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Abstract. Multi-party quantum computation (MPQC) allows a set of parties to securely compute
a quantum circuit over private quantum data. Current MPQC protocols rely on the fact that the
network is synchronous, i.e., messages sent are guaranteed to be delivered within a known fixed
delay upper bound, and unfortunately completely break down even when only a single message
arrives late.
Motivated by real-world networks, the seminal work of Ben-Or, Canetti and Goldreich (STOC’93)
initiated the study of multi-party computation for classical circuits over asynchronous networks,
where the network delay can be arbitrary. In this work, we begin the study of asynchronous multi-
party quantum computation (AMPQC) protocols, where the circuit to compute is quantum.
Our results completely characterize the optimal achievable corruption threshold: we present an n-
party AMPQC protocol secure up to t < n/4 corruptions, and an impossibility result when t ≥ n/4
parties are corrupted. Remarkably, this characterization differs from the analogous classical setting,
where the optimal corruption threshold is t < n/3.

1 Introduction

Secure multi-party computation (MPC) allows a set of parties to compute a function of their private
inputs, in such a way that the parties’ inputs remain as secret as possible, even in the presence of an
adversary corrupting a subset of the parties.

The problem of MPC has been studied mostly in classical setting, where the function to evaluate
as well as the adversary are classical [Yao82, GMW87, BGW88, CCD88, RB89]. However, with the
recent advances on quantum computing technology, it has become increasingly relevant to consider
quantum functionalities and quantum adversaries. This motivated an important line of works on multi-
party quantum computation (MPQC) protocols [CGS02, BCG+06, Unr10, DNS12, DGJ+20, BCKM21,
ACC+21a].

Current MPQC protocols operate in the so-called synchronous network model, where parties have
access to synchronized clocks and there is an upper bound on the network communication delay ∆.
Although this model is theoretically interesting, it fails to capture real-world networks such as the
Internet, which is inherently asynchronous. In fact, assuming a synchronous network is arguably worse in
the quantum world, given the difficulties in maintaining quantum states coherently. This has catastrophic
consequences, since the security of synchronous protocols is often completely compromised as soon as
even one message is delayed by more than ∆ time.

In contrast, protocols in the asynchronous network model do not rely on any timing assumptions,
and messages sent can be arbitrarily (and adversarially) delayed. While asynchronous MPC protocols in
the classical setting have been known since a few decades, no protocol has been proposed in the quantum
setting. An inherent difficulty in such protocols is that one cannot distinguish between a dishonest party
not sending a message, or an honest party that sent a message that was delayed by the adversary. As a
result, parties have to make progress in the protocol after receiving messages from n− t parties. This also
implies that in this setting it is impossible to consider the inputs of all honest parties – the inputs of up
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to t (potentially honest) parties may be ignored. Asynchronous protocols impose even further restrictions
in the quantum setting. In particular, since states cannot be duplicated, the no-cloning theorem rules
out quantum broadcast, which is a crucial tool for enabling classical asynchronous protocols.

In the classical setting, the foundational works of Ben-Or, Canetti and Goldreich [BCG93] and Ben-Or,
Kelmer and Rabin [BKR94] showed that the optimal achievable corruption tolerance in the asynchronous
model is t < n/3. In this work, we initiate the study of the quantum counterpart, namely asynchronous
multi-party quantum computation (AMPQC) protocols:

Is it possible to achieve AMPQC? If so, what is the optimal achievable corruption threshold?

We completely resolve this question by providing the first AMPQC protocol secure up to t < n/4
corruptions, and showing a lower bound that tolerating t ≥ n/4 corruptions is impossible.

Theorem 1 (AMPQC Feasibility). There exists an information-theoretic asynchronous multiparty
quantum computation protocol for n parties which is secure against up to any t < n

4 corruptions.

Theorem 2 (AMPQC Impossibility). No asynchronous multiparty quantum computation protocol
exists for n parties which tolerates any corruption threshold t ≥ n

4 .

1.1 Related Work

Classical Asynchronous MPC. The seminal works of Ben-Or, Kelmen, and Rabin [BKR94], and
Ben-Or, Canetti, and Goldreich [BCG93] showed that the optimal achievable corruption tolerance for
asynchronous classical MPC is t < n/3 even with setup, in both the computational and information-
theoretic settings, and t < n/4 when requiring perfect security.

Since then, a huge amount of work has been devoted to improving the communication complexity. In
the information-theoretic setting with optimal resilience, Patra, Choudury, and Pandu Rangan [PCR10]
achieved O(n5κ) bits per multiplication, where κ is the security parameter, and recently Choudhury
[Cho20] further improved this result toO(n4κ) bits per multiplication. Going to the sub-optimal resilience
t < n/4, several works achieve linear communication [SR00, PSR02, CHP13, PCR15].

In the cryptographic setting, most protocols make use of some form of homomorphic encryption. The
works by Hirt, Nielsen, and Przydatek [HNP05, HNP08] make use of additive homomorphic threshold
encryption, with the protocol in [HNP08] communicating O(n2κ) bits per multiplication, and the work
by Chopard, Hirt, and Liu-Zhang [CHL21] achieves adaptive security with the same communication. The
work by Choudhury and Patra [CP15] achieves O(nκ) per multiplication using somewhat-homomorphic
encryption, and several other works [Coh16, LLM+20, BKLL20] make use of fully-homomorphic encryp-
tion to achieve communication complexity independent of the circuit size.

Multi-Party Quantum Computation. All known MPQC protocols assume a synchronous network
and have a negligible error probability. Crépeau, Gottesman, and Smith [CGS02] introduced the first
MPQC protocol with guaranteed output delivery up to t < n/6 corruptions. This was improved by Ben-
Or, Crépeau, Gottesman, Hassidim, and Smith [BCG+06], who achieved the optimal resilience t < n/2.
In the dishonest majority setting, where up to n − 1 parties may be corrupted, Dulek, Grilo, Jeffery,
Majenz, and Schaffner [DGJ+20] gave the first MPQC protocol achieving security with abort, building
upon the work by Dupuis, Nielsen and Salvail that achieved two-party secure computation. Very recently,
in a followup work, Alon, Chung, Chung, Huang, Lee, and Shen [ACC+21a] designed a protocol with
identifiable abort. Another recent work by Bartusek, Coladangelo, Khurana, and Ma [BCKM21] achieves
a constant round MPQC protocol in the dishonest majority setting.
Our work achieves guaranteed output delivery up to t < n/4 corruptions under an asynchronous network
and incurs negligible error. It is left as an open question whether one can achieve MPQC with perfect
security (meaning 0 error probability), even for synchronous networks.

Post-Quantum Computation. A line of works has focused on the problem of post-quantum compu-
tation which considers classical computation, but an adversary with quantum capabilities.

As noted in [ABG+21], many of the results in the classical setting [BGW88, CCD88, CLOS02, IPS08]
can be proven post-quantum secure, provided they are instantiated using primitives that are plausibly
quantum secure. Damg̊ard and Lunemann [DL09] introduced a two-party coin-flipping protocol, and

2



Lunemann and Nielsen [LN11] and Hallgren, Smith and Song [HSS11] introduced general two-party
computation protocols secure against quantum adversaries. Bitansky and Shmueli [BS20] gave a constant-
round two-party coin-flipping protocol, with full simulation of one party. Finally, very recently, Agarwal,
Bartusek, Goyal, Khurana and Malavolta [ABG+21] introduced a constant-round post-quantum multi-
party computation protocol in the plain model.

2 Technical Overview

We give an overview of the main techniques used in the paper.

2.1 Feasibility Result

We provide a protocol secure up to t < n/4 corruptions under an asynchronous network. Our starting
point is the work by Ben-Or, Crépeau, Gottesman, Hassidim, and Smith [BCG+06], which achieves
optimal resilience up to t < n/2 when the network is synchronous.

Their protocol follows the traditional sharing-based paradigm for multi-party computation [BGW88].
Parties distribute their private inputs with a so-called verifiable quantum secret sharing scheme (VQSS).
Parties then evaluate the circuit in a gate-by-gate fashion on the encoded inputs. In the end, parties
end up with encodings of the outputs of the circuit, which can each be jointly decoded towards the
corresponding party. Technically, the main challenge comes from the design of a VQSS which is in some
sense compatible with quantum operations. For this, the authors elegantly design a VQSS which relies on
several building blocks, including a special quantum authentication scheme and a so-called weak quantum
secret-sharing scheme (WQSS), which is similar to VQSS, except that a dishonest dealer can choose not to
reconstruct the shared secret (i.e. reconstruct ⊥). The design allows to push the complexity of performing
quantum operations over encoded data to performing classical operations on the authentication keys.

Roughly speaking, the VQSS scheme is composed of three parts: First, the dealer shares 2κ + 2
quantum |0〉-states among the parties, and each share is then re-distributed using a WQSS scheme.
Second, parties jointly run a checking phase to verify that they indeed hold a sharing of |0〉 (except
with error negligible in κ). This is accomplished with a so-called zero-purity test, which can be run
using a classical trusted third party (TTP). The zero-purity test requires each party to do some local
computation before measuring 2κ of the shared states and sending the measurement results to the TTP,
which combines them. This consumes 2κ of the shared states. Finally, with the remaining two sharings
of |0〉, the parties jointly create sharings of an EPR pair. The first half of the EPR pair is decoded to
the dealer, who can then distribute the secret to the parties using quantum teleportation.

Their scheme relies on a synchronous network, where every message sent by an honest party is
delivered within a known delay upper bound, and unfortunately it completely breaks down as soon as
even one message gets delayed. In fact, an honest dealer could appear corrupted because his messages
did not arrive in time. The recipients will then accuse him during the checking phase, resulting in the
sharing protocol being unsuccessful.

Challenges in the Asynchronous Setting. In order to make this work in the asynchronous setting,
the main obstacle is to design a mechanism that allows parties to learn when they jointly have enough
information to uniquely determine the shared secret. When the network is synchronous, this is straight-
forward, given that parties proceed synchronously and the secret is guaranteed to be shared after a
certain number of rounds. In asynchrony, some parties might have gotten a lot of messages while others
might still be waiting. Note that if a party Pi didn’t receive a message from another party Pj , Pi cannot
ask for a missing message, since the response can also be delayed.5

In the classical setting, asynchronous VSS is typically solved by reaching agreement on a core-set
of parties of size at least n − t who received correct shares. The reasoning is that if n − 2t > t, then
the core-set contains at least t + 1 honest parties, whose shares should uniquely define the secret. The
parties in the core-set will be the only ones that contribute their shares in the reconstruction step. One
usually also requires a way to tell during the reconstruction phase whether a received share is correct
(this is usually achieved using authentication tools such as information checking or signatures, see, e.g.,
5 In fact, it is more complicated than that: In many synchronous protocols, if Pi doesn’t receive a message from
Pj , Pj is deemed corrupted and the protocol can for example reveal Pj ’s secret state.
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[BKR94, PCPR09]), which allows parties to correctly reconstruct the secret with high resilience. Three
challenges arise when trying to achieve this, which we discuss below.

Using a Classical TTP. First, in order to agree on a core-set, we make use of an asynchronous trusted
third party (TTP) that can perform classical computations. Perhaps surprisingly, this does not follow
from standard classical asynchronous MPC in a black-box way. This is because asynchronous MPC
protocols have a very concrete interaction pattern where the TTP waits for the values of any n − t
parties (which the adversary can choose by scheduling messages), and outputs a function of these values.
However, the interaction that we need with the TTP is more general: in particular, the TTP can wait for
the values of designated parties to arrive before computing the function. For example, in the broadcast
functionality a designated party sends a message to the TTP, and then the TTP forwards that message
to all other parties.

In order to deal with more general functionalities, we first formalize a generalized secure function
evaluation protocol, which not only takes into account the function f to be evaluated, but also a monotone
predicate Q : P → {0, 1} (i.e., if T ⊆ T ′ and Q(T ) = 1, then Q(T ′) = 1) that indicates which sets of
parties’ inputs may be included into the computation. 6 Using generalized secure function evaluation
protocols, one can realize the classical TTP using standard techniques, where each evaluated function
takes into account the internal state of the TTP, which is jointly maintained by the parties.

