
Streaming Functional Encryption

Jiaxin Guan∗ Alexis Korb† Amit Sahai‡

November 2022

Abstract

We initiate the study of streaming functional encryption (sFE) which is designed for scenarios
in which data arrives in a streaming manner and is computed on in an iterative manner as the
stream arrives. Unlike in a standard functional encryption (FE) scheme, in an sFE scheme,
we (1) do not require the entire data set to be known at encryption time and (2) allow for
partial decryption given only a prefix of the input. More specifically, in an sFE scheme, we can
sequentially encrypt each data point xi in a stream of data x = x1 . . . xn as it arrives, without
needing to wait for all n values. We can then generate function keys for streaming functions
which are stateful functions that take as input a message xi and a state sti and output a value
yi and the next state sti+1. For any k ≤ n, a user with a function key for a streaming function
f can learn the first k output values y1 . . . yk where (yi, sti+1) = f(xi, sti) and st1 = ⊥ given
only ciphertexts for the first k elements x1 . . . xk.

In this work, we introduce the notion of sFE and show how to construct it from FE. In
particular, we show how to achieve a secure sFE scheme for P/Poly from a compact, secure
FE scheme for P/Poly, where our security notion for sFE is similar to standard FE security
except that we require all function queries to be made before the challenge ciphertext query.
Furthermore, by combining our result with the FE construction of Jain, Lin, and Sahai (STOC,
2022), we show how to achieve a secure sFE scheme for P/Poly from the polynomial hardness
of well-studied assumptions.

∗Princeton University. Email: jiaxin@guan.io.
†UCLA. Email: alexiskorb@cs.ucla.edu.
‡UCLA. Email: sahai@cs.ucla.edu.

Contents

1 Introduction 1
1.1 Our Results . 2
1.2 Related Work . 4

2 Technical Overview 5
2.1 Single-Key, Single-Ciphertext, SIM-Secure, Secret-Key Streaming FE 5
2.2 Bootstrapping to an IND-Secure, Public-Key Streaming FE 12

3 Preliminaries 15
3.1 Functional Encryption . 15

4 Streaming Functional Encryption 19
4.1 Security . 20

5 Single-Key, Single-Ciphertext, SIM-secure, Secret-Key Streaming FE 23
5.1 Parameters . 24
5.2 Construction . 27
5.3 Correctness and Efficiency . 29
5.4 Security . 31

6 Bootstrapping to an IND-Secure, Public-Key Streaming FE Scheme 53
6.1 Parameters . 54
6.2 Construction . 56
6.3 Correctness and Efficiency . 58
6.4 Security . 59

7 Acknowledgements 59

8 References 60

A [JLS22] Assumptions 63

B Preliminaries Continued 64
B.1 Standard Notions . 64
B.2 Secret-Key Functional Encryption . 66

C Additional Streaming FE Definitions 68
C.1 Secret-Key Streaming FE . 68
C.2 Relaxed Definition of Streaming FE . 69

D Security Proof from Section 6 70

2

1 Introduction

Functional encryption (FE) [SW05, BSW11, O’N10] is a powerful extension of public key encryp-
tion that restricts users with secret keys to only learning functions of the encrypted data. In an FE
scheme, an authority can generate function keys for functions of their choice using a master secret
key. Given a function key for f and an encryption of x, one should be able to learn f(x) and nothing
else. Functional encryption has been studied extensively (e.g. [SW05, GGH+13, SW14, GGHZ16,
GKP+13, BGG+14, GVW15, ABSV15, AJ15, BV15, Lin16, Lin17, GPSZ17, GPS16, LV16, AS17,
LT17, AJS18, AJL+19, Agr19, JLMS19].) In addition to its many direct applications, FE has also
been used to build other cryptographic applications such as reusable garbled circuits [GKP+13],
adaptive garbling [HJO+16], multi-party non-interactive key exchange [GPSZ17], universal sam-
plers [GPSZ17], and verifiable random functions [GHKW17, Bit17, BGJS17]. Importantly, FE
can be used to construct iO [BV15, AJ15], a powerful tool which can be used to build many
cryptographic primitives [SW14].

Now is an exciting time for functional encryption. While early constructions of FE were re-
stricted – for example, some required a bound on the number of function keys [GVW12], or only
allowed functions keys for simple functions like inner product [ABDP15, ALS16] or quadratic func-
tions [BCFG17] – we’ve recently been able to achieve FE for P/Poly from well-studied assumptions
[JLS21, JLS22]. This has also opened the door to extensions such as FE for Turing machines [AS16]
and multi-input FE [GGG+14]. In light of these advances, it is natural to consider the feasibility
of even stronger notions of functional encryption.

The Streaming Scenario. In many modern applications, the data sets being used might not be
available all at once or might be in some ongoing process of being generated. Additionally, data sets
are often large, and it can be difficult to store or compute on the entire data set all at once. Using
functional encryption in these scenarios can incur a large expense or may not even be possible.

For example, consider a privacy-preserving machine learning algorithm that is being trained on
a massive data set provided by a third party. The third party might hope to use FE to protect
the training data by encrypting it and providing it to the training algorithm user along with a
function key for the algorithm. However, using FE in this manner requires the training set to be
fixed at encryption time. If new training data later becomes available, the user cannot continue
training the algorithm on this data without re-encrypting the entire data set. Furthermore, the
user cannot generate any partial results while training the algorithm but must instead wait until
the full decryption finishes, which takes time and space proportional to the size of the data set.

Using FE in these scenarios is additionally infeasible when the data arrives in a streaming
fashion either due to the nature of the data or because the data is too large to be stored on the
user’s computer all at once. As an example, consider a video-processing algorithm. For privacy,
the video broadcaster might consider using FE to send an encryption of the video and a function
key for the video-processing algorithm to the user. However, if the video is being recorded live or is
large in size, then we would ideally like the broadcaster to be able to stream an encryption of the
video to the user who could then begin processing the video as the stream arrives. However, this
is not possible with regular FE. The broadcaster would have to wait until the video is finished (if
it ever is!) to encrypt the video, and then send the entire encryption to the user, who could only
then begin processing the video. Furthermore, the user would have to compute on an encryption
of the entire video stream, which may be large.

As another example, consider a business that receives data from many internet users. Suppose
that an outside company wishes to run an algorithm on this data. To protect the data of the
internet users, the business could use FE to send a function key of the algorithm to the other

1

company along with an encryption of the internet users’ data. As the internet users are not likely
to be concurrently online, the data is unlikely to be available all at once. Ideally, the business could
collect, encrypt, and send the data as it becomes available to them, without needing to store it
long term. However, if we are using regular FE, then the business would have to store all of the
received data until a time when it has received sufficient data from a sufficient number of internet
users. Only then could the business encrypt the data and send it to the outside company. At this
point, the data set provided to the outside company is fixed, and adding new data to the set is
difficult and may require re-encrypting all of the data. As this data set may be very large, it may
also be difficult for the business or the outside company to store the data in its entirety or compute
FE functionalities on it.

The reason that FE is so expensive in these scenarios is that when using FE, the entire data set
must be known at encryption time, and decryption can only be run on a ciphertext for the entire
data set. To counter these issues, we put forward a new type of FE which is better suited for these
scenarios.

1.1 Our Results

In this work, we introduce the notion of streaming functional encryption (sFE) and show how to
construct it from FE. Streaming FE is designed for scenarios where data arrives in a streaming
manner and is computed on in an iterative manner as the stream arrives.

First, we define a streaming function to be a stateful function that takes as input a state sti and
a value xi and outputs the next state sti+1 and a value yi. A streaming FE scheme will compute
function keys for streaming functions.

Definition 1.1 (Streaming Function). A streaming function with state space S, input space X ,
and output space Y is a function f : X × S → Y × S.

• We define the output of f on x = x1 . . . xn ∈ X n (denoted f(x)) to be y = y1 . . . yn ∈ Yn

where1 we have st1 = ⊥ and

(yi, sti+1) = f(xi, sti)

Definition 1.2 (Streaming Function Class). The streaming function class F [ℓF , ℓS , ℓX , ℓY] is the
set of all streaming functions f that have a description f̂ ∈ {0, 1}ℓF , state space S = {0, 1}ℓS , input
space X = {0, 1}ℓX , and output space Y = {0, 1}ℓY .

Now, as we receive the input data x = x1 . . . xn in a streaming manner, we would like to be able
to encrypt the input and decrypt the streaming function of the encrypted input as it arrives. For
encryption, we require the ability to individually generate ciphertexts cti for the i

th input xi given
only the master public key, xi, the index i, and an encryption state (which is generated once for x
using only the master public key). The decryption algorithm will itself be a streaming function that
takes as input the ith ciphertext cti, the index i, the function key skf , and the current decryption
state Dec.sti (which roughly speaking encrypts sti), and outputs the next output value yi where
(yi, sti+1) = f(xi, sti) and the next decryption state Dec.sti+1. We now define streaming FE.

Definition 1.3 (Public-Key Streaming FE). A public-key streaming functional encryption scheme
for P/Poly is a tuple of PPT algorithms sFE = (Setup,EncSetup,Enc,KeyGen,Dec) defined as fol-
lows:

1We assume that unless specified otherwise, all streaming functions have the same starting state ⊥ (or the all
zero string) which is included in their state space.

2

• Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY): takes as input the security parameter λ, a function size ℓF , a
state size ℓS , an input size ℓX , and an output size ℓY , and outputs the master public key mpk
and the master secret key msk.

• EncSetup(mpk): takes as input the master public key mpk and outputs an encryption state
Enc.st.

• Enc(mpk,Enc.st, i, xi): takes as input the master public key mpk, a state Enc.st, an index i,
and a message xi ∈ {0, 1}ℓX and outputs an encryption cti of xi.

• KeyGen(msk, f): takes as input the master secret key msk and a function f ∈ F [ℓF , ℓS , ℓX , ℓY]
and outputs a function key skf .

• Dec(skf ,Dec.sti, i, cti): where for each function key skf , Dec(skf , ·, ·, ·) is a streaming function
that takes as input a state Dec.sti, an index i, and an encryption cti and outputs a new state
Dec.sti+1 and an output yi ∈ {0, 1}ℓY .

sFE satisfies correctness if for all polynomials p, there exists a negligible function µ such that for
all λ ∈ N, all ℓF , ℓS , ℓX , ℓY ≤ p(λ), all n ∈ [2λ], all x = x1 . . . xn where each xi ∈ {0, 1}ℓX , and all
f ∈ F [ℓF , ℓS , ℓX , ℓY],

Pr

Dec(skf , ctx) = f(x) :

(mpk,msk)← Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY),

ctx ← Enc(mpk, x)
skf ← KeyGen(msk, f)

 ≥ 1− µ(λ)

where we define2

• the output of Enc(mpk, x) to be ctx = (cti)i∈[n] produced by sampling Enc.st← EncSetup(mpk)
and then computing cti ← Enc(mpk,Enc.st, i, xi) for i ∈ [n].

• the output of Dec(skf , ctx) to be y = (yi)i∈[n] where (yi,Dec.sti+1) = Dec(skf ,Dec.sti, i, cti)

For non-triviality, we require that our streaming FE scheme is streaming efficient, meaning that
the runtime of our algorithms should not depend on the total length n of the message x = x1 . . . xn
that we wish to encrypt. More formally, we require that the size and runtime of all algorithms of
sFE on security parameter λ, function size ℓF , state size ℓS , input size ℓX , and output size ℓY are
poly(λ, ℓF , ℓS , ℓX , ℓY).

Our security notions are the same as in regular FE except that we allow inputs x = x1 . . . xn
of arbitrary length n, allow function keys for streaming functions, and replace Enc(mpk, x) with
Enc(mpk, x) as defined in the above definition of streaming FE. In particular, our sFE scheme
achieves security similar to standard indistinguishability (IND) security, except that we require
all function queries to be made before the challenge message query. This makes our security
function-selective. However, our definition of security is more liberal than the usual definition of
function-selective security in that we allow the choice of each function query to depend on the
master public key and all previous function queries. For this reason, we say that our scheme
achieves semi-adaptive-function-selective-IND-security (see Definition 4.6).

We then show how to build sFE from compact FE. Here, compactness means that the runtime
of both the setup and encryption algorithms are independent of the function size.3 This gives us
our main theorem.

2As with all streaming functions, we assume that Dec.st1 = ⊥ by default.
3In other sections of this paper, we refer to this notion as strong-compactness since the usual notion of compactness

found in the literature only requires the encryption algorithm to be independent of the function size.

3

Theorem 1.4 (Main Theorem). Assuming a compact, selective-IND-secure, public-key FE scheme
for P/Poly, there exists a semi-adaptive-function-selective-IND-secure, public-key sFE scheme for
P/Poly.

Additionally, we can build our sFE scheme from well-studied assumptions, and in fact only
require polynomial security of these assumptions (unlike the subexponential security needed for
iO). Recently, [JLS22] construct sublinear, single-key FE for P/Poly from well-studied assumptions.
We formally define these asumptions in Appendix A.

Theorem 1.5 ([JLS22]). If there exists constants δ, τ > 0 such that:

• δ-LPN assumption holds (Definition A.1)

• There exists a PRG in NC0 with a stretch of n1+τ where n is the length of the input (Defini-
tion A.2)

• The DLIN assumption over prime order symmetric bilinear groups holds (Definition A.3)

Then, there exists a sublinear, single-key, selective-IND-secure, public-key FE scheme for P/Poly.

[GS16, LM16, AJS15, BV15] show how to bootstrap this to a compact scheme in an unbounded
collusion setting with only a polynomial loss in security.

Theorem 1.6 ([GS16, LM16, AJS15, BV15]). If there exists a sublinear, single-key, selective-
IND-secure, public-key FE scheme for P/Poly, then there exists a compact, selective-IND-secure,
public-key FE scheme for P/Poly.

By combining these results, we get the following corollary.

Corollary 1.7. If there exists constants δ, τ > 0 such that:

• δ-LPN assumption holds (Definition A.1)

• There exists a PRG in NC0 with a stretch of n1+τ where n is the length of the input (Defini-
tion A.2)

• The DLIN assumption over prime order symmetric bilinear groups holds (Definition A.3)

Then, there exists a semi-adaptive-function-selective-IND-secure, public-key sFE scheme for P/Poly.

1.2 Related Work

[AS16] show how to construct FE for Turing machines. While Turing machines internally involve
an iterative operation, similar to a streaming function, in contrast to our setting, their final FE
scheme still requires the entire input to be known at encryption time and does not produce output
until the entire Turing machine computation terminates.

4

2 Technical Overview

Our goal is to build a semi-adaptive-function-selective-IND-secure, public-key sFE scheme for
P/Poly. However, as we can adapt a bootstrapping technique from [AS16], it will suffice for us
to build a seemingly weaker primitive: namely a single-key, single-ciphertext, function-selective-
IND-secure, secret-key sFE scheme for P/Poly. In fact, we will actually achieve simulation security
for our weaker primitive. Thus, we build our scheme in two steps:

1. First, we construct a single-key, single-ciphertext, secret-key sFE scheme One-sFE. We prove
the following:

Theorem 2.1. Assuming a strongly-compact, selective-IND-secure, secret-key FE scheme for
P/Poly, there exists a single-key, single-ciphertext, function-selective-SIM-secure, secret-key
sFE scheme for P/Poly.

2. Second, we show how to adapt the technique from [AS16] to bootstrap One-sFE into a public-
key, sFE scheme sFE. We prove the following:

Theorem 2.2. Assuming (1) a selective-IND-secure, public-key FE scheme for P/Poly, and
(2) a single-key, single-ciphertext, function-selective-IND-secure, secret-key sFE scheme for
P/Poly, there exists a semi-adaptive-function-selective-IND-secure, public-key sFE scheme for
P/Poly.

Together, these two theorems imply our main theorem.

Notation. For notational convenience, in this section, we may omit the security, input size, output
size, message size, function size, or state size parameters from our algorithms. Additionally, we
will often refer to schemes as being SIM-secure or IND-secure, without specifying whether they are
selectively, function-selectively, semi-adaptive-function-selectively, or adaptively secure. We leave
these details to the formal proofs.

2.1 Single-Key, Single-Ciphertext, SIM-Secure, Secret-Key Streaming FE

For our first step, we wish to build a secret-key sFE scheme One-sFE, which is only required to be
secure against an adversary who is allowed to make a single function query, followed by a single
message query. We will achieve simulation security, meaning that there exists a PPT simulator
which can simulate the real function key for f and the real ciphertext for x given only the streaming
function f and the output value y = f(x)

A Mild Form of SIM-Security for FE. As a warm-up, we first show how to build an ordinary
non-streaming FE scheme OneSimFE which achieves a mild form of SIM-security from an IND-
secure FE scheme FE and a symmetric key encryption scheme Sym. In particular, our simulation
security will only hold against an adversary who is allowed to make a single function query and a
single message query. This mild form of simulation security will be useful in building streaming
FE, and we will use this technique throughout this section.

• OneSimFE.Setup(1λ):

1. msk← FE.Setup(1λ)

2. k ← Sym.Setup(1λ)

5

3. Output (mpk′ = mpk,msk′ = (msk, k))

• OneSimFE.Enc(mpk, x) = FE.Enc(mpk, (x, 0,⊥,⊥))

• OneSimFE.KeyGen((msk, k), f):

1. c← Sym.Enc(k, 0)

2. Output FE.KeyGen(msk, gf,c) where we define

gf,c(x, α, k, v) :

– If α = 0, output f(x). //α = 0 is the “normal” case.

– Else, output v ⊕ Sym.Dec(k, c). // This branch is for simulation.

• OneSimFE.Dec(skf , ct) = FE.Dec(skf , ct)

In our simulation security game, there are two cases:

• Case 1: The message query x is asked before the function query f .
On receiving a message query length n, the simulator Sim outputs a simulated ciphertext
ct← FE.Enc(mpk, (0n, 1, k, 0)). On receiving a function query f along with f(x), Sim outputs
a simulated function key skf ← FE.KeyGen(msk, gf,c′) where c

′ ← Sym.Enc(k, f(x)).

• Case 2: The function query f is asked before the message query x.
On receiving a function query f , the simulator Sim outputs a simulated function key skf ←
FE.KeyGen(msk, gf,c) where c ← Sym.Enc(k, 0). On receiving a message query length n and
f(x), Sim outputs a simulated ciphertext ct← FE.Enc(mpk, (0n, 1, k, f(x)).

Simulation security then follows by the IND-security of FE since gf,c(x, 0,⊥,⊥) = gf,c(0
n, 1, k, f(x)) =

gf,c′(x, 0,⊥,⊥) = gf,c′(0
n, 1, k, 0) = f(x) and c ≈ c′ by the security of Sym.

With this simple initial tool in our belt, we now proceed to tackle the main problem – building
streaming FE.

First Attempt at Building One-sFE. Each iteration of our streaming FE scheme needs to
combine two values: the current input xi and the current state sti. Our first observation is that
regular FE allows us to securely combine two values: a function and an input. Thus, if we were to
place xi in a FE ciphertext and place sti (and f) in a corresponding FE function key, then we could
hope to use FE to securely combine the two values and compute f(xi, sti). Now, st1 = ⊥ is fixed
and known at key generation time. Thus, we can generate the first function key containing f and
st1. But how do we generate keys containing future states? Our main intuition here is to have the
function key containing sti and f not only compute f(xi, sti) and output yi, but also create the next
function key for the next state sti+1. This gives us the following initial construction: The ciphertext
for x is ctx = {cti}i∈[n] where each cti ← OneSimFE.Enc(mski, (xi,mski+1)). The function key for
f is skf = skgf,st1 ← OneSimFE.KeyGen(msk1, gf,st1) for gf,st1 as defined below. Here, we use a
different master secret key mski for each iteration i as our simulation security technique only allows
us to program a single value into each ciphertext or key. We can generate all of the One-sFE master
secret keys {mski} from a short PRF key, which will be the master secret key of our streaming FE
scheme. The diagram below depicts how we can combine ctx and skf to learn f(x).

6

gf,sti(xi,mski+1):

1. (yi, sti+1) = f(xi, sti)

2. Output (yi,OneSimFE.KeyGen(mski+1, gf,sti+1
))

Figure 1: First attempt at building One-sFE.

The idea behind this attempt is that we want to prove security by one by one replacing
each (skgf,sti , cti) with simulated values using the security of OneSimFE. Observe, that simulating
(skgf,sti , cti) removesmski+1 from cti, hopefully allowing us to then simulate the next (skgf,sti+1

, cti+1)

(as mski+1 is hidden). Unfortunately, this initial scheme does not work and has three main issues:

1. OneSimFE only creates function keys for deterministic functions, but OneSimFE.KeyGen (and
thus each gf,sti) is a randomized function.

2. As OneSimFE is not function-hiding, the value of each intermediate sti is made public, thus
compromising security. (In particular, simulating (skgf,sti , cti) requires us to know the output
value (yi, skgf,sti+1

).)

3. The definition of gf,sti is recursive, and thus the size of our initial function key gf,st1 will
depend on the total number n of recursive steps we wish to take. Therefore, our scheme is
not streaming efficient as it depends on the length of x.

Solving the randomization and state privacy issues. We can easily fix the first two is-
sues. We can make gf,sti deterministic by simply giving the randomness ri needed to compute
OneSimFE.KeyGen as input to gf,sti by placing this randomness in the ith ciphertext. To fix the sec-
ond issue, instead of giving out function keys with sti hardcoded into them, we give out function keys
with s̃ti hardcoded into them where s̃ti = sti ⊕ pi for a random pad pi. We then simply add pi and
pi+1 into the ciphertext for xi so that we can pad and un-pad states sti and sti+1 in the ith iteration.
As each s̃ti is uniformly random when pad pi is hidden, then giving out s̃ti should not compromise
security since pi is hidden in the ciphertext. This gives us the following intermediate scheme. The
ciphertext for x is ctx = {cti}i∈[n] where each cti ← OneSimFE.Enc(mski, (xi,mski+1, ri+1, pi, pi+1)).

7

The function key for f is skf = skgf,s̃t1
← OneSimFE.KeyGen(msk1, gf,s̃t1) where s̃t1 = st1 ⊕ p1 and

gf,s̃t1 is defined as below. We can generate all of the OneSimFE master secret keys {mski} and the
pads {pi} from a short PRF key, which will be the master secret key of our streaming FE scheme.
The diagram below depicts how we can combine ctx and skf to learn f(x).

gf,s̃ti(xi,mski+1, ri+1, pi, pi+1):

1. sti = s̃ti ⊕ pi

2. (yi, sti+1) = f(xi, sti)

3. s̃ti+1 = sti+1 ⊕ pi+1

4. Output (yi,OneSimFE.KeyGen(mski+1, gf,s̃ti+1
; ri+1))

Figure 2: Solving the randomization and state privacy issues.

Again, the definition of gf,sti is recursive, so this scheme is not streaming efficient. Indeed,
achieving streaming efficiency, where the complexity of each encryption and decryption do not
grow with n, is the main technical barrier we need to overcome.

Achieving Streaming Efficiency, Part 1: Removing the Recursive Definition. To fix the
issue of the recursive definition, we split each gf,s̃ti into two functions. Rather than having gf,s̃ti gen-

erate the function key for gf,s̃ti+1
, we have gf,s̃ti simply generate an encryption of f and s̃ti, and have

a different function h generate gf,s̃ti+1
from f and s̃ti. This gives us the following scheme. The ci-

phertext for x is ctx = {cti, skhi
}i∈[n] where each cti ← OneSimFE.Enc(mski, (xi,msk′i+1, r

′
i+1, pi, pi+1,mski+1, ri+1))

and skhi
← OneSimFE.KeyGen(msk′i, h) for h defined below. The function key for f is skf =

skgf,s̃t1
← OneSimFE.KeyGen(msk1, gf,s̃t1) where s̃t1 = st1 ⊕ p1 and gf,s̃t1 is defined below. We can

generate all of the One-sFE master secret keys {mski,msk′i} and the pads {pi} from a short PRF
key, which will be the master secret key of our streaming FE scheme. The diagram below depicts
how we can combine ctx and skf to learn f(x).

8

gf,s̃ti(xi,msk′i+1, r
′
i+1, pi, pi+1,mski+1, ri+1):

1. sti = s̃ti ⊕ pi

2. (yi, sti+1) = f(xi, sti)

3. s̃ti+1 = sti+1 ⊕ pi+1

4. Output (yi,OneSimFE.Enc(msk′i+1, (f, s̃ti+1,mski+1, ri+1); r
′
i+1))

h(f, s̃ti+1,mski+1, ri+1):

1. Output OneSimFE.KeyGen(mski+1, gf,s̃ti+1
; ri+1)

Figure 3: Removing the recursive definition.

Unfortunately, although the definitions of gf,s̃ti (and h) are no longer recursive, the scheme
written here has circularly-dependent parameters. In particular, OneSimFE must generate function
keys for its own key generation and encryption algorithms as it must generate function keys for h
(which contains OneSimFE.KeyGen) and function keys for gf,s̃ti , (which contains OneSimFE.Enc).

Achieving Streaming Efficiency, Part 2: Fixing the Circular Dependencies. To remove
the circular dependencies among the parameters, we will make two changes:

9

• Rather than encrypting msk′i and mski in our ciphertexts, we will instead encrypt the ran-
domness r′mski

and rmski used to generate these values. We can then generate msk′i,mski from
this randomness within gf,s̃ti and h by using the setup algorithm. This will allow us to bound
the size of our FE messages as we can assume without loss of generality that the size of all
randomness used is λ (if we need additional randomness, our algorithms can simply expand
this randomness using a PRG).

• We will use two different FE schemes: one scheme OneSimFE for gf,s̃ti , and the other scheme
OneSimFE′ for h. Additionally, we will require that OneSimFE′ is strongly-compact, meaning
that the setup and encryption algorithms do not depend on the function size and output size.

Now we can instantiate our parameters.

1. Since we are encrypting rmski , r
′
mski

instead of mski,msk′i, we can bound the size of the inputs
to both OneSimFE and OneSimFE′.

2. Since we know the input size of OneSimFE′, by the strong-compactness of OneSimFE′, we can
determine the sizes of OneSimFE′.Setup and OneSimFE.Enc′ and thus of gf,s̃ti .

3. Since we know the function size (i.e. the size of gf,s̃ti), input size, and output size of func-
tions of OneSimFE, this allows us to determine the parameters of OneSimFE. Thus, we can
determine the sizes of OneSimFE.Setup and OneSimFE.KeyGen and therefore of h.

4. Finally, this allows us to determine the parameters of OneSimFE′ which generates keys for h.

Now, we have the following scheme. The ciphertext for x is ctx = {cti, skhi
}i∈[n] where each cti ←

OneSimFE.Enc(mski, (xi, r
′
mski+1

, r′i+1, pi, pi+1, rmski+1
, ri+1)) and skhi

← OneSimFE′.KeyGen(msk′i, h)
for h defined below. The function key for f is skf = skgf,s̃t1

← OneSimFE.KeyGen(msk1, gf,s̃t1) where

s̃t1 = st1 ⊕ p1 and gf,s̃t1 is defined below. We can generate all of the One-sFE master secret keys
{mski,msk′i}, the randomness {rmski , rmsk′i

} needed to compute them, and the pads {pi} from a
short PRF key, which will be the master secret key of our streaming FE scheme. The diagram
below depicts how we can combine ctx and skf to learn f(x).

10

gf,s̃ti(xi, r
′
mski+1

, r′i+1, pi, pi+1, rmski+1
, ri+1):

1. sti = s̃ti ⊕ pi

2. (yi, sti+1) = f(xi, sti)

3. s̃ti+1 = sti+1 ⊕ pi+1

4. msk′i+1 ← OneSimFE′.Setup(1λ; r′mski+1
)

5. Output (yi,OneSimFE′.Enc(msk′i+1, (f, s̃ti+1, rmski+1
, ri+1); r

′
i+1))

h(f, s̃ti+1, rmski+1
, ri+1):

1. mski+1 ← OneSimFE.Setup(1λ; rmski+1
)

2. Output OneSimFE.KeyGen(mski+1, gf,s̃ti+1
; ri+1)

Figure 4: Fixing the circular dependencies.

To prove security, we will iteratively replace each ciphertext and function key with simulated
values.

1. First, we use the SIM-security of OneSimFE to replace ct1 and skgf,s̃t1
with simulated values.

11

The simulation only requires knowledge of the function gf,s̃t1 and the output values y1 and

ct′2 = OneSimFE′.Enc(msk′2, (f, s̃t2, rmsk2 , r2); r
′
2). This change removes the values of x1 and

p1 from the experiment, which ensures that s̃t1 can be made uniformly random and does not
leak any information. Additionally, msk′2 (and r′msk2

) are now only used to generate ct′2 and
skh2 .

2. Next, we use the SIM-security of OneSimFE′ to replace ct′2 and skh2 with simulated values.
The simulation only requires knowledge of the function h and the output value skgf,s̃t2

←
OneSimFE.KeyGen(msk2, gf,s̃t2 ; r2). Now, msk2 (and rmsk2) are only used to generate ct2 and
skgf,s̃t2

.

3. As in step 1, we replace ct2 and skgf,s̃t2
with simulated values. This hides x2, msk′3, and r

′
msk3

.

4. As in step 2, we replace ct′2 and skh2 with simulated values. This hides msk3 and rmsk3 .

5. We then repeat steps 3 and 4 in order for every (cti, skgf,s̃ti
) and (ct′i, skhi

).

Once all ciphertexts and function keys have been simulated, then we are in an ideal world, simulator
experiment. Thus, we achieve single-key, single-ciphertext, SIM-security, as long as the challenge
function f is given before the challenge message x. This is because in order to simulate each skhi

in the ith ciphertext for x, we must know the output value skgf,s̃ti
and thus must know f .

Final Scheme. Our final scheme is the same as the previous construction except that we instan-
tiate OneSimFE and OneSimFE′ from standard FE, using techniques similar to the one described
at the beginning of this technical overview. This requires a little care to ensure that we do not
introduce new circular dependencies.

2.2 Bootstrapping to an IND-Secure, Public-Key Streaming FE

Here, we use the same technique that was used in [AS16] to bootstrap a single-key, single-ciphertext
FE scheme for Turing machines into a public-key FE scheme for Turing machine. Our construction
is nearly the same as in [AS16], with only a few minor modifications (see Remark 6.5). Thus, we
will only provide an abbreviated overview of this technique.

Let FE be a selective-IND-secure, public-key FE scheme. Let FPFE be a function-private-
selective-IND-secure, secret-key FE scheme. (This can be built from FE using techniques from
[BS18].) Let One-sFE be our single-key, single-ciphertext, function-selective-SIM-secure, secret-key
streaming FE scheme. Let PRF and PRF2 be secure PRFs.

At a high level, the idea is to generate a new One-sFE master secret key One-sFE.msk for each
message x and function f . This ensures that each One-sFE.msk is only used for one key and one
ciphertext, allowing us to then rely on the security of One-sFE. This is implemented in two steps:

1. First, we use FE to combine a PRF key PRF.k from the ciphertext for x with randomness s
from the function key for f to securely generate a fresh One-sFE.msk for (x, f). We then use
One-sFE.msk to generate a function key One-sFE.skf for f and a ciphertext FPFE.ct encrypting
One-sFE.msk.

2. Second, our ciphertext for x creates FPFE function keys with values from x hardcoded into
them. The function privacy of FPFE will ensure that this does not leak information about x.
These function keys can then be combined with FPFE.ct to get an encryption One-sFE.ctx of
x.

12

This gives us the following scheme, which is close to our actual construction.4 The ciphertext for
x = x1 . . . xn is ctx = (FE.ct, {FPFE.skHi,xi,ti

}i∈[n]) where FE.ct← FE.Enc(FE.mpk, (FPFE.msk,PRF.K))
and FPFE.skHi,xi,ti

← FPFE.KeyGen(FPFE.msk, Hi,xi,ti) for Hi,xi,ti defined below and a random ti.
The function key for f is skf = FE.skGf,s

← FE.KeyGen(FE.msk, Gf,s) for Gf,s defined below. The
diagram below depicts how we can combine ctx and skf to learn f(x).

To prove security, we will first use a similar simulation technique as in our One-sFE construction
to ensure that each One-sFE.msk is securely generated. This is done by programming into each
Gf,s the output value (One-sFE.msk,One-sFE.Enc.st,PRF2.k) generated by Gf,s(FPFE.msk,PRF.K).
Next, we will move from encrypting x(b) for a random b ← {0, 1} to always encrypting x(0). This
will prove security as our final hybrid will be independent of b. We will perform this change from
x(b) to x(0) one function at a time by utilizing the security of One-sFE and FPFE to switch between
different branches of computation within Hi,xi,ti (which we add into Hi,xi,ti using the function
privacy of FPFE). We leave further details to the formal proof.

4Our actual scheme adds additional branches of computation to Gf,s and Hi,xi,ti which are only used in the
security proof.

13

Gf,s(FPFE.msk,PRF.K):

1. (rSetup, rKeyGen, rEncSetup, rPRF2, rEnc)← PRF.Eval(PRF.K, s)

2. One-sFE.msk← One-sFE.Setup(1λ; rSetup)

3. One-sFE.Enc.st← One-sFE.EncSetup(One-sFE.msk; rEncSetup)

4. One-sFE.skf ← One-sFE.KeyGen(One-sFE.msk, f ; rKeyGen)

5. PRF2.k ← PRF2.Setup(1λ; rPRF2)

6. FPFE.ct← FPFE.Enc(FPFE.msk, (One-sFE.msk,One-sFE.Enc.st,PRF2.k); rEnc)

7. Output (One-sFE.skf ,FPFE.ct)

Hi,xi,ti(One-sFE.msk,One-sFE.Enc.st,PRF2.k):

1. ri ← PRF2.Eval(PRF2.k, ti)

2. Output One-sFE.Enc(One-sFE.msk,One-sFE.Enc.st, i, xi; ri)

Figure 5: Bootstrapping to an IND-secure, public-key streaming FE. This is similar, but not
identical to our final construction.

