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Abstract. Zero-knowledge proofs allow a prover to convince a verifier of a statement without re-
vealing anything besides its validity. A major bottleneck in scaling sub-linear zero-knowledge proofs
is the high space requirement of the prover, even for NP relations that can be verified in a small
space.
In this work, we ask whether there exist complexity-preserving (i.e. overhead w.r.t time and space
are minimal) succinct zero-knowledge arguments of knowledge with minimal assumptions while
making only black-box access to the underlying primitives. We design the first such zero-knowledge
system with sublinear communication complexity (when the underlying NP relation uses non-
trivial space) and provide evidence why existing techniques are unlikely to improve the communi-
cation complexity in this setting. Namely, for every NP relation that can be verified in time T and
space S by a RAM program, we construct a public-coin zero-knowledge argument system that is
black-box based on collision-resistant hash-functions (CRH) where the prover runs in time Õ(T)
and space Õ(S), the verifier runs in time Õ(T/S + S) and space Õ(1) and the communication is
Õ(T/S), where Õ() ignores polynomial factors in log T and κ is the security parameter. As our
construction is public-coin, we can apply the Fiat-Shamir heuristic to make it non-interactive with
sample communication/computation complexities. Furthermore, we give evidence that reducing
the proof length below Õ(T/S) will be hard using existing symmetric-key based techniques by
arguing the space-complexity of constant-distance error correcting codes.
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1 Introduction

Zero-knowledge proofs, introduced by Goldwasser, Micali and Rackoff [23] are powerful crypto-
graphic objects that allow a prover to convince a verifier of a statement while revealing nothing be-
yond the validity of the statement. Succinct non-interactive zero-knowledge arguments (ZK-SNARKs
and ZK-SNARGs) are variants of zero-knowledge proof systems that offer very efficient verification,
namely, proof lengths and verification times that are polylogarithmic in the size of the instance. ZK-
SNARKs have been the focus of intense research from both theory and practice in the past few years as
they are becoming an indispensable tool to bringing privacy and efficiency to blockchains (see [26, 43]
for two recent surveys).

While the initial constructions of concretely efficient ZK-SNARKs suffered from significantly high
prover times, recent works have shown how to improve the computational complexity to essentially
linear in the time taken compute the underlying relation (for an NP-language) [16, 44, 45, 40, 41, 31,
14, 32]. However, these works come with a steep price in terms of space, namely, for computations
that take time T and space S, the space complexity of the prover is Ω(T). Notably, only a few works
provide time and space efficient constructions that we discuss next. This fact turns out to be a major
bottleneck in scaling up zero-knowledge proofs to larger and larger computations.

To make the context precise, we focus on the task of proving that a non-deterministic RAM machine
M accepts a particular instance x, i.e. uniform non-deterministic computations. The goal here is if M
accepts/rejects x in time T and space S the resulting ZK proof system preserves these complexities on
the prover’s side and polylogarithmic in T (i.e. succinct) or even sublinear on the verifier’s side.

When considering designated verifier ZK-SNARKs, complexity preserving solutions (i.e. poly-
logarithmic overhead in space and time) have been constructed by Bitansky and Chiesa [10] and
by Holmgren and Rothblum [25] in the non-interactive setting. The work of Ephraim et al. [20] show
that assuming the existence of standard (circuit) SNARKs one can construct a non-interactive suc-
cinct argument of knowledge (i.e. SNARK) for parallel RAM computations where the complexities are
preserved on the prover’s side and the verifier requires polylogarithmic in T time and space based
on collision-resistant hash functions (CRHF), where the underlying CRHF and SNARK is used in a
non-black-box manner. Publicly-verifiable ZK-SNARKs with similar overheads can be accomplished
via recursive composition [15, 18, 17]. However, these constructions have significant overheads as they
typically rely on non-black-box usage of the underlying primitives. Imposing black-box access to the
underlying primitives is an important step to obtain practically viable constructions [33, 1, 24].

More recently, two works by Block et al. [11, 12], designed the first black-box construction of a ZK-
SNARKs with polylogarithmic overhead in space and time based on “more standard” assumptions.
The first work assumes hardness of discrete logarithm in prime-order groups and relies on the random
oracle to construct a public-coin zero-knowledge argument where the proof length is polylog(T), the
prover is complexity preserving and the verifier runtime is T · polylog(T) while using polylog(T) space.
The second work improves the verifier’s runtime from T · polylog(T) to n · polylog(T), where n is the
input length, under hardness assumptions on hidden order groups. We note that these works make
extensive use of public-key operations - e.g., the prover needs to do Ω(T) exponentiations, and public-
key operations are typically orders of magnitude more expensive than symmetric key operations.

Thus, the prior works leave the following question open:

Is it possible to design a complexity preserving (zero-knowledge) argument system based on minimal
assumptions (eg, symmetric-key primitives) with a succinct verifier where the underlying primitives are
used in a black-box manner?

As noted above, the problem is solved if we are willing to assume (and extensively use) public-key
primitives. We further highlight that the problem can be solved if we relax either the computation
or the space requirements of the prover. The works of [6, 9] demonstrate a ZK-SNARK with succinct
proofs and verification (i.e. polylogarithmic in T), where the prover’s running time and space are
quasilinear in T. If we relax the time but restrict the space of the prover, it is easy to see how to extend
the same constructions of [6, 9] by observing that a Reed-Solomon encoding of streaming data of size
T can be computed in time polynomial in T with space polylog(T). Finally, if we relax the black-box
requirement, recursive composition can be used to construct (ZK-)SNARKS [15, 18, 17].
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1.1 Our Results

Theorem 1. Assume that collision-resistant hash functions exist. Then, every NP relation that can be verified
by a time T and space S RAM machine has a public-coin zero-knowledge argument-system such that:

1. The prover runs in time T · poly(log(T), λ) and uses space S · poly(log(T), λ).
2. The verifier runs in time (T/S + S) · poly(log(T), λ) and uses space poly(log(T), λ).
3. The communication complexity is (T/S) · poly(log(T), λ) and number of rounds is constant.
4. The protocol has perfect completeness and negligible soundness error.

where λ is the computational security parameter. Moreover, applying the Fiat-Shamir heuristic results in a
non-interactive sublinear zero-knoweldge argument of knowledge with the same asymptotic efficiencies.

We remark that our construction could lead to concretely efficient complexity preserving ZK-
SNARKs that are possibly post-quantum secure since it is based on symmetric-key primitives and
is black-box in the underlying primitives.

Next we complement our upper bound with a lower bound. We prove that any constant-distance
code with an encoding algorithm that runs in time quasi-linear in the input length n must require
space at least Ω̃(n). More formally, we prove the following theorem.

Theorem 2 (Informal). Suppose that a a code over F with message length n, codeword length m and minimum
relative distance δ (i.e. [m, n, δm] code) can be encoded via a RAM machine with space S while making r passes
over the input message, then S ∈ Ω(δn/r · log |F|).

Interpreting theorem 2 in the context of proof systems, we note that most IOP/PCP constructions
use constant-distance codes to encode the computation-transcript, which is of size Õ(T). Our lower
bound implies that encoding an Õ(T) message with space S will have distance Õ(S/T) which implies
a query complexity (and consequently proof length) of Ω(T/S) for the IOP/PCPs that encode the
transcript and this matches our upper bound.

1.2 Technical Overview

The most common approach to design a ZK-SNARK black-box from symmetric-key primitives in a
black-box way is to first design an interactive oracle proof (IOP) system [7, 37], then compile it to
an succinct interactive zero-knowledge proof system (honest-verifier) using collision-resistant hash
functions and finally relying on the Fiat-Shamir heuristic [21] to make it non-interactive.

Interactive oracle proofs and probabilistically checkable proofs encode the computation in such
a way that the verifier needs to query only few bits to verify its validity. These proofs typically in-
volve encoding the computation transcript using some constant-rate constant-distance error-correcting
codes. Computing these codes on a computational transcript of size T can be done efficiently, i.e. in
time Õ(T) using FFTs. Unfortunately, all FFTs are believed to require a high space complexity. In fact,
it was shown in a specific computational model that computing Fourier transforms on a domain of
size n with time T and space S requires T · S ∈ Ω(n2) [38]. This means that if S << T, then the
running time to compute Fourier transforms will no longer be quasi-linear in n. As mentioned above,
we demonstrate that even designing codes with constant-distance requires significant space.

Our starting point for our upper bound is the Ligero ZK argument system [1] which is an instan-
tiation of the IOP framework (based on the MPC-in-the-head paradigm [27]) but provides a trade-off
between size of the Fourier transforms and proof length. Given a parameter β, for a computation of
size T, the Ligero proof system provides a O(T/β + β)-sized proof and requires executing several
O(T/β) FFTs on size β. However, the proof system as we describe below still requires a space com-
plexity of O(T). Our main contribution is a new proof system that follows the blueprint of the Ligero
proof system and preserves time and space efficiency.

We provide a high-level description of the Ligero proof system in the IOP model and identify the
bottlenecks in making it time and space efficient. Given an arithmetic circuit C over a field F, the
Ligero system proves satisfiability of C as follows:

1. Preparing the proof oracle: In the first step in Ligero, the prover computes an “extended” witness
(of size O(|C|)) that incorporates all intermediate computations (namely, output of each “gate”)
and encodes it using an Interleaved Reed-Solomon code. This code is set as the proof oracle.
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2. Testing the encoding: Next, the verifier tests if the prover set the oracle with a valid encoding
of some message. The Interleaved Reed-Solomon Code can be interpreted as a matrix U where
each row is a Reed-Solomon code of some message. The verifier challenges the prover with a
set of random elements (one for each row of U) and the prover responds with a random linear
combination of the rows based on the randomness provided by the prover. The verifier rejects if
this combination is not a valid (Reed Solomon) code. The idea is that if each row of U is a valid
Reed Solomon code, then by linearity the random linear combination provided by the prover must
also be a valid Reed Solomon code.

3. Testing linear constraints: Linear constraints incorporate all the addition gates and circuit wiring
in C. The verifier tests these constraints by providing randomness and obtaining an encoding of
a random linear combination of the result of all the linear constraints applied to the extended
witness. Given the prover’s response the verifier checks if the response encodes values that sum
up to 0. The idea here is that even if one of the linear relations do not hold, then the values encoded
in the random linear combination will not sum up to 0 with very high probability.

4. Testing quadratic constraints: Quadratic constraints incorporate all the multiplication gates in C.
The verifier tests these constraints analogously to the linear constraints. Specifically, the verifier
checks if the prover’s response encodes a vector of all zeros. This test utilizes the strong multi-
plicative property of the Reed-Solomon encoding [36].

5. Column check: Finally, the verifier checks if the responses provided by the prover in the three
tests presented above are consistent with the code in the proof oracle. Since all the tests can be
performed via row operations on the matrix, the verifier selects a random subset of the columns
of the matrix and recomputes the results of the tests for these columns and checks if they are
consistent with the responses.

Compiling the IOP system to a sublinear argument is achieved by replacing the proof oracle with
the root hash of a Merkle hash tree with leaves as the elements of the code matrix and providing
Merkle decommitments along with the elements (columns) revealed in the column check step [30, 7].

Next, we analyze the space complexity of the Ligero system, describe the obstacles to make it
space-efficient and then explain our approach to overcome these obstacles.

1. The first step of the argument system involves the prover computing the code generated by encod-
ing the witness where this codeword serves as the proof oracle. This is followed by computing the
Merkle hash tree of the code. The size of the code is O(|C|) and if we naively compute the Merkle
tree it will require holding the entire code in memory. However, if the Interleaved Reed Solomon
code can be computed one row at a time then the Merkle hash tree can be computed with space
proportional to the length of the code (i.e. number of columns in the matrix) as the hash of the
leaves can be iteratively aggregated using the Merkle-Damgard construction [19]. We remark that
computing the code one row at a time is not straight forward as the Ligero proof system actually
requires the extended witness to be arranged in a specific structure. The verifier on the other hand
can check the Merkle decommitments of the κ columns in space proportional to κ and polylog(T).

2. In the code test, the prover computes a random linear combination of the rows of the matrix.
Once again, if we assume that the code matrix can be computed one row at a time, then the linear
combination can also be computed in space proportional to the length of the code by maintaining
a running aggregate.

3. The linear test is one of the main bottlenecks in terms of space complexity. As the wiring in the
circuit C can be arbitrary the linear constraints can involve values encoded in arbitrary rows of the
matrix. This means even if the code can be computed one row at a time, computing the response
to the linear constraint could involve recomputing the entire code for each constraint to access
different rows of the code and this blows up the running time of the prover beyond quasi-linear in
the worst case. The issue of the wiring in the circuit C being arbitrary (as described in the previous
step) poses a challenge to improving the verifier’s space complexity as well. In addition to the
same issues as discussed above, the verifier has more stringent space restrictions, and verifying the
prover’s response to the linear test in small space is non-trivial. We discuss our approach for the
linear test below.

4. In the quadratic test, the verifier checks the correctness of all the multiplication gates. The prover
prepares the extended witness in a specific way where the multiplication gates are batched and the
wire values are aligned so that they can be tested for correctness as follows: the verifier provides
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randomness and the prover provides an aggregate computed via row operations which the verifier
checks if it encodes the all 0’s string. Making this space-efficient requires arranging each batch of
multiplication gates in neighboring rows.

5. In the final step, the verifier queries the proof oracle on a subset of the columns and verifies if the
responses provided by the prover for the code, linear and quadratic tests are consistent with the
columns. In the Ligero system, all these tests are results of row operations on the encoded matrix.
Hence the verifier can check the correctness by simply recomputing the row operations on the
subset of columns opened by the verifier and checking against the prover’s responses. If the tests
can be computed by the prover in a space efficient manner, then the verifier can rely on a similar
approach to recompute the responses for the columns in a space-efficient manner.

1.2.1 Our Approach We want to design a space-efficient ZK-SNARK for RAM computations. First,
we fix the RAM model of computation as a machine that has (multi-pass) unidirectional input tapes
and a work tape with RAM access. Our first step is to rely on the transformation from [5, 13] to trans-
form the RAM computation into a (succinct) circuit C. We modify the compiler to generate directly
a constraint system that can be consumed by the Ligero system. In slightly more detail, the Ligero
constraint system is over a m× ℓ matrix X that represents the “extended witness” and instantiated via
a linear constraint (A, b) and quadratic constraint system specified by tuples of rows (il , ir, io) on the
matrix X. The linear constraint requires that Ax = b where x is the flattening of the matrix X (namely
concatenating the rows of X) and the quadratic constraint (il , ir, io) requires that for every j ∈ [ℓ],
Xil ,j · Xir ,j = Xio ,j.

By relying on the transformation of [5, 13], we will obtain a Ligero constraint system over a
Õ(T/S) × Õ(S) matrix X where we can decompose X into Õ(T/S) blocks where a block, denoted
by Xi, contains polylog(T) rows of X with the following properties:

1. First, a block can be stored in space Õ(S) (as opposed to storing X which requires Õ(T) space).
The transformation will allow the prover to generate and encode X block-wise as needed by the
Ligero proof system while using only Õ(S) space.

2. The linear and quadratic constraints over the extended witness X will be localized to a block or
consecutive blocks i.e. these constraints only involve values within a block or consecutive blocks
of X. We will show that this allows us to test constraints block-wise in a space efficient manner.

Next, we explain the main technical novelty of our approach - implementing the linear and quadratic
tests.

Linear Test. In this step, the prover convinces the verifier that the extended witness X satisfies all
the linear constraints. We observe from [5, 13] that the linear constraints are “localized” to blocks
of size Õ(S) and “uniform” i.e., the set of the constraints applied to each block are the same. The
efficiency of the linear constraints relies on these two properties. In more detail, we express the linear
constraints for each block as Ayi = b where A is a public matrix of size Õ(S)× Õ(S) extracted from the
transformation, b is a public vector of size Õ(S) and yi is Õ(S)-sized flattened vector corresponding to
block Yi that is obtained by concatenating the rows of Yi.

We briefly describe the linear test for “uniform” constraints. To verify these constraints, the witness
is split into blocks yi and the verifier verifies that rT(Ayi) = rTb for all blocks yi, where r is a random
challenge it provides of length Õ(S). We explain the rest of the test for a specific block. To apply
batching, the output of the batched test is takes as the random linear combination of the individual
tests. In such a test, the prover rearranges the vector rT A as an Õ(1)× Õ(S) matrix and computes its
Interleaved Reed Solomon encoding, denoted by R. Then, instead of sending rT(Ayi), the prover sends
the vector q = (1m)T(R⊙Ui) where Ui is an encoding of Yi, 1m is the all ones length m vector and
⊙ denotes pointwise product. By the multiplicative property of Reed-Solomon codes (Definition 3),
it follows that checking whether rT(Ayi) = rTb is equivalent to checking whether the decoding of q
satisfies that the sum of the decoded values equals rTb. Towards making this test efficient in terms of
both time and space, the following three steps need to be computed efficiently.

1. The prover and the verifier need to compute rT A. Note that naively storing the entire matrix A
requires space Õ(S2). Instead, we observe the matrix A benefits from the following properties of
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the circuit (which is obtained from the RAM-to-Circuit reduction of [5, 13]): (a) each wire of the
circuit is involved in at most polylogarithmic linear and quadratic constraints and (b) all constraints
involving a particular wire can be efficiently identified. This translates into the following properties
for A: (a) A is a sparse matrix i.e., the number of non-zero elements in A is Õ(S) and (b) all the non-
zero elements of a column can be efficiently computed in time Õ(1) and space Õ(1). To perform
the matrix-vector multiplication, we just need to query the non-zero values for each column of A
in time Õ(1) and then multiply each of these non-zero values with the appropriate randomness
in r. The randomness associated with ith row is set to si where s is a randomly generated seed.
Hence, we can compute each element of rT A in time Õ(1) and space Õ(1).

2. Next, both the prover and the verifier need to compute the encoding of rT A. The prover rearranges
the Õ(S)-length vector into a Õ(1)× Õ(S) matrix and then encodes each row using an RS encoding,
denoted by R. The prover can do this by first interpolating each row i of the matrix to generate
a polynomial ri(·) and then evaluate ri(·) at Õ(S) evaluation points; performing interpolation
followed by evaluation (of size Õ(S)) is done efficiently using iFFT followed by FFT and requires
space Õ(S). The prover can perform these operations, but the verifier has much less space i.e.,
poly(log T, κ). First, note that the verifier needs to compute only at O(κ) columns of R (as opposed
to the prover who needs to compute the entire codeword, which is of size Õ(S)). However, this
does not directly reduce the space to Õ(1) as interpolation followed by evaluation requires space
Õ(S) to store the interpolated polynomials. By exploiting the structure of FFTs, we present an
algorithm DEval that can implicitly evaluate the polynomial without storing all the coefficients at a
particular point using Õ(1) space given an input of size Õ(S). This algorithm will allow the verifier
to recompute the result of the linear test on the Õ(1) columns in Õ(1) space.

3. Lastly, the verifier needs to check if the prover’s response in the linear test encodes values that sum
up to rTb. Suppose q(·) is the polynomial associated with the prover’s response, then the verifier
needs to evaluate q(·) at ℓ points and check if they sum up to rTb i.e., ∑i∈[ℓ] q(ζi) = rTb where
{ζi}i∈[ℓ] are the interpolation points. It is non-trivial to ensure that both the time and space are
optimal for this check as evidenced by the following two approaches where one is optimal in time
but not in space and vice-versa.

(a) If we use FFTs to evaluate the polynomial at ℓ points, then the check is optimal in time but not
space i.e., this approach requires time O(ℓ log ℓ) and space O(ℓ).

