractor module of the FSMx-Ultra framework seems to be
functionally analogous to the Gate-Level Boolean Function
Analyzer module of the FSMx framework. However, two major
differences between these modules make the FSMx-Ultra
framework unique in terms of performance and scalability.

The Gate-Level State Transition Graph Extractor module
takes the state encoding information of the control FSMs
present in the RTL description of the design as an additional
input which is absent in the Gate-Level Boolean Function
Analyzer module of the FSMx framework. This input contains
the name of the FSM state variable and its width with the
utilized state encoding scheme, which can be readily obtained
from existing commercial synthesis or formal verification tools
like Design Compiler or Cadence JasperGold as mentioned
before. This additional input’s primary purpose is the partial
contribution to making the proposed FSMx-Ultra framework
more scalable compared to the FSMx framework by aiding in
determining the number of test pattern files generated by the
ATPG tool from Synopsys named TetraMAX.

Fig. 8: Framework of the Gate-Level State Transition Graph
Extractor module. It performs ATPG-based analysis to extract
the gate-level STGs of the detected control FSMs.

Furthermore, the Gate-Level State Transition Graph Ex-
tractor module performs ATPG-based analysis to extract the
gate-level STGs of the control FSMs. On the contrary, the
Gate-Level Boolean Function Analyzer module of the FSMx
framework performs the exhaustive gate-level simulation of
the extracted pure combinational state transition logic using
the corresponding automatically generated Verilog testbenches.
Exhaustive gate-level simulation fails if the state transition
logic of a particular FSM is highly complex or the number of
primary inputs of the state transition logic is high or even mod-
erate. Therefore, this module of the FSMx framework [29] fails
to handle such possible use cases and extract gate-level STGs

of the identified control FSMs, suffers from inherent scalabil-
ity issues, and is not applicable for analyzing any flattened
gate-level netlist in general. The high-level overview of the
framework of the Gate-Level State Transition Graph Extractor
module is shown in Fig. 8. The operation of this module
can be decomposed into three major stages: reconstruction
of the control FSM netlists, generation of the Modified State
Transition Logic, and extraction of the individual gate-level
STGs of the identified control FSMs.

Fig. 9: Generic architecture of the FSM Netlist. ‘m’ and ‘n’
represent the bus sizes of the associated inputs and outputs.
The FSM state register is ‘n’-bit wide and has ‘n’ flip-flops.

Reconstruction of FSM Netlist: The Gate-Level State Tran-
sition Graph Extractor module takes the previously generated
FSM Register Candidates Report and Structured Connected
Components Report as its major inputs. FSM candidate netlists
having the maximum FSM Probability Metric are recon-
structed utilizing these two inputs. One major output after such
a process is the automatic extraction of all such FSM Netlists.
A particular control FSM Netlist is composed of only the flip-
flops and pure combinational state transition logic. Hence, it
serves as the Minimum Extraction Region of a certain control
FSM [26] as shown in Fig. 1. A more detailed view of the FSM
Netlist architecture is depicted in Fig. 9. The data D inputs to
the flip-flops forming the FSM state register are termed as
Next State (NS) and the data Q outputs from those flip-flops
are called Present State (PS) collectively. The Inputs refer to
the primary inputs of the FSM Netlist. The Next State of the
FSM is solely determined by the Present State and the Inputs
and can be represented mathematically as NS = f(Inputs, PS).
The extracted pure combinational state transition logic of the
FSM Netlist implements the state transition function f and
serves as an essential entity for yielding the gate-level STG
of the detected control FSM.
Generation of Modified State Transition Logic: Another
major output from the Gate-Level State Transition Graph
Extractor module is the associated Modified State Transition
Logic of the FSM Netlist after the reconstruction phase is
over. The pure combinational state transition logic of the
FSM Netlist is modified to make it suitable for performing
ATPG-based simulation and analysis to assist the automated
extraction process of its corresponding gate-level state tran-
sition graph. ATPG-based analysis feature of FSMx-Ultra
makes the exhaustive gate-level simulation of the extracted
state transition logic entirely obsolete performed by the FSMx
framework. Hence, our proposed FSMx-Ultra framework re-
solves the inherent scalability issues of the FSMx framework
[29]. Finally, the State Encoding Information from RTL is
also required to determine the number of test pattern files to
be yielded by the Synopsys TetraMAX tool while generating
Tcl scripts for performing the ATPG-based analysis of the
extracted Modified State Transition Logic.