14

3 Preliminaries

Throughout, we will use λ to denote a security parameter.

Notation.

• We say that a function f(λ) is negligible in λ if f(λ) = λ−ω(1), and we denote it by f(λ) =
negl(λ).

• We say that a function g(λ) is polynomial in λ if g(λ) = p(λ) for some fixed polynomial p,
and we denote it by g(λ) = poly(λ).

• For n ∈ N, we use [n] to denote {1, . . . , n}.

• If R is a random variable, then r ← R denotes sampling r from R. If T is a set, then i← T
denotes sampling i uniformly at random from T .

We will use PRFs and symmetric key encryption schemes with pseudorandom ciphertexts. We
formally define these notions in Appendix B.1.

3.1 Functional Encryption

Here we give some fundamental definitions for functional encryption (FE) schemes. First, we define
a class of functions parameterized by function size, input length, and output length.

Definition 3.1 (Function Class). The function class F [ℓF , ℓX , ℓY] is the set of all functions f that
have a description f̂ ∈ {0, 1}ℓF , take inputs in {0, 1}ℓX , and output values in {0, 1}ℓY .

3.1.1 Public-Key Functional Encryption

Definition 3.2 (Public-Key Functional Encryption). A public-key functional encryption scheme
for P/Poly is a tuple of PPT algorithms FE = (Setup,KeyGen,Enc,Dec) defined as follows:5

• Setup(1λ, 1ℓF , 1ℓX , 1ℓY): takes as input the security parameter λ, a function size ℓF , an input
size ℓX , and an output size ℓY , and outputs the master public key mpk and the master secret
key msk.

• Enc(mpk, x): takes as input the master public key mpk and a message x ∈ {0, 1}ℓX , and
outputs an encryption ct of x.

• KeyGen(msk, f): takes as input the master secret key msk and a function f ∈ F [ℓF , ℓX , ℓY],
and outputs a function key skf .

• Dec(skf , ct): takes as input a function key skf and a ciphertext ct, and outputs a value
y ∈ {0, 1}ℓY .

FE satisfies correctness if for all polynomials p, there exists a negligible function µ such that for
all λ ∈ N, all ℓF , ℓX , ℓY ≤ p(λ), all x ∈ {0, 1}ℓX , and all f ∈ F [ℓF , ℓX , ℓY],

Pr

Dec(skf , ctx) = f(x) :
(mpk,msk)← Setup(1λ, 1ℓF , 1ℓX , 1ℓY)

ctx ← Enc(mpk, x)
skf ← KeyGen(msk, f)

 ≥ 1− µ(λ).

5We also allow Enc,KeyGen, and Dec to additionally receive parameters 1λ, 1ℓF , 1ℓX , 1ℓY as input, but omit them
from our notation for convenience.

15

There are many definitions of security. We define only a few here. Selective-IND-security
requires the challenge message to be sent first.

Definition 3.3 (Selective-IND-Security). A public-key functional encryption scheme FE for P/Poly
is selective-IND-secure if there exists a negligible function µ such that for all λ ∈ N and every PPT
adversary A, ∣∣∣Pr[ExptSel-INDA (1λ, 0) = 1]− Pr[ExptSel-INDA (1λ, 1) = 1]

∣∣∣ ≤ µ(λ)
where for each b ∈ {0, 1} and λ ∈ N, we define

ExptSel-IND
A (1λ, b)

1. Parameters: A takes as input 1λ, and outputs a function size 1ℓF , an input size 1ℓX ,
and an output size 1ℓY .

2. Challenge Message: A outputs a challenge message pair (x0, x1) where x0, x1 ∈ {0, 1}ℓX .

3. Public Key and Challenge Ciphertext:

(a) (mpk,msk)← FE.Setup(1λ, 1ℓF , 1ℓX , 1ℓY)

(b) ct← FE.Enc(mpk, xb)

(c) Send (mpk, ct) to A.

4. Function Queries: The following can be repeated any polynomial number of times:

(a) A outputs a function query f ∈ F [ℓF , ℓX , ℓY]
(b) skf ← FE.KeyGen(msk, f)

(c) Send skf to A

5. Experiment Outcome: A outputs a bit b′. The output of the experiment is set to 1 if
b = b′ and f(x0) = f(x1) for all functions f queried by the adversary.

Semi-adaptive-function-selective-IND-security allows the adversary to receive the master public
key at the start of the experiment, but requires the adversary to specify all function queries before
receiving the challenge message.

Definition 3.4 (Semi-Adaptive-Function-Selective-IND-Security). A public-key functional encryp-
tion scheme FE for P/Poly is semi-adaptive-function-selective-IND-secure if there exists a negligible
function µ such that for all λ ∈ N and every PPT adversary A,∣∣∣Pr[ExptSemi-Ad-Func-Sel-IND

A (1λ, 0) = 1]− Pr[ExptSemi-Ad-Func-Sel-IND
A (1λ, 1) = 1]

∣∣∣ ≤ µ(λ)
where for each b ∈ {0, 1} and λ ∈ N, we define

ExptSemi-Ad-Func-Sel-IND
A (1λ, b)

1. Parameters: A takes as input 1λ, and outputs a function size 1ℓF , an input size 1ℓX ,
and an output size 1ℓY .

2. Public Key: Compute (mpk,msk)← FE.Setup(1λ, 1ℓF , 1ℓX , 1ℓY) and send mpk to A.

3. Function Queries: The following can be repeated any polynomial number of times:

16

(a) A outputs a function query f ∈ F [ℓF , ℓX , ℓY]
(b) skf ← FE.KeyGen(msk, f)

(c) Send skf to A

4. Challenge Message: A outputs a challenge message pair (x0, x1) where x0, x1 ∈ {0, 1}ℓX .

5. Challenge Ciphertext: Compute ct← FE.Enc(mpk, xb) and send ct to A.

6. Experiment Outcome: A outputs a bit b′. The output of the experiment is set to 1 if
b = b′ and f(x0) = f(x1) for all functions f queried by the adversary.

Remark 3.5. Adaptive-IND-security, which we do not formally define, is the same as semi-
adaptive-function-selective-IND security except that we allow the adversary to make additional
function queries after receiving the challenge ciphertext.

3.1.2 Secret-Key Functional Encryption

We can also define FE in the secret-key setting.

Definition 3.6 (Secret-Key Functional Encryption). Secret-key FE is the same as public-key FE
except that Setup only outputs a master secret key and Enc requires the master secret key instead
of the (non-existent) master public key. We formally define this in Appendix B.2.

Remark 3.7. We can analogously define our public-key definitions of security in the secret-key
setting. The only difference is that we do not give the (non-existent) master public key to the
adversary and will therefore allow the adversary to submit multiple challenge message pairs. Note
that semi-adaptive-function-selective-IND security is simply called function-selective-IND security
in the secret-key setting. We formally define these security definitions in Appendix B.2.

In the secret-key setting, we can also achieve function privacy.

Definition 3.8 (Function-Private-Selective-IND-Security). A secret-key functional encryption scheme
FE for P/Poly is function-private-selective-IND-secure if there exists a negligible function µ such
that for all λ ∈ N and every PPT adversary A,∣∣∣Pr[SKExptFunc-Priv-Sel-INDA (1λ, 0) = 1]− Pr[SKExptFunc-Priv-Sel-INDA (1λ, 1) = 1]

∣∣∣ ≤ µ(λ)
where for each b ∈ {0, 1} and λ ∈ N, we define

SKExptFunc-Priv-Sel-INDA (1λ, b)

1. Parameters: A takes as input 1λ, and outputs a function size 1ℓF , an input size 1ℓX ,
and an output size 1ℓY .

2. Challenge Messages: A outputs challenge message pairs {(x0,i, x1,i)}i∈[T] for some T

chosen by the adversary where x0,i, x1,i ∈ {0, 1}ℓX for all i ∈ [T].

3. Setup and Challenge Ciphertexts:

(a) msk← FE.Setup(1λ, 1ℓF , 1ℓX , 1ℓY)

(b) For i ∈ [T], compute cti ← FE.Enc(msk, xb,i) and send cti to A.

4. Function Queries: The following can be repeated any polynomial number of times:

17

(a) A outputs a function query pair (f0, f1) where f0, f1 ∈ F [ℓF , ℓX , ℓY]
(b) skf ← FE.KeyGen(msk, fb)

(c) Send skf to A

5. Experiment Outcome: A outputs a bit b′. The output of the experiment is set to 1 if
b = b′ and f0(x0,i) = f1(x1,i) for all function pairs (f0, f1) queried by the adversary and
all i ∈ [T].

3.1.3 Single-Key, Single-Ciphertext Security

Definition 3.9 (Single-Key, Single-Ciphertext Security). We can add the modifier “single-key.
single-ciphertext” to any of our security definitions. This is a weakening of the security definition
where we only require security against an adversary who is restricted to making only one function
query and submitting only one challenge message pair in the relevant security game.

3.1.4 Strong-Compactness

Additionally, we might also want our FE scheme to be strongly-compact.6 Intuitively, this means
that the sizes and running times of the setup and encryption algorithms are independent of the
sizes of the circuits for which function keys are produced.

Definition 3.10 (Strong-Compactness). An FE scheme FE = (FE.Setup,FE.Enc,FE.KeyGen,FE.Dec)
for P/Poly is said to be strongly-compact if there exist PPT algorithms FE.Setup∗,FE.Enc∗ such
that for all polynomials p, for all large enough λ, ℓX , we have that for all ℓF , ℓY ≤ p(λ + ℓX), the
following holds:

• FE.Setup(1λ, 1ℓF , 1ℓX , 1ℓY) is identically distributed to FE.Setup∗(1λ, 1ℓX)

• For all mpk← FE.Setup(1λ, 1ℓF , 1ℓX , 1ℓY) and all x ∈ {0, 1}ℓX ,
FE.Enc(1λ, 1ℓF , 1ℓX , 1ℓY ,mpk, x) is identically distributed to FE.Enc∗(1λ, 1ℓX ,mpk, x)

We will often abuse notation and write FE.Setup to mean FE.Setup∗ and write FE.Enc to mean
FE.Enc∗.

6We call it strong-compactness since the usual notion of compactness found in the literature only requires the
encryption algorithm to not grow with the function size.

18

4 Streaming Functional Encryption

We now define our notion of streaming functional encryption which is an FE scheme for streaming
functions. First, we define a streaming function.

Definition 4.1 (Streaming Function). A streaming function with state space S, input space X ,
and output space Y is a function f : X × S → Y × S.

• We define the output of f on x = x1 . . . xn ∈ X n (denoted f(x)) to be y = y1 . . . yn ∈ Yn

where7 we have st1 = ⊥ and

(yi, sti+1) = f(xi, sti)

Definition 4.2 (Streaming Function Class). The streaming function class F [ℓF , ℓS , ℓX , ℓY] is the
set of all streaming functions f that have a description f̂ ∈ {0, 1}ℓF , state space S = {0, 1}ℓS , input
space X = {0, 1}ℓX , and output space Y = {0, 1}ℓY .
Definition 4.3 (Public-Key Streaming FE). A public-key streaming functional encryption scheme
for P/Poly is a tuple of PPT algorithms sFE = (Setup,EncSetup,Enc,KeyGen,Dec) defined as fol-
lows:8

• Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY): takes as input the security parameter λ, a function size ℓF , a
state size ℓS , an input size ℓX , and an output size ℓY , and outputs the master public key mpk
and the master secret key msk.

• EncSetup(mpk): takes as input the master public key mpk and outputs an encryption state
Enc.st.

• Enc(mpk,Enc.st, i, xi): takes as input the master public key mpk, an encryption state Enc.st,
an index i, and a message xi ∈ {0, 1}ℓX and outputs an encryption cti of xi.

• KeyGen(msk, f): takes as input the master secret key msk and a function f ∈ F [ℓF , ℓS , ℓX , ℓY]
and outputs a function key skf .

• Dec(skf ,Dec.sti, i, cti): where for each function key skf , Dec(skf , ·, ·, ·) is a streaming function
that takes as input a state Dec.sti, an index i, and an encryption cti and outputs a new state
Dec.sti+1 and an output yi ∈ {0, 1}ℓY .

sFE satisfies correctness if for all polynomials p, there exists a negligible function µ such that for
all λ ∈ N, all ℓF , ℓS , ℓX , ℓY ≤ p(λ), all n ∈ [2λ], all x = x1 . . . xn where each xi ∈ {0, 1}ℓX , and all
f ∈ F [ℓF , ℓS , ℓX , ℓY],

Pr

Dec(skf , ctx) = f(x) :

(mpk,msk)← Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY),

ctx ← Enc(mpk, x)
skf ← KeyGen(msk, f)

 ≥ 1− µ(λ)

where we define9

• the output of Enc(mpk, x) to be ctx = (cti)i∈[n] produced by sampling Enc.st← EncSetup(mpk)
and then computing cti ← Enc(mpk,Enc.st, i, xi) for i ∈ [n].

• the output of Dec(skf , ctx) to be y = (yi)i∈[n] where (yi,Dec.sti+1) = Dec(skf ,Dec.sti, i, cti)
7We assume that unless specified otherwise, all streaming functions have the same starting state ⊥ (or the all

zero string) which is included in their state space.
8We also allow Enc,EncSetup,KeyGen, and Dec to additionally receive parameters 1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY as input,

but omit them from our notation for convenience.
9As with all streaming functions, we assume that Dec.st1 = ⊥ by default.

19

Efficiency. We require our streaming FE schemes to be streaming efficient, meaning that the
runtime of our algorithms should not depend on the total length n of the message x = x1 . . . xn
that we wish to encrypt. More formally, we require that the size and runtime of all algorithms of
sFE on security parameter λ, function size ℓF , state size ℓS , input size ℓX , and output size ℓY are
poly(λ, ℓF , ℓS , ℓX , ℓY).

Definition 4.4 (Secret-Key Streaming FE). Secret-key streaming FE is the same as public-key
streaming FE except that Setup only outputs a master secret key and EncSetup and Enc require
the master secret key instead of the (non-existent) master public key. We formally define this in
Appendix C.

Remark 4.5. We can also define a relaxed variant of streaming FE in which the encryption function
is also a streaming function that takes as input the master public key, a state Enc.sti, an index i,
and an input xi, and outputs a new state Enc.sti+1, and an encryption cti of xi. We define this
notion in Appendix C.

4.1 Security

All of our definitions of security for streaming FE are exactly the same as the definitions of security
for regular FE except that in the security games,

1. The adversary additionally outputs a state size parameter 1ℓS .

2. We allow function queries for streaming functions in F [λ, ℓF , ℓS , ℓX , ℓY].

3. We allow the challenge message query pairs to be (x(0), x(1)) where x(0) = x
(0)
1 . . . x

(0)
n and

x(1) = x
(1)
1 . . . x

(1)
n for some length n ∈ N chosen by the adversary and where each x0i , x

1
i ∈

{0, 1}ℓX .

4. We replace Enc(mpk, x) with Enc(mpk, x) as defined in Definition 4.3.

As an example, we define the following:

Definition 4.6 (Semi-Adaptive-Function-Selective-IND-Security). A public-key streaming FE scheme
sFE for P/Poly is semi-adaptive-function-selective-IND-secure if there exists a negligible function µ
such that for all λ ∈ N and all PPT adversaries A,∣∣∣Pr[sFE-ExptSemi-Ad-Func-Sel-IND

A (1λ, 0) = 1]− Pr[sFE-ExptSemi-Ad-Func-Sel-IND
A (1λ, 1) = 1]

∣∣∣ ≤ µ(λ)
where for each b ∈ {0, 1} and λ ∈ N, we define

sFE-ExptSemi-Ad-Func-Sel-IND
A (1λ, b)

1. Parameters: A takes as input 1λ, and outputs a function size 1ℓF , a state size 1ℓS , an
input size 1ℓX , and an output size 1ℓY .

2. Public Key: Compute (mpk,msk) ← sFE.Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY) and send mpk to
A.

3. Function Queries: The following can be repeated any polynomial number of times:

(a) A outputs a streaming function query f ∈ F [ℓF , ℓS , ℓX , ℓY]
(b) skf ← sFE.KeyGen(msk, f)

20

(c) Send skf to A

4. Challenge Message: A outputs a challenge message pair (x(0), x(1)) where x(0) =

x
(0)
1 . . . x

(0)
n and x(1) = x

(1)
1 . . . x

(1)
n for some length n ∈ N chosen by the adversary and

where each x
(0)
i , x

(1)
i ∈ {0, 1}ℓX .

5. Challenge Ciphertext: Compute ct← sFE.Enc(mpk, x(b)) and send ct to A.

6. Experiment Outcome: A outputs a bit b′. The output of the experiment is set to 1 if
b = b′ and f(x(0)) = f(x(1)) for all functions f queried by the adversary.

The rest of the security definitions in both the secret-key and public-key settings follow analo-
gously.

We also define a weak notion of simulation security in the secret-key setting.

Definition 4.7 (Single-Key, Single-Ciphertext, Function-Selective-SIM-Security). A secret-key stream-
ing FE scheme sFE for P/Poly is single-key, single-ciphertext, function-selective-SIM-secure if there
exists a PPT simulator Sim and a negligible function µ such that for all λ ∈ N and all PPT adver-
saries A,∣∣∣Pr[RealExptOne-Func-Sel-SIM

A (1λ) = 1]− Pr[IdealExptOne-Func-Sel-SIM
A,Sim (1λ) = 1]

∣∣∣ ≤ µ(λ)
where for λ ∈ N, we define

RealExptOne-Func-Sel-SIM
A (1λ)

1. Parameters: A takes as input 1λ, and outputs a function size 1ℓF , a state size 1ℓS , an
input size 1ℓX , and an output size 1ℓY .

2. Setup: msk← sFE.Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY)

3. Function Query:

(a) A outputs a streaming function query f ∈ F [ℓF , ℓS , ℓX , ℓY].
(b) skf ← sFE.KeyGen(msk, f)

(c) Send skf to A.

4. Message Query:

(a) A outputs a message x where x = x1 . . . xn for some n ∈ N chosen by the adversary
and where each xi ∈ {0, 1}ℓX .

(b) ct← sFE.Enc(msk, x)

(c) Send ct to A.

5. Experiment Outcome: A outputs a bit b which is the output of the experiment.

IdealExptOne-Func-Sel-SIM
A,Sim (1λ)

1. Parameters: A takes as input 1λ, and outputs a function size 1ℓF , a state size 1ℓS , an
input size 1ℓX , and an output size 1ℓY . Sim receives (1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY).

21

2. Function Query:

(a) A outputs a streaming function query f ∈ F [ℓF , ℓS , ℓX , ℓY].
(b) Sim receives f and outputs a function key skf .

(c) Send skf to A.

3. Message Query:

(a) A outputs a message x where x = x1 . . . xn for some n ∈ N chosen by the adversary
and where each xi ∈ {0, 1}ℓX .

(b) Sim receives (1n, f(x)) and outputs a ciphertext ct.

(c) Send ct to A.

4. Experiment Outcome: A outputs a bit b which is the output of the experiment.

Remark 4.8. In the secret-key setting, single-key, single-ciphertext, function-selective-SIM security
implies single-key, single-ciphertext, function-selective-IND security

22

5 Single-Key, Single-Ciphertext, SIM-secure, Secret-Key Stream-
ing FE

In this section, we construct our main building block: a single-key, single-ciphertext, function-
selective-SIM-secure, secret-key sFE scheme. We prove the following:

Theorem 5.1. Assuming a strongly-compact, selective-IND-secure, secret-key FE scheme for P/Poly,
there exists a single-key, single-ciphertext, function-selective-SIM-secure, secret-key sFE scheme for
P/Poly.

Please refer to the technical overview (Section 2) for a high level overview of our construction. To
prove Theorem 5.1, we build an sFE scheme from the following tools, which as we show below,
can each be instantiated using a strongly-compact, selective-IND-secure, secret-key FE scheme for
P/Poly.

Tools.

• PRF = (PRF.Setup,PRF.Eval): A secure pseudorandom function family.

• PRF2 = (PRF2.Setup,PRF2.Eval): A secure pseudorandom function family.

• Sym = (Sym.Setup,Sym.Enc,Sym.Dec): A secure symmetric key encryption scheme.

• Sym′ = (Sym′.Setup,Sym′.Enc, Sym′.Dec): A secure symmetric key encryption scheme.

• OneCompFE = (OneCompFE.Setup,OneCompFE.Enc,OneCompFE.KeyGen,OneCompFE.Dec):
A strongly-compact, single-key, single-ciphertext, selective-IND-secure, secret-key FE scheme
for P/Poly.

• OneFSFE = (OneFSFE.Setup,OneFSFE.Enc,OneFSFE.KeyGen,OneFSFE.Dec): A single-key,
single-ciphertext, function-selective-IND-secure, secret-key FE scheme for P/Poly.

Instantiation of the Tools. Let SKFE be a strongly-compact, selective-IND-secure, secret-key
FE scheme for P/Poly.

• We can build PRF,PRF2, Sym, Sym′ from any one-way-function using standard cryptographic
techniques (e.g. [Gol01, Gol09]). As FE implies one-way-functions, then we can build these
from SKFE.

• SKFE already satisfies the compactness and security requirements needed for OneCompFE.

• We can first build a function-private-selective-IND-secure, secret-key FE scheme FPFE for
P/Poly by using the function-privacy transformation of [BS18] on SKFE. As observed in
[BS18], a single-key, single-ciphertext, function-private-selective-IND-secure, secret-key FE
scheme for P/Poly is also a (non-compact) single-key, single-ciphertext, function-selective-
IND-secure, secret-key FE scheme for P/Poly as we can simply exchange the roles of the
functions and messages using universal circuits. Thus, FPFE can be used to build OneFSFE.

23

5.1 Parameters

On security parameter λ, function size ℓF , state size ℓS , input size ℓX , and output size ℓY , we will
instantiate our primitives with the following parameters:

• PRF: We instantiate PRF with input size λ + 2 and output size λ. This means that we will
use the following setup algorithm: PRF.Setup(1λ, 1λ+2, 1λ).

• PRF2: We instantiate PRF2 with input size λ and output size ℓS . This means that we will
use the following setup algorithm: PRF2.Setup(1λ, 1λ, 1ℓS).

• Sym: We instantiate Sym with message size ℓSym.mλ
for ℓSym.mλ

defined below. This means
that we will use the following setup algorithm: Sym.Setup(1λ, 1ℓSym.mλ).

• Sym′: We instantiate Sym′ with message size ℓSym′.mλ
for ℓSym′.mλ

defined below. This means

that we will use the following setup algorithm: Sym′.Setup(1λ, 1
ℓSym′.mλ)

• OneCompFE: We instantiate OneCompFE with function size ℓhλ
, input size ℓm′

λ
, and output

size ℓSym′.mλ
for parameters ℓhλ

, ℓm′
λ
, ℓSym′.mλ

defined below. This means that we will use the
following algorithms:

– OneCompFE.Setup(1λ, 1
ℓm′

λ)

– OneCompFE.Enc(1λ, 1
ℓm′

λ , ·, ·)

– OneCompFE.KeyGen(1λ, 1ℓhλ , 1
ℓm′

λ , 1
ℓSym′.mλ , ·, ·)

– OneCompFE.Dec(1λ, 1ℓhλ , 1
ℓm′

λ , 1
ℓSym′.mλ , ·, ·)

Observe that OneCompFE.Setup and OneCompFE.Enc do not require the function size or
output size as input since OneCompFE is strongly-compact.

• OneFSFE: We instantiate OneFSFE with function size ℓgλ , input size ℓmλ
, and output size

ℓSym.mλ
for parameters ℓgλ , ℓmλ

, ℓSym.mλ
defined below. This means that we will use the

following algorithms:

– OneFSFE.Setup(1λ, 1ℓgλ , 1ℓmλ , 1ℓSym.mλ)

– OneFSFE.Enc(1λ, 1ℓgλ , 1ℓmλ , 1ℓSym.mλ , ·, ·)
– OneFSFE.KeyGen(1λ, 1ℓgλ , 1ℓmλ , 1ℓSym.mλ , ·, ·)
– OneFSFE.Dec(1λ, 1ℓgλ , 1ℓmλ , 1ℓSym.mλ , ·, ·)

Notation. For notational convenience, when the parameters are understood, we will often omit
the security, input size, output size, message size, function size, or state size parameters from each
of the algorithms listed above.

Remark 5.2. We assume without loss of generality that for security parameter λ, all algorithms
only require randomness of length λ. If the original algorithm required additional randomness,
we can replace it with a new algorithm that first expands the λ bits of randomness using a PRG
of appropriate stretch and then runs the original algorithm. Note that this replacement does not
affect the security of the above schemes (as long as ℓF , ℓS , ℓX , ℓY are polynomial in λ) and preserves
the strong-compactness of OneCompFE.

24

Parameter Table. We now show how to define our parameters without circular dependencies.
Each parameter in the table below may depend on any of the parameters above it. The table is
continued on the next page.

Table 1: Parameters

Size Description Variables of that Size

λ The security parameter and the size of rmski , r
′
mski

, rki , r
′
ki
,

all randomness used. r′Enci , rKeyGeni
ℓF The size of functions in

F [ℓF , ℓS , ℓX , ℓY].
f

ℓX The size of inputs to functions in
F [ℓF , ℓS , ℓX , ℓY].

xi

ℓY The size of outputs of functions in
F [ℓF , ℓS , ℓX , ℓY].

yi, θi, ψi

ℓS The size of states of functions in
F [ℓF , ℓS , ℓX , ℓY].

pi, sti, s̃ti

ℓm′
λ
= ℓF + ℓS + 3λ+ 1 The size of input messages for

OneCompFE.
(f, s̃ti, rmski , rKeyGeni , α

′
i, r
′
ki
)

ℓSetup′λ = poly(λ, ℓm′
λ
) The size of the setup algorithm for

OneCompFE.10
OneCompFE.Setup

ℓEnc′λ = poly(λ, ℓm′
λ
) The size of the encryption algorithm for

OneCompFE.
OneCompFE.Enc

ℓct′λ = poly(λ, ℓm′
λ
) The size of ciphertexts for OneCompFE. ct′i

10Since OneCompFE is strongly-compact, ℓSetup′
λ
, ℓEnc′

λ
and ℓct′

λ
can be defined based only on the security parameter

λ and input message length ℓm′
λ
, without regard for the function length ℓhλ and output length ℓSym′.mλ

which will
be defined later.

25

Table 2: Parameters (continued)

Size Description Variables of that Size

ℓSym.mλ
= ℓY + ℓct′λ The size of input messages to Sym and (θi, ct

′
i+1), (yi, ct

′
i+1)

the size of outputs of functions for
OneFSFE.

(θi ⊕ ψi, ct
′
i+1)

ℓSym.Setupλ = poly(λ, ℓSym.mλ
) The size of the setup algorithm of Sym. Sym.Setup

ℓSym.Decλ = poly(λ, ℓSym.mλ
) The size of the decryption algorithm of Sym.Dec

Sym.

ℓSym.ctλ = poly(λ, ℓSym.mλ
) The size of ciphertexts of Sym. ci

ℓmλ
= ℓX + 2ℓS + 5λ+ ℓY + 1 The size of input messages for (xi, pi, pi+1, r

′
mski+1

, r′Enci+1
,

OneFSFE. rmski+1
, rKeyGeni+1

, αi, rki , ψi)

ℓgλ = poly(λ, ℓmλ
, ℓF , ℓS , ℓX , The size of functions for OneFSFE. gf,s̃ti,ci

ℓY , ℓSym.ctλ , ℓSetup′λ , ℓEnc
′
λ
, This is set to be the maximum size of

ℓSym.Setupλ , ℓSym.Decλ) gf,s̃ti,ci defined in Figure 6 for any f ∈
F [ℓF , ℓS , ℓX , ℓY], s̃ti ∈ {0, 1}ℓS , and ci
of size ℓSym.ctλ .

ℓSetupλ The size of the setup algorithm for OneFSFE.Setup
= poly(λ, ℓmλ

, ℓgλ , ℓSym.mλ
) OneFSFE.

ℓKeyGenλ The size of the keygen algorithm for OneFSFE.KeyGen
= poly(λ, ℓmλ

, ℓgλ , ℓSym.mλ
) OneFSFE.

ℓskλ The size of function keys for OneFSFE. skgi
= poly(λ, ℓmλ

, ℓgλ , ℓSym.mλ
)

ℓSym′.mλ
= ℓskλ The size of input messages for Sym′,

and the size of outputs of functions for
OneCompFE.

skgi

ℓSym′.Setupλ
The size of the setup algorithm of Sym′. Sym′.Setup

= poly(λ, ℓSym′.mλ
)

ℓSym′.Decλ
= poly(λ, ℓSym′.mλ

) The size of the decryption algorithm of
Sym′.

Sym′.Dec

ℓSym′.ctλ = poly(λ, ℓSym′.mλ
) The size of ciphertexts of Sym′. c′i

ℓhλ
= poly(λ, ℓm′

λ
, ℓSetupλ The size of functions for OneCompFE. hci,c′i

ℓKeyGenλ , ℓSym′.Setupλ
, ℓSym′.Decλ

This is set to be the maximum size of

ℓSym.ctλ , ℓSym.ct′λ
) hci,c′i defined in Figure 7 for any ci of

size ℓSym.ctλ and c′i of size ℓSym′.ctλ .

26

5.2 Construction

We now construct our streaming FE scheme One-sFE. Recall that for notational convenience, we
may omit the security, input size, output size, message size, function size, or state size parameters
from our setup and FE algorithms. For information on these parameters, please see the paramter
section above.

• One-sFE.Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY):

1. PRF.K ← PRF.Setup(1λ), PRF2.K ← PRF2.Setup(1λ)

* Throughout, for i ∈ [2λ], we will define

rmski = PRF.Eval(PRF.K, (i, 0))

mski = OneFSFE.Setup(1λ; rmski)

r′mski = PRF.Eval(PRF.K, (i, 1))

msk′i = OneCompFE.Setup(1λ; r′mski)

rki = PRF.Eval(PRF.K, (i, 2))

ki = Sym.Setup(1λ; rki)

r′ki = PRF.Eval(PRF.K, (i, 3))

k′i = Sym′.Setup(1λ; r′ki)

Observe that these can all be computed from PRF.K and i. We will also define

pi = PRF2.Eval(PRF2.K, i)

which can be computed from PRF2.K and i.

2. Output MSK = (PRF.K,PRF2.K)

• One-sFE.EncSetup(MSK): Output Enc.st = ⊥.

• One-sFE.Enc(MSK,Enc.st, i, xi)

1. Parse MSK = (PRF.K,PRF2.K).

2. Compute mski, pi, pi+1, r
′
mski+1

, rmski+1
, ki, k

′
i,msk′i from PRF.K,PRF2.K.

3. r′Enci+1
, rKeyGeni+1

← {0, 1}λ

4. cti ← OneFSFE.Enc(mski, (xi, pi, pi+1, r
′
mski+1

, r′Enci+1
, rmski+1

, rKeyGeni+1
, 0, 0λ, 0ℓY))

5. If i = 1, output CT1 = ct1.

6. If i > 1

(a) ci ← Sym.Enc(ki, 0
ℓSym.mλ)

(b) c′i ← Sym′.Enc(k′i, 0
ℓSym′.mλ)

(c) Let hi = hci,c′i as defined in Figure 7.

(d) sk′hi
← OneCompFE.KeyGen(msk′i, hi)

(e) Output CTi = (cti, sk
′
hi
)

• One-sFE.KeyGen(MSK, f)

1. Parse MSK = (PRF.K,PRF2.K).

27

2. Compute msk1, k1, p1 from PRF.K,PRF2.K.

3. c1 ← Sym.Enc(k1, 0
ℓSym.mλ)

4. s̃t1 = p1 (Here, we assume st1 = 0ℓS for all streaming functions so that st1 = s̃t1 ⊕ p1.)
5. Let g1 = gf,s̃t1,c1 as defined in Figure 6.

6. skg1 ← OneFSFE.KeyGen(msk1, g1)

7. Output SKf = skg1 .

gf,s̃ti,ci(xi, pi, pi+1, r
′
mski+1

, r′Enci+1
, rmski+1

, rKeyGeni+1
, αi, rki , ψi):

• If αi = 0,

1. sti = s̃ti ⊕ pi
2. (yi, sti+1) = f(xi, sti)

3. s̃ti+1 = sti+1 ⊕ pi+1

4. msk′i+1 = OneCompFE.Setup(1λ; r′mski+1
)

5. ct′i+1 = OneCompFE.Enc(msk′i+1, (f, s̃ti+1, rmski+1
, rKeyGeni+1

, 0, 0λ); r′Enci+1
)

6. Output (yi, ct
′
i+1).

• Else

1. ki = Sym.Setup(1λ; rki)

2. (θi, ct
′
i+1) = Sym.Dec(ki, ci).

3. Output (θi ⊕ ψi, ct
′
i+1).

Figure 6

hci,c′i(f, s̃ti, rmski , rKeyGeni , α
′
i, r
′
ki
)

• If α′i = 0,

1. mski = OneFSFE.Setup(1λ; rmski)

2. Let gi = gf,s̃ti,ci as defined in Figure 6.

3. skgi = OneFSFE.KeyGen(mski, gi; rKeyGeni)

4. Output skgi .

• Else

1. k′i = Sym′.Setup(1λ; r′ki)

2. Output skgi = Sym′.Dec(k′i, c
′
i).

Figure 7

28

• One-sFE.Dec(SKf ,Dec.STi, i,CTi):

1. If i = 1

(a) Parse SK1 = skg1 and CT1 = ct1

(b) (y1, ct
′
2) = OneFSFE.Dec(skg1 , ct1)

(c) Output (y1,Dec.ST2 = ct′2)

2. If i > 1

(a) Parse Dec.STi = ct′i and CTi = (cti, sk
′
hi
).

(b) skgi = OneCompFE.Dec(sk′hi
, ct′i).

