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Abstract. The security of several cryptosystems rests on the trust assumption that a certain
fraction of the parties are honest. This trust assumption has enabled a diverse of cryptographic
applications such as secure multiparty computation, threshold encryption, and threshold signatures.
However, current and emerging practical use cases suggest that this paradigm of one-person-one-
vote is outdated.
In this work, we consider weighted cryptosystems where every party is assigned a certain weight
and the trust assumption is that a certain fraction of the total weight is honest. This setting can be
translated to the standard setting (where each party has a unit weight) via virtualization. However,
this method is quite expensive, incurring a multiplicative overhead in the weight.
We present new weighted cryptosystems with significantly better efficiency. Specifically, our pro-
posed schemes incur only an additive overhead in weights.

– We first present a weighted ramp secret-sharing scheme where the size of the secret share is as
short as O(w) (where w corresponds to the weight). In comparison, Shamir’s secret sharing with
virtualization requires secret shares of size w · λ, where λ = log |F| is the security parameter.

– Next, we use our weighted secret-sharing scheme to construct weighted versions of (semi-honest)
secure multiparty computation (MPC), threshold encryption, and threshold signatures. All
these schemes inherit the efficiency of our secret sharing scheme and incur only an additive
overhead in the weights.

Our weighted secret-sharing scheme is based on the Chinese remainder theorem. Interestingly, this
secret-sharing scheme is non-linear and only achieves statistical privacy. These distinct features
introduce several technical hurdles in applications to MPC and threshold cryptosystems. We resolve
these challenges by developing several new ideas.

1 Introduction

Cryptography allows mutually distrusting parties to accomplish various tasks as long as a certain subset
of the parties are honest. For example, a threshold signature (resp., encryption) [14,15] scheme allow for
distributing a secret key among multiple parties such that it is possible to sign a message (resp., decrypt
a ciphertext) if and only if a threshold number of parties participate honestly. More generally, a secure
multiparty computation protocol (MPC) [30,20] allows a group of parties to jointly compute a public
function over their private inputs such that nothing beyond the function output is revealed if a subset
of the participants are honest.

This paradigm of trust has been immensely successful over the years. Threshold cryptosystems have
seen widespread use in recent years, especially within the blockchain ecosystem [29]. Furthermore, efforts
to standardize threshold cryptosystems have already begun [27]. MPC protocols have also started seeing
increased adoption due to recent dramatic improvements in their efficiency.

Traditionally, in such systems, parties are treated equally. For instance, it is assumed that all parties
are equally motivated to participate in the protocol actively; or that it is equally hard for an adversary
to corrupt any party. However, the assumption that “each party is equal” does not suffice for many
current and emerging applications. For instance, in stake-based blockchains [23], parties are associated
with stakes that are not necessarily binary. Similarly, in oracle networks [16,9], parties have reputation
scores with high variance. In such scenarios, parties in the system are naturally asymmetrical. Hence, it



is natural to consider a weighted setting, where every party is assigned some weight, and one assumes
that a certain fraction of the weights is honest.

Despite being a natural problem, essentially, the only general way in the literature to realize weighted
cryptography is through a virtualization approach. That is, a party with assigned weight w is treated as
w virtual parties, and then a standard unweighted system is used for all the virtual parties. This näıve
solution, however, is extremely inefficient: a party with weight w has to bear w times the amount of
computation and/or communication cost that one does in the unweighted setting. When the weights are
large, this multiplicative overhead in the degradation of efficiency can be prohibitive.

In this work, we ask the following natural question:

Can we realize weighted cryptography with better efficiency?
Specifically, could the efficiency degradation depend additively on the weights?

Summary of this work. Our work answers this question positively. We first construct an efficient
weighted secret-sharing scheme based on the Chinese remainder theorem. We show that if there is a
sufficient gap between the privacy threshold and the reconstruction threshold (a.k.a ramp secret-sharing),
our weighted ramp secret-sharing scheme (WRSS) can efficiently realize the weighted access structure,
where the size of the secret share of a party with weight w is O(w). In comparison, Shamir’s secret
sharing requires a secret share of size w · |F|, where the F is the field where the secret lives.

Next, we demonstrate the utility of our WRSS scheme by applying it to secure multiparty compu-
tation, threshold encryption, and threshold signature. In all applications, we show that in the weighted
setting where a sufficiently large gap exists between the privacy threshold and the reconstruction thresh-
old, the computation/communication cost of the parties only degrades additively in the weight w. Inter-
estingly, as our WRSS scheme is both non-linear and imperfect (i.e., it only achieves statistical privacy
in contrast with Shamir’s which achieves perfect privacy), several new technical ideas are required for
each application.

1.1 Our Contribution

Secret Sharing. Our first contribution is a construction of a weighted ramp secret-sharing with succinct
share sizes. Recall that a ramp secret sharing scheme is parameterized by two thresholds: a reconstruction
threshold T and a privacy threshold t. Any collection of parties with cumulative weights ⩾ T should
be able to reconstruct the secret; any collection of parties with cumulative weights ⩽ t should not learn
anything about the secret. In particular, we prove the following theorem.

Theorem 1 (Efficient WRSS). Let (w1, . . . , wn, T, t) define a weighted access structure, where wi are
weights and T and t are reconstruction and privacy threshold, respectively. Assume T − t = Θ(λ). There
exists a weighted ramp secret sharing scheme realizing (w1, . . . , wn, T, t) such that

– The share size of a party with weight w is O(w).
– It has perfect correctness.
– It is 2−λ-statistically private.

Our WRSS scheme builds upon the CRT-based secret sharing scheme previously studied by [26,4,21].
Interestingly, the CRT-based secret sharing (and, henceforth, our WRSS) is non-linear.

Weighted Secure Multiparty Computation. Next, we consider weighted MPC. In a weighted
MPC, every party is assigned a weight. It is assumed that at most a certain fraction of the weights
is corrupted. In this work, we consider the honest majority setting with information-theoretic security.
That is, the cumulative weight of the malicious party is less than half of the total weight. Following
the BGW framework [8], we construct such a weighted MPC protocol based on our WRSS scheme. In
particular, our result is summarized as the following theorem.

Theorem 2 (Efficient Weighted MPC). Let C be an arithmetic circuit over a field F with depth
d. There exists a weighted MPC protocol for n parties with weights w1, . . . , wn and total weight W for
computing C satisfying the following properties:

– The round complexity is d+O(1).
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– In the pre-processing phase, the communication cost per party per gate is O(W ).
– In the online phase, the communication cost per gate for party Pi with weight wi is O(wi).
– For any semi-honest adversary who may corrupt a total weight of t, this protocol is exp(−λ)-secure

given W − 2t = Θ(λ).