We then show how to modify current existing classical asynchronous protocols for secure function
evaluation to achieve generalized secure function evaluation. Current information-theoretic protocols for
secure function evaluation follow the traditional sharing-based paradigm, and distribute the inputs as
follows: Parties use an asynchronous verifiable secret sharing (AVSS) scheme. Then, since the network is
asynchronous, some sharings terminate earlier than others, and therefore parties need to agree on when to
proceed to the computation phase. For that, parties run a core-set agreement protocol [BKR94, BCG93]
to agree on a core-set of parties of size at least n − t whose inputs are taken into the computation (all
other parties’ inputs are ignored). In order to take the inputs into account according to a predicate Q,
one can proceed as follows: run n Byzantine Agreement (BA) protocols BA1, . . . ,BAn, one for each party.
Every time the AVSS from party Pj terminates, Pi inputs 1 to BAj . Every time BAj outputs 1, it adds
Pj to his local set T i. Party Pi then waits until the set of parties T i satisfies Q(T i) = 1. If so, Pi inputs
0 to all remaining BAs, and waits for all BAs to terminate before proceeding to the computation phase.
Due to agreement of BA, all honest parties agree on the same set of parties CoreSet. Moreover, all honest
parties eventually receive all the inputs from parties in CoreSet, due to properties of the AVSS. Finally,
since Q is monotone, it follows that the final set of inputs taken into account for the computation satisfies
Q (as it contains at least the set T i). For more details, see Section 7.

Reconstruction and Corruption Thresholds. Second, in contrast to the classical setting, a quantum secret
sharing scheme cannot have reconstruction threshold t+ 1, because the no-cloning theorem enforces that
the reconstruction threshold must always be at least bn/2c+1 [CGL99]. Due to the asynchronous nature
of the network, the reconstructor must be able to perform the reconstruction process with shares from
only n− t parties, since the protocol must succeed even if the t adversarial parties refuse to participate.
However, in order to uniquely define the secret, bn/2c + 1 of those shares must be from honest parties
because of the reconstruction threshold. Combining these observations with the fact that t of the pro-
vided shares can be from corrupted parties imposes the requirement that n− 2t ≥ bn/2c+ 1, or t ≤ n/4.
Note that in the classical setting, setting the reconstruction threshold to bn/3c + 1 allows t ≤ n/3. We
later expand this intuition into a proof of impossibility for t ≥ n/4.

Robust Reconstruction. Finally, even for t < n/4 and assuming a classical TTP, it is not clear how to
robustly reconstruct a secret (even in the strictly weaker setting of WQSS).

To see this, let us say that one follows the classical approach of defining a core-set of n− t parties who
received correct shares and should contribute during the reconstruction phase. Among these, given that
t parties may be corrupted, parties cannot expect to receive all and must reconstruct already from n−2t
shares. However, the n−2t received shares may contain t corrupted shares. Given that one needs at least
bn/2c+1 shares to reconstruct the secret, one can only safely reconstruct if t < n

6 . In this case, there are
n− 2t− |errors| = n− 3t > n/2 honest shares, which is enough to uniquely define the secret. However, a

6 In a traditional asynchronous protocol, Q evaluates to 1 for any set of size at least n− t.
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higher corruption threshold might result in the honest shares not uniquely defining the secret, in which
case the corrupted parties might be able to force a different reconstruction value. Therefore achieving
the optimal threshold of t < n

4 requires additional ideas.
In the classical setting, this issue is addressed by letting each share be signed by every party during the

sharing phase. This ensures that during the reconstruction the adversary cannot send a corrupted share
(with correct signatures) corresponding to a different secret. Unfortunately, there is no easy way to achieve
this in the quantum setting (digitally signing quantum data is even impossible! [BCG+02, AGM21]). To
overcome this barrier we introduce a novel primitive called asynchronous weak quantum secret-sharing
scheme (AWQSS) with weak termination, which does not guarantee that the reconstruction procedure
outputs a value (even when the sharing was successful) in the dishonest-dealer case.7 We then show how
this weaker primitive is enough to achieve AVQSS.

The starting point for the AWQSS with weak termination is the synchronous protocol from Ben-Or et.
al. [BCG+06]. The dealer verifiably distributes authenticated shares of two |0〉 states, where the classical
TTP holds the classical authentication key. With the help of the TTP, the parties test the two sets of
shares to ensure they are actually shares of |0〉 states. Once assured, the parties entangle the two shared
qubits to create a shared EPR pair and send half to the dealer. Finally, the dealer uses the EPR half it
receives to teleport its state. Since the protocol is required to progress with only n−t active participants,
the |0〉 test must occur as soon as any n− t parties have provided their test measurements.

Contrary to the synchronous WQSS case, the requirement that progression is necessary with only
n− t parties opens up problems in aligning the cases when the dealer is honest and when it is corrupt.
Specifically, it becomes possible for t honest parties to receive inconsistent shares (or not receive them at
all) without disrupting the sharing protocol. Then, depending on the behavior of the corrupted parties
during reconstruction, the reconstructor may only receive n−2t shares. Since the reconstructor cannot tell
whether the remaining shares are simply delayed on the network or withheld by corrupt parties, it must
decide whether to attempt to reconstruct the secret or output ⊥ based only on these n− 2t > bn/2c+ 1
shares. However, even though n − 2t is at least the threshold of bn/2c + 1 for t < n/4, it is never safe
to attempt to reconstruct the secret, even if the received shares are consistent. This is because if the
dealer is corrupt, then they know the authentication keys and so the other corrupt parties may provide
up to t arbitrary shares in the reconstruction process, potentially changing the reconstructed value. To
make matters worse, the same situation can occur with an honest dealer, but reconstruction must always
succeed in this case!

Our insight here is to build a late checking mechanism into the protocol which allows parties outside
of the core-set to contribute. These parties did not participate in the initial share-checking, but will still
hold valid shares in the case of an honest dealer. This is in contrast to current classical asynchronous
protocol techniques, where only parties inside the core-set contribute their shares in the reconstruction
step.

Honest parties who receive their shares after the |0〉 test has already occurred can send their portion
of the test measurements8 to the TTP and receive back the result of performing the |0〉 test on their
measurement and n− t− 1 of the original n− t test measurements used in the main |0〉 test. This TTP
behavior makes use of the expanded classical TTP functionality discussed above in order to allow a single
party to interact with the TTP. With an honest dealer, the t honest parties who are delayed will have
their shares confirmed by the TTP after the main check has already occurred. This allows n− t shares to
be provided to the reconstructor, which is sufficient to complete reconstruction safely. It is important to
note that late checking does not change the case for a corrupted dealer, since the delayed honest parties
might never receive shares in the first place.

AVQSS avoids the weak termination problem by creating a two-level sharing of |0〉. Creating a two-
level sharings of |0〉 intuitively means that the quantum state |0〉 is shared using an AWQSS scheme, and
each level-1 share is again shared using an AWQSS scheme. The sharing terminates once at least n − t
parties hold correct shares, as checked by another |0〉 test. These n− t parties uniquely define the secret.
Moreover, during the reconstruction, corrupted parties cannot send corrupted level-1 shares, since each
of these shares are distributed among all honest parties. They can, however, withhold their shares. But

7 In ordinary weak secret-sharing, as is used in prior work, the reconstructor is allowed to output ⊥, but must
terminate at some point. With weak termination, the reconstructor may even fail to output ⊥ when the dealer
is dishonest.

8 The test is defined for all parties, although it does not require all of them to participate.
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since the n− t parties contain at least n− 2t ≥ bn/2c+ 1 honest parties, these are enough to reconstruct
the secret.

2.2 Impossibility Result

As we saw above, we require the corruption threshold to be t < n/4 in our protocol. Interestingly, we
show that this corruption threshold is optimal. This is in contrast to the classical setting, where the
optimal threshold for asynchronous computation is t < n/3 [BKR94].

Formally, we prove that AVQSS is impossible for t ≥ n/4. The ideas in our proof generalize naturally
to a secure function evaluation protocol for all-to-all AVQSS, where all the parties end up with shares
from each of the n− t parties in the core-set. We provide a high level idea of the proof below for n = 4
and t = 1. By standard arguments, this implies an impossibility for the general case t ≥ n/4.

Consider the existence of an AVQSS protocol with four parties D,P2, P3, P4, where D also acts as
a recipient, and secure up to t = 1 corruption. We show that this implies an “approximate” quantum
erasure-correcting code (QECC) of length 4 and approximately correcting 2 erasures, in the sense that
the decoded quantum state is close in trace distance to the true input state. We prove that it is im-
possible to construct such codes. The idea is that there can be one corrupted party, and, because the
protocol succeeds under an asynchronous network, it must succeed even when a potentially honest party
is locked out of the protocol. Formally showing this intuition requires carefully designing a scenario-based
argument.

A bit more formally, consider a secret x, and further consider without loss of generality the set
{P3, P4} (the argument holds for any set of size 2). We will show that the internal state of {P3, P4} fully
determines x (up to a small error).

Consider a first scenario where all parties are honest in the execution of the sharing phase, but
P2’s messages are delayed. Since the protocol is secure even when P2 crashes from the start, all parties
successfully terminate holding a share. In this case, since the dealer is honest, the reconstructed value is
x.

In the second scenario, P2 does not receive any information from a corrupted dealer D in addition
to having its messages delayed. The dealer D otherwise behaves as in an honest execution with input
x with respect to parties {P3, P4} (by internally emulating P2). In this case, the view of {P3, P4} is
exactly the same as in the first scenario. Furthermore, note that there is an adversarial strategy so that
the reconstructed value is x: simply let D also participate in the reconstruction protocol honestly while
delaying all messages from P2, as this is the same execution as in the first scenario. In turn, this means
that the committed value is x, and, regardless of the adversarial strategy, the reconstructed value must
be x.

However, since P2 did not receive any message from D, his internal state cannot provide any infor-
mation that is unknown to {P3, P4}. Since AQVSS requires the views of the honest parties to define the
secret, the internal state of {P3, P4} must fully determine the secret x.

This implies the existence of an approximate QECC with length 4 that is resilient to two erasures,
since the secret can be recovered from any two shares.

3 Preliminaries

3.1 Notation

We denote the security parameter by κ and write neg(κ) for any function that is negligible in κ, i.e.,
neg(κ) decays faster than κ−c for any constant c > 0 as κ grows. We also write poly(κ) for a function
that grows polynomially with κ. We write k ← K to mean that k is sampled uniformly at random from
the set K. The finite field of order q is denoted by Fq. The conjugate transpose of a matrix U is denoted
by U†.

3.2 Concepts from Quantum Computation

We assume familiarity with basic concepts from quantum computation, such as pure and mixed states,
density matrices, Clifford and Toffoli gates, entanglement, measurements, and quantum teleportation. We
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refer the reader to the book of Nielsen and Chuang [NC10] for an overview of these concepts. We denote
quantum registers and gates by uppercase roman letters. The distinction will be clear from context.
Density matrices are denoted by lowercase greek letters such as ρ and σ, and we sometimes write ρM
for the state associated with register M . Furthermore, we write UM for a unitary transformation U to
denote that U is applied to the contents of register M .

Trace Distance. We make use of the notion of trace distance between states.

Definition 1 (Trace distance). The trace distance between two mixed states with associated density
matrices ρ and σ, denoted by D(ρ, σ), is given by

D(ρ, σ) = 1
2‖ρ− σ‖1,

where ‖ρ‖1 = Tr[
√
ρ†ρ] is the trace norm.

The trace distance is a distance and has the following useful interpretation: If D(ρ, σ) ≤ ε, then any
POVM applied to states with density matrices ρ and σ yields classical measurement outcome distribu-
tions, say (p1, . . . , pm) and (q1, . . . , qm), which are ε-close in statistical distance, i.e., 1

2
∑m
i=1 |pi−qi| ≤ ε.

