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Abstract. Private comparison schemes constructed on homomorphic encryption offer the noninterac-
tive, output expressive and parallelizable features, and have advantages in communication bandwidth
and performance. In this paper, we propose cuXCMP, which allows negative and float inputs, offers
fully output expressive feature, and is more extensible and practical compared to XCMP (AsiaCCS
2018). Meanwhile, we introduce several memory-centric optimizations of the constant term extraction
kernel tailored for CUDA-enabled GPUs. Firstly, we fully utilize the shared memory and present com-
pact GPU implementations of NTT and INTT using a single block; Secondly, we fuse multiple kernels
into one AKS kernel, which conducts the automorphism and key switching operation, and reduce the
grid dimension for better resource usage, data access rate and synchronization. Thirdly, we precisely
measure the IO latency and choose an appropriate number of CUDA streams to enable concurrent
execution of independent operations, yielding a constant term extraction kernel with perfect latency
hide, i.e., CTX. Combining these approaches, we boost the overall execution time to optimum level
and the speedup ratio increases with the comparison scales. For one comparison, we speedup the AKS
by 23.71×, CTX by 15.58×, and scheme by 1.83× (resp., 18.29×, 11.75×, and 1.42×) compared to
C (resp., AVX512) baselines, respectively. For 32 comparisons, our CTX and scheme implementations
outperform the C (resp., AVX512) baselines by 112.00× and 1.99× (resp., 81.53× and 1.51×).

Keywords: Private comparison · Homomorphic encryption · GPU optimization · Number theoretic
transform · Key switching.

1 Introduction

Decision tree is one of the most popular classification models in machine learning that makes decisions by
comparing the input values and the thresholds. To reduce the computational burden, it is often deployed on
a cloud server to evaluate the input data, but this raises security issues when the data is privacy sensitive.
Privacy preserving decision trees (PPDT) is such a technique that proposed to provide prediction results
without compromising the client inputs as well as the tree model except the number of thresholds, thus
ensuring the privacy for both parties.

The main building block of PPDT is private comparison, which takes two encrypted numbers as in-
put and outputs a ciphertext that contains the comparison result. Recently, various works concentrate on
constructing private comparison schemes, based on techniques such as Yao’s garbled circuit [20, 27], secret
sharing [7], oblivious transfer [10], and homomorphic encryption (HE). Among these schemes, the first three
types feature multi-party computing scenario that the interactions between parties is in nature cannot be
omitted, making communication latency the main bottleneck to efficiency. The vulnerability becomes more
obvious in settings where network communication is poor and the computation capability of clients is limited.
Constructing noninteractive private comparison based on homomorphic encryption, which allows computa-
tion over ciphertexts, is more desirable, for it offers parallel evaluation within single-round interaction and
can greatly boost the overall execution time.

The first noninteractive private comparison scheme is XCMP proposed by Lu et al. [21], which is built
from fully homomorphic encryption (FHE) and offers output expressive and parametrizable features. This



scheme allows comparison between two encrypted non-negative integers, and the result can be obtained
after decryption. They also embedded it in the framework proposed by Tai et al. [25] to conduct PPDT
evaluation. However, the scale of the input domain and the reuse of the outputs is limited, for it does not
support multiplying two comparison results. Since then, studies such as [17] and [26] have tried to exploit
more practical designs to obtain fully output expressive schemes, which is, however, at the cost of reducing
the performance or increasing the communication bandwidth. Although several efforts have been made, these
HE-based schemes are difficult to apply due to the high computational overhead of HE and limited input
domain, i.e., only integers.

The improvement in computing capacity of devices has alleviated this problem, especially on devices
equipped with graphic processing units (GPUs), which can fully exploit the parallelism of GPUs to accel-
erate the computing process. Previous works demonstrated that using GPU to accelerate computation can
improve efficiency greatly by orders of magnitude, which can be divided into two categories, one focusing on
accelerating functions of HE such as homomorphic multiplication and bootstrapping, and the other focusing
on accelerating applications constructed on HE such as PrivFT. Nevertheless, the memory overhead of the
scheme is still high, and optimizing the kernel for a specific function requires many factors to be taken into
account, such as trade-offs between efficiency and resource, conflict caused by stride data access, allocation
of pipelines, etc.

Table 1: Comparison with existing private comparison protocols.

Methods Input
Input
domain

Plaintext
space

Multiplicative
depth

Expressiveness

XCMP [21] A, B A,B ∈ [0, N − 1]
A,B ∈ [N,N2 − 1]

Rq
1
2

ADD, MUL

[17] A, B A,B ∈ [0, N − 1]
A,B ≥ N

Rq

1
log


µ

logN


+ 1

ADD, MUL

cuXCMP AI, AD, BI, BD A,B ∈ Q Rq


log


µ

logN


+ 1 ADD, MUL

Contributions. In this paper, we propose a more generic noninteractive private comparison scheme
cuXCMP based on HE as well as an optimized GPU implementation to accelerate the execution. Our
cuXCMP has good expansibility and performance, and offers easy integration of existing PDTE protocols.
A comparison of similar schemes is shown in Table 1. In details, the main contributions of this paper can be
summarized as follows:

– We change the element encoding method and exploit a constant term extraction approach, resulting in a
more extensible and practical scheme that is fully output expressive and allows comparison over negative
and float numbers.