(c) (yi, ct
′
i+1) = OneFSFE.Dec(skgi , cti)

(d) Output (yi,Dec.STi+1 = ct′i+1)

5.3 Correctness and Efficiency

Efficiency. Using our discussion above on parameters, it is easy to see that the size and runtime
of all algorithms of One-sFE on security parameter λ, function size ℓF , state size ℓS , input size ℓX ,
and output size ℓY are poly(λ, ℓF , ℓS , ℓX , ℓY).

Correctness Intuition. Each skgi and cti can be combined via OneFSFE decryption to obtain
yi and ct′i+1. We obtain {cti}i∈[n] from the ciphertext for x, and get the first function key skg1 as
the function key for f . For i > 1, we can use OneCompFE decryption to iteratively combine the ct′i
generated by the previous step with the sk′hi

given in the ciphertext to get the next skgi . This lets
us continue the process for all i ∈ [n] and recover y = y1 . . . yn.

Correctness. More formally, let p be any polynomial and consider any λ and any ℓF , ℓS , ℓX , ℓY ≤
p(λ). Let SKf be a function key for function f ∈ F [ℓF , ℓS , ℓX , ℓY], and let {CTi}i∈[n] be a ciphertext

for x where x = x1 . . . xn for some n ∈ [2λ] and where each xi ∈ {0, 1}ℓX . When i = 1, by correctness
of OneFSFE, except with negligible probability,

One-sFE.Dec(SKf ,Enc.ST1,CT1) = One-sFE.Dec(skg1 ,⊥, ct1)
= OneFSFE.Dec(skg1 , ct1)

= gf,st1⊕p1,c1(x1, p1, p2, r
′
msk2 , r

′
Enc2 , rmsk2 , rKeyGen2 , 0, 0

λ, 0ℓY)

= (y1,Dec.ST2 = ct′2)

where (y1, st2) = f(x1, st1) and ct′2 = OneCompFE.Enc(msk′2, (f, st2⊕p2, rmsk2 , rKeyGen2 , 0, 0
λ); r′Enc2)

When i = 2, by correctness of OneCompFE and OneFSFE, except with negligible probablity,

One-sFE.Dec(SKf ,Dec.ST2,CT2) = One-sFE.Dec(skg1 , ct
′
2, (ct2, sk

′
h2
))

= OneFSFE.Dec(OneCompFE.Dec(sk′h2
, ct′2), ct2)

= OneFSFE.Dec(hc2,c′2(f, st2 ⊕ p2, rmsk2 , rKeyGen2 , 0, 0
λ), ct2)

= OneFSFE.Dec(OneFSFE.KeyGen(msk2, gf,st2⊕p2,c2 ; rKeyGen2), ct2)

= OneFSFE.Dec(skg2 , ct2)

= gf,st2⊕p2,c2(x2, p2, p3, r
′
msk3 , r

′
Enc3 , rmsk3 , rKeyGen3 , 0, 0

λ, 0ℓY)

= (y2,Dec.ST3 = ct′3)

29

where (y2, st3) = f(x2, st2) and ct′3 = OneCompFE.Enc(msk′3, (f, st3⊕p3, rmsk3 , rKeyGen3 , 0, 0
λ); r′Enc3).

Similarly, by induction, for i > 2, except with negligible probability,

One-sFE.Dec(SKf ,Dec.STi,CTi) = (yi,Dec.STi+1 = ct′i+1)

where (yi, sti+1) = f(xi, sti) and ct′i+1 = OneCompFE.Enc(msk′i+1, (f, sti+1⊕pi+1, rmski+1
, rKeyGeni+1

, 0, 0λ); r′Enci+1
).

Thus, we correctly output y = y1 . . . yn where (yi, sti+1) = f(xi, sti) and st1 = 0ℓS .

30

5.4 Security

We use a hybrid argument to prove that our scheme is single-key, single-ciphertext, function-
selective-SIM-secure (see Definition 4.7). Our PPT simulator is defined in the final hybrid (HybridA8)
of the formal security proof. We need to prove that the real world security game HybridA1 is in-
distinguishable from the ideal world security game HybridA8 .

5.4.1 Proof Overview

To build intuition, we provide a brief overview of each hybrid below.

• HybridA1 : This is the real world experiment. The adversary first receives the security
parameter and chooses the function size, state size, input size, and output size. Then, the
adversary submits a function query and receives a function key. Next, the adversary submits
a message query and receives the corresponding ciphertext. Finally, the adversary outputs a
single bit which is the outcome of this experiment.

• HybridA2 : We exchange the PRF randomness for true randomness. Instead of generating the
randomness for mski,msk′i, ki, k

′
i, pi using the master secret key, which consists of PRF keys

PRF.K and PRF2.K, we generate these values using true randomness. The indistinguishability
of HybridA1 and HybridA2 holds by the security of PRF and PRF2.

• HybridA3 : We adjust the way we sample pi and s̃ti so that each s̃ti is now sampled uniformly
at random. For each i, to hide the intermediate state sti, our previous hybrid padded sti
with a one time pad pi to get s̃ti = sti ⊕ pi. The value s̃ti can then be leaked (and is in fact
leaked) as long as pi remains hidden. In this hybrid, rather than computing s̃ti = sti ⊕ pi for
a random pad pi, we compute pi = sti⊕ s̃ti for a random value s̃ti. This lets us use s̃ti before
knowing the value of the true state sti. It is easy to see that HybridA2 and HybridA3 are
identically distributed.

• HybridA4 : We hardcode in values for the αi = 1 branch of gi. For each i, we hardcode into
ci the values (yi, ct

′
i+1) that are output by gi = gf,s̃t,ci on the αi = 0 branch if we run it on

the input generated by the challenge message x. (i.e. ci ← Sym.Enc(Sym.ki, (yi, ct
′
i+1))). The

objective is to later use the security of OneFSFE to switch to the αi = 1 branch of gi, which
does not require knowledge of x in the input. We also need to ensure that this hardcoding
can be done before knowing the value of x (or y = f(x)) as we must output SKf = skg1 before
learning x. Observe that the output value of gi in the αi = 0 branch depends only on yi, f ,
s̃ti+1, and randomness. f is known at this stage and the randomness can be pre-computed.
Additionally, because of our previous hybrid, we can compute s̃ti+1 before knowing x. To
deal with yi, instead of encrypting yi directly, we encrypt a random value θi. We can then
correct this value later by substituting in an appropriate ψi = θi⊕yi into the ciphertext when
we switch to the αi = 1 branch. The indistinguishability of HybridA3 and HybridA4 holds
by the security of Sym.

• HybridA5 : We hardcode in values for the α′i = 1 branch of hi. For each i, we hardcode into
c′i the value skgi that would be output by hi = hci,c′i in the α′i = 0 branch if we were to run it

on the input generated by the challenge message x. (i.e. c′i ← Sym′.Enc(Sym′.ki, skgi)). The
objective is to later use the security of OneCompFE to switch to the α′i = 1 branch of hi, which
does not require knowledge of x in the input. We also need to ensure that this hardcoding
can be done without knowing the value of x so that we can later achieve simulation security.

31

Observe that the output value of hi in the α′i = 0 branch depends only on gi = gf,s̃ti,ci and
randomness. As we showed in our previous hybrid, we can compute each gi without knowing
x and can precompute the randomness, so there is no dependence on x in this hardcoding of
c′i. The indistinguishability of HybridA4 and HybridA5 holds by the security of Sym′.

• We will now go through the following hybrids for k = 1 to q where q = q(λ) is the runtime of
A so that q(λ) ≥ n for any challenge message x = x1 . . . xn output by A on security parameter
λ.

– HybridA6,k,1(1
λ): For the kth ciphertext ctk, instead of generating

ctk ← OneFSFE.Enc(mskk, (xk, pk, pk+1, r
′
mskk+1

, r′Enck+1
, rmskk+1

, rKeyGenk+1
, 0, 0λ, 0ℓY)),

we generate

ctk ← OneFSFE.Enc(mskk, (0
ℓX , 0ℓS , 0ℓS , 0λ, 0λ, 0λ, 0λ, 1, rkk , ψk))

where ψk = θk ⊕ yk. Observe that the only function key generated under mskk is

skgk ← OneFSFE.KeyGen(mskk, gf,s̃tk,ck ; rKeyGenk)

Additionally, because we have hardcoded the correct output value into ck in a previous
hybrid,

gf,s̃tk,ck(xk, pk, pi+1, r
′
mskk+1

, r′Enck+1
, rmskk+1

, rKeyGenk+1
, 0, 0λ, 0ℓY)

= gf,s̃tk,ck(0
ℓX , 0ℓS , 0ℓS , 0λ, 0λ, 0λ, 0λ, 1, rkk , ψk)

Thus we should be able to swap these ciphertexts by the security of OneFSFE as long
as mskk, rmskk , and rKeyGenk remain hidden. Now, except for their appearances in ctk
and skgk , mskk appears nowhere else in the hybrid and rmskk and rKeyGenk only appear in
ctk−1 and in ct′k (which is used to hardcode c′k−1). (For k = 1, rmsk1 and rKeyGen1 appear
nowhere else as there is no ct0, and ct′1 is not used.) However, since we are going through
these hybrids iteratively from k = 1 to q, then we will doHybridA6,k−1,1 before this hybrid
which means that ctk−1 will no longer contain rmskk and rKeyGenk . Additionally, we will

also do HybridA6,k−1,2 before this hybrid which will remove rmskk and rKeyGenk from ct′k
(as will be seen shortly). Thus, we have removed all other occurrences of mskk, rmskk ,
rKeyGenk except for ctk and skgk , so we can argue indistinguishability by the security of
OneFSFE.

– HybridA6,k,2(1
λ): For the (k + 1)th ciphertext ct′k+1 (which is used to hardcode c′k),

instead of generating

ct′k+1 ← OneCompFE.Enc(msk′k+1, (f, s̃tk+1, rmskk+1
, rKeyGenk+1

, 0, 0λ); r′Enck+1
),

we will generate

ct′k+1 ← OneCompFE.Enc(msk′k+1, (0
ℓF , 0ℓS , 0λ, 0λ, 1, r′kk); r

′
Enck+1

)

Observe that the only function key generated under msk′k+1 is

sk′hk+1
← OneCompFE.KeyGen(msk′k+1, hck+1,c

′
k+1

)

32

Additionally, because we have hardcoded the correct output value into c′k+1 in a previous
hybrid

hck+1,c
′
k+1

(f, s̃tk+1, rmskk+1
, rKeyGenk+1

, 0, 0λ)

= hck+1,c
′
k+1

(0ℓF , 0ℓS , 0λ, 0λ, 1, r′kk)

Thus we should be able to swap these ciphertexts by the security of OneCompFE as long
as msk′k+1, r

′
mskk+1

, and r′Enck+1
remain hidden. Now, except for their appearances in

ct′k+1 and sk′hk+1
, msk′k+1 appears nowhere else in the hybrid and r′mskk+1

and r′Enck+1

only appear in ctk. However, since we are going through these hybrids iteratively from
k = 1 to q, then we will do HybridA6,k,1 before this hybrid which means that ctk will
no longer contain r′mskk+1

and r′Enck+1
. Thus, we have removed all other occurrences of

msk′k+1, r
′
mskk+1

, rEnc′k+1
except for ct′k+1 and sk′hk+1

, so we can argue indistinguishability

using the security of OneFSFE.

• HybridA7 : This is the same as HybridA6,q,2 where q = q(λ) is the runtime of A. We write it
explicitly to make the simulator in the next hybrid easier to understand.

• HybridA8 : We formally write the previous hybrid as a simulator. This hybrid acts identically
to the previous one. Observe that as q(λ) ≥ n for all x = x1 . . . xn output by A on security
parameter λ, then we will use the αi = α′i = 1 branches of all gi and hi. Thus, to generate
our ciphertexts cti and ct′i, we only need to know y = f(x) (as ψi depends on yi) and don’t
need to know x. Furthermore to generate our function keys skgi and sk′hi

, we only need the
programmed values of ci and c

′
i, which also do not depend on x. Thus we can simulate this

hybrid with y instead of x.

5.4.2 Formal Proof

We now formally prove security via a hybrid argument. The first hybrid, HybridA1 , is the real
world game. The last hybrid, HybridA8 , is the ideal world game with our simulator. We prove
that these hybrids are computationally indistinguishable. We defer the definition of our simulator
to the final hybrid.

Remark 5.3. In steps 3 (Compute Randomness) and 4 (Compute skgi and sk′hi
) of all of the

hybrids in this proof, we refer to the length n of the challenge message x before it is revealed to
the challenger or simulator by the adversary in step 6 (Challenge Message). This is technically
incorrect. We write it this way, however, as it greatly increases proof readability.

We can easily correct our hybrids by doing the following: Before receiving the challenge message
x, the challenger or simulator will only run step 3 (Compute Randomness) up to i = 2 and step
4 (Compute skgi and sk′hi

) up to i = 1. This suffices for computing the function key. After the
challenger or simulator receives the challenge message x and learns the value of n, then it can finish
the remainder of these steps.

This issue is not relevant in our reductions, as our reductions will compute these steps for i ∈ [q]
where q = q(λ) is the running time of A and thus q(λ) ≥ n for any x = x1 . . . xn output by A on
security parameter λ.

33

HybridA1 (1
λ): This is the real world experiment. Though we have reordered some steps for the

sake of the proof, this does not affect the output of the experiment.

1. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

2. Function Query: A outputs a streaming function query f ∈ F [ℓF , ℓS , ℓX , ℓY].

3. Compute Randomness:

(a) PRF.K ← PRF.Setup(1λ),PRF2.K ← PRF2.Setup(1λ).

(b) For i ∈ [n+ 1],

i. Compute rmski , r
′
mski

, rki , rk′i , pi from PRF.K,PRF2.K.

ii. mski ← OneFSFE.Setup(1λ; rmski), msk′i ← OneCompFE.Setup(1λ; r′mski
),

ki ← Sym.Setup(1λ; rki), k
′
i ← Sym′.Setup(1λ; r′ki)

iii. r′Enci , rKeyGeni ← {0, 1}
λ

4. Compute skgi and sk′hi
:

(a) For i ∈ [n],

i. ci ← Sym.Enc(ki, 0
ℓSym.mλ)

ii. If i = 1

A. s̃t1 = p1

B. skg1 ← OneFSFE.KeyGen(msk1, gf,s̃t1,c1) for gf,s̃t1,c1 as defined in Figure 6.

iii. If i > 1

A. c′i ← Sym.Enc(k′i, 0
ℓSym′.mλ)

B. sk′hi
← OneCompFE.KeyGen(msk′i, hci,c′i) for hci,c′i as defined in Figure 7.

5. Function Key: Send SKf = skg1 to the adversary.

6. Challenge Message: A outputs a challenge message x = x1 . . . xn for some n ∈ N and
where each xi ∈ {0, 1}ℓX .

7. Challenge Ciphertext:

(a) For i ∈ [n],

i. cti ← OneFSFE.Enc(mski, (xi, pi, pi+1, r
′
mski+1

, r′Enci+1
, rmski+1

, rKeyGeni+1
, 0, 0λ, 0ℓY))

ii. If i = 1, CT1 = ct1. Else, CTi = (cti, sk
′
hi
)

(b) Send CT = (CTi)i∈[n] to the adversary.

8. Adversary’s Output: A outputs a bit b which is the outcome of the experiment.

34

HybridA2 (1
λ): We exchange the randomness generated by PRF.K and PRF2.K with true random-

ness.

1. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

2. Function Query: A outputs a streaming function query f ∈ F [ℓF , ℓS , ℓX , ℓY].

3. Compute Randomness:

(a) PRF.K ← PRF.Setup(1λ),PRF2.K ← PRF2.Setup(1λ).

(b) For i ∈ [n+ 1],

i. rmski , r
′
mski

, rki , r
′
ki
, r′Enci , rKeyGeni ← {0, 1}

λ

ii. mski ← OneFSFE.Setup(1λ; rmski), msk′i ← OneCompFE.Setup(1λ; r′mski
),

ki ← Sym.Setup(1λ; rki), k
′
i ← Sym′.Setup(1λ; r′ki)

iii. pi ← {0, 1}ℓS

4. Compute skgi and sk′hi
:

(a) For i ∈ [n],

i. ci ← Sym.Enc(ki, 0
ℓSym.mλ)

ii. If i = 1

A. s̃t1 = p1

B. skg1 ← OneFSFE.KeyGen(msk1, gf,s̃t1,c1) for gf,s̃t1,c1 as defined in Figure 6.

iii. If i > 1

A. c′i ← Sym.Enc(k′i, 0
ℓSym′.mλ)

B. sk′hi
← OneCompFE.KeyGen(msk′i, hci,c′i) for hci,c′i as defined in Figure 7.

5. Function Key: Send SKf = skg1 to the adversary.

6. Challenge Message: A outputs a challenge message x = x1 . . . xn for some n ∈ N and
where each xi ∈ {0, 1}ℓX .

7. Challenge Ciphertext:

(a) For i ∈ [n],

i. cti ← OneFSFE.Enc(mski, (xi, pi, pi+1, r
′
mski+1

, r′Enci+1
, rmski+1

, rKeyGeni+1
, 0, 0λ, 0ℓY))

ii. If i = 1, CT1 = ct1. Else, CTi = (cti, sk
′
hi
)

(b) Send CT = (CTi)i∈[n] to the adversary.

8. Adversary’s Output: A outputs a bit b which is the outcome of the experiment.

Lemma 5.4. If PRF and PRF2 are secure PRFs, then for all PPT adversaries A,∣∣∣Pr[HybridA1 (1
λ) = 1]− Pr[HybridA2 (1

λ) = 1]
∣∣∣ ≤ negl(λ)

35

Proof. Let HybridA1,2 be the same as HybridA1 except that {rmski , r
′
mski

, rki , r
′
ki
}i∈[n+1] are sampled

uniformly at random, instead of using PRF.K. Suppose for contradiction that there exists a PPT
adversary A such that∣∣∣Pr[HybridA1 (1

λ) = 1]− Pr[HybridA2 (1
λ) = 1]

∣∣∣ > negl(λ)

Then, either ∣∣∣Pr[HybridA1 (1
λ) = 1]− Pr[HybridA1,2(1

λ) = 1]
∣∣∣ > negl(λ) (1)

or ∣∣∣Pr[HybridA1,2(1
λ) = 1]− Pr[HybridA2 (1

λ) = 1]
∣∣∣ > negl(λ) (2)

Let q = q(λ) be the running time of A. Observe that q = poly(λ) as A is polytime and that
q(λ) ≥ n for any challenge message x = x1 . . . xn output by A on security parameter λ.
In case (1), we build a PPT adversary B that breaks the security of PRF. B first runs A on input 1λ

and receives parameters 1ℓF , 1ℓS , 1ℓX , 1ℓY and a function query f ∈ F [ℓF , ℓS , ℓX , ℓY]. B then sends
input length parameter 1λ+2 and output length parameter 1λ to its PRF challenger. B is then
given oracle access to either PRF.Eval(PRF.K, ·) for some PRF.K ← PRF.Setup(1λ, 1λ+2, 1λ) or to a
uniformly random function R ← Rλ+2,λ where Rλ+2,λ is the set of all functions from {0, 1}λ+2 to
{0, 1}λ. Then B computes {rmski , r

′
mski

, rki , r
′
ki
}i∈[q+1] using its oracle on {(i, 0), (i, 1), (i, 2), (i, 3)}i∈[q+1]

respectively and computes {mski,msk′i, ki, k
′
i}i∈[q+1] from these values as in HybridA1 . B samples

PRF2.K ← PRF2.Setup(1λ) and computes {pi}i∈[q+1] from PRF2.K as in HybridA1 . B samples

{r′Enci , rKeyGeni}i∈[q+1] uniformly at random. B computes skg1 and {sk′hi
}i∈[q]\{1} as in HybridA1 ,

sends SKf = skg1 to A, and receives a challenge message x. B then computes the challenge ci-
phertext CT as in HybridA1 , sends it to A, and outputs whatever A outputs. Observe that if B’s
oracle was PRF.Eval(PRF.K, ·), then B exactly emulates HybridA1 , and if B’s oracle was a uniform
random function R, then B emulates HybridA1,2. Additionally, B does not need to use PRF.K to
run this experiment. Thus, by Equation 1 this means that we break the security of PRF since∣∣∣Pr[ExptPRFB (1λ, 0) = 1]− Pr[ExptPRFB (1λ, 1) = 1]

∣∣∣
=

∣∣∣Pr[HybridA1 (1
λ) = 1]− Pr[HybridA1,2(1

λ) = 1]
∣∣∣ > negl(λ)

Similarly, in case (2), we can build a PPT adversary B2 that breaks the security of PRF2. B2
first runs A on input 1λ and receives parameters 1ℓF , 1ℓS , 1ℓX , 1ℓY and a function query f ∈
F [ℓF , ℓS , ℓX , ℓY]. B2 then sends input length parameter 1λ and output length parameter 1ℓS to its
PRF2 challenger. B2 is then given oracle access to either PRF2.Eval(PRF2.K, ·) for some PRF2.K ←
PRF2.Setup(1λ, 1λ, 1ℓS) or to a uniformly random function R2← R2λ,ℓS where R2λ,ℓS is the set of
all functions from {0, 1}λ to {0, 1}ℓS . Then B2 samples {rmski , r

′
mski

, rki , r
′
ki
, r′Enci , rKeyGeni}i∈[q+1]

uniformly at random and computes {mski,msk′i, ki, k
′
i}i∈[q+1] from these values as in HybridA1 . For

i ∈ [q], B2 sets pi to be the value of its oracle on input i. B2 computes skg1 and {sk′hi
}i∈[q]\{1} as

in HybridA1 , sends SKf = skg1 to A, and receives a challenge message x. B2 then computes the
challenge ciphertext CT as in HybridA1 , sends it to A, and outputs whatever A outputs. Observe
that if B2’s oracle was PRF2.Eval(PRF2.K, ·), then B2 exactly emulates HybridA1,2, and if B2’s
oracle was a uniform random function R2, then B2 emulates HybridA2 . Additionally, B does not
need to use PRF2.K to run this experiment. Thus, by Equation 2 this means that we break the

36

security of PRF2 since∣∣∣Pr[ExptPRF2B (1λ, 0) = 1]− Pr[ExptPRF2B (1λ, 1) = 1]
∣∣∣

=
∣∣∣Pr[HybridA1,2(1

λ) = 1]− Pr[HybridA2 (1
λ) = 1]

∣∣∣ > negl(λ)

37

HybridA3 (1
λ): For each i, we now determine pi by XOR-ing the true state sti with a random value

s̃ti.

1. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

2. Function Query: A outputs a streaming function query f ∈ F [ℓF , ℓS , ℓX , ℓY].

3. Compute Randomness:

(a) For i ∈ [n+ 1],

i. rmski , r
′
mski

, rki , r
′
ki
, r′Enci , rKeyGeni ← {0, 1}

λ

ii. mski ← OneFSFE.Setup(1λ; rmski), msk′i ← OneCompFE.Setup(1λ; r′mski
),

ki ← Sym.Setup(1λ; rki), k
′
i ← Sym′.Setup(1λ; r′ki)

iii. s̃ti ← {0, 1}ℓS

4. Compute skgi and sk′hi
:

(a) For i ∈ [n],

i. ci ← Sym.Enc(ki, 0
ℓSym.mλ)

ii. If i = 1

A. s̃t1 = p1

B. skg1 ← OneFSFE.KeyGen(msk1, gf,s̃t1,c1) for gf,s̃t1,c1 as defined in Figure 6.

iii. If i > 1

A. c′i ← Sym.Enc(k′i, 0
ℓSym′.mλ)

B. sk′hi
← OneCompFE.KeyGen(msk′i, hci,c′i) for hci,c′i as defined in Figure 7.

5. Function Key: Send SKf = skg1 to the adversary.

6. Challenge Message: A outputs a challenge message x = x1 . . . xn for some n ∈ N and
where each xi ∈ {0, 1}ℓX .

7. Compute pi:

(a) st1 = 0ℓS

(b) For i ∈ [n],

i. pi = s̃ti ⊕ sti

ii. (yi, sti+1) = f(xi, sti)

(c) pi+1 = s̃ti+1 ⊕ sti+1

8. Challenge Ciphertext:

(a) For i ∈ [n],

i. cti ← OneFSFE.Enc(mski, (xi, pi, pi+1, r
′
mski+1

, r′Enci+1
, rmski+1

, rKeyGeni+1
, 0, 0λ, 0ℓY))

ii. If i = 1, CT1 = ct1. Else, CTi = (cti, sk
′
hi
)

(b) Send CT = (CTi)i∈[n] to the adversary.

9. Adversary’s Output: A outputs a bit b which is the outcome of the experiment.

38

Lemma 5.5. For all adversaries A,∣∣∣Pr[HybridA2 (1
λ) = 1]− Pr[HybridA3 (1

λ) = 1]
∣∣∣ = 0

Proof. The two hybrids are identically distributed. Observe that if s̃ti is uniformly random and
pi = s̃ti⊕sti, then pi is also uniformly random. As s̃ti is not used in these hybrids except to compute
pi (and except for s̃t1 = p1 ← {0, 1}ℓS which is the same in both hybrids), then the hybrids are
identically distributed.

39

HybridA4 (1
λ): For each i, we hardcode into ci the values (yi, ct

′
i+1) that are output by gi = gf,s̃t,ci

on the αi = 0 branch if we run it on the input generated by the challenge message x. This will
allow us to later switch to the αi = 1 branch in gi = gf,s̃ti,ci using the security of OneFSFE. Observe
that the values being hardcoded into ci can be determined before knowing x.

1. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

2. Function Query: A outputs a streaming function query f ∈ F [ℓF , ℓS , ℓX , ℓY].

3. Compute Randomness:

(a) For i ∈ [n+ 1],

i. rmski , r
′
mski

, rki , r
′
ki
, r′Enci , rKeyGeni ← {0, 1}

λ

ii. mski ← OneFSFE.Setup(1λ; rmski), msk′i ← OneCompFE.Setup(1λ; r′mski
),

ki ← Sym.Setup(1λ; rki), k
′
i ← Sym′.Setup(1λ; r′ki)

iii. s̃ti ← {0, 1}ℓS

4. Compute skgi and sk′hi
:

(a) For i ∈ [n],

i. θi ← {0, 1}ℓY
ii. ct′i+1 ← OneCompFE.Enc(msk′i+1, (f, s̃ti+1, rmski+1

, rKeyGeni+1
, 0, 0λ); r′Enci+1

)

iii. ci ← Sym.Enc(ki, (θi, ct
′
i+1))

iv. If i = 1

A. skg1 ← OneFSFE.KeyGen(msk1, gf,s̃t1,c1) for gf,s̃t1,c1 as defined in Figure 6.

v. If i > 1

A. c′i ← Sym.Enc(k′i, 0
ℓSym′.mλ)

B. sk′hi
← OneCompFE.KeyGen(msk′i, hci,c′i) for hci,c′i as defined in Figure 7.

5. Function Key: Send SKf = skg1 to the adversary.

6. Challenge Message: A outputs a challenge message x = x1 . . . xn for some n ∈ N and
where each xi ∈ {0, 1}ℓX .

7. Compute pi and ψi:

(a) st1 = 0ℓS

(b) For i ∈ [n],

i. pi = s̃ti ⊕ sti

ii. (yi, sti+1) = f(xi, sti)

iii. ψi = θi ⊕ yi
(c) pi+1 = s̃ti+1 ⊕ sti+1

8. Challenge Ciphertext:

(a) For i ∈ [n],

i. cti ← OneFSFE.Enc(mski, (xi, pi, pi+1, r
′
mski+1

, r′Enci+1
, rmski+1

, rKeyGeni+1
, 0, 0λ, 0ℓY))

40

ii. If i = 1, CT1 = ct1. Else, CTi = (cti, sk
′
hi
)

(b) Send CT = (CTi)i∈[n] to the adversary.

9. Adversary’s Output: A outputs a bit b which is the outcome of the experiment.

Lemma 5.6. If Sym is a secure symmetric key encryption scheme, then for all PPT adversaries
A, ∣∣∣Pr[HybridA3 (1

λ) = 1]− Pr[HybridA4 (1
λ) = 1]

∣∣∣ ≤ negl(λ)

Proof. Suppose for sake of contradiction that there exists a PPT adversary A such that∣∣∣Pr[HybridA3 (1
λ) = 1]− Pr[HybridA4 (1

λ) = 1]
∣∣∣ > negl(λ) (3)

Let q = q(λ) be the running time of A. Observe that q = poly(λ) as A is polytime and that q(λ) ≥ n
for any challenge message x = x1 . . . xn output by A on security parameter λ. Let HybridA3,j be

the same as HybridA3 except that we compute the first j values of ci as in HybridA4 , i.e.:

θi ← {0, 1}ℓY

ct′i+1 ← OneCompFE.Enc(msk′i+1, (f, s̃ti+1, rmski+1
, rKeyGeni+1

, 0, 0λ); r′Enci+1
)

ci ← Sym.Enc(ki, (θi, ct
′
i+1))

Observe that HybridA3 = HybridA3,0 and that HybridA4 = HybridA3,q. (It does not matter that

we do not compute {ψi}i∈[n] as these values are not used in HybridA4 .) Then, by Equation 3 there
must exist a value j∗ ∈ [q] such that∣∣∣Pr[HybridA3,j∗−1(1

λ) = 1]− Pr[HybridA3,j∗(1
λ) = 1]

∣∣∣ > negl(λ) (4)

We build a PPT adversary B that breaks the security of Sym. B first runs A on input 1λ and
receives parameters 1ℓF , 1ℓS , 1ℓX , 1ℓY and a function query f ∈ F [ℓF , ℓS , ℓX , ℓY]. B then sends
message length 1ℓSym.mλ to its Sym challenger where ℓSym.mλ

is computed as described in the param-
eter section. Then, B samples {rmski , r

′
mski

, r′ki , r
′
Enci

, rKeyGeni , s̃ti}i∈[q+1] uniformly at random and

computes {mski,msk′i, k
′
i}i∈[n+1] from these values as in HybridA3 . B also samples {rki}i∈[q+1]\{j∗}

uniformly at random and computes {ki}i∈[q+1]\{j∗} from these values as in HybridA3 . B computes

{θi, ct′i+1}i∈[q] as in HybridA4 . For i < j∗, B computes ci as in HybridA4 . For i > j∗, B com-

putes ci as in HybridA3 . For i = j∗, B sends challenge messages ((θj∗ , ct
′
j∗+1), (0

ℓSym.mλ)) to its

Sym challenger and receives an encryption cj∗ of either (θj∗ , ct
′
j∗+1) or (0

ℓSym.mλ). B then computes

{c′i}i∈[q], skg1 , {skhi
}i∈[q]\{1} from these values as in HybridA3 . B sends SKf = skg1 to A and re-

ceives a challenge message x. Then, B computes {pi}i∈[n+1] and CT as in HybridA3 . B sends CT
to A and outputs whatever A outputs. Observe that if B received an encryption cj∗ of (θj∗ , ct

′
j∗+1)

then B exactly emulates HybridA4,j , and if B received an encryption cj∗ of 0ℓSym.mλ then B emulates

HybridA4,j−1. Additionally, B does not need to know rkj∗ or kj∗ to carry out the experiment. Thus,
by Equation 4, this means that B breaks the security of Sym as B can distinguish between the two
ciphertexts with non-negligible probability.

41

HybridA5 (1
λ): For each i, we hardcode into c′i the value skgi that would be output by hi = hci,c′i in

the α′i = 0 branch if we were to run it on the input generated by the challenge message x. This will
allows us to later switch to the α′i = 1 branch in hci,c′i using the security of OneCompFE. Observe
that the values being hardcoded into c′i can be determined before knowing x.

1. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

2. Function Query: A outputs a streaming function query f ∈ F [ℓF , ℓS , ℓX , ℓY].

3. Compute Randomness:

(a) For i ∈ [n+ 1],

i. rmski , r
′
mski

, rki , r
′
ki
, r′Enci , rKeyGeni ← {0, 1}

λ

ii. mski ← OneFSFE.Setup(1λ; rmski), msk′i ← OneCompFE.Setup(1λ; r′mski
),

ki ← Sym.Setup(1λ; rki), k
′
i ← Sym′.Setup(1λ; r′ki)

iii. s̃ti ← {0, 1}ℓS

4. Compute skgi and sk′hi
:

(a) For i ∈ [n],

i. θi ← {0, 1}ℓY
ii. ct′i+1 ← OneCompFE.Enc(msk′i+1, (f, s̃ti+1, rmski+1

, rKeyGeni+1
, 0, 0λ); r′Enci+1

)

iii. ci ← Sym.Enc(ki, (θi, ct
′
i+1))

iv. skgi ← OneFSFE.KeyGen(mski, gf,s̃ti,ci ; rKeyGeni) for gf,s̃ti,ci as defined in Figure 6.

v. If i = 1

A. skg1 ← OneFSFE.KeyGen(msk1, gf,s̃t1,c1) for gf,s̃t1,c1 as defined in Figure 6.

vi. If i > 1

A. c′i ← Sym.Enc(k′i, skgi)

B. sk′hi
← OneCompFE.KeyGen(msk′i, hci,c′i) for hci,c′i as defined in Figure 7.

5. Function Key: Send SKf = skg1 to the adversary.

6. Challenge Message: A outputs a challenge message x = x1 . . . xn for some n ∈ N and
where each xi ∈ {0, 1}ℓX .

7. Compute pi and ψi:

(a) st1 = 0ℓS

(b) For i ∈ [n],

i. pi = s̃ti ⊕ sti

ii. (yi, sti+1) = f(xi, sti)

iii. ψi = θi ⊕ yi
(c) pi+1 = s̃ti+1 ⊕ sti+1

8. Challenge Ciphertext:

(a) For i ∈ [n],

42

i. cti ← OneFSFE.Enc(mski, (xi, pi, pi+1, r
′
mski+1

, r′Enci+1
, rmski+1

, rKeyGeni+1
, 0, 0λ, 0ℓY))

ii. If i = 1, CT1 = ct1. Else, CTi = (cti, sk
′
hi
)

(b) Send CT = (CTi)i∈[n] to the adversary.