In comparison, the BGW protocol based on Shamir’s secret sharing with virtualization would require
a communication cost W · |F| and wi · |F| in the preprocessing and online phase, respectively.

While MPC protocols could generically realize threshold encryption and threshold signature schemes,
it will incur a large overhead if one needs to transform group operations into an arithmetic circuit over
F. Therefore, our next objectives are to construct specific efficient weighted threshold encryption and
signature schemes.

Weighted Threshold Encryption. As typical in a threshold encryption scheme, we aim for a
weighted threshold encryption scheme with one-round threshold decryption. In particular, we construct
our weighted threshold encryption scheme based on the ElGamal cryptosystem, where the partial de-
cryption computation cost is O(w) + poly(λ).

Shamir’s secret sharing with virtualization approach would require a computation cost of O(w) group
operations (in contrast to bit operations).

The communication cost is only λ as partial decryption only consists of one group element. This is
identical to the Shamir-based approach (See Remark 1).

Weighted Threshold Signature. Finally, we construct a threshold signature scheme based on the
ECDSA signature. In particular, we construct a special weighted MPC protocol for ECDSA signing
functionality summarized as follows.

Theorem 3 (Weighted Threshold Signing for ECDSA). For any privacy threshold t, reconstruc-
tion threshold T , and total weight W such that T − t = Θ(λ) and W − 2t = Θ(λ). There is a weighted
MPC protocol realizing ECDSA signing functionality such that:

– It has a semi-honestly secure two-round pre-signing protocol in which all the parties participate. The
communication/computation cost per party is O(W + λ).

– It has a non-interactive signing phase where each party i broadcasts a partial signature. The commu-
nication/computation cost per party is O(wi). As long as the cumulative weight of parties who send
their partial signature is ⩾ T , one could correctly aggregate the signature.

1.2 Related Work

Weighted secret sharing scheme has been previously studied by Beimel and Weinreb [7], where they
showed that any weighted secret sharing scheme could be realized with share size nΘ(logn). Although
the share size is independent of the weights, the share size is super-polynomial in n. In addition, Zou
et al. [31] also proposed the idea of more efficiently realizing weighted secret sharing using CRT-based
secret sharing. However, their work does not have a formal proof of security and only presents some
experimental results on the security of the CRT-based weighted secret-sharing scheme.

We note that another way of reducing the dependence on the number of parties is through the
committee-based approach. In this approach, a small number of parties are selected as committee mem-
bers to perform the task on half of all parties. This approach has been considered both in the MPC
setting [19,12] and the threshold signature scheme [10].

It is imaginable that this approach, combined with virtualization, could yield an efficient weighted
scheme. However, we note that this approach is not generally preferable because it incurs high costs for
specific parties, and is typically vulnerable to adaptive corruption attacks.

2 Technical Overview

The secret-sharing scheme is essential to any threshold cryptosystem. To build any efficient weighted
threshold primitive, an efficient weighted secret-sharing scheme is usually the first objective. Hence, we
start our discussion with weighted secret-sharing.
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Linear Secret-sharing. We first observe that a linear weighted secret-sharing scheme is unlikely to be
efficient. For a particular set of weights (for instance, if all the weights are the same), one might be able to
construct a linear secret with a small overhead. However, to construct a general linear scheme that works
an arbitrary set of weights, it seems inevitable that the secret share of a party with weight w contains at
least Ω(w) field elements.6 Therefore, in order to obtain a more efficient weighted secret-sharing scheme,
we have to resort to non-linear schemes.

Non-linear secret-sharing. Compared to linear secret-sharing schemes, non-linear secret-sharing
schemes are much less well-understood. Most of the non-linear secret-sharing schemes that have been
studied are either for specialized access structures [6] or for general access structures [25,1,2]. These
schemes either cannot realize the weighted threshold structure or have an exponential-size secret share.
The only exception of a non-linear secret sharing scheme for threshold structure is the Chinese remainder
theorem-based secret sharing scheme [26,4,21]. Indeed, as we explain later, CRT-based secret-sharing can
help construct efficient weighted secret-sharing schemes.

CRT-based Secret-sharing. Let us first recall the (unweighted) CRT-based secret-sharing. Let p0
be the order of the field F. In CRT-based secret-sharing, parties are associated with distinct integers
p1, . . . , pn, where p0, p1, . . . , pn are required to be coprime. To share a secret s ∈ Fp0

, one picks a random
integer

S = s+ u · p0,
where the operations are over the integer and u is uniform over some range {1, 2, . . . , L}. The choice of
L will become clear as we proceed to discuss the correctness and security. Now, the ith party shall get

si = S mod pi

as its secret share. For an authorized set A of parties, one may reconstruct the field element s by finding
the unique integer S such that

0 ⩽ S ⩽ PA − 1 and ∀i ∈ A, S = si mod pi,

where PA =
∏

i∈A pi. Once one finds S, s can be reconstructed by computing s = S mod p0. Therefore,
for correctness, it must hold that (p0 + 1) · L ⩽ PA − 1 for all authorized set A. On the other hand, for
privacy, consider an unauthorized set A. The adversary’s view is equivalent to

{S mod pi}i∈A ⇐⇒ S mod PA.

Hence, it suffices to prove that S mod PA is statistically close to the uniform distribution. This is indeed
the case as long as PA/L is exponentially small (see our Claim 1). To summarize, we can construct a
CRT-based secret sharing as long as we can pick L such that

max
A

PA ≪ L ⩽ min
A

PA/2
λ.

For example, for a threshold secret sharing with reconstruction threshold T . One may pick pi as n distinct
primes with length 2λ. Then, maxA PA and minA PA are 22λ(T−1) and 22λ·T , respectively. Consequently,
letting L to be 22λ·T−λ satisfies the constraint above.

Note that, one could again use virtualization to realize weighted secret-sharing through (unweighted)
CRT-based secret sharing. This approach will result in a secret share of length Θ(w · λ) for a party with
weight w, similar to Shamir’s secret sharing.