– We improve the performance of the scheme by optimizing the implementation using CUDA-enabled
GPUs. We focus on the automorphism and key-switching kernel (AKS) and constant term extraction
kernel (CTX), which are in nature memory-bound, and propose several memory-centric optimizations.
In detail, our optimizations include the follows:

• We present compact GPU implementations of NTT and INTT, which fully utilize the shared memory
and can process 8192-point NTT within a single block;

• For the AKS kernel, we apply kernel fusing to reuse the data stored in the shared memory and
registers, and reduce the grid dimension decrease the resource usage. Meanwhile, we eliminate some
synchronization instructions during execution to reducing the runtime.
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• For the CTX kernel, we improve the parallelism by allocating multiple CUDA streams that allow
kernels to run concurrently and hide the IO latency. We fine tune the number of streams through
precisely latency measurement;

– Our optimizations boost the overall execution time. The AKS kernel, CTX kernel and scheme outperform
the C (resp., AVX512) baselines by 23.71×, 15.58×, and 1.83× (resp., 18.29×, 11.75×, and 1.42×) for
one number comparison, respectively. Additionally, we obtain the best speedup ratio by setting the scale
of comparisons to be multiples of the stream numbers, e.g., we speed up the scheme by 1.99× when
comparing 32 numbers.

The rest of the paper is organized as follows: Sec 2 covers preliminaries, including introductions to the
HE scheme, private comparison, and GPU implementation basics. We present our scheme design in Sec 3
and implementation optimizations in Sec 4. Sec 5 provides the performance results of our implementation
on NVIDIA Tesla V100S PCIe.

2 Preliminaries

2.1 Notation

We define the group of rational numbers by QN = {i ∈ Q,−N
2 ≤ i < N

2 } and Q+
N = {i ∈ Q, 0 ≤ i < N}. For

a positive integer q, denote the finite filed of all congruence classes modulo q by Aq = [0, q) ∩ Z and Zq =
Z/qZ = [− q

2 ,
q
2 )∩Z. Let R = Z[X]/ (Φ2N (X)) be the ring of polynomials of which the coefficients come from

Z, and Rq = R/qR be the residue ring of R modulo q, where N is a power of 2 and Φ2N (X) = XN +1 is the

2N -th cyclotomic polynomial of degree N . A polynomial f ∈ Rq is represented in the form f =
N−1

i=0 fiX
i.

We use · to denote an encrypted element. The notation 2k || i refers to 2k | i and 2k+1 ∤ i. Denote
1{P} a Boolean expression that returns 1 when P is true and 0 otherwise. The homomorphism addition,
subtraction and multiplication are written as ⊕, ⊖, and ⊗ respectively. The symbol ← represents variable
assignment or uniformly random sampling from a distribution.

2.2 RLWE-based homomorphic encryption

Homomorphic encryption allows secure arithmetic computations over encrypted data without the knowledge
of a secret key. An HE scheme consists of the following algorithms:

– Setup. Takes the security parameter λ as input and outputs the public parameters Prm ← HE. Setup(1λ).

– Key generation. This process takes the parameters Prm as input and generates two types of keys. The
first is the public and secret key pair (pk, sk) ← HE.KeyGenenc(Prm) used in encryption and decryption,
and the other is the evaluation key ek ← HE.KeyGeneva(Prm).

– Encryption. Given a public key pk and a message m, output c ← HE.Enc(pk,m), which is the encryption
of m using pk.

– Decryption. Decrypt the ciphertext c using the secret key sk and output the result m ← HE.Dec(sk, c).

– Evaluation. Take as inputs an evaluation key ek, a function f , and two ciphertext c1, c2, output the
encrypted evaluation result of f over c1 and c2. The following properties hold during evaluation:

HE.Dec(sk, c1 ⊕ c2) = HE.Dec(sk, c1 + c2),HE.Dec(sk, c1 ⊕ c2) = HE.Dec(sk, c1 + c2)
HE.Dec(sk, c1 ⊗ c2) = HE.Dec(sk, c1 × c2),HE.Dec(sk, c1 ⊗ c2) = HE.Dec(sk, c1 × c2)

In this work, we focus on HE schemes based on the ring-learning with errors (R-LWE) problem [22] due
to its efficient algebraic structure. Many efficient HE schemes are constructed on the R-LWE problem, such
as BGV [6] and CKKS [9], where the computation is performed on polynomials.
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Polynomial multiplication and reduction. Polynomial multiplication and reduction are two perfor-
mance bottlenecks of HE schemes. The Number Theoretic Transform (NTT) is often used to accelerate
multiplication, for it reduces the computation complexity from O(N2) to O(N logN). Denote ω and γ as

the N -th and 2N -th root of unity respectively. The forward NTT of a polynomial f =
N−1

i=0 fiX
i can

be represented as NTT(f) = f̂ =
N−1

i=0 f̂iX
i where f̂i =

n−1
j=0 γj

n · ωij
n · fj , and for the inverse NTT is

f = INTT(f̂) =
N−1

i=0 fiX
i, where fi =

1
n · γ−i

n

n−1
j=0 ω−ij

n · f̂j . The forward NTT transforms the polyno-
mials into the NTT domain, and then two polynomials are multiplied in a point-wise manner. Since this
transformation is an isomorphism, we have f · g = NTT−1(NTT(f) ∗ NTT(g)), here ∗ denote to the point-
wise multiplication. Barrett reduction is commonly applied to reduce coefficients. This method replaces the
time-consuming division operation with a multiplication and a bit shift operation, which can be implemented
efficiently due to the hardware structure of a processor.

RNS representation. Let q = Πr−1
i=0 qi donate the decomposition of the modulus q to a set of co-prime

moduli. The Chinese Remainder Theorem (CRT) define a map from Zq to Πr−1
i=0 Zqi so that a mod q →

(a mod q0, a mod q1, · · · , a mod qr−1). This can be extended to a ring isomorphism Rq
∼= Rq0 × Rq1 ×

· · · ×Rqr−1 . Through this way, a polynomial with large coefficients can be decomposed into r polynomials
with smaller coefficients, which is called the residue number system (RNS) representation. The CRT/RNS
technique can be used to reduce computational overhead, for the scale of the coefficients decreased.

Modulus switching. Modulus switching is used for converting a ciphertext c under the modulus q into
another ciphertext c′ under the modulus q′ correspond to the same secret key s. This method is used by

scaling c with factor q′

q and then rounding it to an integer, and is often used in controlling noise.