(b) Alternately, instead of storing all ℓ evaluations of q(·) and then adding them up, we can com-
pute the running aggregate of the values encoded by q(·) while simultaneously evaluating the
polynomial at all ℓ points. This approach updates the running partial aggregate as the terms of
the polynomial are computed and just needs to store 1 field element. But the time to evaluate
a t degree polynomial at ℓ points is at least O(tℓ), which is O(ℓ2) when t = ℓ. Hence, this
approach is optimal in terms of space but not time i.e., it requires space O(1) and time O(ℓ2)
(if the degree of q(·) is ℓ).

We address this issue by setting the interpolation points to be the ℓth roots of unity. It turns out
that the sum of the values encoded by q(·) is equal to ℓ(c0 + cℓ) i.e., ∑i∈[ℓ] q(ζi) = ℓ(c0 + cℓ) where
c0 and cℓ are the coefficients of q(·). Our time and space-optimal approach is as follows. The prover
sends only the coefficients c0 and cℓ during the linear test. The verifier sums up the two coefficients
and checks if it is equal to rTb i.e., c0 + cℓ = rTb, which requires time O(1) and space O(1).

Quadratic Test. Similar to the linear constraints, the quadratic constraints are “localized” to a block i.e.,
the constraints involve only values within a block of X. Further, the quadratic constraints require the
rows of X to be aligned in a specific way: the left, right, and output wire values of multiplication gates
are aligned in corresponding rows of a block. During the test, The verifier provides a vector r′ of length
Õ(1) and tries to verify the following for all blocks i ∈ [O(T/S)], r′T(Yleft

i ⊙ Yright
i − Yout

i ) = [0]1×Õ(S)

where Yleft
i , Yright

i and Yout
i are submatrices of X is size Õ(1)× Õ(S) corresponding to left, right and

output wire values respectively (and they are all aligned). Towards this, the prover computes the
encoding of r′T(Yleft

i ⊙Yright
i −Yout

i ) for each block and then combines them by taking a random linear
combination of such encodings.
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Similar to the linear test, the verifier needs to additionally check if the prover’s response encodes
a vector of all zeros. A similar challenge as described in the linear test arises here as well. The verifier
needs to evaluate the prover’s response to the quadratic test, say q(·), at ℓ points and check if each of
them is 0. Like the previous solution for linear test, we set the interpolation points to be the ℓth roots
of unity. However, the solution for the previous step cannot be directly applied here as we need to
check if each of the values is 0 (instead of the sum being 0). Instead, we observe that the polynomial
q(·) can be expressed as a product of two polynomials q′(·) and z(·) such that z(·) evaluates to zero at
all the interpolation points. We modify the quadratic test so that the prover sends q′(·) instead instead
of q(·) and the verifier computes q(·) from q′(·) and z(·) where z(·) is a publicly known polynomial.
This entirely avoids the need to check if q(·) encodes all 0 values.

IPCP to ZK-SNARK. We compile an IPCP to a ZKSNARK in two steps. First we compile an IPCP to a
ZKIPCP and then transform ZKIPCP to a ZKSNARK.

In the first step, we need to ensure that the information revealed to the verifier is “zero-knowledge”.
Recall that information regarding the extended witness is revealed in each of the code, linear and
quadratic tests and in the symbols (i.e. columns of the U matrix) queried by the verifier. The columns
revealed can be protected by adding redundancy to the encoding. More precisely, we instantiate the
Reed-Solomon code so that the columns of U matrix provide t-privacy as a secret sharing scheme
where t is the number of symbols opened by the verifier. To make sure that the result of the tests leak
no information, it suffices to mask the results by adding additional rows to the U matrix that blind the
results of the tests. The IPCP protocol can be converted into ZKIPCP protocol without any additional
overhead by : 1) adding blinding random codewords to encoded witness U and 2) adding randomness
while generating U. This compilation only incurs a constant multiplicative overhead.

In the second step we rely on the compilation of Ben-Sasson et al. [7] (which in turn is based on
[30]) using Merkle trees. We argue that this step affects the asymptotic computation or communication
complexity only by a multiplicative factor proportional to poly(κ) where κ is computational security
parameter.

Efficiency. To get the target space and time efficiency we will set the β parameter (length of a block) of
the proof system to be Õ(S) and get a proof length of Õ((T/S) + S). The prover requires Õ(T)-time
and Õ(S)-space, which is complexity-preserving. Further, the verifier is “succinct” and will require
Õ(T/S + S)-time and Õ(1)-space to verify the proof.

Improving proof length. To improve the proof length, the protocol does not send the polynomials q(·)
in the test. Instead, the polynomials generate a codeword which will be used as an oracle. The prover
proves the degree of the polynomial using a low-degree testing protocol FRI [3] which requires poly-
logarithmic communication in the degree of polynomial, thereby reducing the proof length to Õ(T/S)
and preserving the time and space complexities of both the prover and the verifier.

1.2.2 Towards a Lower Bound We complement our positive result with a lower bound that demon-
strates why getting a proof length better than Õ(T/S) will be hard using current techniques. As
mentioned above, all techniques involve codes with constant distance in one form or another. We
show that any code that makes polylogarithmic passes on an input message of length n and produces
a code with constant distance must require space Õ(n). Interpreting the result in the context of proof
systems, if we want to generate a code of a message of length T in quasilinear time, it will require
space Ω(T). A slightly more refined implication is that with space S, encoding a T-length message in
quasilinear time (in T), can yield a code of distance at most S · polylog(T)/T. Testing such codes typ-
ically requires queries inversely proportional to the distance i.e. T/(S · polylog(T)). Hence, any proof
system that employs such a code and encodes a length T message, will need a query complexity of at
least T/(S · polylog(T)), implying that the proof length will also be at least T/(S · polylog(T)).

The high-level idea of the lower bound is to prove that for any constant-distance code over a field
F, the encoding algorithm requires space S > ((δn)/r −O(log m)) · log |F|, where n is the message
length, m is the codeword length, δ is the distance and r is the number of passes. A similar lower
bound on the space was shown by [2] for the restricted case where the encoding algorithm made only
a single pass over the message i.e., r = 1. We prove our lower bound in two steps.
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First, consider an encoding algorithm that reads each block (i.e., contiguous portion) of a message
and outputs a portion of the codeword. We show that there must be a message M that consists of a
block of length O(δn) such that the number of elements output by the encoding algorithm correspond-
ing to that block is δm/2.

Next, consider the set of all messages m′ that agree with m everywhere except on that block (there
are |F|O(δn) such messages). We show that there will be a subset of messages, say D, of size at least
|F|O(δn)−rS/ log |F|−O(r log m) such that the encoding of any two messages will differ only in at most
δm/2-elements where r is the number of passes made by the encoding algorithm on the input. If
this set has at least two messages, then the encodings of these messages will differ in at most δm/2
locations, thereby violating the distance property of the codeword whose minimum distance is δm. To
evade this contradiction, we require the size of D to be at most 1, i.e., |F|O(δn)−rS/ log |F|−O(r log m) ≤ 1
which implies that the space S > ((δn)/r−O(log m)) · log |F|.

1.3 A Comparison with Related Work

Related to the design of sub-linear zero-knowledge arguments, the work of Mohassel, Rosulek and
Scafuro [35] constructs zero-knowledge arguments when modeling the NP relation via a RAM pro-
gram, that are sublinear in a different sense. More precisely, they considered the scenario of a prover
that commits to a large database of size M, and later wishes to prove several statements of the form ∃w
such that Ri(M, w) = 1. After an initial setup with a computational cost of O(M) only on the prover’s
side, they achieve computation and communication complexities for both parties that are proportional
to Õ(T) where T is the running time of the RAM program implementing the relation and Õ hides a
factor of poly(log(T), κ).

Previously, the two works [11, 12] also designed black-box constructions of ZK-SNARKs with poly-
logarithmic overhead in time and space. These works rely on the hardness of discrete logarithm and
hidden order groups. Our protocol, on the other hand, relies on symmetric key operations and requires
collision-resistant hash functions. The prover’s time and space complexities of [11, 12] match our com-
plexity. This is the case for the verifier’s space complexity as well. The verifier’s running time in [11]
is Õ(T) and Õ(n) in [12] where n is the input length. On the other hand, our verifier’s complexity is
Õ(T/S + S). Finally, the communication complexity of prior works is Õ(1) while we achieve Õ(T/S).
We summarize these results in Table 1.

P time P space V time V space
[11] Õ(T) Õ(S) Õ(T) Õ(1)
[12] Õ(T) Õ(S) Õ(n) Õ(1)

Theorem 1 Õ(T) Õ(S) Õ(T/S + S) Õ(1)

Table 1. The complexity analysis of black-box ZKSNARKs. T and S are the respective time and space complexities
required by the RAM program to verify the NP relation. n is the input length and Õ(·) ignores polynomial factors
of log T.

2 Main Construction

In this section, we present a short overview of our space-efficient zero-knowledge argument system
for RAM programs based on collision-resistant hash-functions. Please see Section 5 for a more detailed
presentation.

The first main step in our construction is transforming a RAM program to the Ligero constraint
system. This is summarized in the Lemma below.

Lemma 1. Let M be an arbitrary (non-deterministic) Random Access Machine that on input strings (x, w)
runs in time T and space S. Then, (M, x) can be transformed into the following system of constraints over a
m× ℓ matrix X:
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Protocol 1 (Testing linear constraints over Interleaved RS Codes)
Input: Lm-codeword U, #blocks B, vectors {yi}i∈[B] each of length m′ℓ, indices {I[i]}i∈[B], matrix A of size ma × m′ℓ,
vector b of length ma.
Oracle: A purported Lm-codeword U that should encode m× ℓ matrix X such that, for every i ∈ [B] we have Ayi = b
where yi is the flattened vector corresponding to Yi and block Yi is a m′ × ℓ submatrix of X starting at the I[i]th row of X.
Linear Test:

1. V picks two random seeds s, s′ ∈ F and sends it to P.
2. P sends q(·) = ∑i∈[B] r′[i]qi(·) to V where r = (1, s, s2, . . . , sma−1), r′ = (1, s′, s′2, . . . , s′B−1),rT A =

(r1,1, . . . r1,ℓ, . . . , rm′ ,1, . . . , rm′ ,ℓ) and qi(·) = ∑k∈[m′ ] rk(·)pI[i]+k−1(·), and ri(·) is the polynomial of degree < ℓ

such that ri(ζ j) = ri,j for all j ∈ [ℓ].
3. V queries a random subset Q ⊆ [n] of size t to obtain the columns of U corresponding Q.
4. V accepts if

(a) q(·) is of degree < 2ℓ− 1.
(b) ∑k∈[ℓ] q(ζk) = ∑i∈[B] r′[i]rTb.
(c) For every i ∈ Q,

∑j∈[B],k∈[m′ ] r′[j] · rk(ηi)Uk+I[j],i = q(ηi).

Fig. 1. Protocol for Linear Test.

1. X is a m× ℓ matrix that is subdivided into sub-matrices or blocks X1, . . . , XB where each Xi is a m′ × ℓ

matrix, X =


X1
X2
...

XB

 and B = O
(

T
S

)
, m′ = polylog(T), m = m′ · B and ℓ = S · polylog(T). We denote

by xi the “flattened” vector corresponding to matrix Xi (namely, xi is the vector obtained by concatenating
the rows of Xi).

2. (Intra-block Linear Constraints) A is of size (m′ · ℓ)× (m′ · ℓ) and b is a length (m′ · ℓ)-vector and Axi = b
for all i ∈ [B].

3. (Inter-block Linear Constraints) A′ is a (2m′ · ℓ)× (2m′ · ℓ) matrix and b′ is a length (2m′ · ℓ)-vector and

A′
[

xi
xi+1

]
= b′ for all i ∈ [B− 1].

4. (Input-Consistency Constraint) A′′ is a |x| × (m′ · ℓ) matrix and A′′x1 = x where |x| is the size of x.
5. (Quadratic Constraints) For each i ∈ [B], Xle f t

i ⊙ Xright
i = Xout

i where ⊙ denotes point-wise products and

Xi =


Xinp

i
Xle f t

i
Xright

i
Xout

i

 where Xinp
i is minp× ℓ matrix and Xle f t

i , Xright
i , Xout

i are mmult× ℓ matrices (c.f. Figure 3)

.

Efficiency. Furthermore, the matrices A, A′ and A′′ are succinct according to Definition 10 and an input-
witness pair (x, w) that makes M accept can be mapped to an extended witness X by a RAM machine in
T · polylog(T) and space S · polylog(T).
Equivalency. Any X that satisfies the system of constraints can be mapped to a w such that M accepts (x, w).

The core of our construction is a space-efficient IPCP for the linear and quadratic tests. We only
focus on the linear test in this section. A formal description of the linear test and its corresponding
lemma are given below. For the full description of all the elements of our protocol, we refer the reader
to the section 5.

Lemma 2. Protocol 1 is an IOP/IPCP for testing linear constraints with the following properties:

– Completeness: If U ∈ Lm is an encoding of a m× ℓ matrix X such that, for every i ∈ [B], Ayi = b where
yi is the flattened vector corresponding to Yi and block Yi is a m′ × ℓ submatrix of X starting at the I[i]th

row of X and the P is honest, then V accepts with probability 1.
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– Soundness: Let e be a positive integer such that e < d/2 where d is minimal distance of Reed-Solomon
code. Suppose that a badly formed matrix U∗ is e-close to a codeword U that encodes a matrix X such that
∃i ∈ [B], Ayi ̸= b where yi is the flattened vector corresponding to Yi and block Yi is a m′ × ℓ submatrix of
X starting at the I[i]th row of X. Then for any malicious P∗ strategy, V will reject except with probability
((e + 2ℓ)/n)t + (ma + B)/|F|.

– Complexity:
P has X on its input tape and has a work tape of size O(m′ℓ). In this model, P makes a single pass on the
input tape. We denote by mℓ the length of X, the number of blocks as B and yi is a flattened vector of a
block within X of size m′ × ℓ. Given that P is provided with a one-way linear access to X, matrix A is a
public succinct matrix of dimension ma × m′ℓ as defined in Definition 10 then the following complexities
are obtained:

• Prover’s Time = m′ℓpoly log ma + O(m′ℓB log ℓ).
• Verifier’s Time = m′ℓpoly log ma + O(m′ℓκ + Bm′κ)
• Prover’s Space = O(m′ℓ).
• Verifier’s Space = O(κm′ + ma).
• Communication Complexity = O(ℓ).
• Query Complexity = O(κ).

Our IPCP protocol Given a RAM program M, we construct a zero-knowledge argument system for
BHRAM(M) by composing the following two components.

1. In section 5.2.1, we present our complexity-preserving reduction from BHRAM to extended witness
X that satisfies the system of constraints defined in lemma 10.

2. In sections 5.2.2, 5.2.3 and 5.2.4, we present protocols for testing interleaved linear codes, linear
constraints and quadratic constraints given oracle access to Lm-codeword U that encodes the ex-
tended witness X. The prover computes the outputs of the tests by processing X block-by-block.
The verifier has a “succinct” representation of the system of constraints imposed on X and can
therefore check the outputs of the tests in a space-efficient manner.

We compose these two components as follows. At a high level, the prover generates the extended
witness X block-by-block as described in the reduction from BHRAM to X. As and when a block is
generated, the prover processes this block to compute “running partial outputs” for each of the three
tests. The prover only needs to store a few blocks in memory at a time rather than the entire extended
witness.

Theorem 3. Fix parameters m, m′, mmult, n, ℓ, B, t, e, d such that e < d/3 and d = n− ℓ+ 1. For every NP
relation that can be verified by a time T and space S RAM machine M with input x. Then the Protocol 4 is a
public-coin IOP/IPCP with the following properties:

1. Completeness: If there exist an witness w such that M(x, w) with time T and space S is accepted and P

generated the oracle U honestly, then V accepts with probability 1.
2. Soundness: Let there exist no witness w such that M(x, w) is accepted in time T and space S, then for

every unbounded prover strategy P∗, V will reject except with (1− e/n)t + 4((e+ 2ℓ)/n)t + (d+ 3m′ℓ+
mmult + |x|+ 3B)/|F|.

3. Complexity: The complexities are in terms of the number of field operations performed or number of field
elements over a field F below.
(a) The prover runs in time T · poly(log T, κ) and uses space S · poly(log T, κ).
(b) The verifier runs in time (T/S + S) · poly(log T, κ) and uses space poly(log T, κ).
(c) The communication complexity is S ·poly(log T, κ), query complexity of the verifier is (T/S) ·poly(log T, κ)

and number of rounds is a constant.

where κ is the statistical security parameter.

In section 5.3, we show how to modify our IPCP to obtain zero-knowledge and then in section 5.5
how to improve the communication to Õ(T/S).
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3 Lower Bound for Space-Efficient Encoding Schemes

In this section, we present our lower bound on space-efficient constant-distance codes. This lower
bound provides evidence for why it is unlikely for current proof systems to be complexity preserving
(in both time and space) when the underlying RAM machine uses space S << T for non-trivial space.
In more detail, for a space-efficient constant-distance code that maps n field elements (i.e., message) to
m field elements (i.e., codeword) and has a minimum relative distance of δ, we show that an encoding
algorithm that makes r passes over the message requires space S > O(((δn)/r − log m) · log |F|).
Previously, [2] showed a similar lower bound for the restricted case where the encoding algorithm
made only a single pass over the message (as opposed to r passes in our case).

3.1 Interpreting the Lower Bound in the Context of Proof Systems

As mentioned in the technical overview, all constructions of succinct non-interactive arguments based
on symmetric-key primitives that are black-box in the underlying assumptions rely on constant-
distance codes [30, 6, 4, 1]. In slightly more detail, all constructions first rely transforming the circuit
evaluation to an “execution” transcript that is proportional to the size of the circuit and then encoding
the transcript via a constant-distance code. For a RAM machine, such a transformation typically re-
sults in a transcript of size T where T is the running time of the RAM computation. In this section, we
will show that encoding a T-element message via a constant-distance code will require space Ω(T/r),
where r is the number of passes taken by the algorithm on the input tape. In other words, current tech-
niques for constructing a time-preserving ZK-SNARK, i.e. r is at most polylog(T), will require prover’s
space of Ω(T/r). In particular if the space of the underlying RAM machine is S << T, it is unlikely
to get such a proof system that is complexity preserving (in time and space).

3.2 Warm Up: A Simple Lower Bound

As a warm up, we first present a lower bound where we assume a small restriction on the encoding
algorithm and then prove a more general result. We begin with some notation that will help in our
lower bounds.

Notation. We consider an encoding algorithm executed via a RAM machine with space S that encodes
a message of length n. The encoding algorithm has unidirectional (i.e. linear) access to the input tape
and can make multiple passes on the input. The machine also has a unidirectional output tape. Further,
the the encoding algorithm has RAM access to a work tape of size S bits (or equivalently S/ log |F|
field elements). To keep track of the current position of the read head of the encoding algorithm on the
input tape, we introduce the notion of head. Specifically, we use read head and write head to denote
the heads in the input tape and output tapes, respectively (where the message to be encoded is read
from the input tape and the codeword is written on to the output tape). Note that the contents of the
work tape of the encoding algorithm differs depending on the position of the read head. It will be
convenient to divide a msg into contiguous blocks of equal length. We will denote by by msg[i] the ith

block of msg. We denote by cmsg the output of Enc on input msg. Let cmsg[i, j] denote the part of the
codeword output by the encoding algorithm when it reads the block msg[i] during the jth pass, i.e.
when the read head moves from the left end to the right end of the block msg[i] in the jth pass. Let
cmsg[i] be the concatenation of {cmsg[i, 1], . . . , cmsg[i, r]}. We will drop the subscript when the msg is
understood from the context.

We present a high-level overview of the simplified version of the lower bound, which imposes
certain restrictions on the encoding algorithm. Note that the encoding algorithm reads a certain portion
of the message (referred to as a block), outputs a portion of the codeword (associated with this block)
and then proceeds to the next message block. We make a simplifying assumption that the length of the
codeword portion associated with any message block is independent of the contents of the message.
This is formally stated in assumption 1 below.