The generic architecture of the Modified State Transition
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Fig. 10: General architecture of the Modified State Transition
Logic. ‘m’ and ‘n’ represent the bus widths of the associated
inputs and intermediate outputs. The final output ‘Y’ is a single
wire which provides the equality checking result.

Logic is shown in Fig. 10. It is primarily composed of two
blocks: the pure combinational state transition logic of the
control FSM and an equality checker circuit connected to its
output. The pure combinational state transition logic of the
control FSM can be readily extracted when the FSM Netlist
gets reconstructed as it is an integral part of the control FSM
Netlist. As mentioned before, the Next State (NS) is a direct
function of the Present State (PS) and the primary Inputs of
the control FSM. The equality checker block checks whether
the Test State (TS) matches with the Next State (NS) or not.
It generates ‘0’ at the output ‘Y’ if TS matches with the NS
otherwise ‘1’ is generated at ‘Y’. Therefore, the ‘n’ bits of NS
can be logically XORed with the ‘n’ bits of TS, and the outputs
of XOR gates can be ORed together. This logical configuration
represents the implementation of the equality checker from
a high-level perspective. Our implementation of the equality
checker uses only 2-input XOR gates, 2-input OR gates, and
interconnections between them.

We need to provide all possible logical values of TS as an
input of the equality checker. These possible logical values of
the next states should be finite as those depend on the FSM
encoding style. Information on the control FSM encoding style
can only be obtained from the design’s RTL description. It
is impossible to get such a piece of important information
after performing the logic synthesis of a design. Hence, the
State Encoding Information from RTL is required as a major
input to our proposed FSMx-Ultra framework. If the control
FSM is encoded using Binary or Gray encoding scheme,
2n combinations of the logical values are applied at the TS
sequentially one at a time and checked for matching with
the value at NS. On the other hand, if the control FSM is
encoded using the One-Hot technique, the ‘n’ combinations
of test values are checked sequentially, as mentioned, keeping
only a single bit active (set to ‘1’) at a time. In this manner, the
State Encoding Information from RTL determines how many
times the ATPG tool named Synopsys TetraMAX should run,
and thus help to make the FSMx-Ultra framework scalable by
keeping the overall run-time limited.
Extraction of the Gate-Level STG: The most interesting
processing phases of the Gate-Level State Transition Graph
Extractor module start from when Tcl scripts are generated
automatically for performing ATPG-based simulation and
analysis of the Modified State Transition Logic using the ATPG
tool named Synopsys TetraMAX. These scripts for running
the ATPG tool are planned for generating test patterns that
violate the stuck-at-1 (SA1) condition at the output wire ‘Y’
of the Modified State Transition Logic, equivalent to removing
all faults and generating test patterns for SA1 fault at ‘Y’
sequentially for all possible combinations determined in the
previous stage. Therefore, the ATPG tool must yield ‘0’ at

‘Y’ to generate test patterns for this fault. It implies that TS
has matched perfectly with NS.