9. Adversary’s Output: A outputs a bit b which is the outcome of the experiment.

Lemma 5.7. If Sym′ is a secure symmetric key encryption scheme, then for all PPT adversaries
A, ∣∣∣Pr[HybridA4 (1

λ) = 1]− Pr[HybridA5 (1
λ) = 1]

∣∣∣ ≤ negl(λ)

Proof. Suppose for sake of contradiction that there exists a PPT adversary A such that∣∣∣Pr[HybridA4 (1
λ) = 1]− Pr[HybridA5 (1

λ) = 1]
∣∣∣ > negl(λ) (5)

Let q = q(λ) be the running time of A. Observe that q = poly(λ) as A is polytime and that q(λ) ≥ n
for any challenge message x = x1 . . . xn output by A on security parameter λ. Let HybridA4,j be

the same as HybridA4 except that we compute the values of c′i for i ∈ [j]\{1} as in HybridA5 , i.e.:

skgi ← OneFSFE.KeyGen(mski, gf,s̃ti,ci ; rKeyGeni)

c′i ← Sym.Enc(k′i, skgi)

Observe that HybridA4 = HybridA4,0 and that HybridA5 = HybridA4,q. Then by Equation 5, there
must exist a value j∗ ∈ [q] such that∣∣∣Pr[HybridA4,j∗−1(1

λ) = 1]− Pr[HybridA4,j∗(1
λ) = 1]

∣∣∣ > negl(λ) (6)

We build a PPT adversary B that breaks the security of Sym′. B first runs A on input 1λ and re-
ceives parameters 1ℓF , 1ℓS , 1ℓX , 1ℓY and a function query f ∈ F [ℓF , ℓS , ℓX , ℓY]. B then sends message

length 1
ℓSym′.mλ to its Sym′ challenger where ℓSym′.mλ

is computed as described in the parameter sec-

tion. Then, B samples {rmski , r
′
mski

, rki , r
′
Enci

, rKeyGeni , s̃ti}i∈[q+1] uniformly at random and computes

{mski,msk′i, ki}i∈[q+1] from these values as in HybridA4 . B also samples {r′ki}i∈[q+1]\{j∗} uniformly

at random and computes {k′i}i∈[q+1]\{j∗} from these values as in HybridA4 . B computes {ci}i∈[q]
as in HybridA4 , and computes skgi ← OneFSFE.KeyGen(mski, gf,s̃ti,ci ; rKeyGeni) for i ∈ [q] as in

HybridA5 . For i < j∗, B computes c′i as in HybridA5 . For i > j∗, B computes c′i as in HybridA4 .

For i = j∗, B sends challenge messages (skgj∗ , 0
ℓSym′.mλ) to its Sym′ challenger and receives an en-

cryption c′j∗ of either skgj∗ or 0
ℓSym′.mλ . B then computes {sk′hi

}i∈[q]\{1} as in HybridA4 . B sends
SKf = skg1 to A and receives a challenge message x. Then, B computes {pi}i∈[n+1], {ψi}i∈[n] and
CT as in HybridA4 , sends CT to A, and outputs whatever A outputs. Observe that if B received
an encryption c′j∗ of skgj∗ then B exactly emulates HybridA4,j∗ , and if B received an encryption c′j∗

of 0
ℓSym′.mλ then B emulates HybridA4,j∗−1. Additionally, B does not need to know r′kj∗ or k′j∗ to

carry out the experiment. Thus, by Equation 6, this means that B breaks the security of Sym′ as
B can distinguish between the two ciphertexts with non-negligible probability.

43

HybridA6,k,1(1
λ): We change the message encrypted in ctk so that we use the αk = 1 branch of

gf,s̃tk,ck .

1. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

2. Function Query: A outputs a streaming function query f ∈ F [ℓF , ℓS , ℓX , ℓY].

3. Compute Randomness:

(a) For i ∈ [n+ 1],

i. rmski , r
′
mski

, rki , r
′
ki
, r′Enci , rKeyGeni ← {0, 1}

λ

ii. mski ← OneFSFE.Setup(1λ; rmski), msk′i ← OneCompFE.Setup(1λ; r′mski
),

ki ← Sym.Setup(1λ; rki), k
′
i ← Sym′.Setup(1λ; r′ki)

iii. s̃ti ← {0, 1}ℓS

4. Compute skgi and sk′hi
:

(a) For i ∈ [n],

i. θi ← {0, 1}ℓY
ii. If i < k, ct′i+1 ← OneCompFE.Enc(msk′i+1, (0

ℓF , 0ℓS , 0λ, 0λ, 1, r′ki); r
′
Enci+1

)

iii. If i ≥ k, ct′i+1 ← OneCompFE.Enc(msk′i+1, (f, s̃ti+1, rmski+1
, rKeyGeni+1

, 0, 0λ); r′Enci+1
)

iv. ci ← Sym.Enc(ki, (θi, ct
′
i+1))

v. skgi ← OneFSFE.KeyGen(mski, gf,s̃ti,ci ; rKeyGeni) for gf,s̃ti,ci as defined in Figure 6.

vi. If i > 1

A. c′i ← Sym.Enc(k′i, skgi)

B. sk′hi
← OneCompFE.KeyGen(msk′i, hci,c′i) for hci,c′i as defined in Figure 7.

5. Function Key: Send SKf = skg1 to the adversary.

6. Challenge Message: A outputs a challenge message x = x1 . . . xn for some n ∈ N and
where each xi ∈ {0, 1}ℓX .

7. Compute pi and ψi:

(a) st1 = 0ℓS

(b) For i ∈ [n],

i. pi = s̃ti ⊕ sti
ii. (yi, sti+1) = f(xi, sti)

iii. ψi = θi ⊕ yi
(c) pi+1 = s̃ti+1 ⊕ sti+1

8. Challenge Ciphertext:

(a) For i ∈ [n],

i. If i ≤ k, cti ← OneFSFE.Enc(mski, (0
ℓX , 0ℓS , 0ℓS , 0λ, 0λ, 0λ, 0λ, 1, rki , ψi))

ii. If i > k, cti ← OneFSFE.Enc(mski, (xi, pi, pi+1, r
′
mski+1

, r′Enci+1
, rmski+1

, rKeyGeni+1
, 0, 0λ, 0ℓY))

iii. If i = 1, CT1 = ct1. Else, CTi = (cti, sk
′
hi
)

(b) Send CT = (CTi)i∈[n] to the adversary.

9. Adversary’s Output: A outputs a bit b which is the outcome of the experiment.

44

HybridA6,k,2(1
λ): We change the message encrypted in ct′k+1 so that we use the α′k+1 = 1 branch

of hck+1,c
′
k+1

.

1. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

2. Function Query: A outputs a streaming function query f ∈ F [ℓF , ℓS , ℓX , ℓY].

3. Compute Randomness:

(a) For i ∈ [n+ 1],

i. rmski , r
′
mski

, rki , r
′
ki
, r′Enci , rKeyGeni ← {0, 1}

λ

ii. mski ← OneFSFE.Setup(1λ; rmski), msk′i ← OneCompFE.Setup(1λ; r′mski
),

ki ← Sym.Setup(1λ; rki), k
′
i ← Sym′.Setup(1λ; r′ki)

iii. s̃ti ← {0, 1}ℓS

4. Compute skgi and sk′hi
:

(a) For i ∈ [n],

i. θi ← {0, 1}ℓY
ii. If i ≤ k, ct′i+1 ← OneCompFE.Enc(msk′i+1, (0

ℓF , 0ℓS , 0λ, 0λ, 1, r′ki); r
′
Enci+1

)

iii. If i > k, ct′i+1 ← OneCompFE.Enc(msk′i+1, (f, s̃ti+1, rmski+1
, rKeyGeni+1

, 0, 0λ); r′Enci+1
)

iv. ci ← Sym.Enc(ki, (θi, ct
′
i+1))

v. skgi ← OneFSFE.KeyGen(mski, gf,s̃ti,ci ; rKeyGeni) for gf,s̃ti,ci as defined in Figure 6.

vi. If i > 1

A. c′i ← Sym.Enc(k′i, skgi)

B. sk′hi
← OneCompFE.KeyGen(msk′i, hci,c′i) for hci,c′i as defined in Figure 7.

5. Function Key: Send SKf = skg1 to the adversary.

6. Challenge Message: A outputs a challenge message x = x1 . . . xn for some n ∈ N and
where each xi ∈ {0, 1}ℓX .

7. Compute pi and ψi:

(a) st1 = 0ℓS

(b) For i ∈ [n],

i. pi = s̃ti ⊕ sti

ii. (yi, sti+1) = f(xi, sti)

iii. ψi = θi ⊕ yi
(c) pi+1 = s̃ti+1 ⊕ sti+1

8. Challenge Ciphertext:

(a) For i ∈ [n],

i. If i ≤ k, cti ← OneFSFE.Enc(mski, (0
ℓX , 0ℓS , 0ℓS , 0λ, 0λ, 0λ, 0λ, 1, rki , ψi))

ii. If i > k, cti ← OneFSFE.Enc(mski, (xi, pi, pi+1, r
′
mski+1

, r′Enci+1
, rmski+1

, rKeyGeni+1
, 0, 0λ, 0ℓS))

iii. If i = 1, CT1 = ct1. Else, CTi = (cti, sk
′
hi
)

45

(b) Send CT = (CTi)i∈[n] to the adversary.

9. Adversary’s Output: A outputs a bit b which is the outcome of the experiment.

Lemma 5.8. For all adversaries A,∣∣∣Pr[HybridA5 (1
λ) = 1]− Pr[HybridA6,0,2(1

λ) = 1]
∣∣∣ = 0

Proof. The hybrids are identical.

Lemma 5.9. If OneFSFE is a single-key, single-ciphertext, function-selective-IND-secure FE scheme,
then for all PPT adversaries A and for all k ∈ N,∣∣∣Pr[HybridA6,k−1,2(1

λ) = 1]− Pr[HybridA6,k,1(1
λ) = 1]

∣∣∣ ≤ negl(λ)

Proof. Suppose for sake of contradiction that there exists a PPT adversary A such that∣∣∣Pr[HybridA6,k−1,2(1
λ) = 1]− Pr[HybridA6,k,1(1

λ) = 1]
∣∣∣ > negl(λ) (7)

Let q = q(λ) be the running time of A. Observe that q = poly(λ) as A is polytime and
that q(λ) ≥ n for any challenge message x = x1 . . . xn output by A on security parameter
λ. We build a PPT adversary B that breaks the security of OneFSFE. B first runs A on in-
put 1λ and receives parameters 1ℓF , 1ℓS , 1ℓX , 1ℓY and a function query f ∈ F [ℓF , ℓS , ℓX , ℓY]. B
then sends function size 1ℓgλ , input size 1ℓmλ , and output size 1ℓSym.mλ to its OneFSFE chal-
lenger where ℓgλ , ℓmλ

, ℓSym.mλ
are computed as specified in our parameter section. B then sam-

ples {r′mski
, rki , r

′
ki
, r′Enci , s̃ti, θi}i∈[q+1] uniformly at random and computes {msk′i, ki, k

′
i}i∈[n+1] from

these values as in HybridA6,k−1,2. B also samples {rmski , rKeyGeni}i∈[q+1]\{k}, uniformly at ran-

dom and computes {mski}i∈[q+1]\{k} from these values as in HybridA6,k−1,2. For i < k, B com-

putes ct′i+1 ← OneCompFE.Enc(msk′i+1, (0
ℓF , 0ℓS , 0λ, 0λ, 1, r′ki); r

′
Enci+1

). For i ≥ k, B computes

ct′i+1 ← OneCompFE.Enc(msk′i+1, (f, s̃ti+1, rmski+1
, rKeyGeni+1

, 0, 0λ); r′Enci+1
). Observe that this is

the same as in HybridA6,k−1,2 and does not require knowledge of mskk, rmskk , rKeyGenk . B computes

{ci, gf,s̃ti,ci}i∈[q] from these values as in HybridA6,k−1,2. B then sends function query gk = gf,s̃tk,ck
to its OneFSFE challenger and receives a OneFSFE function key skgk in return. B computes
{skgi}i∈[q]\{k} and {c′i, sk

′
hi
}i∈[q]\{1} as in HybridA6,k−1,2. (This does not require knowledge of

mskk, rmskk , rKeyGenk). B sends SKf = skg1 toA and receives a challenge message x. B then computes

{pi}i∈[n+1], {ψi}i∈[n] as inHybridA6,k−1,2. For i ≤ k, letm0,i = (0ℓX , 0ℓS , 0ℓS , 0λ, 0λ, 0λ, 0λ, 1, rki , ψi),

and for i ≥ k, letm1,i = (xi, pi, pi+1, r
′
mski+1

, r′Enci+1
, rmski+1

, rKeyGeni+1
, 0, 0λ, 0ℓY). For i < k, B com-

putes cti ← OneFSFE.Enc(mski,m0,i). For i > k, B computes cti ← OneFSFE.Enc(mski,m1,i). Ob-
serve that this is the same as inHybridA6,k−1,2 and does not require knowledge ofmskk, rmskk , rKeyGenk .
For i = k, B sends challenge message pair (m0,k,m1,k) to its OneFSFE challenger and receives a
OneFSFE ciphertext ctk of either m0,k or m1,k. As needed for the security game, we can observe
that

gk(m0,k) = gf,s̃tk,ck(0
ℓX , 0ℓS , 0ℓS , 0λ, 0λ, 0λ, 0λ, 1, rkk , ψk)

=gk(m1,k) = gf,s̃tk,ck(xk, pk, pk+1, r
′
mskk+1

, r′Enck+1
, rmskk+1

, rKeyGenk+1
, 0, 0λ, 0ℓY)

This is because ck encrypts (θk, ct
′
k+1) where θk⊕ψk = yk and where ct′k+1 is generated in the same

way as in the αk = 0 branch of gk. B sets CT1 = ct1 and CTi = (cti, sk
′
hi
) for i ∈ [n]\{1}. B sends

46

CT = (CTi)i∈[n] to A and outputs whatever A outputs. Observe that if B received an encryption

ctk of m0,k then B exactly emulates HybridA6,k,1, and if B received an encryption ctk of m1,k then B
emulates HybridA6,k−1,2. Additionally, B does not need to know the values of mskk, rmskk , rKeyGenk
to run this experiment. Thus, by Equation 7, B breaks the security of OneFSFE as B can distinguish
between the two ciphertexts with non-negligible probability.

Lemma 5.10. If OneCompFE is a single-key, single-ciphertext, selective-IND-secure FE scheme,
then for all PPT adversaries A and for all k ∈ N,∣∣∣Pr[HybridA6,k,1(1

λ) = 1]− Pr[HybridA6,k,2(1
λ) = 1]

∣∣∣ ≤ negl(λ)

Proof. Suppose for sake of contradiction that there exists a PPT adversary A such that∣∣∣Pr[HybridA6,k,1(1
λ) = 1]− Pr[HybridA6,k,2(1

λ) = 1]
∣∣∣ > negl(λ) (8)

Let q = q(λ) be the running time of A. Observe that q = poly(λ) as A is polytime and that
q(λ) ≥ n for any challenge message x = x1 . . . xn output by A on security parameter λ. We
build a PPT adversary B that breaks the single-key, single-ciphertext, selective-IND-security of
OneCompFE. B first runs A on input 1λ and receives parameters 1ℓF , 1ℓS , 1ℓX , 1ℓY and a function

query f ∈ F [ℓF , ℓS , ℓX , ℓY]. B then sends function size 1ℓhλ , input size 1
ℓm′

λ , and output size 1
ℓSym′.mλ

to its OneCompFE challenger where ℓhλ
, ℓm′

λ
, ℓSym′.mλ

are computed as specified in our parameter

section. B then samples {rmski , rki , r
′
ki
, rKeyGeni , s̃ti, θi}i∈[q+1] uniformly at random and computes

{mski, ki, k
′
i}i∈[q+1] from these values as in HybridA6,k,1. B also samples {r′mski

, r′Enci}i∈[q+1]\{k+1},

uniformly at random and computes {msk′i}i∈[q+1]\{k+1} from these values as in HybridA6,k,1. For i <

k, B computes ct′i+1 ← OneCompFE.Enc(msk′i+1, (0
ℓF , 0ℓS , 0λ, 0λ, 1, r′ki); r

′
Enci+1

). For i > k, B com-

putes ct′i+1 ← OneCompFE.Enc(msk′i+1, (f, s̃ti+1, rmski+1
, rKeyGeni+1

, 0, 0λ); r′Enci+1
). Observe that

this is the same as inHybridA6,k,1 and does not require knowledge ofmsk′k+1, r
′
mskk+1

, r′Enck+1
. For i =

k, B sends challenge message pair ((0ℓF , 0ℓS , 0λ, 0λ, 1, r′kk), (f, s̃tk+1, rmskk+1
, rKeyGenk+1

, 0, 0λ)) to its

OneCompFE challenger and receives a OneCompFE encryption ct′k+1 of either (0
ℓF , 0ℓS , 0λ, 0λ, 1, r′kk)

or (f, s̃tk+1, rmskk+1
, rKeyGenk+1

, 0, 0λ). B computes {ci, skgi}i∈[q], {c′i, hci,c′i}i∈[q]\{1} from these values

as in HybridA6,k,1. (This does not require knowledge of msk′k+1, r
′
mskk+1

, r′Enck+1
). B then sends

function query hk+1 = hck+1,c
′
k+1

to its OneCompFE challenger and receives a OneCompFE function

key sk′hk+1
in return. As needed for the security game, we can observe that

hck+1,c
′
k+1

(0ℓF , 0ℓS , 0λ, 0λ, 1, r′kk)

= hck+1,c
′
k+1

(f, s̃tk+1, rmskk+1
, rKeyGenk+1

, 0, 0λ)

This is because c′k+1 encrypts skgk+1
where skgk+1

is generated in the same way as in the α′k+1 = 0

branch of hk+1. B computes {sk′hi
}i∈[q]\{1,k+1} as in HybridA6,k,1. B sends SKf = skg1 to A and

receives a challenge message x. B then computes {pi}i∈[n+1], {ψi}i∈[n] as in HybridA6,k,1. For i ≤ k,
B computes cti ← OneCompFE.Enc(mski, (0

ℓX , 0ℓS , 0ℓS , 0λ, 0λ, 0λ, 0λ, 1, rki , ψi)). For i > k, B com-
putes cti ← OneCompFE.Enc(mski, (xi, pi, pi+1, r

′
mski+1

, r′Enci+1
, rmski+1

, rKeyGeni+1
, 0, 0λ, 0ℓY)). Ob-

serve that this is the same as inHybridA6,k,1 and does not require knowledge ofmsk′k+1, r
′
mskk+1

, r′Enck+1
.

B sets CT1 = ct1 and CTi = (cti, sk
′
hi
) for i ∈ [n]\{1}. B sends CT = (CTi)i∈[n] to A and outputs

whateverA outputs. Observe that if B received an encryption ct′k+1 of (0
ℓF , 0ℓS , 0λ, 0λ, 1, r′kk) then B

47

exactly emulatesHybridA6,k,2, and if B received an encryption ct′k+1 of (f, s̃tk+1, rmskk+1
, rKeyGenk+1

, 0, 0λ)

then B emulatesHybridA6,k,1. Additionally, B does not need to know the values ofmsk′k+1, r
′
mskk+1

, r′Enck+1

to run this experiment. Thus, by Equation 8, B breaks the security of OneCompFE as B can dis-
tinguish between the two ciphertexts with non-negligible probability.

48

HybridA7 (1
λ): For any A, this is simply HybridA6,q,2 where q = q(λ) is the runtime of A on security

parameter λ.

1. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

2. Function Query: A outputs a streaming function query f ∈ F [ℓF , ℓS , ℓX , ℓY].

3. Compute Randomness:

(a) For i ∈ [n+ 1],

i. rmski , r
′
mski

, rki , r
′
ki
, r′Enci , rKeyGeni ← {0, 1}

λ

ii. mski ← OneFSFE.Setup(1λ; rmski), msk′i ← OneCompFE.Setup(1λ; r′mski
),

ki ← Sym.Setup(1λ; rki), k
′
i ← Sym′.Setup(1λ; r′ki)

iii. s̃ti ← {0, 1}ℓS

4. Compute skgi and sk′hi
:

(a) For i ∈ [n],

i. θi ← {0, 1}ℓY
ii. ct′i+1 ← OneCompFE.Enc(msk′i+1, (0

ℓF , 0ℓS , 0λ, 0λ, 1, r′ki); r
′
Enci+1

)

iii. ci ← Sym.Enc(ki, (θi, ct
′
i+1))

iv. skgi ← OneFSFE.KeyGen(mski, gf,s̃ti,ci ; rKeyGeni) for gf,s̃ti,ci as defined in Figure 6.

v. If i > 1

A. c′i ← Sym.Enc(k′i, skgi)

B. sk′hi
← OneCompFE.KeyGen(msk′i, hci,c′i) for hc′i,ci as defined in Figure 7.

5. Function Key: Send SKf = skg1 to the adversary.

6. Challenge Message: A outputs a challenge message x = x1 . . . xn for some n ∈ N and
where each xi ∈ {0, 1}ℓX .

7. Compute pi and ψi:

(a) st1 = 0ℓS

(b) For i ∈ [n],

i. pi = s̃ti ⊕ sti
ii. (yi, sti+1) = f(xi, sti)

iii. ψi = θi ⊕ yi
(c) pi+1 = s̃ti+1 ⊕ sti+1

8. Challenge Ciphertext:

(a) For i ∈ [n],

i. cti ← OneFSFE.Enc(mski, (0
ℓX , 0ℓS , 0ℓS , 0λ, 0λ, 0λ, 0λ, 1, rki , ψi))

ii. If i = 1, CT1 = ct1. Else, CTi = (cti, sk
′
hi
)

(b) Send CT = (CTi)i∈[n] to the adversary.

9. Adversary’s Output: A outputs a bit b which is the outcome of the experiment.

49

Lemma 5.11. For all adversaries A,∣∣∣Pr[HybridA6,q,2(1
λ) = 1]− Pr[HybridA7 (1

λ) = 1]
∣∣∣ = 0

where q = q(λ) is the runtime of A on security parameter λ.

Proof. These hybrids are identical. Observe that if q(λ) is the runtime of A, then q(λ) ≥ n for any
challenge message x = x1 . . . xn output by A on security parameter λ. Thus, HybridA6,q,2 always

uses the αi = α′i = 1 branches for cti and ct′i just like in HybridA7 .

50

HybridA8 (1
λ): We write the experiment using an explicit simulator Sim. Observe that Sim is PPT.

1. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY . The simulator Sim receives
(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY).

2. Function Query: A outputs a streaming function query f ∈ F [ℓF , ℓS , ℓX , ℓY] which is sent
to Sim.

3. Compute Randomness: Sim computes the following:

(a) For i ∈ [n+ 1],11

i. rmski , r
′
mski

, rki , r
′
ki
, r′Enci , rKeyGeni ← {0, 1}

λ

ii. mski ← OneFSFE.Setup(1λ; rmski), msk′i ← OneCompFE.Setup(1λ; r′mski
),

ki ← Sym.Setup(1λ; rki), k
′
i ← Sym′.Setup(1λ; r′ki)

iii. s̃ti ← {0, 1}ℓS

4. Compute skgi and sk′hi
: Sim computes the following:

(a) For i ∈ [n],

i. θi ← {0, 1}ℓY
ii. ct′i+1 ← OneCompFE.Enc(msk′i+1, (0

ℓF , 0ℓS , 0λ, 0λ, 1, r′ki); r
′
Enci+1

)

iii. ci ← Sym.Enc(ki, (θi, ct
′
i+1))

iv. skgi ← OneFSFE.KeyGen(mski, gf,s̃ti,ci ; rKeyGeni) for gf,s̃ti,ci as defined in Figure 6.

v. If i > 1

A. c′i ← Sym.Enc(k′i, skgi)

B. sk′hi
← OneCompFE.KeyGen(msk′i, hci,c′i) for hci,c′i as defined in Figure 7.

5. Function Key: Sim sends SKf = skg1 to the adversary.

6. Challenge Message: A outputs a challenge message x = x1 . . . xn for some n ∈ N and
where each xi ∈ {0, 1}ℓX . The simulator does not receive x.

7. Challenge Message Output: Sim receives 1n and y = (y1, . . . , yn) where y = f(x).

8. Compute ψi: Sim computes the following:

(a) For i ∈ [n],

i. ψi = θi ⊕ yi

9. Challenge Ciphertext: Sim computes the following:

(a) For i ∈ [n],

i. cti ← OneFSFE.Enc(mski, (0
ℓX , 0ℓS , 0ℓS , 0λ, 0λ, 0λ, 0λ, 1, rki , ψi))

ii. If i = 1, CT1 = ct1. Else, CTi = (cti, sk
′
hi
)

(b) Sim sends CT = (cti)i∈[n] to the adversary.

10. Adversary’s Output: A outputs a bit b which is the outcome of the experiment.

11See Remark 5.3

51

Lemma 5.12. For all adversaries A,∣∣∣Pr[HybridA7 (1
λ) = 1]− Pr[HybridA8 (1

λ) = 1]
∣∣∣ = 0

Proof. HybridA7 and HybridA8 are identically distributed. Observe that as pi is not used in the
previous hybrid, we only need to compute ψi in step 8. However, the value of ψi only depends
on yi and θi. Thus, the simulator can compute ψi from y, without needing to know x. The only
other change we make is that we explicitly label the challenger as a simulator. Thus, this hybrid is
identically distributed to the previous one.

Thus, our lemmas give us the following corollary:

Corollary 5.13. If

• PRF and PRF2 are secure PRFs,

• Sym and Sym′ are secure symmetric key encryption schemes,

• OneCompFE is single-key, single-ciphertext, selective-IND-secure,

• and OneFSFE is single-key, single-ciphertext, function-selective-IND-secure FE

then One-sFE is single-key, single-ciphertext, function-selective-SIM-secure.

Proof. By combining the hybrid indistinguishability lemmas above, we get that for all PPT adver-
saries A, ∣∣∣Pr[HybridA1 (1

λ) = 1]− Pr[HybridA8 (1
λ) = 1]

∣∣∣ ≤ negl(λ)

The corollary then follows from the fact thatHybridA1 represents the real world security experiment
RealExptOne-Func-Sel-SIM

A andHybridA8 represents the idea world security experiment IdealExptOne-Func-Sel-SIM
A,Sim

for the PPT Sim defined in HybridA8 .

Corollary 5.13 then implies Theorem 5.1 as we can instantiate the required primitives from a
strongly-compact, selective-IND-secure, secret-key FE scheme for P/Poly.

52

6 Bootstrapping to an IND-Secure, Public-Key Streaming FE
Scheme

We now construct our semi-adaptive-function-selective-IND-secure, public-key sFE scheme. We
prove the following:

Theorem 6.1. Assuming

1. a selective-IND-secure, public-key FE scheme for P/Poly

2. a single-key, single-ciphertext, function-selective-IND-secure, secret-key, sFE scheme for P/Poly

there exists a semi-adaptive-function-selective-IND-secure, public-key sFE scheme for P/Poly.

Remark 6.2. In fact, if the secret-key sFE scheme was adaptive-IND-secure, then our bootstrap-
ping procedure would produce an adaptive-IND-secure, public-key sFE scheme. More precisely,
assuming (1) a selective-IND-secure, public-key FE scheme for P/Poly, and (2) a single-key, single-
ciphertext, adaptive-IND-secure, secret-key, sFE scheme for P/Poly, there exists an adaptive-IND-
secure, public-key sFE scheme for P/Poly. We do not formally prove this here, but the proof is
essentially the same as that of Theorem 6.1.

Then, by applying Theorem 5.1, we get our main theorem:

Theorem 6.3. Assuming a strongly-compact, selective-IND-secure, public-key FE scheme for P/Poly,
there exists a semi-adaptive-function-selective-IND-secure, public-key sFE scheme for P/Poly.

Proof. This follows from Theorem 5.1 and Theorem 6.1 since a strongly-compact, selective-IND-
secure, public-key FE scheme for P/Poly implies a strongly-compact, selective-IND-secure, secret-key
FE scheme for P/Poly, and a single-key, single-ciphertext, function-selective-SIM -secure, secret-key,
sFE scheme for P/Poly implies a single-key, single-ciphertext, function-selective-IND-secure, secret-
key, sFE scheme for P/Poly.

Please refer to the technical overview (Section 2) for a high level overview of our construc-
tion. Our construction and security proof is nearly the same as in [AS16], except for a few minor
modifications detailed later in Remark 6.5.

To prove Theorem 6.1, we build an sFE scheme from the following tools. As we show below,
apart from One-sFE, all of the following tools can be instantiated using a selective-IND-secure,
public-key FE scheme for P/Poly.

Tools.

• One-sFE = (One-sFE.Setup,One-sFE.Enc,One-sFE.KeyGen,One-sFE.Dec): A single-key, single-
ciphertext, function-selective-IND-secure, secret-key sFE scheme for P/Poly.

• PRF = (PRF.Setup,PRF.Eval): A secure pseudorandom function family.

• PRF2 = (PRF2.Setup,PRF2.Eval): A secure pseudorandom function family.

• Sym = (Sym.Setup,Sym.Enc,Sym.Dec): A secure symmetric key encryption scheme with pseu-
dorandom ciphertexts.

• FPFE = (FPFE.Setup,FPFE.Enc,FPFE.KeyGen,FPFE.Dec): A function-private-selective-IND-
secure, secret-key FE scheme for P/Poly

• FE = (FE.Setup,FE.Enc,FE.KeyGen,FE.Dec): A selective-IND-secure, public-key FE scheme
for P/Poly.

53

Instantiation of the Tools. Let FE′ be a selective-IND-secure, public-key FE scheme for P/Poly.

• We can build PRF,PRF2,Sym from any one-way-function using standard cryptographic tech-
niques (e.g. [Gol01, Gol09]). As FE′ implies one-way-functions, then we can build these from
FE′.

• FE′ already satisfies the security requirements needed for FE.

• FE′ immediately implies a selective-IND-secure, secret-key FE scheme SKFE′ for P/Poly.
We can then build our function-private-selective-IND-secure, secret-key FE scheme FPFE
for P/Poly by using the function-privacy transformation of [BS18] on SKFE′.

6.1 Parameters

On security parameter λ, function size ℓF , state size ℓS , input size ℓX , and output size ℓY , we will
instantiate our primitives with the following parameters:

• One-sFE: We instantiate One-sFE with function size ℓF , state size ℓS , input size ℓX , and
output size ℓY . This means that we will use the following algorithms:

– One-sFE.Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY), One-sFE.EncSetup(1ℓF , 1ℓS , 1ℓX , 1ℓY , ·),
One-sFE.Enc(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY , ·, ·), One-sFE.KeyGen(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY , ·, ·),
One-sFE.Dec(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY , ·, ·)

• PRF: We instantiate PRF with input size λ and output size 5λ. This means that we will use
the following setup algorithm: PRF.Setup(1λ, 1λ, 15λ).

• PRF2: We instantiate PRF2 with input size λ and output size λ. This means that we will use
the following setup algorithm: PRF2.Setup(1λ, 1λ, 1λ).

• FPFE: We instantiate FPFE with

– Input Size: ℓFPFE.mλ
= ℓOne-sFE.mskλ + ℓOne-sFE.Enc.stλ + ℓPRF2.kλ + 2 where ℓOne-sFE.mskλ

is the size of master secret keys of One-sFE, ℓOne-sFE.Enc.stλ is the size of encryption states
of One-sFE, and ℓPRF2.kλ is the size of keys of PRF2.

– Function Size: ℓHλ
where ℓHλ

is the maximum of the size of Hi,xi,ti defined in Figure 8
and the size of H∗i,xi,x′

i,ti,vi
defined in Figure 10 for any

∗ i, ti ∈ {0, 1}λ

∗ xi, x
′
i ∈ {0, 1}ℓX

∗ vi of size ℓOne-sFE.ctλ where ℓOne-sFE.ctλ is the size of ciphertexts of One-sFE

Observe that the function size depends only on λ, ℓF , ℓS , ℓX , ℓY and the sizes of PRF2,
and One-sFE.

– Output Size: ℓOne-sFE.ctλ where ℓOne-sFE.ctλ is the size of ciphertexts of One-sFE

This means that we will use the following algorithms:

– FPFE.Setup(1λ, 1ℓHλ , 1ℓFPFE.mλ , 1ℓOne-sFE.ctλ), FPFE.Enc(1λ, 1ℓHλ , 1ℓFPFE.mλ , 1ℓOne-sFE.ctλ , ·, ·),
FPFE.KeyGen(1λ, 1ℓHλ , 1ℓFPFE.mλ , 1ℓOne-sFE.ctλ , ·, ·), FPFE.Dec(1λ, 1ℓHλ , 1ℓFPFE.mλ , 1ℓOne-sFE.ctλ , ·, ·)

• Sym: We instantiate Sym with messages of length ℓSym.mλ
= ℓOne-sFE.skλ + ℓFPFE.ctλ where

ℓOne-sFE.skλ is the size of function keys of One-sFE and ℓFPFE.ctλ is the size of ciphertexts of
FPFE. This means that we will use the following setup algorithm: Sym.Setup(1λ, 1ℓSym.mλ).

54

• FE: We instantiate FE with

– Input Size: ℓFE.mλ
= ℓFPFE.mskλ + ℓPRF.kλ + 1 + ℓSym.kλ where ℓFPFE.mskλ is the size of

master secret keys of FPFE, ℓPRF.kλ is the size of keys of PRF, and ℓSym.kλ is the size of
keys of Sym.