Key switching. For RLWE ciphertexts, the key switching procedure, given a ciphertext ct0 = (c0, c1) ∈ R2

and secret keys s0, s1 ∈ R, outputs a ciphertext ct1 ∈ R2 with subgaussian error, aiming at converting a
ciphertext into another under a different key while approximately preserving its phase [8, 14]. It consists of
two procedures: first, compute the switching keyK = [k0 | k1] ∈ Rd×2

q , where k0 = −s1·k1+s0·g+e( mod q),

k1 ← U(Rd
q), and e ← χd; second, compute and return the ciphertext ct1 = (c0, 0) + g−1(c1) ·K (mod q),

where the map g−1 : Rq → Rd is the gadget decomposition [8]. The output satisfies that 〈ct1, (1, s1)〉 =
〈ct0, (1, s0)〉+


g−1 (c1) , e


.

Galois automorphism. For i ∈ Z∗
2N , the Galois automorphism over R is defined as a map i : R → R,

f(X) → f(Xi) mod Φ2N (X). Specifically, there are N automorphisms over R in total that form N different
permutations on plaintext slots, yielding new ciphertexts corresponding to other secret keys. As this operation
changes the secret key, we need to switch it back through the key switching operation each time after applying
an automorphism.

2.3 Private Comparison and XCMP

We recall the homomorphic encryption based private comparison scheme XCMP proposed by Lu et al. [21],
which allows to evaluate the comparison a > b noninteractively and homomorphically. The inputs are two
encrypted 2 logN -bit integers, and the output holds the expressive feature that the arithmetic operations
can act directly on it without extra interactions with other entities.

The basic idea of XCMP is to encode the two integers into two monomials through the map π : Z →
Rq, π(a) = Xa, and then construct a polynomial containing a and b of which the constant term reveals
the comparison result. In details, the proposed polynomial is C = T × π(a) × π(b) mod (XN + 1), where
T = 1 + X + · · · + XN−1. When a ≤ b, C[0] comes from the (b − a)-th coefficient of T , so that we have
C[0] = Xb−a ·Xa−b = X0 = 1 mod (XN +1). Otherwise, C[0] comes from the (N + b−a)-th coefficient of T
and C[0] = XN+b−a ·Xa−b = XN = −1 mod (XN + 1). Meanwhile, XCMP offers a way to parametrize the
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output. Here, the coefficients of T is set as µ and a noise polynomial R ← Rq with R[0] set to be µ̄ should be
added to C, where µ̄ = (µ0 + µ1) · 2−1 and µ = µ0 − µ̄. So that C[0] = µ0 if a ≤ b and otherwise C[0] = µ1.

The output of XCMP is an encryption of the polynomial C = 1{a > b} +
N

i=1 riX
i, which preserves

additive and multiplicative homomorphism properties. Specifically, denote C1 = XCMP(Xa, Xb1) and
C2 = XCMP(Xa, Xb2), summing C1 and C2 homomorphically gives the encryption of 1 {a > b1}+
1 {a > b2}, and e · C1 contains the result of e · 1{a > b}, where e is a number.

2.4 CUDA Programming Model

Compute Unified Device Architecture (CUDA) [23] is a parallel computing platform and programming
model that allows software to access and accelerate processing with graphics processing units (GPUs), which
provides more powerful compute capabilities. The programming method follows the host-to-device model.
In this setting, a kernel is called by the by the host (CPU) and executed on the device (GPU), and then
a set of CUDA threads is launched and executes the same functions defined by the kernel in parallel. The
structure of GPU can be abstract as three hierarchies: grid, block and thread. A grid consists of several
blocks, and each block can launch up to 1024 threads. All these can be formed into 1- to 3-dimension arrays
to be compatible with the operands’ structure. During execution, the threads are bundled per 32 in a warp,
and then the streaming multiprocessor (SM) schedules the warps and executes the operations concurrently.

Memory in GPU includes global memory, constant memory, shared memory and registers. The global
memory is accessible by all threads, which has the largest storage capacity and access latency. The threads
within a block can access the shared memory, and the communication speed is much more faster. The registers
are private and are the local memory for a thread.

Cooperative groups. Synchronization among threads ensures the safety and maintainability of programs.
The cooperative group is an extension of the CUDA programming model that allows the kernel to organize
groups of threads dynamically and synchronize them within and across blocks. For example, synchronization
across the grid within a kernel can be realized by invoking the function grid.sync().

Kernel fusing. There are two alternative methods to utilize kernels: single-kernel approach and multi-
kernel approach, denoting the number of kernels invoked to accomplish a task. Both approaches have their
relative strengths and weaknesses in relation to different application scenarios, and a technique named kernel
fusing can be introduced to fuses multiple kernels into one. Combining multiple kernels allows threads to
share the data in the shared memory and reuse the data in the registers, so that the time consumed in data
transmission is reduced.

Cuda stream. Using multiple streams and letting independent operations run concurrently lead to a more
flexible and fast execution. CUDA streams and events are such techniques though which we can prescribe
execution order of operations within and across streams. This technique is of great benefits as it overlaps the
data communication and kernel execution. Specifically, we can launch multiple streams to pipeline the data
transmission between different memory field and the computation of operations, which are not necessarily
sequential. Through this, we can reduce the latency and improve the performance.

