
Algorithms for switching between block-wise and
arithmetic masking

Evgeny Alekseev1[0000−0002−1279−0359] and Andrey
Bozhko1,2[0000−0003−1424−608X]

1 CryptoPro LLC, Moscow, Russia
{alekseev, bozhko}@cryptopro.ru

2 Lomonosov Moscow State University, Moscow, Russia

Abstract. The task of ensuring the required level of security of infor-
mation systems in the adversary models with additional data obtained
through side channels (a striking example of implementing threats in
such a model is a differential power analysis) has become increasingly
relevant in recent years. An effective protection method against side-
channel attacks is masking all intermediate variables used in the al-
gorithm with random values. At the same time, many algorithms use
masking of different kinds, for example, Boolean, byte-wise, and arith-
metic; therefore, a problem of switching between masking of different
kinds arises. Switching between Boolean and arithmetic masking is well
studied, while no solutions have been proposed for switching between
masking of other kinds. This article recalls the requirements for switch-
ing algorithms and presents algorithms for switching between block-wise
and arithmetic masking, which includes the case of switching between
byte-wise and arithmetic masking.

Keywords: side-channel attacks · masking techniques · byte-wise mask-
ing · mask switching.

1 Introduction

The concept of Differential Power Analysis was first presented by Paul Kocher
et al. in 1999 in [1]. The efficiency of the method, which consists in obtaining
information about the secret key of a cryptographic algorithm by analyzing the
power consumption of the device during multiple executions of the algorithm,
turned out to be extraordinarily high. DPA can be applied to a large variety of
symmetric and asymmetric algorithms. Soon some other techniques, based on
analyzing the physical leakage of the device, were proposed. This class of attacks
is usually referred to as side-channel attacks.

With the development of side-channel attacks, some countermeasures were
proposed. In [2] and [3] the most commonly used method was introduced. It
consists in separating all key-dependent intermediate variables during the com-
putation of the algorithm into several independent shares. Since these shares
are viewed as independent and random, the leakage of a few shares (less than a



2 E. Alekseev, A. Bozhko

number of all shares) doesn’t reveal any information. When only two shares are
used, the method is equivalent to masking all sensitive variables with random
values.

In some cryptographic algorithms (for example, IDEA [4], RC6 [5], SPECK
[6]), different kinds of masking are used – Boolean, byte-wise, arithmetic, etc.
Therefore, a problem of securely switching between masking of different kinds
arises. Since Boolean and arithmetic maskings are the most commonly used,
switching between these kinds of masking is well-studied with many efficient and
secure algorithms proposed [7,8,9]. However, some high-efficient implementations
of cryptographic algorithms require different kinds of masking – for example,
in SIMD implementation of Magma [10] byte-wise masking is used. Therefore,
algorithms for switching between less common kinds of masking are needed.

In this paper we first introduce a new kind of masking – block-wise mask-
ing, which generalizes Boolean, arithmetic, and byte-wise masking. Then we
recall the main requirements for switching algorithms and some ideas used in
Boolean-arithmetic switching algorithms. Finally, we propose secure algorithms
for switching between byte-wise and arithmetic masking.

2 Definitions

The masking technique was first proposed in [2] and [3] and is designed to protect
against so called first-order attacks (described, for example, in [1]). It consists in
splitting each sensitive variable into two shares – a protected data and a mask.
Depending on which the algorithm is being protected, different kinds of masking
are used. The two most common are:

1. Boolean masking : X = x⊕ r;
2. Arithmetic masking : A = x+ r mod 2n,

where variable x is the protected data, r is the random mask, n is some natural
number and ⊕ is the exclusive or operation. Hereafter “mod2n” will be omitted
when the context is clear.

However, some implementations of cryptographic algorithms make the use of
less common kinds of masking. One of them is

3. Byte-wise masking : O = x⊞8 r,

where ⊞8 refer to byte-wise addition – each operand is treated as a sequence of
bytes, which are summed independently modulo 28. We will also denote byte-
wise subtraction by ⊟8.