– Function Size: ℓGλ
where ℓGλ

is the maximum size of Gf,s,c defined in Figure 9 for any

∗ f ∈ F [ℓF , ℓS , ℓX , ℓY]
∗ s ∈ {0, 1}λ

∗ c of size ℓSym.ctλ where ℓSym.ctλ is the size of ciphertexts of Sym

Note that the function length depends only on λ, ℓF , ℓS , ℓX , ℓY and the sizes of PRF,
PRF2, One-sFE, FPFE, and Sym.

– Output Size: ℓFE.outλ = ℓOne-sFE.skλ + ℓFPFE.ctλ where ℓOne-sFE.skλ is the size of secret
keys of One-sFE and ℓFPFE.ctλ is the size of ciphertexts of FPFE

This means that we will use the following algorithms:

– FE.Setup(1λ, 1ℓGλ , 1ℓFE.mλ , 1ℓFE.outλ), FE.Enc(1λ, 1ℓGλ , 1ℓFE.mλ , 1ℓFE.outλ , ·, ·),
FE.KeyGen(1λ, 1ℓGλ , 1ℓFE.mλ , 1ℓFE.outλ , ·, ·), FE.Dec(1λ, 1ℓGλ , 1ℓFE.mλ , 1ℓFE.outλ , ·, ·)

Notation. For notational convenience, when the parameters are understood, we will often omit
the security, input size, output size, message size, function size, or state size parameters from each
of the algorithms listed above.

Remark 6.4. We assume without loss of generality that for security parameter λ, all algorithms
only require randomness of length λ. If the original algorithm required additional randomness,
we can replace it with a new algorithm that first expands the λ bits of randomness using a PRG
of appropriate stretch and then runs the original algorithm. Note that this replacement does not
affect the security of the above schemes (as long as ℓF , ℓS , ℓX , ℓY are polynomial in λ).

55

6.2 Construction

We now construct our streaming FE scheme sFE. Recall that for notational convenience, we may
omit the security, input size, output size, message size, function size, or state size parameters from
our algorithms. For information on these parameters, please see the parameter section above.

Remark 6.5. Our construction is nearly the same as in [AS16]. Here, we are bootstrapping a
single-key, single-ciphertext streaming FE scheme as opposed to a single-key, single-ciphertext FE
scheme for Turing machines. There are only a few minor changes from the construction of [AS16]:

• In each function Gf,s,c, in addition to encrypting One-sFE.msk under FPFE, we also encrypt
the starting encryption state One-sFE.Enc.st and a PRF key PRF2.k. This also slightly changes
the definition of each Hi,xi,ti function . In [AS16], these additional values were not needed.
The proof of security can be easily modified to accommodate these values.

• For each x = x1 . . . xn, we create n FPFE function keys, one for each xi. In [AS16], we only
needed one function key. This change requires us to rely on an unbounded-key, function-
private FE scheme, as opposed to the single-key, function-private FE scheme used in [AS16].
The proof of security is similar except that we perform changes across all FPFE function keys
at once.

• We break the encryption algorithm of [AS16] into two parts: EncSetup and Enc.

We now describe our construction.

• sFE.Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY):

1. (FE.mpk,FE.msk)← FE.Setup(1λ)

2. Output (MPK = FE.mpk,MSK = FE.msk).

• sFE.EncSetup(MPK):

1. Parse MPK = FE.mpk.

2. PRF.K ← PRF.Setup(1λ).

3. FPFE.msk← FPFE.Setup(1λ)

4. FE.ct← FE.Enc(FE.mpk, (FPFE.msk,PRF.K, 0, 0ℓSym.kλ)).

5. Output Enc.ST = (FPFE.msk,FE.ct)

• sFE.Enc(MPK,Enc.ST, i, xi):

1. Parse Enc.ST = (FPFE.msk,FE.ct).

2. ti ← {0, 1}λ

3. Let Hi = Hi,xi,ti as defined in Figure 8.

4. FPFE.skHi = FPFE.KeyGen(FPFE.msk, Hi)

5. If i = 1, output CT1 = (FE.ct,FPFE.skH1).

6. Else, output CTi = FPFE.skHi

56

Hi,xi,ti(One-sFE.msk,One-sFE.Enc.st,PRF2.k, β):

1. If β = 0

(a) ri ← PRF2.Eval(PRF2.k, ti)

(b) Output One-sFE.cti ← One-sFE.Enc(One-sFE.msk,One-sFE.Enc.st, i, xi; ri)

2. Else, output ⊥

Figure 8

• sFE.KeyGen(MSK, f):

1. Parse MSK = FE.msk.

2. s← {0, 1}λ

3. c← {0, 1}ℓSym.ctλ

4. Let G = Gf,s,c as defined in Figure 9.

5. FE.skG ← FE.KeyGen(FE.msk, G)

6. Output SKf = FE.skG

Gf,s,c(FPFE.msk,PRF.K, α, Sym.k):

1. If α = 0

(a) (rSetup, rKeyGen, rEncSetup, rPRF2, rEnc)← PRF.Eval(PRF.K, s)

(b) One-sFE.msk← One-sFE.Setup(1λ; rSetup)

(c) One-sFE.Enc.st← One-sFE.EncSetup(One-sFE.msk; rEncSetup)

(d) One-sFE.skf ← One-sFE.KeyGen(One-sFE.msk, f ; rKeyGen)

(e) PRF2.k ← PRF2.Setup(1λ; rPRF2)

(f) FPFE.ct← FPFE.Enc(FPFE.msk, (One-sFE.msk,One-sFE.Enc.st,PRF2.k, 0); rEnc)

(g) Output (One-sFE.skf ,FPFE.ct)

2. Else

(a) Output (One-sFE.skf ,FPFE.ct)← Sym.Dec(Sym.k, c)

Figure 9

• sFE.Dec(SKf ,Dec.STi, i,CTi):

1. If i = 1

(a) Parse CT1 = (FE.ct,FPFE.skH1) and SKf = FE.skG.

(b) (One-sFE.skf ,FPFE.ct) = FE.Dec(FE.skG,FE.ct)

(c) Set One-sFE.Dec.st1 = ⊥.
2. If i > 1

(a) Parse CTi = FPFE.skHi

(b) Parse Dec.STi = (One-sFE.skf ,FPFE.ct,One-sFE.Dec.sti)

57

3. One-sFE.cti = FPFE.Dec(FPFE.skHi ,FPFE.ct)

4. (yi,One-sFE.Dec.sti+1) = One-sFE.Dec(One-sFE.skf ,One-sFE.Dec.sti, i,One-sFE.cti)

5. Output (yi,Dec.STi+1 = (One-sFE.skf ,FPFE.ct,One-sFE.Dec.sti+1))

We also define the following function which will be used in our security proof.

H∗i,xi,x′
i,ti,vi

(One-sFE.msk,One-sFE.Enc.st,PRF2.k, β):

• If β = 0

1. ri ← PRF2.Eval(PRF2.k, ti)

2. Output One-sFE.cti ← One-sFE.Enc(One-sFE.msk,One-sFE.Enc.st, i, xi; ri)

• If β = 1

1. ri ← PRF2.Eval(PRF2.k, ti)

2. Output One-sFE.cti ← One-sFE.Enc(One-sFE.msk,One-sFE.Enc.st, i, x′i; ri)

• Else, output vi

Figure 10

6.3 Correctness and Efficiency

Efficiency: Using our discussion above on parameters, it is easy to see that the size and runtime
of all algorithms of One-sFE on security parameter λ, function size ℓF , state size ℓS , input size ℓX ,
and output size ℓY are poly(λ, ℓF , ℓS , ℓX , ℓY).

Correctness Intuition: Our ciphertext consists of (FE.ct, {FPFE.skHi}i∈[n]), and our function
key consists of SKf = FE.skG. We can combine FE.ct and FE.skG via FE decryption to get a function
key One-sFE.skf for f under One-sFE.msk, and a ciphertext FPFE.ct containing One-sFE.msk. Then,
for i ∈ [n], we can combine FPFE.ct and FPFE.skHi to get the ith ciphertext One-sFE.cti of the
encryption of x under One-sFE.msk. We can then combine One-sFE.skf and {One-sFE.cti}i∈[n]
using One-sFE decryption to compute f(x).

Correctness: More formally, let p be any polynomial and consider any λ and any ℓF , ℓS , ℓX , ℓY ≤
p(λ). Let SKf be a function key for function f ∈ F [ℓF , ℓS , ℓX , ℓY], and let CT = {CTi}i∈[n] be a

ciphertext for x where x = x1 . . . xn for some n ∈ [2λ] and where each xi ∈ {0, 1}ℓX .
First parse SKf = FE.skG, CT1 = (FE.ct,FPFE.skH1), and CTi = FPFE.skHi for i ∈ [n]\{1}.

Then, by correctness of FE, except with negligible probability,

FE.Dec(FE.skG,FE.ct) = Gf,s,c(FPFE.msk,PRF.K, 0, 0ℓSym.kλ)

= (One-sFE.skf ,FPFE.ct)

where One-sFE.skf is a One-sFE function key for f generated under One-sFE.msk, and FPFE.ct is

58

an FPFE ciphertext encrypting (One-sFE.msk,One-sFE.Enc.st,PRF2.k, 0) as defined by

(rSetup, rKeyGen, rEncSetup, rPRF2, rEnc)← PRF.Eval(PRF.K, s)

One-sFE.msk← One-sFE.Setup(1λ; rSetup)

One-sFE.Enc.st← One-sFE.EncSetup(One-sFE.msk)

One-sFE.skf ← One-sFE.KeyGen(One-sFE.msk, f ; rKeyGen)

PRF2.k ← PRF2.Setup(1λ; rPRF2)

FPFE.ct← FPFE.Enc(FPFE.msk, (One-sFE.msk,One-sFE.Enc.st,PRF2.k, 0); rEnc)

Then, by correctness of FPFE, except with negligible probability, for all i ∈ [n],

FPFE.Dec(FPFE.skHi ,FPFE.ct) = Hi,xi,ti(One-sFE.msk,One-sFE.Enc.st,PRF2.k, 0)

= One-sFE.Enc(One-sFE.msk,One-sFE.Enc.st, i, xi;PRF2.Eval(PRF2.k, ti))

= One-sFE.cti

where One-sFE.cti is the i
th One-sFE ciphertext for x under One-sFE.msk. Thus, if One-sFE.Dec.st1 =

⊥ is the proper starting decryption state for One-sFE, and if we define One-sFE.Dec.sti for i > 1
inductively by

(yi,One-sFE.Dec.sti+1) = One-sFE.Dec(One-sFE.skf ,One-sFE.Dec.sti, i,One-sFE.cti)

then by correctness of One-sFE, except with negligible probability, y = y1 . . . yn = f(x). Thus, for
i = 1 and using the values we defined above,

sFE.Dec(SKf ,Dec.ST1, 1,CT1) = sFE.Dec(FE.skG,⊥, 1, (FE.ct,FPFE.skH1))

= (y1,Dec.ST2 = (One-sFE.skf ,FPFE.ct,One-sFE.Dec.st2))

Therefore, for i > 1, using the values defined above,

sFE.Dec(SKf ,Dec.STi, i,CTi) = sFE.Dec(FE.skG, (One-sFE.skf ,FPFE.ct,One-sFE.Dec.sti), i,FPFE.skHi)

= (yi,Dec.STi+1 = (One-sFE.skf ,FPFE.ct,One-sFE.Dec.sti+1))

Therefore, decryption correctly outputs y = f(x).

6.4 Security

As the security proof is very similar to the one in [AS16], we defer it to Appendix D.

7 Acknowledgements

This research was supported in part from a Simons Investigator Award, DARPA SIEVE award,
NTT Research, NSF Frontier Award 1413955, BSF grant 2012378, a Xerox Faculty Research Award,
a Google Faculty Research Award, and an Okawa Foundation Research Grant. This material is
based upon work supported by the Defense Advanced Research Projects Agency through Award
HR00112020024. The views expressed are those of the authors and do not reflect the official policy
or position of any funding source or the U.S. Government.

59

8 References

[AAB15] Benny Applebaum, Jonathan Avron, and Christina Brzuska. Arithmetic cryptography:
Extended abstract. In Tim Roughgarden, editor, ITCS 2015, pages 143–151. ACM,
January 2015.

[ABDP15] Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval. Simple
functional encryption schemes for inner products. In Jonathan Katz, editor, PKC 2015,
volume 9020 of LNCS, pages 733–751. Springer, Heidelberg, March / April 2015.

[ABSV15] Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikuntanathan. From se-
lective to adaptive security in functional encryption. In Rosario Gennaro and Matthew
J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 657–677.
Springer, Heidelberg, August 2015.

[Agr19] Shweta Agrawal. Indistinguishability obfuscation without multilinear maps: New
methods for bootstrapping and instantiation. In Yuval Ishai and Vincent Rijmen,
editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages 191–225. Springer,
Heidelberg, May 2019.

[AJ15] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from com-
pact functional encryption. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part I, volume 9215 of LNCS, pages 308–326. Springer, Heidelberg,
August 2015.

[AJL+19] Prabhanjan Ananth, Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai. In-
distinguishability obfuscation without multilinear maps: New paradigms via low de-
gree weak pseudorandomness and security amplification. In Alexandra Boldyreva and
Daniele Micciancio, editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages
284–332. Springer, Heidelberg, August 2019.

[AJS15] Prabhanjan Ananth, Abhishek Jain, and Amit Sahai. Indistinguishability obfuscation
from functional encryption for simple functions. Cryptology ePrint Archive, Paper
2015/730, 2015. https://eprint.iacr.org/2015/730.

[AJS18] Prabhanjan Ananth, Aayush Jain, and Amit Sahai. Indistinguishability obfuscation
without multilinear maps: io from lwe, bilinear maps, and weak pseudorandomness.
Cryptology ePrint Archive, Paper 2018/615, 2018. https://eprint.iacr.org/2018/
615.

[ALS16] Shweta Agrawal, Benôıt Libert, and Damien Stehlé. Fully secure functional encryption
for inner products, from standard assumptions. In Matthew Robshaw and Jonathan
Katz, editors, CRYPTO 2016, Part III, volume 9816 of LNCS, pages 333–362. Springer,
Heidelberg, August 2016.

[AS16] Prabhanjan Vijendra Ananth and Amit Sahai. Functional encryption for turing ma-
chines. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A, Part I, volume 9562
of LNCS, pages 125–153. Springer, Heidelberg, January 2016.

[AS17] Prabhanjan Ananth and Amit Sahai. Projective arithmetic functional encryption and
indistinguishability obfuscation from degree-5 multilinear maps. In Jean-Sébastien

60

https://eprint.iacr.org/2015/730
https://eprint.iacr.org/2018/615
https://eprint.iacr.org/2018/615

Coron and Jesper Buus Nielsen, editors, EUROCRYPT 2017, Part I, volume 10210 of
LNCS, pages 152–181. Springer, Heidelberg, April / May 2017.

[BCFG17] Carmen Elisabetta Zaira Baltico, Dario Catalano, Dario Fiore, and Romain Gay. Prac-
tical functional encryption for quadratic functions with applications to predicate en-
cryption. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I,
volume 10401 of LNCS, pages 67–98. Springer, Heidelberg, August 2017.

[BCGI18] Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compressing vector OLE.
In David Lie, Mohammad Mannan, Michael Backes, and XiaoFengWang, editors, ACM
CCS 2018, pages 896–912. ACM Press, October 2018.

[BFKL94] Avrim Blum, Merrick L. Furst, Michael J. Kearns, and Richard J. Lipton. Cryp-
tographic primitives based on hard learning problems. In Douglas R. Stinson, editor,
CRYPTO’93, volume 773 of LNCS, pages 278–291. Springer, Heidelberg, August 1994.

[BGG+14] Dan Boneh, Craig Gentry, Sergey Gorbunov, Shai Halevi, Valeria Nikolaenko,
Gil Segev, Vinod Vaikuntanathan, and Dhinakaran Vinayagamurthy. Fully key-
homomorphic encryption, arithmetic circuit ABE and compact garbled circuits. In
Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441 of
LNCS, pages 533–556. Springer, Heidelberg, May 2014.

[BGJS17] Saikrishna Badrinarayanan, Vipul Goyal, Aayush Jain, and Amit Sahai. A note on
vrfs from verifiable functional encryption. IACR Cryptology ePrint Archive, 2017:51,
2017.

[Bit17] Nir Bitansky. Verifiable random functions from non-interactive witness-
indistinguishable proofs. In Yael Kalai and Leonid Reyzin, editors, TCC 2017, Part II,
volume 10678 of LNCS, pages 567–594. Springer, Heidelberg, November 2017.

[BS18] Zvika Brakerski and Gil Segev. Function-private functional encryption in the private-
key setting. Journal of Cryptology, 31(1):202–225, January 2018.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and
challenges. In Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 253–273.
Springer, Heidelberg, March 2011.

[BV15] Nir Bitansky and Vinod Vaikuntanathan. Indistinguishability obfuscation from func-
tional encryption. In Venkatesan Guruswami, editor, 56th FOCS, pages 171–190. IEEE
Computer Society Press, October 2015.

[GGG+14] Shafi Goldwasser, S. Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz, Feng-
Hao Liu, Amit Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-input functional en-
cryption. In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014,
volume 8441 of LNCS, pages 578–602. Springer, Heidelberg, May 2014.

[GGH+13] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for all
circuits. In 54th FOCS, pages 40–49. IEEE Computer Society Press, October 2013.

[GGHZ16] Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Functional encryption
without obfuscation. In Eyal Kushilevitz and Tal Malkin, editors, TCC 2016-A, Part II,
volume 9563 of LNCS, pages 480–511. Springer, Heidelberg, January 2016.

61

[GHKW17] Rishab Goyal, Susan Hohenberger, Venkata Koppula, and Brent Waters. A generic
approach to constructing and proving verifiable random functions. In Yael Kalai and
Leonid Reyzin, editors, TCC 2017, Part II, volume 10678 of LNCS, pages 537–566.
Springer, Heidelberg, November 2017.

[GKP+13] Shafi Goldwasser, Yael Tauman Kalai, Raluca A. Popa, Vinod Vaikuntanathan, and
Nickolai Zeldovich. Reusable garbled circuits and succinct functional encryption. In
Dan Boneh, Tim Roughgarden, and Joan Feigenbaum, editors, 45th ACM STOC, pages
555–564. ACM Press, June 2013.

[Gol01] Oded Goldreich. Foundations of Cryptography, Volume 1, Basic Tools, volume 1.
Cambridge university press, 2001.

[Gol09] Oded Goldreich. Foundations of Cryptography, Volume 2, Basic Applications, vol-
ume 2. Cambridge university press, 2009.

[GPS16] Sanjam Garg, Omkant Pandey, and Akshayaram Srinivasan. Revisiting the crypto-
graphic hardness of finding a nash equilibrium. In Matthew Robshaw and Jonathan
Katz, editors, CRYPTO 2016, Part II, volume 9815 of LNCS, pages 579–604. Springer,
Heidelberg, August 2016.

[GPSZ17] Sanjam Garg, Omkant Pandey, Akshayaram Srinivasan, and Mark Zhandry. Breaking
the sub-exponential barrier in obfustopia. In Jean-Sébastien Coron and Jesper Buus
Nielsen, editors, EUROCRYPT 2017, Part III, volume 10212 of LNCS, pages 156–181.
Springer, Heidelberg, April / May 2017.

[GS16] Sanjam Garg and Akshayaram Srinivasan. Single-key to multi-key functional encryp-
tion with polynomial loss. In Martin Hirt and Adam D. Smith, editors, TCC 2016-B,
Part II, volume 9986 of LNCS, pages 419–442. Springer, Heidelberg, October / Novem-
ber 2016.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption
with bounded collusions via multi-party computation. In Reihaneh Safavi-Naini and
Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 162–179. Springer,
Heidelberg, August 2012.

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption
for circuits from LWE. In Rosario Gennaro and Matthew J. B. Robshaw, editors,
CRYPTO 2015, Part II, volume 9216 of LNCS, pages 503–523. Springer, Heidelberg,
August 2015.

[HJO+16] Brett Hemenway, Zahra Jafargholi, Rafail Ostrovsky, Alessandra Scafuro, and Daniel
Wichs. Adaptively secure garbled circuits from one-way functions. In Matthew Rob-
shaw and Jonathan Katz, editors, CRYPTO 2016, Part III, volume 9816 of LNCS,
pages 149–178. Springer, Heidelberg, August 2016.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious
transfer - efficiently. In David Wagner, editor, CRYPTO 2008, volume 5157 of LNCS,
pages 572–591. Springer, Heidelberg, August 2008.

[JLMS19] Aayush Jain, Huijia Lin, Christian Matt, and Amit Sahai. How to leverage hardness
of constant-degree expanding polynomials overa R to build iO. In Yuval Ishai and

62

Vincent Rijmen, editors, EUROCRYPT 2019, Part I, volume 11476 of LNCS, pages
251–281. Springer, Heidelberg, May 2019.

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-
founded assumptions. In Samir Khuller and Virginia Vassilevska Williams, editors,
STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual
Event, Italy, June 21-25, 2021, page 60–73, ACM, 2021.

[JLS22] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from LPN
over Fp, DLIN, and PRGs in NC0. In Orr Dunkelman and Stefan Dziembowski,
editors, EUROCRYPT 2022, Part I, volume 13275 of LNCS, pages 670–699. Springer,
Heidelberg, May / June 2022.

[Lin16] Huijia Lin. Indistinguishability obfuscation from constant-degree graded encoding
schemes. In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part I, volume 9665 of LNCS, pages 28–57. Springer, Heidelberg, May 2016.

[Lin17] Huijia Lin. Indistinguishability obfuscation from SXDH on 5-linear maps and locality-5
PRGs. In Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume
10401 of LNCS, pages 599–629. Springer, Heidelberg, August 2017.

[LM16] Baiyu Li and Daniele Micciancio. Compactness vs collusion resistance in functional
encryption. In Martin Hirt and Adam D. Smith, editors, TCC 2016-B, Part II, volume
9986 of LNCS, pages 443–468. Springer, Heidelberg, October / November 2016.

[LT17] Huijia Lin and Stefano Tessaro. Indistinguishability obfuscation from trilinear
maps and block-wise local PRGs. In Jonathan Katz and Hovav Shacham, editors,
CRYPTO 2017, Part I, volume 10401 of LNCS, pages 630–660. Springer, Heidelberg,
August 2017.

[LV16] Huijia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation from DDH-like
assumptions on constant-degree graded encodings. In Irit Dinur, editor, 57th FOCS,
pages 11–20. IEEE Computer Society Press, October 2016.

[O’N10] Adam O’Neill. Definitional issues in functional encryption. IACR Cryptology ePrint
Archive, 2010:556, 2010.

[SW05] Amit Sahai and Brent R. Waters. Fuzzy identity-based encryption. In Ronald Cramer,
editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 457–473. Springer, Heidel-
berg, May 2005.

[SW14] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable
encryption, and more. In David B. Shmoys, editor, 46th ACM STOC, pages 475–484.
ACM Press, May / June 2014.

A [JLS22] Assumptions

In this section, we detail the assumptions used in [JLS22] to build their sublinear, single-key,
selective-IND-secure, public-key FE scheme for P/Poly.

63

Definition A.1 (δ-LPN Assumption [BFKL94, IPS08, AAB15, BCGI18]). Let δ ∈ (0, 1). We say
that the δ-LPN Assumption is true if the following holds: For any constant ηp > 0, any function
p : N → N such that for every ℓ ∈ N, p(ℓ) is a prime of ℓηp bits, any constant ηn > 0, we set
p = p(ℓ), n = n(ℓ) = ℓηn, and r = r(ℓ) = ℓ−δ, and we require that the following two distributions
are computationally indistinguishable:{

(A, b = s ·A+ e) | A← Zℓ×n
p , s← Z1×n

p , e← D1×n
r (p)

}
ℓ∈N{

(A,u) | A← Zℓ×n
p ,u← Z1×n

p

}
ℓ∈N

where e ← Dr(p) is a generalized Bernoulli distribution, i.e. e is sampled randomly from Zp with
probability r = ℓ−δ and set to be 0 with probability 1− r.

Definition A.2 (Pseudorandom Generator). A stretch-m(·) pseudorandom generator is a Boolean
function PRG : {0, 1}∗ → {0, 1}∗ mapping n-bit inputs to m(n)-bit outputs (also known as the
stretch) that is computable by a uniform PPT machine, and for any non-uniform PPT adversary
A, there exists a negligible function µ such that for all n ∈ N,∣∣∣∣ Pr

r←{0,1}n
[A(PRG(r)) = 1]− Pr

z←{0,1}m
[A(z) = 1]

∣∣∣∣ < µ(n)

Further, a PRG is said to be in NC0 if PRG is implementable by a uniformly efficiently generatable
NC0 circuit.

Definition A.3 (DLIN Assumption). The decision linear (DLIN) assumption over prime order
symmetric bilinear groups is stated as follows: Given an appropriate prime p, two groups G,GT
are chosen of order p such that there exists an efficiently computable nontrivial bilinear map e :
G × G → GT . Canonical generators g for G and gT for GT are also computed. Then, the DLIN
assumption requires that the following computational indistinguishability holds:

{(gx, gy, gz, gxa, gyb, gz(a+b)) | x, y, z, a, b← Zp} ≈c {(gx, gy, gz, gxa, gyb, gzc) | x, y, z, a, b, c← Zp}

B Preliminaries Continued

B.1 Standard Notions

Definition B.1 (PRF). A pseudorandom function family (PRF) with key space K = {Kλ,n,m}λ,n,m∈N
is a tuple of PPT algorithms PRF = (PRF.Setup,PRF.Eval) where

• PRF.Setup(1λ, 1n, 1m): takes as input the security parameter λ, an input length n, and an
output length m, and outputs a key k ∈ Kλ,n,m

• PRF.Eval(k, x) takes as input a key k ∈ Kλ,n,m and an input x ∈ {0, 1}n, and outputs a value
y ∈ {0, 1}m.

Security requires that there exists a negligible function µ such that for all λ ∈ N and every PPT
adversary A, ∣∣∣Pr[ExptPRFA (1λ, 0) = 1]− Pr[ExptPRFA (1λ, 1) = 1]

∣∣∣ ≤ µ(λ)
where for each b ∈ {0, 1} and λ ∈ N, we define

64

ExptPRFA (1λ, b)

1. Parameters: A takes as input 1λ and outputs an input size 1n and an output size 1m

2. Setup:

(a) If b = 0, sample PRF.k ← PRF.Setup(1λ, 1n, 1m).

(b) If b = 1, sample R ← Rn,m where Rn,m is the set of all functions from {0, 1}n to
{0, 1}m.

3. PRF Queries: The following can be repeated a polynomial number of times:

(a) A outputs an input x ∈ {0, 1}n

(b) If b = 0, send y = PRF.Eval(PRF.k, x) to A
(c) If b = 1, send y = R(x) to A

4. Experiment Outcome: A outputs a bit b′ which is the output of the experiment.

Definition B.2 (Symmetric Key Encryption). A symmetric key encryption scheme with key space
K = {Kλ,n}λ,n∈N and ciphertext sizem(·) is a tuple of PPT algorithms Sym = (Sym.Setup, Sym.Enc,Sym.Dec)
where

• Sym.Setup(1λ, 1n): takes as input the security parameter λ and an input length n and outputs
a secret key k ∈ Kλ,n

• Sym.Enc(k, x): takes as input a secret key k ∈ Kλ,n and a message x ∈ {0, 1}n and outputs
an encryption ct ∈ {0, 1}m(λ,n) of x.

• Sym.Dec(k, ct): takes as input a secret key k ∈ Kλ,n and a ciphertext ct ∈ {0, 1}m(λ,n) and
outputs a value y ∈ {0, 1}n.

Correctness requires that for all polynomials p, there exists a negligible function η such that for all
λ ∈ N, all n ≤ p(λ), and every x ∈ {0, 1}n,

Pr
[
Sym.Dec(k, Sym.Enc(k, x)) = x : k ← Sym.Setup(1λ, 1n)

]
≥ 1− η(λ)

Security requires that there exists a negligible function µ such that for all λ ∈ N and every PPT
adversary A, ∣∣∣Pr[ExptSymA (1λ, 0) = 1]− Pr[ExptSymA (1λ, 1) = 1]

∣∣∣ ≤ µ(λ)
where for each b ∈ {0, 1} and λ ∈ N, we define

ExptSymA (1λ, b)

1. Parameters: A takes as input 1λ and outputs an input size 1n.

2. Setup: k ← Sym.Setup(1λ, 1n)

3. Challenge Message Queries: The following can be repeated any polynomial number
of times:

(a) A outputs a challenge message pair (x0, x1) where x0, x1 ∈ {0, 1}n.

65

(b) ctb ← Sym.Enc(k, xb)

(c) Sent ctb to A.

4. Experiment Outcome: A outputs a bit b′ which is the output of the experiment.

We will sometimes require that our symmetric key encryption scheme has pseudorandom ci-
phertexts. Intuitively, this means that ciphertexts should be indistinguishable from random strings
of the same size.

Definition B.3 (Symmetric Key Encryption with Pseudorandom Ciphertexts). A symmetric key
encryption scheme with key space K = {Kλ,n}λ,n∈N and ciphertext size m(·) has pseudorandom
ciphertexts if there exists a negligible function µ such that for all λ ∈ N and every PPT adversary
A, ∣∣∣Pr[ExptSym-Pseudorandom-CT

A (1λ, 0) = 1]− Pr[ExptSym-Pseudorandom-CT
A (1λ, 1) = 1]

∣∣∣ ≤ µ(λ)
where for each b ∈ {0, 1} and λ ∈ N, we define

ExptSym-Pseudorandom-CT
A (1λ, b)

1. Parameters: A takes as input 1λ and outputs an input size 1n.

2. Setup: k ← Sym.Setup(1λ, 1n)

3. Challenge Message Queries: The following can be repeated any polynomial number
of times:

(a) A outputs a challenge message x where x ∈ {0, 1}n.
(b) If b = 0, ct← Sym.Enc(k, x).

(c) If b = 1, ct← {0, 1}m(λ,n)

(d) Send ct to A.

4. Experiment Outcome: A outputs a bit b′ which is the output of the experiment.

B.2 Secret-Key Functional Encryption

In this section, we formally define secret-key functional encryption.

Definition B.4 (Secret-Key Functional Encryption). A secret-key functional encryption scheme
for P/Poly is a tuple of PPT algorithms FE = (Setup,KeyGen,Enc,Dec) defined as follows:12

• Setup(1λ, 1ℓF , 1ℓX , 1ℓY): takes as input the security parameter λ, a function size ℓF , an input
size ℓX , and an output size ℓY , and outputs the master secret key msk.

• Enc(msk, x): takes as input the master secret key msk and a message x ∈ {0, 1}ℓX , and outputs
an encryption ct of x.

• KeyGen(msk, f): takes as input the master secret key msk and a function f ∈ F [ℓF , ℓX , ℓY],
and outputs a function key skf .

12We also allow Enc,KeyGen, and Dec to additionally receive parameters 1λ, 1ℓF , 1ℓX , 1ℓY as input, but omit them
from our notation for convenience.

66

• Dec(skf , ct): takes as input a function key skf and a ciphertext ct, and outputs a value
y ∈ {0, 1}ℓY .

FE satisfies correctness if for all polynomials p, there exists a negligible function µ such that for
all λ ∈ N, all ℓF , ℓX , ℓY ≤ p(λ), all x ∈ {0, 1}ℓX , and all f ∈ F [ℓF , ℓX , ℓY],

Pr

Dec(skf , ctx) = f(x) :
msk← Setup(1λ, 1ℓF , 1ℓX , 1ℓY)

ctx ← Enc(msk, x)
skf ← KeyGen(msk, f)

 ≥ 1− µ(λ).

Selective-IND-security requires the challenge messages to be sent before the function queries.

Definition B.5 (Selective-IND Security). A secret-key functional encryption scheme FE for P/Poly
is selective-IND-secure if there exists a negligible function µ such that for all λ ∈ N and every PPT
adversary A, ∣∣∣Pr[SKExptSel-INDA (1λ, 0) = 1]− Pr[SKExptSel-INDA (1λ, 1) = 1]

∣∣∣ ≤ µ(λ)
where for each b ∈ {0, 1} and λ ∈ N, we define

SKExptSel-INDA (1λ, b)

1. Parameters: A takes as input 1λ, and outputs a function size 1ℓF , an input size 1ℓX ,
and an output size 1ℓY .

2. Challenge Messages: A outputs challenge message pairs {(x0,i, x1,i)}i∈[T] for some T

chosen by the adversary where x0,i, x1,i ∈ {0, 1}ℓX for all i ∈ [T].

3. Setup and Challenge Ciphertexts:

(a) msk← FE.Setup(1λ, 1ℓF , 1ℓX , 1ℓY)

(b) For i ∈ [T], compute cti ← FE.Enc(msk, xb,i) and send cti to A.

4. Function Queries: The following can be repeated any polynomial number of times:

(a) A outputs a function query f ∈ F [ℓF , ℓX , ℓY]
(b) skf ← FE.KeyGen(msk, f)

(c) Send skf to A

5. Experiment Outcome: A outputs a bit b′. The output of the experiment is set to 1 if
b = b′ and f(x0,i) = f(x1,i) for all functions f queried by the adversary and all i ∈ [T].

Function-selective-IND-security requires the function queries to be sent before the challenge
message queries.

Definition B.6 (Function-Selective-IND-Security). A secret-key functional encryption scheme FE
for P/Poly is function-selective-IND-secure if there exists a negligible function µ such that for all
λ ∈ N and every PPT adversary A,∣∣∣Pr[SKExptFunc-Sel-INDA (1λ, 0) = 1]− Pr[SKExptFunc-Sel-INDA (1λ, 1) = 1]

∣∣∣ ≤ µ(λ)
where for each b ∈ {0, 1} and λ ∈ N, we define

67

SKExptFunc-Sel-INDA (1λ, b)

1. Parameters: A takes as input 1λ, and outputs a function size 1ℓF , an input size 1ℓX ,
and an output size 1ℓY .

2. Setup: msk← FE.Setup(1λ, 1ℓF , 1ℓX , 1ℓY)

3. Function Queries: The following can be repeated any polynomial number of times:

(a) A outputs a function query f ∈ F [ℓF , ℓX , ℓY]
(b) skf ← FE.KeyGen(msk, f)

(c) Send skf to A

4. Challenge Messages: A outputs challenge message pairs {(x0,i, x1,i)}i∈[T] for some T

chosen by the adversary where x0,i, x1,i ∈ {0, 1}ℓX for all i ∈ [T].