Assumption 1 The position of the read head and write head at any step during the encoding is independent of
the message.
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As a corollary we have the following: Suppose we divide the input message into ⌈2/δ⌉ blocks of
equal length. Given any two messages msg,msg′ ∈ Fn, the output of the encoding algorithm satisfies
|cmsg[i, j]| = |cmsg′ [i, j]| for all blocks i ∈ [2/δ] and passes j ∈ [r].

We begin with a proof overview. On a high-level the idea is to identify a set of messages whose
encoding violate the minimum distance property. First, by a simple counting argument we can argue
that there must be a message block t of length O(δn/2) such that the total number of elements output
by the encoding algorithm when the read head passes through block t (i.e. ∑j |c[t, j]|) is at most δm/2.
Observe that block t will have the same property for any message by our Assumption 1. Next, we
will focus on messages that are identical everywhere except on block t; if we fix the remaining blocks
then there are |F|δn/2 such messages as each block is of size δn/2. Out of these |F|δn/2 messages, we
identify a subset of messages that result in identical work tapes after the encoding algorithm reads
block t in each pass. These messages have property that the code can only differ in the portions output
when reading block t, namely c[t, j]. We conclude by showing that there exist at least two messages in
this set when S ≤ (δn/2r) · log |F|. Since the codewords corresponding to these messages only differ
in at most δm/2 locations, but the minimum distance of the code is δm, we arrive at a contradiction.

Theorem 4. Let C be a [m, n, δm] code over F with message length n, codeword length m and minimum relative
distance δ. Also, let Enc(T,S,r) : Fn → Fm be a Turing machine that on input msg ∈ Fn outputs an encoding of
msg in time T with a work tape of size S while making r passes on the message. Suppose Assumption 1 holds,
then S ≥ (δn/2r) · log |F|.

Proof. Assume for contradiction that there exists a [m, n, δm] code C over F with an encoding algorithm
Enc(T,S,r). Consider an arbitrary message msg. Let’s partition it into 2/δ blocks each of length δn/2
elements.

Assumption 1 implies that the length of the output of the encoding algorithm associated with
message block i, which is denoted by |c[t]|, is the same for all messages. Here, c[i] is a concatenation of
{c[i, 1], . . . , c[i, r]} for some message msg. We drop the subscript for |cmsg[t]| as the length is the same
for all messages. Next, We show that there exists a message block t such that c[t] is of length at most
δm/2.

Lemma 3. There exists a t ∈ [2/δ] such that |c[t]| ≤ δm/2.

Proof. Assume for contradiction, for every t, |c[t]| > δm/2. Then,

|c| = ∑
i
|c[i]| > 2/δ× δm/2 > m

which is a contradiction.

Lemma 4. Given message block t ∈ [2/δ] and pass k ∈ [r], there exists a set of messages Dk of size at least
|F| δn

2 −kS/ log |F| such that for any two messages msg,msg′ ∈ Dk the following holds:

1. msg[i] = msg′[i] for all i ̸= t.
2. At the end of the kth pass, cmsg and cmsg′ differ only at positions occupied by c[t, 1], . . . , c[t, k]. Furthermore,

the contents of the work tape of the encoding algorithm at the end of the kth pass for messages msg and msg′

will be identical.

Proof. Consider an arbitrary message msg, define D0 to be the set of all messages that are identical to
msg in every block i ̸= t, but differ in block t. D0 contains |F| δn

2 messages. We prove the claim via an
induction on the number of passes.

Base case: In the first pass, we show that there exists D1 ⊆ D0, such that the properties of the claim

hold. By an averaging argument, there must exist a subset of D0, say D1, of size at least |F|
δn
2 −

S
log |F|

with the following property: the contents of the work tapes are identical for any two messages in D1
after the encoding algorithm finishes reading block t message during the first pass.

We now show that the codewords cmsg and cmsg′ differ only in the codeword portions c[t, 1] for any
two messages msg,msg′ ∈ D1. Since all messages in D0 are identical except for block t, the encoding
will be identical before the codeword portion c[t, 1]. Next, since the contents of work tapes after reading
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block t are identical and the remaining part of the message (i.e., after message block t) are the same, the
rest of the output until the encoding finishes the first pass will be the identical as well. Furthermore,
the work tapes will be identical when the encoding finishes the first pass.

Induction: Suppose that there exists a set of messages Dk for which the conditions of the claim holds at
the end of the kth pass. Then in the (k + 1)st pass, the encoding algorithm starts with identical contents
on the work tape for every message in Dk, so it will output the same elements until the encoding
reaches block t. Applying another averaging argument, there must exists a subset Dk+1 ⊆ Dk of size at

least |F|
δn
2 −

kS
log |F| /|F|S/ log |F| = |F|

δn
2 −

(k+1)S
log |F| such that the work tape will be identical when the encoding

finishes reading block t in the (k + 1)st pass. Similarly the contents of the work tapes and the output
for these messages will also be identical for every two messages in Dk+1 until the end of the (k + 1)st

pass. This completes the induction step.

Finally, we combine lemmas 3 and 4 to prove theorem 4 via contradiction. As per lemma 3, there
exists a message block t such that the encodings of messages differing only at this block have a distance
of at most δm/2. If we instantiate lemma 4 for block t, we get that there exists a set of messages Dr of

size |F|
δn
2 −

rS
log |F| such that the encodings of any two messages in Dr differ in at most δm/2 locations. If

we set S < (δn/2r) · log |F|, then Dr will contain at least 2 messages whose encodings differ in at most
δm/2 locations. This contradicts the distance requirements of the codeword CF,n,m,δ whose minimum
distance is at least δm.

3.3 Lower Bound for Multi-Pass Space-Efficient Encoding Schemes

In this section, we extend the lower bound where we do not make Assumption 1. Without this assump-
tion, for two different messages, the portion of the code affected by different blocks of the message
could be different. The main idea to deal with the general case is to show that there exist sufficiently
many messages for which Assumption 1 holds and then apply the preceding argument.

Theorem 5. Let C be a [m, n, δm] code over F with message length n, codeword length m and minimum
relative distance δ. Also, let Enc(T,S,r) : Fn → Fm be a Turing machine that on input msg ∈ Fn outputs
an encoding of msg in time T with a work tape of size S while making r passes on the message. Then S ≥
(δn/4r− 2(log|F| m)− 2/r) · log |F|.

Proof. Assume for contradiction that there exists a code C and encoding algorithm Enc. We partition
the message msg into 4/δ blocks each of length δn/4. We first show that there exists a subset containing
|F|δn/4−2 messages, say D, and an index t such that for each message msg in D, we have |cmsg[t]| ≤
δm/2. Note however, that since Assumption 1 does not hold, the corresponding code blocks for these
messages might not be aligned.

Lemma 5. There exists a set of messages D of size at least |D| ≥ |F|δn/4−2 and t ∈ [4/δ] such that for any
two msg,msg′ ∈ D the following holds:

1. msg[i] = msg′[i] for all i ̸= t.
2. |cmsg[t]| ≤ δm/2.

Proof. Assume for contradiction that such a set D does not exist. Given a message msg, let At[msg] be
the set of all possible messages that agree with msg on all blocks except block t. We know that the
size of At[msg] is |F|δn/4. By our assumption, we have that for more than |F|δn/4 − |F|δn/4−2 of the
messages in At[msg], it holds that c[t] is of length bigger than δm/2. We will now compute

∑
s∈{0,1}n−δn/4

∑
t

∑
s′∈{0,1}δn/4

|cCombine(s,s′ ,t)[t]|

where Combine(a, b, i) denotes the string obtained by inserting b into string a at position t × δn/4.
Observe that the sum above, counts the sum total of the lengths of the encodings of every message,
which should be equal to m× |F|n. By our assumption, we can lower bound the sum as

|F|n−δn/4 × 4/δ× (|F|δn/4 − |F|δn/4−2)× δm/2 = 2× |F|n × (1− 1/|F|2)×m
> |F|n ×m

where the last step holds for |F| ≥ 2. This is a contradiction.
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Next, we show that there are sufficiently many messages in D and indices t, such that the message
block t influences identical portions of the codeword. In other words, the assumption we made for the
warm-up proof holds for a subset of the messages in D.

Lemma 6. Given any index t ∈ [4/δ], set D of messages there exists a subset of messages D′ ⊆ D of size at
least |D|/m2r such that for all messages msg′,msg′′ in D′, the starting and ending positions of cmsg′ [t, i] and
cmsg′′ [t, i] w.r.t the code are identical for every i ∈ [r].

Proof. There are overall 2r positions considering the starting and ending points of cmsg[t, 1], . . . , cmsg[t, r]
w.r.t the code. The number of possibilities for these 2r points is exactly (m

2r) (because selection of 2r po-
sitions can be assigned as starting and ending positions uniquely to the code blocks). By an averaging
argument there must be at least |D|

(m
2r)
≥ |D|

m2r messages in D for which these 2r locations will be identical.

Combining Lemmas 5 and 6, we get that there exists a set B of size at least |F|
δn
4 −2r log|F|(m)−2 and

index t that satisfy the conditions in both the lemmas.

Lemma 7. There exists a set of messages D ⊆ B of size at least |F|
δn
4 −2r(log m)− rS

log |F|−2 where the following
properties hold for any messages msg,msg′ ∈ D:
1. msg[i] = msg′[i] for all i ̸= t.
2. At the end of the kth pass, cmsg and cmsg′ differ only in the portions occupied by the blocks c[t, 1], . . . , c[t, k].

Furthermore, the contents of the work tape of the encoding algorithm at the end of the kth pass will be
identical.

Proof. Observe that all messages in B have the property that they are identical on all blocks except at
block t. Moreover, the starting and ending positions w.r.t the code when the encoding algorithm reads
block t are identical for all messages in B. We can now follow essentially the same argument as Claim
4 to prove this claim.

We conclude the proof of Theorem 5 by observing that if D has at least two messages we arrive
at a contradiction because for every message in D, c[t] is at most δm/2 and for any two messages the
corresponding codes only differ in these locations. Thus, if δn

4 − 2r(log|F| m)− rS
log |F| − 2 > 0, we arrive

at a contradiction.

4 Preliminaries

Basic notations. Let κ be the security parameter. We use lower-case letters such as x,y to represent
vectors, and x[i] denotes the ith element in vector x. We use capital letters such as X, Y to represent
matrices. Also, X[j] denotes the jth column and Xi,j denote the element in ith row and jth column in
matrix X. We use the notation Õ(.) to ignore polylog(.) terms. A matrix X is said to be flattened into a
vector x (i.e. denoted by the lower-case letters of the corresponding matrix), if x is a rearrangement of
the matrix X row-wise i.e., x = (X1,1, . . . , X1,n, . . . , Xm,1, Xm,n) where X is of size m× n.

We also Xi or Yi to denote matrices, especially when there many such matrices and i identifies a
specific matrix in the set {Xi}i∈[n]. Note that the flattened vector associated with Xi and Yi are denoted
by corresponding lower-case letters i.e. xi and yi respectively.

4.1 Circuit Notations

A arithmetic circuit C is defined over a field F and has input gates, output gates, intermediate gates,
and directed wires between them. Each gate computes addition or multiplication over F. We define
the notion of a transcript for an arithmetic circuit C to be an assignment of values to the gates where
the gates are ordered in a lexicographic order; each gate in circuit C will have a gate id gid and will
have two input wires and one output wire. Each wire will also have a wire id wid and in case a wire
value is an output wire of gate gid, then the wire id wid = gid. Each element in the transcript W is of
the form (gid, type, γ) where gid is the gate label, type ∈ {inp, add,mult, out} is the type of the gate and
γ is the output wire value of gate gid.

A circuit descriptor, denote by ϕ, is an algorithm that, given as input a gate number gid of C,
outputs the type of the gate type, the input gates to gid and the output gates to gid. We refer to a circuit
that has a short descriptor (say, of size polylog(|C|) where C is the size of the circuit) as a succinct circuit.
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4.2 Secret Sharing Schemes

A secret sharing scheme is a fundamental building block used in multi-party computation. Roughly,
a (t, r, n)-secret sharing scheme (t < r ≤ n) takes a secret s as input and outputs n shares with
the following properties: the secret s can be efficiently reconstructed from any subset of r shares
(correctness), while ensuring that a subset of t shares does not reveal anything about the secret s
(privacy). A secret sharing scheme consists of the two algorithms (Sh,Rec), which we instantiate with
Shamir’s secret sharing scheme [42] as follows.

– Sharing: Given any input s ∈ F, the sharing algorithm Sh outputs n shares c. The syntax for
this is c ← Sh(m). Pick a random polynomial p of degree t such that p(0) = s and output c :=
(p(1), . . . , p(n).

– Reconstruction: The algorithm Rec takes as an input the shares c = {c′i}i∈S ∈ Fn and a set S to
reconstruct the secret s where none of c′i are ⊥ and |S| > t. This is denoted by s = Rec(c). The
reconstruction algorithm reconstructs the polynomial p′(·) using Lagrange interpolation as follows
and outputs p′(0).

p′(x) = ∑
i∈S

c′i ∏
j∈S\{i}

x− j
i− j

Packed secret-sharing. Packed secret-sharing was introduced by Franklin and Yung [22] in order to re-
duce the communication complexity of secure multi-party protocols, and is an extension of standard
secret-sharing. In [22] the authors considered Shamir’s secret-sharing with the difference that the num-
ber of secrets s1, . . . , sℓ is now ℓ instead of a single secret, evaluated by a polynomial p(·) on ℓ distinct
points. To ensure privacy in case of t corrupted parties, the random polynomial must have degree at
least t + ℓ. We use packed secret-sharing in our underlying protocol to save on communication com-
plexity. We denote a packed secret sharing scheme for ℓ secrets by the pair of algorithms (Shℓ,Recℓ)
and extend the security definitions from the standard secret sharing scheme accordingly.

4.3 Reed-Solomon Encoding

For a linear code C ⊆ Σn and vector v ∈ Σn, we use d(C, v) to denote the minimal distance of v from
C. Formally d(C, v) = minc∈C h(c, v), where h(c, v) is the hamming distance between c and v.

Definition 1 (Reed-Solomon code). For positive integers n, k, field F and vector η = (η1, . . . , ηn) ∈ Fn

of distinct field elements, the Reed-Solomon (RS) code RSF,n,k,η is the [n, k, n− k + 1] linear code over F that
consists of all n-tuples (p(η1), . . . , p(ηn)) where p is a polynomial of degree < k over F.

Definition 2 (Encoded message). Let L = RSF,n,k,η be an RS code and ζ = (ζ1, . . . , ζk) be a sequence of
distinct elements in F. For a codeword u ∈ L, we define the message Decζ(u) to be (pu(ζ1), . . . , pu(ζk)), where
pu is the polynomial (of degree < k) corresponding to codeword u. For U ∈ Lm with rows u1, . . . , um ∈ L, we
let Decζ(U) be the length-mk vector x = (x11, . . . , x1k, . . . , xm1, . . . , xmk) such that (xi1, . . . , xik) = Decζ(ui)
for i ∈ [m]. Finally we say that U encodes x if x = Decζ(U), we use Dec(U) when ζ is clear from the context.

In our protocol, we set the interpolation point ζi = ω2(i−1) f and evaluation point ηi = ω2i−1 where
ω be a primitive 2nth root of unity i.e. ω2n = 1 but ωm ̸= 1 for 0 < m < 2n. We can evaluate (p(η1), . . . ,
p(ηn)) using the fast Fourier transform (FFT), which takes O(n log n) field operations. We use RS(a)
to denote the RS encoding of message a.

Further, Reed-Solomon encoding satisfies a strong multiplicative property which states that the
“product” of two Reed-Solomon codewords is a Reed-Solomon code.

Definition 3 (Strong Multiplicative Property). Let L = RSF,n,k,η be an RS code and ζ = (ζ1, . . . , ζk) be a
sequence of distinct elements in F. For any two codeword u1, u2 ∈ L, then u1 ⊙ u2 ∈ RSF,n,2k−1,η where is ⊙
denote pointwise product.
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4.4 Schwartz-Zippel Lemma

Lemma 8. [39] Let F be the field and f be a polynomial of degree d.

Prx←F[ f (x) = 0] ≤ d/|F|

This lemma states that if x is chosen uniformly at random from the field F, then the probability
that f (x) = 0 is at most d/|F|.

4.5 Collision-Resistant Hashing and Merkle Trees

Let {Hκ}κ∈N = {H : {0, 1}p(κ) → {0, 1}p′(κ)}κ be a family of hash functions, where p(·) and p′(·) are
polynomials so that p′(κ) ≤ p(κ) for sufficiently large κ ∈ N. When we need the hash computations
to be space efficient, we make use of the Merkle-Damgard paradigm [19]. In this paradigm, a hash
of an arbitrary length message can be computed on fixed length blocks (say of size S) iteratively,
which requires space O(S). For a message m = (m1, . . . , mn), the the Merkle-Damgard hash function
is updated iteratively for each mi which we denote by hi ← MD.Update(hi−1, mi)

3.
For a hash function H ← Hκ , a Merkle hash tree [34] is a data structure that allows to commit to ℓ =

2d messages by a single hash value h such that revealing any message requires only to reveal O(d) hash
values. A Merkle hash tree is represented by a binary tree of depth d where the ℓ messages m1, . . . , mℓ

are assigned to the leaves of the tree; the values assigned to the internal nodes are computed using the
underlying hash function H that is applied on the values assigned to the children, whereas the value h
that commits to m1, . . . , mℓ is assigned to the root of the tree. To open the commitment to a message mi,
one reveals mi together with all the values assigned to nodes on the path from the root to mi, and the
values assigned to the siblings of these nodes. We denote the algorithm of committing to ℓ messages
m1, . . . , mℓ by h := MT.Commit(m1, . . . , mℓ) and the opening of mi by (mi, πi) := MT.Open(h, i).
Verifying the opening of mi is carried out by essentially recomputing the entire path bottom-up and
comparing the final outcome (i.e., the root) to the value given at the commitment phase.

The binding property of a Merkle hash tree is due to collision-resistance. Intuitively, this says that
it is infeasible to efficiently find a pair (x, x′) so that H(x) = H(x′), where H ← Hκ for sufficiently
large κ. In fact, one can show that collision-resistance of {Hκ}κ∈N carries over to the Merkle hashing.
Formally, we say that a family of hash functions {Hκ}κ is collision-resistant if for any PPT adversary
A the following experiment outputs 1 with probability negl(κ): (i) A hash function H is sampled from
Hκ ; (ii) The adversary A is given H and outputs x, x′; (iii) The experiment outputs 1 if and only if
x ̸= x′ and H(x) = H(x′).

4.6 Zero-Knowledge Arguments

A zero-knowledge argument system for an NP relationship R is a protocol between a computationally-
bounded prover P and a verifier V. At the end of the protocol, V is convinced by P that there exists
a witness w such that (x; w) ∈ R for some input x, and learns nothing beyond that. We focus on
arguments of knowledge which have the stronger property that if the prover convinces the verifier of
the statement validity, then the prover must know w. Formally, consider the definition below, where
we assume R is known to P and V.

Definition 4. Let R(x, w) be an NP relation corresponding to an NP language L. A tuple of algorithm (P,V)
is an argument of knowledge for R if the following holds.

– Correctness. For every (x, w) ∈ R and auxiliary input z ∈ {0, 1}∗, it holds:

⟨P(w),V(z)⟩(x) = 1

– Soundness. For every x /∈ L, every (unbounded) interactive machine P∗, and every w, z ∈ {0, 1}∗ and a
large enough security parameter λ,

Pr[⟨P(w),V(z)⟩(x) = 1] ≤ negl(λ)

3 Here, h0 is defined as per the specific instantiation of the Merkle-Damgard construction.
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It is a zero-knowledge argument of knowledge it additionally satisfies:

– Zero knowledge. There exists a PPT simulator S such that for any PPT algorithm V∗, auxiliary input
z ∈ {0, 1}∗, and (x; w) ∈ R, it holds that

View(⟨P(w),V(z)∗⟩(x)) ≈ SV∗(x, z)

Here SV∗ denotes that the simulator S sees the randomness from a polynomial-size space of V∗.