All these kinds of masking can be generalized by the following definition.

Definition 1. Let n = l · k, where k, l ∈ N. Let us denote by ai the i-th right-
most block of bit length k of a variable a = al−1∥al−2∥ . . . ∥a0, where ∥ means
concatenation. Then the block-wise masking (ADDk) of x ∈ Z2n with the mask
r ∈ Z2n is the following value:

B = (xl−1 + rl−1)∥(xl−2 + rl−2)∥ . . . ∥(x0 + r0),



Algorithms for switching between block-wise and arithmetic masking 3

where the addition of variables xi and ri is the addition modulo 2k. Similarly
to byte-wise addition and subtraction we will denote block-wise addition and
subtraction by ⊞k and ⊟k respectively (we will omit the index when context is
clear in the sequel).

Thus, Boolean masking, byte-wise masking and arithmetic masking can be
viewed as block-wise masking with k = 1, k = 8 and k = n respectively.

3 Switching between different kinds of masking

When different kinds of masking are used in one cryptographic algorithm the
problem of securely switching between them arises. A switching algorithm has to
calculate the value of the data under the mask of one kind by its value under the
mask of the other kind and the value of the mask itself. The switching algorithm
has to meet the following criteria:

1. All intermediate variables must be independent of the data to be masked.
In other words, the algorithm has to be secure against side-channel attacks.

2. The algorithm has to run in constant time and memory.
3. The algorithm has to be correct and efficient.

The first criterion is caused by the following fundamental hypothesis, as
formulated in [7], for the applicability of the Differential Power Analysis (and
most of the other side-channel attacks) to a certain cryptographic algorithm.

Fundamental hypothesis ([7]). There exists an intermediate variable, that
appears during the computation of the algorithm, such that knowing a few key
bits (in practice less than 32 bits) allows us to decide whether two inputs (re-
spectively two outputs) give or not the same value for this variable.

Let us consider the ‘naive’ algorithm for switching from Boolean masking
to arithmetic. We have X = x ⊕ r and we want to obtain A = x + r. The
straightforward method is to compute the following expression: A = (X⊕r)+r.
This method is, surely, correct since (X ⊕ r) + r = (x ⊕ r ⊕ r) + r = x + r,
which equals A by definition. However, when we compute X ⊕ r, we get x in
plain, which contradicts the first criterion and allows us to successfully mount
the DPA attack.

The second ‘naive’ way for switching from Boolean masking to arithmetic
is the following. We could have first calculated X ′ = X + r and then A′ =
X ′ ⊕ r. This algorithm is rather secure as x here is always proceeded under
some random mask, however, it is easy to see, that A′ ̸= A = x + r, since
(X + r)⊕ r = (x⊕ r+ r)⊕ r ̸= (x⊕ r⊕ r)+ r. For similar reasons, we can’t just
xor (or arithmetically add) some temporary random value to hide computations
and then just xor (or subtract) it in the end.

First secure methods for switching between Boolean and arithmetic masking
were proposed by Goubin in [7]. The algorithm for switching from Boolean to



4 E. Alekseev, A. Bozhko

arithmetic masking is highly efficient and uses the fact that function ΦX(r) =
(X ⊕ r) − r mod 2n is affine over GF (2). The algorithm for switching from
arithmetic to Boolean masking was also proposed by the author, but it’s less
efficient as the number of operations is linear in the size of the intermediate
data.

The second method for switching from arithmetic to Boolean masking was
proposed by Jean-Sébastien Coron and Alexei Tchulkine in [11]. The method
introduces an approach based on pre-computed tables. It was further developed
by Nyiße and Pulkus in [12], but it may be vulnerable to SPA techniques in some
contexts, as shown in [8]. Furthermore, in [8] Debraize shows, that the Coron-
Tchulkine algorithm is bugged and proposes an efficient correction, as well as the
new method with timing/memory tradeoff, also based on pre-computed tables.
Higher-order switching algorithms were proposed and improved in [9,13,14,15].

