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Abstract
With the emergence of decentralized systems, spearheaded by
blockchains, threshold cryptography has seen unprecedented
adoption. Just recently, the trustless distribution of threshold
keys over an unreliable network has started to become prac-
tical. The next logical step is ensuring the security of these
keys against persistent adversaries attacking the system over
long periods of time.

In this work, we tackle this problem and give two practi-
cal constructions for Asynchronous Proactive Secret Sharing.
Our first construction uses recent advances in asynchronous
protocols and achieves a communication complexity of O(n3)
where n is the total number of nodes in the network. The
second protocol builds upon the first and uses sortition to
drive down the communication complexity to O(cn2). Here,
c is a tunable parameter that controls the expected size of the
sharing committee chosen using the existing random coin.

Additionally, we identify security flaws in prior work and
ensure that our protocols are secure by giving rigorous proofs.
Moreover, we introduce a related notion which we term Asyn-
chronous Refreshable Secret Sharing — a functionality that
also re-randomizes the secret itself. Finally, we demonstrate
the practicability of our constructions by implementing them
in Rust and running large-scale, geo-distributed benchmarks.

1 Introduction

Threshold cryptosystems have seen a surge of interest in the
last few years as they allow for reduced communication and
verification cost of consensus protocols [2, 19, 36] as well
as for protection against arbitrage and censorship attacks in
blockchain systems [26, 30, 39]. These applications are only
the beginning towards general multi-party computation incor-
porating threshold cryptography [28].

In threshold cryptosystems, a secret key is distributed
amongst participants so that each node holds a share of the
secret and a certain number, i.e., the threshold, of them are
required to reconstruct the secret key. Recent research has

been focused on generating and distributing a secret key in
a trustless manner. This has resulted in relatively practical
setup protocols called Asynchronous Distributed Key Gen-
eration (ADKG) [1, 15, 16, 27] that neither relies on trusted
third-parties nor on tight synchrony bounds. However, set-
ting up the shared secret key is only one part of a complete
solution for a practical and secure threshold cryptosystem.

Crucially, most use cases of threshold cryptosystems are
long-term. So a persistent adversary can slowly corrupt
one node after another. Eventually, it will hold sufficiently
many shares to compromise the secret. Prior work intro-
duced a countermeasure in the form of Proactive Secret
Sharing (PSS) [9, 22, 32, 34, 40]. In a PSS protocol, nodes
re-randomize their shares while ensuring that the secret key
stays the same. Thus, after re-randomization, all shares previ-
ously compromised by the adversary become worthless.

Unfortunately, most existing works either assume a (par-
tially) synchronous network or scale too poorly for regular
use. Additionally, some contain subtle flaws in their security
proofs and thus do not guarantee that honest nodes receive
unbiased shares (cf. §4.2).

Currently, the only practical way to achieve proactive se-
curity in an asynchronous networks is to repeatedly run an
ADKG. This is suboptimal for two reasons: First, the shared
secret changes on every execution which rules out applica-
tions that require a persistent shared secret key (e.g., thresh-
old signatures). Second, ADKGs are not purpose-built for
this task, as they do not use the common coin that nodes
have access to from the initial sharing. To circumvent these
challenges, we propose an Asynchronous Proactive Secret
Sharing (APSS) protocol that is both practical and secure.

Our Approach. Our protocols work with any discrete
logarithm-based threshold cryptosystem built using Shamir se-
cret sharing [33]. Briefly, similar to some prior PSS schemes,
nodes generate a random blinding polynomial p(·) with
p(0) = 0, henceforth called a zero polynomial. Then, each
node i receives a point p(i), i > 0 and updates its share of the
secret by adding p(i) to it. In a network of n = 3 f +1 nodes,
our protocol can tolerate up to f malicious nodes. Further-
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more, it has a communication cost of O(n3) and can support
secrets with a reconstruction threshold within [ f +2,2 f +1].
We prove the security of our protocol in the Random Ora-
cle Model, assuming the hardness of the Decisional Diffie-
Hellman problem.

While a communication complexity for O(n3) is efficient
enough for small to medium size networks (say n≤ 64), it is
impractical when n is large. For such scenarios, we modify
our protocol such that expensive parts of the protocol are
executed by a small, randomly sampled committee of c nodes.
This drives down the communication complexity to O(cn2)
allowing for true scalability.

We want to note that, the reconstruction threshold f +2 is
one-off from optimal threshold of f + 1. Intuitively, this is
because one point of the zero polynomial, p(0) = 0, is always
known to the adversary.

In addition to APSS, we introduce the notion of Asyn-
chronous Refreshable Secret Sharing (ARSS). It is similar
to APSS as it re-randomizes the shares, but it does not guaran-
tee that the shared secret stays the same. Therefore, it can be
viewed as executing an ADKG again to sample a fresh secret.
Such a functionality is sufficient in scenarios where, e.g., the
threshold cryptosystem is only used to power a common coin.
Compared to ADKG, ARSS is more efficient since it can
utilize the already existing shared randomness. Our ARSS
protocol maintains the efficiency of the APSS schemes while
achieving the optimal reconstruction threshold f +1.
Implementation and Evaluation. We implement both of
our APSS constructions using Rust in a reusable and modu-
lar fashion. Our experimental evaluation running across geo-
graphically distributed Amazon EC2 instances demonstrates
the practicability of both of our constructions. As part of this,
we compare our APSS to the state-of-the-art ADKG [16]
which — as expected — shows that our construction is more
efficient and thus better suited for repeated use.

In summary, we make the following contributions:

• We give two practical APSS constructions that support high-
thresholds. The second is the first (to our knowledge) with
sub-cubic complexity.

• We identify subtle vulnerabilities in prior work and show
how certain protocol-design techniques can be used to alle-
viate such issues.

• We provide a publicly-available Rust prototype of our pro-
tocols. It is modular by design, and we hope that parts of it,
specifically the networking crate, will be useful in imple-
menting asynchronous protocols in Rust.

• We benchmark the prototype across a large-scale, globally
distributed network of nodes to demonstrate the practicabil-
ity of our constructions.

Paper organization. The paper is organized as follows: First,
we discuss related work in §2 and then cover preliminaries
in §3. Then, we define polynomial generation — a core build-
ing block of our protocols — in §4 and give a cubic and a

Table 1: A selection of prior PSS work.
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Herzberg [22] sync. n/2 O(n3)

CHURP [29] sync. n/2 O(n3) ✗

MPSS [32] partial sync. n/3 O(n4)

COBRA [34] partial sync. n/3 O(n3) *

Cachin et al. [9] async. n/3 O(n4) ✗

Zhou et al. [40] async. n/3 O(exp(n))
Shanrang [35] async. n/4 O(n3 logn) ✗

Our APSS (§5.1) async. n/3 O(n3) *

Our APSS (§5.2) async. n/3 O(cn2)† *

Our ARSS async. n/3 O(n3)/O(cn2)†‡ *

† c≤ n is the size of the committee
and a tunable parameter.

‡ Depending on whether basing it on

§5.1 or §5.2, similar to our APSS.
* Can also use constructions requir-

ing a one-time setup.

sub-cubic construction in §5. Using these, we design an APSS
scheme in §6 and ARSS scheme in §7. We prove the correct-
ness of our constructions in §8, benchmark them in §9 and
conclude with §10.