Generalized Quantum Gates. We work with basis states indexed by elements of a finite field Fp and
apply several quantum operations to such states. We describe them next. We consider the generalized
Pauli gates X and Z over Fp, which act as X |α〉 = |α+ 1〉, where the sum is over Fp, and Z |α〉 = ωαp |α〉,
where ωp = e2πi/p. Moreover, we will use the controlled SUM gate (generalizing the CNOT gate) over
Fp acting as SUM |α, β〉 = |α, α+ β〉, and the γ-Fourier gate Fγ over Fp acting as

Fγ |α〉 = p−1/2
∑
β∈Fp

ωγαβp |β〉 .

When γ = 1 we simply write F = F1.

3.3 Quantum Secret Sharing

Quantum secret sharing [HBB99] allows a dealer to share a secret quantum state so that authorized
subsets can recover the secret, but unauthorized sets cannot gain information about the secret. In our
schemes, we use an extension of Shamir’s secret sharing scheme to the quantum setting, first described
by Cleve, Gottesman, and Lo [CGL99]. We begin by defining threshold quantum secret sharing schemes.

Definition 2 (Threshold quantum secret sharing scheme). A pair of maps (Share,Reconstruct) is
an (n, t)-quantum threshold secret sharing (QTSS) scheme from a message register M to share registers
S1, S2, . . . , Sn if for every message state ρM the conditions below hold:

1. Correctness: If T ⊆ [n] satisfies |T | ≥ t, then

Reconstruct(Share(ρM )T , T ) = ρM

for every message ρM , where Share(ρM )T denotes the subsystem associated to registers (Si)i∈T ;
2. Privacy: If T ⊆ [n] satisfies |T | < t, then there is a density matrix ρT such that the reduced density

matrix of Share(ρM )T is ρT for every message ρM . In other words, Share(ρM )T gives no information
about ρM .

Note that the no-cloning theorem implies that we must always have t > n/2 in a QTSS scheme [CGL99].

Quantum Shamir Secret Sharing. Suppose we wish to share a state over H among m = 2r + 1
parties for some parameter r. Fix a prime p ∈ (m, 2m) and consider m distinct non-zero evaluation
points α1, . . . , αm ∈ Fp. Furthermore, identify a basis of H with elements of Fp. Then, we define Share
to behave on basis states |β〉 for β ∈ Fp as

Share(|β〉 ⊗ |0〉⊗m−1) = p−r/2
∑

f∈Fp[x]:deg(f)≤r,f(0)=β

|f(α1), . . . , f(αm)〉,
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where the sum ranges over all polynomials f of degree at most r over Fp such that f(0) = β and the
i-th party receives the i-th register Si associated to αi. Given T and Share(ρM )T , the reconstruction
procedure Reconstruct performs Lagrange interpolation based on the evaluation points (αi)i∈T to recover
the message. Cleve, Gottesman, and Lo [CGL99] showed that this sharing procedure induces an efficient
(2r + 1, r + 1)-QTSS scheme. We can then obtain an (n, r + 1)-QTSS scheme for arbitrary n such that
r + 1 ≤ n ≤ 2r + 1 simply by discarding the last 2r + 1− n shares.

3.4 Quantum Authentication Schemes

Quantum authentication schemes were first introduced in [BCG+02]. Intuitively, a quantum authentica-
tion scheme encodes a quantum state with the help of a classical key so that operations performed on
the authenticated state by an adversary who does not know the key can be detected.

We consider a keyed scheme (Authk,Deck) with key space K. Given k ← K, the authentication
procedure Authk maps the contents of a message register M to a ciphertext register C. The decoding
procedure Deck then maps the contents of C, which may have been modified by the adversary, to a
message register M and a flag register F over a space with orthogonal basis accept/reject states |acc〉
and |rej〉. The recipient can measure the contents of the flag register to check whether the message was
modified. We require that for every key k ∈ K and message ρM it holds that

Deck(Authk(ρM )) = ρM ⊗ |acc〉 〈acc| ,

i.e., if the message is not modified then decoding succeeds and returns the message. On the other
hand, intuitively, we require that if the message is modified, then Deck either accepts and returns the
original message ρM , or rejects and returns a placeholder state. More formally, we present a composable
simulation-based security definition, as discussed in [BCG+06, DNS12, BW16, HLM16]. Consider an
additional side information register R held by the adversary which may be entangled with the message;
we see the contents of registers M and R as a state ρMR.

Real-World Process. In the real-world, we sample k ← K. The adversary A has access to C and R
and applies a unitary transformation UCR to these registers. The output of this process (over registers
M , F , and R) is

REALA(ρMR) = 1
|K|

∑
k∈K

(Deck ⊗ IR)(UCR(Authk ⊗ IR)(ρMR)U†CR).

Ideal-World Process. In the ideal-world, the simulator S has access to R and a flag bit flag. If it sets
flag = 0, then the channel outputs ΩM ⊗ |rej〉 〈rej|, where ΩM is a placeholder state. Else, if flag is set
to 1, the message is left unchanged and F is set to |acc〉. Moreover, the simulator is allowed to update
R based on the value of flag. We denote the overall output of this process by IDEALS(ρMR).

Security Notion. We say that a scheme (Authk,Deck) is an ε-quantum authentication (ε-QA) scheme
if for any adversary A there exists a simulator S such that

D(REALA(ρMR), IDEALS(ρMR)) ≤ ε (1)

for all states ρMR.

Polynomial-Based Authentication Scheme. We will be using the efficient polynomial-based authen-
tication scheme from [BCG+06] and based on [AB97]. This scheme has several properties which will be
quite useful. First, the authentications keys (k, x) are classical, which allows them to be managed by
the classical TTP. This advantage is especially important because their scheme allows the application
of Clifford gates and measurements to authenticated states where the keys are held by the TTP and
the quantum registers are held by other parties. In the case of multi-qubit gates, states authenticated
under the same k (but potentially different x) can be operated on jointly. Second, the scheme remains
secure in a setting where the adversary has access to several states authenticated with the same k but
independently sampled x’s. This will later allow parties to authenticate multiple states which can all be
operated on together.
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Lemma 1 ([BCG+06, ABEM17, HLM16]). The scheme (Authx,k,Decx,k) is a neg(κ)-QA scheme
when m = κ.

Lemma 2 ([BCG+06]). The scheme (Authx,k,Decx,k) is neg(κ)-secure in the s-parallel authentication
setting when m = κ and s ≤ poly(κ).

For completeness, we discuss the construction and properties in more detail in Appendix A.

4 Model of Multiparty Computation

We consider a set of n parties P = {P1, . . . , Pn}. We extend the standard classical asynchronous model
for multiparty computation to the quantum setting, where parties have quantum states as inputs and
wish to apply a quantum circuit to their states.

We consider quantum circuits which use only Clifford and Toffoli gates, since these form a universal
quantum gate set [Sho96].

4.1 Communication and Adversarial Models

Parties have access to point-to-point private classical and quantum channels. For simplicity, we consider
a static computationally unbounded adversary who is allowed to corrupt any t parties at the start of
the protocol, who may deviate arbitrarily from the protocol. But we believe our protocols should also
achieve adaptive security.

Our network model is asynchronous. This means that there may be an arbitrary (finite) delay between
the time a message is sent and the time it is delivered. The adversary controls the scheduling of the
messages, subject only to the constraint that every message sent must eventually be delivered. Since we
assume private channels, the adversary has no information about the contents of each message besides
the identity of the sender and receiver.

4.2 Multi-Party Asynchronous Quantum Computation

We adapt the security definition to our setting, following the works on asynchronous classical MPC
by Ben-Or, Canetti, and Goldreich [BCG93] and synchronous MPQC by Dulek, Grilo, Jeffery, Majenz,
and Schaffner [DGJ+20]. The security definition introduces a real and an ideal world, and intuitively
guarantees that any attack that happens in the real-world can be efficiently reproduced in the ideal-
world. Similar to previous works on MPQC (see e.g. [DNS12, DGJ+20, ACC+21b]), we chose to provide
a security definition that is simple but stand-alone. However, note that our simulators are black-box
straight-line (they do not access the code of the adversary or rewind the adversary), so our overall
protocol might as well satisfy UC security.

Real-World Process. In the real-world, protocol Π is executed with the set of parties P, adversary A
and environment Z. All entities receive the security parameter κ. Parties execute the protocol and the
adversary A corrupts up to t of the parties at the onset of the computation (corrupted parties behave
arbitrarily). The environment E learns the identities of the corrupted parties and interacts with the
adversary and the parties. In particular it chooses for each party Pi the input Ri, and it learns all the
outputs. In the end, the environment outputs a bit b. We denote by REALΠ,A,E the output from the
environment E when interacting with protocol Π and adversary A.

Ideal-World Process. In the ideal-world, the environment interacts with the ideal adversary (a.k.a.
the simulator) S and the parties as described below. We denote by IDEALC,S,E the output from the
environment E when interacting in the ideal process with circuit C. We formally describe the ideal
process below.
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The parties P1, . . . , Pn hold quantum registers R1, . . . , Rn. There is also an input ancillary quantum register
Rancilla with k qubits, initialized to |0〉⊗k. Let C be a quantum circuit with Win input and Wout output wires.
Consider a partition of the input/output wires into the parties’ registers and an ancilla register as [Win] =
Win,1 t · · · tWin,n tWin,ancilla and [Wout] = Wout,1 t · · · tWout,n tWout,ancilla.
1: The adversary can replace the inputs of corrupted parties by any (possibly entangled) quantum state of

his choice.
2: The adversary chooses a set of parties S ⊆ [n] of size |S| ≥ n− t.
3: The adversary sends the contents of the registers Ri for i ∈ S to the TTP.
4: The TTP feeds the registers R′1, . . . , R′n, Rancilla to the appropriate subset of wires of Win in the quantum

circuit C, where the contents of Ri are written into R′i if i ∈ S and R′i contains an unentangled |0〉⊗ki

state otherwise.
5: The TTP runs the quantum circuit and sends the content of the i-th output register fed by wires in Wout,i

to party Pi.

Functionality Ideal world

Security Notion. The security notion states that the real and ideal worlds are indistinguishable for
any quantum polynomial-time (QPT) environment. More concretely, for any QPT adversary A in the
real-world, there must be a QPT simulator S such that no QPT environment E can distinguish between
both worlds.

Definition 3. Protocol Π t-securely computes circuit C if for any quantum polynomial-time (QPT)
adversary A corrupting up to t parties, there is a QPT adversary S such that for every environment E:

|Pr[IDEALC,S,E = 1]− Pr[REALΠ,A,E = 1]| ≤ neg(κ)

4.3 Classical Trusted Third Party

We make use of a classical trusted third party in our protocol which is stateful and reactive. Upon
receiving any message from any party, it parses the message type and responds according to the message
contents accordingly. For ease of exposition, we present the reactions of the TTP modularly alongside the
corresponding sub-protocols. When the TTP would be initialized with the same information at multiple
steps in a protocol, it should be understood that it is initialized once with this information and saves it
as internal state.

Realizing a classical asynchronous TTP does not follow directly from protocols for secure function
evaluation, since the evaluated function takes into account the inputs of any n − t parties. In some
cases, the interaction with the TTP can include instructions that allow the TTP to wait for inputs from
designated parties. In Section 7, we show how to achieve such a classical asynchronous TTP.

5 Protocols

5.1 Verified Quantum State Authentication

The verified authentication of zeros protocol allows each honest party to receive an authenticated |0〉
state from some dealer and to be certain that all other honest parties will eventually receive a |0〉
state authenticated under the same key. These |0〉 states can then be transformed into an arbitrary
authenticated state using quantum teleportation. Later, this will act as a way to allow honest parties to
prove to the classical TTP that they provided measurements of some state received from the dealer.