Succinct vs. Sublinear Arguments. We say an argument of knowledge is succinct if there exists a fixed
polynomial p(·) such that the length of the proof is is bounded by p(λ + log |C|) where C is the circuit
corresponding to the NP relation. Similarly, we say an argument of knowledge is sublinear if the proof
length is oλ(|C|) where oλ(·) hides multiplicative factors dependent on the security parameter λ.

4.7 Random-Access Machines (RAM)

A Random-Access Machines (RAM) comprises of a finite set of instructions that are executed sequen-
tially on a finite set of registers and can make arbitrary memory accesses. We assume that each time
step during the execution of a RAM program executes a single instruction or accesses the memory lo-
cations. We model the RAM as a Reduced-Instruction Set Computer (RISC) which more closely models
programs compiled from high-level languages such as Java, C++. We adopt the formal notation for
RAM from [5].

Definition 5. (The RAM Model [5]) A random-access machine (RAM) is a tuple M = (w, k, A,C,T), where:

– w ∈N is the register size;
– k ∈N is the number of registers;
– C = (I0, . . . , In−1) is a set of instructions (or the code for the RAM program), where n ∈ {1, . . . 2w} and

each Ii is an instruction.
– T is a set of tapes which consists of a constant number of unidirectional input tapes with read-only access

and single unidirectional output tape.
– W is a work tape with arbitrary read and write accesses.

Consider a RAM program M that runs in time T(n) and uses S(n) memory cells on input x with n-
bits. For simplicity, we use T and S instead of T(n) and S(n) as the input length can be easily inferred.
During the execution of M, we refer to the “local” state of M at some time step τ ∈ [T(n)] as the
configuration which consists of the program counter and the values of all the registers at timestep τ.

Definition 6. Let M = (w, k, A;C,T, W) be a random-access machine. A configuration of M is a tuple
S = (pc, r0, . . . , rk−1) where Ipc is the next instruction to be executed in code C and r0, . . . , rk−1 are the current
w-bit values of the k registers.

The execution of the RAM program involves executing a sequence of instructions pointed to by
the program counter pc. Specifically, the instruction Ipc is executed at every timestep of the RAM pro-
gram. The instruction may modify the registers, the work tape or the program counter as per the RAM
program’s code. If the program counter is modified by the current instruction,4, then the new instruc-
tion pointed by pc is executed next; otherwise the program counter proceeds to the next instruction
i.e., pc := pc + 1. An execution of the RAM program is represented by a sequence of (time-ordered)
configurations

−→
S = (S0, . . . , ST−1). If the final configuration ST−1 outputs the instruction correspond-

ing to it is (out, accept), then ST−1 is an accepting configuration and the sequence of configurations
−→
S are accepting. Similarly, if the final configuration ST−1 outputs the instruction corresponding to it
is (out, reject), then ST−1 is a rejecting configuration and and the sequence of configurations

−→
S are

rejecting.
The RAM program M has arbitrary access to a work tape5. At any time step, the RAM program

may read from or write into the cells (also referred to as memory cells) of the work tape using the load

4 For instance, jump or goto instructions modify the program counter i.e. set pc to point to an arbitrary instruction.
5 Generally, the RAM program has access to memory which we model as a work tape.
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and store instructions respectively. We say a RAM program uses space S, if at most S memory cells of
the tape were accessed during an execution of the M. For a sequence of configurations

−→
S to be valid,

we require a value read from the work tape to be the same as the value previously written into the
same location. In other words, we need the configurations with a load instruction to be consistent with
previous configuration with a store instruction modifying the same memory cell, which we refer to as
memory consistency.

4.8 RAM to Circuit Reduction

Circuits are a model of computation that can efficiently capture highly structured computation such
as Fourier transforms, arithmetic operation on inputs, etc. However, circuits are not convenient to rep-
resent certain problems. Constraint satisfaction problems are one such examples with a strong combi-
natorial or algebraic flavor such as the number of Hamiltonian cycles, the graph coloring problem and
the existence of a low-degree polynomial with certain roots. Also, the correct execution of programs
in written in high-level languages such as C++, Java can easily be reduced to the correct execution
of RAM programs using modern compilers, rather than circuits. Since a wide range of problems can
be conveniently expressed as time and space bounded RAM programs, we express our problems as
constraint satisfaction problems over RAM programs, which can be modeled as a Bounded Halting
Problem on a RAM. Following the formalization of [5], a Bounded Halting Problem on a RAM pro-
gram M, denoted by BHRAM, is the language of all triples (x, T, S) such that there is a witness w for
which M(x, w) accepts within T time steps using at most S memory cells (formally stated in [5]).

Definition 7. [5] Let M be a random-access machine. The language BHRAM(M) consists of instances (x, T(n), S(n)),
where x is a binary string of length n, with |x| ≤ T(n), such that there exists a binary string w of length at most
T(n) for which M(x, w) accepts within T(n) steps and accesses at most S(n) distinct addresses. Furthermore, we
denote by BHRAM the language of all quadruples (M, x, T(n), S(n)) such that (x, T(n), S(n)) ∈ BHRAM(M).

Next, we describe the circuit satisfiability (CSAT) which is the language of all satisfiable circuits.
The succinct variant of circuit sCSAT consists of (potentially short) circuit descriptors6 instead of
circuits, which is defined as follows.

Definition 8. [5] (sCSAT) For a family of circuit descriptors Φ = {ϕT,S}T,S∈N, sCSAT(Φ) is the language of
(x, T, S) such that there exists a witness w for which C(x, w) accepts, where C is the circuit described by ϕT,S.
The language sCSAT is the set of all (ϕ, x, T, S) such that (x, T, S) ∈ sCSAT(ϕ).

We rely on the RAM to circuit reduction of [5] to transform a time T, space S RAM program M that
accepts input x into a (non-deterministic) arithmetic circuit C over a field F where C has a succinct
descriptor ϕ of size polylog(T). Namely, for an instance (x, T, S), we have that (x, T, S) ∈ BHRAM(M)
if and only if (x, T, S) ∈ sCSAT(ϕ).

Zero Knowledge for RAM. Given a succinct zero-knowledge argument system (P, V) for circuit satis-
fiability (CSAT) and the reduction from BHRAM to Circuit satisfiability (given in [5]), we construct a
succinct zero-knowledge argument system (P′, V′) for BHRAM. The prover P′ reduces the proof for
statements of the form “Is (x, T, S) satisfiable?” to statements of the form “Is the circuit C satisfiable?”.
Then the prover P′ invokes the prover P for CSAT. The reduction from BHRAM to CSAT preserves
succinctness i.e., the reduction from BHRAM to CSAT outputs a succinct representation of the NP
statement for CSAT.

We model the prover P and the verifier V in our zero-knowledge argument system as RAM pro-
grams. Both P and V have a read-only unidirectional input tape with the instance (x, T, S), a unidirec-
tional output tape and a work tape. Additionally, P has read-only unidirectional access to a witness
tape with the witness w and V has read-only unidirectional access to a proof tape with the proof
written by P.

6 Recall that circuit descriptors are algorithms, given an input gid, output all the information related to the gate
such as the type, inputs and outputs of gid.
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4.9 Routing Networks

We model the routing network as a graph with a distinguished set of source and sink nodes each of
size N. The goal of these routing networks is to find node-disjoint paths from a source node i to the
sink node π(i) for each i ∈ [N] where π is permutation over [N]. If such node-disjoint paths exist for
every permutation from sources to sinks, then such a routing network is said to have the property of
rearrangability.

Extended De Bruijn networks are a class of routing networks, which can be modeled as a directed
graph with O(κ) layers each containing 2κ nodes where each vertex is connected to two nodes in
the following layer. The sources and sinks correspond to the set of nodes in the first and last layer
respectively. We use the same notation as [8, 5] for De Bruijn graphs, which is formally stated in
Definition 9.

Definition 9. (Extended De-Bruijn Graphs [5]) Let κ and L be two positive integers. The (κ, L) extended
De Brujn graph, denoted DB(κ, L), is a directed 2-regular graph with L layers numbered 0, . . . , L − 1 each
containing 2κ vertices identified by κ-bit strings. A vertex in layer i ∈ {0, . . . , L− 1} with identifier w ∈ {0, 1}κ

has two neighbors in layer (i + 1) mod L with identifier sr(w) and sr(w)⊕ e1 where sr denotes the cyclic “shift
right” bit operation and e1 denotes w-bit string such that only the most significant (i.e., rightmost) bit is 1 and
all other bits are 0. In other words, the edge set is induced by the following two neighbor functions:

Γ1((i, w)) = ((i + 1 mod L), sr(w))

Γ2((i, w)) = ((i + 1 mod L), sr(w)⊕ e1)

It has been shown in [5] that the extended De-Bruijn graph has the rearrangability if it has “suf-
ficiently” many layers. In more detail, they can route any given permutation over {0, 1}κ from the
source to the sink nodes in time and space O(κ · 2κ), which is stated formally in lemma 9

Lemma 9. [5] Let κ be a positive integer and π : {0, 1}κ ← {0, 1}κ be a permutation. There exists a set Sπ of
2κ node-disjoint paths such that each node (0, w) in DB(κ; 4κ− 1) is connected to (0, π(w)). Moreover, Sπ can
be found in time and space O(κ · 2κ) or parallel time O(κ2).

Suppose a routing network outputs a path pi from the source node i to the sink node π(i) for each
i ∈ [N] where π is a permutation. Let each of the source nodes have information of size {0, 1}κ with
it, which is referred to as a packet. The packets associated with a source node i are “forwarded” from
i to π(i) along the path pi. Since the paths are node-disjoint, no two packets will cross paths through
a same node.

4.10 Succinct Matrix

We define succinct matrices which will be used in our zero-knowledge argument system.

Definition 10 (Succinct Matrix). A succinct matrix A is a matrix of dimension n1 × n2 with the following
properties:

– There are n1 · polylog(n1) non-zero values.
– There exists an algorithm getColumn(·) that takes input j and outputs a list L. The list L contains all non-

zero elements of column j where each non-zero element is represented as a tuple (k, val) where k represents
the row number and val represents the non-zero value. This algorithm runs in polylog(n1).

5 Sublinear Zero-Knowledge Arguments for RAM Programs

In this section, we present our space-efficient zero-knowledge argument system for RAM programs
based on collision-resistant hash-functions. Our construction is a variant of the Ligero argument sys-
tem [1] and we begin with a brief overview of the construction.
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5.1 Overview of Ligero ZK Argument [1]

Given an arithmetic circuit C, the Ligero system[1] allows proving satisfiability of C. Recall that in the
Ligero proof system, the satisfiability is expressed as a system of linear constraints (A, b) and quadratic
constraints (defined via a set of tuples containing row indices (il , ir, io)) over a matrix X that contains
the wire values of an evaluation of the circuit C on a satisfying input arranged in a specific way.

In more detail, the proof system proceeds as follows:

1. Merkle tree: In the first step, the prover commits an “extended witness" to the verifier. In more
detail, it evaluates the circuit C on the private witness w to compute all wire values (input, inter-
mediate and output) and arranges the values in a specific way in a m× ℓ matrix X referred to as
the extended witness. The prover then encodes the matrix using a Interleaved Reed Solomon (IRS)
code to obtain a m× n matrix U, namely, each row of U is an encoding of a corresponding row in
X using a Reed Solomon code. Finally, the prover generates a Merkle hash tree where the leaves
contain the n columns of U and sends the Merkle root to the verifier.

2. Testing IRS encoding: In the next step, the prover provides evidence attesting that the matrix U is
a valid encoding of some matrix X. Namely, in this step, the verifier sends a random vector r ∈ Fm

as a challenge to the prover and the prover responds with the vector rTU. The verifiers accepts if
the vector is a valid RS codeword.

3. Testing linear Constraints: In this step, the prover convinces the verifier of all the linear constraints
on the extended witness. Namely, these include the circuit wiring topological constraints and addi-
tion gates. Let x be the m× ℓ-length flattened vector corresponding to X obtained by concatenating
the rows of X. Then the linear constraints can be expressed as Ax = 0 where A is a public matrix.
The verifier provides a vector r′ of length m × ℓ and tries to verify that r′T(Ax) = b. Towards
this, the prover rearranges the vector r′T A as an m× ℓ matrix and computes an Interleaved Reed
Solomon encoding R. Instead of sending r′T(Ax), the prover sends the vector q = (1m)T(R⊙U)
where 1m is the all ones length m vector and ⊙ denotes pointwise product. By the multiplicative
property of Reed-Solomon codes (c.f. Definition 3)), it follows that checking r′T(Ax) = rT′b is
equivalent to decoding q to a vector of values and checking if the sum of those values is r′Tb.

4. Testing Quadratic Constraints: Quadratic constraints encode all the multiplication gates in the cir-
cuit. The special arrangement of the wire values in X require the inputs/outputs of multiplication
gates be batched ℓ at a time and have the left wire values, right wire values and output wire values
in separate rows of X such that the jth columns of each of these rows correspond to the wire values
of jth multiplication gate of that batch. Given a tuple of row indices (il , ir, io) corresponding to a
batch of multiplication gates, we have Xil ,· ⊙ Xir ,· − Xio ,· is the all 0’s vector if the prover is honest.
To check this, in this step, the verifier provides a random vector r′′. The prover responds with

∑
j

r′′j · (Uij
l ,·
⊙U

ij
r ,· −U

ij
o ,·)

and the verifier decodes and checks if the resulting vector encodes the all 0 string. This step relies
again on the strong multiplicative property of Reed Solomon codes.

5. Column check: In this step, the verifier ensures that the responses to the previous tests are con-
sistent with the actual code committed to at the beginning via the root of the Merkle tree. More
precisely, the verifier samples and sends a random subset I ⊆ [n] of κ columns. The prover re-
sponds with the corresponding columns in the U matrix along with Merkle decommitments. Next,
the verifier recomputes the result of each of the tests above for those columns and checks if the
response agrees with the recomputed values on those columns. This step utilizes the fact that every
test can be expressed as row operations on the U matrix.

5.2 Our IPCP Construction

In this section, we provide a description of our IPCP system. It follows the same blueprint of the Ligero
system. On a high-level we will provide a space-efficient variant of each phase of the Ligero blueprint.

1. In Section 5.2.1, we describe our RAM to circuit reduction. We rely on the transformation of [5, 13]
that transforms a RAM program to a circuit C with a “succinct” representation.
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2. In Section 5.2.2, we describe how to test interleaved linear codes in a space efficient manner. This
essentially follows as in the previous step as rTU can be computed by recomputing U and main-
taining a running partial aggregate of ∑j rjUj,·.

3. In Section 5.2.3, we describe how the linear test can be performed in a space efficient manner. This
is the non-trivial part of the construction as we need to utilize the succinct representation of C and
the arrangement of the extended witness in U to compute the response in a space-efficient manner.

4. In Section 5.2.4, we describe how the quadratic test can be performed in a space-efficient manner.
This will rely on ideas from the previous two steps.

5. In Section 5.2.5, we integrate all of the previous subsections from Section 5.2.1-5.2.4 to construct a
space-efficient IPCP.

5.2.1 RAM to Circuit Reduction We rely on the space-efficient RAM-to-Circuit reduction of [5, 13],
which transforms a RAM program M with running time T and space S into a circuit C of size
Õ(T) where the transformation runs in time Õ(T) and space Õ(S). The resulting circuit C of size
T · polylog(T) can be generated in time polylog(T). Given a (input, witness) pair (x, w), we show that
the wire values in C(x, w) can be arranged in a specific manner that would later be useful in our
zero-knowledge argument system (as it allows us to efficiently check if the constraints imposed by
the circuit are satisfied). We describe the extended witness7 X for the circuit C and the corresponding
constraints in Lemma 10.

Parameter Description
X Extended Witness
U Encoded Extended Witness

pi(·) ith polynomial generated by encoding X
m #Rows in the extended witness (& oracle)
ℓ #Columns in the extended witness
n #Columns in the oracle
t #queries on U
B #blocks in X
m′ #Rows in a block

Xinp
i Sub-block of Xi (associated with the non-deterministic inputs)

Xleft
i Sub-block of Xi (associated with left wire values)

Xright
i Sub-block of Xi (associated with right wire values)

Xout
i Sub-block of Xi (associated with output wire values)

minp #Rows in Xi

mmult #Rows in each of Xleft
i , Xright

i and Xout
i

Table 2. Description of the parameters (Part 1)

Lemma 10. [Lemma 1 restated] Let M be an arbitrary (non-deterministic) Random Access Machine that on
input strings (x, w) runs in time T and space S. Then, (M, x) can be transformed into the following system of
constraints over a m× ℓ matrix X:

1. X is a m× ℓ matrix that is subdivided into sub-matrices or blocks X1, . . . , XB where each Xi is a m′ × ℓ
matrix,

X =


X1
X2
...

XB


and B = O

(
T
S

)
, m′ = polylog(T), m = m′ · B and ℓ = S · polylog(T). We denote by xi the “flattened”

vector corresponding to matrix Xi (namely, xi is the vector obtained by concatenating the rows of Xi).
7 Recall that the extended witness is an arrangement of the wire values of a circuit in a specific order.
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2. (Intra-block Linear Constraints) A is of size (m′ · ℓ)× (m′ · ℓ) and b is a length (m′ · ℓ)-vector and Axi = b
for all i ∈ [B].

3. (Inter-block Linear Constraints) A′ is a (2m′ · ℓ)× (2m′ · ℓ) matrix and b′ is a length (2m′ · ℓ)-vector and

A′
[

xi
xi+1

]
= b′ for all i ∈ [B− 1].

4. (Input-Consistency Constraint) A′′ is a |x| × (m′ · ℓ) matrix and A′′x1 = x where |x| is the size of x.
5. (Quadratic Constraints) For each i ∈ [B], Xle f t

i ⊙ Xright
i = Xout

i where ⊙ denotes point-wise products and

Xi =


Xinp

i
Xle f t

i
Xright

i
Xout

i


where Xinp

i is minp × ℓ matrix and Xle f t
i , Xright

i , Xout
i are mmult × ℓ matrices (c.f. Figure 3).

Efficiency. Furthermore, the matrices A, A′ and A′′ are succinct according to Definition 10 and an input-
witness pair (x, w) that makes M accept can be mapped to an extended witness X by a RAM machine in
T · polylog(T) and space S · polylog(T).
Equivalency. Any X that satisfies the system of constraints can be mapped to a w such that M accepts (x, w).

Notation. Recall a configuration consists of the contents of all the registers and the program counter at
a particular timestep (see Definition 6). Given inputs (x, w), we associate (timestep, configuration) pair
for each of the T timesteps during the execution of M. The set of all such T (timestep, configuration)
pairs is referred to as the transcript of M, which we denote as follows

−→
S = {(1,S1), . . . , (T,ST)}. The

transcript can be ordered by timesteps or memory access addresses (with ties broken by timesteps),
which we denote by

−→
S time and

−→
S mem respectively. Lastly, we refer a (timestep, configuration) pair as

an element of the transcript.

RAM Programs. Our starting point is a time T and space S RAM program M that takes as input (x, w).
Similar to [5], we transform any given M in order to simplify the RAM to circuit satisfaction. Precisely,
we first transform M into a RAM program M′ which is then transformed into M′′ as described below.

1. M′ proceeds as per M except that it first reads the input x and writes it into the work tape. If the
input is of size |x|, then the first 2|x| timesteps involve reading x from the input tape and writing
it into the work tape one field element at a time.