3 Private Decision Tree Evaluation

The cuXCMP scheme inherits the noninteractive feature of XCMP, while offers rational number comparison
and is fully output expressive. In this section, we present a modular description of cuXCMP, as well as a
method to integrate it into a PDTE protocol.
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CTX(C, swk) :

1: for i = 0 to logN do
2: C ← C ⊕AKS(C, swk[i])

3: return c ← C

cuXCMPneq
l (XaD , XbD ) :

1: X−bD  ← XbD 
2: E ← 1⊖ XaI  ⊗ X−bI 
3: return e ← CTX(E)

cuXCMPcmp
l (XaI , XbI ) :

1: µ̄ ← 2−1 mod q, µ ← −µ̄ mod q
2: T ←

N−1
i=0 µXi

3: R ← Rq, R[0] ← µ
4: X−bI  ← XbI 
5: C ← XaI  ⊗ X−bI  ⊗ T ⊕R
6: return c ← CTX(C)

Client :

(AI, AD) ← Enc(a, pk), a ∈ QN

1: a′ ← σ(a), aI ← ⌊a′⌋, aD ← δ(a′ − aI)

2: AI ← π(aI), AD ← π(aD)

3: AI ← HE.Enc(AI , pk),

AD ← HE.Enc(AD, pk)

Server :

c ← cuXCMP(AI, AD, BI, BD)
1: cI ← cuXCMPcmp(AI, BI),

cD ← cuXCMPcmp(AD, BD)
2: eI ← cuXCMPneq(AI, BI)
3: c ← eI ⊗ (cI ⊖ cD)⊕ cD
Client :

c ← HE.Dec(c, sk)

Fig. 1: The specifications of the proposed cuXCMP scheme (right), and the private comparison and inequality
test algorithm (left).

3.1 Our proposal: cuXCMP

The private comparison scheme XCMP proposed in [21] (see Sec 2.3) allows comparison between two ℓ-bit
integers a, b ∈ AN , ℓ = logN . Although it offers a way to extend the domain to AN2 to compare two
2ℓ-bit integers, the use in practice is limited for it only supports comparison between nonnegative integers.
In this section, we present a scheme cuXCMP, aiming at evaluating comparison between rational numbers
privately to meet practical requirements. The proposed cuXCMP consists of two algorithms: cuXCMPcmp

ℓ

and cuXCMPneq
ℓ , one for comparing two (ℓ + 1)-bit signed elements (one bit for the sign) in QN and the

other is to test whether the two numbers are unequal.
cuXCMP offers similar noninteractive and output expressive features as XCMP [21] as it derived from

it, while allowing a larger input domain and multiplication of ciphertexts. The scheme is shown in Fig. 1.
We consider the client-server setting, which is a simplification of the three kinds of stakeholders in XCMP
by letting the encryptor and decryptor be identical. Specifically, the client encodes and encrypts the data
through the function Enc, and then sends it to the server. The evaluation is completely delegated to the
server, for the inputs and output are all ciphertexts. The server executes the private comparison as cuXCMP
defines and sends the result to the client for decryption. Different to XCMP that outputs an encrypted
polynomial, the output of cuXCMP is a Boolean of the expression 1 {a > b}.

Elements encoding. The compared elements need to be encoded to the plaintext space of the encryption
scheme. Define map σ : QN → Q+

N , a → a+ N
2 , which maps elements in QN to Q+

N by adding N
2 to obtain

nonnegative numbers. For a ∈ QN , the encoding procedure first transforms the domain from QN to Q+
N

through mapping a to a′ = σ(a), then split a′ and get the integral part aI and the rescaled decimal part
aD. One thing to note is that we rescale the decimal part by multiplying it with δ and get aD, which is an
integer, and the system accuracy determines δ. Afterwards, we follow the XCMP encoding procedure and
map aI and aD to monomials through π(·) and get AI = XaI and AD = XaD .

Constant term extraction. XCMP [21] takes two integers as input and outputs the ciphertext of a
polynomial that contains the comparison result in its constant term, and the other terms are random and
have no actual meaning. This feature makes the output not fully expressive, for multiplying two ciphertexts
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only yields an encryption of a random polynomial. A constant term extraction technique over the ciphertext
can remove the influence caused by random coefficients and make the output fully expressive. Evaluating the
field trace through summing the automorphisms τγ can homomorphically extract the constant term [8,17,18].
Define sets Ij =


i ∈ [N ] : 2j || i


for j ∈ [0, logN) and IlogN = 0. Then, the disjoint union of Ij forms the

polynomial index set, i.e.,


0≤j≤logN Ij = [0, N). For an integer γ = 2ℓ+1, 1 ≤ ℓ ≤ logN , the automorphism

τγ , which maps i to i · γ, is a signed permutation on Ij [8]. Specifically, if 2logN−ℓ+1 | i, τγ

Xi


= Xi, while

τγ

Xi


= −Xi for 2logN−ℓ || i, and we can obtain this through the Galois automorphism. Namely, adding the

automorphism to polynomial doubles the coefficients of the even terms while zeroizes the odd terms. Summing
up the automorphisms recursively yields a way to isolate the polynomial coefficients [4, 18], which equals to
the field trace function TrR/Z : R → Z. This function can be evaluated homomorphically, with one time-
consuming key switching procedure needed after each automorphism to get the encryption with respect to the
original key. The TrR/Z is often decomposed into individual trace functions TrR(i)/R(i−1) = R(i) → R(i−1),

where Z = R(0) ⊆ R(1) ⊆ · · · ⊆ R(r) = R [4, 8]. Thus, we can evaluate it in quasilinear time, and the
complexity is reduced.

Inequality test. Denote cuXCMPneq
l as the inequality test procedure of two ℓ-bit integers in the cuXCMP

scheme. As is specified in Fig. 1, cuXCMPneq
l follows the same method as XCMP [21] in inequality test.

Specifically, we can obtain the test result through computing E = 1 ⊖ Xa ⊗ X−b. The constant term
of polynomial E maintains 1 when a > b and downgrades to 0 otherwise. Then, we can extract the result
through the constant term extraction method.