Main Idea: Weighted Ramp Secret-sharing can be efficient. In this work, we observe that in the
ramp setting, where there is a gap between the privacy and reconstruction threshold, one could construct
an extremely efficient weighted secret sharing based on CRT secret sharing. Let wi be the weight of the
ith party. One may pick the associated number pi to be of length c · wi (as opposed to aforementioned
share size of Θ(w ·λ)). Here, the same c is picked for all parties. Then, the constraint naturally transforms
into

max
A

2
∑

i∈A c·wi ≪ L ⩽ min
A

2
∑

i∈A c·wi/2λ.

6 Unless one could generically transform a set of weight {wi} to another set of weights {w′
i} that are significantly

smaller (i.e., w′
i = o(wi)), but define the same access structure. However, this seems extremely challenging, if

at all possible.
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In a threshold setting, where maxA(
∑

i∈A wi) can be as high as T − 1 and minA(
∑

i∈A wi) can be as
low as T , one has to pick c to be Θ(λ). However, if we consider a ramp secret-sharing with a privacy
threshold t and reconstruction threshold T , it suffices to pick c such that c · (T − t) = Θ(λ). In particular,
in the case where T − t = Θ(λ), one may pick c = 1. In other words, we observe

There is a natural trade-off between the gap of privacy and reconstruction threshold and the efficiency
for CRT-based secret sharing.

This is in contrast to the linear secret sharing schemes, where it is unclear how the relaxation from
threshold to ramp secret sharing could help improve efficiency.

Indeed, for the applications that we envision, it is often reasonable to assume a large gap between the
privacy and reconstruction threshold. For instance, one may assume that ⩽ 1/3 fraction of the weights
are corrupted and ⩾ 1/2 fraction of the weights will come online during reconstruction. In this scenario,
as long as the total weight

∑n
i=1 wi is Θ(λ), the large gap is guaranteed.

2.1 Challenges in using the WRSS scheme

Our ultimate goal is to use the efficient WRSS to realize weighted cryptosystems with efficient communi-
cation/computation costs. Now, although the WRSS is well-suited for efficient weighted secret-sharing,
it comes with several critical challenges. We shall discuss them next.

1. Non-linearity.One prominent feature of theWRSS is its non-linearity. Given secret shares s1, . . . , sn,
one needs to reconstruct the secret through a non-linear function as(

(λ1 · s1 + λ2 · s2 + · · ·+ λn · sn) mod P

)
mod p0,

where P = p1p2 · · · pn. Similar to Lagrange coefficients, here, λi is the integer satisfying7

λi mod pi = 1 and ∀j ̸= i, λi mod pj = 0.

Now, imagine we want to reconstruct gs for some generator g from the groupG of order p0. In Shamir’s
secret sharing, parties may simply broadcast gsi , and later one can use Lagrange interpolation to find
gs. In WRSS scheme, however, interpolation using group elements gsi will only give gλ1·s1+···+λn·sn ,
whose exponent is effectively equal to(

λ1 · s1 + λ2 · s2 + · · ·+ λn · sn
)

mod p0,

which is not necessarily equal to s. Evidently, the non-linearity poses a challenge to correctness.
2. Integer Growing Problem. Although the reconstruction procedure of the WRSS is non-linear, it

does support local computations similar to Shamir’s secret sharing. For instance, suppose x and y are
secret shared. Intuitively, parties can locally compute xi + yi mod pi as a secret share of the secret
x+ y. This, however, is not always correct. The issue is that the associated integer might grow out
of range. Recall that x is re-randomized as some integer X = x+ u · p0 and y as Y = y + u′ · p0. For
any authorized set A and the product PA, the correctness guarantees that both X and Y is < PA.
Nonetheless, it is not guaranteed that X +Y < PA. Therefore, when parties use secret shares xi+ yi
mod pi to reconstruct x+ y, they are trying to reconstruct the secret integer X + Y first. And they
can only correctly reconstruct X + Y when X + Y < PA.
Similar issues arise when one wants to locally compute the secret shares of −x, x · y, and scalar
multiplication c · x for some constant c. Therefore, one must be careful with correctness when trying
to do local computations.

3. Challenges for Simulation. Consider a secret-sharing-based MPC protocol. At the end of the
protocol, parties typically broadcast the secret share si of the output wire to allow reconstruction
of the output s. A simulator, given the output s, needs to simulate all the secret shares of the
honest parties. This is usually not an issue for linear secret sharing schemes as, at each wire s, it is
maintained that si’s are identically distributed as freshly sampled secret sharing of s (and, hence,
simulatable). However, consider a WRSS secret sharing of x and y. Observe that the secret shares
of xi + yi mod pi is not identically distributed as a fresh secret sharing of x + y.8 Therefore, given

7 We note that λi could be efficiently computed. Refer to Remark 2.
8 In fact, their statistical distance is quite far. In particular, the distribution of the integer X + Y , where
X = x+ u · p0 and Y = y + u′ · p0 is very different from the integer (x+ y) + u′′ · p0.
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the output x + y, it is not clear how to simulate the broadcast secret shares. One may hope to
resolve this issue by masking the secret shares with a fresh secret sharing of 0. However, note that
we are essentially trying to mask an integer X + Y over integer operations (instead of over a field).
Consequently, extra care is required for this to go through.

Next, we discuss how we address these issues in different settings.

2.2 Weighted Threshold Encryption

For expository purposes, we start with a threshold encryption scheme. Recall that we aim for a scheme
with one-round threshold decryption. Typically, this is done by combining a PKE scheme with a secret
sharing scheme, where the secret key is shared among parties. In this work, we consider the ElGamal
encryption scheme for the underlying PKE scheme. Let us recall it first. In the ElGamal encryption
scheme, a group G with order p0 and generator g is sampled. The secret key sk and public key pk are
sampled as s and gs where s ← Fp. To encrypt a message msg, one sample a random r ← Fp, and the

ciphertext is defined as (msg · pkr, gr). Given a ciphertext (c1, c2), one could decrypt it as c1 · c−sk2 . This
encryption scheme is semantically secure as long as DDH is hard.

Now, suppose we sample a public key and secret key (gs, s) from ElGamal and secret share s using
our WRSS scheme. Given a ciphertext (msg · gr·s, gr), what should parties send as a partial decryption?
As we discussed earlier, if parties simply send gr·si , one cannot correctly aggregate it to obtain gr·s.

Towards resolving this challenge, we first observe that the reconstruction of CRT-based secret sharing
can be rewritten as((

(λ1 · s1 mod P ) + (λ2 · s2 mod P ) + · · ·+ (λn · sn mod P )
)

mod P

)
mod p0.