2 Related Work

Most prior works (cf. Table 1) have considered PSS in (par-
tially) synchronous models (e.g., [22, 29, 32, 34]) and achieve
at best O(n3) communication cost. In contrast, our protocols
function in asynchronous networks while being more perfor-
mant. Additionally, our second construction enjoys sub-cubic
communication cost.

Only a few other asynchronous protocols exist [9, 35, 40].
However, compared to our work, they are either considerably
less efficient [10, 40] or not optimally fault-tolerant [35].

The most similar works to ours are [22, 32, 34], which
also generate a zero polynomial to update the shares held by
honest nodes. However, they are either hard to prove secure or
inefficient. The other major approach taken by prior work [9,
29, 35] is based on bivariate polynomials. Its core idea is that
instead of generating zero polynomials, nodes secret share
their current share and thereby implicitly define a bivariate
polynomial which can then be used to calculate new shares.

One particular challenge we do not consider in this work is
that of dynamically changing committees over time [29,32,34,
35, 40] as our primary focus is on improving the performance
of proactive protocols. Nevertheless, combining our work with
the approach taken by COBRA [34] should readily provide
an efficient and provably-secure APSS that supports dynamic
committees. We leave the actual composition and security
proofs to future work.
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Finally, two concurrent works on APSS have been re-
leased [24, 38]. Similarly to our work, they build on advances
in asynchronous protocols design (i.e., efficient Multi-valued
Byzantine agreement and Complete Secret Sharing). Yet, un-
like our work, both are based on bivariate polynomials and
only achieve a communication complexity of O(n3). In terms
of concrete performance, DyCAPS [24] prototype is consider-
ably slower than our cubic implementation (300 vs. 120 sec-
onds for n = 64), and we cannot compare bandwidth con-
sumption as they do not state it. Similarly, we cannot compare
our work with [38] since it is focused on a batched setting
and only gives a limited amount of benchmarks.

3 Preliminaries

3.1 Notation

We omit the security parameter κ for readability and leave it
implicit. For an integer x > 0, let [x] denote the set {1, . . . ,x}.
a← A denotes that element a is chosen uniformly at random
from the set A. Let Zq be a field of size q and let G be a
group of prime order q where the Decisional Diffie-Hellman
(DDH) problem is assumed to be hard. Also, let g,h ∈G be
two uniformly random and independent generators of G.

We denote vectors in bold (e.g., v) and assume they are
of the appropriate length. idx(v) ⊆ [|v|] returns the set of
coordinates of a vector containing a value. When its meaning
is clear from context, we sometimes abuse notation and apply
idx to sets as well.

For any given d < n, our protocol uses (n,d +1) Shamir
secret sharing [33] to secret share elements in Zq. A (n,d+1)
Shamir secret sharing of any secret s ∈ Zq implies that s
is secret shared using a degree d polynomial, and can be
reconstructed using d +1 valid shares.

Shared secrets are often used in threshold signatures
(cf. Appendix B). Thus, we often call the secret shared value
the secret key sk instead of the secret s. The corresponding
public key is pk = gs. For readability, we sometimes omit
passing the secret key to certain functions and write, e.g.,
psigni(· · ·) instead of psign(· · · ,ski).

3.2 Model

This paper focuses on threshold cryptosystems for discrete
logarithm-based cryptosystems. We consider a network of
n nodes, denoted with {1,2, . . . ,n}, that jointly execute our
protocols. The nodes are pairwise connected by private and
authenticated channels. We consider the presence of a proba-
bilistic polynomial time (PPT) static Byzantine adversary A
that can corrupt up to f < n/3 nodes.

Proactive protocols focus on the long-time security of cryp-
tosystems across multiple epochs. Epochs are demarked by
executions of a proactive protocol, and A can corrupt different

Notation Description

n Number of nodes
f Number of corrupted nodes
Zq Field of prime-order q
G DDH group of prime-order q

g,h Random, independent generators of G
d Polynomial degree

p(x) Degree-d Polynomial
ai Polynomial coefficients
v Feldman commitment to a polynomial
w Commitment to a polynomial’s points gp(i), i ∈ [n]

s,sk Secret/secret key
pk Commitment to/public key of s, i.e., gs

si,ski Secret/secret key share of node i
pki Public key of si, i.e., gui

σ Signature
σi Partial signature
Σ Set of partial signatures
Φ Set of tuples ⟨i,σi⟩. Used as VABA value.
c Committee size

Table 2: Notation

sets of nodes in each epoch. Unfortunately, APSS is impos-
sible in a model where A is allowed to launch active attacks
across epochs [3]. Such attacks are possible because private
and authenticated channels are too weak to guarantee security
in asynchronous systems. In particular, A can leak communi-
cation between two honest nodes in an epoch τ. Assume that,
during epoch τ, two nodes i and j are honest, and i sends a
message to j. A can delay this message until a later epoch
τ′ > τ where j is corrupt and leak it. Similarly, if a node is
corrupt in τ, A can use its key to sign messages belonging to
phase τ′ > τ in advance. Then, in phase τ′, even if the node is
honest again, the adversary can use these messages to make
the node behave in a Byzantine manner.

This paper assumes that A does not actively attack the
system across multiple epochs. Note that A can still actively
disrupt each protocol execution in isolation, and it can collect
shares across epochs. Thus, we will focus on one execution
of the proactive protocol.

The impossibility result can also be circumvented by as-
suming channels that ensure a message can be received in an
epoch if and only if it has been sent in the same epoch. This
approach is considered in [9], where they implement such
strong channels using secure co-processors.

3.3 Asynchronous Proactive Secret Sharing
Definition 1. Consider a network of n nodes, where nodes
hold a (n,d+1) Shamir secret share of a secret s ∈ Zq. Let si
be the secret share of s held by node i. Each node also knows
the commitment gs as well as gs j for every node j ∈ [n].

An Asynchronous Proactive Secret Sharing (APSS) [12],
parameterized by d, is a protocol among the n nodes to re-
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randomize their (n,d +1) shares of a secret s. Specifically, at
the end of the protocol, nodes output a new (n,d +1) sharing
of the secret s. Nodes also output the corresponding set of
commitments, i.e., each node i outputs s̃i and threshold public
keys gs̃ j for each j ∈ [n].

An APSS protocol must satisfy the following properties
except for negligible probability:

• Termination: If all honest nodes start the APSS protocol,
then all honest nodes will eventually terminate the protocol.

• Correctness: If the APSS protocol terminates at any honest
node, then every honest node will eventually output their
(n,d+1) secret share of s. Say s̃i is the secret share of node
i, then nodes also output the threshold public keys gs̃ j for
every j ∈ [n].

• Secrecy: The adversary learns no information about the
secret s apart from what is revealed by the commitments.

3.4 Asynchronous Complete Secret Sharing
Asynchronous Complete Secret Sharing (ACSS) [4, 15, 16, 37]
allows a dealer to share a secret s ∈ Zq with other nodes using
(n,d +1) Shamir secret sharing scheme such that, eventually,
all honest nodes will receive a share. Moreover, all shares are
consistent with some degree-d polynomial p(·).

We extend this standard notion of ACSS and require that
nodes additionally output a polynomial commitment to the
underlying degree d polynomial p(·) where:

p(x) = s+a1x+a2x2 + · · ·+adxd (1)

In our protocol, we use the well-known Feldman commit-
ment [17], denoted by v and defined as:

v = [gs,ga1 ,ga2 , . . . ,gad ] (2)

Definition 2 (ACSS [15, adapted]). An ACSS scheme enables
a dealer to share a secret s ∈ Zq by distributing a random
degree-d polynomial p(·) with p(0) = s to all other nodes.
Let shareg

i (s,d) be the functionality dealer uses to share the
secret s. Here, g is a uniformly random generator of group
G. Once the share terminates, all nodes will output a share
si = p(i) and the Feldman commitment v to p(·) with base g.