In addition, we have used ‘n-detect’ option of Synopsys
TetraMAX to generate 200 test patterns for such a perfect
match. As a result, 2n test pattern files are generated sequen-
tially in total if the control FSM is encoded with Binary or
Gray encoding technique, else ‘n’ numbered test pattern files
are produced. Each test pattern file contains 200 test patterns
for the SA1 fault at ‘Y’ if it is not empty. Present state and
next state information, which is crucial for generating the gate-
level STG of the control FSM, can be extracted after rigorous
analysis of the obtained test patterns. Empty test pattern files
stand for the unmatched scenarios of TS and NS, implying
such state transitions are not possible. The State Transition
Graph Constructor, as depicted in Fig. 8, implements this
processing stage which eventually extracts the gate-level STGs
of the control FSMs present in the netlist in both textual and
graphical representations.

Finally, we have used the PyGraphviz package to yield
the gate-level STG in graphical representation. Moreover, the
conditions for a particular state transition between two states
can be found via analyzing the obtained test patterns from the
Synopsys TetraMAX tool. Such conditions are also reported in
the textual presentation of the gate-level STG and will assist
designers in performing security assessments in later stages,
such as fault-injection and information leakage assessments.
Additionally, this information can aid designers in developing
novel FSM-based watermarking and sequential logic locking
schemes. Last but not least, we have compared the extracted
gate-level STGs of the control FSMs of the open-source bench-
mark designs, enlisted in [29], by the FSMx framework with
the STGs generated by the proposed FSMx-Ultra framework.
We have found that all of the extracted gate-level STGs by
these two frameworks are identical, which suggests that the
generation of 200 test patterns is quite enough and effective for
obtaining the entire gate-level STGs of the associated control
FSMs by our proposed FSMx-Ultra framework.

V. EXPERIMENTAL RESULTS AND DISCUSSION

A. Algorithmic Complexity
1) Time Complexity: Our proposed FSMx-Ultra framework

utilizes the divide-and-conquer strategy to decompose the
entire graph of input gate-level netlist, which is often quite
massive with a large number of nodes and edges, into smaller
sub-graphs by applying the Tarjan’s Strongly Connected Com-
ponents Algorithm with Nuutila’s Modifications [41]. This
efficient graph algorithm is an improved version of the Tarjan’s
Strongly Connected Components Algorithm [39] which can
identify all the sub-graphs of the input graph having at
least one cycle (loop) inside and can be applied to directed
graphs. The time complexity of the algorithm presented in
[41] is O(|V| + |E|) where |V| is the number of vertices
(nodes) and |E| is the number of edges of the graph. Due to
the associated linear time complexity, identifying the graph’s
strongly connected components (SCCs) is rapid.

The FSMx-Ultra framework analyzes the detected SCCs
further, as discussed in Section IV-A for precise recognition
of the control FSM structures present in the synthesized gate-
level netlist. Let us assume that ‘k’ is the total number of
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TABLE I: Worst-case run-time comparison between FSMx and FSMx-Ultra for 14 benchmarks obtained from [21]–[23].

Benchmark Name Gate Count FF Count Edge Count Control FSM Count Control FSM-FF Count Control FSM ISM(%) FSMx Run-Time FSMx-Ultra Run-time

UART Core [49] 576 89 1402 2 3, 3 67, 33 0.8 s. 0.4 s.
XTEA Cipher [50] 955 105 2214 1 2 50 1 s. 0.5 s.
SAYEH CPU [51] 1320 170 9601 1 4 50 10 s. 6 s.
CMAC Cipher [52] 1549 264 3255 1 3 67 1 s. 0.6 s.
SHA-256 [53] 5254 1806 120075 1 2 50 19 s. 2.5 s.
SHA-512 [54] 10763 3666 361582 1 2 50 3 min. 28 s. 10 s.
POLY1305 MAC [55] 11586 1724 81709 2 3, 3 67, 33 4 min. 30 s. 18 s.
AES-128 [56] 12976 2987 838121 4 2, 2, 2, 2 50, 50, 50, 50 6 min. 20 s. 31 s.
Tiny MIPS CPU [57] 17443 9285 662773 1 4 50 4 min. 11 s. 57 s.
Smart Card RSA [58] 35521 14578 83882 3 2, 3, 4 50, 67, 75 2 min. 16 s. 39 s.
USB HOST [59] 3163 1326 9524 1 4 50 N/A 6 s.
Memory Controller [60] 3207 1051 8489 1 66 50 N/A 8 min. 45 s.
PicoRV32 CPU [61] 6439 1680 19278 3 3, 2, 2 33, 50, 50 N/A 10 s.
OpenRISC 1200 [62] 201445 69943 492286 5 2, 2, 2, 3, 3 50, 50, 50, 67, 33 N/A 6 h. 55 min.