Domain extension. We apply the domain extension method proposed in [17], of which the main idea is
splitting the numbers into several chunks and comparing them respectively. Denote m and n as the number
of chunks, the outputs of inequality test and comparison can be expressed as the following:

– e ← e0 ⊗ e1 ⊗ · · ·⊗ em−1
– c ← (en−1 ⊗ cn−1)⊕


c0 ⊗n−1

i=1 ei

⊕n−2

i=1


ei ⊗ ci ⊗n−1

j=i+1 ej


Private comparison. The input to cuXCMP is four encrypted polynomials AI, AD, BI, and BD,
which refer to the ciphertexts of integral and decimal parts of a and b, a, b ∈ Q+

N . cuXCMP functions by calling
the subprocedure cuXCMPcmp

l several times and manipulating the output results. Here, the cuXCMPcmp
l

takes two ℓ-bit nonnegative integers as input and homomorphically evaluates the comparison as XCMP [21]
does, while differs in the output form, which is the extracted encrypted constant term. During the evaluation,
we first compare the integral and decimal parts respectively and get cI ← cuXCMPcmp

l1
(AI, BI) and

cD ← cuXCMPcmp
l2

(AD, BD). Then, by testing the inequality of the integral part, we get eI =
cuXCMPneq

l1
(AI, BI). The comparison of a and b can be expressed as the following:

1{a > b} = 1{a′ > b′}
= 1{aI ∕= bI} · 1{aI > bI}+ 1{aI = bI} · 1{aD > bD}
= 1{aI ∕= bI} · (1{aI > bI}− 1{aD > bD}) + 1{aD > bD}

So the result can be obtained by computing c ← eI ⊗ (cI ⊖ cD)⊕ cD.

3.2 Noninteractive privacy-preserving decision tree

In the noninteractive HE-based private decision tree evaluation setting, the server preserves an encrypted
decision tree. A feature vector is encrypted by the client and sent to the server for evaluation. Then, the server
conducts the comparison of every tree nodes and evaluates the path homomorphically. The computation is
completely dedicated to the server with no information leakage, for the evaluation is processed over encrypted
data.
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Client Server

Initiation

Prm ← HE. Setup(1λ) Prm

(pk, sk) ← HE.KeyGenenc(Prm)

ek ← HE.KeyGeneva(Prm) pk, ek

Deserialization

Get Prm

Get pk, ek

Encoding and encryption

a = {a0, · · · , an−1} ∈ Qn

For i ∈ {0, · · · , n− 1}
CAi ← Enc(ai) n, {CAi} Evaluation

For i ∈ {0, · · · , n− 1}
ci ← cuXCMP(CAi , CBi)

v ← T ({ci})vDecryption

v ← HE.Dec(v, sk)

Fig. 2: The privacy-preserving decision tree evaluation protocol embedded with cuXCMP.

We follow the definitions in [25] with a modification to the data structure and denote the decision tree
evaluation function as T : Qn → Zm, which maps a rational attribute vector a = (a0, · · · , an−1) ∈ Qn

to a classification labels set {v0, · · · , vm−1}. This evaluation function can be instantiated according to the

application, e.g., T :=
n−1

i wi · ci, where wi denotes to the weight. Let (pk, sk) be the keypair used in data
encryption, where the client holds the sk. The privacy-preserving decision tree evaluation protocol is shown
in Fig. 2 and illustrated as follows.

1. Client: Sets the system parameters according to the security level , and then generate the public and
private keys (pk, sk) for encryption and the ek for evaluation. Afterwards, the client sends the public
parameters, pk and ek to the server.

2. Server: Deserializes the received packets to get the public parameters and keys.

3. Client: Encodes and encrypts each element of the feature vector a ∈ Qn through the function Enc and
gets a ciphertexts set {CAi

:= (AI,i, AD,i)}, i ∈ [0, n), and then sends it to the server.

4. Server: A decision tree is dedicated to the server, of which each decision node bi has an encrypted label
Cli := li and threshold CBi

:= (BI,i, BD,i), i ∈ [0, n). After receiving the set, the server applies
cuXCMP on each element and gets the comparison results of every decision node. The classification
result is obtained through the function EvalPath, which is defined as v :=

n−1
i li · ci and can be

evaluated homomorphically with encrypted inputs. The output that sent to the client is a ciphertext of
the classification result.

5. Client: Decrypt the ciphertext using sk and get the classification result.

Security analysis. Our protocol is secure under the semi-honest assumption, as it preserves the privacy
of the feature vector and the decision tree. In details, all the feature vectors sent to the server are encrypted.
Thus, the server can learn nothing about the components of the vectors. The decision tree is preserved in the
form of ciphertexts, and the evaluation process is conducted through homomorphic operation, thus leaking
no information about the threshold and label of every decision nodes. The only thing they can get through
the evaluation is the number of attributes, which is the system parameter and has no effect on the entire
security. Thus, there is no additional information that can help to take apart the real world execution from
the deal world execution, of which the protocol players can access a trusted third party that evaluates the
functionality [21].
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4 GPU Implementation and Optimizations

In this section, we introduce our compact and efficient GPU implementation of cuXCMP. We focus on
optimizing the constant term extraction function based on a deep analysis of the performance bottlenecks,
i.e., the CTX kernel, which contains the NTT, INTT, and AKS. The memory-bound nature of HE makes us
strive for better memory management. We propose a compact design of NTT and INTT which fully utilized
the shared memory. Based on this, we present several memory-centric optimizations, such as kernel fusing
and grid dimension reduction. We also allocate multiple CUDA streams to hide the IO latency. Through
these approaches, we reduce the wait time of data interaction and resource usage, thus improve the overall
performance.

4.1 Baseline implementation and bottleneck analysis

To meet the requirements of practical applications and security, we instantiate our cuXCMP with the poly-
nomial degree N = 8192, and the detailed parameters are shown in Table 2. In this configuration, we provide
comparison of two integers of which the sizes do not exceed 13 bits. For cuXCMP, this requirement is equiv-
alent to having the integer part of the input number (except for the sign bit) not exceed 12 bits, and the
precision not exceed 13 bits. According to the LWE estimator [3], this parameter set offers 128-bit security.

Because XCMP instantiated on SEAL shows better performance [21], we follow their method and imple-
ment the C baseline of cuXCMP based on this library. To provide the property of fully output expressive,
our scheme requires additional constant term extraction compared to XCMP, which consists of logN au-
tomorphism and key switching operations. This cannot be eliminated, but the total execution time can be
reduced by optimizing the implementation or by parallel acceleration, etc.