For simplicity, let us write λi · si mod P as αi. There are several benefits to writing the reconstruction
as above. First, parties can locally compute αi. Second, given α1, α2, . . . , αn, we know that the secret s
is of the form

s = (α1 + α2 + · · ·+ αn −∆ · P ) mod p0, where ∆ ∈ {0, 1, . . . , n− 1}.

Crucially, the overflow number ∆ has only polynomial many possibilities. Therefore, given the partial
decryption gr·αi , one knows that the one-time pad grs is one of the following

gr·
∑

i αi , gr·
∑

i αi−r·P , . . . , gr·
∑

i αi−r·(n−1)P .

To get statistical correctness, we shall ask the encryptor to include a hash of the encapsulated key H(gr·s)
(using, for example, a universal hash function). Consequently, the decryptor could check all possibilities
of the encapsulated key against the hash H(gr·s) to find gr·s. Finally, since H(gr·s) leaks information
about gr·s, we shall add a randomness extractor Ext to extract uniform randomness from gr·s. Overall,
the ciphertext would be

msg · Ext(seed, gr·s), seed, gr, H(gr·s).

This presents the main ideas behind our efficient weight threshold decryption scheme. To prove the
security, we need the additional guarantee that the weights cannot be too small (for example, a constant).
Indeed, if the weight wi is too small, one could use an exhaustive search to find party Pi’s secret share
using its partial decryption output. We refer the readers to Section 6 for more details.

Remark 1 (Raise hand setting.). We note that our scheme is in the “raise hand” setting. That is, parties
need to know what authorized set will participate in the partial decryption process. This is because the
Lagrange coefficient λi depends on this information. In contrast, Shamir’s secret sharing-based scheme
does not need this information for partial decryption. Indeed, parties could directly send gsi and the
aggregator could do Lagrange interpolation over the group elements.

However, we note that, even for Shamir’s secret sharing, “raise hand” might be preferable in the
weighted setting as the communication cost is much lower compared to the non-raise-hand setting.
Indeed, a party with weight w would need to broadcast w many group elements in the non-raise-hand
setting; while in the “raise hand” setting, parties aggregate the partial decryption locally first and only
need to broadcast one group element.
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2.3 Weighted MPC

Next, we consider weighted MPC. In a weighted MPC protocol, every party is assigned some weights. And
it is assumed that the cumulative weight of the corrupted parties is upper-bounded by a certain fraction.
In this work, we restrict to the information-theoretic honest majority setting and semi-honest adversaries.
Crucially, the communication/computation cost (per party i and gate) should be O(wi) + poly(λ).

On a high level, our protocol adopts the secret-sharing-based MPC framework (e.g., BGW proto-
col [8]), where we shall use the WRSS scheme as the underlying secret sharing scheme. Consequently,
the efficiency of the WRSS scheme will determine the efficiency of the weighted MPC protocol. As we
have mentioned, this approach involves several issues. We discuss how to address these issues next.

Multiplication. We consider the multiplication gate first. Let W = w1 + · · ·+ wn be the total weight
and assume that the adversary may corrupt parties with weight at most t. The security of the WRSS
requires that: if the value x of a wire is secret shared, it must be the case that the random integer
X = x + u · p0 is sampled from u ← {1, . . . , L} with L ≫ 2t (e.g., L = 2t+λ). Therefore, the integer
X associated with every wire x is (approximately) of size 2t+2λ. Now, suppose we want to compute the
product x · y. The corresponding integer X · Y may be as large as 22t+4λ. This integer XY (henceforth,
the secret xy) could only be reconstructed if the total weight W satisfies 2W ⩾ 22t+4λ. Therefore, our
protocol only works in the setting where there is an honest majority and a large enough gap (i.e., Θ(λ))
between the corruption threshold t and half of the total weight W/2.

Although the secret could be reconstructed after one multiplication gate, one cannot let the integer
grow indefinitely. Therefore, after every multiplication gate, one has to use a “degree reduction” protocol9

to reduce the integer Z associated with z = xy to a smaller range. Our degree reduction protocol follows
the standard approach in the MPC literature. In particular, in the preprocessing phase, we ask parties
to generate two secret shares [r]0 and [r]1 of a random value r. Here, in the share [r]0, r is re-randomized
as some integer over the small range L = 2t+λ; while in the share [r]1, r is re-randomized as some integer
over the large range L = 22t+4λ. The idea is that parties will use the secret shares of [r]1 to reconstruct
r + xy in the clear. Afterward, they may locally subtract r + xy from [r]0 to obtain a secret share of xy
with a small integer range.

However, there is one crucial issue here. One has to guarantee that the reconstruction of r+xy leaks
only the value r+ xy and nothing else. While this comes for free in Shamir’s secret sharing, it is not the
case here. Indeed, the secret shares of r+xy reveal its associated integer, whose distribution may not be
close to a fresh secret sharing of the secret r+ xy. We defer the discussion of this issue to the discussion
on the output reconstruction procedure.

Addition. Similarly to the multiplication gate, the addition gate also has integer growing issues. One
might think if we can handle the multiplication gate, we can certainly handle the addition gate in the
same way. While this is true, we do not want to invoke a degree reduction protocol for addition gates,
which incurs additional interactions and consumes correlations.

Instead, we observe that the growth of the integer for addition gates is very slow. In particular, if
a circuit has size poly(λ), the integer associated with a wire, which is a sum of several other wires, is
upper-bounded by poly(λ) ·2t+2λ ≪ 2W . Hence, reconstructing the sum of wires is not an issue. However,
it becomes problematic when we want to reconstruct x · y, where x and y are the sums of several wires.
Indeed, both X and Y are now upper-bounded by poly(λ)·2t+2λ and X ·Y might be ⩾ 2W if W ≈ 2t+4λ.
However, this is not an issue as long as W is large enough (e.g., W ⩾ 2t + 5λ). In other words, if the
total weight is large enough, the integer growing for the addition gates is not an issue.