modified SCCs after the SCC merging phase (if required)
and focus only on a modified SCC for detailed analysis.
A modified SCC is deconstructed by FSMx-Ultra into two
acyclic sub-graphs called Sequential DAG and Combinational
DAG. The Sequential DAG can be represented as a 2-tuple
entity Gr = (Vr, Er), where Vr and Er represent its nodes
and edges, respectively. Similarly, The Combinational DAG
can be represented as a 2-tuple entity Gc = (Vc, Ec), where
Vc and Ec represent its nodes and edges, respectively. The
overall time complexity for analyzing a single modified SCC
is O(|Vr| × (|Vc| + |Ec|)) which can be derived similarly
as presented in [29]. We need to do this sort of analysis
for ‘k’ numbered modified SCCs. Therefore, the overall time
complexity for this stage is O(

∑k
i=1[|Vri| × (|Vci|+ |Eci|)]).

Since this analysis stage is associated with quadratic time
complexity, it has the dominant effect on the overall run-
time of the FSMx-Ultra framework. The time required for
detecting SCCs is minimal compared to this, therefore having a
minor effect on the overall run-time of FSMx-Ultra and can be
neglected. Moreover, the overall time required by the ATPG
tool to aid in extracting gate-level STGs is so small that it
is also negligible. Furthermore, the other processing phases
require reading from and writing into text files, which can also
be ignored. An important fact of the FSMx-Ultra framework is
that it analyzes the detected SCCs, which are small portions of
the entire netlist graph. As a result, this divide-and-conquer-
based processing phase has inherent computational advantages
over the analysis feature of FSMx [29]. On the other hand,
FSMx performs analysis on the entire netlist graph, which
is often extremely complex in practical benchmarks [21]–
[23]. Additionally, the exhaustive gate-level simulation of the
extracted state transition logic to yield gate-level STGs also
adversely affects the performance and scalability of FSMx.
Hence, FSMx is much slower and less scalable compared to
FSMx-Ultra when both of them analyze a large and complex
netlist graph. It is also evident from the experimental results
presented in Table I. From this mathematical analysis, we can
easily make a logical conclusion that FSMx-Ultra is much
faster compared to the existing methods [26]–[28] since FSMx
is 10 times faster on average than those approaches [29].

2) Space (Memory) Complexity: In the worst-case scenario,
the entire input netlist graph can form an SCC region. Hence,
the input netlist graph must be stored in the computer memory
stack. Therefore, the space complexity of FSMx-Ultra is
approximately O(V) since the entire netlist graph containing
all the nodes must be stored in the computer memory stack.

It is roughly equal to the space complexity of the modified
and improved version of Tarjan’s SCC algorithm proposed in
[41]. The space complexity of FSMx-Ultra is comparable to
existing SCC-based FSM recognition approaches [27], [28].
However, as presented in [29], the space complexity of FSMx
is O(|Vr|+ |Vc|), where |Vr| and |Vc| are the number of nodes
of the sequential and combinational DAGs of the netlist graph,
respectively. It is smaller than the overall space complexity of
FSMx-Ultra. From this analysis, it gets evident that FSMx-
Ultra requires only a bit more memory compared to FSMx.
Nonetheless, FSMx-Ultra supersedes FSMx in terms of run-
time, performance and scalability. Hence, the proposed FSMx-
Ultra framework is a more promising solution compared to the
state-of-the-art FSM extraction methodologies [26]–[29].