Fig. 3: Execution time analysis of baseline C implementation.

Table 2: Parameter specifications of cuXCMP

Params. Polynomial Modulus Security

modulus degree Plaintext Ciphertext level

Value 8192 20 bits 174 bits 128

To obtain the major performance bottlenecks, we conducted an execution time analysis of our baseline C
implementation of cuXCMP. We measured the total runtime of the functions contained in this scheme, and
the results are shown in Fig. 3. For the arithmetic operations, NTT accounts for 34.23% of the total runtime
of the entire program, while for INTT is 22.33%. Meanwhile, the upper-layer functions, such as AKS and
CTX, account for 51.25% and 36.86% respectively.

The CTX function plays an important role in cuXCMP since the claimed output expressive property can
only be achieved by extracting the constant term of the encrypted polynomials. Considering that the CTX
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function occupies more than one-third of the running time of the program, we concentrate on optimizing
these functions throughout this paper. It is worth noting that this function has a highly parallel processing
structure, which makes our optimizations practical. Firstly, the element-wise arithmetic operations can be
executed separately; secondly, the NTT and INTT of different residual families under the RNS representation
are mutually independent; thirdly, multiple AKS functions in the CTX can be executed simultaneously.

The HE scheme is inherently memory-bound because it has many data interactions while the arithmetic
operations are simple and non-intensive. Moreover, the latency of memory access can be tens of times higher
than that of arithmetic operations. This fact makes it a priority to reduce data accesses when optimizing
the GPU implementation of our HE-based scheme.

4.2 Compact design of NTT

According to the instantiation and security requirement of cuXCMP, we implement both forward and inverse
NTT supporting N = 8192, represented as NTT and INTT in the following respectively, for short.

Tradeoffs and optimizations. The process of NTT and INTT contain simple arithmetic operations like
addition, subtraction and multiplication, but involve quite time-consuming data access for polynomial coef-
ficients and twiddle factors. This low arithmetic intensity nature indicates that the implementation of NTT
and INTT on the GPUs should be memory-bound, of which the most important performance bottleneck is
the IO latency. Thus, the straightforward method that relaunching a kernel after each NTT level will intro-
duce O(N logN) fetching and storing data from global memory and cause a significant drop in performance.
To reach peak bandwidth, we should minimize the interaction with global memory and store data in shared
memory as much as possible, which has a faster data access speed.

For this consideration, we utilize one block fully to perform a 4 per-thread 8192-point NTT, i.e., each
thread handles 4 butterfly operations that involve 8 elements during the processing. The process and memory
access pattern of our technique is shown in Fig. 4. Different from prior works such as [19] that employed two
kernels and more blocks, our compact design reduces the complexity of interaction with global memory to
O(logN). To make full use of the block resource, we store the polynomial in shared memory and the roots
in registers. This approach requires 64KB in shared memory allocation to store N 64-bit elements.

One thing to notice is that high block launch overhead will lead to low SM occupancy. In details, all
SMs cannot execute blocks with too much memory consumption separately at the same time because the
GPU onboard memory they share is fixed. This leads to a part of the SMs being idle, as well as low GPU
occupancy, which is a fallacy that low occupancy leads to low efficiency. The truth is that for memory-
bound GPU implementation, letting each thread perform more operations provides a better way to hide
latency. Meanwhile, by storing all the elements in shared memory, we can omit the time-consuming data
synchronization operations among different blocks and global memory.

PTX butterfly. For the butterfly operation we apply the method proposed by Harvey [16] in a reverse
manner. Specifically, we perform Cooley-Tukey (CT) butterflies in the NTT and Gentleman-Sande (GS)
butterfly in the INTT and implement them in assembly, as shown in Algorithm 1 and 2. This approach
applies a redundant representation for elements and loose the range of input to [0, 4q] for NTT and [0, 2q]
for INTT, and q < β

4 , where β = 264 denotes the machine word size. In the CT butterfly we first conduct a
conditional subtraction for X ≥ 2q, and then compute T ← (WY −⌊W ′Y/β⌋ q) mod β. In the end it output
X ′ ← X + T and Y ′ ← X − T + 2q, where 0  X ′, Y ′ < 4q. For the GS butterfly it conditionally subtract
2q from X to get X ′, compute T ← X − Y + 2q and output X ′ and Y ← (WT − ⌊W ′T/β⌋ q). The division
and rounding operations in both algorithms can be realized by taking the high bits through the instruction
mul.hi.u64.

4.3 Memory-efficient design of the AKS kernel

The constant term extraction kernel contains logN automorphism and key switching, which denoted as the
AKS kernel. We adopt the RNS-friendly key switching proposed in [15]. The main idea behind this method
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Fig. 4: The process and memory access pattern of NTT.

Algorithm 1 CT Butterfly in CUDA PTX Assembly

Input: 0  X,Y < 4p, β = 264, q < β/4, 0 < W < q, W ′ = ⌊Wβ/q⌋
Output: X ′ = X +WY , Y ′ = X −WY , 0  X ′, Y ′ < 4q
1: setp.hs.u64 d,X, 2p ⊲ d = X  2p
2: @d sub.u64 X,X, 2p ⊲ if d, then X = X − 2p
3: mov.u64 U,X ⊲ U = X
4: mul.hi.u64 Q,W ′, Y ⊲ Q = ⌊W ′Y/β⌋
5: mul.lo.u64 T,W, Y ⊲ T = WY mod β
6: mul.lo.u64 Q,Q, p ⊲ Q = Qp mod β
7: sub.u64 T, T,Q ⊲ T = T −Q
8: add.u64 X ′, X, T ⊲ X ′ = X + T
9: add.u64 X,X, 2p ⊲ X = X + 2p
10: sub.u64 Y ′, X, T ⊲ Y ′ = X − T