Since Boolean and arithmetic maskings are the most common, switching
between them was the focus of previous works and no secure switching algorithm
between other kinds has not been yet proposed.

4 Switching between block-wise and arithmetic masking

In this section we propose two algorithms – one for switching from arithmetic to
block-wise masking and the other one for switching in another direction. Both
algorithms make use of pre-computed tables and develop ideas from [8]. In this
section we fix some n, k ∈ N, such that n = l · k, l ∈ N, where n is the size of the
masked data (and 2n is the modulus for arithmetic masking) and k is the size
of the block in Definition 1.

4.1 Preparations. Pre-computed tables

Let us consider a byte-wise masked variable B = Bl−1∥ . . . ∥B0 = xl−1∥ . . . ∥x0⊞
rl−1∥ . . . ∥r0. Here each block is processed independently and the value of the
block Bi is the sum of xi and ri modulo 2k. With the arithmetic masking the
situation is different. Arithmetic addition can also be carried out block-by-block,
however, it is possible, that the sum xi+ri is greater than or equal to 2k. In this
case we have to add a carry to the next block xi+1 (that addition, in its turn,
may trigger a carry addition to the next block if xi+1 = 2k − 1). If we manage
carries correctly, incrementing the follow-up xi+1 with a carry when needed,
then each Ai will be equal to xi + ri mod 2k. The goal of the pre-computed
tables constructed in that section is to securely manage the carry addition (or
subtraction) in both conversion algorithms.

An algorithm in Figure 1 generates two tables — T and G. The first one
is table T of size 2k bits. It determines by the value s of the sum modulo 2k

of some number a ∈ Z2k and a fixed m ∈ Z2k whether their arithmetic sum is
greater than or equal to 2k. In other words, T [s] is equal to 1 if we need to add
a carry to the next block. Each entry of table T is masked with a random bit b.



Algorithms for switching between block-wise and arithmetic masking 5

nk table()

1 : γ
U←− {0, 1}n

2 : b
U←− {0, 1}

3 : m
U←− {0, 1}k

4 : for s = 0 . . . 2k − 1 do :

5 : T [s]← b⊕ (s < m)

6 : G[b]← γ

7 : G[b⊕ 1]← γ + 2k

8 : return T,G, γ,m

Fig. 1. Generation of tables T and G

Table G has just two entries, both of size n, and is of more technical purpose.
It ‘unmasks’ the value from T and returns either the carry arithmetically masked
with a random value γ ∈ Z2n or just the random value.

The tables generation requires 3 random generations and 2 ·2k+2 elementary
operations.

4.2 Switching from arithmetic to block-wise masking

An algorithm for switching from arithmetic to block-wise masking is outlined
in Figure 2. The conversion is carried out block-by-block, starting from the
rightmost one. The algorithm gets a value A = x+ r and a mask r as an input
and outputs a value B = x⊞k r.

ADDnADDk(A, r)

1 : T,G, γ,m← nk table()

2 : for i = 0 . . . (l − 1) do :

3 : A← A+m

4 : A← A− ri

5 : A← A−G[T [A0]]

6 : A← A+ γ

7 : Bi ← A0 ⊞ ri

8 : Bi ← Bi ⊟m

9 : A← Al−1−i∥ . . . ∥A1

10 : return B = Bl−1∥ . . . ∥B1∥B0

Fig. 2. The algorithm for switching from arithmetic to block-wise masking



6 E. Alekseev, A. Bozhko

After generating the tables and random temporary masks γ and m with the
algorithm nk table() from Figure 1 conversion proceeds in the following way. Let
us go through the first iteration of the cycle. First of all (lines 3 and 4), a k-bit
temporary mask m is arithmetically added to A and the rightmost block r0 of
the long-term mask is subtracted from A to ‘unmask’ the rightmost block of x.
At this point:

A = (xl−1∥ . . . ∥x1∥x0) + (rl−1∥ . . . ∥r1∥m).