An ACSS scheme must satisfy the following properties
except for a negligible probability:

• Termination: If the dealer is honest, then every honest node
will eventually terminate the share protocol. Moreover, if
any honest node terminates the share protocol, then every
other honest will eventually terminate share protocol.

• Completeness: If some honest node terminates share, then
there exists a degree-d polynomial p(·) such that p(0) = s′

and each honest node i will eventually hold a share si = p(i)
and Feldman commitment v to p(·). Moreover, when the
dealer is honest, s′ = s.

• Secrecy: If the dealer is honest and no honest node has
started participating in a reconstruction effort, then an ad-
versary that corrupts at most d nodes has no information
about s apart from what is revealed by v.

Our prototype implementation uses a modified version of
HAVEN [4] since it was the easiest to implement given the
available libraries for Rust. It has a communication complex-
ity of O(n2) but requires a one-time trusted setup. This setup
can be avoided by using [16], which still enjoys the same
communication complexity.

3.5 Validated Asynchronous Byzantine
Agreement

Definition 3 (VABA [2, adapted]). VABA allows nodes to
agree on a value M that satisfies a Boolean predicate Q(·). We
require that the following properties hold against an adversary
except for negligible probability:

• Termination: If all honest nodes start with valid values, then
all honest nodes will eventually decide.

• Validity: If an honest nodes decides on a value M, then
Q(M) =⊤.

• Agreement: All honest nodes that terminate decide on the
same value.

We implement the VABA protocol from [2] which has
a communication cost of O(|M|n2 + n2) and requires O(1)
rounds in expectation. However, to achieve this, their protocol
requires a shared key with a threshold of d = 2 f +1. With a
lower threshold, i.e., d < 2 f +1, their protocol’s communica-
tion cost degrades to O(|M|n2 +n3).

Therefore, [2] is unsuitable for a sub-cubic construction
using a low threshold. We sketch an alternative VABA pro-
tocol in Appendix A. It is based on the common subset pro-
tocol of [5], has a communication cost of O(n2) but requires
O(logn) rounds in expectation.

3.6 Other Primitives
Our APSS constructions also use well-known cryptographic
building blocks, i.e., threshold signatures and non-interactive
zero-knowledge proofs for the equality of discrete logarithms.
For completeness, we describe them in Appendix B and Ap-
pendix C, respectively.

4 Random Polynomial Generation

As we outlined in §1, the core building of our proactive proto-
cols is a random polynomial generation protocol. Specifically,
nodes jointly generate a random polynomial p(·) of degree
d such that p(0) = 0 (i.e., a zero polynomial) and each node
i receives the point p(i). A secure protocol for generating
zero polynomial immediately implies APSS as each node i
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Figure 1: Execution of GenZeroPoly. Not all arrows are labelled for the sake of readability.

can re-randomize its share of secret s by adding p(i) to it.
Naturally, the security of the APSS protocol hinges on the
security of the polynomial generation protocol.

However, some prior works [22, 34] on generating random
zero polynomials are insecure. In particular, these works al-
low an adversary to bias the distribution of the new shares
of honest nodes. Although such a bias does not pose an im-
mediate threat, it might accumulate over time as an APSS is
usually executed often (e.g., every day).

4.1 Random Zero Polynomial Generation
Definition 4 (Zero Polynomial Generation). A zero polyno-
mial generation protocol GenZeroPoly(d) allows nodes to
jointly generate a uniformly random degree-d polynomial

p(x) = 0+a1x+ · · ·+adxd

such that upon termination, each node i outputs p(i) and the
commitment vector w = [gp(1),gp(2), . . . ,gp(n)].

A zero polynomial generation protocol needs to satisfy the
following properties except for negligible probability:

• Termination: If all honest nodes start GenZeroPoly(d), then
each honest node i will eventually output p(i) and the com-
mitment w.

• Completeness: If all honest nodes start GenZeroPoly(d)
and any honest node terminates, then there exists a degree-
d polynomial p(·) with p(0) = 0 and each honest node i
will eventually output a share p(i) and commitment w as
described above.

• Secrecy: A non-uniform PPT adversary that corrupts up to
f nodes learns no information about the share of an honest
node except whatever is revealed by the commitment w.

4.2 Insecurity of Prior Work
The vulnerability in prior works bears a striking similarity
with the vulnerability of distributed key generation proto-
cols identified by Gennaro et al. [20]. To see this, we will

briefly review the general approach for generating random
zero-polynomials.

1. Each node proposes a random zero polynomial.
2. Nodes run a consensus protocol to agree on a subset Φ

consisting of at least f +1 of proposals.
3. The random zero-polynomial p(·) is the sum of all the

zero polynomials included in the set Φ.

Although this approach seems secure as Φ includes a poly-
nomial generated by at least one honest node, this is not the
case. We will highlight this using COBRA [34], a recently
published APSS construction.

In COBRA, each node proposes a polynomial by secret
sharing 0, encrypting every share and sending the vector of
encrypted shares and a commitment to the polynomial to all
nodes. Then, using a leader-based consensus protocol, f +1 of
these proposals are chosen and summed up. The commitment
is the problematic part, especially if it is instantiated with
Feldman commitment, which is one possibility suggested in
the COBRA paper.

The issue is that the adversary A sees all commitments
before consensus on Φ is reached. This enables A to choose
any arbitrary set of f + 1 polynomials from the set of all
polynomials such that the aggregated commitment gp(i) for
an honest node i always ends with the bit 0. Now if A is the
leader it can simply force this set to be selected. Since gp(i)

is biased and always ends with bit 0, the share p(i) is also
biased. Intuitively, if the protocol would satisfy Secrecy, this
event should only occur with probability 1/2.

Getting ahead of ourselves, our protocol has an additional
round of interaction to ensure that honest nodes receive uni-
formly random shares. More specifically, it is the Commitment
Revelation phase in §5.

5 Polynomial Generation Design

We present two protocols that implements the GenZeroPoly
primitive. The first protocol has a communication cost of
O(n3) and the second one improves the communication cost to
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Algorithm 1 GenZeroPolyi(d)
Requires: Set-up secret sharing, i.e., node holds partial secret
key ski and public keys pk as well as pk j, ∀ j ∈ [n]
Input: Polynomial degree d
Output: Polynomial share p(i) and commitment w
Local Variables: V = [];S = [];Σ = {} ;Φi = {}; H = []

1: Join the VABA instance with predicate Q(pk, ·)

// Zero Sharing
2: ACSS.shareh

i (0,d)

// Proof Creation
3: upon Termination of ACSS from node j with share s j,i and

Feldman commitment v j = [ha0, j , . . . ,had, j ] do
4: if v j[0] = h0 then // Ensure that it’s a zero polynomial
5: S[ j] = s j,i; V[ j] = v j
6: σi, j = Sig.psign(⟨SHAREOK, j⟩,ski)
7: send