Algorithm 2 GS Butterfly in CUDA PTX Assembly

Input: 0  X,Y < 2q, β = 264, q < β/4, 0 < W < q, W ′ = ⌊Wβ/q⌋
Output: X ′ = X + Y , Y ′ = W (X − Y ), 0  X ′, Y ′ < 2q
1: add.u64 X ′, X, Y ⊲ X ′ = X + Y
2: setp.hs.u64 d,X ′, 2p ⊲ d = X ′  2p
3: @d sub.u64 X ′, X ′, 2p ⊲ if d, then X ′ = X ′ − 2p
4: add.u64 X,X, 2p ⊲ X = X + 2p
5: sub.u64 T,X, Y ⊲ T = X − Y
6: mul.hi.u64 Q,W ′, T ⊲ Q = ⌊W ′T/β⌋
7: mul.lo.u64 T,W, T ⊲ T = WT mod β
8: mul.lo.u64 Q,Q, p ⊲ Q = Qp mod β
9: sub.u64 Y ′, T,Q ⊲ Y ′ = T −Q
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Algorithm 3 Constant term extraction

1: function AKS(c = (c0, c1) ∈ R2
Q′ ,K ∈ Rd×2

pQ )

2: (c′0, c
′
1) ← (τγ(c0), τγ(c1)) ⊲ Apply τγ

3: C1 ← ModUp(RNSDecompose(c′1))
4: (c′′0 , c

′′
1 ) ← (〈C1,K[0]〉, 〈C1,K[1]〉)

5: (ĉ0, ĉ1) ← (ModDown(c′′0 ),ModDown(c′′1 ))
6: (c0, c1) ← (c′0 + ĉ0, ĉ1) ⊲ Switch key
7: return (c0, c1)

8: function CTX(c ∈ R2
Q′ , swk)

9: c′ ← c
10: for i ∈ (0, 1, · · · , logN − 1) do
11: c′ ← c′ ⊕AKS(c′, swk[i])
12: return c′

is to decompose a ciphertext that consists of polynomials with large coefficients into a set of smaller ones to
accelerate the computation. Since the inner production requires the two operands under the same modulus,
the RNS modulus switching technique is introduced to change the modulus and at the same time reduce the
noise. The procedure is illustrated in Algorithm 3.

We apply many approaches for performance optimizations and memory management. Generally, we fuse
multiple GPU kernels into a single kernel and reduce the dimension of the grid. The combination of the
techniques offers a reduction in the time elapsed in waiting for the IO and synchronizations between threads
or blocks. The number of blocks in the idle state during the execution is minimized, leading to the optimal
resource utilization.

Kernel fusing. We fuse all the subprocedures, including automorphism τγ , ModUp, ModDown, RNSDecompose,
NTT, and INTT, which is described in Algorithm 3, to obtain an AKS kernel, which first applies automor-
phism to a ciphertext that contains two polynomials, and then converts its corresponding key to the correct
secret key through key switching. Our implementation adopts a compact design by copying a set of residues
with the same modulus of a polynomial under the RNS representation into the shared memory of a block,
which then performs all the operations on the residues. Thereby, the data interaction between global memory
and shared memory for transferring the residues is reduced to once in the AKS kernel, instead of the case
before fusing that requires multiple transfers of intermediate results. Another benefit is that when computing
the matrix multiplication, the partially accumulated sum can be stored in the registers. Through this way,
the data can be preserved in the shared memory and registers that have lower IO latency, of which the data
access rate is faster, eliminating all redundant data access.

Grid dimension reduction. The size of the operands changes after applying the ModUp, ModDown, and
RNSDecompose. Let k denote the number of current moduli, and r denote the RNS-decomposition number.
In detail, the NTT procedure takes k · r polynomials as an input, while the number is 2 · r for INTT and
2 · k for automorphism τγ and ModDown. This makes it necessary to maintain the compatibility of each
subprocedure during the processing of key switching, for which we have two solutions.

The basic idea is to instantiate a grid with N/211 ·k · r blocks and each block has 1024 threads to execute
the operations. The downside to this method is that resources may be underused and wasted, for the key
switching and modulus switching manipulate different size of inputs. Meanwhile, the resource occupation
grows exponentially with the polynomial size, as r is often set as k + 1.

These considerations lead us to focus on downgrading the dimensions of the grid. In our implementation,
we form the grid with 1 ·2 ·r blocks, which is compatible with all procedures (as 2 < k < r) and can complete
all tasks by recursively calling. This method significantly increases resource utilization because there are at
most 2 blocks staying in the idle state during the lifetime of the kernel. Additionally, the resource occupation
grows linearly with r, regardless of the polynomial degree size. This also allows us to reserve more memory
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Fig. 5: Comparison of single-stream and multi-stream configurations.

resource to hold the intermediate values, e.g., the partial sum, which we store in the registers of each thread.
One thing to note is that the dimensional reduction will not decrease the parallelism, as the number of
threads executed by a SM concurrently is limited.

4.4 Management of multiple CUDA streams

During the execution, all kernels will be invoked sequentially on a single stream if unspecified, i.e., the logN
AKS kernels in the CTX. However, the wait time is unnecessary in some cases when the operations are not
data dependent, such as data transmission and computation.

To hide the memory latency of h2d and d2h, we define 8 streams and let the AKS kernels run on different
streams simultaneously and interleaved. Fig. 5 gives a visualization of how our approach makes a difference
to the performance. We precisely measure the IO latency and the execution time of AKS and set the number
of streams to 8. Through this approach, we minimize the time interval between the H2D of the last stream and
the first stream. In the single-stream setting, all operations follow the issue-order, and the next kernel will
wait until the execution of the previous ends and data transmission completes. Sequential execution limits
flexibility and introduces a lot of unnecessary wait time. The multi-stream configuration allows operations
to run concurrently and through interleaving the time of data access is well hidden, leading to a great boost
of the overall execution time and better resource utilization.