The second step (lines 5 and 6) is to subtract from A a carry, which may have
appeared then we added the temporary mask m arithmetically, subtraction is
performed under the mask γ from table G to hide the process. After subtracting
the carry the rightmost block of x is masked with m in a block-wise way:

A = ((xl−1∥ . . . ∥x1∥x0) + (rl−1∥ . . . ∥r1∥0))⊞ (0∥ . . . ∥0∥m).

Finally, we can compute a corresponding block of the block-wise masked
B (lines 7 and 8) — we add to the rightmost block of A the rightmost block
of long-term mask r0 modulo 2k and subtract the temporary mask m: B0 =
A0 ⊞ ri ⊟ m = x0 ⊞ m ⊞ ri ⊟ m = x0 ⊞ r0. The last step (line 9) is to cut off
the rightmost block of A, which we have just remasked, and to proceed with the
next iteration of the cycle. Subsequent blocks are processed in exactly the same
way.

The algorithm requires 2·l calls to the pre-computed tables and 7·l elementary
operations.

4.3 Switching from block-wise to arithmetic masking

ADDkADDn(B, r)

1 : T,G, γ,m← nk table()

2 : for i = (l − 1) . . . 0 do :

3 : A← A∥Bi

4 : A0 ← A0 ⊞m

5 : A0 ← A0 ⊟ ri

6 : A← A+G[T [A0]]

7 : A← A− γ

8 : A← A+ ri

9 : A← A−m

10 : return A

Fig. 3. The algorithm for switching from block-wise to arithmetic masking

An algorithm for switching from block-wise to arithmetic masking is outlined
in Figure 3. The algorithm gets the block-wise masked value B and the mask



Algorithms for switching between block-wise and arithmetic masking 7

r as an input and outputs the arithmetically masked value B. Analogically to
the previous algorithm, the process is carried out block-by-block, but starting
from the leftmost block. At the beginning of each iteration the processed block
of byte-wise masked B is concatenated as the rightmost block to A (at the
beginning A is initialized with an empty string). After that the conversion is
carried out analogically to the conversion in the previous algorithm but in the
opposite direction.

The algorithm is of the same computational complexity as the ADDnADDk
algorithm.

4.4 Security and the pre-computed tables usage

The algorithms are resistant to first-order attacks since all the intermediate
variables are always masked with a random value – either with the long-term
mask or with one of the random values, generated on the pre-computation stage.

The pre-computed tables are usually re-computed with the beginning of
the cryptographic algorithm and may be used several times during its execu-
tion. Moreover, both proposed algorithms for switching between block-wise and
arithmetic masking are designed in a way, that they both can use the same
pre-computed tables during one execution of the cryptographic algorithm.

5 Conclusion

In this paper we introduced block-wise masking – a new kind of masking, which
can be viewed as a generalization for more common kinds. We recalled require-
ments for switching algorithms and provided an overview of existing algorithms.
Finally, with the new kind of masking the secure and fairly efficient method for
switching between block-wise and arithmetic masking was proposed.

References

1. Kocher P., Jaffe J., Jun B. (1999) Differential Power Analysis. In: Wiener
M. (eds) Advances in Cryptology — CRYPTO’ 99. CRYPTO 1999. Lecture
Notes in Computer Science, vol 1666, pp. 388–397. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/3-540-48405-1 25

2. Goubin L., Patarin J. (1999) DES and Differential Power Analysis The “Duplica-
tion” Method. In: Koç Ç.K., Paar C. (eds) Cryptographic Hardware and Embedded
Systems. CHES 1999. Lecture Notes in Computer Science, vol 1717, pp. 158-172.
Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48059-5 15

3. Chari S., Jutla C.S., Rao J.R., Rohatgi P. (1999) Towards Sound Approaches to
Counteract Power-Analysis Attacks. In: Wiener M. (eds) Advances in Cryptology
— CRYPTO’ 99. CRYPTO 1999. Lecture Notes in Computer Science, vol 1666, pp.
398–412. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-48405-1 26