〈
SHAREOK,σi, j

〉
to j

8: upon receiving ⟨SHAREOK,σ j,i⟩ from j do
9: if Sig.pverify

(
⟨SHAREOK, j⟩,σ j,i,pk j

)
=⊤ then

10: Σ = Σ∪
{

σ j,i
}

11: wait for |Σ|≥ d +1 and do
12: σi = Sig.sign(Σ)
13: Φi = Φi∪{⟨i,σi⟩}
14: send ⟨SHAREPROOF,σi⟩ to all
15: upon receiving ⟨SHAREPROOF,σ j⟩ from j do
16: if Sig.verify

(
⟨SHAREOK, j⟩,σ j,pk

)
=⊤ then

17: Φi = Φi∪
{
⟨ j,σ j⟩

}
// Agreement

18: wait for |Φi|≥ f +1 and do
19: Propose Φi to the VABA instance

// Commitment Revelation
20: upon Delivery of Φ from VABA and idx(Φ)⊆ idx(S) do
21: For all i, set v′[i] = ∏ j∈idx(Φ) V[ j][i]
22: p(i) = ∑k∈idx(Φ) S[k]
23: πi←DLEq.prove(gp(i),hp(i), p(i))
24: send ⟨REVEAL,gp(i),πi⟩ to all
25: upon receiving ⟨REVEAL,gp′( j),π j⟩ from j do
26: Compute hp( j) by using v′
27: if DLEq.verify(gp′( j),hp( j),π j) =⊤ then
28: H[ j] = gp′( j)

29: wait for |H|> d and do
30: Compute w = [gp(0), . . . ,gp(n)] by using H.
31: output p(i) and w

O(cn2). This is at the cost of an additional failure probability
of e−

1
18 c. Here c< n is a system parameter which can be tuned

to achieve a trade-off between security and performance.

5.1 Cubic Polynomial Generation
Our cubic polynomial generation protocol follows the high-
level idea where each node shares a zero polynomial and then
nodes agree on f +1 of them. The resulting zero polynomial

Algorithm 2 VABA Predicate for GenZeroPoly
1: function Q(pk,Φi)
2: if |Φ|< f +1 then
3: return ⊥
4: for ⟨i,σi⟩ ∈Φi do
5: if verify (⟨SHAREOK, i⟩,σi,pk) =⊥ then
6: return ⊥
7: return ⊤

is the sum of these f +1 polynomials. Our protocol supports
any degree d such that d ∈ [ f +1,n− f −1] and assumes that
nodes already start with a (n,d +1) Shamir secret sharing of
a secret. Also, every node knows the threshold public keys of
every other node (cf. §3.3). We illustrate an overview of our
protocol in Figure 1 and summarize it in Algorithm 1.

5.1.1 Design

Our protocol has four phases: Zero Sharing, Proof Creation,
Agreement, and Commitment Revelation.

Zero Sharing. During Zero Sharing phase, each node i sam-
ples a random polynomial pi(·) with pi(0) = 0. Node i then
shares pi(·) using shareh

i (0,d) (cf. §3.4), where h ̸= g is a
uniformly random generator of G. Recall from Definition 2,
during shareh

i (0,d), every node j ∈ [n] will receive its share
pi( j) and vi, the Feldman commitment to pi(·). To ensure that
pi(·) is a zero polynomial, every other node checks whether
vi[0] = h0 = 1.

Proof Creation. Once shareh
k(0,d) for any k ∈ [n] termi-

nates at node i, it sends the message ⟨SHAREOK,σi,k⟩ to
node k. Here, σi,k is a partial signature on the message
⟨SHAREOK,k⟩.

Each node then waits for d +1 partially signed SHAREOK
messages. Upon receiving d +1 valid SHAREOK messages,
it combines them to create a threshold signature σi on the
message ⟨SHAREOK, i⟩. Node i then multicasts the message
⟨SHAREPROOF,σi⟩ to all other nodes.

Agreement. Every node i keeps track of a set Φi and when it
receives a valid SHAREPROOF message from node j, it adds
the tuple ⟨ j,σ j⟩ Φi. When |Φi|> f , it proposes Φi to the run-
ning validated asynchronous Byzantine agreement (VABA)
instance. Φi indirectly represents the set of f +1 polynomials
that node i wants to sum to the zero polynomial p(·).

During the VABA protocol, nodes use the validity predicate
Q(·) specified in Algorithm 2. Intuitively, this validity check
ensures that at least one honest node has received a share of
all the proposed polynomials.

Commitment Revelation. Let Φ be the output of the VABA
protocol. Let p(·) be the polynomial defined as the sum of the
polynomials corresponding to Φ. Once all the ACSS instances
in Φ terminate at node i, it computes its share, p(i), by adding
its share of the polynomials in Φ.
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Algorithm 3 Sub-cubic version of Algorithm 1
Requires: Set-up secret sharing, i.e., node holds partial secret
key ski and public keys pk as well as pk j, ∀ j ∈ [n]
Input: Polynomial degree d
Output: Polynomial share p(i) and commitment w
Local Variables: V = [];S = [];Σ = {} ;Φ = {}; H = []; C = {}

// . . .
// Zero Sharing

1: Collaboratively sign msgcom producing σcom
2: Sample C← [n] using σcom
3: if i ∈C then
4: shareh

i (0,d)

// Proof Creation
5: upon Termination of ACSS from node j ∈C with share s j,i and

commitment v j do
// . . .

// Agreement
6: wait for |Φi|≥ ⌊c/2⌋+1 and do
7: Propose Φi to the VABA instance

// . . .

Nodes compute the commitment w = [gp(1), . . . ,gp(n)]
using an additional round of interaction. Each node i lo-
cally computes gp(i) and a non-interactive zero-knowledge
proof πi that proves logg gp(i) = logh hp(i). Then, it multi-
casts ⟨REVEAL,gp(i),πi⟩ to others. Upon receiving such a
⟨REVEAL,gp(k),πk⟩ from node k, node i locally computes
hp(k) using the Feldman commitments from the Zero Sharing
phase and verifies gp(k) using πk and hp(k). Upon receiving
d +1 valid REVEAL messages, node i computes all the miss-
ing gp(k) by interpolating in the exponent.

5.1.2 Analysis

We will prove in §8 that Algorithm 4 securely implements
a protocol for generating random zero-polynomial, as per
Definition 4. We will also demonstrate the Algorithm 4 has a
communication cost of O(n3).

Observation 1. Modifying this construction to support any
arbitrary fixed value p(0) or even a uniformly random one is
straight-forward.

Observation 2. We stated Algorithm 1 in a way that is suitable
for APSS. It generates a polynomial with degree equal to the
degree of the threshold key. However, for other applications,
it might be desirable to generate a polynomial of a different
degree. This is indeed possible, i.e., a threshold key of degree
d ≥ f can generate a zero polynomial of degree d′ > f .

5.2 Sub-cubic Polynomial Generation

While the O(n3) communication complexity of Algorithm 1
matches existing solutions, reducing the cost further would
be desirable — especially for large-scale deployments. Algo-
rithm 1 is cubic because of the Zero Sharing phase, where
nodes execute n parallel ACSS, one for sharing secret of zero-
polynomial chosen by each node. Since each ACSS instance
has a communication complexity of O(n2), the total commu-
nication cost of Zero Sharing phase is O(n3).

To break the O(n3) barrier and achieve a sub-cubic com-
munication complexity, we allow for some additional, yet
configurable, failure probability. The core idea is that only
nodes in a small, randomly sampled committee [6, 14, 21] act
as a dealer in the Zero Sharing phase. All other nodes only
act as receivers.