At a high level, the dealer prepares and authenticates many |0〉 states. They send the classical au-
thentication keys to the TTP, then send each party some of the |0〉 states. With the help of the TTP,
each party tests the states it received using the zero purity testing protocol from [BCG+06]. If the test
passes, the party keeps one of the |0〉 states and forwards the rest to the other parties. If it fails, the
party waits to receive forwarded states, which it then tests again.
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Initialization step. The TTP receives keys (k, ~x) from the dealer.

Execution. Upon receiving the message (VAZCheck,m, s, f) from any party Pi, where m is a set of measure-

ments, s is a starting index, and f is a finishing index, the TTP does the following:
1: Finish the zero purity test on states s through f −1 using the measurements m. This involves temporarily

updating ~x. Let the result be result.
2: Send (VAZCheck, s, f, result) to Pi.

Upon receiving the message (VAZAgree, 1) from n − t distinct parties, send the message (VAZAgree,Accept)
to all parties.

Functionality Verified Authentication of Zeros Classical TTP

Initialization step. Let s = poly(κ). The dealer D chooses one random key k and a random ~x consisting of

n2(r + 2s) substrings. They create states Auth(k,xj )(|0〉) for each j = 1, . . . , n2(r + 2s) and send each player
n(r + 2s) of them, then send the keys (k, ~x) to the TTP.
Protocol Execution.

1: Upon receiving a message containing n(r + 2s) states, Pi performs the zero purity testing protocol
from [BCG+06] on them, getting measurements m. This spends 2s of the states.

2: Pi sends (VAZCheck,m, in(r + 2s), (i+ 1)(n)(r + 2s)) to the TTP.
3: Pi receives the TTP’s decision bit indicating whether the zero purity testing protocol should accept or

reject.
4: if The TTP’s decision bit indicates Accept then
5: Send r + 2s authenticated |0〉 states to each other player.
6: Send (VAZAgree, 1) to the TTP.
7: Upon receiving (VAZAgree,Accept) from the TTP, output the remaining r states.
8: else
9: for each received set of states from a player Pj do

10: Pi performs the zero purity testing protocol on the received states, getting measurements m.
11: Pi sends (VAZCheck,m, (in+ j)(r + 2s), (in+ j + 1)(r + 2s)) to the TTP.
12: Pi receives the TTP’s decision bit indicating whether the zero purity testing protocol should accept

or reject.
13: if the TTP’s decision bit indicates accept then
14: Upon receiving (VAZAgree,Accept) from the TTP, output the remaining states received from

Pj .
15: end if
16: end for
17: end if

Protocol Verified Authentication of Zeros

The following lemma states some important properties of the proposed authentication protocol.

Lemma 3. With probability at least 1 − neg(κ), the following properties hold in an execution of the
Verified Authentication of Zeros protocol:

– Each honest party which outputs holds r states with trace distance neg(κ) to |0〉 states authenticated
under the keys (k, ~x) held by the classical TTP.

– If any honest party outputs, then all honest parties do so.
– If the dealer is honest then all honest parties output.

Moreover, these properties continue to hold even when composed in parallel with another Authentication
of Zeros protocol which shares the same dealer key k (and independent ~x).

Proof. The first part of the lemma statement follows directly from the soundness of the |0〉 purity test
which the TTP carries out using the keys (k, ~x) (Lemma 17).

If some honest party outputs, then it received (VAZAgree,Accept) from the TTP, so all honest parties
eventually receive this from the TTP. Furthermore, since the TTP sent this message, it received the
message (VAZAgree, 1) from n− t parties. Since 2t < n, at least one of these must have been an honest
party, say Pi. The party Pi therefore must have sent r + 2s authenticated |0〉 states which passed the
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purity test to every other party, so every other party will either use its own states or the states which it
received from Pi.

If the dealer is honest, then all honest parties pass the zero purity test and send (VAZAgree, 1) to the
TTP. This yields n− t messages, so the TTP sends (VAZAgree,Accept) to all parties.

Parallel composition while sharing the key k follows from a similar argument to above, except we
rely on the following properties continuing to hold even in the presence of a parallel repetition of the
respective protocol sharing the key k: the soundness of the zero purity test, the security of the ideal
authentication scheme, and the security of the classical TTP.

ut

Initialization step. The TTP receives keys (k, ~x) from the dealer.

Execution.

1: Upon receiving measurement results from the dealer, the TTP applies the measurement results to the keys
~x to complete the teleportation.

2: The TTP informs all parties that the teleportation is complete.

Protocol Authenticated Teleportation TTP

We describe the protocol from the point of view of party Pi. The dealer D aims to send the contents of a
register RD to the receiver R, where at the end of the protocol the sent state is authenticated.
Initialization Step. D sends at least 2 authenticated |0〉 states to R using the Verified Authentication of

Zeros protocol, where the TTP receives the authentication keys (k, ~x).
Receiver Execution

1: R constructs an EPR pair using two of the authenticated |0〉 states.
2: R sends one half of the EPR pair to D.
3: R terminates when the TTP responds.

Dealer Execution Upon receiving an EPR pair half, D uses it to teleport the contents of RD, sending the

measurement results to the TTP.

Protocol Authenticated Teleportation

5.2 Asynchronous Weak Quantum Secret Sharing with Weak Termination

The next building block for asynchronous verifiable quantum secret sharing is asynchronous weak quan-
tum secret sharing (AWQSS), which is described by a pair of protocols (Share,Reconstruct). In the first
protocol, Share, a designated party called the dealer D distributes a private input s among the set of
parties. In the second protocol, Reconstruct, the parties jointly participate and a designated receiver R
obtains the secret. In weak secret sharing, R is also allowed to output ⊥ when the dealer is dishonest.
The protocol we describe uses a trusted party which performs classical computation.

Definition 4 (Asynchronous Weak Quantum Secret Sharing with Weak Termination). Con-
sider a pair of protocols (Share,Reconstruct) for n parties, where a designated party D, called the dealer,
has a private input quantum state s for Share, and each honest party that completes Share subsequently
invokes Reconstruct with its local output of Share, and a designated reconstructor R outputs a quantum
state upon terminating. We say that (Share,Reconstruct) is a (t, ε)-secure asynchronous weak quantum
secret sharing scheme if the following holds with probability at least 1 − ε whenever up to t parties are
corrupted:

– Termination:
• If D is honest, then every party eventually terminates Share. Moreover, R outputs a state at the

end of Reconstruct.
• If some honest party terminates Share, then all honest parties eventually terminate Share.

– Privacy: If D is honest, the view of the adversary is independent of s.
– Correctness: If D is honest, then if R outputs a state at the end of Reconstruct, the state is s.
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– Commitment: Even if D is corrupted, if all honest parties terminate Share, their joint views defines
a unique state s′, such that if R outputs a state after Reconstruct, the state has neg(κ) trace distance
to either s′ or ⊥.

Note that if D is corrupted, an honest reconstructor R is not guaranteed to obtain an output from
the protocol Reconstruct. We emphasize that this occurs only at the level of weak secret sharing and does
not propagate to verifiable secret sharing.

Initialization step. Let s = poly(κ). The TTP receives keys (k, ~x) from the dealer D. It sets S = ∅ and

result = ⊥.
Sharing Execution Upon receiving (ShareCheck,m) from Pi, where m is a set of measurements and Pi has

not sent a ShareCheck message before, the TTP does the following:
1: Verify the authentication code on m using (k, ~x). If it fails, discard this message. Otherwise, continue:
2: if |S| < n− t then
3: S ← S ∪ {i}
4: if |S| = n− t then
5: Perform the zero purity test using m and set store the result in result.
6: Send (ShareCheck, result) to each Pj for j ∈ S.
7: end if
8: else
9: Perform the purity test 2s times using m.

10: Send (ShareCheck, acc) to Pi if this test accepts and result = acc. Otherwise send (ShareCheck, rej) to
Pi.

11: end if
Reconstruction Execution The TTP sends (Reconstruct, k, ~x) to the reconstructor R.

Functionality AWQSS Classical TTP

We describe the protocol from the point of view of party Pi, then the final sharing from the point of view of
the dealer D. The dealer D aims to share the contents of a register RD with the other players.
Initialization step. Let s = poly(κ). The dealer D chooses a random key kD. It generates 2s + 2 |0〉 states

for s = poly(κ) and shares them using quantum Shamir secret sharing with threshold bn2 c + 1 and n shares.
For each encoded |0〉 state, send the i-th share to Pi using the key kD and freshly random x in the Verified
Authentication protocol. Let ~x be the vector containing each x which is used. D sends the keys (k, ~x) to the
TTP.
Sharing Execution.

1: Let R1, . . . , R2s+2 be the registers containing the (authenticated) shares which Pi received from D.
2: Perform the zero purity test measurements transversally, storing the results in m.
3: Pi sends (ShareCheck,m) to the TTP. Implicitly, the TTP finishes the zero purity test.
4: Pi waits to receive (ShareCheck, result) from the TTP.
5: if result is acc then
6: Pi generates an EPR pair share using the two remaining |0〉 shares in R0, R1.
7: Send the share in R0 to D.
8: else
9: Abort

10: end if
Teleportation

1: D waits until it receives n
2 correctly authenticated shares from the parties, then uses them to reconstruct

the EPR pair half (this is possible since it knows the keys and can update them according to the EPR
construction, which is deterministic).

2: D uses the reconstructed EPR pair half to teleport the contents of RD, sending the measurement results
to the TTP.

Protocol AWQSS
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3: The TTP informs all parties that the sharing is over.
Reconstruct

1: All parties send their shares to the reconstructor R.
2: R waits to receive the classical keys classical keys (k, ~x) from the TTP.
3: R checks the authentication on each received share and discards any which do not authenticate correctly.
4: R waits until n− t correctly authenticated shares are received.
5: R removes the authentication on these shares.
6: if these shares all lie on the same polynomial superposition then
7: R reconstructs and outputs the state using an arbitrary bn2 c+ 1 of them.
8: else
9: R outputs ⊥.

10: end if

Lemma 4. Protocol AWQSS is a (t, neg(κ))-secure asynchronous weak quantum secret sharing scheme
for all t < n

4 . Furthermore, it maintains these properties even when composed in parallel with another
AWQSS instance using the same keys kD (but independent ~xD).

Proof. We begin by considering the case where the dealer D is honest. To see that every party eventually
completes Share, note that every honest party eventually receives an authenticated share of |0〉 from D
by Lemma 3 and D’s honesty, so D passes the zero purity test. Therefore, it can reconstruct its half of
the EPR pair and perform the teleportation as soon as it receives more than n/2 correct shares. The
dealer D can test whether a share is correct by checking its authentication code, so it can wait until
it has received the requisite number of correct shares. By the correctness of quantum teleportation and
quantum Shamir secret sharing, the honest parties hold n−t shares of the state s. During reconstruction,
an honest reconstructor R receives the keys (k, ~x) from the TTP. Therefore, with probability at least
1 − neg(κ), the shares R uses to reconstruct each have neg(κ) trace distance to D’s original messages.
At least bn2 c + 1 shares are submitted by honest parties, so R can reconstruct s successfully. The fact
that the view of the adversary is independent of the shared state s follows directly from no-cloning and
the fact that it holds fewer than t shares.

Now suppose that the dealer D is dishonest and consider the case where an honest reconstructor R
would output s′ 6= ⊥ after Reconstruct. Since R output a value, it must have received n− t shares. Note
that every honest party who submits a share to R has confirmed, via the TTP, that their share was
originally a correct share of |0〉, in the sense that with probability 1 − neg(κ) their share is part of the
same Shamir secret sharing as the original n− t shares which the TTP checked and that the n− t shares
which the TTP checked decoded to a state with neg(κ) trace distance to |0〉. The correctness of the
share persists across the teleportation. Therefore the joint views of all honest parties after outputting a
value during Share define a unique value s′′ . It remains to be shown that s′ = s′′ except with probability
neg(κ). As before, R receives the keys (k, ~x) from the TTP. Observe that R receives n − 2t ≥ bn2 c + 1
shares from honest parties, and by Lemma 3 all are correctly authenticated except with probability
neg(κ). This is a majority of the shares, which uniquely determines the reconstructed value. Therefore
either s′ = s′′ or s′ = ⊥.