B. FSM Extraction Run-time

The FSMx-Ultra framework was implemented using Python
programming language to develop an automated tool. We have
used the NetworkX [48] package to apply the efficient graph
algorithms for analyzing the netlist graph as discussed in
Section IV. The package contains almost all existing state-
of-the-art graph algorithms. We have used Cadence Genus as
the logic synthesizer to obtain the flattened gate-level netlists
of the 14 benchmarks shown in Table I. The typical version of
the standard cell technology library Synopsys SAED90nm in
.lib format was used during synthesis. However, FSMx-Ultra
does not restrict the application of other available standard cell
technology libraries for academic and industry usage. We have
examined the effectiveness of the automated tool implementing
our proposed FSMx-Ultra framework via analyzing synthe-
sized netlists which used 10 different industry-standard tech-
nology libraries from Cadence, Synopsys and GlobalFoundries
during synthesis. It was found that FSMx-Ultra supported
netlists synthesized using all the 10 standard cell technology
libraries under test. However, the tool implementing the FSM
extraction framework proposed in [28] supports fewer standard
cell technology libraries till now, to the best of our knowledge.
It implies that FSMx-Ultra is more efficacious than that. FSMx
also supports several standard cell technology libraries [29].

Since the FSMx framework is faster compared to the pre-
viously proposed approaches [26]–[28], we have compared
the performance of our proposed FSMx-Ultra framework with
it. The worst-case run-time comparison between these two
frameworks has been illustrated in Table I. The run-time of
FSMx and all other experimental data except the run-time
of FSMx-Ultra was obtained from [29]. The name of the
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TABLE II: Worst-case run-time of FSMx-Ultra for Memory Controller [60] with different netlist type and state encoding.

Netlist Type State Encoding Gate Count FF Count Edge Count Control FSM-FF Count Control FSM ISM(%) Run-time

Flattened
Binary 3137 992 8363 7 57 43 s.
Gray 3185 1008 8412 7 57 54 s.

One-Hot 3207 1051 8489 66 50 8 min. 45 s.

Hierarchical
Binary 3292 1006 9245 7 57 31 s.
Gray 3248 1032 9378 7 57 42 s.

One-Hot 3322 1065 9536 66 50 6 min. 35 s.

benchmarks, gate count, flip-flop count, edge count, control
FSM count, control FSM-FF count, ISM (in %) of the control
FSM, and overall run-times of the FSMx and FSMx-Ultra
frameworks have been presented. The FPM (in %) of all the
detected control FSMs was found to be 100%. We set ISM
of 85% as the threshold R to remove the non-control FSM
registers to provide more flexibility, similar to FSMx [29]. We
performed all the experiments on the flattened netlists of the
benchmarks using an Intel Core i7-1065G7 processor clocked
at 1.3 GHz with 16GB RAM on a personal desktop. Both
frameworks analyzed the flattened gate-level netlists of the
open-source benchmarks collected from [21]–[23]. From the
last 4 rows of Table I, it is evident that FSMx fails to handle
flattened netlists of more complex and larger benchmarks.
FSMx was unable to extract the gate-level STGs of the control
FSM of the Memory Controller IP [60] since the FSM has
a state transition logic with a massive number of primary
inputs. As a result, the Gate-Level Boolean Function Analyzer
of FSMx failed due to inherent scalability issues since it
tried to perform the exhaustive gate-level simulation of the
extracted combinational state transition logic. The same thing
is true for the OpenRISC 1200 CPU [62], which is a gigantic
netlist graph with an enormous number of nodes and edges
and other benchmarks presented in Table I. The run-times
of FSMx have been denoted as Not Available (N/A) in such
scenarios since obtaining the overall run-time was practically
infeasible. The FSM extraction schemes presented in [26],
[28] are also associated with similar scalability issues and
fail to analyze complex netlist graphs. However, all control
FSMs of the netlists were extracted by FSMx-Ultra for all
the benchmarks presented much faster, as shown in Table I.
It suggests that FSMx-Ultra is better than existing methods in
terms of performance, run-time, and scalability.