4. Lai X., Massey J.L. (1991) A Proposal for a New Block Encryption Standard. In:
Damg̊ard I.B. (eds) Advances in Cryptology — EUROCRYPT’ 90. EUROCRYPT
1990. Lecture Notes in Computer Science, vol 473, pp. 389-404. Springer, Berlin,
Heidelberg. https://doi.org/10.1007/3-540-46877-3 35



8 E. Alekseev, A. Bozhko

5. Contini S., Rivest R., Robshaw M., Yin Y.L. (1999) Improved analysis of some
simplified variants of RC6. In: Fast Software Encryption, 6th International Work-
shop, FSE’ 99, Rome, Italy, March 24-26, 1999, Proceedings, pp. 1–15. Springer.
https://doi.org/10.1007/3-540-48519-8 1

6. Beaulieu, R., Shors D., Smith J., Treatman-Clark S., Weeks S., Wingers L. (2013)
The SIMON and SPECK families of lightweightblock ciphers. IACR Cryptology
ePrint Archive, 2013:404.

7. Goubin L. (2001) A Sound Method for Switching between Boolean and Arithmetic
Masking. In: Koç Ç.K., Naccache D., Paar C. (eds) Cryptographic Hardware and
Embedded Systems — CHES 2001. CHES 2001. Lecture Notes in Computer Sci-
ence, vol 2162, pp. 3–15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-
540-44709-1 2

8. Debraize B. (2012) Efficient and Provably Secure Methods for Switching from
Arithmetic to Boolean Masking. In: Prouff E., Schaumont P. (eds) Crypto-
graphic Hardware and Embedded Systems – CHES 2012. CHES 2012. Lecture
Notes in Computer Science, vol 7428, pp. 107–121. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-33027-8 7

9. Bettale, L., Coron, J.-S., Zeitoun, R. (2018) Improved High-Order Con-
version From Boolean to Arithmetic Masking. In: IACR Transactions
on Cryptographic Hardware and Embedded Systems, 2018(2), pp. 22–45.
https://doi.org/10.13154/tches.v2018.i2.22-45

10. Dolmatov, V., Baryshkov, D. (2020) GOST R 34.12-2015: Block Cipher “Magma”,
RFC 8891 https://doi.org/10.17487/RFC8891

11. Coron J.-S., Tchulkine A. (2003) A New Algorithm for Switching from Arith-
metic to Boolean Masking. In: Walter C.D., Koç Ç.K., Paar C. (eds) Crypto-
graphic Hardware and Embedded Systems – CHES 2003. CHES 2003. Lecture
Notes in Computer Science, vol 2779, pp. 89–97. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-540-45238-6 8

12. Neiße O., Pulkus J. (2004) Switching Blindings with a View Towards IDEA. In:
Joye M., Quisquater JJ. (eds) Cryptographic Hardware and Embedded Systems -
CHES 2004. CHES 2004. Lecture Notes in Computer Science, vol 3156, pp. 230-
239. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28632-5 17

13. Coron, J.-S. (2017) High-order conversion from Boolean to arithmetic masking, In:
Fischer W., and Homma N. (eds) Cryptographic Hardware and Embedded Systems
– CHES 2017. CHES 2017. Lecture Notes in Computer Science, vol. 10529, pp. 93–
114. Springer. https://doi.org/10.1007/978-3-319-66787-4 5

14. Coron J.-S., Großschädl J., Vadnala P.K. (2014) Secure Conversion between
Boolean and Arithmetic Masking of Any Order. In: Batina L., Robshaw M. (eds)
Cryptographic Hardware and Embedded Systems – CHES 2014. CHES 2014. Lec-
ture Notes in Computer Science, vol 8731, pp. 188–205. Springer, Berlin, Heidel-
berg. https://doi.org/10.1007/978-3-662-44709-3 11

15. Hutter, M., Tunstall, M. (2019) Constant-time higher-order Boolean-to-
arithmetic masking. Journal of Cryptographic Engineering, 9, pp. 173–184.
https://doi.org/10.1007/s13389-018-0191-z