To show Share termination, note that if some honest party Pi terminates Share, then Pi must have
received the following: an authenticated share from D, a zero purity test result from the TTP, and a
message from the TTP that the teleportation procedure has finished. Since Pi received an authenticated
share from D, by Lemma 3 so do all honest parties except with probability neg(κ). Therefore every
honest party sends zero purity test measurements to the TTP. The TTP returns the zero purity test
results to every party which sends measurements, since otherwise it would have received fewer than n− t
measurements total and not sent a result to Pi. Finally, all honest parties receive the message from the
TTP that the teleportation is over. All other steps can be done without waiting.

Composition in parallel with itself using the same dealer key kD follows from a similar argument as
above, except we rely on the following properties holding even when composed in a parallel repetition of
the respective protocol which shares the key k: security of the classical TTP, security of the authentication
scheme, and the properties of the Verified Authentication of Zeros protocol (see Lemma 3). ut
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5.3 Asynchronous Verifiable Quantum Secret Sharing

An asynchronous verifiable quantum secret sharing (AVQSS) scheme is described by a pair of protocols
(Share,Reconstruct). In the first protocol, Share, a designated party called the dealer D distributes a
private input s among the set of parties. In the second protocol, Reconstruct, the parties jointly participate
and a designated receiver R obtains the secret.

Definition 5 (Asynchronous verifiable quantum secret sharing). Let (Share,Reconstruct) be a
pair of protocols for n parties, where a designated party D, called the dealer, has a private input quantum
state s for Share, and each honest party that completes Share subsequently invokes Reconstruct with its
local output of Share, and a designated receiver R outputs a quantum state upon terminating. We say
that (Share,Reconstruct) is a (t, ε)-secure asynchronous verifiable quantum secret sharing scheme if the
following holds with probability at least 1− ε whenever up to t parties are corrupted:

– Termination:
• If D is honest, then every party eventually terminates Share.
• If some honest party terminates Share, then all honest parties eventually terminate Share.
• If all honest parties terminate Share and start Reconstruct, then (an honest) R eventually outputs

a quantum state.
– Privacy: If D is honest, the view of the adversary is independent of s.
– Correctness: If D is honest, then if R outputs a state at the end of Reconstruct, the state is s.
– Commitment: Even if D is corrupted, if all honest parties terminate Share, their joint views defines

a unique state s′, such that if R outputs a state after Reconstruct, the state has neg(κ) trace distance
to s′.

Protocol Description. The main idea of the protocol is to proceed in two levels. In the first level, the
secret is shared using AWQSS, and then in the second level each share is shared again with AWQSS. This
allows the sharing scheme to be such that corrupted parties cannot arbitrarily contribute wrong shares
during the reconstruction step; they can only refuse to contribute shares. In contrast to the protocol for
AWQSS, we will define a fixed set of size at least n − t parties that will contribute shares during the
reconstruction. Within this set there are at least n − 2t > n/2 honest parties, and, because corrupted
parties cannot contribute wrong shares, the reconstructor R can safely recover the secret.

Initialization step. The TTP receives keys (k, ~x) from the dealer D and keys (ki, ~xi) from each party Pi. It

sets S = ∅, sets counts[i] = 0 for i = 1, . . . , n, and sets Spurity = ∅.
WSS Level-One Execution Upon receiving (WSS1Complete, j) from a player Pi for the first time, the TTP

does the following:
1: if |S| < n− t and j 6∈ S then
2: counts[j]← counts[j] + 1
3: if counts[j] = t+ 1 then
4: S ← S ∪ {j}
5: if |S| = n− t then
6: Send (WSS1, S) to all parties.
7: end if
8: end if
9: end if

Zero Purity Test Upon receiving (AQVSSShareCheck,m) from Pi, where m is a set of measurements and Pi
has not sent a AQVSSShareCheck message before, the TTP does the following:
1: Verify the authentication codes on m using the classical authentication keys. If it fails, discard this message.

Otherwise, continue:
2: if |Spurity| < n− t then
3: Spurity ← Spurity ∪ {i}
4: if |Spurity| = n− t then
5: Perform the zero purity test, storing the result in result.

Functionality AVQSS Classical TTP
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6: Send (AQVSSShareCheck, result) to each Pj for j ∈ S.
7: end if
8: else
9: Perform the purity test s times in the computational and Fourier bases using m.

10: Send (AQVSSShareCheck, acc) to Pi if this test accepts and if result = acc. Otherwise send the message
(AQVSSShareCheck, rej) to Pi.

11: end if
Teleportation and Sharing Termination Upon receiving teleportation measurements from the dealer D,

the TTP does the following:
1: Applies the measurements to complete the teleportation by transforming the classical authentication keys.
2: Remove the dealer’s level-one AWQSS authentication keys by modifying the level-two AWQSS authenti-

cation keys.
3: Inform all parties that the sharing is over.

Reconstruction The TTP sets Srecon = ∅, then participates in R’s VSS execution to share half an EPR pair.

Upon receiving (VSSReconstruct,mi) from party Pi, where mi are measurements, the TTP does the fol-
lowing:
1: Update the keys ~xi according to the transversally-applied teleportation circuit.
2: Attempt to reconstruct the level-one shares of the teleportation measurements using mi (which consists

of the level-two shares of the teleportation measurements).
3: for Each new successful reconstruction of Pj ’s level-two sharing do
4: Set Srecon ← Srecon ∪ {j}
5: Save the reconstructed level-one share (which Pj shared as its level-two value).
6: end for
7: if |Srecon| ≥ n

2 then
8: Use the reconstructed level-one shares in Srecon to reconstruct the measurement result of the telepor-

tation circuit.
9: Send the reconstructed teleportation measurement result to R.

10: end if

We describe the protocol from the point of view of party Pi. The dealer D aims to share the contents of a
register RD with the other players.
Initialization step. D chooses a random key kD. It generates 2s+ 2 |0〉 states for s = poly(κ) and encodes

them using quantum Shamir secret sharing with threshold bn2 c+ 1 and n shares. For each encoded |0〉 state,
send the i-th share to Pi using the key kD and freshly random x in the Verified Authentication protocol. Let
~x be the vector containing each x which is used. The dealer D sends the keys (kD, ~x) to the TTP.
Sharing Execution.

1: Let R1, . . . , R2s+2 be the registers containing the (authenticated) shares which Pi received from D. Share
each state using AWQSS and key ki. Let Ri,j denote the register containing the j-th share.

2: For each sharing that terminated from party Pj , send (WSS1Complete, j) to the TTP.
3: Upon receiving (WSS1, S) from the TTP, wait until all the sharings in S terminate.
4: Perform the measurements for the zero purity test on the shares from parties in S. Store the measurements

in m.
5: Send (AVQSSShareCheck,m) to the TTP.
6: Wait to receive (AQVSSShareCheck, result) from the TTP.
7: if result is acc then
8: Generate an EPR pair share using the two remaining shares. Send the share of the first half of the

EPR pair to the dealer.
9: else

10: Abort
11: end if
Teleportation

Protocol AVQSS
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1: D waits until it receives bn2 c + 1 correctly authenticated shares from the parties, then uses them to
reconstruct the EPR pair half (this is possible since it knows the keys and can update them according to
the EPR construction, which is deterministic).

2: D uses the reconstructed EPR pair half to teleport the contents of RD, sending the measurement results
to the TTP.

3: The TTP informs all parties that the sharing is over.
Reconstruct

1: The reconstructor R shares half of an EPR pair using AVQSS, where the other parties use the same key
as before.

2: Each party Pi transversally teleports the state shared by D to R using R’s shared EPR pair. They send
the (authenticated) measurements to the TTP.

3: R receives the teleportation measurements from the TTP and applies them to finish the teleportation.

Lemma 5. Protocol AVQSS is a (t, neg(κ))-secure asynchronous verifiable quantum secret sharing scheme
for all t < n

4 . Furthermore, it maintains these properties even when composed in parallel with another
AVQSS instance using the same keys kD and ki for each party Pi (but independent ~xD, ~xi).

Proof. First, note that the AWQSS scheme satisfies termination, privacy, correctness, and commitment
with all but neg(κ) probability by Lemma 4 since t < n

4 . By union bound, these properties hold for
all of the AWQSS instances with all but neg(κ) probability, so in the following we condition on these
properties holding for all instances.

Furthermore, these properties hold even if AWQSS is composed in parallel with another AWQSS
instance using the same dealer key kD, by Lemma 4. A similar statement applies for the zero purity test
and Verified Authentication of Zeros protocol (see Lemma 3). Additionally, the classical TTP and (ideal)
authentication codes compose in parallel with themselves.

We begin by considering the case where the dealer D is honest and show that all honest parties
eventually terminate Share. We first prove that the TTP will eventually send a level-two AWQSS sharing
session identifier (WSS1, S) to all parties, then show that all honest parties terminate every sharing
session in S. This is sufficient to show termination since every honest party which terminates all sharing
sessions in S will participate in the |0〉 purity test. This implies that the TTP will receive at least
n− t measurements for this test and will send the results to all parties. At this point, all honest parties
terminate.

To see that the TTP will eventually send a level-two sharing session identifier (WSS1, S) to all parties,
first observe that every honest party terminates the initial AWQSS sharing phase by the properties of
AWQSS since D is honest. Then, in the second level of sharing every honest party terminates the AWQSS
sharing phase for each honest level-two dealer (of which there are n− t, since all completed the level-one
sharing). Therefore, the TTP receives confirmation of termination of the level-two sharings from every
honest party (total n− t) for every honest level-two sharing (total n− t). This is sufficient to trigger the
thresholds for the TTP to decide and send S. Finally, to show honest termination of every session in S,
note that the TTP receives more confirmations of termination (t+1) for each session in S than there are
corrupted parties (t). Therefore, for each session in S some honest party terminated that session, and so
by the properties of AWQSS all honest parties eventually terminate that session.

Privacy with an honest dealer follows naturally from the privacy of the underlying AWQSS. The
honest parties all share the level-one AWQSS shares they receive from the dealer in their level-two
AWQSS. Let Pi be such an honest party, who receives share shi from the original dealer in the level-one
AWQSS. By the privacy guarantee of the level-two AWQSS, the adversary obtains no information about
shi. Hence, the privacy of the overall AVQSS scheme follows from the privacy of the level-one AWQSS.

Correctness with an honest dealer follows from commitment with a corrupt dealer, which we prove
later, as well as correctness of the underlying AWQSS. Since the honest parties share the level-one shares
as their level-two secrets, the joint view of the honest parties defines the unique reconstruction value
guaranteed by commitment to be the original secret shared by the honest dealer.

Now consider the case of a corrupt dealer. To show sharing termination, observe that if some honest
party terminates Share, then it received both a zero purity test result and a set S from the TTP. Both
of these are eventually received by all honest parties, since the TTP sends them to all parties. The only
other place an honest party might hang is while waiting for all level-two AWQSS in S to complete. Since
the TTP constructs S to contain level-two AWQSS sessions which more than t parties have reported
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termination on, for each session in S it holds that some honest party must have terminated that session.
Therefore, all other honest parties will terminate each session in S as well.

To show reconstruction termination with a corrupt dealer, first recall that if some honest party starts
Reconstruct, it must have terminated Share, and so all honest parties will eventually terminate Share. If
R is honest, then all honest parties terminate the AVQSS step in reconstruction where R shares half
an EPR pair. All honest parties will perform the teleportation step, so the TTP will receive enough
authenticated measurements to complete the teleportation.