Output Reconstruction. As we have mentioned, unlike Shamir’s secret sharing, it is not clear if
parties could broadcast the secret shares of the output wire for reconstruction. To resolve this issue, we
shall use a freshly sampled secret share [0] to mask the secret shares [out] of the output wire. Parties will
reconstruct out+0 as the output of the protocol. Again, here, we need to argue that the secret shares of
out+0 leak only out+0. In particular, the integer associated with the secret out+0 should only depend
on out+0. We observe that if the integer associated with out is (arbitrarily) distributed over some range

9 We call this a degree reduction protocol as it is reminiscent of the degree reduction protocol in the BGW
protocol based on Shamir’s secret sharing. In Shamir’s secret sharing, the product of two secrets shared by a
degree-t polynomial is shared by a degree-2t polynomial. A degree reduction protocol in this case brings down
the degree of the polynomial back to t.
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{1, . . . , L}, it suffices to sample the integer associated with 0 uniformly randomly from an exponentially
large range {1, . . . , L ·2λ}. The sum of these two integers will be exponentially close to a freshly sampled
secret share of 0 + out from the range {1, . . . , L · 2λ}. We formally prove this by our integer masking
lemma (Lemma 1).

2.4 Weighted Threshold Signature

Lastly, we consider the threshold signature protocol. In particular, we consider a weighted multiparty
signing protocol based on the ECDSA signatures.

Let us first recall the signing functionality of the ECDSA signature. Let sk be the signing key, G be
the curve base point, H be a cryptographic hash function and m be the message. To sign message m
with sk, one computes the following:

1. (Pre-signing Phase) Generate a secret random value k ← Fq, and then compute (public) group
element k ×G.

2. (Signing Phase) Parse k ×G as curve point (rx, ry). Then compute σ = k−1 · (H(m) + rx · sk).
3. Output the signature (rx, σ).

Note that we could generically use our MPC protocol to compute all the field operations. However,
parties do need to construct the group element k ×G in the clear. We further note that parties need to
agree on the exact value of k×G in order to proceed in the signing phase (i.e., step 2). Hence, our ideas
from the threshold encryption section, where parties agree that k × G is one of n possibilities, are not
applicable.

However, note that our task at hand is significantly simpler compared to the threshold encryption
setting. In the pre-signing phase, we simply need all parties to collectively sample a random group element
k ×G while also obtaining a secret sharing of k. This is different from the threshold encryption setting,
where parties start with a secret share of k. And later in the online phase, they need to reconstruct (g′)k

for some random group element g′.
To collectively sample k × G and the secret shares [k], we simply ask party Pi sample a random

ki and (i) secret share [ki] among all the parties; (ii) broadcast the group element ki × G. Afterward,
parties could locally reconstruct k × G as

∑
i(ki × G). Party Pi locally computes the secret share of k

by computing
∑

j [kj ]i. This is secure simply because ki ×G forms an additive secret share of k×G and
could be simulated given only k ×G.

Finally, by standard techniques in ECDSA, one could prepare the secret shares of the correlated
values [k−1] and [rx · sk] in the pre-signing protocol, which leads to a one-round signing phase. We refer
the readers to Section 7 for details.

2.5 Open Problems

Our work initializes the use of CRT-based secret-sharing techniques in the weighted threshold cryptosys-
tem. It leaves open several exciting problems. We discuss some of them below.

Maliciously Secure MPC. For the weighted MPC protocol, a natural question is achieving malicious
security. In the literature, several approaches have been developed for achieving information-theoretic
malicious security such as verifiable secret-sharing schemes [11]. Could we construct an efficient WRSS
with verifiability while still being efficient?

Scalable MPC. A large body of the MPC literature works on removing the dependency of efficiency on
the number of parties. For instance, to generate one instance of secret shares of a random value, our MPC
protocol requires O(n2) amount of total communication. In the Shamir secret sharing-based MPC, the
Vandemonde matrix randomness extraction [13] is a standard technique for reducing this dependency to
linear. Is there a similar technique for CRT-based secret sharing? Note that this problem is challenging
as we are essentially trying to extract randomness over the integers (instead of over a field).

Another standard efficiency-saving technique is the packed secret sharing scheme [17]. Could one pack
secrets similarly in the CRT-based secret sharing? We note that CRT-based secret sharing naturally
supports packing two secrets s ∈ Fp0

and s ∈ Fp′
0
from fields with different characteristics (as they could
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be treated as one secret modulo p0 · p′0). It is, however, surprisingly challenging to pack two secrets from
the same field for CRT secret sharing.

CCA Threshold Encryption. Currently, our weighted threshold encryption scheme only achieves CPA
security. It is a natural problem whether one could construct CCA-secure efficient weighted threshold
encryption using similar techniques.

3 Preliminaries

We use λ for the security parameter. Let negl(λ) denote a negligible function. That is, for all polynomial
p(λ), it holds that negl(λ) < 1/p(λ) for large enough λ. For any two distributions A,B over the finite uni-
verseΩ, the statistical distance betweenA andB is defined as SD (A,B) = 1

2

∑
ω∈Ω |Pr[A = ω]− Pr[B = ω]|.

For an integer n, we shall use [n] for the set {1, 2, . . . , n}. For an integer M , we also use UM for the
uniform distribution over {0, 1, . . . ,M − 1}.

The security of the CRT-based secret sharing relies heavily on the following claim.

Claim 1 ([21]) Let M < L be arbitrary integers. Let p be an arbitrary integer that is coprime with M .
Let s be any integer. We have

SD ( (s+ p · UL) mod M , UM ) < M/L.

Intuitively, this claim states the following. Suppose we have a secret s ∈ F, where the order of F is p.
If we pick a sufficiently random10 integer S = s+ p · UL, it is guaranteed that S mod M is statistically
close to uniformly random. This claim is crucial in proving the security of the CRT-based secret-sharing
scheme. We include a formal proof in Section A.

4 Efficient Weighted Ramp Secret-sharing Scheme

In this section, we show how to construct an efficient weighted ramp secret-sharing (WRSS) scheme. Our
scheme is based on the Chinese Remainder Theorem-based (CRT-based) secret-sharing scheme. This
scheme is introduced by [26,4,21] in the unweighted setting. Let us recall their scheme and formally
present its security. Next, we show how to transform this scheme to the weighted setting, where the size
of the secret share is small.

4.1 Unweighted CRT-based Secret-sharing

Let Fp0 be a field, where p0 ≈ 2λ. Suppose we want to secret share a secret s ∈ Fp0 . Unlike Shamir’s
secret-sharing scheme, the CRT-based scheme is non-linear. In particular, the secret shares are not
elements from Fp0

. Instead, for all i ∈ [n], the ith party is associated with an integer pi and its secret
share shall be an integer si such that 0 ⩽ si < pi − 1. Formally, the CRT-based secret-sharing scheme
among n parties is constructed as follows.