2. M′′ is the similar as M′ except that, after every S timesteps of M′, M′′ makes a pass over the entire
work tape (i.e., O(S) memory cells) before and after the execution of the S timesteps of M′.8

For the rest of the description, we assume that the RAM program M has undergone the two
transformation described above. The time T and space S for M include the overheads incurred by
the above transformations. We now describe the structure of the circuit C obtained from the RAM-to-
Circuit reduction[5] followed by the generation of extended witness X for C.

Circuit Description. The circuit C obtained by transforming a RAM program M (as per [5]) takes time
T and requires space S. We assume C consists of addition and multiplication gates over the field F.

The circuit C is equivalent to M and can be evaluated gate-by-gate in Õ(T) and space Õ(S). The
inputs to C are (x, w′) where w′ is a non-deterministic input. At a high-level, C takes the entire tran-
script (ordered by time) as input and checks if the transcript satisfies time and memory consistency
checks. Time-consistency check ensures that the configuration at timestep τ follows the configuration
at timestep τ − 1 by executing a single instruction. On the other hand, memory-consistency check
imposes that the value read from a memory location at any timestep is consistent with value that was
last written into the same memory location. To verify whether these two checks hold, C takes both
time-ordered and memory-ordered transcripts, say

−→
S time and

−→
S mem, as inputs. However, this is not

8 This transformation increases the running time of the RAM program by a factor of 3.
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Fig. 2. A depiction of the ith part of the circuit (i.e., Pi) along with its inputs. Here, Ctime, Croute, Cmem are the
subcircuits for time-consistency, routing-validity and memory-consistency checks respectively. The inputs Xinp

i to
each type of subcircuits are shown on the left of the corresponding subcircuits.

sufficient as the time and memory-ordered transcript need not correspond to the same execution of
the M. In other words, we need to check if

−→
S time and

−→
S mem are permutations of each other; this

check can be done using routing networks by sorting the time-ordered transcript into a memory or-
dered transcript. We additionally provide the routing bits and the intermediate permutations of the
transcripts as non-deterministic inputs to C and then check that the routing is valid (which we call the
routing validity check).

The routing network requires T · polylog(T) space to sort a transcript of size T. When S is smaller
than T, the overhead in space required for the RAM-to-Circuit reduction is not desirable. In this
scenario, the space complexity can be improved to S · polylog(T) by adopting the techniques of [5];
they observe that permutation from

−→
S time to

−→
S mem has special locality properties that can be used to

obtain a space-efficient routing network. In more detail, no element needs to be routed for more than
2S distance from its position in

−→
S time. This locality property is obtained by transforming the RAM

program M (as described above): every S consecutive timesteps of M are preceded and followed by
reading all S memory locations, thereby increasing the time by a factor of 3. Each memory location is
accessed at least once in a window of 2S timesteps.

A detailed description of the structure of C is as follows:

1. We divide the (time-ordered) transcript into B parts such that each part comprises of 2S consecutive
elements i.e. (timestep, configuration) pairs of the transcript and any two consecutive parts have
S overlapping elements. Namely, the ith part of the transcript consists of 2S elements starting at
timestep i · S to (i · S + 2S − 1) in the time-ordered transcript

−→
S time for i ∈ [B]. Here, we set

B = T/S.
2. We process each part of the transcript independently and ensure that it satisfies time-consistency,

memory-consistency and routing-validity checks. So, the circuit associated with each part of the
transcript is described modularly, denoted by Pi. While describing the checks below, we use the
term transcript (and also the notation

−→
S time and

−→
S mem) to refer to only parts of the transcript

associated with Pi. The inputs and the checks for Pi are as follows.

(a) The (non-deterministic) inputs for the three checks are: the time-ordered transcript
−→
S time,

memory-ordered transcript
−→
S mem, polylog(T) intermediate transcripts and routing bits. Note

that each of these transcripts are permutations of O(S) (timestep, configuration) pairs. The
intermediate transcript is an arbitrary permutation of the O(S) (time, configuration) pairs and
corresponds to an intermediate layer in a routing network.

(b) Time-consistency check verifies whether two given (timestamp, configuration) pairs are ordered
by time. Let Ctime be the subcircuit that checks time-consistency. On input (τ,S) and (τ′,S′),
Ctime outputs 1 if and only if τ′ = τ + 1 and configuration S′ is obtained by running a one step
of M on S; otherwise outputs 0.
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(c) Memory-consistency check verifies whether two given (timestamp, configuration) pairs are (i)
ordered by the memory locations accessed in that step with ties broken based on time and (ii)
consistent with respect to memory accesses i.e. the values read are consistent with last written
value into the same memory location. Let the subcircuit associated with this check be Cmem.

(d) Routing-validity check verifies whether the routing from the time-ordered transcript to the
memory-ordered transcript has been done correctly. The non-deterministic part of the input
consists of routing bits and intermediate transcripts corresponding to each layer of the rout-
ing network. The intermediate transcripts simulate the “forwarding” of elements in a routing
network by having copies of the elements at the position the element has been forwarded to;
in other words, all the elements in the intermediate transcripts along the routing path are the
same. The routing validity check ensures that: (i) every element of the transcript is forwarded
as per the routing bits i.e. the element at the current position is a copy of the element at the
forwarded position and (ii) no two elements are forwarded to the same position. Let Croute be
the subcircuit associated with this check.

3. We also need to ensure that the time-ordered transcript associated with two consecutive parts Pi
and Pi+1 are consistent with each other for i ∈ [B− 1]. This can be done using a simple check that
verifies if the overlapping portions of the time-ordered transcript in Pi and Pi+1 match.

4. Input-consistency check verifies whether the input x of the instance is consistent with the sequence
of configurations. Specifically, x is consistent with the values read and written in the first O(|x|)
configurations as M first loads the input into the work tape during the first O(|x|) configurations
and never reads the input tape9.

5. Lastly, C outputs 1 is all the checks pass; otherwise outputs 0.

The subcircuits and their corresponding inputs in each Pi are depicted in Figure 2. We claim that
each gate in the C serves as input to at most polylog(T) gates. This claim will be used later to show that
matrices for linear constraints are succinct. First, note that each of the subcircuits is of size polylog(T)
and takes inputs of size polylog(T). Given a gate gid, we count the number of gates that gid is an input
to. Suppose gid belongs to subcircuit Ctype, then we have three cases:

– If gid is an internal gate of Ctype, then it serves as input to only the gates within Ctype and there are
at most polylog(T) such gates.

– If gid is an input gate of Ctype, then there are at most a constant number of subcircuits it is a part of.
Specifically, each configuration in ST are inputs to Ctime as well as Croute

10. The configurations in
the intermediate transcripts are inputs to constant number of Croute subcircuits (as per the structure
of the routing network). Lastly, the configurations in

−→
S mem are inputs to Cmem as well as Croute.

Hence, the total number of gates that gid is a input of is the upper bounded by the total number of
gates in all of the subcircuits it is a part of, which is at most polylog(T).

– If gid is an output gate of Ctype, then there are at most a constant number of subcircuits it is a part
of and hence is an input to at most polylog(T) following similar reasoning as the previous case.

Next, we describe the extended witness corresponding to the circuit C obtained from the RAM
program M.

Extended Witness. The extended witness X is an arrangement of the wire values of C on inputs (x, w′).
Recall that C was divided into B parts, each of which can be evaluated in a modular manner. Let Xi
denote the evaluation of part Pi of the circuit where Xi is a matrix of size m′ × ℓ. Then, X is essentially
a matrix of size (B ·m′)× ℓ, which is as follows.

X =


X1
X2
...
XB


9 Without loss of generality, we focus on RAM machines that first read the entire input into memory and then

never access the input tape. This implies that |x| < S.
10 More precisely,

−→
S time is an input to the first layer of Croute subcircuits where the routing network can be viewed

as a layered graph and there’s a Croute associated with each layer as depicted in Fig. 2.
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Fig. 3. A depiction of the extended witness X (left), a block Xi (centre) and the sub-block Xinp
i corresponding to

each block (right).

We now describe the arrangement of wire values in each block Xi. Each Xi comprises of the non-
deterministic inputs and wire values for multiplication gates associated with Pi. The non-deterministic
inputs comprise of the time-ordered transcript, memory-ordered transcript, intermediate transcripts
for each layer of the routing network and routing bits. Overall, these inputs are represented as matrix
Xinp

i of size minp × ℓ where minp = polylog(T). The wire values for multiplication gates are arranged

as three matrices Xle f t
i , Xright

i , Xout
i , representing the left input, right input and output wires respec-

tively. Each of these matrices is of size mmult × ℓ such that Xle f t
i ⊙ Xright

i = Xout
i . Refer to Figure 3 for

depictions of the extended witness X, a block Xi and inputs Xinp
i within each block.

Given an extended witness X, we can can compute the encoded version of X by encoding each row
of X using an RS code. We refer to the encoded extended witness as an oracle, which is denoted by U.
The formal definition of an oracle is given below.

Definition 11. [Oracle U] Let ζ and η be a set of interpolation and evaluation points (of sizes ℓ and n, respec-
tively). To encode the extended witness X into an oracle U, each row of X is encoded into an RS code. In more
details, to encode ith row of X, a polynomial pi(·) is generated where pi(ζ j) = Xi,j for all j ∈ [ℓ] (where Xi,j

is the element of X in the ith row and jth column). Next, the polynomial pi(·) is evaluated at ζ to generate ui
which corresponds to the ith row of U. More formally, Ui,j = pi(ηj) for all j ∈ [n].

In the description of X, we have divided the extended witness of X into blocks, where a block is
essentially a collection of consecutive rows of X. A block in X can be specified by its size i.e. the
number of rows and a starting point i.e., the index of the first row in X included in the block. A formal
definition of a block is presented below.

Definition 12. Given a matrix X of size m× ℓ, Y is said to be a block in X if Y is a matrix of size m′ × ℓ and
consists of m′ consecutive rows of X starting from idxth row.

We will later show how X can be generated in space Õ(S) (in the proof sketch of lemma 10).

Linear Constraints. Note that there are two types of linear constraints for circuit C, the intra-block
and inter-block linear constraints, which are as follows.

1. Intra-block linear constraints are expressed as Axi = b for each block Xi where xi is the flattened
version of Xi and is of size m′ · ℓ, A is a matrix of size (m′ · ℓ)× (m′ · ℓ) and b is a vector is size
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m′ · ℓ. In particular, these constraints ensure that (a) output wire values are the sum of inputs for
every addition gate and (b) two wire values are equal if they are copies of each other. The latter
constraint occurs as we require the wire values in the extended witness to be aligned in specific
manner for multiplication gates. For instance, a multiplication gate that takes the 5th and 6th wires
as input and the 10th wire as output, then the 5th wires value occurs in Xinp

i and Xle f t
i , and the 6th

wire value occurs in Xinp
i and Xright

i . Hence, multiple copies of the 5th and 6th wires values occur to
meet the specific alignment requirements for multiplication gates and we can ensure the equality
of these copies via linear constraints. Thus, an addition gate can be expressed as a single linear
constraint and a multiplication gate requires at most three linear constraints (to check equality of
copies of its left, right or output wires).

2. Inter-block linear constraints are expressed as A′
[

xi
xi+1

]
= b′ for each blocks Xi, Xi+1 where xi and

xi+1 is the flattened versions of Xi and Xi+1 respectively, A′ is a matrix of size (2m′ · ℓ)× (2m′ · ℓ)
and b′ is a vector is size 2m′ · ℓ. Recall that there are S common pairs of (timestep, configuration)
that occur in the time-ordered transcript of blocks Xi and Xi+1. Specifically, the second half of the
first row of Xi is the same as the first half of the first row of Xi+1 and this is checked using Õ(S)
linear constraints (as each (timestep, configuration) pair is of size polylog(T)).

We next provide a sketch of the proof of Lemma 10 which states that the extended witness X
(described above) can be generated efficiently for any given RAM program M and satisfies linear and
quadratic constraints imposed by M. Further, this lemma states that the matrices A and A′ associated
with the linear constraints are succinct.

Proof Sketch of Lemma 10. Recall that intra-block linear constraints are represented as Axi = b where
xi is the flattened vector corresponding to block Xi.

Generating Extended Witness X. We now discuss how to generate each of the blocks X in space
Õ(S). First, we focus on generating the non-deterministic inputs. The time-ordered transcript

−→
S time is

generated by evaluating the ℓ steps of the RAM program associated with Pi where ℓ = 2S. Then, the
memory-ordered transcript

−→
S mem is obtained by sorting the time-ordered transcript. Lastly, we need

to compute a routing from
−→
S time to

−→
S mem which can be done in space Õ(S) as per lemma 9. The

routing is captured by the routing bits and the intermediate transcripts, one per layer of the routing
network. Note that

−→
S time and

−→
S time are each of size Õ(S). The routing network has polylog(T) layers

and each layer has Õ(S) elements. Also, there are Õ(S) routing bits. Hence, the time and space to
process non-deterministic inputs Xinp

i is Õ(S) per block.

Next, we generate the matrices Xle f t
i , Xright

i , Xout
i which correspond to the left input, right input

and output wire values of all multiplication gates in Pi. Recall that the circuit and inputs associated
with each part Pi are each of size Õ(S). Therefore, evaluating all the subcircuits Ctime, Cmem, Croute

associated with Pi on input Xinp
i can be done in space Õ(S). Then, the wire values associated with the

multiplication gates can be stored in matrices Xle f t
i , Xright

i , Xout
i .

Succinctness of A, A′ and A′′. First, A has Õ(S) non-zero values. Specifically, we prove the claim that
the number of non-zero values in A is proportional to size of the circuit (i.e., total number of addition
and multiplication gates) associated with part Pi. As described under linear constraints, an addition
gate is expressed as a single linear constraint over three variables (i.e., two input and one output wire
values). A multiplication gate is expressed as three linear constraint over two variables Hence, the total
number of non-zero values is equal to the number of rows in A times the number of non-zero values
per row; this is proportional to the size of circuit Pi which is Õ(S).

Each column of A is associated with a gate in Pi. Recall that each gate in Pi serves as an input
to at most polylog(T) gates in Pi (see the circuit description in Section 5.2.1). Thus, each column
associated with a gate has at most polylog(T) non-zero values. Given a column j in A, we now show
how to determine all the non-zero values in column j in time polylog(T). Since the circuit Pi comprises
repeated subcircuits connected to each other (as shown in Figure 2) where each subcircuit has a fixed
number of gates, it is straightforward to compute the exact subcircuit the jth gate gid belongs to, in
time polylog(T) (for example, we can compute 56th gate belongs to the 3rd copy of subcircuit Ctime if
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Protocol 2 (Interleaved Linear Code Test) Let L[n, ℓ, d] be the RSF,n,ℓ,η code and Lm be the interleaved RS code.
Input: U.
Oracle: A purported Lm-codeword U that should encode m× ℓ matrix X.
Interleaved Test:

1. V sends a random vector r ∈ Fm and sends it to P.
2. P computes q(·) = ∑i∈[m] r[i]pi(·) and sends it to V where pi(·) is the polynomial representation of ith row of U.
3. V queries a random subset Q ⊆ [n] of size t to obtain the columns of U corresponding Q.
4. V accepts if q is of degree < ℓ and for every i ∈ Q,

∑
j∈[m]

r[j]Uj,i = q(ηi).

Fig. 4. Interleaved Linear Code Test

each Ctime has 20 gates each). All the constraints that the gate gid (i.e. the output wire of the gate gid) is
a part of can be computed by checking, for each gate gid

′ in the subcircuit, whether gid is an input to
gid
′ or not; this takes polylog(T) time since each subcircuit has polylog(T) gates. Thus, we can output a

set of all the non-zero values in the jth column of A along with the rows these non-zero values belong
to. This completes the proof of succinctness of A. A similar argument is used to show that A′ and A′′

are succinct matrices.

5.2.2 Interleaved Linear Code Test In this section, we present the steps for testing interleaved linear
codes in Figure 2. Similarly to Ligero [1], this check determines whether the encoded matrix U is an
interleaved linear code. Upon committing to U, the verifier sends a randomly sampled s ∈ F to the
prover. Let pi(·) denote the polynomial associated with the ith row of X and r be a random vector sent
by the verifier. The prover generates the proof polynomial q(·) = ∑i∈[m] r[i]pi(·) and sends it to the
verifier. The verifier then checks that polynomial q(·) is consistent with a randomly selected t columns
of U.

Lemma 11. Protocol 2 is an IOP/IPCP for interleaved linear code test with the following properties:

– Completeness: If U ∈ Lm and the P is honest, then V accepts with probability 1.
– Soundness: Let e be a positive integer such that e < d/3 where d is the minimal distance of the Reed-

Solomon code. Suppose that a badly formed matrix U∗ satisfies d(U∗, Lm) > e. Then, for any malicious P∗

strategy, V will reject except with probability (1− e/n)t + d/|F|.
– Complexity:
P has X on its input tape. In this model, P makes a single pass on the input tape. We denote by mℓ the
length of X, then the following complexities are obtained:
• Prover’s Time = O(mℓ).
• Verifier’s Time = O(κm).
• Prover’s Space = O(ℓ).
• Verifier’s Space = O(κ).
• Communication Complexity = O(ℓ).
• Query Complexity = O(κ).

Proof. Completeness: Completeness of the interleaved linear test directly follows from the properties
of the linear code.

Soundness: Let P∗ be a malicious strategy for the prover and let d(U∗, Lm) > e. We analyse the
soundness error by considering two cases.

In the first case, the codeword w∗ = rTU∗ has d(w∗, L) = e′ > e. Note that d(w∗, L) = e′ implies
that any proof polynomial q(·) sent by prover in Step 2 will have at least e′ evaluation points which
differ from w∗ i.e q(ηj) ̸= w∗[j] for j ∈ E and |E| > e′. In this case, the verifier will only accept the

interleaved test if all the t queries are from remaining n− e′ positions. The probability of that is (n−e′
t )

(n
t)

.
This can be generalized to get the probability,
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Pr[Vaccepts | d(w∗, L) > e] ≤
(n−e−1

t )

(n
t)

For the second case where d(w∗, L) < e, then it is shown in [1] that the probability of this event
happening is d/|F|.

Lemma 12. [1] Let L be a Reed-Solomon code with minimal distance d = n− ℓ+ 1 and e be a positive integer
such that e < d/3. Suppose d(U, Lm) > e. Then, for a random w∗ in the row-span of U, we have

Pr[d(w∗, L) ≤ e] ≤ d/|F|.

Combining both cases using a union bound argument, we can bound the soundness error as,

Pr[V accepts U∗] < Pr[V accepts U∗|d(w∗, L) > e] + Pr[V accepts U∗|d(w∗, L) ≤ e]
< Pr[V accepts U∗|d(w∗, L) > e] + Pr[d(w∗, L) ≤ e]]

<
(n−e−1

t )

(n
t)

+ d/|F|

< (1− e/n)t + d/|F|

Complexity: The prover needs to compute a random linear combination of m rows, each row is of size
ℓ and therefore the prover’s time is O(mℓ). The verifier runs a consistency check where it is required
to evaluate a polynomial of degree less than ℓ at t = O(κ) points. Additionally, the verifier needs
to compute rTU[j] on t columns where U[j] is the jth column of U. Both of these operations require
O(κm) overhead. The prover sends a polynomial of degree less than ℓ and t columns of U where each
column is of size m. Therefore the communication complexity is O(mκ + ℓ). The prover needs to store
a polynomial pi(·) at a time as well as the proof polynomial q(·). Therefore the prover’s space is O(ℓ).
Next, we require the explain the verifier’s space.