Finally, we show commitment regardless of whether or not the dealer is corrupted. To do this, we show
that the TTP will successfully reconstruct precisely the teleportation measurement which would have
been made if the teleportation circuit was not evaluated transversally. By the commitment property
of the underlying AWQSS protocol, it holds that for each level-two sharing by Pi there is a unique
reconstruction state s′i such that the TTP either reconstructs s′i or fails to reconstruct Pi’s level-two
sharing.9 Furthermore, since the zero purity test accepted, these values s′i must be consistent shares of
the same secret teleportation measurement s′D except with probability neg(κ) (recall that the zero purity
test establishes that these encode a state within small trace distance of |0〉, which are then transformed
together by transversal operations). The measurement translates the guarantee of low trace given by
the zero purity test into a small failure probability. In this case, there is a unique measurement s′D
which the TTP can reconstruct. By the correctness of the level-two AWQSS sharings, the TTP will at
a minimum be able to reconstruct all level-two secrets dealt by honest parties, which corresponds to
the level-one AWQSS shares they hold. Since the collection of level-one AWQSS shares held by honest
parties uniquely determines the dealer’s secret teleportation measurement s′D, the TTP can therefore
successfully reconstruct s′D using only the reconstructed level-two secrets dealt by honest parties, except
with neg(κ) probability. The low trace distance guarantee again translates into a small failure probability
since the shares are measured. The successful reconstruction by R then follows from the correctness of
the teleportation circuit. ut

5.4 Asynchronous Toffoli Gate Computation

As discussed in Section 3.4 and Appendix A.1, the secret-sharing and authentication schemes allow for
transversal evaluation of Clifford operations on the secret. In order to allow Toffoli operations, which
form a universal gate set together with Clifford operations, the parties will also share a set of Toffoli
states. Toffoli gates can be performed using Clifford operations and an ancillary Toffoli state [BCG+06,
Appendix F]. The shared Toffoli state generation protocol constructs one or more (for sake of exposition,
we describe the single version) Toffoli states which are shared amongst the parties.

At a high level, the shared Toffoli state generation protocol requires each player to send a set of Toffoli
states. These sets are then tested for polynomial closeness to Toffoli states using quantum tomography
and cut-and-choose techniques. This results in a set of states which are polynomially close to a set of
Toffoli states with respect to trace distance. Finally, one of the sets which passes the test is further
purified to achieve an exponentially good Toffoli state using techniques from fault-tolerant quantum
computation [ABO97].

Let d = poly(κ) and let m = 3d+ 1.
Initialization. Set Si,cac = ∅ and Si,tom = ∅ for i = 1, . . . , n, set indicesi = ∅, and set set result = ⊥.

Cut-and-Choose. Upon receiving the message (Cut-and-Choose, j) from party Pi, do the following:

1: Si,cac ← Si,cac ∪ {i}
2: if result = ⊥ and Si,cac| = n− t then
3: Sample random indices for testing all but m of the Toffoli states and store them in indicesj .
4: Send (Cut-and-Choose, j, indicesj) to all parties.
5: end if

Functionality Toffoli Sharing TTP

9 After performing the teleportation circuit, the teleportation measurement and the shared value are identical
and are classical.
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Tomography. Upon receiving the message (Tomography, j,mi,j) from party Pi, do the following:

1: if indicesj 6= ∅ then
2: Si,tom ← Si,tom ∪ {i}
3: if result = ⊥ and |Si,tom| = bn2 c+ 1 then
4: Reconstruct the tomography measurements for the states sent by Pj and selected in indicesj .
5: if the tomography test for Toffoli states in indicesj is accepting then
6: Set result = j.
7: Send (ToffoliIndex, result) to all parties.
8: end if
9: end if

10: end if

Let d = poly(κ) and let m = 3d+ 1. We describe the protocol from the point of view of party Pi.
Execution.

1: Prepare and share the following states using AVQSS: poly(d) Toffoli states for a sufficiently large polynomial
and 3m ancillas initialized to |0〉.

2: for Each set of AVQSS (associated with a party Pj) which Pi terminated do
3: Send (Cut-and-Choose, j) to the TTP.
4: end for
5: for Each message (Cut-and-Choose, j, indicesj) received from the TTP do Run a state tomography on the

states from Pj indicated by indicesj to test if they are indeed Toffoli states. Let mi,j be the resulting set
of measurements.

6: Send (Tomography, j,mi,j) to the TTP.
7: end for
8: Receive a message (ToffoliIndex, j) from the TTP. The rest of the steps refer to the states shared by Pj .
9: Using the shared ancillas, encode three shared |0〉 states using quantum Shamir secret sharing with m

shares and reconstruction threshold 2d+ 1.
10: for k = 1, . . . ,m do
11: Use the k-th remaining shared Toffoli state to apply a Toffoli operation on the k-th coordinates of the

three encoded |0〉 states.
12: end for
13: Decode the resulting encoded Toffoli state. This may require correcting errors in the encoding.

Protocol Toffoli Sharing

Lemma 6. For all t < n
4 , with all but negligible probability every honest party terminates the Toffoli

Sharing protocol and holds a share of a state with neg(κ) trace distance from a Toffoli State.

Proof. We condition on the soundness of the tomography test and the AVQSS properties holding, which
both occur with all but negligible probability.

To see termination, observe that all honest parties will eventually terminate the AVQSS instances
dealt by honest parties. Therefore the classical TTP will eventually receive enough (n − t > bn2 c + 1)
shares of tomography measurements for a set of states polynomially close to Toffoli states to select an
index. All other operations are local.

It remains to show that every honest party holds a share of a state which is close to a Toffoli state in
trace distance. Observe that the quantum Shamir secret sharing used can correct up to d

2 errors since it
tolerates up to d erasures. The fact that there are less than d

2 errors follows from a straightforward cut-
and-choose argument. This requires that the tested states are independent of the cut-and-choose indices.
Observe that the cut-and-choose indices for testing a party Pj ’s set of sharings are chosen after the
TTP receives n− t messages confirming termination of Pj ’s set of sharings. This is sufficient for AVQSS
commitment to occur, since it must hold even if only the parties sending termination confirmation
messages participate in reconstruction. Observe that AVQSS commitment occurs for each dealer before
the cut-and-choose indices for that dealer are chosen. ut

This protocol can be easily extended to create multiple Toffoli states by increasing the initial number
of states shared by each party.
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5.5 Asynchronous Multiparty Quantum Computation

We combine the previous tools together to construct an asynchronous multiparty quantum computation
(AMQPC) protocol. At a high level, the parties first construct a set of secret-shared Toffoli states which
will later allow Toffoli gates to be performed on secret-shared states. They provide their inputs via
AVQSS and use the classical TTP to aid in deciding a core-set of inputs. Using the shared Toffoli states,
they transversally evaluate the circuit on the selected inputs. Finally, they reconstruct the states on the
output wire(s) for each party.

Initialization step. The TTP receives keys (ki, ~xi) from each party Pi. It sets S = ∅ and sets counts[i] = 0

for i = 1, . . . , n.
Core-Set Agreement Upon receiving a new message (Core-Set, j) from a player Pi, the TTP does the

following:
1: if |S| < n− t and j 6∈ S then
2: counts[j]← counts[j] + 1
3: if counts[j] = t+ 1 then
4: S ← S ∪ {j}
5: if |S| = n− t then
6: Send (Core-Set, S) to all parties.
7: end if
8: end if
9: end if

Output For each participant Pj , participate in the reconstruction of Pj ’s output wire with Pj as the recon-

structor.

Functionality AMPQC Classical TTP

Initialization Each party Pi sends its authentication keys (ki, ~xi) to the TTP. Execution

1: Pi participates in the generation of shared Toffoli states protocol.
2: Pi shares its input using VSS and simultaneously acts as a receiver in the other VSS instances. In the

other VSS instances, Pi uses the same authentication key ki as it sent to the TTP. The other part of the
authentication key for each instance is according to ~xi and is distinct for each VSS instance.

3: For each sharing that terminated from party Pj , send (Core-Set, j) to the TTP.
4: Upon receiving (Core-Set, S) from the TTP, wait until all sharings in S terminate.
5: Evaluate the circuit C transversally on the shares of inputs from S with the help of the TTP.
6: for Each party Pj do
7: Participate in the reconstruction of Pj ’s output wire, where Pj is the reconstructor.
8: end for
9: Pi outputs the result of reconstructing Pi’s output wire.

Protocol AMPQC

Theorem 3. Protocol AMPQC t-securely computes any circuit C for all t < n
4 .

Proof. The simulator honestly participates in the protocol, using input |0〉 for each honest party, until
the classical TTP10 sends the message (Core-Set, S) to all parties. At this point, send S to the ideal
functionality. Additionally, use t + 1 of the shares held by honest parties to reconstruct the corrupted
parties’ inputs, then send them to the ideal functionality. Participate honestly in the computation of the
circuit C and in the VQSS reconstructions where honest parties act as reconstructors. For the VQSS
reconstructions where corrupted parties act as reconstructors, the simulator forces the outputs prescribed
by the ideal functionality. Let |yj〉 be the ouput specified for party Pj by the ideal functionality. To force
Pj to reconstruct |yj〉, the simulator first participates honestly in the VQSS of Pj ’s EPR half. It locally
10 Recall the the protocol uses a classical TTP. This is distinct from the quantum TTP specified in the ideal

functionality.
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splits |yj〉 using a VQSS where only honest parties participate, then instructs the honest parties to teleport
that state instead of teleporting Pj ’s actual output wire. It intercepts the teleportation measurement
sent to Pj by the classical TTP and replaces it with a teleportation measurement computed using only
the honest parties’ measurements (who are teleporting |yj〉.

Indistinguishability of the view produced by the above simulator follows from the following sequence
of hybrids, where hybrid 0 is the real world.

1. The first hybrid simulator “forces” the output defined by the honest shares by using only the honest
shares to reconstruct the teleportation result in the output phase. It intercepts and replaces the
classical TTP’s teleportation result message. Indistinguishability from the real world follows from
the commitment property of the VQSS, since the reconstructed output is the same regardless of
which set of shares is used to reconstruct.

2. The next hybrid simulator forces the output prescribed by the ideal functionality. It reconstructs the
adversary’s input using the honest parties’ shares and sends this to the ideal functionality, receiving
back an output state for each adversarial party. To complete the transcript, it shares these states
locally amongst the (simulated) honest parties, which replaces the honest shares of the adversary’s
output wires, and proceeds as in the previous transcript. Indistinguishability follows from the secrecy
of the VQSS scheme.

3. The final simulator replaces the honest inputs with |0〉 states. Indistinguishability follows from the
secrecy of the VQSS scheme. ut

6 Impossibility Result for Asynchronous Verifiable Quantum Secret
Sharing

In this section, we prove the following impossibility result, which shows that our AVQSS protocol from
Section 5.3 is optimal with respect to the corruption threshold when the error is sub-constant.

Theorem 4. There exists a constant ε? > 0 such that there does not exist a (t, ε?)-asynchronous verifi-
able quantum secret sharing scheme among n parties for any corruption threshold t ≥ n/4.

The main intuition behind Theorem 4 is as follows: In a protocol with four parties, not only can the
corrupted party introduce a faulty share, but the adversarial asynchronicity of the network may also
cause an additional honest party to be locked out of the protocol. This means that reconstruction must
proceed with access to only two out of four shares. However, this is not possible in the quantum setting,
even approximately.

We formally prove the theorem statement in a sequence of lemmas. Let D be the dealer and P1, . . . , P4
be four parties. Towards a contradiction, assume that there is an asynchronous verifiable quantum secret
sharing scheme (Share,Reconstruct) for dealer D and four parties, where the dealer and at most one
of the parties may be corrupted.11 We show that (Share,Reconstruct) yields an approximate quantum
erasure-correcting code (QECC) of length n = 4 correcting 2 erasures, which we show cannot exist at
the end of this section. We now state the definition of approximate QECCs.

Definition 6 (Approximate quantum erasure-correcting code). Consider a pair of maps (Enc,Dec)
operating as follows: The encoder Enc maps an arbitrary qubit |ψ〉 ∈ C2 to a possibly mixed state Enc(|ψ〉)
over

⊗n
i=1Hi. Let ST denote the subsystem of Enc(|ψ〉) restricted to

⊗
i∈T Hi. Then, the decoder Dec on

input ST and T outputs a possibly mixed state Dec(ST , T ) over C2 with associated density matrix ρT . We
say (Enc,Dec) is an ε-approximate (n, t)-quantum erasure-correcting code (QECC) if for every subset
T ⊆ [n] of size |T | ≥ t and every qubit |ψ〉 it holds that

D(|ψ〉 〈ψ| , ρT ) ≤ ε.