– Access Structure. Let A be the set of authorized subsets and A be the set of unauthorized subsets.
– Parameters. The scheme is parametrized by a set of integers p1, p2, . . . , pn and an additional integer

L. It is required that all the pi’s (including p0) are coprime with each other. These parameters implicitly
define the following two products. (Note that Pmax < Pmin.)

Pmax = max
A∈A

∏
i∈A

pi

 and Pmin = min
A∈A

(∏
i∈A

pi

)
.

– Share the secret. To share a secret s, one picks a random integer

S = s+ p0 · UL.

Recall that UL is uniformly distributed over [L]. We will refer to the integer S as the lifting of s and
write the above step as S = Lift(s, UL). When it is clear from the text, we also write S = Lift(s). The

10 Measured by the parameter L.

9



secret share of the ith party shall be
si = S mod pi.

– Reconstruct the secret. For an authorized set A ∈ A, parties in A reconstruct the secret as fol-
lows. Using Chinese remainder theorem, they can find a set of Lagrange coefficients {λi}i∈A such that
S =

∑
i∈A λi · si mod P . Then they can reconstruct the secret s as

s = S mod p0.

Fig. 1: A generic CRT-based Secret-sharing Scheme

Remark 2. The Lagrange coefficient λi here are integers such that

λi mod pi = 1 and ∀j ̸= i, λi mod pj = 0.

We note that the Lagrange coefficients λi could be efficiently computed as follows. Let Q =
∏

j ̸=i Pj be
the product of pj ’s except for pi. Then,

λi = Q ·Q−1,

where Q−1 is the inverse of Q modulo pi. That is, Q ·Q−1 mod pi = 1.

Theorem 4. The secret-sharing scheme in Figure 1 satisfies the following.

– Correctness. The scheme is perfectly correct if (L+ 1) · p0 < Pmin.

– Security. The insecurity of scheme is ⩽ Pmax/L. That is, for any unauthorized set, the statistical
distance between the distributions of its secret shares for any two distinct secrets is at most Pmax/L.

Proof. Suppose (L + 1) · p0 < Pmin. For any authorized set A and secret s, observe the following. The
random integer S = s+ p0 · UL always satisfies

S ⩽ (L+ 1) · p0 < Pmin ⩽
∏
i∈A

pi.

Consequently, given the secret shares si for i ∈ A, parties can always correctly recover the integer S and,
consequently, correctly reconstruct the secret s = S mod p0.
Next, we argue the security. For any unauthorized set A and any secret s, observe the following. Let
P =

∏
i∈A pi. By the Chinese remainder theorem, there is a bijection between the secret shares {si}i∈A

and the integer in {0, 1, . . . , P −1}. Therefore, instead of considering the distribution of the secret shares,
i.e.,

{s+ p0 · UL mod pi}i∈A,

we shall equivalently consider the distribution of the following integer

s+ p0 · UL mod P.

By Claim 1, for any secret s, this distribution is (P/L)-close to the uniform distribution over UP .
Therefore, for any unauthorized set A, the insecurity is ⩽ (

∏
i∈A pi)/L and, by definition, the insecurity

of the whole scheme is ⩽ Pmax/L.

Threshold secret-sharing. As a representative example, we illustrate how one can implement a t-
threshold secret-sharing using the CRT-based scheme. The parameters can be set up as follows. Pick
p1, . . . , pn as n distinct prime numbers of length 2λ. By definition, Pmax is the maximum product of t−1
integers, which is approximately Pmax ≈ 2(2λ)·(t−1); Pmin is the minimum product of t integers, which is
approximately Pmin ≈ 2(2λ)·t. Then, if one picks L to be L ≈ 22tλ−λ, one can verify by Theorem 4 that
the scheme is a threshold secret-sharing with perfect correctness and 2−λ-insecurity.
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4.2 Realizing Efficient WRSS using CRT-based Secret-sharing

Weighted Secret-sharing. In a weighted secret-sharing among n parties. Every party i is associated
with a weight wi ∈ N. We consider the ramp secret-sharing setting. That is, there is a reconstruction
threshold T and also a privacy threshold t. A set of parties is authorized if their collective weight is ⩾ T ;
a set of parties is unauthorized if their collective weight is ⩽ t. In a ramp scheme, a set of parties with
collective weight ∈ (t, T ) may learn partial information about the secret.

– Reconstruction threshold T . A set A ∈ A is authorized if
∑

i∈A wi ⩾ T .

– Privacy threshold t. A set A ∈ A is unauthorized if
∑

i∈B wi ⩽ t.

Fig. 2: The access structure of the weighted ramp secret-sharing scheme.

Näıve Construction with Large Share Size: Shamir’s Secret-sharing with Virtual Parties. It
is not hard to see that one can construct the (threshold) weighted secret-sharing scheme using Shamir’s
secret-sharing scheme. In particular, one thinks of the ith party with weight wi as wi virtual parties. That
is, one can use the standard Shamir’s secret-sharing scheme with w1 +w2 + · · ·+wn parties. Afterward,
the ith party shall get wi secret shares as its secret share. In words, the ith party represents wi virtual
parties in this secret-sharing scheme with w1 + · · ·+ wn virtual parties.
However, the size of the secret share in this näıve construction is quite large. In particular, party with
weight wi shall get wi field elements ∈ Fp0 as its secret share. Therefore, the total length of the secret
share is wi · λ.
CRT-based Construction with Small Share Size. To realize the access structure of the weighted
secret-sharing scheme, we shall pick each pi to be an integer of wi length.

11 In particular, we shall pick
pi in the range 2wi/(1 + 1/n) ⩽ pi < 2wi .12 By definition,

Pmax = max
A∈A

∏
i∈A

pi

 < max
A∈A

∏
i∈A

2wi

 ⩽ 2t.

On the other hand,

Pmin = min
A∈A

(∏
i∈A

pi

)
⩾ max

A∈A

(∏
i∈A

2wi/(1 + 1/n)

)
⩾ 2T /(1 + 1/n)n = 2T−O(1).

Therefore, if one picks the parameter L to be 2t+λ. One may verify by Theorem 4 that this secret-sharing
scheme is O(2−λ)-insecure and is perfectly correct as long as T ⩾ t + 2λ + Θ(1). Furthermore, observe
that the secret shares of the ith party is simply an integer between 0 and pi. Therefore, the total length
of the ith secret share is wi. In conclusion, this construction gives rise to the following theorem.