More concretely, let c < n be the size of the committee.
Then, our protocol has a sub-cubic communication complexity
of O(cn2) and it is secure as long as an absolute majority of
committee members is honest, i.e., ⌊c/2⌋+1. Thus, it incurs
an additional failure probability of at most e−c/18 as we will
prove in Lemma 5. The value of c can be varied to achieve a
trade-off between the failure probability and performance.

5.2.1 Design

The sub-cubic protocol works similarly to the cubic one de-
scribed in Section 5.1 with only two phases differing slightly.
We describe the necessary changes in these phases below and
state the changes to the Algorithm 1 in Algorithm 3.

Zero Sharing. First, nodes decide on the committee. To this
end, they collaboratively produce a signature on a predeter-
mined message msgcom. Using the signature’s randomness, a
committee of c nodes is randomly sampled from [n] without
replacement. Then, only these nodes share a zero polynomial.

Proof Creation & Agreement. Here, two natural changes are
necessary. First, nodes only accept zero polynomials from
committee members. Second, the size of Φi needs to be
changed from f + 1 to ⌊c/2⌋+ 1. This is because at most
c nodes will execute the Zero Sharing phase.

5.2.2 Analysis

We analyze the performance and security of Algorithm 3
in §8.2. In short, it has a communication complexity of O(cn2)
and is secure as long as the majority of the committee mem-
bers are honest. Per Lemma 5, the probability of this not being
the case is bounded by e−c/18.

Suppose that there is no honest majority in the committee.
Let us consider in what ways the adversary A can break the
protocol. It can violate Termination by not performing the
Zero Sharing phase and thereby hindering any progress. Fur-
ther, A can break Secrecy since it might know all ⌊c/2⌋+1

7



chosen polynomials. However, it cannot violate Complete-
ness. So if an honest node terminates, all honest nodes will
eventually receive a zero polynomial.

Looking ahead, when we use the GenZeroPoly in an APSS
protocol, such a failure is not catastrophic as it does not cor-
rupt or directly leak the secret s. However, if the adversary
hinders the protocol from making progress, getting the proto-
col unstuck might require manual intervention.

6 Asynchronous Proactive Secret Sharing

We now use the random zero polynomial generation proto-
cols from §5 to implement an asynchronous proactive secret
sharing (APSS) protocol. In particular, nodes jointly generate
a random zero polynomial p(·). Each node i then adds p(i)
to its share of the secret key ski. Let s̃ki be the new share of
node i, i.e., s̃ki = ski + p(i). This corresponds to adding the
polynomial p(·) to the polynomial implicitly defined by the
existing secret sharing. Clearly, the secret key sk stays the
same as sk+ p(0) = sk+0 = sk.

One important subtlety one needs to consider while using
GenZeroPoly for APSS protocol is the following. Consider
an honest node i that just computed its new share s̃ki. Node
i needs to delete its old share ski; otherwise, the adversary
A could corrupt it in the future and learn ski. However, once
node i deletes ski, it can no longer participate in the VABA pro-
tocol used in the GenZeroPoly protocol. In the worst case, if a
large fraction of honest nodes stop participating in the VABA
protocol, as they delete their old share, the GenZeroPoly pro-
tocol might fail to terminate at remaining honest nodes.

To ensure this does not happen, GenZeroPoly must fulfill
a stronger form of termination [11]: A node must be able
to stop participating without hindering the progress of other
nodes. We say gracefully exiting the protocol.

Algorithms 1 and 3 are strongly terminating if the ACSS
and VABA sub-protocols are. Concretely, in case of our pro-
totype, HAVEN [4] is strongly terminating by default, and [2]
only requires sending an additional message at the end. Simi-
larly, [16] and Appendix A can be modified to be so as well.

The properties of the APSS scheme follow directly from
GenZeroPoly, which yields the following Theorem:

Theorem 1 (APSS). Algorithm 4 fulfills Definition 1. It in-
herits its communication- and round complexity from the
GenZeroPoly construction that is being used.

7 Asynchronous Refreshable Secret Sharing

By definition, proactive secret sharing requires that the long-
term secret stays the same. However, for many applications
(e.g., shared randomness) this is both unnecessary, as they do
not require the same long-term key to function, and perilous,
as a momentary compromise of the long-term key leads to
system-wide compromise ad infinitum.

Algorithm 4 APSS
Requires: Set-up secret sharing, i.e., node holds partial secret
key ski and public keys pk as well as

{
pk j

}
j∈[n].

Output: Re-randomized secret sharing, i.e., new secret key s̃ki

and updated public keys
{
p̃k j

}
j∈[n]

.

1: (p(i),w)← GenZeroPolyi(d)
2: s̃ki = ski + p(i).
3: for j ∈ [n] do
4: p̃k j = pk j ·w[ j]

5: Gracefully exit GenZeroPolyi(d) and delete ski.

6: output s̃ki and
{
p̃k j

}
j∈[n]

To avoid this danger, protocols can generate a new key
from scratch by running an ADKG every epoch, but this does
not take advantage of the fact that there is already a threshold
key. To provide a simpler and more efficient solution, we
instead propose a natural relaxation of APSS, which we call
Asynchronous Refreshable Secret Sharing (ARSS). Such a
protocol re-randomizes the shares and the secret itself.

The cubic and the sub-cubic APSS construction can be
easily modified into an ARSS. Specifically, during the Zero-
sharing Phase, nodes share a uniformly random polynomial
instead of sharing a polynomial with the constant term being
0. We do not provide an extensive algorithm due to space
constraints.

ARSS has an additional benefit over APSS; we can prove it
secure for even d = f +1, whereas APSS requires d > f +1.
Intuitively, this is because, in APSS, the adversary always
knows that p(0) = 0, whereas p(0) in ARSS is uniformly
random.

8 Analysis of Zero Polynomial Generation

8.1 Cubic Polynomial Generation
We will now prove that Algorithm 1 realizes the GenZeroPoly
functionality, by proving about each property of Definition 4.

Lemma 1 (Termination). Algorithm 1 fulfills Termination as
in Definition 4.

Proof. By assumption, n− f honest nodes act as a dealer and
share 0 using an ACSS. Therefore, by ACSS Termination, all
honest nodes will eventually receive their share of these n− f
zero polynomials. Hence, all honest nodes will reply to each
honest dealer with a SHAREOK message containing a valid
threshold signature. Thus, every honest dealer will eventually
know n− f > d valid partial signatures which it combines to
create a proof, i.e, a threshold signature. Since there are n− f
honest dealers, each honest node will eventually receive at
least the required f +1 valid proofs which it will input to the
VABA protocol. Thus, all honest nodes eventually start the
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VABA with a valid value and, by VABA Termination, will
agree on some valid value.

Since the value is valid according to the predicate Q and
by Unforgeability of the signature scheme, all chosen ACSS
instances have terminated for at least d + 1− f ≥ 1 honest
node(s). Consequently, by ACSS Completeness and the check
in Line 4, every honest will eventually hold a share and com-
mitment in base h for all chosen zero polynomials.

Lastly, each honest node i of which n− f > d share a valid
commitment gp(i). Thus, every node can compute w by inter-
polating the exponent.

Lemma 2 (Completeness). Algorithm 1 fulfills Completeness
as in Definition 4.