We are now ready to state our first main lemma.

Lemma 7. Every (1, ε)-asynchronous verifiable quantum secret sharing scheme among 4 parties is also
an ε-approximate (4, 2)-QECC.
11 We make the argument for an external dealer, but the argument also holds when the dealer is one of the four

parties.
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To prove Lemma 7, consider the set {P3, P4} (the argument holds for any set of size 2). We show
that this set is authorized. Consider the following scenarios:

Scenario 1. Parties execute the sharing phase of the protocol honestly where the dealer D has input s,
except P2 who crashes from the start.

Scenario 2. Parties execute the sharing phase of the protocol honestly where the dealer D has input s,
but all messages from P2 to any other party are delayed.

Scenario 3. Similar to Scenario 2, all messages from P2 to any other party are delayed, but in addition,
the dealer D is corrupted and does not send any message to P2. Instead, the dealer D internally emulates
an execution with input s and also internally emulates P2. All messages between D, P1, P3, P4 are
delivered.

Scenario 4. Similar to the above Scenario 3, but P1 is also corrupted and does not send any message
to P2. Concretely, the corrupted D and corrupted P1 jointly emulate party P2, and do not send any
message to the real P2. However, all messages between D, P1, P3, P4 are delivered.

Lemma 8. All honest parties terminate the sharing phase in Scenario 4.

Proof. From Scenario 1, we know that since the dealer D is honest, it is guaranteed that all the remaining
parties P1, P3, P4 terminate the sharing phase. Given that in Scenario 2 the view of the parties P1, P3,
P4 is identical to that of Scenario 1, they terminate the sharing phase as well. Moreover, since there
is an honest party that terminates the sharing phase, P2 terminates as well. In Scenario 3, the view of
the parties P1, P3, P4 is identical to that of Scenario 2, and by the same argument as above, all honest
parties terminate the sharing phase. Finally, in Scenario 4, the view of the parties P3 and P4 is identical
to that of Scenario 3, and therefore all honest parties terminate the sharing phase. ut

Lemma 9. The views of parties P3 and P4 after the Sharing phase uniquely define the secret s in
Scenario 4.

Proof. By the previous lemma, all honest parties terminate the sharing protocol in Scenario 4. Moreover,
by termination of AVSS, if all honest parties start the reconstruction protocol, the output reconstructed
is close in trace distance to some fixed value s′. Since the dealer and P1 did not send any message to
P2, his state can be emulated among the parties P3 and P4. Therefore, this defines a decoding map
mapping the states of P3 and P4 to a state that is close in trace distance to s′. Moreover, s′ = s, since
there is an adversarial strategy which lets to the reconstructed value to be s: D and P1 act honestly
in the reconstruction, while delaying messages from P2. This is because it corresponds exactly to a
reconstruction from Scenario 1, where the dealer is honest and the reconstructed value is close in trace
distance to s, yielding the desired statement. ut

Combining Lemmas 8 and 9 yields Lemma 7. We now prove that ε-approximate (4, 2)-QECCs as presented
in Definition 6 do not exist for small enough ε.

Lemma 10. There is no 0.01-approximate (4, 2)-QECC.

Proof. This statement follows from an approximate version of the no-cloning theorem. We provide a full
proof for completeness.

Suppose we have a 0.01-approximate (4, 2)-QECC (Enc,Dec). Consider the mixed states

S1 =
{
|0〉 , with probability 1/2,
|1〉 , with probability 1/2,

and

S2 =
{
|+〉 , with probability 1/2,
|−〉 , with probability 1/2,

where {|+〉 , |−〉} is the Fourier basis. We wish to argue that we cannot distinguish between S1 and S2.
To this end, we make use of the following version of the Holevo-Helstrom theorem.
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Lemma 11 (Holevo-Helstrom theorem [O’D15, Theorem 3.4]). In general, the best success prob-
ability to discriminate between two mixed states with associated density matrices ρ1 and ρ2 is given by
1
2 + 1

2D(ρ1, ρ2).

Since S1 and S2 have the same associated density matrix ρ = 1
2 |0〉 〈0|+

1
2 |1〉 〈1|, Lemma 11 implies that

the advantage of distinguishing between S1 and S2 is 0. On the other hand, we will show that access to
(Enc,Dec) allows us to distinguish between S1 and S2 with positive advantage, leading to a contradiction.
Consider a mixed state S which is either S1 or S2 with probability 1/2, and let S′ = Enc(S). We can
then apply the decoder to subsystems {1, 2} and {3, 4} of S′ to obtain states S̃1,2 = Dec(S′1,2, {1, 2}) and
S̃3,4 = Dec(S′3,4, {3, 4}). By the properties of this coding scheme, conditioned on the event that S is the
pure state |ψ〉 we have that

D(|ψ〉 〈ψ| , S̃1,2), D(|ψ〉 〈ψ| , S̃3,4) ≤ 0.01. (2)

We now measure S̃1,2 and S̃3,4 in the computational basis, leading to measurement outcomes (M1,2,M3,4) ∈
{0, 1}2. Then, we have

Pr[(M1,2,M3,4) = (0, 0) or (M1,2,M3,4) = (1, 1)|S = S1] ≥ 0.992 > 0.98.

This holds since the probability of outcome 0 when measuring S̃1,2 in the computational basis is at least
1 −D(|0〉 〈0| , S̃1,2) ≥ 0.99 when |ψ〉 = |0〉 by (2) and the properties of the trace distance, and likewise
for S̃3,4 in place of S̃1,2 and also outcome 1 in place of 0. On the other hand, we have

Pr[(M1,2,M3,4) = (0, 0) or (M1,2,M3,4) = (1, 1)|S = S2] ≤ 2 · 0.512 < 0.53.

This follows by a union bound and the fact that the probability of seeing outcome 0 when measuring
S̃1,2 in the computational basis is at most 1/2 +D(|+〉 〈+| , S̃1,2) ≤ 0.51 when |ψ〉 = |+〉 by (2) and the
properties of the trace distance, and likewise for S̃3,4 in place of S̃1,2 and also outcome 1 in place of 0.
Consequently, we can distinguish between the events S = S1 and S = S2 with probability strictly larger
than 1/2 using the measurements (M1,2,M3,4), as desired. ut

Combining Lemmas 7 and 10 yields an impossibility of AVQSS with respect to n = 4 parties and
t = 1 corruptions.

Lemma 12. There exists a constant ε? > 0 such that there does not exist a (1, ε?)-asynchronous verifi-
able quantum secret sharing scheme among 4 parties.

Theorem 4, i.e., the generalization to arbitrary t ≥ n/4 then follows from standard emulation ar-
guments by observing that any AVQSS for t ≥ n/4 implies an AVQSS among 4 parties (denote them
Q1, . . . , Q4) and 1 corruption. To see this, simply partition the n parties (from the n-party AVQSS)
into 4 sets S1, . . . , S4, each of size (at most) t. In order to construct an AVQSS protocol among the
four parties, simply let each party Qi emulate the set Si. The resulting protocol is a protocol among
Q1, . . . , Q4 and tolerating 1 corruption, since the n-party protocol tolerates any corrupted set Si.

Finally, we remark that Theorem 4 combined with the analysis of our AVQSS scheme in Section 5.3
implies that it is also impossible to construct an AWQSS scheme with negligible error when the corruption
threshold t satisfies t ≥ n/4. It suffices to observe that if we instantiate our AVQSS scheme with a low-
error AWQSS scheme withstanding some corruption threshold t, then the proof of Lemma 5 directly
yields a low-error AVQSS scheme withstanding any corruption threshold

t′ ≤ min(t, dn/2e − 1).

Since Theorem 4 implies that we must have t′ < n/4, it must also be the case that t < n/4. This leads
to the following result.

Corollary 1. There exists a constant ε? > 0 such that there does not exist a (t, ε?)-asynchronous weak
quantum secret sharing scheme among n parties for any corruption threshold t ≥ n/4.
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7 Classical TTP in the Asynchronous Setting

In this section we show how to realize a classical TTP, a.k.a. a reactive functionality, in the asynchronous
model with eventual delivery of messages. To the best of our knowledge, previous works considered
constructing reactive functionalities in the synchronous setting [KMTZ13] or in the asynchronous setting
without guaranteed delivery [CLOS02].

Description of the Reactive Functionality. A reactive computation can be specified as an ordered
sequence of secure function evaluations which can maintain a joint state. The state used to evaluate any
function is passed on to the subsequent functions. In contrast to the synchronous model where without
loss of generality one can assume that all parties give input and the functionality receives all inputs,
in the asynchronous model it is important to consider functionalities that perform a certain evaluation
without having received all the inputs. In order to model the set of parties’ inputs that should be taken
into account for the computation, we include a predicate Q : P → {0, 1} on the set of parties.12 In typical
secure function evaluation protocols, the predicate evaluates to 1 if and only if the set of parties has a
certain size (e.g., at least n− t, where t is the corruption threshold).

More concretely, the computation is described as a vector of pairs function-predicate

g = ((f1, Q1), . . . , (fm, Qm)),

where each function fλ takes as input a vector of values {0, 1}∗∪{⊥}, a uniform random value r from some
domain R and a state vector Sλ containing the inputs and randomness used to evaluate the functions
f1, . . . , fλ−1. Then, fλ outputs a vector of values.

We describe the reactive functionality Freactive. It has parameters the vector g and the set of parties
P. For each function fλ, the functionality can receive an input xi,λ at any point in time, as long as the
function was not evaluated. The function fλ is evaluated as soon as the set of parties Tλ who provided
input satisfies the predicate Qλ(Tλ) = 1. A detailed description can be found below.

Parameters. Vector g = ((f1, Q1), . . . , (fm, Qm)) and party set P of size n.

Initialization. Local inputs x1,1, . . . , xn,m and outputs y1,1, . . . , yn,m, initialized to ⊥. Initial vector state

S0 = (⊥, . . . ,⊥). Initial sets of parties T1, . . . , Tm = ∅.
We denote xλ = (x1,λ, . . . , xn,λ) and yλ = (y1,λ, . . . , yn,λ).
1: Upon receiving input (input, λ, v) from party Pi ∈ P and λ ∈ {1, . . . ,m}, if yλ has not been set, then set
xi,λ = v, add Pi to Tλ and output (input, Pi, λ) to the adversary.

2: if Qλ(Tλ) = 1 then
3: Choose a random value rλ ←$ R
4: yλ = fλ(xλ,Sλ−1, rλ).
5: Set Sλ = (x1, . . . ,xλ, r1, . . . , rλ).
6: end if
7: Upon receiving (output, λ) from party Pi ∈ P and λ ∈ {1, . . . ,m}, if yλ has been set, output yi,λ to Pi.

Functionality Freactive

In order to formalize security, we can make use of a composable framework that models asynchronous
protocols with eventual delivery [CGHZ16, LLM+20].

Definition 7. A protocol Π secure computes the function vector g among parties in P if it UC-realizes
functionality Freactive with parameters g and P.

Realizing Freactive. We sketch how one can adapt previous protocols (e.g., [BKR94, PCR10]) for secure
function evaluation to realize Freactive. Such protocols achieve information-theoretic (and post-quantum)
UC security and tolerate up to t < n/3 corruptions.

These protocols follow the traditional sharing-based paradigm: parties secret-share their inputs, pro-
ceed in a gate-by-gate fashion to compute shares of the output wires from shares of the input wires, and
12 For simplicity, we assume that the predicate only depends on the set of parties, as this will be enough for us.

However, one can consider more general predicates.
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reconstruct the outputs towards the corresponding parties. We are mainly interested in the input phase.
There, parties distribute their inputs using an asynchronous verifiable secret sharing (AVSS) scheme.
Because the network is asynchronous, some sharings terminate earlier than others, and therefore parties
need to agree on when to proceed to the computation phase. For that, parties run a core-set agreement
[BKR94, BCG93] protocol to agree on a core-set of parties of size at least n− t whose inputs are taken
into the computation (all other parties’ inputs are ignored). That is, the predicate Q that is considered
evaluates to 1 when the core-set has size at least n− t parties.