Theorem 5. Assume T ⩾ t+ 2λ+Θ(1), the CRT-based secret-sharing scheme described above realizes
the access structure in Figure 2 with perfect correctness and 2−λ insecurity. Furthermore, the length of
the secret share with weight wi is wi.

Observe that, if the gap T − t could always be amplified at the cost of efficiency. In particular, for any
integer c, the access structure of parties with weights c · w1, c · w2, . . . , c · wn and reconstruction (resp.
privacy) threshold c · T (resp. c · t) is identical to the original access structure. Hence, this gives us the
following corollary.

Corollary 1 (Efficient WRSS). For any integer c such that c · (T − t) ⩾ 2λ+Θ(1), the weighted ramp
secret-sharing scheme described above realizes the access structure in Figure 2 with perfect correctness
and 2−λ insecurity. Furthermore, the length of the secret share with weight wi is c · wi.

In particular, as long as T − t = Ω(λ), we can construct a weighted ramp secret sharing scheme with
share size O(wi).

11 To ensure they are coprime, we may pick pi to be a distinct prime of length wi.
12 There are 2wi/(n+ 1) many integers between 2wi/(1 + 1/n) and 2wi , among which, there are asymptotically

2wi/((n + 1) · wi) many primes numbers. Therefore, as long as wi is large enough, e.g., polylog(λ), one could
always pick a pi for all parties. Even if the smallest wi is a small constant, one could always multiply every
weight by some small factor to enable this.
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5 Efficient Weighted MPC

In this section, we shall present a weighted MPC protocol against semi-honest adversaries. Moreover,
we consider an honest majority in the weighted setting13 and information-theoretic security. Let us first
define security. We follow the definition in [3] with appropriate adaptation to the weighted setting.

Definition 1 (Semi-honestly Security). Let W = (w1, . . . , wn) be the weights of a total of n parties.
Let C : X1 × X2 × · · · × Xn → Y be an arithmetic circuit over Fp0

. We say that a protocol π ε-securely
realized C with corruption threshold t in the weighted setting if the following holds. For any input x⃗ and
any subset I ⊂ [n] such that

∑
i∈I wi ⩽ t, there exists an efficient simulator S such that

SD
((
S
(
I, x⃗I , C(x⃗)I

)
, C(x⃗)

)
,
(
Viewπ

I (x⃗),Output
π(x⃗)

))
⩽ ε.

Notations. We use the following notations for the WRSS in our weighted MPC protocol. Let W =
(w1, . . . , wn) be the weights of a total of n parties, P = (p0, p1, . . . , pn) be the corresponding bases and
let (T, t) be the reconstruction and privacy threshold. In the MPC case, the reconstruction threshold
T = W is the total weight of all parties. We denote the weighted ramp secret sharing of some secret s
by {[s]i}i∈[n] ← Share(P, T, t, s), where [s]i is party Pi’s share of the secret s. Furthermore, we express
the associated lifting of s as S = Lift(s) where the randomness UL is implicit. Correspondingly we let
S = Reconstruct({[s]i}i∈[n]) be the reconstructed integer Lift(s) value. For every secret s, we have s = S
mod p0.

Overview of the protocol. For every input wire s, we secret share the value s using our WRSS where
the parameter L is 2t+λ. Therefore, Lift(s) is of size at most (2t+λ+1) ·p0 ⩽ 2t+2λ. Throughout the MPC
protocol, we shall maintain the invariant that the for every wire s, the secret integer S = Lift(s) associated
with the secret share of s is upper-bounded by some poly(λ)·2t+2λ. Intuitively, this invariant is maintained
for each addition gate. However, after each multiplication gate (including scalar multiplication where the
scalar is superpolynomial in λ), this invariant is broken. Hence, we shall employ a degree reduction
protocol to re-establish this invariant. For degree reduction, in the preprocessing phase, every party shall
generate two secret shares of a random value r, denoted by [r]0 and [r]1. The instance [r]0 is sampled
where the corresponding parameter L is 2t+λ; while the instance [r]1 is sampled where the corresponding
parameter L is 22t+5λ. Parties shall use [r]1 as a mask to reconstruct the value r+s in the clear and then
deduct it from the secret share [r]0 locally. To successfully reconstruct the value r+s, which corresponds
to an integer of size at most 22t+5λ ·p0, we need the total weights to satisfy W ⩾ 2t+6λ+Θ(1). Therefore,
as long as W − 2t = Θ(λ), we have the following theorem.

Theorem 6. Let C be an arithmetic circuit over F with depth d. There is a weighted MPC protocol
realizing C with the following property.

– The round complexity is d+O(1).
– In the online phase, the communication/computation cost per party per gate is O(wi).
– In the preprocessing phase, the communication/computation cost per party per gate is O(W ).
– For any semi-honest adversary who may corrupt a total weight of t, this protocol is exp(−λ)-secure

given W − 2t = Θ(λ).

We next describe our protocol in detail.

5.1 Generating shares of random value FRandom

In this sub-protocol, parties generate a secret sharing of a random value. Observe that the communication
cost per party is O(W ) as it sends O(wi) bits to the ith party.

– For all i ∈ [n], the ith party samples a random value ri ∈ F. It secret shares ri : {[ri]j}j∈[n] ←
Share(P,W, t, ri) and sends the shares to each party.

– For all i ∈ [n], the ith party locally computes [r]i =
(
[r1]i + [r2]i + · · · + [rn]i

)
mod pi as its secret

share of the random field element r = r1 + · · ·+ rn ∈ F.

13 I.e., the cumulative weight of the corrupted party is less than half of the total weight.
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We note that the threshold parameter L in generating the WRSS secret shares is either 2t+λ or 22t+5λ.
Furthermore, we also use this protocol for generating secret shares of the value 0 among all the parties.
The only difference is that parties sample a fresh secret share of 0 instead of a random ri. The threshold
L is generating the secret sharing of 0 is 2t+3λ.
We will sometimes refer to the above protocol as FRandom(r =

∑
i∈[n] ri) to specify the individual ran-

domness ri from each party.

5.2 Degree reduction protocol Fdeg

In this sub-protocol, parties re-sample the secret share of some wire x such that the corresponding integer
Lift(x) is small enough. Observe that the communication cost per party is O(wi).

– Input. Parties hold the secret shares [x] of some wire x. Additionally, parties hold two secret shares
(i.e., {[r]0i }i∈[n] and {[r]1i }i∈[n]) of a random r. Both [r]0 and [r]1 are sampled using the FRandom protocol,
where the threshold parameters are 2t+λ and 22t+5λ, respectively.