The prover writes a polynomial q(·), which is of size ℓ, on to the proof tape of the verifier. Instead
of the storing q(·) into the work tape, the verifier can first sample the set Q ⊂ [n] of size t and then
only store the evaluations of q(·) at {ηi}i∈Q; this requires space O(κ) as t = O(κ). The verifier sends
a random vector of size m to the prover. To make it space efficient, the verifier generates a seed s
and both the prover and verifier can generate the vector r by evaluating using a PRF. More formally,
given a PRF function f , each element of vector r can be set as r[i] = PRFk(s, i) where k is the PRF
key. Upon receiving the rows of U restricted to columns in Q, the verifier computes the random linear
combination of these rows by maintaining a running partial aggregate. Precisely, the verifier initializes
a vector agg := 0 of size t where aggi corresponds to column i ∈ Q. Upon receiving the jth element of
column i, the verifier multiplies Uj,i with the appropriate random multiplier and then updates aggi i.e.
aggi = aggi + rjUj,i. After processing all the columns in Q, the verifier needs to check if aggi = q(ηi),
similar to the protocol given in Figure 2. Hence, the random linear combination of the rows of U
restricted to Q can be computed in space O(κ) to store agg. The overall space required by the verifier
is O(κ) to store O(κ) evaluations of the polynomial q(·) and the running partial aggregate agg.

5.2.3 Linear Test This test checks if the linear constraints imposed by the addition gates and the
circuit’s structure are satisfied. The linear check is performed over blocks, where each block Yi starts
at the row I[i] of the extended witness X and is of size m′ × ℓ for all i ∈ B. Precisely, given a public
matrix A of size (m′ · ℓ)× (m′ · ℓ) and a vector b of size (m′ · ℓ), the linear constraints are Ayi = b for
each i ∈ [B] where yi is the flattened vector of Yi and is of size (m′ · ℓ). Note that linear constraints
imposed on each block are the same, which are captured by same parameters A and b for all blocks.

Recall that the linear test in Ligero handles all the linear constraints over the extended witness
X in a single shot (represented as a linear equation A′X = b′ for some public matrix A′ and vector
b′). Whereas we consider a variant of the linear test where the same set of linear constraints repeat
over different sections (i.e., blocks) of the extended witness, which is represented as linear equations
Ayi = b for all i ∈ [B].
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Parameter Description
Yi Blocks associated with the linear constraints
yi Flattened vector corresponding to block Yi
B #Blocks associated with the linear test
m′ #Rows in each block Yi
I[i] Index of the first row of X included in Yi

s Seed 1 for randomness
s′ Seed 2 for randomness
r randomness vector 1

r′ randomness vector 2

A Linear constraint matrix
b linear constraint vector

ma #Linear constraint for each yi
ri,j the value of the matrix at position (i, j) when parsing rT A into a matrix

ri(·) ith polynomial generated by encoding rT A

Table 3. Description of the parameters (Part 2).

We first describe a simple algorithm for the new variant of linear test and later show how to
further improve the verifier’s time and space costs. At a high level, we apply Ligero’s linear test on
each block and then take a random linear combination of the outputs of the test for each block. At
the prover’s end, naively computing rT A is expensive as A is a large matrix. By observing that the
matrix A is sparse (more precisely, A is succinct), we reduce the time and space required significantly
by efficiently computing the positions of the non-zero elements of A.

Roughly, the protocol for linear test proceeds as follows. The verifier provides two random seeds
s, s′ ∈ F, from which the prover and verifier can generate random vectors r and r′. We require two
randomness vectors where one is used as random linear combiners for rows within a block, while the
other is used as random linear combiners across blocks. The prover computes the polynomial encoding
qi(·) of (rT A)yi for each block Yi and then computes the polynomial encoding q(·) = ∑i∈[B] r′[i] · qi(·)
of all the blocks. Lastly, the verifier checks the consistency of q(·) with ∑i∈[B] r′[i] · (rTb) and U on t
randomly chosen columns. Refer to Fig. 1 for the formal description of the protocol.

Algorithm DEval(v, R): On input (v, R), this algorithm outputs an evaluation vector e = {p(ηj)}ηj∈R

where the polynomial p(·) is defined such that p(ζi) = v[i] for all i ∈ [ℓ] , ζi are the interpolation
points, ηj are the evaluation points and R is the set of query points. The input vector v is provided to
the algorithm in an input tape where the algorithm individually reads and processes each element in
vector v. The algorithm repeats until all the elements are read from the input tape. The input v is a
vector of size ℓ which needs to be interpolated. We denote the set of interpolation points to be ζ and
set of evaluation points to be η. Note that the set R needs to be a subset of η i.e. R ⊆ η.

We set the evaluation points and interpolation points to be related to the roots of unity. In more
detail, let w be a primitive 2nth root of unity where w2n = 1 but wm ̸= 1 for 0 < m < 2n. We set the
variable f = n/ℓ, ζ = {1, w2 f , w4 f , . . . , w2 f (ℓ−1)} and η = {w, w3, . . . w2 f (ℓ−1)+1}. Each individual in-
terpolation point and evaluation point can be represented as ζi = w2(i−1) f and ηj = w2j−1 respectively.
The algorithm is as follows:

1. Check if R ⊆ η. Abort if the check fails. If the check succeeds, initialize ej = 0 for all j such that
ηj ∈ R.

2. Upon receiving an element v[k] from the input tape, update the running partial sum ej = ej +
1
ℓ

w(2j−1)ℓ−1
w2k−1−2 f k+2 f−1

v[k] for all j such that ηj ∈ R.
3. After processing each element from the vector v, output all e′js for all j such that ηj ∈ R.

Proof. Correctness: Define a vector c such that each element of c represents the coefficient of the
polynomial p(·) and v is the vector which is being interpolated. We represent the relation between
c and v as v = Xc where X is a public matrix and the ith row of X can be represented as X[i] =
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(ζ0
i , ζ1

i , . . . ζℓ−1
i ). Each element in X can be represented as X[i, j] = ζ

j−1
i = w2(i−1)(j−1) f . Another way

to represent the same equation is c = X−1v where X−1 is the inverse of the matrix X i.e. XX−1 = I
and I is an identity matrix.

We first prove that each element of X−1 is X−1[i, j] = 1
ℓw−2(i−1)(j−1) f by showing XX−1[i, j] is equal

to 1 if i = j and 0 otherwise.

XX−1[i, j] =
ℓ

∑
k=1

X[i, k] · X−1[k, j] =
ℓ

∑
k=1

w2(i−1)(k−1) f · 1
ℓ

w−2(j−1)(k−1) f

=
1
ℓ

ℓ

∑
k=1

w2(k−1) f (i−j)

=

{
1
ℓ

w2ℓ f (i−j)−1
w2(i−j) f−1

if i ̸= j
1
ℓ ∑ℓ

k=1 1 if i = j

=

{
0 if i ̸= j
1 if i = j

Lastly, to evaluate p(·) at ηj, we define a vector w = (1, ηj, . . . , ηℓ−1
j ) and represent p(ηj) as p(ηj) =

wTc = wTX−1v. We calculate vector wTX−1 as:

wTX−1[k] =
ℓ

∑
l=1

w[l] · X−1[l, k]

=
ℓ

∑
l=1

ηl−1
j · 1

ℓ
w−2(l−1)(k−1) f

=
1
ℓ

ℓ

∑
l=1

w(2j−1)(l−1) · w−2(l−1)(k−1) f

=
1
ℓ

ℓ

∑
l=1

w(l−1)(2j−1−2k f+2 f )

=
1
ℓ

w(2j−1)ℓ − 1
w2j−1−2k f+2 f − 1

p(ηj) = wTX−1v

=
ℓ

∑
k=1

wTX−1[k]v[k]

=
1
ℓ

ℓ

∑
k=1

w(2j−1)ℓ − 1
w2j−1−2k f+2 f − 1

v[k]

The algorithm reads each element of the vector v sequentially from the input tape. Initialising ej = 0

and after reading the element v[k], the algorithm updates ej = ej +
w(2j−1)ℓ−1

w2j−1−2k f+2 f−1
v[k]. After processing

the whole vector v, ej will satisfy ej = p(ηj). Hence it shows the correctness of the algorithm.

Efficiency Analysis: For each element of v, the algorithm performs O(1) operations per evaluation
point. Thus, the overall computational cost is O(tℓ) where t is the number of evaluations and ℓ is the
size of v. The algorithm requires only O(t) space to store only ej’s and the t evaluation points.

Lemma 13. Protocol 1 is an IOP/IPCP for testing linear constraints with the following properties:

– Completeness: If U ∈ Lm is an encoding of a m× ℓ matrix X such that, for every i ∈ [B], Ayi = b where
yi is the flattened vector corresponding to Yi and block Yi is a m′ × ℓ submatrix of X starting at the I[i]th

row of X and the P is honest, then V accepts with probability 1.
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– Soundness: Let e be a positive integer such that e < d/2 where d is minimal distance of Reed-Solomon
code. Suppose that a badly formed matrix U∗ is e-close to a codeword U that encodes a matrix X such that
∃i ∈ [B], Ayi ̸= b where yi is the flattened vector corresponding to Yi and block Yi is a m′ × ℓ submatrix of
X starting at the I[i]th row of X. Then for any malicious P∗ strategy, V will reject except with probability
((e + 2ℓ)/n)t + (ma + B)/|F|.

– Complexity:
P has X on its input tape and has a work tape of size O(m′ℓ). In this model, P makes a single pass on the
input tape. We denote by mℓ the length of X, the number of blocks as B and yi is a flattened vector of a
block within X of size m′ × ℓ. Given that P is provided with a one-way linear access to X, matrix A is a
public succinct matrix of dimension ma × m′ℓ as defined in Definition 10 then the following complexities
are obtained:
• Prover’s Time = O(m′ℓ(poly log ma + B log ℓ)).
• Verifier’s Time = O(m′ℓ(poly log ma + κ) + Bm′κ).
• Prover’s Space = O(m′ℓ).
• Verifier’s Space = O(κm′ + ma).
• Communication Complexity = O(ℓ).
• Query Complexity = O(κ).

Proof. Completeness: The completeness property directly follows from the properties of Reed-Solomon
Codes.

Firstly, we show that if Ayi = b for all i ∈ [B] and the prover constructs the proof polynomial q(·)
correctly, then the check in Step 4b will be accepted by the verifier with probability 1. Next, we show
that if U is computed correctly and the proof polynomial q(·) is generated honestly, then the check in
Step 4c will be accepted by the verifier with probability 1.

Check in Step 4b is accepted with probability 1: To show that the check will be accepted the verifier, we
show that ∑j∈[ℓ] q(ζ j) = ∑k∈[B] r′[j]rTb if the linear constraints are satisfied.

∑
j∈[ℓ]

q(ζ j) = ∑
i∈[B]

∑
j∈[ℓ]

qi(ζ j)

= ∑
i∈[B]

∑
j∈[ℓ]

∑
k∈[m′ ]

r′[i] · rk(ζ j)pI[i]+k−1(ζ j)

= ∑
i∈[B]

r′[i] ∑
j∈[ℓ]

∑
k∈[m′ ]

rk(ζ j)pI[i]+k−1(ζ j)

= ∑
i∈[B]

r′[i] ∑
j∈[ℓ]

∑
k∈[m′ ]

rT A[(k− 1)ℓ+ j]yi[(k− 1)ℓ+ j]

= ∑
i∈[B]

r′[i] ∑
l∈[N]

rT A[l]yi[l] (Set l = (k− 1)ℓ+ j and N = m′ℓ)

= ∑
i∈[B]

r′[i]rT Ayi

= ∑
i∈[B]

r′[i]rTb (Ayi = b)

Check in Step 4c is accepted with probability 1: We show that if U and q(·) are constructed cor-
rectly, then the verifier will accept the check with probability 1. To show this, we show that q(ηi) =
∑j∈[B] ∑k∈[m′ ] r′[j]rk(ηi)Uk+I[j],i.

q(ηi) = ∑
j∈[B]

qj(ηi)

= ∑
j∈[B]

r′[j] ∑
k∈[m′ ]

rk(ηi)pI[j]+k−1(ηi)

= ∑
j∈[B]

∑
k∈[m′ ]

r′[j]rk(ηi)Uk+I[j],i

32



This will hold if Ui,j = pi(ηj) which will always be true when U is constructed correctly. Hence,
the verifier will accept the check in Step 4c with probability-1.

Soundness: Let P∗ be a malicious strategy for the prover and let d(U∗, Lm) < e. We analyse the
soundness error by considering two cases.

In the first case, we consider q(·) be the polynomial generated in Step 2 following the honest P

strategy on input U. We first analyse the probability rT Ayi − rTb = 0 given that Ayi ̸= b. We argue
this probability to be ma/|F|. To show, we first define a vector v = Ayi − b and r = (1, s, s2, sma−1).
Modelling v as the coefficients of a polynomial o(·), we can rewrite rTv = o(s). Using Schwartz-
Zippel lemma (Lemma 8), the probability that the polynomial o(s) evaluates to 0 given that s is chosen
randomly is ma/|F|. If the same vector r is chosen for all constraints, then the probability that for
all i where Ayi ̸= b, the rT Ayi = rTb is satisfied for all i is bounded by ma/|F|. Next, we analyse the
probability that if there exist an i such that rT Ayi ̸= rTb but ∑i∈[B] r′[i]rT Ayi = ∑i∈[B] r′[i]rTb. As vector
r′ = (1, s′, s′2, s′B−1), we can apply the same argument as before to say that probability of this event is
B/|F|.By applying the union-bound on these two events, we get the probability that the randomness
are chosen such that a malicious prover passes the test is M/|F|+ B/|F|.

Next, we analyze the probability that a malicious prover strategy is rejected conditioned on q(·)
failing as above. Let q′(·) be the polynomial sent by the prover. Using the fact that q(·) and q′(·) are
of degree at most 2ℓ− 2, the number of indices on which the polynomials agree on is at most 2ℓ− 2.
Let Q′ be the set of indices on which the polynomials agree on. Now as U∗ is e-close to a codeword U,
the verifier will reject the test if at least one position is chosen from the error positions E = ∆(U∗, Lm

or from the positions where the polynomials disagree on Q′. This will not happen with probability at
most (e+2ℓ−2

t )/(n
t) ≤ ((e + 2ℓ)/n)t. This is the bound on the probability that the malicious prover’s

strategy is accepted.
By combining the two cases using union bound, the verifier will reject except with probability

ma/|F|+ B/|F|+ ((e + 2ℓ)/n)t.

Prover’s Time Complexity. Each column of of A can be computed in time O(poly log ma) and com-
puting each element of rT A requires the same complexity. As length of vector rT A is m′ℓ, computing
rT A needs O(m′ℓpoly log ma) time. The polynomials ri(·) generated in Step 2 can be constructed using
inverse-FFT in O(m′ℓ log ℓ) time. The intermediate proof polynomial qi(·) is composed by multiply-
ing m′ pairs of polynomial, each multiplication costs O(ℓ log ℓ) using FFT. The proof polynomial q(·)
requires O(Bm′ℓ log ℓ) time as it is generated by taking a random linear combination of all the inter-
mediate proof polynomials. The prover’s total time is O(m′ℓ(poly log ma + B log ℓ)).

Verifier’s Time Complexity. The verifier upon receiving the proof polynomial q(·), needs to execute
two checks. The first check is to check whether ∑j∈[ℓ] q(ζ j) = ∑i∈[B] r′[i]rTb. To optimise the check,
we leverage the structure of interpolation points ζ. We show that ℓ(c0 + cℓ) = ∑j∈[ℓ] q(ζ j) where
c0 and cℓ are the constant and ℓth coefficient of the polynomial q(·). To prove this, we directly use
Lemma 18. This Lemma states that if a polynomial p(·) is evaluated at ℓth roots of unity, then the
evaluation of the polynomial at all the roots of unity sums up to ℓ∑i mod ℓ=0 ci where ci is the ith

coefficient of the polynomial p(·). Therefore, we can verify whether ℓ(c0 + cℓ) = ∑i∈[B] r′[i]rTb. This
requires O(ma + B) time. To verify the second check, the verifier needs to generate t evaluations of
polynomial ri(·) defined in Step 2. To compute it, the verifier first evaluates rT A element by element.
For each vector v = (ri,1, . . . , ri,ℓ) which is computed element by element and stored in the input
tape of algorithm DEval. The algorithm DEval outputs t evaluation ri(·) where ri(·) can be generated
using v. Evaluating v requires O(ℓpoly log ma) time and t = O(κ) evaluations is generated in O(ℓκ).
As there are total m′ polynomials, all evaluations are completed in O(m′ℓ(poly log ma + κ)) time.
In addition, the verifier needs O(ℓκ) for evaluating q(·) at t = κ evaluations and require O(Bm′κ)
operations to verifying the consistency between q(·) and U. Therefore, the total time to verify this
check is O((Bm′ + ℓ)κ). The verifier’s total time is O(m′ℓ(poly log ma + κ) + Bm′κ + ma).
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Prover’s Space Complexity. Firstly, the prover computes rT A and the polynomials ri(·) defined in
Step 2 and stores them to be used for each i ∈ [B] which requires O(m′ℓ) space in the work tape. To
compute the polynomial q(·) in Step 2 in a space-efficient manner while making a single pass on input
tape X, we implement Step 2 by maintaining a running partial aggregate. More precisely, the prover
initialises the polynomial agg(·) = 0. Next, the prover processes X row by row. It keeps track of the
blocks Yi that contain the current row. There can be at most m′ blocks Yi that contain X as there can
be at most one block that starts from any row of X. Let mini and maxi denote the first and last block
indices which contain the ith row of X. The polynomial agg(·) is updated as follows:

agg(·) = agg(·) + pi(·)
maxi

∑
l=mini

r′[l]ri−I[l](·) (1)

After every row of X is processed, we set our proof polynomial as q(·) = agg(·). The space required to
generate the polynomial q(·) is the space for storing pi(·), agg(·) and the product of two polynomials
of degree < ℓ. Since we can multiply polynomials via FFT, the space required is O(ℓ). Therefore,
the overall space complexity of the prover in the interactive phase is dominated by storing the ri(·)
polynomials which is O(m′ℓ) .

Verifier’s Space Complexity. Upon receiving the proof polynomial q(·), the verifier performs the
following three checks:

– The degree of q is at most k+ ℓ− 1. This can be done by simply counting the number of coefficients.
– The polynomial q satisfies ∑j∈[ℓ] q(ζ j) = ∑i∈[B] r′[i]rTb. Following the optimization mentioned in

the time complexity analysis, the verifier simply checks if ℓ · (c0 + cℓ) = ∑i∈[B] r′[i]rTb where c0 and
cl are the constant and ℓth coefficient of the polynomial q(·). This requires O(ma) space to store b.

– Finally, the verifier needs to compute t = O(κ) evaluations on polynomials ri(·) generated in Step
2. As we described in the beginning of this section, the verifier will rely on the DEval algorithm is
executed to generate these evaluations. The verifier needs O(m′κ) space where m′ is the number
of polynomials. For each query j ∈ Q, the verifier initialises each variable aggj = 0. When the
verifier processes the ith element (or ith row of U) of each column of U queried, it computes public
variables mini and maxi just as the prover and each variable aggj for all j ∈ Q is updated as follows:

aggj = aggj + Ui,j

maxi

∑
l=mini

r′[l]ri−I[l](ηj) (2)

As all ri(ηj) are already stored by the verifier, the verifier requires to store only the aggj variable
for each j. Overall the verifier’s space is O(m′κ + ma).