In order to realize Freactive, we need to address two aspects. The first is to design a core-set agreement
for a general monotone predicate Q 13. The second is to keep track of the internal state of Freactive.

Both aspects are addressed by changing the input stage as follows. At the execution of (fλ, Qλ), each
party Pi has shares of the internal state of Freactive (initially default shares of S0). Upon receiving an
input v, Pi uses AVSS to distribute his input. Then, in the core-set agreement, n Byzantine agreement
protocols BA1, . . . ,BAn are run, one for each party. Every time the AVSS from party Pj terminates, Pi
inputs 1 to BAj . Every time BAj outputs 1, it adds Pj to T iλ. Pi then waits until the set of parties T iλ
satisfies Qλ(T iλ) = 1. If so, Pi inputs 0 to all remaining BAs and waits for all BAs to terminate, before
proceeding to the computation phase.

Since Qλ is monotone, the set of inputs taken into account for the computation satisfies Qλ (as it
contains at least the set T iλ). This leads to the desired lemma:

Lemma 13. There is a post-quantum secure protocol that securely computes g = ((f1, Q1), . . . , (fm, Qm)),
where Q1, . . . , Qm are monotone predicates, among parties in P, |P| = n, for any t < n/3 corruptions.
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[CGS02] Claude Crépeau, Daniel Gottesman, and Adam Smith. Secure multi-party quantum computation.
In 34th ACM STOC, pages 643–652. ACM Press, May 2002.

[CHL21] Annick Chopard, Martin Hirt, and Chen-Da Liu-Zhang. On communication-efficient asynchronous
MPC with adaptive security. In Kobbi Nissim and Brent Waters, editors, TCC 2021, Part II,
volume 13043 of LNCS, pages 35–65. Springer, Heidelberg, November 2021.

[Cho20] Ashish Choudhury. Optimally-resilient unconditionally-secure asynchronous multi-party computa-
tion revisited. Cryptology ePrint Archive, Report 2020/906, 2020. https://eprint.iacr.org/
2020/906.

[CHP13] Ashish Choudhury, Martin Hirt, and Arpita Patra. Asynchronous multiparty computation with
linear communication complexity. In Proceedings of the 27th International Symposium on Distributed
Computing - Volume 8205, DISC 2013, page 388–402, Berlin, Heidelberg, 2013. Springer-Verlag.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-party
and multi-party secure computation. In 34th ACM STOC, pages 494–503. ACM Press, May 2002.

[Coh16] Ran Cohen. Asynchronous secure multiparty computation in constant time. In Chen-Mou Cheng,
Kai-Min Chung, Giuseppe Persiano, and Bo-Yin Yang, editors, PKC 2016, Part II, volume 9615 of
LNCS, pages 183–207. Springer, Heidelberg, March 2016.

[CP15] Ashish Choudhury and Arpita Patra. Optimally resilient asynchronous MPC with linear communi-
cation complexity. In Proceedings of the 2015 International Conference on Distributed Computing
and Networking, ICDCN ’15, New York, NY, USA, 2015. Association for Computing Machinery.

[DGJ+20] Yfke Dulek, Alex B. Grilo, Stacey Jeffery, Christian Majenz, and Christian Schaffner. Secure multi-
party quantum computation with a dishonest majority. In Anne Canteaut and Yuval Ishai, editors,
EUROCRYPT 2020, Part III, volume 12107 of LNCS, pages 729–758. Springer, Heidelberg, May
2020.

[DL09] Ivan Damg̊ard and Carolin Lunemann. Quantum-secure coin-flipping and applications. In Mit-
suru Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages 52–69. Springer, Heidelberg,
December 2009.

[DNS12] Frédéric Dupuis, Jesper Buus Nielsen, and Louis Salvail. Actively secure two-party evaluation of any
quantum operation. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume
7417 of LNCS, pages 794–811. Springer, Heidelberg, August 2012.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness
theorem for protocols with honest majority. In Alfred Aho, editor, 19th ACM STOC, pages 218–229.
ACM Press, May 1987.
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Appendix

A Polynomial-Based Authentication Scheme

We exploit the efficient polynomial-based authentication scheme from [BCG+06] and based on [AB97].
Fix parameters r and m = 2r + 1. Choose a prime p ∈ (m, 2m) and m distinct evaluation points
α1, . . . , αm ∈ Fp. Given a classical key (x, k) with k ∈ {−1, 1}m and x = (x1,1, x1,2, . . . , xm,1, xm,2) ∈
(F2
p)m, we authenticate a basis state |β〉 with β ∈ Fp as

Authx,k(|β〉 ⊗ |0〉⊗m−1) =

Ex

p−r/2
∑

f∈Fp[x]:deg(f)≤r,f(0)=β

|k1 · f(α1), . . . , km · f(αm)〉

 , (3)

where the sum is over all polynomials f over Fp of degree at most r satisfying f(0) = β. The operator
Ex encrypts the i-th system corresponding to αi by applying Xxi,1Zxi,2 , where X and Z are generalized
Pauli gates over Fp. The decoding procedure Decx,k first removes the encryption Ex, then removes the
sign changes caused by k, and finally performs Lagrange interpolation to recover the message. Intuitively,
this scheme is secure because an adversary must apply an attack which affects at least r qupits, otherwise
the attack is detected by the error-correction properties of the code. However, since the attacker does not
know the key, its attack will yield consistent evaluations of a polynomial of degree at most r only with
exponentially small probability. The following lemma formalizes the security properties of the polynomial
code.

Lemma 14 ([BCG+06, ABEM17, HLM16]). The scheme (Authx,k,Decx,k) is a neg(κ)-QA scheme
when m = κ.

As in [BCG+06], our protocol will require that the polynomial authentication scheme remains secure
in a setting where the adversary has access to several states authenticated with the same k but encrypted
under independently sampled x’s. More precisely, consider an extension of the real-world process detailed
above where the register M is replaced by s registers M1, . . . ,Ms and the contents of register Mi are
authenticated using Authx(i),k (as in (3)) for i ∈ [s] with k ← {−1, 1}m and x(1), . . . , x(s) sampled
independently and uniformly from (F2

p)m. Then, a unitary transformation UC1...CsR is applied to the
authenticated states and the side information. Likewise, the ideal-world process is augmented by having
s flags flag1, . . . , flags behaving as before. Then, we say (Authx,k,Decx,k) is ε-secure in the s-parallel
authentication setting if, analogously to (1), these two experiments are ε-close in trace distance. The
following lemma is implicit in [BCG+06].
Lemma 15 ([BCG+06]). The scheme (Authx,k,Decx,k) is neg(κ)-secure in the s-parallel authentication
setting when m = κ and s ≤ poly(κ).

Lemma 16 ([BCG+06]). The scheme (Authx,k,Decx,k) is neg(κ)-secure in the s-parallel authentication
setting when m = κ and s ≤ poly(κ).

A.1 Operations on Authenticated States

For completeness, we discuss how to apply the generalized gates described in Section 3.2 to states which
have been authenticated via the polynomial code from Section 3.4 by applying transversal operations on
the different components of the authenticated state and relying on the classical TTP. This has already
been shown in [BCG+06] (see also [ABEM17, Section 2.5.1 and Appendix D]).

Write x = (x1, x2) with xi = (xi,1, . . . , xi,m) for i = 1, 2. With respect to the X gate, note that

Authx,k(|β〉) = Authx′,k(|β + 1〉),

where x′ = (x′1, x2) and x′1,j = x1,j + 1 for j ∈ [m]. Therefore, we can apply the X gate to |β〉 simply
by having the TTP update x to x′. To apply the controlled SUM gate to two quantum states authenti-
cated with keys (x, k) and (y, k) respectively, let S̃UM denote the transversal operation on 2m registers
consisting of applying SUM on registers i and m+ i for i ∈ [m]. Then, we have

S̃UM(Authx,k(|α〉)⊗ Authy,k(|β〉)) = Authx′,k(|α〉)⊗ Authy′,k(|α+ β〉),
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where x′ = (x1, x2 − y2) and y′ = (y1 + x1, y2). Therefore, we may apply SUM to |α, β〉 indirectly by
applying SUM gates transversally on the 2m registers and having the TTP update the keys. This works
so long as registers i and m+i are held by the same party. Measurements in the computational basis may
be applied directly on the authenticated state, yielding a string (x1,1 + k1f(α1), . . . , x1,m + kmf(αm))
with f a polynomial of degree at most r, from which f(0) can be recovered given knowledge of (x, k).

In order to apply the Fourier and Z gates, we introduce the notion of interpolation coefficients: Given
distinct evaluation points α1, . . . , αm ∈ Fp, there exist (efficiently computable) coefficients c1, . . . , cm ∈ Fp
such that

m∑
i=1

cif(αi) = f(0)

for all polynomials f over Fp of degree at most m− 1. With respect to the Fourier gate F , consider the
transversal operation F̃ = Fc1 ⊗ · · · ⊗ Fcm . Then, we have

F̃Authx,k(|β〉) = p−1/2
∑
γ∈Fp

ωγ·βp Authx′,k(|γ〉),

where x′ = (x2, x1). Therefore, we may apply F by transversally applying F̃ and having the TTP update
x to x′. In order to apply the Pauli Z gate, it suffices to observe that

Authx,k(|β〉) = ωβpAuthx′,k(|β〉),

where x′ = (x1, x
′
2) with x′2,i = x2,i + ki · ci. Therefore, it is enough to have the TTP update x as

described.
Finally, note that in all operations above no information is leaked about the keys.

B Zero Purity Test

At several points in our protocols, we need to ensure that a set of received states are all properly authen-
ticated |0〉 states using the quantum authentication scheme from Section 3.4. Ben-Or et. al. [BCG+06,
Appendix C] introduce a simple zero purity test which allows us to achieve this with low error. Our pro-
tocols use their test in a black-box manner, which only requires local operations and interaction between
one party and the classical TTP which holds the authentication keys.

For completeness, we formally define the guarantees provided by their protocol below. These are
similar to those of quantum authentication in Section 3.4. Let R = (R1, . . . , Rw) be a tuple of registers
where each Ri holds a qupit, and denote the state held by these registers by ρR. Then, the zero purity test
ZPT(ρR, s), where s is some parameter, is a protocol between a party P holding ρR and a classical TTP
holding the authentication keys (x, k). The output of the protocol to P , which we denote by ZPTout(ρR, s),
is placed into registers R′ = (R1, . . . , Rw−2s) and a flag register flag F with basis states {|acc〉 , |rej〉}.
The remaining registers are destroyed. We require the following guarantees of such a protocol:

1. Correctness: If ρR = Authx,k(|0〉)⊗w, then

ZPTout(ρR, s) = Authx,k(|0〉)⊗(w−2s) ⊗ |acc〉 ,

i.e., the protocol succeeds and P holds correctly authenticated states, and the classical TTP holds
the correct keys (x, k) for these states.

2. Security: Consider an ideal-world channel where a simulator S has access to a flag bit flag. If S sets
flag = 0, then the channel outputs ΩR′ ⊗ |rej〉 〈rej|, where ΩR′ is a placeholder state. Else, if flag = 1,
the channel outputs Authx,k(|0〉)⊗(w−2s) ⊗ |acc〉. Denote the output of this process by IDEALZPTS .
Then, the protocol ZPT achieves ε-security if for any input state ρR there is a simulator S such that

D(ZPTout(ρR, s), IDEALZPTS) ≤ ε.

The following lemma is proved and used in [BCG+06].

Lemma 17 ([BCG+06, Lemma C.1, adapted]). There is an efficient zero purity test ZPT(ρR, s)
between a party holding ρR and a classical TTP holding the authentication keys (x, k) that achieves
O(p−s)-security. In particular, it achieves neg(κ)-security when s = κ.
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