Proof. All honest nodes agree on the same zero polynomial
p(·) and its corresponding Feldman commitment v in base h.
By VABA Validity and Agreement, all honest nodes decide
on the vector of proofs. Each proof attests, by Unforgeabil-
ity of the signature scheme and by the validity predicate Q,
that the corresponding ACSS has terminated in at least one
honest node. Therefore, by ACSS Completeness, all honest
nodes will eventually receive their corresponding shares and
Feldman commitments to the agreed on polynomials. Finally,
by the check in Line 4, all chosen polynomials must be zero
polynomials. Therefore, the sum of the chosen polynomials
is a zero polynomial.

Furthermore, all nodes also agree on w. This follows di-
rectly the Completeness and Soundness of DLEq.

Lemma 3 (Secrecy). In the Random Oracle Model, under the
Decisional Diffie-Hellman assumption, Algorithm 1 fulfills
Secrecy as in Definition 4.

Our proof of Lemma 3 uses the following observation:

Observation 3. A polynomial of degree d is uniquely defined
given any set d +1 unique coefficients and evaluation points.
In particular, given any set containing a total d+1 coefficients
and evaluation points, one can compute all the coefficients by
solving the system of linear equations given in equation 3

1 x1 x2
1 · · · xd

1
1 x2 x2

2 · · · xd
2

...
...

...
. . .

...
1 xi x2

i · · · xd
i




a0
a1
...

ad

=


p(x1)
p(x2)

...
p(xi)

 (3)

We now prove a claim that we will use to prove Lemma 3.

Claim 1. In the Random Oracle Model, under the Decisional
Diffie-Hellman assumption, d− f coefficients of the polyno-
mial generated by Algorithm 1 are distributed uniformly in Zq.
Furthermore, these coefficients are unknown to the adversary
apart from what is revealed by w.

We prove Claim 1 by simulation, i.e., we describe a simula-
tor, S , on input the generators g,h and a set of d− f commit-
ments to coefficients M = {(i,ga′i)}, interacts with an adver-
sary A , that corrupts up to f nodes. The simulator produces
a view such that the Feldman commitment v to p(·) fulfills
v[i] = ga′i for every i ∈M. Also, the view of the A in the sim-
ulated protocol is indistinguishable from the view of the A in
the real protocol.

Description of the Simulator. Let C be the set of corrupt
nodes where, without loss of generality, |C |= f and let H =
[n]\C be the set of honest nodes. S first simulates all honest
nodes according to Algorithm 1 until all nodes agree on the
set of chosen polynomials Φ (i.e., until Line 21). Since |C |=
f < d, Φ contains at least one zero polynomial of an honest
node. Thus, A does not know the p(·), which is the sum of
these polynomials, in its entirety.

Note that S can compute all agreed upon polynomials
pi(·), i ∈ idx(Φ). If i ∈ H , then S sampled the polynomial
itself and knows it. Otherwise, if i ∈ C , Completeness of the
ACSS ensures that S learns enough shares to get the poly-
nomial by interpolation. Therefore, S can also compute the
sum p(·) = ∑i∈idx(Φ) pi(·). Clearly, with overwhelming prob-
ability, p(·) will not contain the desired coefficients a′i at the
appropriate positions. Hence, S needs to diverge from the
protocol at this point.

A only learns further information about p(·) in the form of
the commitments sent using REVEAL messages. Note that it
cannot interpolate the coefficients of p(·) directly as it only
knows (accounting for the fixed p(0) = 0) f + 1 < d + 1
points. Therefore, S still has some wiggle-room to find a
“fake” polynomial p̄(·) such that (i) p̄(0) = 0, (ii) p̄(i) = p(i)
for i∈ C and (iii) p̄ contains the coefficients a′i at the appropri-
ate places. In other words, p̄(·) must be consistent with what
the adversary has seen so far and include the coefficients at
the appropriate places. Since the constraints (i)-(iii) encom-
pass f +1 points and d− f coefficients, Observation 3 tells
us that there exists a unique degree-d polynomial satisfying
them. As S is only given the commitments to the coefficients,
it cannot compute p̄(·) itself but only gp̄(·) which is sufficient
for the simulation.

Last, S must simulate the Commitment Revelation phase
of the protocol. To this end, it computes the commitments
gp̄(i) to the honest nodes’ “fake” share and simulates the cor-
responding proof πi.

Proof. We reduce A distinguishing between (i) a real execu-
tion Algorithm 1 and (ii) interacting with S to the hardness
of the DDH problem. Let ADDH be a DDH distinguisher that
uses A’s guess (cf. Figure 3)

ADDH receives a generator h and DDH challenge(
hα,hβ,hγ

)
where γ = αβ or γ← Zq as inputs. It embeds the

challenge into every random polynomial sampled by an hon-
est node. More specifically, in Step 3, for every pi(·), i ∈H
it sets d− f coefficients to a random multiple of α (i.e., hαa′i, j
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Input: Generators g,h and set of coefficients
{
(i,ga′i)

}
.

1. Simulate each node in H according to the protocol
until Line 21.

2. Compute all polynomials pi(·) ∈Φ. Trivially, if i ∈
H , pi(·) is already known. Otherwise, if i ∈ C , S
knows at least d′+1 secret shares pi( j), j ∈H which
it can interpolate to yield pi(·).

3. Let p(·) = ∑i∈idxΦ pi(·) and compute all points
p(i), i ∈ C known to the adversary.

4. Solve the system of linear equations specified by
conditions (i)-(iii) to get gp̄(·) and use this to compute
g p̄(i) for i ∈H .

5. For each honest node i ∈H , simulate the proof πi for
the statement logh hp(i) = logg gp̄(i).

6. Send ⟨REVEAL,g p̄(i),πi⟩ to j ∈ C .

Figure 2: Simulator S for Algorithm 1.

while defining the generator g = hβ. Then, for each corrupt
node j ∈ C , it randomly samples a point pi( j)← Zq, which
it sends to node j during the zero sharing phase.

Then ADDH runs the protocol until agreement on the set of
polynomials is reached. Let Φ⊆ [n] be the set nodes whose
polynomial has been chosen. Note that the ACSS sub-protocol
must simulatable given only the points pi( j), j ∈ C and vi.
This is the case for the constructions mentioned so far.

Then, ADDH computes the Feldman commitment v to the
polynomial p(·)=∑i∈Φ pi(·) as described in Step 5. Crucially,
as part of this, it calculates hγa′i, j . Depending on the DDH
challenge γ, there are two possibilities:

• γ = αβ: Then hγa′i, j = gαa′i, j which corresponds to the
correct v being commitment to p(·) in base g. Therefore,
v is as in a real execution of the protocol.

• γ← Zq: Then, with non-negligible probability, γ ̸= αβ

and it follows that the commitments in base h and g
are independent of each other. Hence, v is distributed
identically to one produced by S on input of randomly
distributed coefficients.

Let b be A’s guess on whether it thinks this is a real execution
or not. ADDH outputs b.

It follows that the reduction ADDH correctly answers the
DDH challenge if the adversary correctly distinguishes a real
from a simulated protocol execution except for some negli-
gible loss in tightness (e.g., when programming the random
oracle fails or the simulated execution happens to coincide
with the real one).

Proof of Lemma 3. Assume that the adversary knows the
share of an honest node. Hence, it knows f + 2 distinct

Input: Generator h and DDH instance
(

hα,hβ,hγ

)
where

γ = αβ or γ← Zq
Output: Guess b with b =⊤ indicating that γ = αβ.

1. Define generator g = hβ.
2. Choose a random subset J ⊂ [d] with |J|= d− f .
3. For each i ∈ H , sample the ACSS polynomial pi(·) with

Feldman commitment vi:

(a) Sample a′i, j← Zq, j ∈ J and compute (hα)a′i, j which
implicitly sets the j-th coefficient to ai, j = αa′i, j.