5.2.4 Quadratic Test This test checks if the quadratic constraints imposed by the circuit are satisfied.
Precisely, this test verifies if the extended witness X, encoded as U, satisfies Yleft

i ⊙ Yright
i = Yout

i for

every i ∈ [B] where Yleft
i , Yright

i and Yout
i are mmult × ℓ submatrices of Yi and Yi is a m′ × ℓ submatrix

of X starting at the I[i]th row of X and ⊙ denotes pointwise product. We refer to Yi as a block and
Yleft

i , Yright
i and Yout

i as sub-blocks of Yi. We assume that positions of the blocks and sub-blocks within X
can be efficiently computed by both the prover and verifier. Let I1[i] denote the index of the first row
of X contained in Yleft

i . Similarly, we define I2[i] and I3[i] for sub-blocks Yright
i and Yout

i respectively.
The quadratic constraints associated with a block Yi can be reduced to checking whether rT(Yleft

i ⊙
Yright

i − Yout
i ) = [0]1×ℓ for all i ∈ [B] where r is set r = (1, s, s2, . . . , smmult−1). Further, the checks for

all the blocks can be combined using vector r′ = (1, s′, s′2, . . . , s′B−1) as the linear combiner and the
resulting final constraint is presented in Equation 3.

∑
i∈[B]

r′[i]rT(Yleft
i ⊙Yright

i −Yout
i ) = [0]1×ℓ (3)

In the protocol, the prover encodes rT(Yleft
i ⊙ Yright

i − Yout
i ) as a polynomial qi(·) and combines

all these polynomials as q(·) = ∑i∈[B] r′[i]qi(·). The prover sends the polynomial q(·) and the verifier
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Protocol 3 (Testing quadratic constraints over Interleaved RS Codes)
Input: U, {Yi}i∈[B], {I[i]}i∈[B], {I1[i]}i∈[B],{I2[i]}i∈[B],{I3[i]}i∈[B],

Oracle: A purported Lm-codeword U that should encode m × ℓ matrix X such that, for every i ∈ [B] we have Yleft
i ⊙

Yright
i = Yout

i where Yleft
i , Yright

i and Yout
i are mmult × ℓ submatrices of Yi and Yi is a m′ × ℓ submatrix of X starting at

the I[i]th row of X. For each i ∈ [B], let I1[i] denote the index of the first row of X contained in Yleft
i . Similarly, define

I2[i] and I3[i] for Yright
i and Yout

i respectively. Further, we assume that two consecutive blocks are non-overlapping i.e.,
I[i + 1] ≥ I]i] + m′ for all i ∈ [B− 1]
Quadratic Test:

1. V samples two random seeds s, s′ ∈ F and sends it to P.
2. P sends q(·) = ∑i∈[B] r′[i]qi(·) to V where

r = (1, s, s2, . . . , smmult−1),

r′ = (1, s′, s′2, . . . , s′B−1),

qi(·) = ∑
j∈[mmult]

r[j]
(

pI1[i]+j−1(·) · pI2[i]+j−1(·)− pI3[i]+j−1(·)
)

3. V queries a random subset Q ⊆ [n] of size t to obtain the columns of U corresponding Q.
4. V accepts if

(a) q(·) is of degree < 2ℓ− 1.
(b) q(ζk) = 0 for every k ∈ [ℓ]
(c) For every k ∈ Q,

∑
i∈[B],j∈[mmult]

r′[i]r[j](UI1[i]+j−1,i ·UI2[i]+j−1,i −UI3[i]+j−1,i) = q(ηi)

Fig. 5. Protocol for Quadratic Test.

checks if the quadratic constraints are satisfies by verifying q(ζ j) = 0 for all j ∈ [ℓ]. Additionally, the

verifier needs to verify the consistency among q(·), Yleft
i , Yright

i , Yout
i for all i ∈ [B]. This can be achieved

by executing a check involving q(·) and U.

Lemma 14. Protocol 3 is an IOP/IPCP for testing quadratic constraints with the following properties:

– Completeness: Let U be a valid encoding of a m× ℓ matrix X, such that for every i ∈ [B], Yleft⊙Yright =

Yout where block Yi is a m′ × ℓ submatrix of X starting at the I[i]th row of X, Yleft
i , Yright

i and Yout
i are

mmult × ℓ submatrices of Yi and the P is honest. Then V accepts with probability 1.
– Soundness: Let e be a positive integer such that e < d/2 where d is minimal distance of Reed-Solomon

code. Suppose that a badly formed matrix U∗ is e-close to a codeword U that encodes a matrix X such that
∃i ∈ [B], Yleft

i ⊙ Yright
i ̸= Yout

i where block Yi is a m′ × ℓ submatrix of X starting at the I[i]th row of X

and Yleft
i , Yright

i and Yout
i are mmult × ℓ submatrices of Yi. Then for any malicious P∗ strategy, V will reject

except with probability ((e + 2ℓ)/n)t + (mmult + B)/|F|.
– Complexity:
P has X on its input tape and has a work tape of size O(mmultℓ). In this model, P makes a single pass on
the input tape. We denote by mℓ the length of X, the number of blocks as B, block Yi is a m′ × ℓ submatrix
of X starting at the I[i]th row of X and Yleft

i , Yright
i and Yout

i are mmult × ℓ submatrices of Yi. Given that P
is provided with a one-way linear access to X, then the following complexities are obtained:

• Prover’s Time = O(Bmmultℓ log ℓ).
• Verifier’s Time = O((Bmmult + ℓ)κ).
• Prover’s Space = O(mmultℓ).
• Verifier’s Space = O(mmultκ).
• Communication Complexity = O(ℓ).
• Query Complexity = O(κ).
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Proof. Completeness: The completeness property directly follows from the properties of Reed-Solomon
Codes.

Firstly, we show that if Yleft
i ⊙ Yright

i − Yout
i = [0]mmult×ℓ for all i ∈ [B] and the prover constructs

proof polynomial q(·) correctly, then check in Step 4b will be accepted by the verifier with probability
1. Next, we show that if U is computed correctly and the proof polynomial q(·) is generated honestly,
then the check in Step 4c will be accepted by the verifier with probability 1.

Check in Step 4b is accepted with probability 1: To show that the check will be accepted the verifier, we
show thatq(ζ j) = 0 for all j ∈ [ℓ] if all the quadratic constraints are satisfied.

q(ζ j) = ∑
i∈[B]

qi(ζ j)

= ∑
i∈[B]

∑
k∈[mmult]

r′[i]r[j]
(

pI1[i]+k−1(ζ j) · pI2[i]+k−1(ζ j)− pI3[i]+k−1(ζ j)
)

= ∑
i∈[B]

∑
k∈[mmult]

r′[i]r[j]
(
Yleft

i [(k− 1), j]⊙Yright
i [(k− 1), j]−Yout

i [(k− 1), j]
)

= ∑
i∈[B]

∑
k∈[mmult]

r′[i]r[j]0

= 0

Check in Step 4c is accepted with probability 1: We show that if U and q(·) are constructed correctly,
then the verifier will accept the check with probability 1. To show this, we show that ∑i∈[B],j∈[mmult]

r′[i]r[j](UI1[i]+j−1,i ·
UI2[i]+j−1,i −UI3[i]+j−1,i) = q(ηi) for all j ∈ Q.

q(ηj) = ∑
i∈[B]

qi(ζ j)

= ∑
i∈[B]

∑
k∈[mmult]

r′[i]r[j](pI1[i]+k−1(ηj) · pI2[i]+k−1(ηj)− pI3[i]+k−1(ηj))

= ∑
i∈[B]

∑
k∈[mmult]

r′[i]r[j](UI1[i]+k−1,j ·UI2[i]+k−1,j −UI3[i]+k−1,j)

This will hold if Ui,j = pi(ηj) which will always be true when U is constructed correctly. Hence,
the verifier will accept the check in Step 4c with probability 1.

Soundness:
In the first case, we consider q(·) be the polynomial generated in Step 2 following the honest

P strategy on input U. We first analyse the probability rT(Yleft
i ⊙ Yright

i − Yout
i ) = [0]1×ℓ given that

Yleft
i ⊙Yright

i −Yout
i ̸= [0]mmult×ℓ. We argue this probability to be mmult/|F|.

To show, we first define a matrix V = Yleft
i ⊙ Yright

i − Yout
i and r = (1, s, s2, sma−1). Define V[j] as

a vector which is jth column of matrix V. Assume, there exist an index j such that V[j] is not a zero
vector. We analyse the probability that rTV[j] = 0. Modelling V[j] as the coefficients of a polynomial
o(·), we can rewrite rTv = o(s). Using Schwartz-Zippel lemma (Lemma 8), the probability that the
polynomial o(s) evaluates to 0 at a randomly chosen s is mmult/|F|. If the same vector r is chosen for
all constraints, then the probability that for all j where V[j] is not a zero-vector and the rTV[j] = 0
is satisfied for all i is bounded by mmult/|F|. Next, we analyse the probability that if there exist an i
such that rT(Yleft

i ⊙ Yright
i − Yout

i ) ̸= [0]1×ℓ but ∑i∈[B] r′[i]rT(Yleft
i ⊙ Yright

i − Yout
i ) = [0]1×ℓ. As vector

r′ = (1, s′, s′2, s′B−1), we can apply the same argument as before to say that probability of this event is
B/|F|.By applying the union-bound on these two events, we get the probability that the randomness
are chosen such that a malicious prover passes the test is mmult/|F|+ B/|F|.

Next, we analyze the probability that a malicious prover strategy is rejected conditioned on q(·)
failing as above. Let q′(·) be the polynomial sent by the prover. Using the fact that q(·) and q′(·) are
of degree at most 2ℓ− 2, the number of indices on which the polynomials agree on is at most 2ℓ− 2.
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Let Q′ be the set of indices on which the polynomials agree on. Now as U∗ is e-close to a codeword U,
the verifier will reject the test if at least one position is chosen from the error positions E = ∆(U∗, Lm)

or from the positions where the polynomials disagree on Q′. This will not happen with probability at
most (e+2ℓ−2

t )/(n
t) ≤ ((e + 2ℓ)/n)t. This is the bound on the probability that the malicious prover’s

strategy is accepted.
By combining the two cases using union bound, the verifier will reject except with probability

(mmult + B)/|F|+ ((e + 2ℓ)/n)t.

Time Complexity:

Prover: The intermediate proof polynomial qi(·) is composed by multiplying mmult pairs of polynomial,
each multiplication costs O(ℓ log ℓ) using FFT.The proof polynomial q(·) requires O(Bmmultℓ log ℓ)
time as it is generated by taking a random linear combination of all the intermediate proof polynomi-
als. The prover’s total time is O(Bmmultℓ log ℓ).

Verifier: The verifier upon receiving the proof polynomial q(·), needs to execute two checks. The first
check requires to verify whether q(ζ j) = 0 for all j ∈ Q. This check can be removed altogether.
The prover sends the polynomial q′(·) in Step 2 instead of polynomial q(·). The polynomial q′(·) is
a polynomial of degree < ℓ − 1 where q(·) = q′(·)z(·) and z(·) is a ℓ-degree polynomial such that
z(ζ j) = 0. If the verifier generates the q(·) polynomial using q′(·) and z(·) assuming polynomial q′(·)
is of right degree, then q(ζ j) = 0 will always be satisfied for all j ∈ [ℓ]. For verifying the second check,
the verifier needs to evaluate t = O(κ) evaluations on polynomial q(·). This can be easily computed
by evaluating q′(·) and z(·) at those t evaluations and is done in O(ℓκ) time. Additionally, the verifier
requires O(Bmmultκ) time to verify the consistency between q(·) and U. The verifier’s total time is
O((Bmmult + ℓ)κ).

Space Complexity:

Prover: To compute the polynomial q(·) in Step 2 in a space-efficient manner while making a single
pass on the input tape X, the prover will store each sub-block Yleft

i , Yright
i and Yout

i in the work tape
and the space required is O(mmultℓ). We compute q(·) by maintaining a running partial aggregate.
The prover initialises the polynomial agg(·) = 0. Next, the prover processes each block Yi and split
it into triples of sub-block (Yleft

i , Yright
i , Yout

i ) and computes qi(·). The polynomial agg(·) is updated as
agg(·) = agg(·) + qi(·) and requires O(ℓ) space. Therefore, the overall space complexity of the prover
is O(mmultℓ).

Verifier: The verifier upon receiving the proof polynomial q(·) executes three checks. But as explained
previously, we can eliminate a check where instead of receiving q(·), the prover sends a polynomial
q′(·) such that q′(·)z(·) = q(·) where z(ζ j) = 0 for all j ∈ [ℓ]. If the verifier reconstructs q(·) by
multiplying q′(·) and z(·), then the polynomial q(·) is evaluate to 0 at all interpolation points ζ j,
given that the degree of polynomial q′(·) is of right degree. The verifier needs to check whether
polynomial q′(·) is atmost k− 1 degree. For the last check, the verifier needs to evaluate q(·) at t = O(κ)
evaluations. This can be easily computed by evaluating q′(·) and z(·) at those t evaluations and requires
only O(κ) space. Each block Yi is non-overlapping with other blocks and all the Yi blocks are ordered
based on I[i] i.e I[i] < I[i + 1] where I[i] is the first row of X contained in block Yi. To verify the
last check, the verifier computes as follows.For each query j ∈ Q, the verifier initialises each variable
aggj = 0. The verifier process each block Yi sequentially. While processing each block Yi, the verifier
processes each of the columns of U queried row by row. The verifier stores the columns of U from
m′1[i]

th row of U to (m′3[i] + mmult − 1)th row of U and this requires O(mmultκ) space. The verifier then
updates each variable aggj for all j ∈ Q as follows:

aggj = aggj + ∑
k∈[mmult]

r′[i]r[k]((UI1[i]+j−1,i ·UI2[i]+j−1,i −UI3[i]+j−1,i) (4)

The verifier only requires to store all the aggj for each j. Overall the verifier’s space complexity is
O(mmultκ).
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5.2.5 Our IPCP Protocol Given a RAM program M, we construct a zero-knowledge argument system
for BHRAM(M) by composing the following two components.

1. In section 5.2.1, we presented a complexity-preserving reduction from BHRAM to extended witness
X that satisfies the system of constraints defined in lemma 10. Further, this reduction is space-
efficient as it sub-divides X into blocks and generates X block-by-block where each block requires
space Õ(S).

2. In sections 5.2.2, 5.2.3 and 5.2.4, we present protocols for testing interleaved linear codes, linear
constraints and quadratic constraints given oracle access to Lm-codeword U that encodes the ex-
tended witness X. The prover computes the outputs of the tests by processing X block-by-block.
The verifier has a “succinct” representation of the system of constraints imposed on X and can
therefore check the outputs of the tests in a space-efficient manner.

We compose these two components as follows. At a high level, the prover generates the extended
witness X block-by-block as described in the reduction from BHRAM to X. As and when a block is
generated, the prover processes this block to compute “running partial outputs” for each of the three
tests. The prover only needs to store a few blocks in memory at a time rather than the entire extended
witness.

Theorem 6. Fix parameters m, m′, mmult, n, ℓ, B, t, e, d such that e < d/3 and d = n− ℓ+ 1. For every NP
relation that can be verified by a time T and space S RAM machine M with input x. Then the Protocol 4 is a
public-coin IOP/IPCP with the following properties:

1. Completeness: If there exist an witness w such that M(x, w) with time T and space S is accepted and P

generated the oracle U honestly, then V accepts with probability 1.
2. Soundness: Let there exists no witness w such that M(x, w) is accepted in time T and space S, then for

every unbounded prover strategy P∗, V will reject except with (1− e/n)t + 4((e+ 2ℓ)/n)t + (d+ 3m′ℓ+
mmult + |x|+ 3B)/|F|.

3. Complexity: The complexities are in terms of the number of field operations performed or number of field
elements over a field F below.
(a) The prover runs in time T · poly(log T, κ) and uses space S · poly(log T, κ).
(b) The verifier runs in time (T/S + S) · poly(log T, κ) and uses space poly(log T, κ).
(c) The communication complexity is S · poly(log T, κ)), query complexity of the verifier is O(κ) and num-

ber of rounds is a constant.

where κ is the security parameter.

Proof. Completeness: The Completeness follows from the correctness of RAM-to-circuit transforma-
tion as well as Completeness property in Lemma 11, 13 and 14.
Soundness: The soundness follows from the soundness property in Lemma 11, 13 and 14. The overall
soundness follows by applying a union bound on the soundness of the test. More precisely, we argue
the soundness by applying the union bound on the soundness of the two cases:

– d(U, Lm) > e/4: Since e < d/3, we can conclude from Lemma 11 that the verifier rejects Step 3

except with probability (1− e/n)t + d/|F|.
– d(U, Lm) ≤ e: We can conclude from Lemma 13 that the verifier rejects the linear test with proba-

bility ((e+ 2ℓ)/n)t +(ma + B)/|F|. As the value of ma and B are different in each step where linear
test is invoked. Substituting the correct value of ma and B for each step, the verifier rejects Step
4a, 4b and 4c except with probability ((e + 2ℓ)/n)t + (|x|+ 1)/|F|, ((e + 2ℓ)/n)t + (m′ℓ+ B)/|F|
and ((e + 2ℓ)/n)t + (2m′ℓ+ B− 1)/|F| respectively. Similarly, we can conclude from Lemma 14,
the verifier rejects Step 5 except with probability ((e + 2ℓ)/n)t + (mmult + B)/|F|.

Applying union bound on all the steps in both cases, the overall soundness error is (1− e/n)t +
4((e + 2ℓ)/n)t + (d + 3m′ℓ+ mmult + |x|+ 3B)/|F|.
Complexity: Given a RAM program M that runs in time T and uses space S, we set parameters as
follows:

– m = Õ(T/S)
– m′ = poly(κ, log(T))
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– ℓ = Õ(S)
– B = O(T/S)
– ma = Õ(S)
– mmult = poly(κ, log(T))

where Õ(·) ignores polylog(T) factor. We describe the complexities for the prover and verifier next.
Time Complexity:
Prover: We argue that the overall time complexities are the sum of the times complexities for the
RAM to extended witness reduction, interleaved linear test, (intra-block and inter-block) linear tests,
and quadratic test. This is because the prover generates X block-by-block where each block is an
m′ × ℓ submatrix of X. Upon generating a block, the prover performs the steps of each of the tests
corresponding to a block (as the test processes X block-by-block). So, the prover makes a single pass
through X to compute the final outputs of each of the tests simultaneously. Thus, the overall time
required by P is Õ(T).

Verifier: The verifier’s time is the sum of the times required to execute all the tests on blocks. By
plugging in the parameters as stated above, we get that the time for interleaved code test, linear test,
and quadratic tests are Õ((T/S)), Õ((T/S + S)), and Õ((T/S + S)) respectively. The verifier obtains
Õ(1) columns by querying the oracle, which is written onto the verifier’s proof tape row-wise. The
verifier makes a single pass over these columns and computes the outputs of each of the tests.

Space Complexity:

Prover: The prover requires space Õ(S) to generate and store a block of X. As described earlier, upon
generating a block, the prover invokes each of the tests on this block. By plugging in the parameters
described above, we obtain that the prover uses Õ(S) space to process each of the tests. Hence, the
overall space required by the prover is Õ(S).

Verifier: The overall space required by the verifier is the sum of space required for each of the three tests.
This is because the verifier makes a single pass over each of the Õ(κ) columns (received by querying
oracle) on its proof tape, which are obtained by querying the oracle (as described in the verifier’s
time complexity). In more detail, by substituting the parameters as described above, we get that the
interleaved code test and quadratic tests require a space of O(κ); and the linear test requires a space
of O(κ + |b|) where |b| is the size of the vector used in linear test to express linear constraints. The
additional O(S) is required to store the vector b used in the linear tests. However, b can be efficiently
generated using space Õ(1) because of the “succinct” representation of the circuit obtained from the
RAM to circuit reduction. This reduces the space for the linear test is just Õ(1). Hence the overall space
for the verifier is Õ(1).

5.3 Achieving Zero-Knowledge

In this section, we modify our protocol to achieve zero-knowledge using techniques from [1, 9]. In
particular, there are two parts which leak information about the extended witness. Taking Interleaved
test in Section 5.2.2 as an example, 1) the verifier receives a polynomial q(·) which is constructed
by taking random linear combiners of each row of U in the the polynomial form. This polynomial
leaks information about the extended witness. 2) Secondly, to check consistency between q(·) and
U, the verifier receives t randomly chosen (by the verifier) columns of U. These columns also leak
information about the extended witness as well.