C. FSM Extraction Accuracy
The gate count and flip-flop count, as shown in Table I, were

obtained from the Cadence Genus generated synthesis report.
The edge count was obtained from the report generated by
Netlist-to-Graph Representation Converter. The total count of
the control FSM and the corresponding FFs were obtained
from the benchmarks’ RTL descriptions. An industry-grade
formal verification tool Cadence JasperGold was used for
this purpose, along with extracting the RTL STG of the
control FSMs of the benchmarks. The ISM (in %) of the
control FSMs were obtained from the reports generated by
both FSMx and FSMx-Ultra, and those were identical. Since
FSMx is more precise than other approaches [26]–[28] and
can identify hidden don’t-care states and transitions in the
netlist abstraction, we have compared its extracted gate-level
STGs with the ones yielded by FSMx-Ultra for the first 10
benchmarks presented in Table I in which analysis performed

by FSMx was successful. It was observed that all the gate-level
STGs obtained by these two frameworks matched perfectly. It
must be noted that FSMx was able to extract the control FSM
netlists for all the benchmarks but failed to extract the gate-
level STGs for the last 4 benchmarks due to scalability issues,
as mentioned earlier. Moreover, we also compared the RTL
STGs extracted by Cadence JasperGold with the gate-level
STGs obtained by FSMx-Ultra as it was performed in [29].
We found that the RTL STG of a control FSM is a subset of
its gate-level STG. Finally, we have used Synopsys Formality,
a formal verification tool, to compare the extracted control
FSM netlists by the FSMx and FSMx-Ultra frameworks. It
was noted that the extracted FSM netlists matched properly.
We have also compared the extracted control FSM netlists
with their corresponding RTL descriptions using the same tool,
and perfect matching was obtained. To conclude, all these
employed validation methods suggest that the accuracy of
the FSMx-Ultra framework is 100%, even when FSMx failed
to extract the gate-level STGs. It makes FSMx-Ultra a more
accurate solution compared to state-of-the-art methods [26]–
[29] to extract control FSMs from synthesized netlists.

D. Case Studies
We have presented case studies on two practical bench-

marks from [21] to demonstrate that our proposed FSMx-
Ultra framework can extract FSMs from complex and large
benchmarks, although the recently proposed FSMx framework
failed, as shown in Table I. The first benchmark is the Memory
Controller IP and the second is the OpenRISC 1200 CPU.

1) Memory Controller: The Memory Controller from [21]
is intended for various embedded applications. It supports
SDRAM, SSRAM, FLASH memory, ROM, and several other
devices. It has eight chip selects, and each of them is
programmable. Moreover, it provides default boot sequence
support with other important features [60]. The IP has a single
control FSM, as evident from Table I. We have analyzed the
flattened gate-level netlists of this benchmark with 3 different
state encoding schemes, namely Binary, Gray, and One-Hot,
using FSMx-Ultra to illustrate that our proposed framework
can extract control FSMs utilizing the conventional state en-
coding practices. Moreover, we have also performed analyses
on the hierarchical netlist of this design with the mentioned 3
state encoding schemes. The obtained experimental results are
presented in Table II. FSMx extracted the control FSM netlist
but failed to yield the gate-level STG in all the mentioned
scenarios in this table. However, FSMx-Ultra succeeded in
handling all such use cases, as evident from Table II. It points
to the general applicability of FSMx-Ultra in analyzing flat-
tened and hierarchical netlists having control FSMs utilizing
various state encoding approaches. The extracted gate-level
STG of the control FSM of the Memory Controller using
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Binary state encoding scheme is depicted in Fig. 11. As
evident from the figure, the gate-level STG is quite complex,
which was extracted using ATPG-based analysis by FSMx-
Ultra. The extracted gate-level STG contains the 66 states
present in the RTL description with hidden don’t-care states
and transitions. Exhaustive gate-level simulation performed by
FSMx to extract this gate-level STG fails since the extracted
combinational state transition logic contains 98 primary inputs,
and testing 298 patterns is practically infeasible.