(b) Sample a set of points Yi =
{
( j,r j)| j ∈ C ,r j← Zq

}
for the corrupt nodes.

(c) Compute the Feldman commitment vi in base h to the
polynomial pi(·) that is defined by the coefficients ai, j
and points {(0,0)}∪Yi.

4. Using Yi and vi, perform the rest of the protocol up to Line
21. Let Φ⊆ [n] be the set of nodes whose polynomial has
been chosen.

5. Compute the Feldman commitment v to p(·) in base g.

(a) For all i ∈ C ∩Φ, compute pi(·) by interpolation and
use it to convert the corresponding Feldman commit-
ments vi to base g.

(b) Using pi(·), i ∈ C ∩Φ and Yi, i ∈ H ∩Φ, compute
p(i) for all corrupt nodes i ∈ C .

(c) Compute d− f commitments to coefficients a j, j ∈ J
of p(·) by v[ j] = ∏i∈H ∩Φ (hγ)a′i, j ∏i∈C∩Φ vi[ j].

(d) Compute the coordinates missing from v by solving
the system of linear equations defined by the above
commitments to coefficients and p(i), i ∈ C .

6. For each honest node i ∈H , perform the rest of the proto-
col.

(a) Evaluate v at position i in the exponent yielding gp(i).
(b) Simulate the NIZK proof πi by programming the ran-

dom oracle and then send the REVEAL message to the
adversary.

7. Output ⊤ iff the adversary guesses that this is a real execu-
tion.

Figure 3: Reduction of distinguishing S from a real executions to
the difficulty of DDH.

points of the polynomial. Therefore, by Observation 3, at most
d− f −1 coefficients may be chosen arbitrarily. However, this
contradicts Claim 1 as A would be able to distinguish a simu-
lated view from a real one.

Lemma 4 (Performance). Algorithm 1 has a communication
complexity of O(n3) and takes O(1) rounds.

Proof. Let CACSS and CVABA be the expected communica-
tion costs of the ACSS and VABA protocols, respectively.
Using constructions listed in Section 3, set CACSS = O(n2)
and CVABA = O(n3). The expected communication cost is
then in O(n ·CACSS + 2n2 +CVABA) which is O(n3). Both
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sub-protocols require expected O(1) rounds and hence Algo-
rithm 1 takes require expected O(1) rounds.

Combining all the above we get the following Theorem.

Theorem 2 (Zero Polynomial Generation). In the Random
Oracle Model, under the Decisional Diffie-Hellman assump-
tion, Algorithm 1 fulfills Definition 4 and has a communica-
tion complexity of O(n3) and takes O(1) rounds.

8.2 Sub-cubic Polynomial Generation
Since our sub-cubic protocol is very similar to the cubic one,
the analysis is analogous, and only requires that sampled
committee consists of an honest majority. Thus, in Lemma 5
we analyze this probability.

Lemma 5. For a committee of size c implicitly sampled by
sample(), a strict majority of the committee members is honest
except with probability of at most e−c/18.

Proof. We are sampling c out of n nodes without replacement
and more than 2/3 of the nodes are honest which constitutes
a hypergeometric distribution.

Let H be the random variable equal to the number of honest
nodes in the committee. Then, using the well known tail
bound [23], the probability that there is no absolute majority
of honest nodes is

Pr[H ≤ c/2] = Pr[H ≤ (2/3−1/6)c] (4)

≤ e−2c/62
= e−c/18 (5)

As we illustrate in Figure 4, the upper bound for failure
probability with c = 64 and c = 128 is approximately, 2.86%
and 0.08%, respectively.

50 100 150 200 250

Committee Size

10−5

10−3

10−1

F
a
il
u
re

P
ro

b
a
b
il
it

y

Figure 4: Relation between the failure probability and committee
size (i.e., e−c/18 as Lemma 5). Note logarithmic scaling.

Using Lemma 5 and Theorem 2, we get the following theo-
rem.

Theorem 3. Let c be the size of the committee. In the Random
Oracle Model, under the Decisional Diffie-Hellman assump-
tion, Algorithm 3 fulfills Definition 4 with a failure probabil-
ity of at most e−c/18. It has a communication complexity of

O(cn2) and takes either O(1) or O(logc) rounds depending
on whether a high-threshold secret key is used.

Proof. The protocol fails if there is no strict majority of hon-
est nodes in the committee. From Lemma 5 this happens with
probability of at most e−c/18. Under this assumption the proof
is analogous to the proof of Theorem 2.

The communication complexity of O(cn2) follows from
the fact that ACSS is only executed c times.

Note that when the secret key is shared using a (n,d +
1) Shamir secret sharing scheme where d +1 = 2 f +1, our
protocol terminates in expected O(1) rounds using the VABA
protocol from [2]. With d+1 < 2 f +1, the round complexity
is O(logc), as we need to use the protocol from Section A.

9 Implementation and Evaluation

We give a prototype implementation* of our APSS protocols,
both cubic, and sub-cubic. It is based on the BLS12-381 curve,
requires a one-time setup, tolerates f < n/3 corruptions, and
supports secrets with a reconstruction threshold of 2 f +1. We
use HAVEN [4] and [2] as sub-protocols for ACSS and VABA,
respectively. Since the curve is pairing friendly, we chose
to use BLS threshold signatures [8] and KZG polynomial
commitments [25]. The latter needs a one-time setup that
outputs gτ,gτ2

, . . . ,gτk
where τ← Zq and k is the polynomial

degree.
We utilize asynchronous Rust with tokio providing the

asynchronous runtime and blstrs for BLS12-381 implemen-
tation. Nodes communicate via TCP sockets and a custom
networking crate ensures a reliable exchange of messages by
transparently handling retries and caching of messages. This
networking crate is modular by design and self-contained.
Thus, we hope that it might prove useful to other researchers
wanting to implement an asynchronous protocol in Rust.

Through our experiments, we measure the runtime — the
time a node takes to complete one invocation of the APSS
protocol; and, the bandwidth consumption — the amount of
data each node sends during the APSS protocol. As a base-
line, we use the naive solution to APSS, i.e., generating a
new secret by running an ADKG. Our experiments aim to
demonstrate that (i) our deterministic construction (§5.1) out-
performs the state-of-the-art ADKG constructions by virtue
of using a simple black-box consensus instead of multiple bi-
nary agreements; and (ii) that our committee-based construc-
tion (§5.2) allows not only for lower runtime and bandwidth
consumption but also for better scalability by varying the size
of the committee.

We evaluate our protocol using Amazon Web Services
and evenly distribute the nodes across eight global AWS re-
gions: Northern California, Oregon, Ohio, Northern Virginia,
Canada, Ireland, Singapore, and Tokyo.

*Available at https://github.com/ISTA-SPiDerS/apss
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Figure 5: Average runtime of the APSS and ADKG protocols.
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Figure 6: Average bandwidth consumption of one node during the
APSS and ADKG protocols.
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Figure 7: Average runtime of the APSS protocol for various commit-
tee sizes.

9.1 Evaluation of the Cubic Protocol
We evaluate our APSS protocol based on §4 with 8, 16, 32, and
64 nodes. Each node runs on a t3a.medium virtual machine
(2 vCPUs, 4 GB RAM). Our results are averaged using ten
runs of each experiment.