5. Challenge Ciphertexts: For i ∈ [T], compute cti ← FE.Enc(msk, xb,i) and send cti to
A.

6. Experiment Outcome: A outputs a bit b′. The output of the experiment is set to 1 if
b = b′ and f(x0,i) = f(x1,i) for all functions f queried by the adversary and all i ∈ [T].

C Additional Streaming FE Definitions

C.1 Secret-Key Streaming FE

In this section, we define additional notions of streaming FE. First, we define secret-key streaming
FE.

Definition C.1 (Secret-Key Streaming FE). A secret-key streaming functional encryption scheme
for P/Poly is a tuple of PPT algorithms sFE = (Setup,EncSetup,Enc,KeyGen,Dec) defined as fol-
lows:13

1. Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY): takes as input the security parameter λ, a function size ℓF , a
state size ℓS , an input size ℓX , and an output size ℓY , and outputs the master secret key msk.

2. EncSetup(msk): takes as input the master secret key msk and outputs an encryption state
Enc.st

3. Enc(msk,Enc.st, i, xi): takes as input the master secret key msk, an encryption state Enc.st,
an index i, and a message xi ∈ {0, 1}ℓX and outputs an encryption cti of xi.

4. KeyGen(msk, f): takes as input the master secret key msk and a function f ∈ F [ℓF , ℓS , ℓX , ℓY]
and outputs a function key skf .

5. Dec(skf ,Dec.sti, i, cti): where for each function key skf , Dec(skf , ·, ·, ·) is a streaming function
that takes as input a state Dec.sti, an index i, and an encryption cti and outputs a new state
Dec.sti+1 and an output yi ∈ {0, 1}ℓY .

13We also allow Enc,EncSetup,KeyGen, and Dec to additionally receive parameters 1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY as input,
but omit them from our notation for convenience.

68

sFE satisfies correctness if for all polynomials p, there exists a negligible function µ such that for
all λ ∈ N, all ℓF , ℓS , ℓX , ℓY ≤ p(λ), all n ∈ [2λ], all x = x1 . . . xn where each xi ∈ {0, 1}ℓX , and all
f ∈ F [ℓF , ℓS , ℓX , ℓY],

Pr

Dec(skf , ctx) = f(x) :

msk← Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY),

ctx ← Enc(msk, x),
skf ← KeyGen(msk, f)

 ≥ 1− µ(λ)

where we define14

• the output of Enc(msk, x) to be ctx = (cti)i∈[n] produced by sampling Enc.st← EncSetup(msk)
and then computing cti ← Enc(msk,Enc.st, i, xi) for i ∈ [n].

• the output of Dec(skf , ctx) to be y = (yi)i∈[n] where (yi,Dec.sti+1) = Dec(skf ,Dec.sti, i, cti)

We require the same notion of streaming efficiency as with public-key streaming FE.

C.2 Relaxed Definition of Streaming FE

As mentioned in Remark 4.5, we can also consider a relaxed variant of streaming FE in which the
encryption function is also a streaming function that takes as input the master public key, a state
Enc.sti, an index i, and an input xi, and outputs a new state Enc.sti+1, and an encryption cti of xi.

Definition C.2 (Public-Key Streaming FE, Relaxed Definition). A public-key streaming func-
tional encryption scheme (relaxed definition) for P/Poly is a tuple of PPT algorithms sFE =
(Setup,Enc,KeyGen,Dec) defined as follows:15

• Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY): takes as input the security parameter λ, a function size ℓF , a
state size ℓS , an input size ℓX , and an output size ℓY , and outputs the master public key mpk
and a master secret key msk.

• Enc(mpk,Enc.sti, i, xi): where for each master public key mpk, Enc(mpk, ·, ·, ·) is a (ran-
domized) streaming function that takes as input a state Enc.sti, an index i, and a message
xi ∈ {0, 1}ℓX and outputs a new state Enc.sti+1 and an encryption cti of xi.

• KeyGen(msk, f): takes as input the master secret key msk and a function f ∈ F [ℓF , ℓS , ℓX , ℓY]
and outputs a function key skf .

• Dec(skf ,Dec.sti, i, cti): where for each function key skf , Dec(skf , ·, ·, ·) is a (deterministic)
streaming function that takes as input a state Dec.sti, an index i, and an encryption cti and
outputs a new state Dec.sti+1 and an output yi ∈ {0, 1}ℓY .

sFE satisfies correctness if for all polynomials p, there exists a negligible function µ such that for
all λ ∈ N, all ℓF , ℓS , ℓX , ℓY ≤ p(λ), all n ∈ [2λ], all x = x1 . . . xn where each xi ∈ {0, 1}ℓX , and all
f ∈ F [ℓF , ℓS , ℓX , ℓY],

Pr

Dec(skf , ctx) = f(x) :

(mpk,msk)← Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY),

ctx ← Enc(mpk, x),
skf ← KeyGen(msk, f)

 ≥ 1− µ(λ)

where we define16

14As with all streaming functions, we assume that Dec.st1 = ⊥ by default.
15We also allow Enc,KeyGen, and Dec to additionally receive parameters 1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY as input, but omit

them from our notation for convenience.
16As with all streaming functions, we assume that Enc.st1 = Dec.st1 = ⊥ by default.

69

• the output of Enc(mpk, x) to be ctx = (cti)i∈[n] where (cti,Enc.sti+1)← Enc(mpk,Enc.sti, i, xi)

• the output of Dec(skf , ctx) to be y = (yi)i∈[n] where (yi,Dec.sti+1) = Dec(skf ,Dec.sti, i, cti)

We require the same notion of streaming efficiency as in the original definition of public-key
streaming FE. The definitions of security are the same as before except that we define Enc(mpk, x)
according to Definition C.2. We can also similarly define this in the secret-key setting, where
Setup only outputs a master secret key and Enc only requires the master secret key instead of the
(non-existent) master public key.

Remark C.3. Observe that a public-key streaming FE is a special case of the relaxed definition of
a public-key streaming FE. If sFE = (Setup,EncSetup,Enc,KeyGen,Dec) is a public-key streaming
FE scheme, then we can create a public-key streaming FE scheme sFE′ = (Setup,Enc′,KeyGen,Dec)
according to our relaxed definition where we define

Enc′(mpk,Enc′.sti, i, xi):

1. If i = 1,

(a) Enc.st← EncSetup(mpk)

(b) ct1 ← Enc(mpk,Enc.st, 1, x1)

(c) Output (ct1,Enc
′.st2 = Enc.st)

2. Else

(a) Parse Enc′.sti = Enc.st

(b) cti ← Enc(mpk,Enc.st, i, xi)

(c) Output (cti,Enc
′.sti+1 = Enc.st)

D Security Proof from Section 6

In this section, we prove that sFE from Section 6 is semi-adaptive-function-selective-IND-secure (see
Definition 4.6). In this proof, we will use an alternate, but equivalent definition of semi-adaptive-
function-selective-IND-security.

Definition D.1 (Semi-Adaptive-Function-Selective-IND-Security, Equivalent Definition). A public-
key streaming FE scheme sFE for P/Poly is semi-adaptive-function-selective-IND-secure if there
exists a negligible function µ such that for all λ ∈ N and all PPT adversaries A,∣∣∣Pr[ExptGuessSemi-Ad-Func-Sel-IND

A (1λ) = 1]
∣∣∣ ≤ 1

2
+ µ(λ)

where for each λ ∈ N, we define

ExptGuessSemi-Ad-Func-Sel-IND
A (1λ)

1. Parameters: A takes as input 1λ, and outputs a function size 1ℓF , a state size 1ℓS , an
input size 1ℓX , and an output size 1ℓY .

2. Public Key: Compute (mpk,msk) ← sFE.Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY) and send mpk to
A.

70

3. Function Queries: The following can be repeated any polynomial number of times:

(a) A outputs a function query f ∈ F [ℓF , ℓS , ℓX , ℓY]
(b) skf ← sFE.KeyGen(msk, f)

(c) Send skf to A

4. Challenge Message: A outputs a challenge message pair (x(0), x(1)) where x(0) =

x
(0)
1 . . . x

(0)
n and x(1) = x

(1)
1 . . . x

(1)
n for some length n ∈ N chosen by the adversary and

where each x
(0)
i , x

(1)
i ∈ {0, 1}ℓX .

5. Challenge Bit: Sample b← {0, 1}.

6. Challenge Ciphertext: Compute ct← sFE.Enc(mpk, x(b)) and send ct to A.

7. Experiment Outcome: A outputs a bit b′. The output of the experiment is set to 1 if
b = b′ and f(x(0)) = f(x(1)) for all functions f queried by the adversary.

This is equivalent to the regular definition as for any adversary A,∣∣∣Pr[ExptGuessSemi-Ad-Func-Sel-IND
A (1λ) = 1]

∣∣∣ ≤ 1

2
+ negl(λ)

if and only if∣∣∣Pr[ExptSemi-Ad-Func-Sel-IND
A (1λ, 0) = 1]− Pr[ExptSemi-Ad-Func-Sel-IND

A (1λ, 1) = 1]
∣∣∣ ≤ negl(λ)

Notation. Recall that for notational convenience, we may omit the security, input size, output
size, message size, function size, or state size parameters from our algorithms. For information on
these parameters, please see the parameter section in Section 6.

D.0.1 Proof Overview

To build intuition, we provide a brief overview of each hybrid below.

• HybridA1 : This is the real world experiment. The adversary first receives the security
parameter and chooses the function size, state size, input size, and output size. Then, the
adversary receives the master public key MPK. After that, the adversary can adaptively
receive function keys skfj for streaming functions fj of its choice. Next, the adversary submits

a challenge message pair (x(0), x(1)) and receives a ciphertext of x(b) for a random bit b ∈ {0, 1}.
The adversary guesses b and wins if it guesses b correctly and if fj(x

(0)) = fj(x
(1)) for all fj

queried.

• HybridA2 : We hardcode in values for the α = 1 branch of Gfj ,sj ,cj for each function key.
For each function query fj , we hardcode into cj the values (One-sFE.skfj ,FPFE.ctj) that are

output by Gfj ,sj ,cj on the α = 0 branch if we run it on the input (FPFE.msk,PRF.K, 0, 0ℓSym.kλ)
generated by the challenge message. Note that this input is independent of the choice of
challenge messages (x(0), x(1)). (By hardcode, we mean that we generate
ci ← Sym.Enc(Sym.k, (One-sFE.skfj ,FPFE.ctj))). The objective is to use the security of FE
in the next hybrid to switch to the α = 1 branch of each Gfj ,cj ,sj , which does not require
knowledge of PRF.K or FPFE.msk in the input. As PRF.K is used to generate all of the
One-sFEmaster secret keys, being able to remove this value will allow us to hide these One-sFE

71

master secret keys in later hybrids. The indistinguishability of HybridA1 and HybridA2 holds
by the pseudorandom ciphertext property of Sym.

• HybridA3 : In the challenge ciphertext, instead of encrypting

FE.ct← FE.Enc(FE.mpk, (FPFE.msk,PRF.K, 0, 0ℓSym.kλ))

we encrypt
FE.ct← FE.Enc(FE.mpk, (0ℓFPFE.mskλ , 0ℓPRF.Kλ , 1, Sym.k))

Observe that the only functions keys generated using the corresponding FE.msk are for func-
tions Gfj ,sj ,cj . However, because we have hardcoded the correct output values into each cj in
our previous hybrid, then for all j,

Gfj ,sj ,cj (FPFE.msk,PRF.K, 0, 0ℓSym.kλ) = Gfj ,sj ,cj (0
ℓFPFE.mskλ , 0ℓPRF.Kλ , 1,Sym.k)

Thus, the indistinguishability of HybridA2 and HybridA3 holds by the selective-IND-security
of FE. Selective security is sufficient as the messages (FPFE.msk,PRF.K, 0, 0ℓSym.kλ) and
(0ℓFPFE.mskλ , 0ℓPRF.Kλ , 1, Sym.k) can be computed at the beginning of the experiment, even before
learning FE.mpk.

• HybridA4 : For each j, to determine the values we need to hardcode into cj , we use ran-
domness rSetup,j , rKeyGen,j , rEncSetup,j , rPRF2,j , rEnc,j to generate One-sFE.mskj ,One-sFE.Enc.stj ,
One-sFE.skfj ,PRF2.kj , and FPFE.ctj . Instead of generating these random values using PRF.K,
we now generate these values using true randomness. Because of the change made in our
previous hybrid, the key PRF.K is not used anywhere else in our experiment, so the indistin-
guishability of HybridA3 and HybridA4 holds by the security of PRF.

• HybridA5 : In the ciphertext, we replace the FPFE function keys for H
i,x

(b)
i ,ti

with function

keys for new functions H∗
i,x

(b)
i ,x

(0)
i ,ti,vi

(defined in Figure 11) that have additional branches of

computation.

– When β = 0, H∗
i,x

(b)
i ,x

(0)
i ,vi

will act the same as H
i,x

(b)
i ,ti

and will generate a One-sFE

ciphertext for x
(b)
i .

– When β = 1, H∗
i,x

(b)
i ,x

(0)
i ,ti,vi

will instead generate a One-sFE ciphertext for x
(0)
i .

– When β = 2, H∗
i,x

(b)
i ,x

(0)
i ,ti,vi

will simply output vi (which is set to 0 in this hybrid).

As H
i,x

(b)
i ,ti

and H∗
i,x

(b)
i ,x

(0)
i ,ti,vi

act the same when β = 0, and we only encrypt FPFE messages

where β = 0, then the indistinguishability of HybridA4 and HybridA5 holds by the function
privacy of FPFE.

• We will now go through a series of hybrids for k = 1 to q where q = q(λ) is the runtime of
A and an implicit bound on the number of function queries made by A. At a high level, the
goal is to one by one switch to the β = 1 branch in every FPFE ciphertext. This will allow
us to use the function privacy of FPFE to remove the dependence on b present in the β = 0
branch of each H∗

i,x
(b)
i ,x

(0)
i ,ti,vi

.

72

– HybridA6,k,1: We prepare to switch to the β = 2 branch in the kth FPFE ciphertext. For
each i, we replace the value vi in the FPFE function key ofH∗

i,x
(b)
i ,x

(0)
i ,ti,vi

(or for k > 1, the

value vi,k−1 in H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k−1

) with a new value vi,k which corresponds to the output

of H∗
i,x

(b)
i ,x

(0)
i ,ti,vi

on the message (One-sFE.mskk,One-sFE.Enc.stk,PRF2.kk, 0) encrypted

in the kth FPFE ciphertext. This value vi,k is an encryption of x
(b)
i under One-sFE.mskk

using randomness generated by PRF2.kk. Since the value of vi (or vi,k−1) only affects
the β = 2 branch of H∗

i,x
(b)
i ,x

(0)
i ,ti,vi

(or H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k−1

), and we only encrypt FPFE

ciphertexts where β = 0 or β = 1, then we can perform this change due to the function
privacy of FPFE.

– HybridA6,k,2: We now switch to the β = 2 branch of the kth FPFE ciphertext. When we
hardcode values into ck in our function key, instead of encrypting

FPFE.ctk ← FPFE.Enc(FPFE.msk, (One-sFE.mskk,One-sFE.Enc.stk,PRF2.kk, 0))

we encrypt

FPFE.ctk ← FPFE.Enc(FPFE.msk, (0ℓOne-sFE.mskλ , 0ℓOne-sFE.Enc.stλ , 0ℓPRF2.kλ , 2))

Observe that the only FPFE function keys generated using FPFE.msk are for functions
H∗

i,x
(b)
i ,x

(0)
i ,ti,vi,k

. However, because we hardcoded the correct output values into each vi,k,

then

H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

(One-sFE.mskk,One-sFE.Enc.stk,PRF2.kk, 0)

= H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

(0ℓOne-sFE.mskλ0ℓOne-sFE.Enc.stλ , 0ℓPRF2.kλ , 2)

Thus, the indistinguishability of HybridA6,k,1 and HybridA6,k,2 holds by the message
privacy of FPFE.

– HybridA6,k,3: We would now like to change vi,k from a One-sFE encryption of x
(b)
i to

a One-sFE encryption of x
(0)
i . However, in order to perform that step, we first need

to use true randomness for the encryption. Thus, in this hybrid, instead of generating

ri,k (which is the randomness used to generate vi,k: the ith ciphertext of x
(b)
i under

One-sFE.mskk and One-sFE.Enc.stk) using PRF2.kk, we generate ri,k using true random-
ness. Observe that PRF2.kk was removed from our experiment in the previous hybrid
when we switched to the β = 2 branch in FPFE.ctk. Thus, the indistinguishability of
HybridA6,k,2 and HybridA6,k,3 holds by the security of PRF2.

– HybridA6,k,4: We now invoke the security of One-sFE to change the value of vi,k. For
each i, instead of computing

vi,k ← One-sFE.Enc(One-sFE.mskk,One-sFE.Enc.stk, i, x
(b)
i)

we compute

vi,k ← One-sFE.Enc(One-sFE.mskk,One-sFE.Enc.stk, i, x
(0)
i)

Observe that this is equivalent to switching from an encryption of x(b) under One-sFE.mskk
to an encryption of x(0) under One-sFE.mskk. (If for d ∈ {0, 1}, CT(d) = {CT(d)

i }i∈[n]

73

is an encryption of x(d) under One-sFE.mskk, then vi,k = CT
(b)
i in the former case and

vi,k = CT
(0)
i in the latter.) To allow this change under the single-key, single-ciphertext,

function-selective-IND-security of One-sFE, we need to ensure the following:

1. We only use One-sFE.mskk and One-sFE.Enc.stk for one ciphertext and one function
key. For our challenge message, every function query generates a different One-sFE
master secret key. Thus, we only use these values for one ciphertext (namely the
challenge ciphertext) and one key (corresponding to the kth function query fk).

2. The One-sFE challenge function fk has the same output value on the challenge
messages x(b) and x(0). This holds since the sFE security game requires fj(x

(0)) =
fj(x

(1)) for all functions fj queried, so indeed fk(x
(b)) = fk(x

(0)).

3. We ask for the challenge function key before the challenge ciphertext. This can be
easily observed in the hybrid.

4. We do not leak additional information about One-sFE.mskk, One-sFE.Enc.stk, or
the randomness used to generate the ciphertext or function key. Except for their
appearances in the kth One-sFE ciphertext and function key, the only place that
One-sFE.mskk and One-sFE.Enc.stk appeared was in FPFE.ctk. However, we removed
these values from FPFE.ctk in a previous hybrid when we switched to the β = 2
branch. Observe also that the randomness used is independent and uniform as we
have already removed PRF.K and PRF2.kk from the experiment.

Thus, the indistinguishability of HybridA6,k,3 and HybridA6,k,4 holds by the security of
One-sFE.

– HybridA6,k,5: We undo the change made in HybridA6,k,3. Instead of computing vi,k using

true randomness, we compute vi,k using randomness ri,k generated by the kth PRF2 key
PRF2.kk. The indistinguishability of HybridA6,k,4 and HybridA6,k,5 holds by the security
of PRF2.

– HybridA6,k,6: We now switch to the β = 1 branch in the kth ciphertext. When we
hardcode values into ck in our function key, instead of encrypting

FPFE.ctk ← FPFE.Enc(FPFE.msk, (0ℓOne-sFE.mskλ , 0ℓOne-sFE.Enc.stλ , 0ℓPRF2.kλ , 2))

we encrypt

FPFE.ctk ← FPFE.Enc(FPFE.msk, (One-sFE.mskk,One-sFE.Enc.stk,PRF2.kk, 1))

Observe that the only FPFE function keys we generated using FPFE.msk are for functions
H∗

i,x
(b)
i ,x

(0)
i ,ti,vi,k

. However, we observe that the value of vi,k is now in fact equal to

H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

(One-sFE.mskk,One-sFE.Enc.stk,PRF2.kk, 1) as it is an encryption of x
(0)
i

under One-sFE.mskk using randomness generated by PRF2.kk. Therefore,

H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

(One-sFE.mskk,One-sFE.Enc.stk,PRF2.kk, 1)

= H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

(0ℓOne-sFE.mskλ , 0ℓOne-sFE.Enc.stλ0ℓPRF2.kλ , 2)

and the indistinguishability ofHybridA6,k,5 andHybridA6,k,6 holds by the message privacy
of FPFE.

74

• HybridA7 : In the ciphertext, we replace the FPFE function keys for H∗
i,x

(b)
i ,x

(0)
i ,tivi,q

(where q

is the runtime of A) with FPFE function keys for functions H∗
i,x

(0)
i ,x

(0)
i ,ti,vi

where vi is set to

0. Observe that q is an implicit bound on the number of function queries made by A and
thus on the number of FPFE ciphertexts that we generate. Therefore, by the time we reach
HybridA6,q,6, we will have switched all FPFE ciphertexts to the β = 1 branch. But since
H∗

i,x
(b)
i ,x

(0)
i ,ti,vi,q

and H∗
i,x

(0)
i ,x

(0)
i ,ti,vi

act the same when β = 1, then the indistinguishability of

HybridA6,q,6 and Hybrid7 holds by the function privacy of FPFE.

Our final hybrid HybridA7 is independent of the bit b. Thus, any adversary’s advantage in guessing
b inHybridA7 is zero. But our proof shows that for any PPT adversaryA, A’s advantage in guessing
b in HybridA1 is negligibly close to A’s advantage in guessing b in HybridA7 . Thus, for any PPT
adversary A, the advantage in guessing b in the real world must be negligible, so security holds.

D.0.2 Formal Proof

We now formally prove security via a hybrid argument.

75

HybridA1 (1
λ): This is the real world experiment. Though we have reordered some steps for the

sake of the proof, this does not affect the outcome of the experiment.

1. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

2. Setup:

(a) (FE.mpk,FE.msk)← FE.Setup(1λ)

(b) PRF.K ← PRF.Setup(1λ)

(c) FPFE.msk← FPFE.Setup(1λ)

(d) FE.ct← FE.Enc(FE.mpk, (FPFE.msk,PRF.K, 0, 0ℓSym.kλ))

3. Public Key: Send MPK = FE.mpk to the adversary.

4. Function Queries: For the jth function query fj ∈ F [ℓF , ℓS , ℓX , ℓY] made by the adversary:

(a) sj ← {0, 1}λ

(b) cj ← {0, 1}ℓSym.ctλ

(c) Let Gj = Gfj ,sj ,cj as defined in Figure 9.

(d) FE.skGj ← FE.KeyGen(FE.msk, Gj)

(e) Send SKfj = FE.skGj to the adversary.

5. Challenge Message: A outputs a challenge message pair (x(0), x(1)) where x(0) = x
(0)
1 . . . x

(0)
n

and x(1) = x
(1)
1 . . . x

(1)
n for some length n ∈ N chosen by the adversary and where each

x
(0)
i , x

(1)
i ∈ {0, 1}ℓX .

6. Challenge Bit: b← {0, 1}

7. Challenge Ciphertext:

(a) For i ∈ [n],

i. ti ← {0, 1}λ

ii. Let Hi = H
i,x

(b)
i ,ti

as defined in Figure 8.

iii. FPFE.skHi = FPFE.KeyGen(FPFE.msk, Hi)

iv. If i = 1, let CT1 = (FE.ct,FPFE.skH1). Else, let CTi = FPFE.skHi

(b) Send CT = {CTi}i∈[n] to the adversary.

8. Experiment Outcome: The adversary outputs a bit b′. Output 1 if b = b′ and fj(x
(0)) =

fj(x
(1)) for all fj queried, and output 0 otherwise.

76

HybridA2 (1
λ): For each j, we hardcode into cj the values

(One-sFE.skfj ,FPFE.ctj) = Gfj ,sj ,cj (FPFE.msk,PRF.K, 0, 0ℓSym.kλ)

which would be generated in the real world experiment. This will allow us to later switch to the
α = 1 branch in Gfj ,sj ,cj using the security of FE. Observe that the values being hardcoded into cj
can be computed before knowing x(0) or x(1).

1. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

2. Setup:

(a) (FE.mpk,FE.msk)← FE.Setup(1λ)

(b) PRF.K ← PRF.Setup(1λ)

(c) FPFE.msk← FPFE.Setup(1λ)

(d) Sym.k ← Sym.Setup(1λ)

(e) FE.ct← FE.Enc(FE.mpk, (FPFE.msk,PRF.K, 0, 0ℓSym.kλ))

3. Public Key: Send MPK = FE.mpk to the adversary.

4. Function Queries: For the jth function query fj ∈ F [ℓF , ℓS , ℓX , ℓY] made by the adversary:

(a) sj ← {0, 1}λ

(b) Compute cj:

i. (rSetup,j , rKeyGen,j , rEncSetup,j , rPRF2,j , rEnc,j)← PRF.Eval(PRF.K, sj)

ii. One-sFE.mskj ← One-sFE.Setup(1λ; rSetup,j)

iii. One-sFE.Enc.stj ← One-sFE.EncSetup(One-sFE.mskj ; rEncSetupj)

iv. One-sFE.skfj ← One-sFE.KeyGen(One-sFE.mskj , fj ; rKeyGen,j)

v. PRF2.kj ← PRF2.Setup(1λ; rPRF2,j)

vi. FPFE.ctj ← FPFE.Enc(FPFE.msk, (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0); rEnc,j)

vii. cj ← Sym.Enc(Sym.k, (One-sFE.skfj ,FPFE.ctj))

(c) Let Gj = Gfj ,sj ,cj as defined in Figure 9.

(d) FE.skGj ← FE.KeyGen(FE.msk, Gj)

(e) Send SKfj = FE.skGj to the adversary.

5. Challenge Message: A outputs a challenge message pair (x(0), x(1)) where x(0) = x
(0)
1 . . . x

(0)
n

and x(1) = x
(1)
1 . . . x

(1)
n for some length n ∈ N chosen by the adversary and where each

x
(0)
i , x

(1)
i ∈ {0, 1}ℓX .

6. Challenge Bit: b← {0, 1}

7. Challenge Ciphertext:

(a) For i ∈ [n],

i. ti ← {0, 1}λ

ii. Let Hi = H
i,x

(b)
i ,ti

as defined in Figure 8.

77

iii. FPFE.skHi = FPFE.KeyGen(FPFE.msk, Hi)

iv. If i = 1, let CT1 = (FE.ct,FPFE.skH1). Else, let CTi = FPFE.skHi

(b) Send CT = {CTi}i∈[n] to the adversary.

8. Experiment Outcome: The adversary outputs a bit b′. Output 1 if b = b′ and fj(x
(0)) =

fj(x
(1)) for all fj queried, and output 0 otherwise.

Lemma D.2. If Sym has pseudorandom ciphertexts, then for all PPT adversaries A,∣∣∣Pr[HybridA1 (1
λ) = 1]− Pr[HybridA2 (1

λ) = 1]
∣∣∣ ≤ negl(λ)

Proof. Suppose for sake of contradiction that there exists a PPT adversary A such that∣∣∣Pr[HybridA1 (1
λ) = 1]− Pr[HybridA2 (1

λ) = 1]
∣∣∣ > negl(λ) (9)

We build a PPT adversary B that breaks the pseudorandom ciphertext property of Sym. B first runs
A on input 1λ and receives parameters 1ℓF , 1ℓS , 1ℓX , 1ℓY . B then sends message length 1ℓSym.mλ to
its Sym challenger where where ℓSym.mλ

is computed as described in the parameter section. B then
computes (FE.mpk,FE.msk,PRF.K,FPFE.msk,FE.ct) as in HybridA1 and sends MPK = FE.mpk to
A. For each function query fj that A sends to B, B does the following: B computes sj ← {0, 1}λ and
(One-sFE.skfj ,FPFE.ctj) as in HybridA2 . B sends (One-sFE.skfj ,FPFE.ctj) as its challenge message
to its Sym challenger and receives cj which is either a uniform random value or an encryption of
(One-sFE.skfj ,FPFE.ctj) under Sym. B then computes FE.skGj ← FE.KeyGen(FE.msk, Gfj ,sj ,cj) and
sends SKfj = FE.skGj to A. After A is done making function queries, A outputs challenge messages

(x(0), x(1)). B samples b← {0, 1}, computes CT as in HybridA1 , sends CT to A, and receives b′ from
A. B outputs 1 if b = b′ and fj(x

(0)) = fj(x
(1)) for all fj queried, and outputs 0 otherwise. Observe

that if every cj is an independent uniform random value, then B exactly emulates HybridA1 , and
if each cj is an encryption of B’s jth challenge message (One-sFE.skfj ,FPFE.ctj) under Sym, then

B emulates HybridA2 . Additionally, B does not need to know Sym.k to carry out this experiment.
Thus, by Equation 9, this means that B breaks the pseudorandom ciphertext property of Sym
as B can distinguish between receiving random values and valid ciphertexts with non-negligible
probability.

78

HybridA3 : We change the message encrypted in FE.ct so that we use the α = 1 branch of every
Gfj ,sj ,cj . This allows us to remove FPFE.msk and PRF.K from FE.ct.

1. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

2. Setup:

(a) (FE.mpk,FE.msk)← FE.Setup(1λ)

(b) PRF.K ← PRF.Setup(1λ)

(c) FPFE.msk← FPFE.Setup(1λ)

(d) Sym.k ← Sym.Setup(1λ)

(e) FE.ct← FE.Enc(FE.mpk, (0ℓFPFE.mskλ , 0ℓPRF.kλ , 1,Sym.k))

3. Public Key: Send MPK = FE.mpk to the adversary.

4. Function Queries: For the jth function query fj ∈ F [ℓF , ℓS , ℓX , ℓY] made by the adversary:

(a) sj ← {0, 1}λ

(b) Compute cj:

i. (rSetup,j , rKeyGen,j , rEncSetupj , rPRF2,j , rEnc,j)← PRF.Eval(PRF.K, sj)

ii. One-sFE.mskj ← One-sFE.Setup(1λ; rSetup,j)

iii. One-sFE.Enc.stj ← One-sFE.EncSetup(One-sFE.mskj ; rEncSetupj)

iv. One-sFE.skfj ← One-sFE.KeyGen(One-sFE.mskj , fj ; rKeyGen,j)

v. PRF2.kj ← PRF2.Setup(1λ; rPRF2,j)

vi. FPFE.ctj ← FPFE.Enc(FPFE.msk, (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0); rEnc,j)

vii. cj ← Sym.Enc(Sym.k, (One-sFE.skfj ,FPFE.ctj))

(c) Let Gj = Gfj ,sj ,cj as defined in Figure 9.

(d) FE.skGj ← FE.KeyGen(FE.msk, Gj)

(e) Send SKfj = FE.skGj to the adversary.

5. Challenge Message: A outputs a challenge message pair (x(0), x(1)) where x(0) = x
(0)
1 . . . x

(0)
n

and x(1) = x
(1)
1 . . . x

(1)
n for some length n ∈ N chosen by the adversary and where each

x
(0)
i , x

(1)
i ∈ {0, 1}ℓX .

6. Challenge Bit: b← {0, 1}

7. Challenge Ciphertext:

(a) For i ∈ [n],

i. ti ← {0, 1}λ

ii. Let Hi = H
i,x

(b)
i ,ti

as defined in Figure 8.

iii. FPFE.skHi = FPFE.KeyGen(FPFE.msk, Hi)

iv. If i = 1, let CT1 = (FE.ct,FPFE.skH1). Else, let CTi = FPFE.skHi

(b) Send CT = {CTi}i∈[n] to the adversary.

79

8. Experiment Outcome: The adversary outputs a bit b′. Output 1 if b = b′ and fj(x
(0)) =

fj(x
(1)) for all fj queried, and output 0 otherwise.

Lemma D.3. If FE is selectively IND-secure, then for all PPT adversaries,∣∣∣Pr[HybridA2 (1
λ) = 1]− Pr[HybridA3 (1

λ) = 1]
∣∣∣ ≤ negl(λ)

Proof. Suppose for sake of contradiction that there exists a PPT adversary A such that∣∣∣Pr[HybridA2 (1
λ) = 1]− Pr[HybridA3 (1

λ) = 1]
∣∣∣ > negl(λ) (10)

We build a PPT adversary B that breaks the selective-IND-security of FE. B first runs A on input
1λ and receives parameters 1ℓF , 1ℓS , 1ℓX , 1ℓY . B then sends function size 1ℓGλ , input size 1ℓFE.mλ ,
and output size 1ℓFE.outλ to its FE challenger where ℓGλ

, ℓFE.mλ
, ℓFE.outλ are computed as described in

the parameter section. B computes (PRF.K,FPFE.msk, Sym.k) as in HybridA2 . B sends challenge
message pair ((FPFE.msk,PRF.K, 0, 0ℓSym.kλ), (0ℓFPFE.mskλ , 0ℓPRF.Kλ , 1,Sym.k)) to its FE challenger and
receives (FE.mpk,FE.ct) where FE.ct is either an encryption of (FPFE.msk,PRF.K, 0, 0ℓSym.kλ) or an
encryption of (0ℓFPFE.mskλ , 0ℓPRF.Kλ , 1,Sym.k). B then sends MPK = FE.mpk to A. For each function
query fj that A sends to B, B does the following: B computes (sj , cj) as in HybridA2 . B then sends
function query Gj = Gfj ,sj ,cj to its FE challenger and receives a function key FE.skGj in return.
This is a valid function query since for all j,

Gfj ,sj ,cj (FPFE.msk,PRF.K, 0, 0ℓSym.kλ) = Gfj ,sj ,cj (0
ℓFPFE.mskλ , 0ℓPRF.Kλ , 1,Sym.k)

because cj encrypts (One-sFE.skfj ,FPFE.ctj) which are generated in the same way as in the α = 0
branch of Gfj ,sj ,cj . B then sends SKfj = FE.skGj to A. After A is done making function queries, A
outputs challenge messages (x(0), x(1)). B samples b← {0, 1}, computes CT as in HybridA2 , sends
CT to A, and receives b′ from A. B outputs 1 if b = b′ and fj(x

(0)) = fj(x
(1)) for all fj queried,

and outputs 0 otherwise. Observe that if FE.ct is an encryption of (FPFE.msk,PRF.K, 0, 0ℓSym.kλ),
then B exactly emulates HybridA2 , and if FE.ct is an encryption of (0ℓFPFE.mskλ , 0ℓPRF.Kλ , 1,Sym.k)
then B emulates HybridA3 . Additionally, B does not need to know FE.msk to carry out this
experiment. Thus, by Equation 10, this means that B breaks the selective-IND-security of FE as B
can distinguish between the two ciphertexts with non-negligible probability.