Fig. 11: The extracted gate-level STG of the Memory Con-
troller IP [60] with binary state encoding scheme employed.
The control FSM has 98 primary inputs in the pure combina-
tional state transition logic. Moreover, the gate-level STG of
the control FSM is quite complex, with the 66 states present
in the RTL description and hidden states and transitions.

2) OpenRISC 1200: The OpenRISC 1200 CPU from [21] is
a 32-bit scalar RISC utilizing Harvard micro-architecture and
5-stage integer pipeline with virtual memory support (MMU)
and basic DSP capabilities. It is an implementation of the
OpenRISC 1000 processor family. Additional features incor-
porate a high-resolution tick timer, programmable interrupt
controller, debug unit for real-time debugging purposes, and
power management support [62]. Analysis of the flattened
gate-level netlist of this processor core was the most challeng-
ing among all the benchmarks presented in Table I since it con-
tains 201,445 gates (nodes) with 69,943 flip-flops and 492,286
interconnections between two gates (edges). Unfortunately,
none of the existing FSM extraction frameworks [26], [28],
[29] were validated on such a huge and complex benchmark.
We tried to analyze this huge netlist graph with those methods.
It is quite unfortunate that all of those failed due to their
inherent scalability issues since this CPU core contains control
FSMs with a complex pure combinational state transition
logic with a massive number of gates and primary inputs.
Nevertheless, FSMx-Ultra successfully analyzed this massive
netlist and extracted all the gate-level STGs shown in Fig.
12 within 7 hours. It emphasizes that our proposed FSMx-
Ultra framework is free from scalability issues while the
existing FSM extraction techniques [26]–[29] suffer from such
issues tremendously in analyzing such huge gate-level netlists.
Additionally, we performed analysis on the hierarchical netlist
of OpenRISC 1200 as well. We observed that the same gate-
level STGs, shown in Fig. 12, were successfully extracted
by FSMx-Ultra in 5 h. 49 min. These two case studies
demonstrate that FSMx-Ultra is a more promising solution
than existing techniques in terms of run-time, performance,
and scalability to extract control FSMs from the synthesized
netlists (flattened or hierarchical) of industry-grade designs.

Fig. 12: The obtained 5 gate-level STGs of the control FSMs of
OpenRISC 1200 CPU [62]. All the control FSMs are encoded
using the Binary state encoding. However, FSMx failed to
extract the gate-level STGs since the associated state transition
logic circuits contain a massive number of primary inputs.

VI. APPLICATIONS OF FSMX-ULTRA

Our proposed FSMx-Ultra framework automatically detects
all control FSMs present in a gate-level netlist with the corre-
sponding gate-level STGs without any further manual analysis.
The gate-level STGs of the control FSMs are generated in both
textual and graphical representations and are human-readable.
Therefore, these STGs can be utilized to reverse engineer the
control flow of a complex SoC by an adversary. The attacker
may quickly get an idea of the control FSMs’ functionality in
a design and model those FSMs at a higher abstraction layer.
In conjunction, these gate-level STGs of the control FSMs
can be used for the rapid verification of the control flow of
an SoC after logic synthesis since FSMx-Ultra supports both
hierarchical and flattened gate-level netlists and provide FSM
extraction results much faster and more scalable compared to
state-of-the-art schemes presented in [26]–[29].