To demonstrate (i), we compare our prototype to a state-of-
the-art ADKG protocol [16]. Their prototype also supports
BLS12-381 and has been benchmarked on exactly the same
AWS configuration.

We illustrate the average runtime and average bandwidth
consumption of a node in Figure 5 and Figure 6, respectively.
Even with 64 nodes, our prototype finishes in 2 minutes and
consumes roughly 12.5 Megabytes (MB) of bandwidth. Com-
pared to the ADKG, it is approximately 40 seconds (25% re-
duction) faster and saves 7 MB of bandwidth (35% reduction).
Note that the runtime cannot be reliably compared with [16]
as the prototypes are implemented in different programming
languages. The bandwidth consumption, however, can be
compared as (compressed) elliptic curve points, scalars, and
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Figure 8: Average bandwidth consumption of one node during the
APSS protocol for various committee sizes.

hashes make up the bulk of the communication. We believe
that these improvements clearly showcase the practicality
of our APSS which uses an efficient Byzantine agreement
protocol leveraging the availability of a strong common coin.

9.2 Evaluation of the Sub-cubic Protocol
The previous experiments covered small to medium-sized
networks. Our second set of experiments demonstrates that
our sub-cubic protocol (cf. §5.2) supports large-scale deploy-
ments as mentioned in (ii). In these experiments, since nodes
need to perform more computation, due to a large number
of nodes, we run them on more powerful t3a.xlarge VMs
(4 vCPUs, 16 GB RAM). Also, due to the longer running
times, we repeated these experiments only three times.

To form a baseline, we measured the runtime of the cubic
protocol with 64, 128, and 256 nodes. Then, we performed
tests with committees of size 64 and 128.† The former de-
grades the protocol’s security by at most ca. 2.86% and the
latter by at most 0.08%. Recall that such a failure only hinders
the re-randomization from taking place and it never directly
leaks or corrupts the key

We present the runtime and bandwidth consumption in Fig-
ures 7 and 8, respectively. The baseline measurement shows
that the cubic protocol with 256 nodes takes almost 40 min-
utes to complete and has a bandwidth consumption of 600 MB.
Across all nodes, this adds up to 150 GB. A committee of
size 128, which only introduces at most an additional fail-
ure probability of 0.08%, reduces this to 30 minutes and
roughly 320 MB of communication on average. This sums up
to 80 GB in total.

Since the ACSS is responsible for most of the prototype’s
communication, the sub-cubic protocol scales very well in
terms of bandwidth. For n = 64,128,256 and c = 64, the
prototype requires only 12.5,43,132 MB of communication
per node, respectively. For n = 256, this constitutes a savings
of roughly 470 MB (79% reduction). The execution time
behaves similarly though the effect is not as drastic. In the
extreme case n = 256 and c = 64, the runtime is 19 minutes

†The committee was sampled through a VRF election and not a sortition
without replacement, but this would have no effect on the performance of the
system.
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faster (45% reduction). In general, larger committees will also
enjoy such scaling effects. Especially the resulting bandwidth
savings make the sub-cubic protocol more practical for regular
usage in large-scale networks.

10 Conclusion

We have presented two Asynchronous Proactive Secret Shar-
ing protocols. Similarly to prior work, the first has a com-
munication complexity of O(n3). The second improves upon
the first and drives the communication complexity down to
O(cn2) where c < n is the size of a randomly sampled com-
mittee. Furthermore, we introduce Asynchronous Refreshable
Secret Sharing and explain how our two constructions can be
modified to fulfill this new notion.

We give rigorous security proofs and implement our proto-
cols in Rust. Benchmarks of our prototype show that our pro-
tocols are practical for regular use. Especially the sub-cubic
construction scales well even for large number of nodes.
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A Low-Threshold Byzantine Agreement

As stated in Section 3.5, low-threshold, sub-cubic polyno-
mial generation cannot use the VABA construction due to
Abraham et al. [2] since it degrades to cubic communication
complexity when used with a low-threshold key. An alterna-
tive construction that fulfills validated Byzantine Agreement
as in Definition 3 can be realized by adapting Asynchronous
Common Subset (ACS) protocols.

For example, consider the ACS due to Ben-Or et al. [5].
On a high level, each node in the committee performs a
validated reliable broadcast (RBC) of the proof that it ex-
ecuted ACSS correctly. Additionally, for each RBC, an Asyn-
chronous Binary Byzantine Agreement (ABBA) is run that
signifies whether the RBC has terminated. Efficient RBC
constructions (e.g.,n [15]) have a communication complexity
of O(n2) in our setting. Furthermore, efficient low-threshold
ABBA protocols (e.g., [31]) incur a cost of O(n2). Thus, the
total expected communication cost of the protocol remains
O(cn2).

B Threshold Signatures

A threshold signature scheme allows multiple nodes to jointly
sign a message where the signing key is a shared secret. Let
pk be the shared public key, ski and pki be the secret key share
and corresponding public key of node i.

Definition 5. A threshold signature scheme Sig is defined by
four algorithms psign, pverify, sign and verify.

• psigni(m)→ σi is parameterized by the node i’s secret key
ski, takes a message m and outputs a partial signature σi.

• pverify(m,σi,pki) =⊤/⊥ takes a message, a partial signa-
ture, and a node’s public key pki and outputs whether the
verification succeeded.

• sign(Σ)→ σ outputs a threshold signature σ if it is given
|Σ|≥ d +1 correct partial signatures for the same message.

• verify(m,σ,pk) = ⊤/⊥ takes a message, threshold signa-
ture, and public key and outputs whether the verification
succeeded.

We require that the following properties hold nodes except
for negligible probability:

• Correctness: For every message m and node i it must hold
that pverify(m,psign(m,ski),pki) =⊤. Furthermore, given
a set Σ with size |Σ|≥ d +1 of distinct such partial signa-
tures, it must hold that verify(m,sign(Σ),pk) =⊤.

• Unforgeability: psign must be existentially unforgeable un-
der a chosen message attack (EUF-CMA). Furthermore,
without knowledge of d+1 partial signatures, sign must be
EUF-CMA secure as well.

For certain applications, such as creating shared randomness,
it is useful for the signatures to be unique.

• Uniqueness: If verify(m,σ,pk) =⊤ and verify(m,σ′,pk) =
⊤, then σ = σ′.

Given a shared secret, standard discrete logarithm-based
signature schemes such as BLS [8] can be turned into thresh-
old signature schemes [7].

C Equality of Discrete Logarithms

As part of our constructions, we need zero-knowledge proofs
for statements of the form logg gx = logh hx. That is, that dis-
crete logarithm of two numbers relative to two bases is identi-
cal.

Chaum and Pedersen [13] devised a Σ-protocol that allows
one to prove such statements. It provides the well-known
properties Completeness, Knowledge Soundness and Special
Honest Verifier Zero-Knowledge under the discrete logarithm
assumption. Note that the latter implies that one can simulate
proofs for false statements. Furthermore, in the random oracle
model, by the the Fiat-Shamir heuristic [18], the protocol can
be turned into a non-interactive zero-knowledge (NIZK) proof.
We call this non-interactive version DLEq in our protocols
and define the syntax below.

Definition 6 (Equality of Discrete Logarithms). The protocol
DLEq has two functions:

• prove(a,b,x)→ π which given two elements a,b ∈G and
exponent x ∈ Zq outputs a proof π.

• verify(a,b,π) =⊤/⊥ which given two elements a,b and a
proof π outputs whether π proves logg a = logh b.
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