5 Results and Comparison

5.1 Testing environment

All experiments were performed on an NVIDIA Tesla V100S PCIe with 5120 cores and an Intel Xeon Silver
4210R@ 2.40 GHz CPU with 10 cores. Table 3 shows the hardware specifications of the platform. This type
of GPU has 80 SMs and each SM is equipped with 2 WSs. The on-board global memory is 32 GB. The
shared memory and L1 cache assigned to each block is 128 KB in total, and the maximum number of 32-bit
registers that a thread can use is 255.

We use g++ 7.5 as the C++ compiler and NVIDIA Cuda 11.6 as the GPU compiler driver. The operating
system is Ubuntu 20.04.3 LTS (GNU/Linux 5.4.0-97-generic x86 64). We integrated our GPU implementation
into Microsoft SEAL library v3.7 [24] and profiled both CPU and GPU implementations with the same build
and execution environment.

We conduct the benchmark in two levels: low-level arithmetic operations and high-level kernels. Com-
parisons of implementations on different platforms and with different parameters are also provided. The
reported running time is an average of 1000 runs and is measured in microseconds.
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Table 3: Testing environment specifications

CPU Intel Xeon Silver 4210R @ 2.40 GHz

GPU NVIDIA Tesla V100S PCIe

SM WSs Freq. Memory

Info. count per SM (GHz) Global Registers Shared + L1 L2

80 2 1.6 32GB 255 128KB 6MB

Table 4: Benchmark and Comparison of our NTT implementation and related works

Work (N, |qi|) NTT (ms) INTT (ms) Type Platform

[1] (1024, 62) 1.16 - AVX2 Macbook Air

[5] (4096, 50) 5.81 5.72 AVX512 3rd Gen Intel Xeon

(8192, 24) 0.84 0.98
[11] (16384, 24) 1.78 2.09 GPU NVIDIA GeForce GTX690

(32768, 24) 6.24 6.86

(8192, 62) 0.031 0.033
[2] (16384, 62) 0.039 0.041 GPU NVIDIA Tesla K80

(32768, 62) 0.048 0.050

CPU baseline (8192, 64) 0.0984 0.1098 C Intel Xeon 4210R

HEXL (8192, 64) 0.0527 0.0596 AVX512 Intel Xeon 4210R

Our work (8192, 64) 0.0354 0.0373 GPU NVIDIA Tesla V100S

5.2 cuXCMP

Table 4 summarizes the performance of our optimized NTT and INTT and other related works. As our
cuXCMP is instantiated with N = 8192, we first compare it with the baseline implementation in C and
AVX512 with the fixed parameter set (N, |qi|) = (8192, 64). By fully utilizing the shared memory, we beat the
C and AVX512 implementations by 2.78× and 1.49× for NTT, and 2.94× and 1.60× for INTT, respectively.
Compared to other related works, our implementation also gains a speedup, and the result we obtain is
similar to [2], while our design is compact with just one block usage.

We also evaluate the impact of our memory-centric optimizations and stream managements. Table 5
presents the execution times of both the optimized kernels and the scheme. With kernel fusing and grid
dimension reduction, our AKS kernel outperforms the C and AVX512 baselines by 23.71× and 18.29×
respectively. To measure the effectiveness of our optimization, we execute the original XCMP scheme on
the same platform and instantiate the fully homomorphic scheme with the BFV and keep the parameters
consistent. Compared to the origin XCMP scheme with one compared number, our optimizations result in a
1.83× and 1.42× speedup for C and AVX512. Meanwhile, by setting the scale of comparisons to be multiples
of 8, which is the number of launched CUDA streams, we achieve an increasing speedup ratio. Our cuXCMP
outperforms the baseline by 1.99×, which nearly halves the running time of the original implementation.
This demonstrates the effectiveness of our optimizations.

5.3 PPDT evaluation

To demonstrate our optimizations, we follow the work [21] and integrate cuXCMP into the PPDT proposed in
[25], which use the DGK’s private comparison protocol [12]. The original protocol suffers from two drawbacks.
First, both parties must be online throughout the evaluation process and need to interact to get the final
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Table 5: Benchmark and Comparison of our implementation and baselines

Benchmark XCMP cuXCMP

(ms) CPU baseline AVX512 GPU

AKS 3.32 (23.71×) 2.56 (18.29×) 0.14

1 Cmp. CTX 40.81 (15.58×) 30.79 (11.75×) 2.62
Scheme 116.56 (1.83×) 90.88 (1.42×) 63.86

8 Cmps. CTX 327.91 (85.39×) 242.09 (63.04×) 3.84
Scheme 915.89 (1.91×) 727.31 (1.52×) 479.18

32 Cmps. CTX 1319.38 (112.00×) 960.39 (81.53×) 11.78
Scheme 3674.07 (1.99×) 2796.10 (1.51×) 1850.20

result. Second, the decision tree delegated to the server cannot be encrypted, which leaks the evaluation
model. Through instantiating the private comparison with cuXCMP, we alleviate this problem and achieve a
new noninteractive protocol that allow extended input domain, offline execution, and privacy of the decision
tree.

We trained decision tree models through the scikit-learn library on three real data sets, heart-disease
(HD), housing (HG), and spambase (SP) from the UCI repository

we evaluate our scheme in the semi-honest model on the three real datasets from the UCI repository [13],
i.e., Heart-disease (HD), Housing (HS), Spambase (SPA), as well as the artificial data used in [21].

6 Conclusions

In this work, we present a private comparison scheme cuXCMP, as well as optimization techniques tailored for
CUDA-enabled GPUs. Our scheme allows encrypted negative and float inputs and offers noninteractive and
fully output expressive features. Meanwhile, we propose a set of optimizations to boost up the performance,
including memory-efficient low-level arithmetic, kernel dimension and IO latency reduction, and finely tuned
stream management. To demonstrate the efficiency, we provide performance benchmarks on NVIDIA Tesla
V100S. The results shows that our solution can make a difference to the scheme performance.
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