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Abstract

We describe a straightforward method to generate a random prime q
such that the multiplicative group F˚

q also has a random large prime-order
subgroup. The described algorithm also yields this order p as well as a p’th
primitive root of unity ω. The methods here are efficient asymptotically,
but due to large constants may not be very useful in practical settings.

1 Introduction

In various contexts, for example in sparse polynomial evaluation and inter-
polation algorithms, it is necessary to have a finite field Fq that admits an
order-p multiplicative subgroup with generator ω. There are typically some
non-divisibility properties both on the field size q and the subgroup order p.

In this note, we briefly sketch efficient algorithms to probabilistically gener-
ate such q, p, ω tuples. The results are neither surprising to practitioners in this
area, nor are they particularly original. However, we have found them useful,
and so decided to publish in this short note with complete proofs.

2 Statement of results

We need to find two prime numbers p, q such that p � pq ´ 1q, that is q is in
the arithmetic progression taq`1 : a ě 1u, and such that q “ polyppq. Effective
versions of Dirichlet’s theorem Rousselet (1985); Akbary and Hambrook (2015)
allow us to produce such pairs. Theorem 2.1 below is a variant of Lemma 2.4.15
in Arnold’s Ph.D. thesis (Arnold, 2016), where we replace a constant probability
of success by an arbitrary high probability of success.
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Theorem 2.1. There exists an explicit Monte Carlo algorithm which, given

a bound λ ě maxp274, 263

ε2 q, produces a triple pp, q, ωq that has the following
properties with probability at least 1´ ε, and return fail otherwise:

• p is uniformly distributed amongst the primes of pλ, 2λq;

• q ď λ6 is a prime such that p � pq ´ 1q;

• ω is a p-primitive root of unity in Fq;

Its worst-case bit complexity is polylogpλq.

An additional requirement in some situations is that the prime q does not
divide an (unknown!) large integer. This is achieved by taking λ sufficiently
large.

Theorem 2.2. Let K be an unknown integer, and let pp, q, ωq a triple produced

by the algorithm of Theorem 2.1 on some input λ. If λ ě maxp 261

µ2 , 5

b

48
µ lnKq,

the probability that q divides K is at most µ.

We note that, unfortunately, the algorithm of Theorem 2.1 is not very practi-
cal due to the large (but constant!) lower bound on the bit-length of the primes
produced. In practice a far simpler and more efficient approach works much
better: Simply choose a random b-bit prime p, then try each k “ 1, 2, 3, . . . until
2pk ` 1 is prime. A conjecture of Heath-Brown (1978) states that k ! log2 p
for any prime p. (Later work by Granville and Pomerance (1990) conjectures
further that this bound is asymptotically tight in the worst case.) Under this
conjecture, the simple enumerative approach above always finds the least prime
q congruent to 1 modulo p in polypbq time, and this is the most effective tech-
nique in practice.

3 Proofs

To construct a field Fq with a p-PRU ω, we first need to generate random prime
numbers. The well-known technique for this is to sample random integers and
test them for primality. In order to get Las Vegas algorithm, we rely on the
celebrated AKS algorithm.

Fact 3.1 (Agrawal, Kayal, and Saxena (2004)). There is a deterministic algo-
rithm that, given any integer n, determines whether n is prime or composite
and has bit complexity polylogpnq.

While the original bit complexity was rO
`

log10.5 n
˘

, this has been subse-

quently improved to rO
`

log6 n
˘

in a revised version by Lenstra and Pomerance
(2011). In practice, a better option is to use the Monte Carlo Miller-Rabin

primality test which has a worst-case bit complexity of rO
`

log2 n
˘

but a low
probability of incorrectly reporting that a composite number is prime (Rabin,
1980).
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No fast deterministic algorithm is known to construct a prime number with
a given bit length b. However, sampling random b-bit integers and testing their
primality using AKS algorithm results in a Las Vegas randomized algorithm.
The expected running time relies on the fact that there are at least Ωp2b{bq
primes with b bits. We recall some more precise bounds.

Fact 3.2 (Rosser and Schoenfeld (1962)). For λ ě 21, there exist at least 3
5λ lnλ

prime numbers between λ and 2λ.

Once we have a prime number p, we want to find a prime number q in the
arithmetic progression p` 1, 2p` 1, 3p` 1, . . . Dirichlet’s theorem says that,
asymptotically, the distribution of primes in this arithmetic progression is the
same as the distribution of primes in Z. This indicates that a good strategy to
generate q is simply to pick a random (even) positive integer k and test whether
pk ` 1 is prime, repeating until a prime of that form is found.

The question is, how large should k be in the strategy above in order to
guarantee a reasonable chance of success? Linnik’s theorem Linnik (1944) states
that there exists a constant 1 ă L ď 5 such that for all sufficiently large primes
p, choosing k „ pL´1 is enough. On the other hand, Rousselet (1985) showed
that choosing k „ p2 will work for most primes p that are large enough. Using
more recent results by Akbary and Hambrook (2015), it is possible to obtain
completely explicit bounds.

Fact 3.3. Let 0 ă ε ă 1 and λ ě maxp274, 259

ε2 q, and p a random prime from
pλ, 2λq. Then with probability at least 1´ε, the number of prime numbers q ď λ6

of the form q “ ap` 1 is ě λ5{p24 lnλq.