To mitigate the first leakage, the prover adds a blinding codeword in U such that no information
is leaked by taking the random linear combiner of the rows in U. To migitate the second leakage, the
prover increases the degree of the RS code in U by t such that opening of t columns does not reveal
anything about the polynomials and extended witness.

Below, we provide different modification for different parts of the protocol:

– Oracle Generation: Previously defined in Definition 11, the encoding of the extended witness
is generated as follows. Each row i of X (denoted by xi) is encoded into a polynomial pi(·) i.e.
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Protocol 4 (Our new argument construction for arithmetic circuits.) Let X be the extended witness.

1. Process the extended witness X as follows.
(a) Define m, ℓ be parameters such that X is a matrix of size m× ℓ.
(b) Define blocks Xi of size m′ × ℓ starting at the I[i]th row of X for each i ∈ [B].
(c) For each block Xi, define sub-blocks as follows.

– Xinp
i is submatrix of Xi and is of size minp × ℓ

– Xle f t
i , Xright

i , Xout
i are submatrices of Xi of size mmult × ℓ.

Let I1[i], I2[i], I3[i] be the indices of the first row of X included in sub-blocks Xle f t
i , Xright

i , Xout
i respectively.

(d) The following succinct matrices and vectors are used to express linear constraints.
– A is a (m′ · ℓ)× (m′ · ℓ) matrix and b is a length (m′ · ℓ)-vector.
– A′ is a (2m′ · ℓ)× (2m′ · ℓ) matrix and b′ is a length (2m′ · ℓ)-vector.
– A′′ is a |x| × (2m′ · ℓ) matrix. (2m′ · ℓ)-vector

2. Encode X and generate the oracle U as given in Definition 11.
3. Test U is e-close to a valid interleaved code by engaging in Protocol 2 on the following input: U
4. Test linear constraint by engaging in three executions of Protocol 1 on the following inputs:

(a) Inputs for Execution 1 (Input consistency): U, 1, {y1}i∈[1], {I[1]}i∈[B], A′′, x.
(b) Inputs for Execution 2 (Intra-block Linear constraints): U, B, {xi}i∈[B], {I[i]}i∈[B], A, b.
(c) Inputs for Execution 3 (Inter-block Linear constraints): U, B− 1, {[xi xi+1]}i∈[B−1], {I[i]}i∈[B−1], A′, b′.

where xi is a flattened vector of block Xi (namely, xi is the vector obtained by concatenating the rows of Xi).
5. Test quadratic constraints by engaging in Protocol 3 on the following input: U, B, {Xi}i∈[B], {I[i]}i∈[B],
{I1[i]}i∈[B],{I2[i]}i∈[B],{I3[i]}i∈[B].

Fig. 6. A full description of our space-efficient IPCP.

pi(ζ j) = xi[j] for all j ∈ [ℓ] and ζ j is a interpolation point. Each row i of the encoded witness U
(denoted by ui) is generated by evaluating polynomial pi(·) at n−evaluation points. To increase
the degree of polynomial by t by adding randomness. For each row i in X, we generate a new
polynomial p′i(·) = pi(·) + ri(·)z(·) where ri(·) is a random polynomial of degree t and z(·) is a
polynomial which evaluates to 0 at set of all interpolation points ζ j. This new polynomial p′i(·)
will be used to generate the encoded witness U. Note that the polynomial is randomised by using
ri(·) but the evaluation of new polynomial at the interpolation points remain the same i.e. pi(ζ j) =

p′i(ζ j). This allows this encoding to be directly plugged in all the test without modifying them.

– Interleaved Linear Test: The verifier in the interleaved linear test verifies that the encoded witness
U is constructed correctly. The prover generate a polynomial p′(·) of degree k and it’s correspond-
ing RS codeword u′ and append u′ in U.

– Linear Test: The verifier in the linear test verifies that Ayi = b for all i ∈ [B]. Using the two
randomness vector r and r′, the verifier verifies whether ∑i∈[B] r′[i]rT Ayi = ∑i∈[B] r′[i]rTb. Encod-
ing rT A and yi as polynomials, we can compute a proof polynomial q(·). The verifier checks if
∑k∈[ℓ] q(ζk) = ∑i∈[B] r′[i]rTb. The polynomial q(·) will leak information about the extended wit-
ness. Therefore, we generate an RS codeword u′ by encoding a random message σ = (σ1, . . . , σℓ)
such that ∑k∈ℓ σi = 0. We append u′ to mask the oracle U and append σ to each yi. To verify that
σ is constructed correctly, we modify A such it adds an additional constraint to verify the masked
message σ is constructed correctly i.e. ∑k∈ℓ σi = 0.

– Quadratic Test: The verifier in the quadratic test verifies that Yleft
i ⊙ Yright

i − Yout
i = [0]mmult×ℓ for

i ∈ [B]. We add three messages a, b, c to Yleft
i , Yright

i , Yout
i for all i ∈ [B] such that a⊙ b− c = 0. The

encoding of these three messages u′left, u′right, u′out are appended to U.

After applying these modifications, we can convert the IPCP protocol into a Zero-Knowledge IPCP
protocol.
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5.4 From ZKIPCP to ZK

As addressed in [1, 9], transforming a ZKIPCP protocol into a ZK protocol can be achieved using
Merkle Trees. Using ZKIPCP protocol, the honest-verifier ZK is constructed as follows. Each entry of
the proof oracle (here each column of U) is committed using a statistically-hiding commitment scheme
and is compressed using a Merkle hash tree. Each of these commitments can be instantiated using a
family of collision-resistant hash functions. The rest of the steps in the honest-verifier ZK protocol will
be the same as in the ZKIPCP protocol, except the verifier querying the oracle. In the ZK protocol,
the prover will open the committed values corresponding to the verifier’s oracle queries. Malicious
verifiers can be handled using standard techniques [28, 29].

To use this transformation, the verifier needs to store the whole proof oracle U in the work tape.
To optimise the space-efficiency of the prover, we compute the partial commitment of each column of
U. As discussed in Section 4.5, we use the Merkle-Damgard hash function to commit to each column
of U. This only requires space in the order of the number of columns of U, denoted by n = Õ(S).
The prover initialises n variable aggi = h0

11, and computes each row i of the proof oracle U row by
row and updates aggj ← MD.Update(aggj, Ui,j). After processing each row of U, each aggj denotes the
commitment of each column of U. Next, the prover will compute the Merkle tree hash as described
previously. To open the committed values corresponding the verifier’s oracle, the prover will repeat
the whole process to generate the commitments for each column of U. Next, the prover will provide
the authentication path of the merkle tree for each verifier’s query to confirm that the merkle tree was
generated correctly and is consistent with the queries.

We can also compile our protocol directly to a non-interactive ZK protocol by applying the Fiat-
Shamir transformation [21] in the random oracle model where the verifier’s messages are emulated by
applying the random oracle on the partial transcript in each round.

The communication complexity of our ZK protocol is (S + (T/S)) · poly(log T, κ). The communica-
tion complexity of the IPCP protocol is S · poly(log T, κ). Additionally, the prover sends a merkle tree
root which is O(1) element and the prover responds to t queries of the verifier. In each query, the ver-
ifier sends a column of U having O(m) = (T/S) · poly(log T, κ) elements as well as the authentication
paths which consist of O(log n) = poly(log T, κ) elements. In total, for t = O(κ) queries, the prover
sends (T/S) · poly(log T, κ) elements.

5.5 Improving the proof length from Õ(T/S + S) to Õ(T/S)

The proof length or the communication complexity of the ZK protocol described above is (S+ (T/S)) ·
poly(log T, κ). In this section, we show how to improve the proof length to (T/S) · poly(log T, κ).

In our construction, recall that the prover encodes the extended witness X as U and performs three
test - Interleaved test, Linear Test and Quadratic Test. Each test requires sending a polynomial q(·) of
size Õ(S); this adds an Õ(S) term to the proof length. We will reduce this additive term to Õ(1) (i.e.,
poly(log T, κ)) by recursively using a symmetric-key based SNARK, namely the FRI protocol of [3]. At
a high level, we need to prove that the polynomial q(·) is of the right degree where q(·) is of size Õ(S);
Using the FRI protocol, the prover’ time and space are Õ(S), while the verifier’s time and space are
polylogarithmic in S. In more detail, in each of the tests, the verifier checks:

1. The polynomial q(·) is of right degree.
2. For all i ∈ [ℓ], the interpolation points ζi and q(·) satisfies the following constraints:

(a) Linear Test: The polynomial q(·) satisfies ∑i∈[ℓ] q(ζi) = a where a is a value known to the
verifier.

(b) Quadratic Test: The polynomial q(·) satisfies q(ζi) = 0 for all i ∈ [ℓ].
3. For j ∈ Q, q(ηj) = β j where the query set Q satisfies Q ⊆ [n] and |Q| = t = O(κ) and β j are

known to the verifier.

Let’s define q1(·), q2(·), q3(·) to be the polynomial sent in the Interleaved linear test, Linear Test and
Quadratic Test respectively. The FRI protocol provides a mechanism to commit to a polynomial where
(a) the verifier can verify the degree of the polynomial and (b) the verifier can make a few queries to
learn the value of the polynomial at the points needed for Step 3 above. This will suffice for the code

11 Here, h0 is defined as per the specific instantiation of the Merkle-Damgard construction.
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test. For the additional check on the linear test (resp., quadratic test), using ideas from [3], we can
reduce the checks on the polynomials q2(·) (resp., q3(·) to checking the degree of related polynomials
o1(·), o2(·) (resp., polynomial o3(·)) along with a consistency check between the polynomials and q2(·)
(resp., q3(·)). All of this can be enabled via the FRI protocol.

First, we briefly recall the FRI protocol. The FRI protocol allows the verifier to be convinced that the
polynomial is of right degree without sending the whole polynomial. In more detail, given a codeword
C generated by a polynomial q(·), the prover proves that C is a codeword δ−close to a codeword
generated by a polynomial of degree d. So with some soundness error, the prover can convince the
verifier that C is generated by evaluating a polynomial q(·) of degree d.

We presented our previous ZK protocol in the ZKIPCP model where the prover only commits to a
single oracle followed by an interactive protocol. For the improved proof length, we will move to the
ZKIOP model as the prover will commit to multiple oracles (required by the FRI protocol). The FRI
prover requires running time O(d) where d is the degree of the polynomial and FRI verifier requires
running time O(t log d) where t is number of queries.

The FRI protocol is divided into two phases, the commit phase and the query phase. On input
a polynomial q(·) (only known to verifier), a codeword C (verifier has oracle access) and d (denotes
degree of polynomial claimed), the protocol is executed as follows. In the commit phase, the prover
outputs a codeword as an oracle in each round i where ith codeword generated by a polynomial pi(·).
The size of codeword and the polynomial in round i is reduced by factor of 2 in each round. The prover
needs to store all the codewords. The total space for all the codewords is 2n where n is the size of the
1st codeword. As the size of codeword C is O(d), then the space required for the prover will be O(d)
in the IOPP model. In the query phase, the verifier queries O(t) entries in each oracle generated by the
prover in commit phase. For consistency between oracles generated in i and i + 1, a simple consistency
check is performed requiring O(1) space for each query. While running a consistency check between
two adjacent oracles, the verifier needs to store only queries for those oracles. Therefore the verifier
needs to store only O(t) query responses. Therefore in the IOPP model, the prover needs O(d) space
and verifier needs O(t log d) space.

While instantiating the protocols, the oracles can be committed using the Merkle Tree hash which
will add a multiplicative overhead of O(log d). The proof size will be tpoly(log d) where t is number
of queries.

Recalling that we can verify the first and second checks of the tests by checking the degree of
polynomials q1(·) and o1(·), o2(·), o3(·). To carry out the third check, the prover outputs codeword of
q1(·), o1(·), o2(·), o3(·) as an oracle which is constructed by evaluating the polynomials at the evalua-
tion points ηj for all j ∈ [n]. The verifier can query these oracles to verify the thrid check. Note that as
o1(·) and o2(·) satisfy a constraint with q2(·), therefore the codeword of q2(·) can be generated using
codeword of o1(·) and o2(·) and the same applies for o3(·) and q3(·).

Reducing q2(·) to o1(·) and o2(·):
Denote z(·) is a polynomial of degree ℓ such that z(ζi) = 0 for all i ∈ [ℓ] and z′(·) is a polynomial

of degree 1 where the constant coefficient is 0 and the first coefficient is 1.

To verify that ∑i∈[ℓ] q2(ζi) = a, we first define a new polynomial q′(·) where q′(·) = q2(·)− a. Next,
we write the polynomial q′(·) as :

q′(·) = w1(·) + w2(·)z(·)

where q′(·), w1(·) and w2(·) are polynomials of degree < 2ℓ− 1, < ℓ and < ℓ− 1. We note that
w1(ζi) = q′(ζi) for all i ∈ [ℓ] as the term w2(ζi)z(ζi) = 0.

Notice that ∑i∈[ℓ] w1(ζi) = 0. As ζi are the interpolation points which are ℓth root of unity, we can
apply Lemma 18 and show that the constant coefficient of the polynomial w1(·) is 0. Therefore we
define another polynomial w3(·) of degree < ℓ− 1 that satisfies w1(·) = z′(·) · w3(·).

Therefore we can represent q2(·) as:
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q2(·) = q′(·) + a
= w1(·) + o2(·)z(·) + a

= z′(·) · w3(·) + w2(·)z(·) + a

where w3(·) and w2(·) are polynomials of degree < ℓ − 1 and < ℓ − 1, z(·) is a polynomial of
degree ℓ. We set o1(·) = w3(·) and o2(·) = w2(·).

To prove that the polynomial q2(·) satisfies ∑i∈[ℓ] q(ζi) = a, the prover needs to prove that o1(·)
and o2(·) are polynomials of degree ℓ− 2 and satisfies the constraint q2(·) = z′(·) · o1(·) + o2(·)z(·) + a.

Reducing q3(·) to o3(·): To verify q3(ζi) = 0 for all i ∈ [ℓ], we first a new polynomial o3(·) such that
q3(·) = o3(·)z(·) where z(·) is a polynomial of degree ℓ such that z(ζk) = 0 for all i ∈ [ℓ]. To prove that
the polynomial q3(·) satisfies q3(ζi) for all i ∈ [ℓ], the prover needs to prove that o3(·) is a polynomial
of degree ℓ− 2 and satisfies the constraint q3(·) = o3(·)z(·).
Modified protocol.

Denote z(·) is a polynomial of degree ℓ such that z(ζi) = 0 for all i ∈ [ℓ] and z′(·) is a polynomial of
degree 1 where the constant coefficient is 0 and the first coefficient is 1. We provide the modifications
to the test as follows:

1. Interleaved Linear Test: Instead of sending the polynomial q1(·), the prover generates a codeword
C by evaluating q1(·) on the evaluation points ηi for i ∈ [n]. The verifier will query C at j ∈ Q and
verify if C[j] = β j. The verifier will also execute a FRI protocol with inputs (q1(·), C, ℓ− 1) to verify
the degree of q1(·) where q1(·) is claimed to be of degree ℓ− 1 by the prover.

2. Linear Test : Instead of sending the polynomial q2(·), the prover generates two codeword C1, C2
by evaluating o1(·), o2(·) on the evaluation points ηi for i ∈ [n]. The verifier will query C1, C2 at
j ∈ Q and verify if z′(ηj)C1[j] + C2[j]z(ηj) + a = β j. The verifier will also execute a FRI protocol
with inputs (o1(·), C1, ℓ− 2) and (o2(·), C2, ℓ− 2)to verify the degree of o1(·) and o2(·) where both
are claimed to be of degree ℓ− 2.

3. Quadratic Test: Instead of sending the polynomial q2(·), the prover generates a codeword C by
evaluating o3(·) on the evaluation points ηi for i ∈ [n]. The verifier will query C at j ∈ Q and verify
if z(ηj)C[j] = β j. The verifier will also execute a FRI protocol with inputs (o3(·), C, ℓ− 2) to verify
the degree of o3(·) and o2(·) where is claimed to be of degree ℓ− 2.

Recall that the Proof length or the communication complexity of our ZK protocol is (S + (T/S)) ·
poly(log T, κ)). Sending a polynomial q(·) in each test required to send d = S · polylogT elements. This
part of the communication complexity is reduced to t · polylogd = κ · polylogS, thereby reducing the
proof length to be (T/S) · poly(log T, κ). Hence we have the following theorem.

Theorem 7. Assume that collision-resistant hash functions exist. For every NP relation that can be verified by
a time T and space S RAM machine M with input x has a zero-knowledge argument-system with the following
properties:

1. Completeness: If there exist an witness w such that M(x, w) with time T and space S is accepted and P is
honest, then V accepts with probability 1.

2. Soundness: If there exists no witness w such that M(x, w) is accepted in time T and space S, then for every
unbounded prover strategy P∗, V will reject except with negligible probability.

3. Complexity: The complexities are in terms of the number of field operations performed or number of field
elements over a field F below.
(a) The prover runs in time T · poly(log T, κ) and uses space S · poly(log T, κ).
(b) The verifier runs in time (T/S + S) · κ · poly(log T, κ) and uses space κ · poly(log T, κ).
(c) The communication complexity is T/S · polylog(T), and the number of rounds is O(log S).

where κ is the security parameter.Moreover, applying the Fiat-Shamir heuristic results in a non-interactive
sublinear zero-knowledge argument of knowledge with the same asymptotic efficiencies.
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A Additional Lemmas for Testing Linear Constraints

Lemma 15. Relation between co-efficient and roots of polynomial:
Given a polynomial p(·) of deg(P) = n:

p(x) = cn · Xn + cn−1 · Xn−1 + . . . + c1 · X + a0

= cn · (x− α1) · (x− α2) . . . (x− αn−1) · (x− αn)

where α1, α2, . . . αn are roots of the polynomial.
Sum of n roots is (−1) · cn−1

Lemma 16. If roots of the polynomial p(·) is ℓth roots of unity, then :

p(X) = Xℓ − 1
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Combining the two Lemmas, we can observe that the sum of all ℓth root of unity is 0:

Corollary 1. If H is a set of ℓth roots of unity, then the sum of all elements in H is 0.

Lemma 17. If monomial p(·) = Xt, H be a set of ℓth roots of unity and G = {p(h)}h∈H , then G is also a set
of root of unity.

Proof: If H is a set of ℓth roots of unity, then every element h ∈ H satisfies hℓ = 1. This is because
every element h is a root of polynomial Xℓ − 1. Each element g ∈ G also satisfies gℓ = 1 and is shown
mathematically below :

gℓ = (ht)ℓ

= (hℓ)t

= 1t

= 1

As each element g ∈ G satisfies gℓ = 1, therefore all element in G are roots of unity.

Lemma 18. Given a polynomial p(·) of degree t and H be the ℓth roots of unity, then ∑a∈H p(a) = ℓ∑imodℓ=0 ci.

Proof: We use the corollary 1 and Lemma 17 to show that if H is a set consisting of ℓth roots of
unity, then ∑a∈H p(a) = ℓ∑imodℓ=0 ci.

∑
a∈H

p(a) = ∑
a∈H

∑
i∈[0,t]

ciai

= ∑
i∈[0,t]

ci ∑
a∈H

ai

= ∑
imodℓ=0

ci ∑
a∈H

ai + ∑
imodℓ ̸=0

ci ∑
a∈H

ai

= ∑
imodℓ=0

ci ∑
a∈H

1 + ∑
imodℓ ̸=0

ci ∑
a∈H

ai

= ∑
imodℓ=0

ℓci + 0

= ℓ ∑
imodℓ=0

ci
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