80

HybridA4 : We exchange the randomness generated by PRF.K with true randomness.

1. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

2. Setup:

(a) (FE.mpk,FE.msk)← FE.Setup(1λ)

(b) PRF.K ← PRF.Setup(1λ)

(c) FPFE.msk← FPFE.Setup(1λ)

(d) Sym.k ← Sym.Setup(1λ)

(e) FE.ct← FE.Enc(FE.mpk, (0ℓFPFE.mskλ , 0ℓPRF.kλ , 1,Sym.k))

3. Public Key: Send MPK = FE.mpk to the adversary.

4. Function Queries: For the jth function query fj ∈ F [ℓF , ℓS , ℓX , ℓY] made by the adversary:

(a) sj ← {0, 1}λ

(b) Compute cj:

i. (rSetup,j , rKeyGen,j , rEncSetupjrPRF2,j , rEnc,j)← PRF.Eval(PRF.K, sj)

ii. One-sFE.mskj ← One-sFE.Setup(1λ)

iii. One-sFE.Enc.stj ← One-sFE.EncSetup(One-sFE.mskj)

iv. One-sFE.skfj ← One-sFE.KeyGen(One-sFE.mskj , fj)

v. PRF2.kj ← PRF2.Setup(1λ)

vi. FPFE.ctj ← FPFE.Enc(FPFE.msk, (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0))

vii. cj ← Sym.Enc(Sym.k, (One-sFE.skfj ,FPFE.ctj))

(c) Let Gj = Gfj ,sj ,cj as defined in Figure 9.

(d) FE.skGj ← FE.KeyGen(FE.msk, Gj)

(e) Send SKfj = FE.skGj to the adversary.

5. Challenge Message: A outputs a challenge message pair (x(0), x(1)) where x(0) = x
(0)
1 . . . x

(0)
n

and x(1) = x
(1)
1 . . . x

(1)
n for some length n ∈ N chosen by the adversary and where each

x
(0)
i , x

(1)
i ∈ {0, 1}ℓX .

6. Challenge Bit: b← {0, 1}

7. Challenge Ciphertext:

(a) For i ∈ [n],

i. ti ← {0, 1}λ

ii. Let Hi = H
i,x

(b)
i ,ti

as defined in Figure 8.

iii. FPFE.skHi = FPFE.KeyGen(FPFE.msk, Hi)

iv. If i = 1, let CT1 = (FE.ct,FPFE.skH1). Else, let CTi = FPFE.skHi

(b) Send CT = {CTi}i∈[n] to the adversary.

8. Experiment Outcome: The adversary outputs a bit b′. Output 1 if b = b′ and fj(x
(0)) =

fj(x
(1)) for all fj queried, and output 0 otherwise.

81

Lemma D.4. If PRF is a secure PRF, then for all PPT adversaries A,∣∣∣Pr[HybridA3 (1
λ) = 1]− Pr[HybridA4 (1

λ) = 1]
∣∣∣ ≤ negl(λ)

Proof. Suppose for sake of contradiction that there exists a PPT adversary A such that∣∣∣Pr[HybridA3 (1
λ) = 1]− Pr[HybridA4 (1

λ) = 1]
∣∣∣ > negl(λ) (11)

We build a PPT adversary B that breaks the security of PRF. B first runs A on input 1λ and receives
parameters 1ℓF , 1ℓS , 1ℓX , 1ℓY . B then sends input size 1λ, and output size 15λ to its PRF challenger.
B is then given oracle access to either PRF.Eval(PRF.K, ·) for some PRF.K ← PRF.Setup(1λ, 1λ, 15λ)
or to a uniformly random function R ← Rλ,5λ where Rλ,5λ is the set of all functions from
{0, 1}λ to {0, 1}5λ. B computes (FE.mpk,FE.msk,FPFE.msk, Sym.k) as in HybridA3 and com-
putes FE.ct ← FE.Enc(FE.mpk, 0ℓFPFE.mskλ , 0ℓPRF.kλ , 1, Sym.k). (This does not require knowledge of
PRF.K). B then sends MPK = FE.mpk to A. For each function query fj that A sends to B, B does
the following: B samples sj ← {0, 1}λ and sets (rSetup,j , rKeyGen,j , rEncSetup,j , rPRF2,j , rEnc,j) equal
to the output of B’s oracle on sj . B then computes One-sFE.mskj ← One-sFE.Setup(1λ; rSetup,j),
One-sFE.Enc.stj ← One-sFE.EncSetup(One-sFE.mskj ; rEncSetup,j),
One-sFE.skfj ← One-sFE.KeyGen(One-sFE.mskj , fj ; rKeyGen,j), PRF2.kj ← PRF2.Setup(1λ; rPRF2,j),
and FPFE.ctj ← FPFE.Enc(FPFE.msk, (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0); rEnc,j) using these
values as randomness. B computes cj and SKfj from these values as in HybridA3 and sends SKfj to

A. After A is done making function queries, A outputs challenge messages (x(0), x(1)). B samples
b ← {0, 1}, computes CT as in HybridA3 , sends CT to A, and receives b′ from A. B outputs 1
if b = b′ and fj(x

(0)) = fj(x
(1)) for all fj queried, and outputs 0 otherwise. Observe that if B’s

oracle was a uniform random function R, then B exactly emulates HybridA4 , and if B’s oracle was
PRF.Eval(PRF.K, ·), then B emulates HybridA3 . Additionally, B does not need to know PRF.K to
carry out this experiment. Thus, by Equation 11, this means that B breaks the security of PRF as
B can distinguish between a random function and the PRF.

82

H∗i,xi,x′
i,ti,vi

(One-sFE.msk,One-sFE.Enc.st,PRF2.k, β):

• If β = 0

1. ri ← PRF2.Eval(PRF2.k, ti)

2. Output One-sFE.cti ← One-sFE.Enc(One-sFE.msk,One-sFE.Enc.st, i, xi; ri)

• If β = 1

1. ri ← PRF2.Eval(PRF2.k, ti)

2. Output One-sFE.cti ← One-sFE.Enc(One-sFE.msk,One-sFE.Enc.st, i, x′i; ri)

• Else, output vi

Figure 11

HybridA5 (1
λ): We replace each H

i,x
(b)
i ,ti

with a new function H∗
i,x

(b)
i ,x

(0)
i ,ti,vi

that has additional

branches of computation.

1. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

2. Setup:

(a) (FE.mpk,FE.msk)← FE.Setup(1λ)

(b) FPFE.msk← FPFE.Setup(1λ)

(c) Sym.k ← Sym.Setup(1λ)

(d) FE.ct← FE.Enc(FE.mpk, (0ℓFPFE.mskλ , 0ℓPRF.kλ , 1, Sym.k))

3. Public Key: Send MPK = FE.mpk to the adversary.

4. Function Queries: For the jth function query fj ∈ F [ℓF , ℓS , ℓX , ℓY] made by the adversary:

(a) sj ← {0, 1}λ

(b) Compute cj:

i. One-sFE.mskj ← One-sFE.Setup(1λ)

ii. One-sFE.Enc.stj ← One-sFE.EncSetup(One-sFE.mskj)

iii. One-sFE.skfj ← One-sFE.KeyGen(One-sFE.mskj , fj)

iv. PRF2.kj ← PRF2.Setup(1λ)

v. FPFE.ctj ← FPFE.Enc(FPFE.msk, (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0))

vi. cj ← Sym.Enc(Sym.k, (One-sFE.skfj ,FPFE.ctj))

(c) Let Gj = Gfj ,sj ,cj as defined in Figure 9.

(d) FE.skGj ← FE.KeyGen(FE.msk, Gj)

(e) Send SKfj = FE.skGj to the adversary.

5. Challenge Message: A outputs a challenge message pair (x(0), x(1)) where x(0) = x
(0)
1 . . . x

(0)
n

and x(1) = x
(1)
1 . . . x

(1)
n for some length n ∈ N chosen by the adversary and where each

x
(0)
i , x

(1)
i ∈ {0, 1}ℓX .

83

6. Challenge Bit: b← {0, 1}

7. Challenge Ciphertext:

(a) For i ∈ [n],

i. ti ← {0, 1}λ

ii. vi = 0ℓOne-sFE.ctλ

iii. Let Hi = H∗
i,x

(b)
i ,x

(0)
i ,ti,vi

as defined in Figure 11.

iv. FPFE.skHi = FPFE.KeyGen(FPFE.msk, Hi)

v. If i = 1, let CT1 = (FE.ct,FPFE.skH1). Else, let CTi = FPFE.skHi

(b) Send CT = {CTi}i∈[n] to the adversary.

8. Experiment Outcome: The adversary outputs a bit b′. Output 1 if b = b′ and fj(x
(0)) =

fj(x
(1)) for all fj queried, and output 0 otherwise.

Lemma D.5. If FPFE is a function-private-selective-IND-secure FE scheme, then for all PPT
adversaries A, ∣∣∣Pr[HybridA4 (1

λ) = 1]− Pr[HybridA5 (1
λ) = 1]

∣∣∣ ≤ negl(λ)

Proof. Suppose for sake of contradiction that there exists a PPT adversary A such that∣∣∣Pr[HybridA4 (1
λ) = 1]− Pr[HybridA5 (1

λ) = 1]
∣∣∣ > negl(λ) (12)

We build a PPT adversary B that breaks the function-private-selective-IND-security of FPFE. B
first runs A on input 1λ and receives parameters 1ℓF , 1ℓS , 1ℓX , 1ℓY . B then sends function size 1ℓHλ ,
input size 1ℓFPFE.mλ , and output size 1ℓOne-sFE.ctλ to its FPFE challenger where ℓHλ

, ℓFPFE.mλ
, ℓOne-sFE.ctλ

are computed as described in the parameter section. B computes (FE.mpk,FE.msk,Sym.k,FE.ct)
as in HybridA4 and sends MPK = FE.mpk to A. Let q = q(λ) be the running time of A. Observe
that q = poly(λ) as A is polytime and that A outputs at most q(λ) function queries on security
parameter λ. For j ∈ [q], B computes (sj ,One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj) as in HybridA4 .
(This does not require knowledge of FPFE.msk or fj). B then sends challenge message pairs
{((One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0), (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0))}j∈[q] to
its FPFE challenger and receives {FPFE.ctj}j∈[q] where each FPFE.ctj is an encryption of
(One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0). For each function query fj that A sends to B, B com-
putes One-sFE.skfj ← One-sFE.KeyGen(One-sFE.mskj , fj), cj ← Sym.Enc(Sym.k, (One-sFE.skfj ,FPFE.ctj)),
and FE.skGj ← FE.KeyGen(FE.msk, Gfj ,sj ,cj), and sends SKfj = FE.skGj to A. (This is possible to
compute as q is at least as large as the number of function queries that A makes). After A is done
making function queries, A outputs challenge messages (x(0), x(1)). B samples b← {0, 1}. Then, for
i ∈ [n], B does the following: B samples ti ← {0, 1}λ and sets vi = 0ℓOne-sFE.ctλ . B sends a challenge
function pair (H

i,x
(b)
i ,ti

, H∗
i,x

(b)
i ,x

(0)
i ,ti,vi

) to its FPFE challenger and receives an FPFE function key

FPFE.skHi which is either a function key for H
i,x

(b)
i ,ti

or a function key for H∗
i,x

(b)
i ,x

(0)
i ,ti,vi

. This is a

valid function query pair since for all j ∈ [q],

H
i,x

(b)
i ,ti

(One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0)

= H∗
i,x

(b)
i ,x

(0)
i ,ti,vi

(One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0)

as the two function act the same when β = 0. If i = 1, B sets CT1 = (FE.ct,FPFE.skH1). Else, B
sets CTi = FPFE.skHi . B sends CT = {CTi}i∈[n] to A, and receives b′ from A. B outputs 1 if b = b′

84

and fj(x
(0)) = fj(x

(1)) for all fj queried, and outputs 0 otherwise. Observe that if B received only
ciphertexts and function keys for the first message or function of each of its challenge pairs, then
B exactly emulates HybridA4 , and if B received only ciphertexts and function keys for the second
message or function of each of its challenge pairs, then B emulates HybridA5 . Additionally, B does
not need to know FPFE.msk to carry out this experiment. Thus, by Equation 12, this means that
B breaks the function-private selective-IND security of FPFE as B can distinguish between the two
security games with non-negligible probability.

85

Remark D.6. In this hybrid and future hybrids, if the number of functions queried is smaller
than k, then before computing the challenge ciphertext, we carry out the function query step of
the hybrid for a dummy function query fk for the all zero function (but do not send SKfk to the
adversary). This ensures that ri,k and vi,k are always well-defined.

HybridA6,k,1(1
λ): We replace vi with vi,k = H∗

i,x
(b)
i ,x

(0)
i ,ti,vi

(One-sFE.mskk,PRF2.kk, 0). This will

allow us to later use the security of FPFE to change the input message in the kth ciphertext
FPFE.ctk so that it uses the β = 2 branch of Hi.

1. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

2. Setup:

(a) (FE.mpk,FE.msk)← FE.Setup(1λ)

(b) FPFE.msk← FPFE.Setup(1λ)

(c) Sym.k ← Sym.Setup(1λ)

(d) FE.ct← FE.Enc(FE.mpk, (0ℓFPFE.mskλ , 0ℓPRF.kλ , 1, Sym.k))

3. Public Key: Send MPK = FE.mpk to the adversary.

4. Function Queries: For the jth function query fj ∈ F [ℓF , ℓS , ℓX , ℓY] made by the adversary:

(a) sj ← {0, 1}λ

(b) Compute cj:

i. One-sFE.mskj ← One-sFE.Setup(1λ)

ii. One-sFE.Enc.stj ← One-sFE.EncSetup(One-sFE.mskj)

iii. One-sFE.skfj ← One-sFE.KeyGen(One-sFE.mskj , fj)

iv. PRF2.kj ← PRF2.Setup(1λ)

v. If j < k, FPFE.ctj ← FPFE.Enc(FPFE.msk, (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 1))

vi. If j = k, FPFE.ctj ← FPFE.Enc(FPFE.msk, (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0))

vii. If j > k, FPFE.ctj ← FPFE.Enc(FPFE.msk, (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0))

viii. cj ← Sym.Enc(Sym.k, (One-sFE.skfj ,FPFE.ctj))

(c) Let Gj = Gfj ,sj ,cj as defined in Figure 9.

(d) FE.skGj ← FE.KeyGen(FE.msk, Gj)

(e) Send SKfj = FE.skGj to the adversary.

5. Challenge Message: A outputs a challenge message pair (x(0), x(1)) where x(0) = x
(0)
1 . . . x

(0)
n

and x(1) = x
(1)
1 . . . x

(1)
n for some length n ∈ N chosen by the adversary and where each

x
(0)
i , x

(1)
i ∈ {0, 1}ℓX .

6. Challenge Bit: b← {0, 1}

7. Challenge Ciphertext:

(a) For i ∈ [n],

i. ti ← {0, 1}λ

86

ii. ri,k = PRF2.Eval(PRF2.kk, ti)

iii. vi,k ← One-sFE.Enc(One-sFE.mskk,One-sFE.Enc.stk, i, x
(b)
i ; ri,k)

iv. Let Hi = H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

as defined in Figure 11.

v. FPFE.skHi = FPFE.KeyGen(FPFE.msk, Hi)

vi. If i = 1, let CT1 = (FE.ct,FPFE.skH1). Else, let CTi = FPFE.skHi

(b) Send CT = {CTi}i∈[n] to the adversary.

8. Experiment Outcome: The adversary outputs a bit b′. Output 1 if b = b′ and fj(x
(0)) =

fj(x
(1)) for all fj queried, and output 0 otherwise.

Lemma D.7. If FPFE is a function-private-selective-IND-secure FE scheme, then for all PPT
adversaries A, ∣∣∣Pr[HybridA5 (1

λ) = 1]− Pr[HybridA6,1,1(1
λ) = 1]

∣∣∣ ≤ negl(λ)

Proof. Suppose for sake of contradiction that there exists a PPT adversary A such that∣∣∣Pr[HybridA5 (1
λ) = 1]− Pr[HybridA6,1,1(1

λ) = 1]
∣∣∣ > negl(λ) (13)

We build a PPT adversary B that breaks the function-private-selective-IND-security of FPFE. B
first runs A on input 1λ and receives parameters 1ℓF , 1ℓS , 1ℓX , 1ℓY . B then sends function size 1ℓHλ ,
input size 1ℓFPFE.mλ , and output size 1ℓOne-sFE.ctλ to its FPFE challenger where ℓHλ

, ℓFPFE.mλ
, ℓOne-sFE.ctλ

are computed as described in the parameter section. B computes (FE.mpk,FE.msk,Sym.k,FE.ct)
as in HybridA5 and sends MPK = FE.mpk to A. Let q = q(λ) be the running time of A. Observe
that q = poly(λ) as A is polytime and that A outputs at most q(λ) function queries on security
parameter λ. For j ∈ [q], B computes (sj ,One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj) as in HybridA5 .
(This does not require knowledge of FPFE.msk or fj). B then sends challenge message pairs
{((One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0), (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0))}j∈[q] to
its FPFE challenger and receives {FPFE.ctj}j∈[q] where each FPFE.ctj is an encryption of
(One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0). For each function query fj that A sends to B, B com-
putes One-sFE.skfj ← One-sFE.KeyGen(One-sFE.mskj , fj), cj ← Sym.Enc(Sym.k, (One-sFE.skfj ,FPFE.ctj)),
and FE.skGj ← FE.KeyGen(FE.msk, Gfj ,sj ,cj), and sends SKfj = FE.skGj to A. (This is possible to
compute as q is at least as large as the number of function queries that A makes). After A is
done making function queries, A outputs challenge messages (x(0), x(1)). B samples b ← {0, 1}.
Then, for i ∈ [n], B does the following: B samples ti ← {0, 1}λ, sets vi = 0ℓOne-sFE.ctλ , sets ri,1 =

PRF2.Eval(PRF2.k1, ti), and computes vi,1 ← One-sFE.Enc(One-sFE.msk1,One-sFE.Enc.st1, i, x
(b)
i ; ri,1).

B sends challenge function pair (H∗
i,x

(b)
i ,x

(0)
i ,ti,vi

, H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,1

) to its FPFE challenger and receives

an FPFE function key FPFE.skHi which is either a function key for H∗
i,x

(b)
i ,x

(0)
i ,ti,vi

or a function key

for H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,1

. This is a valid function query pair since for all j ∈ [q],

H∗
i,x

(b)
i ,x

(0)
i ,ti,vi

(One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0)

= H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,1

(One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0)

as the two function act the same when β = 0. If i = 1, B sets CT1 = (FE.ct,FPFE.skH1). Else, B
sets CTi = FPFE.skHi . B sends CT = {CTi}i∈[n] to A, and receives b′ from A. B outputs 1 if b = b′

and fj(x
(0)) = fj(x

(1)) for all fj queried, and outputs 0 otherwise. Observe that if B received only

87

ciphertexts and function keys for the first message or function of each of its challenge pairs, then
B exactly emulates HybridA5 , and if B received only ciphertexts and function keys for the second
message or function of each of its challenge pairs, then B emulates HybridA6,1,1. Additionally, B
does not need to know FPFE.msk to carry out this experiment. Thus, by Equation 13, this means
that B breaks the function-private selective-IND security of FPFE as B can distinguish between the
two security games with non-negligible probability.

88

HybridA6,k,2(1
λ): We change the message encrypted in FPFE.ctk so that we use the β = 2 branch

of every H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

. This allows us to remove One-sFE.mskk and PRF2.kk from FPFE.ctk.

1. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

2. Setup:

(a) (FE.mpk,FE.msk)← FE.Setup(1λ)

(b) FPFE.msk← FPFE.Setup(1λ)

(c) Sym.k ← Sym.Setup(1λ)

(d) FE.ct← FE.Enc(FE.mpk, (0ℓFPFE.mskλ , 0ℓPRF.kλ , 1, Sym.k))

3. Public Key: Send MPK = FE.mpk to the adversary.

4. Function Queries: For the jth function query fj ∈ F [ℓF , ℓS , ℓX , ℓY] made by the adversary:

(a) sj ← {0, 1}λ

(b) Compute cj:

i. One-sFE.mskj ← One-sFE.Setup(1λ)

ii. One-sFE.Enc.stj ← One-sFE.EncSetup(One-sFE.mskj)

iii. One-sFE.skfj ← One-sFE.KeyGen(One-sFE.mskj , fj)

iv. PRF2.kj ← PRF2.Setup(1λ)

v. If j < k, FPFE.ctj ← FPFE.Enc(FPFE.msk, (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 1))

vi. If j = k, FPFE.ctj ← FPFE.Enc(FPFE.msk, (0ℓOne-sFE.mskλ , 0ℓOne-sFE.Enc.stλ , 0ℓPRF2.kλ , 2))

vii. If j > k, FPFE.ctj ← FPFE.Enc(FPFE.msk, (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0))

viii. cj ← Sym.Enc(Sym.k, (One-sFE.skfj ,FPFE.ctj))

(c) Let Gj = Gfj ,sj ,cj as defined in Figure 9.

(d) FE.skGj ← FE.KeyGen(FE.msk, Gj)

(e) Send SKfj = FE.skGj to the adversary.

5. Challenge Message: A outputs a challenge message pair (x(0), x(1)) where x(0) = x
(0)
1 . . . x

(0)
n

and x(1) = x
(1)
1 . . . x

(1)
n for some length n ∈ N chosen by the adversary and where each

x
(0)
i , x

(1)
i ∈ {0, 1}ℓX .

6. Challenge Bit: b← {0, 1}

7. Challenge Ciphertext:

(a) For i ∈ [n],

i. ti ← {0, 1}λ

ii. ri,k = PRF2.Eval(PRF2.kk, ti)

iii. vi,k ← One-sFE.Enc(One-sFE.mskk,One-sFE.Enc.stk, i, x
(b)
i ; ri,k)

iv. Let Hi = H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

as defined in Figure 11.

v. FPFE.skHi = FPFE.KeyGen(FPFE.msk, Hi)

vi. If i = 1, let CT1 = (FE.ct,FPFE.skH1). Else, let CTi = FPFE.skHi

89

(b) Send CT = {CTi}i∈[n] to the adversary.

8. Experiment Outcome: The adversary outputs a bit b′. Output 1 if b = b′ and fj(x
(0)) =

fj(x
(1)) for all fj queried, and output 0 otherwise.

Lemma D.8. If FPFE is a function-private-selective-IND-secure FE scheme, then for all PPT
adversaries A and for all k ∈ N,∣∣∣Pr[HybridA6,k,1(1

λ) = 1]− Pr[HybridA6,k,2(1
λ) = 1]

∣∣∣ ≤ negl(λ)

Proof. Suppose for sake of contradiction that there exists a PPT adversary A and k ∈ N such that∣∣∣Pr[HybridA6,k,1(1
λ) = 1]− Pr[HybridA6,k,2(1

λ) = 1]
∣∣∣ > negl(λ) (14)

We build a PPT adversary B that breaks the function-private-selective-IND-security of FPFE. B
first runs A on input 1λ and receives parameters 1ℓF , 1ℓS , 1ℓX , 1ℓY . B then sends function size 1ℓHλ ,
input size 1ℓFPFE.mλ , and output size 1ℓOne-sFE.ctλ to its FPFE challenger where ℓHλ

, ℓFPFE.mλ
, ℓOne-sFE.ctλ

are computed as described in the parameter section. B computes (FE.mpk,FE.msk, Sym.k,FE.ct) as
inHybridA6,k,1 and sendsMPK = FE.mpk toA. Let q = q(λ) be the running time ofA. Observe that
q = poly(λ) asA is polytime and thatA outputs at most q(λ) function queries on security parameter
λ. For j ∈ [q], B does the following: B computes (sj ,One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj) as in
HybridA6,k,1. (This does not require knowledge of FPFE.msk or fj).

• If j < k, B sets its jth challenge message pair to be
((One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 1), (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 1)).

• If j = k, B sets its jth challenge message pair to be
((One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0), (0

ℓOne-sFE.mskλ , 0ℓOne-sFE.Enc.stλ , 0ℓPRF2.kλ , 2))

• If j > k, B sets its jth challenge message pair to be
((One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0), (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0))

B then sends all q challenge message pairs to its FPFE challenger and receives {FPFE.ctj}j∈[q] where
either each FPFE.ctj is an encryption of the first message of the jth challenge message pair, or each
FPFE.ctj is an encryption of the second message of the jth challenge message pair. For each function
query fj that A sends to B, B computes One-sFE.skfj ← One-sFE.KeyGen(One-sFE.mskj , fj), cj ←
Sym.Enc(Sym.k, (One-sFE.skfj ,FPFE.ctj)), and FE.skGj ← FE.KeyGen(FE.msk, Gfj ,sj ,cj), and sends
SKfj = FE.skGj to A. (This is possible to compute as q is at least as large as the number of function
queries that A makes.) After A is done making function queries, A outputs challenge messages
(x(0), x(1)). B samples b← {0, 1}. Then, for i ∈ [n], B does the following: B samples ti ← {0, 1}λ,
sets ri,k = PRF2.Eval(PRF2.kk, ti), and computes

vi,k ← One-sFE.Enc(One-sFE.mskk,One-sFE.Enc.stk, i, x
(b)
i ; ri,k). B sends challenge function pair

(H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

, H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

) to its FPFE challenger and receives a FPFE function key FPFE.skHi

which is a function key for H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

. This is a valid function query pair since for all j ∈ [q]

and β ∈ {0, 1}, we clearly have,

H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

(One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , β)

= H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

(One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , β)

90

and additionally,

H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

(One-sFE.mskk,One-sFE.Enc.stk,PRF2.kk, 0)

= H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

(0ℓOne-sFE.mskλ , 0ℓOne-sFE.Enc.stλ , 0ℓPRF2.kλ , 2)

as when β = 2, the output is vi,k which has been programmed to be equal to
H∗

i,x
(b)
i ,x

(0)
i ,ti,vi,k

(One-sFE.mskk,One-sFE.Enc.stk,PRF2.kk, 0). If i = 1, B sets CT1 = (FE.ct,FPFE.skH1).

Else, B sets CTi = FPFE.skHi . B sends CT = {CTi}i∈[n] to A, and receives b′ from A. B outputs

1 if b = b′ and fj(x
(0)) = fj(x

(1)) for all fj queried, and outputs 0 otherwise. Observe that if B
received only ciphertexts and function keys for the first message or function of each of its challenge
pairs, then B exactly emulates HybridA6,k,1, and if B received only ciphertexts and function keys

for the second message or function of each of its challenge pairs, then B emulates HybridA6,k,2. Ad-
ditionally, B does not need to know FPFE.msk to carry out this experiment. Thus, by Equation 14,
this means that B breaks the function-private-selective-IND-security of FPFE as B can distinguish
between the two security games with non-negligible probability.

91

HybridA6,k,3(1
λ): For each i, instead of sampling ri,k using PRF2.kk, we sample ri,k uniformly at

random.

1. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

2. Setup:

(a) (FE.mpk,FE.msk)← FE.Setup(1λ)

(b) FPFE.msk← FPFE.Setup(1λ)

(c) Sym.k ← Sym.Setup(1λ)

(d) FE.ct← FE.Enc(FE.mpk, (0ℓFPFE.mskλ , 0ℓPRF.kλ , 1, Sym.k))

3. Public Key: Send MPK = FE.mpk to the adversary.

4. Function Queries: For the jth function query fj ∈ F [ℓF , ℓS , ℓX , ℓY] made by the adversary:

(a) sj ← {0, 1}λ

(b) Compute cj:

i. One-sFE.mskj ← One-sFE.Setup(1λ)

ii. One-sFE.Enc.stj ← One-sFE.EncSetup(One-sFE.mskj)

iii. One-sFE.skfj ← One-sFE.KeyGen(One-sFE.mskj , fj)

iv. If j ̸= k, PRF2.kj ← PRF2.Setup(1λ)

v. If j < k, FPFE.ctj ← FPFE.Enc(FPFE.msk, (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 1))

vi. If j = k, FPFE.ctj ← FPFE.Enc(FPFE.msk, (0ℓOne-sFE.mskλ , 0ℓOne-sFE.Enc.stλ0ℓPRF2.kλ , 2))

vii. If j > k, FPFE.ctj ← FPFE.Enc(FPFE.msk, (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0))

viii. cj ← Sym.Enc(Sym.k, (One-sFE.skfj ,FPFE.ctj))

(c) Let Gj = Gfj ,sj ,cj as defined in Figure 9.

(d) FE.skGj ← FE.KeyGen(FE.msk, Gj)

(e) Send SKfj = FE.skGj to the adversary.

5. Challenge Message: A outputs a challenge message pair (x(0), x(1)) where x(0) = x
(0)
1 . . . x

(0)
n

and x(1) = x
(1)
1 . . . x

(1)
n for some length n ∈ N chosen by the adversary and where each

x
(0)
i , x

(1)
i ∈ {0, 1}ℓX .

6. Challenge Bit: b← {0, 1}

7. Challenge Ciphertext:

(a) For i ∈ [n],

i. ti ← {0, 1}λ

ii. ri,k ← PRF2.Eval(PRF2.kk, ti)

iii. vi,k ← One-sFE.Enc(One-sFE.mskk,One-sFE.Enc.stk, i, x
(b)
i)

iv. Let Hi = H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

as defined in Figure 11.

v. FPFE.skHi = FPFE.KeyGen(FPFE.msk, Hi)

vi. If i = 1, let CT1 = (FE.ct,FPFE.skH1). Else, let CTi = FPFE.skHi

92

(b) Send CT = {CTi}i∈[n] to the adversary.

8. Experiment Outcome: The adversary outputs a bit b′. Output 1 if b = b′ and fj(x
(0)) =

fj(x
(1)) for all fj queried, and output 0 otherwise.

Lemma D.9. If PRF2 is a secure PRF, then for all PPT adversaries A and for all k ∈ N,∣∣∣Pr[HybridA6,k,2(1
λ) = 1]− Pr[HybridA6,k,3(1

λ) = 1]
∣∣∣ ≤ negl(λ)

Proof. Suppose for sake of contradiction that there exists a PPT adversary A and k ∈ N such that∣∣∣Pr[HybridA6,k,2(1
λ) = 1]− Pr[HybridA6,k,3(1

λ) = 1]
∣∣∣ > negl(λ) (15)

We build a PPT adversary B that breaks the security of PRF2. B first runs A on input 1λ and
receives parameters 1ℓF , 1ℓS , 1ℓX , 1ℓY . B then sends input size 1λ, and output size 1λ to its PRF2
challenger. B is then given oracle access to either PRF2.Eval(PRF2.kk, ·) for some PRF2.kk ←
PRF2.Setup(1λ, 1λ, 1λ) or to a uniformly random function R2 ← R2λ,λ where R2λ,λ is the set of
all functions from {0, 1}λ to {0, 1}λ. B computes (FE.mpk,FE.msk,FPFE.msk, Sym.k,FE.ct) as in
HybridA6,k,2. B then sends MPK = FE.mpk to A. For each function query fj that A sends to B, B
does the following: B computes (sj ,One-sFE.mskj ,One-sFE.Enc.stj ,One-sFE.skfj) as inHybridA6,k,2.

If j ̸= k, B also computes PRF2.kj ← PRF2.Setup(1λ, 1λ, 1λ).

• If j < k, B computes FPFE.ctj ← FPFE.Enc(FPFE.msk, (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 1)).

• If j = k, B computes FPFE.ctj ← FPFE.Enc(FPFE.msk, (0ℓOne-sFE.mskλ , 0ℓOne-sFE.Enc.stλ , 0ℓPRF2.kλ , 2)).

• If j > k, B computes FPFE.ctj ← FPFE.Enc(FPFE.msk, (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0)).

B computes cj and SKfj from these values as in HybridA6,k,2 and sends SKfj to A. After A is done

making function queries, A outputs challenge messages (x(0), x(1)). B samples b ← {0, 1}. Then,
for i ∈ [n], B does the following: B samples ti ← {0, 1}λ and sets ri,k equal to the output of its

oracle on input ti. B computes vi,k ← One-sFE.Enc(One-sFE.mskk,One-sFE.Enc.stk, i, x
(b)
i ; ri,k) and

FPFE.skHi ← FPFE.KeyGen(FPFE.msk, H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

). If i = 1, B sets CT1 = (FE.ct,FPFE.skH1).

Else, B sets CTi = FPFE.skHi . B sends CT = {CTi}i∈[n] to A, and receives b′ from A. B outputs

1 if b = b′ and fj(x
(0)) = fj(x

(1)) for all fj queried, and outputs 0 otherwise. Observe that if B’s
oracle was a uniform random function R2, then B exactly emulates HybridA6,k,3, and if B’s oracle
was PRF2.Eval(PRF2.kk, ·), then B emulates HybridA6,k,2. Additionally, B does not need to know
PRF2.kk to carry out this experiment. Thus, by Equation 15, this means that B breaks the security
of PRF2 as B can distinguish between a random function and PRF2.