Proof. Let πpxq denote the number of prime numbersď x, πpx;m, aq the number
of prime numbers ď x that are congruent to a modulo m, and `pxq the smaller
prime divisor of x. Akbary and Hambrook (2015, Corollary 1.4) prove that for
any λ1 ď λ2 ď γ1{2,

ÿ

mďλ2

`pmqąλ1

max
2ďyďγ

max
a:gcdpa,mq“1

ˇ

ˇ

ˇ

ˇ

πpy;m, aq ´
πpyq

φpmq

ˇ

ˇ

ˇ

ˇ

ď 346.21

ˆ

4
γ

λ1
` 4γ1{2λ2 ` 18γ2{3λ

1{2
2 ` 5γ5{6 lnpe

λ2

λ1
q

˙

pln γq9{2.

We apply this inequality with λ1 “ λ, λ2 “ 2λ and γ “ λ6. We note that the
sum is over the prime numbers (since `pmq ą λ1 ě m{2). We then simplify
it by choosing y “ γ and a “ 1 in the formula, which can only make the sum
smaller. Then

ÿ

λăpă2λ
p prime

ˇ

ˇ

ˇ

ˇ

πpλ6; p, 1q ´
πpλ6q

p´ 1

ˇ

ˇ

ˇ

ˇ

ď 1.38 ¨ 107pλ5 ` 2.03λ4.5 ` 0.64λ4qplnλq9{2

For λ ě 215, the sum is bounded by 1.4 ¨ 107λ5plnλq9{2. Now we wish to count
the bad primes in pλ, 2λq such that πpλ6; p, 1q ď λ5{p24 lnλq. Since πpλ6q ě
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λ6{p6 lnλq, if p is a bad prime, then πpλ6q{pp´1q ě πpλ6; p, 1q and since p´1 ď
2λ,

ˇ

ˇ

ˇ

ˇ

πpλ6; p, 1q ´
πpλ6q

p´ 1

ˇ

ˇ

ˇ

ˇ

ě
λ6{p6 lnλq

p´ 1
´

λ5

24 lnλ
ě

λ5

24 lnλ
.

If there are k bad primes, then the sum is at least kλ5{24 lnλ. Using the previous
bound on the sum, we get the bound

k ď
1.4 ¨ 107λ5pln γq9{2

λ5{p24 lnλq
“ 3.36 ¨ 108plnλq11{2.

Since there are at least 3
5λ{ lnλ prime numbers between λ and 2λ, the proba-

bility that a random prime number p chosen in pλ, 2λq is bad is at most

3.36 ¨ 108plnλq11{2

3
5λ{ lnλ

“ 5.6 ¨ 108λ´1plnλq13{2.

The probability obviously tends to zero when λ tends to infinity, asOpplnλq13{2{λq.
Therefore, to get a probability ď ε, one should consider λ “ 1{εΩp1q. For in-
stance, for λ ě 274 the probability is bounded by 5.6 ¨ 108λ´1{2. Hence, to get a

probability at most ε, one can take λ ě maxp274, 259

ε2 q since 259 ą p5.6¨108q2.

From this effective result, we deduce a Monte Carlo algorithm that produces
primes p, q such that p � pq ´ 1q, as well as a p-PRU modulo q.

Proof of Theorem 2.1. This is basically Algorithm “GetPrimeAP-5/6” on page
35 of (Arnold, 2016), slightly adapted, where the primality tests are made using
AKS algorithm:

1 sample ď 5
6 ln 4

ε lnλ random odd integers p P pλ, 2λq until p is prime,
return fail if none of them is prime

2 sample ď 24 ln 4
ε lnλ random integers a P r1, λ5s until q “ ap` 1 is prime,

return fail if none of them is prime

3 sample ď logp
4
ε random elements ζ P Fˆq until ω “ ζpq´1q{p ‰ 1, return

fail if ω “ 1 for each ζ

4 return pp, q, ωq

Since AKS has complexity polylogλ and log 1
ε “ Oplog λq, the complexity of the

whole algorithm is polylogpλq.
There are at least 3

5λ{ lnλ primes in pλ, 2λq, and λ{2 odd integers. Therefore,
the probability that a random odd integer is prime is at least 6{p5 lnλq. The
probability that no prime is produced after k tries is at most p1´ 6{p5 lnλqqk ď
e´6k{p5 lnλq. If k “ 5

6 ln 4
ε lnλ, the probability is at most ε

4 . Hence Step 1
succeeds with probability at least 1´ ε

4 .

Since λ ě maxp274, 259

pε{4q2 q, if the algorithm succeeds in producing p, there

are at least λ5{p24 lnλq prime numbers q ď λ6 of the form ap`1 with probability
at least ε

4 .
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If p satisfies this condition, there are at least λ5{p24 lnλq values of a such
that ap` 1, amongst the λ5 possible values. With the same proof as above, the
probability that such an a be found in ď 24 ln 4

ε lnλ tries is at least 1´ ε4.
Finally, if q has been found, Step 3 finds a suitable ω with probability at

least 1´ ε
4 since there are at most q´1

p values of ζ such that ζpq´1q{p “ 1.

Therefore, the algorithm returns a triple pp, q, ωq satisfying the three prop-
erties with probability at least 1´ ε.

Proof of Theorem 2.2. Since λ ě 259

pµ{2q2 , the prime p, if produced, satisfies that

there are at least λ5{p24 lnλq primes q ď λ6 of the form ap` 1 with probability
at least 1´ µ

2 . The number of those primes than can divide K is at most logλK
(all of them are ą λ). Therefore, the probability that one of them chosen at
random divides K is at most 24 logpK lnλ{λ5 ď

µ
2 .
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