The FSMx-Ultra framework can be highly efficacious for
applications to ensure hardware security and trust effectively.
First, the fault-injection assessment of the control FSMs
present in a particular design in gate-level netlist abstraction
has been proposed recently in [45]–[47]. Our proposed FSMx-
Ultra framework can be easily extended to perform such
a security assessment. In addition, FSMx-Ultra can also be
used for performing information leakage assessment since the
framework can identify the hidden states and transitions of
the control FSMs which are absent in the RTL description
of a design. Analyzing the extracted gate-level STGs, it
can be easily verified whether the hidden don’t-care states
and transitions of the security-critical control FSMs assist in
making an SoC design prone to information leakage issues via
identifying the vulnerable state transitions of the FSMs.

Secondly, several FSM-based IP watermarking techniques
have been proposed in existing literature [63]–[68]. Besides,
numerous sequential logic locking schemes have been pre-
sented in [11], [28], [69], [70]. Precise recognition and extrac-
tion of all control FSMs and other relevant information present
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in the synthesized gate-level netlist of an RTL design are
crucial for such security applications as a major pre-processing
phase, and FSMx-Ultra is a distinguishing candidate for this.
The obtained control FSMs’ gate-level STGs are handy for
such an application since the FSMx-Ultra framework provides
information on the state transition conditions, which can be
utilized in developing watermarking and FSM-based logic
locking schemes. This feature is quite similar to the FSMx
framework [29]. However, FSMx-Ultra is better than the FSMx
framework in terms of performance, scalability and general
applicability as discussed in details in Section V.

Finally, apart from the applications for ensuring hardware
security and trust, the FSMx-Ultra framework can be misused
if it falls into the wrong hand. The proposed framework
localizes the control FSM regions present in a highly un-
structured gate-level netlist more precisely compared to ex-
isting approaches [26]–[28]. Thus, it may aid an adversary in
launching powerful structural attacks on a synthesized gate-
level netlist and performing malign activities. For instance,
an attacker can implant malicious Trojan in a control FSM
region of interest for bypassing particular state transitions
and ultimately leaking sensitive information such as keys for
cryptographic encryption and decryption operations [45]. The
accuracy, run-time, and scalability of FSMx-Ultra can help
tremendously in the localization phase of the control FSMs,
thus will reduce the overall time required for performing a
certain structural attack. Nonetheless, FSMx-Ultra can help the
security engineers to evaluate the efficacy of a certain FSM-
based logic locking technique from a defense perspective via
analyzing the minimum time an attacker may take to localize
all the control FSM regions in the unstructured gate-level
netlist and hence launch powerful structural attacks. FSMx-
Ultra is a more attractive solution compared to the proposed
FSMx framework [29] for such an application.

VII. CONCLUSION

This paper proposes a fast, scalable, and precise technique
based on state-of-the-art efficient graph algorithms and ATPG-
based analysis to automatically recognize all the control FSMs
present in the synthesized gate-level netlist of a particular RTL
design with the corresponding human-readable gate-level state
transition graphs. Experimental results on the synthesized gate-
level netlists of several benchmark RTL designs varying in
size and complexity have proved the efficacy of our proposed
FSMx-Ultra framework in terms of performance, accuracy,
and scalability, which is unfortunately absent in the state-of-
the-art FSM extraction schemes. We intend to utilize FSMx-
Ultra for performing fault-injection and information-leakage
assessments in the post-synthesis gate-level netlist abstraction.
Moreover, we envision incorporating FSMx-Ultra to develop
novel sequential logic obfuscation and control FSM-based
watermarking schemes in the future. To conclude, the FSMx-
Ultra framework can be easily integrated into the concurrent
VLSI design flow just after the logic synthesis stage. Existing
FSM extraction techniques at the gate-level netlist abstrac-
tion suffer from scalability and accuracy issues. Therefore,
FSMx-Ultra may open a new horizon in detecting security
vulnerabilities present in a design, assisting rapid verification
of the control flow of an SoC design after logic synthesis and

aiding designers to take numerous security countermeasures
for making an SoC design more secure at the pre-silicon stage
of the state-of-the-art VLSI implementation flow.
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