93

HybridA6,k,4(1
λ): We now invoke the security of One-sFE to change vi,k from an encryption of x(b)

under One-sFE.mskk to an encryption of x(0) under One-sFE.mskk.

1. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

2. Setup:

(a) (FE.mpk,FE.msk)← FE.Setup(1λ)

(b) FPFE.msk← FPFE.Setup(1λ)

(c) Sym.k ← Sym.Setup(1λ)

(d) FE.ct← FE.Enc(FE.mpk, (0ℓFPFE.mskλ , 0ℓPRF.kλ , 1, Sym.k))

3. Public Key: Send MPK = FE.mpk to the adversary.

4. Function Queries: For the jth function query fj ∈ F [ℓF , ℓS , ℓX , ℓY] made by the adversary:

(a) sj ← {0, 1}λ

(b) Compute cj:

i. One-sFE.mskj ← One-sFE.Setup(1λ)

ii. One-sFE.Enc.stj ← One-sFE.EncSetup(One-sFE.mskj)

iii. One-sFE.skfj ← One-sFE.KeyGen(One-sFE.mskj , fj)

iv. If j ̸= k, PRF2.kj ← PRF2.Setup(1λ)

v. If j < k, FPFE.ctj ← FPFE.Enc(FPFE.msk, (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 1))

vi. If j = k, FPFE.ctj ← FPFE.Enc(FPFE.msk, (0ℓOne-sFE.mskλ , 0ℓOne-sFE.Enc.stλ , 0ℓPRF2.kλ , 2))

vii. If j > k, FPFE.ctj ← FPFE.Enc(FPFE.msk, (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0))

viii. cj ← Sym.Enc(Sym.k, (One-sFE.skfj ,FPFE.ctj))

(c) Let Gj = Gfj ,sj ,cj as defined in Figure 9.

(d) FE.skGj ← FE.KeyGen(FE.msk, Gj)

(e) Send SKfj = FE.skGj to the adversary.

5. Challenge Message: A outputs a challenge message pair (x(0), x(1)) where x(0) = x
(0)
1 . . . x

(0)
n

and x(1) = x
(1)
1 . . . x

(1)
n for some length n ∈ N chosen by the adversary and where each

x
(0)
i , x

(1)
i ∈ {0, 1}ℓX .

6. Challenge Bit: b← {0, 1}

7. Challenge Ciphertext:

(a) For i ∈ [n],

i. ti ← {0, 1}λ

ii. vi,k ← One-sFE.Enc(One-sFE.mskk,One-sFE.Enc.stk, i, x
(0)
i)

iii. Let Hi = H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

as defined in Figure 11.

iv. FPFE.skHi = FPFE.KeyGen(FPFE.msk, Hi)

v. If i = 1, let CT1 = (FE.ct,FPFE.skH1). Else, let CTi = FPFE.skHi

(b) Send CT = {CTi}i∈[n] to the adversary.

94

8. Experiment Outcome: The adversary outputs a bit b′. Output 1 if b = b′ and fj(x
(0)) =

fj(x
(1)) for all fj queried, and output 0 otherwise.

Lemma D.10. If One-sFE is single-key, single-ciphertext, function-selective-IND-secure, then for
all PPT adversaries A and for all k ∈ N,∣∣∣Pr[HybridA6,k,3(1

λ) = 1]− Pr[HybridA6,k,4(1
λ) = 1]

∣∣∣ ≤ negl(λ)

Proof. Suppose for sake of contradiction that there exists a PPT adversary A and k ∈ N such that∣∣∣Pr[HybridA6,k,3(1
λ) = 1]− Pr[HybridA6,k,4(1

λ) = 1]
∣∣∣ > negl(λ) (16)

We build a PPT adversary B that breaks the single-key, single-ciphertext, function-selective-IND-
security of One-sFE. B first runs A on input 1λ and receives parameters 1ℓF , 1ℓS , 1ℓX , 1ℓY . B then
sends function size 1ℓF , state size 1ℓS , input size 1ℓX , and output size 1ℓY to its One-sFE challenger.
B computes (FE.mpk,FE.msk,FPFE.msk, Sym.k,FE.ct) as in HybridA6,k,3. B then sends MPK =
FE.mpk to A. For each function query fj that A sends to B, B does the following: B computes sj ←
{0, 1}λ. If j ̸= k, B computes One-sFE.mskj ← One-sFE.Setup(1λ), One-sFE.EncSetup(One-sFE.mskj),
One-sFE.skfj ← One-sFE.KeyGen(One-sFE.mskj , fj), and PRF2.kj ← PRF2.Setup(1λ). If j = k, B
sends fk to its One-sFE challenger and receives a function key One-sFE.skfk in return.

• If j < k, B computes FPFE.ctj ← FPFE.Enc(FPFE.msk, (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 1)).

• If j = k, B computes FPFE.ctj ← FPFE.Enc(FPFE.msk, (0ℓOne-sFE.mskλ , 0ℓOne-sFE.Enc.stλ , 0ℓPRF2.kλ , 2)).

• If j > k, B computes FPFE.ctj ← FPFE.Enc(FPFE.msk, (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0)).

B computes cj and SKfj from these values as in HybridA6,k,3 and sends SKfj to A. After A is

done making function queries, A outputs a challenge message pair (x(0), x(1)). B samples b ←
{0, 1}, sends challenge message pair (x(b), x(0)) to its One-sFE challenger, and receives a ciphertext
One-sFE.ct = {One-sFE.cti}i∈[n] of either x(b) or x(0). Observe that if fj(x

(0)) = fj(x
(1)) for all fj

queried by A,17 then this is a valid challenge message pair as for any b ∈ {0, 1},

fk(x
(b)) = fk(x

(0))

Then, for i ∈ [n], B does the following: B samples ti ← {0, 1}λ, sets vi,k = One-sFE.cti, and com-
putes FPFE.skHi ← FPFE.KeyGen(FPFE.msk, H∗

i,x
(b)
i ,x

(0)
i ,ti,vi,k

). If i = 1, B sets CT1 = (FE.ct,FPFE.skH1).

Else, B sets CTi = FPFE.skHi . B sends CT = {CTi}i∈[n] to A, and receives b′ from A. B outputs 1 if

b = b′ and fj(x
(0)) = fj(x

(1)) for all fj queried, and outputs 0 otherwise. Observe that if One-sFE.ct
is an encryption of x(b), then B exactly emulates HybridA6,k,3, and if One-sFE.ct is an encryption of

x(0), then B emulatesHybridA6,k,4. Additionally, B does not need to know One-sFE.mskk to carry out
this experiment. Thus, by Equation 16, this means that B breaks the single-key, single-ciphertext,
function-selective-IND-security of One-sFE, as B can distinguish between the two ciphertexts with
non-negligible probability.

17If A submits any function query fj where fj(x
(0)) ̸= fj(x

(1)) then both hybrids output 0 so the distinguishing
advantage is 0. For Equation 16 to hold, it must be the case that for infinitely many λ, with non-negligible probability,
fj(x

(0)) = fj(x
(1)) for all fj queried by A. In this proof, we restrict ourselves to the setting where fj(x

(0)) = fj(x
(1))

for all fj queried by A since a non-negligible distinguishing advantage in this restricted setting implies a non-negligible
distinguishing advantage in the general setting for infinitely many λ.

95

HybridA6,k,5(1
λ): We now reverse the change we made in HybridA6,k,3. For each i, instead of

sampling ri,k uniformly at random, we sample ri,k using PRF2.kk.

1. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

2. Setup:

(a) (FE.mpk,FE.msk)← FE.Setup(1λ)

(b) FPFE.msk← FPFE.Setup(1λ)

(c) Sym.k ← Sym.Setup(1λ)

(d) FE.ct← FE.Enc(FE.mpk, (0ℓFPFE.mskλ , 0ℓPRF.kλ , 1, Sym.k))

3. Public Key: Send MPK = FE.mpk to the adversary.

4. Function Queries: For the jth function query fj ∈ F [ℓF , ℓS , ℓX , ℓY] made by the adversary:

(a) sj ← {0, 1}λ

(b) Compute cj:

i. One-sFE.mskj ← One-sFE.Setup(1λ)

ii. One-sFE.Enc.stj ← One-sFE.EncSetup(One-sFE.mskj)

iii. One-sFE.skfj ← One-sFE.KeyGen(One-sFE.mskj , fj)

iv. If j ̸= k, PRF2.kj ← PRF2.Setup(1λ)

v. If j < k, FPFE.ctj ← FPFE.Enc(FPFE.msk, (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 1))

vi. If j = k, FPFE.ctj ← FPFE.Enc(FPFE.msk, (0ℓOne-sFE.mskλ , 0ℓOne-sFE.Enc.stλ , 0ℓPRF2.kλ , 2))

vii. If j > k, FPFE.ctj ← FPFE.Enc(FPFE.msk, (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0))

viii. cj ← Sym.Enc(Sym.k, (One-sFE.skfj ,FPFE.ctj))

(c) Let Gj = Gfj ,sj ,cj as defined in Figure 9.

(d) FE.skGj ← FE.KeyGen(FE.msk, Gj)

(e) Send SKfj = FE.skGj to the adversary.

5. Challenge Message: A outputs a challenge message pair (x(0), x(1)) where x(0) = x
(0)
1 . . . x

(0)
n

and x(1) = x
(1)
1 . . . x

(1)
n for some length n ∈ N chosen by the adversary and where each

x
(0)
i , x

(1)
i ∈ {0, 1}ℓX .

6. Challenge Bit: b← {0, 1}

7. Challenge Ciphertext:

(a) For i ∈ [n],

i. ti ← {0, 1}λ

ii. ri,k ← PRF2.Eval(PRF2.kk, ti)

iii. vi,k ← One-sFE.Enc(One-sFE.mskk,One-sFE.Enc.stk, i, x
(0)
i ; ri,k)

iv. Let Hi = H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

as defined in Figure 11.

v. FPFE.skHi = FPFE.KeyGen(FPFE.msk, Hi)

vi. If i = 1, let CT1 = (FE.ct,FPFE.skH1). Else, let CTi = FPFE.skHi

96

(b) Send CT = {CTi}i∈[n] to the adversary.

8. Experiment Outcome: The adversary outputs a bit b′. Output 1 if b = b′ and fj(x
(0)) =

fj(x
(1)) for all fj queried, and output 0 otherwise.

Lemma D.11. If PRF2 is a secure PRF, then for all PPT adversaries A and for all k ∈ N,∣∣∣Pr[HybridA6,k,4(1
λ) = 1]− Pr[HybridA6,k,5(1

λ) = 1]
∣∣∣ ≤ negl(λ)

Proof. Suppose for sake of contradiction that there exists a PPT adversary A and k ∈ N such that∣∣∣Pr[HybridA6,k,4(1
λ) = 1]− Pr[HybridA6,k,5(1

λ) = 1]
∣∣∣ > negl(λ) (17)

We build a PPT adversary B that breaks the security of PRF2. B first runs A on input 1λ and
receives parameters 1ℓF , 1ℓS , 1ℓX , 1ℓY . B then sends input size 1λ, and output size 1λ to its PRF2
challenger. B is then given oracle access to either PRF2.Eval(PRF2.kk, ·) for some PRF2.kk ←
PRF2.Setup(1λ, 1λ, 1λ) or to a uniformly random function R2 ← R2λ,λ where R2λ,λ is the set of
all functions from {0, 1}λ to {0, 1}λ. B computes (FE.mpk,FE.msk,FPFE.msk, Sym.k,FE.ct) as in
HybridA6,k,4. B then sends MPK = FE.mpk to A. For each function query fj that A sends to B, B
does the following: B computes (sj ,One-sFE.mskj ,One-sFE.Enc.stj ,One-sFE.skfj) as inHybridA6,k,4.

If j ̸= k, B computes PRF2.kj ← PRF2.Setup(1λ)

• If j < k, B computes FPFE.ctj ← FPFE.Enc(FPFE.msk, (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 1)).

• If j = k, B computes FPFE.ctj ← FPFE.Enc(FPFE.msk, (0ℓOne-sFE.mskλ , 0ℓOne-sFE.Enc.stλ , 0ℓPRF2.kλ , 2)).

• If j > k, B computes FPFE.ctj ← FPFE.Enc(FPFE.msk, (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0)).

B computes cj and SKfj from these values as in HybridA6,k,4 and sends SKfj to A. After A is done

making function queries, A outputs challenge messages (x(0), x(1)). B samples b← {0, 1}. Then, for
i ∈ [n], B does the following: B samples ti ← {0, 1}λ and sets ri,k equal to the output of its oracle on

input ti. B computes vi,k ← One-sFE.Enc(One-sFE.mskk,One-sFE.Enc.stk, i, x
(0)
i ; ri,k) and computes

FPFE.skHi ← FPFE.KeyGen(FPFE.msk, H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

). If i = 1, B sets CT1 = (FE.ct,FPFE.skH1).

Else, B sets CTi = FPFE.skHi . B sends CT = {CTi}i∈[n] to A, and receives b′ from A. B outputs

1 if b = b′ and fj(x
(0)) = fj(x

(1)) for all fj queried, and outputs 0 otherwise. Observe that if B’s
oracle was a uniform random function R2, then B exactly emulates HybridA6,k,4, and if B’s oracle
was PRF2.Eval(PRF2.kk, ·), then B emulates HybridA6,k,5. Additionally, B does not need to know
PRF2.kk to carry out this experiment. Thus, by Equation 17, this means that B breaks the security
of PRF2 as B can distinguish betwewen a random function and PRF2.

97

HybridA6,k,6(1
λ): We change the message encrypted in FPFE.ctk so that it uses the β = 1 branch

of every H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

.

1. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

2. Setup:

(a) (FE.mpk,FE.msk)← FE.Setup(1λ)

(b) FPFE.msk← FPFE.Setup(1λ)

(c) Sym.k ← Sym.Setup(1λ)

(d) FE.ct← FE.Enc(FE.mpk, (0ℓFPFE.mskλ , 0ℓPRF.kλ , 1, Sym.k))

3. Public Key: Send MPK = FE.mpk to the adversary.

4. Function Queries: For the jth function query fj ∈ F [ℓF , ℓS , ℓX , ℓY] made by the adversary:

(a) sj ← {0, 1}λ

(b) Compute cj:

i. One-sFE.mskj ← One-sFE.Setup(1λ)

ii. One-sFE.Enc.stj ← One-sFE.EncSetup(One-sFE.mskj)

iii. One-sFE.skfj ← One-sFE.KeyGen(One-sFE.mskj , fj)

iv. PRF2.kj ← PRF2.Setup(1λ)

v. If j < k, FPFE.ctj ← FPFE.Enc(FPFE.msk, (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 1))

vi. If j = k, FPFE.ctj ← FPFE.Enc(FPFE.msk, (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 1))

vii. If j > k, FPFE.ctj ← FPFE.Enc(FPFE.msk, (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0))

viii. cj ← Sym.Enc(Sym.k, (One-sFE.skfj ,FPFE.ctj))

(c) Let Gj = Gfj ,sj ,cj as defined in Figure 9.

(d) FE.skGj ← FE.KeyGen(FE.msk, Gj)

(e) Send SKfj = FE.skGj to the adversary.

5. Challenge Message: A outputs a challenge message pair (x(0), x(1)) where x(0) = x
(0)
1 . . . x

(0)
n

and x(1) = x
(1)
1 . . . x

(1)
n for some length n ∈ N chosen by the adversary and where each

x
(0)
i , x

(1)
i ∈ {0, 1}ℓX .

6. Challenge Bit: b← {0, 1}

7. Challenge Ciphertext:

(a) For i ∈ [n],

i. ti ← {0, 1}λ

ii. ri,k ← PRF2.Eval(PRF2.kk, ti)

iii. vi,k ← One-sFE.Enc(One-sFE.mskk,One-sFE.Enc.stj , i, x
(0)
i ; ri,k)

iv. Let Hi = H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

as defined in Figure 11.

v. FPFE.skHi = FPFE.KeyGen(FPFE.msk, Hi)

vi. If i = 1, let CT1 = (FE.ct,FPFE.skH1). Else, let CTi = FPFE.skHi

98

(b) Send CT = {CTi}i∈[n] to the adversary.

8. Experiment Outcome: The adversary outputs a bit b′. Output 1 if b = b′ and fj(x
(0)) =

fj(x
(1)) for all fj queried, and output 0 otherwise.

Lemma D.12. If FPFE is function-private-selective-IND-secure, then for all PPT adversaries A
and for all k ∈ N,∣∣∣Pr[HybridA6,k,5(1

λ) = 1]− Pr[HybridA6,k,6(1
λ) = 1]

∣∣∣ ≤ negl(λ)

Proof. Suppose for sake of contradiction that there exists a PPT adversary A and k ∈ N such that∣∣∣Pr[HybridA6,k,5(1
λ) = 1]− Pr[HybridA6,k,6(1

λ) = 1]
∣∣∣ > negl(λ) (18)

We build a PPT adversary B that breaks the function-private-selective-IND-security of FPFE. B
first runs A on input 1λ and receives parameters 1ℓF , 1ℓS , 1ℓX , 1ℓY . B then sends function size 1ℓHλ ,
input size 1ℓFPFE.mλ , and output size 1ℓOne-sFE.ctλ to its FPFE challenger where ℓHλ

, ℓFPFE.mλ
, ℓOne-sFE.ctλ

are computed as described in the parameter section. B computes (FE.mpk,FE.msk, Sym.k,FE.ct) as
inHybridA6,k,5 and sendsMPK = FE.mpk toA. Let q = q(λ) be the running time ofA. Observe that
q = poly(λ) asA is polytime and thatA outputs at most q(λ) function queries on security parameter
λ. For j ∈ [q], B does the following: B computes (sj ,One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj) as in
HybridA6,k,5. (This does not require knowledge of FPFE.msk or fj).

• If j < k, B sets its jth challenge message pair to be
((One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 1), (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 1)).

• If j = k, B sets its jth challenge message pair to be
((One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 1), (0

ℓOne-sFE.mskλ , 0ℓOne-sFE.Enc.stλ , 0ℓPRF2.kλ , 2))

• If j > k, B sets its jth challenge message pair to be
((One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0), (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0))

B then sends all q challenge message pairs to its FPFE challenger and receives {FPFE.ctj}j∈[q] where
either each FPFE.ctj is an encryption of the first message of the jth challenge message pair, or each
FPFE.ctj is an encryption of the second message of the jth challenge message pair. For each function
query fj that A sends to B, B computes One-sFE.skfj ← One-sFE.KeyGen(One-sFE.mskj , fj), cj ←
Sym.Enc(Sym.k, (One-sFE.skfj ,FPFE.ctj)), and FE.skGj ← FE.KeyGen(FE.msk, Gfj ,sj ,cj), and sends
SKfj = FE.skGj to A. (This is possible to compute as q is at least as large as the number of function
queries that A makes.) After A is done making function queries, A outputs challenge messages
(x(0), x(1)). B samples b← {0, 1}. Then, for i ∈ [n], B does the following: B samples ti ← {0, 1}λ,
sets ri,k = PRF2.Eval(PRF2.kk, ti), and computes vi,k ← One-sFE.Enc(One-sFE.mskk,One-sFE.Enc.stk, i, x

(0)
i ; ri,k).

B sends a challenge function pair (H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

, H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

) to its FPFE challenger and re-

ceives an FPFE function key FPFE.skHi which is a function key for H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

. This is a valid

function query pair since for all j ∈ [q] and β ∈ {0, 1}, we clearly have

H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

(One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , β)

= H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

(One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , β)

99

and additionally

H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

(One-sFE.mskk,One-sFE.Enc.stk,PRF2.kk, 1)

= H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

(0ℓOne-sFE.mskλ , 0ℓOne-sFE.Enc.stλ , 0ℓPRF2.kλ , 2)

as when β = 2, the output is vi,k which has been programmed to be equal to
H∗

i,x
(b)
i ,x

(0)
i ,ti,vi,k

(One-sFE.mskk,One-sFE.Enc.stk,PRF2.kk, 1). If i = 1, B sets CT1 = (FE.ct,FPFE.skH1).

Else, B sets CTi = FPFE.skHi . B sends CT = {CTi}i∈[n] to A, and receives b′ from A. B outputs

1 if b = b′ and fj(x
(0)) = fj(x

(1)) for all fj queried, and outputs 0 otherwise. Observe that if B
received only ciphertexts and function keys for the first message or function of each of its challenge
pairs, then B exactly emulates HybridA6,k,6, and if B received only ciphertexts and function keys

for the second message or function of each of its challenge pairs, then B emulates HybridA6,k,5. Ad-
ditionally, B does not need to know FPFE.msk to carry out this experiment. Thus, by Equation 18,
this means that B breaks the function-private-selective-IND security of FPFE as B can distinguish
between the two security games with non-negligible probability.

Lemma D.13. If FPFE is a function-private-selective-IND-secure FE scheme, then for all PPT
adversaries A and for all k ∈ N\{1},∣∣∣Pr[HybridA6,k−1,6(1

λ) = 1]− Pr[HybridA6,k,1(1
λ) = 1]

∣∣∣ ≤ negl(λ)

Proof. Suppose for sake of contradiction that there exists a PPT adversary A and a k ∈ N\{1}
such that ∣∣∣Pr[HybridA6,k−1,5(1

λ) = 1]− Pr[HybridA6,k,1(1
λ) = 1]

∣∣∣ > negl(λ) (19)

We build a PPT adversary B that breaks the function-private-selective-IND-security of FPFE. B
first runs A on input 1λ and receives parameters 1ℓF , 1ℓS , 1ℓX , 1ℓY . B then sends function size 1ℓHλ ,
input size 1ℓFPFE.mλ , and output size 1ℓOne-sFE.ctλ to its FPFE challenger where ℓHλ

, ℓFPFE.mλ
, ℓOne-sFE.ctλ

are computed as described in the parameter section. B computes (FE.mpk,FE.msk, Sym.k,FE.ct) as
in HybridA6,k−1,5 and sends MPK = FE.mpk to A. Let q = q(λ) be the running time of A. Observe
that q = poly(λ) as A is polytime and that A outputs at most q(λ) function queries on security pa-
rameter λ. For j ∈ [q], B does the following: B computes (sj ,One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj)
as in HybridA6,k,5.. (This does not require knowledge of FPFE.msk or fj).

• If j < k, B sets its jth challenge message pair to be
((One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 1), (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 1)).

• If j ≥ k, B sets its jth challenge message pair to be
((One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0), (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0)).

B then sends all q challenge message pairs to its FPFE challenger and receives {FPFE.ctj}j∈[q]
where for j < k, FPFE.ctj is an encryption of (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 1), and for
j ≥ k, FPFE.ctj is an encryption of (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 0). For each function
query fj that A sends to B, B computes One-sFE.skfj ← One-sFE.KeyGen(One-sFE.mskj , fj), cj ←
Sym.Enc(Sym.k, (One-sFE.skfj ,FPFE.ctj)), and FE.skGj ← FE.KeyGen(FE.msk, Gfj ,sj ,cj), and sends
SKfj = FE.skGj to A. (This is possible to compute as q is at least as large as the number of function
queries that A makes.) After A is done making function queries, A outputs challenge message pair
(x(0), x(1)). B samples b← {0, 1}. Then, for i ∈ [n], B does the following: B computes ti ← {0, 1}λ,

100

ri,k−1 = PRF2.Eval(PRF2.kk−1, ti), vi,k−1 ← One-sFE.Enc(One-sFE.mskk−1,One-sFE.Enc.stk−1, i, x
(0)
i ; ri,k−1),

ri,k = PRF2.Eval(PRF2.kk, ti), and vi,k ← One-sFE.Enc(One-sFE.mskk,One-sFE.Enc.stk, i, x
(b)
i ; ri,k).

B sends a challenge function pair (H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k−1

, H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

) to its FPFE challenger and

receives an FPFE function key FPFE.skHi which is either a function key for H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k−1

or

a function key for H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

. This is a valid function query pair since for all j ∈ [q] and

β ∈ {0, 1},

H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k−1

(One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , β)

= H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,k

(One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , β)

as the two functions act the same when β = 0 or β = 1. If i = 1, B sets CT1 = (FE.ct,FPFE.skH1).
Else, B sets CTi = FPFE.skHi . B sends CT = {CTi}i∈[n] to A, and receives b′ from A. B outputs

1 if b = b′ and fj(x
(0)) = fj(x

(1)) for all fj queried, and outputs 0 otherwise. Observe that
if B received only ciphertexts and function keys for the first message or function of each of its
challenge pairs, then B exactly emulates HybridA6,k−1,6, and if B received only ciphertexts and
function keys for the second message or function of each of its challenge pairs, then B emulates
HybridA6,k,1. Additionally, B does not need to know FPFE.msk to carry out this experiment. Thus,
by Equation 19, this means that B breaks the function-private selective-IND security of FPFE as B
can distinguish between the two security games with non-negligible probability.

101

HybridA7 (1
λ): We replace each H∗

i,x
(b)
i ,x

(0)
i ,ti,vi,k

with a function H∗
i,x

(0)
i ,x

(0)
i ,ti,vi

which is independent

of b.

1. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

2. Setup:

(a) (FE.mpk,FE.msk)← FE.Setup(1λ)

(b) FPFE.msk← FPFE.Setup(1λ)

(c) Sym.k ← Sym.Setup(1λ)

(d) FE.ct← FE.Enc(FE.mpk, (0ℓFPFE.mskλ , 0ℓPRF.kλ , 1, Sym.k))

3. Public Key: Send MPK = FE.mpk to the adversary.

4. Function Queries: For the jth function query fj ∈ F [ℓF , ℓS , ℓX , ℓY] made by the adversary:

(a) sj ← {0, 1}λ

(b) Compute cj:

i. One-sFE.mskj ← One-sFE.Setup(1λ)

ii. One-sFE.Enc.stj ← One-sFE.EncSetup(One-sFE.mskj)

iii. One-sFE.skfj ← One-sFE.KeyGen(One-sFE.mskj , fj)

iv. PRF2.kj ← PRF2.Setup(1λ)

v. FPFE.ctj ← FPFE.Enc(FPFE.msk, (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 1))

vi. cj ← Sym.Enc(Sym.k, (One-sFE.skfj ,FPFE.ctj))

(c) Let Gj = Gfj ,sj ,cj as defined in Figure 9.

(d) FE.skGj ← FE.KeyGen(FE.msk, Gj)

(e) Send SKfj = FE.skGj to the adversary.

5. Challenge Message: A outputs a challenge message pair (x(0), x(1)) where x(0) = x
(0)
1 . . . x

(0)
n

and x(1) = x
(1)
1 . . . x

(1)
n for some length n ∈ N chosen by the adversary and where each

x
(0)
i , x

(1)
i ∈ {0, 1}ℓX .

6. Challenge Bit: b← {0, 1}

7. Challenge Ciphertext:

(a) For i ∈ [n],

i. ti ← {0, 1}λ

ii. vi = 0ℓOne-sFE.ctλ

iii. Let Hi = H∗
i,x

(0)
i ,x

(0)
i ,ti,vi

as defined in Figure 11.

iv. FPFE.skHi = FPFE.KeyGen(FPFE.msk, Hi)

v. If i = 1, let CT1 = (FE.ct,FPFE.skH1). Else, let CTi = FPFE.skHi

(b) Send CT = {CTi}i∈[n] to the adversary.

8. Experiment Outcome: The adversary outputs a bit b′. Output 1 if b = b′ and fj(x
(0)) =

fj(x
(1)) for all fj queried, and output 0 otherwise.

102

Lemma D.14. If FPFE is a function-private-selective-IND-secure FE scheme, then for all PPT
adversaries A, ∣∣∣Pr[HybridA6,q,6(1

λ) = 1]− Pr[HybridA7 (1
λ) = 1]

∣∣∣ ≤ negl(λ)

where q = q(λ) is the runtime of A on security parameter λ.

Proof. First, observe that if q(λ) is the runtime of A, then A outputs at most q(λ) function queries
on security parameter λ. Thus, HybridA6,q,6 always uses the β = 1 branch when encrypting FPFE.ctj
as in HybridA7 . Now, suppose for sake of contradiction that there exists a PPT adversary A such
that ∣∣∣Pr[HybridA6,q,6(1

λ) = 1]− Pr[HybridA7 (1
λ) = 1]

∣∣∣ > negl(λ) (20)

We build a PPT adversary B that breaks the function-private-selective-IND-security of FPFE. B
first runs A on input 1λ and receives parameters 1ℓF , 1ℓS , 1ℓX , 1ℓY . B then sends function size 1ℓHλ ,
input size 1ℓFPFE.mλ , and output size 1ℓOne-sFE.ctλ to its FPFE challenger where ℓHλ

, ℓFPFE.mλ
, ℓOne-sFE.ctλ

are computed as described in the parameter section. B computes (FE.mpk,FE.msk,Sym.k,FE.ct)
as in HybridA6,q,6 and sends MPK = FE.mpk to A. For j ∈ [q], B computes

(sj ,One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj) as in HybridA6,q,6. (This does not require knowledge
of FPFE.msk or fj). B then sends challenge message pairs
{((One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 1), (One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 1))}j∈[q] to
its FPFE challenger and receives {FPFE.ctj}j∈[q] where each FPFE.ctj is an encryption of
(One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 1). For each function query fj that A sends to B, B com-
putes One-sFE.skfj ← One-sFE.KeyGen(One-sFE.mskj , fj), cj ← Sym.Enc(Sym.k, (One-sFE.skfj ,FPFE.ctj)),
and FE.skGj ← FE.KeyGen(FE.msk, Gfj ,sj ,cj), and sends SKfj = FE.skGj to A. (This is possi-
ble to compute as q is at least as large as the number of function queries that A makes.) Af-
ter A is done making function queries, A outputs challenge message pair (x(0), x(1)). B samples
b ← {0, 1}. Then, for i ∈ [n], B does the following: B computes ti ← {0, 1}λ, vi = 0ℓOne-sFE.ctλ ,

ri,q ← PRF2.Eval(PRF2.kq, ti), and vi,q ← One-sFE.Enc(One-sFE.mskq,One-sFE.Enc.stq, i, x
(0)
i ; ri,q).

B sends challenge function pair (H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,q

, H∗
i,x

(0)
i ,x

(0)
i ,ti,vi

) to its FPFE challenger and receives

an FPFE function key FPFE.skHi which is either a function key for H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,q

or a function

key for H∗
i,x

(0)
i ,x

(0)
i ,ti,vi

. This is a valid function query pair since for all j ∈ [q],

H∗
i,x

(b)
i ,x

(0)
i ,ti,vi,q

(One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 1)

= H∗
i,x

(0)
i ,x

(0)
i ,ti,vi

(One-sFE.mskj ,One-sFE.Enc.stj ,PRF2.kj , 1)

as the two function act the same when β = 1. If i = 1, B sets CT1 = (FE.ct,FPFE.skH1). Else, B
sets CTi = FPFE.skHi . B sends CT = {CTi}i∈[n] to A, and receives b′ from A. B outputs 1 if b = b′

and fj(x
(0)) = fj(x

(1)) for all fj queried, and outputs 0 otherwise. Observe that if B received only
ciphertexts and function keys for the first message or function of each of its challenge pairs, then B
exactly emulates HybridA6,q,6, and if B received only ciphertexts and function keys for the second

message or function of each of its challenge pairs, then B emulates HybridA7 . Additionally, B does
not need to know FPFE.msk to carry out this experiment. Thus, by Equation 20, this means that
B breaks the function-private-selective-IND security of FPFE as B can distinguish between the two
security games with non-negligible probability.

Lemma D.15. For all adversaries A,

Pr[HybridA7 (1
λ) = 1] ≤ 1

2

103

Proof. The messages sent to A in HybridA7 are independent of b. Thus, the probability that A
correctly guesses b in HybridA7 is 1

2 . The lemma then follows since the probability that HybridA7
outputs 1 is at most the probability that A correctly guesses b.

Thus, our lemmas give us the following corollary:

Corollary D.16. If

• PRF and PRF2 are secure PRFs,

• Sym is a secure symmetric key encryption scheme with pseudorandom ciphertexts,

• One-sFE is single-key, single-ciphertext, function-selective-IND-secure,

• FPFE is function-private-selective-IND-secure,

• and FE is selective-IND-secure,

then sFE is semi-adaptive-function-selective-IND-secure.

Proof. By combining the hybrid indistinguishability lemmas above, we get that for all PPT adver-
saries A,∣∣∣Pr[ExptGuessSemi-Ad-Func-Sel-IND

A (1λ) = 1]
∣∣∣ = ∣∣∣Pr[HybridA1 (1

λ) = 1]
∣∣∣ ≤ 1

2
+ negl(λ)

The corollary then follows immediately.

Corollary D.16 then implies Theorem 6.1, since as shown in Section 6, we can instantiate the
required primitives from a selective-IND-secure, public-key FE scheme for P/Poly and a single-key,
single-ciphertext, function-selective-IND-secure, secret-key, sFE scheme for P/Poly.

104

	Introduction
	Our Results
	Related Work

	Technical Overview
	Single-Key, Single-Ciphertext, SIM-Secure, Secret-Key Streaming FE
	Bootstrapping to an IND-Secure, Public-Key Streaming FE

	Preliminaries
	Functional Encryption

	Streaming Functional Encryption
	Security

	Single-Key, Single-Ciphertext, SIM-secure, Secret-Key Streaming FE
	Parameters
	Construction
	Correctness and Efficiency
	Security

	Bootstrapping to an IND-Secure, Public-Key Streaming FE Scheme
	Parameters
	Construction
	Correctness and Efficiency
	Security

	Acknowledgements
	References
	[JLS22] Assumptions
	Preliminaries Continued
	Standard Notions
	Secret-Key Functional Encryption

	Additional Streaming FE Definitions
	Secret-Key Streaming FE
	Relaxed Definition of Streaming FE

	Security Proof from Section 6