– Party Pi locally computes and broadcasts
(
[x]i + [r]1i

)
mod pi as the secret shares of x+ r.

– Given all the secret shares, parties locally reconstruct x+ r ∈ F and subtract (x+ r) mod pi from the
secret shares {[r]0i }i∈[n].

5.3 Opening secret shares Fopen

In this sub-protocol, parties open the value of the output wire. Observe that the communication cost per
party is O(wi)

– Input. Parties hold a secret share [out] of the output wire. Parties also hold a secret sharing of [0]
generated similarly as in the FRandom sub-protocol.

– Party Pi locally computes and broadcasts
(
[0]i + [out]i

)
mod pi as the secret shares of 0 + out.

– Parties locally reconstruct 0 + out as the value of out.

5.4 Realizing negation gate Fneg

In this (non-interactive) sub-protocol, parties switch the secret shares [x] of x to the secret shares of [−x].
Negation gate usually comes for free in the Shamir secret share-based MPC. However, in our scheme, it
requires some special care.
Observe that if parties simply invert their secret share from [x]i to pi− [x]i. The lifted integer goes from
Lift(x) to P − Lift(x), where P is the product of pi. Crucially, note that

Lift(x) = x mod p0 ≠⇒ P − Lift(x) = −x mod p0

as P is not a multiple of p0. Therefore, this approach has a correctness issue. We realize negation by the
following protocol.

– Input. Parties hold WRSS of some secret x.
– Parties (locally) identify a bound B · p0 on the integer Lift(x). For example, if x is an input wire, Lift(x)

is at most (2t+λ + 1) · p0. Hence, one set B = 2t+λ + 1. If x is the secret share of the sum of two input
wires, the corresponding bound B will be 2 · (2t+λ+1). If x is the output of a degree reduction protocol,
the maximum value of Lift(x) is reset to be (2t+λ + 1) · p0. Hence, one could again pick B = 2t+λ + 1.
Consequently, this bound B only depends on the topology of the circuit, and parties could identify the
same bound B without interaction.

– Party Pi locally computes [−x]i = (B · p0 − [x]i) mod pi.

Observe that the lifting integer of the secret shares [−x]i is now the integer B · p0 − Lift(x) and we have
(B · p0 − Lift(x)) = −x mod p0. Therefore, this sub-protocol correctly realizes the negation gate.
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– Preprocessing Phase.
• Parties generate |C| fresh samples of [r]0, [r]1 (as described in FRandom).
• Parties generate samples of the secret sharing [0] of 0 (as described in FRandom). The number of

instances equals to the number of output wires of C.
– Online Phase.
• Parties sample a WRSS of their inputs and send it to all parties. The threshold parameter L in

generating the secret shares is 2t+λ.
• Addition Gate x+ y: Parties locally compute ([x]i + [y]i) mod pi as the secret share of x+ y.
• Multiplication Gate x · y: Parties locally compute ([x]i · [y]i) mod pi as the secret share of x · y.

They then employ a degree reduction protocol Fdeg and obtain [z]i as the new share where z = x ·y.
In subsequent sections we will refer to this as FMult.

• Negation Gate −x: Parties use the sub-protocol Fneg.
• Scalar Multiplication Gate c ·x: Parties locally compute (c · [x]i) mod pi as the secret share of c ·x.

They then employ a degree reduction protocol Fdeg and obtain [z]i as the new share where z = c ·x.
In subsequent sections we will refer to this as FsMult.

– Reconstruct the Output. For each output wire out, parties use the FOpen with input [out] to recon-
struct the value out.

Fig. 3: Our Efficient Weighted MPC Protocol

5.5 Our Protocol

We are now ready to state our protocol in Figure 3. The correctness is straightforward as the reconstruc-
tion of the secret is correct for each sub-protocol.
For security, the following lemma is helpful. The proof is included in Section A.

Lemma 1 (Integer Masking Lemma). Let p and 0 ⩽ r1, r2 < p be any integers. Let M < N also
be arbitrary integers. Let D be an arbitrary distribution over the universe {r1, p+ r1, 2p+ r1, . . .} ∩ [M ].
Then,

SD
((

D + UN

∣∣∣ UN mod p = r2

)
,
(
UN

∣∣∣ UN mod p = r1 + r2

))
⩽ M/N + 2p/N,

where the addition is over the integers.

We provide some intuition about this lemma and why it is relevant to the security of the MPC protocol.
Take the multiplication sub-protocol as an example. We need to argue that the reconstructed integer
[x] · [y] + [r]1 could be simulated. Here, the integer corresponds to [x] · [y] is the distribution D and
the integer corresponds to [r]1 is the distribution UN . The conditioning on UN mod p is because of the
adversary’s secret share of [r]1. That is, it knows that the remainder of UN modulo some product of
pi. Now, this lemma states that as long as the range of the integer [r]1 is sampled from a much larger
domain (measured by N) compared to the maximum value of [x] · [y] (measured by M), one may simply
sample the integer corresponds to [x] · [y] + [r]1 as a uniformly random one (given that it is consistent
with the adversary’s secret share).14

Security. The security proof essentially follows from the security of the WRSS and Lemma 1. Due to
space constraints, we defer the security proof to the appendix section A.3.

6 Efficient Weighted Threshold Encryption Scheme

In this section, we will demonstrate the utility of our secret-sharing scheme by constructing a weighted
threshold encryption scheme, where the size of the secret-key shares is small. Let us first define the
primitive.

14 The term p/N will always be small since p is the product of the adversary’s pi, which is at most 2t. The WRSS
scheme requires that whenever we pick a random lift integer, we shall always pick a domain much larger than
2t.

14



Definition 2. A public-key encryption scheme with weighted threshold decryption consists of a tuple of
PPT algorithms (Gen,Enc,PartialDec,Reconstruct).

– (pk, {ski}ni=1) ← Gen(1λ, {w1}ni=1, T, t): The Gen algorithm takes the security parameter 1λ as input
and a weighted access structure with privacy threshold t and reconstruction threshold T as inputs. It
outputs a public key pk and a set of secret-key shares {ski}ni=1, where ski is given to the ith party
with weight wi.

– c ← Enc(pk,m): The Enc algorithm takes as input the public key pk, a message m, and outputs a
ciphertext c.

– µ ← PartialDec(S, sk′, c): The PartialDec algorithm takes as input a subset of S ⊆ [n], a secret-key
share sk′, a ciphertext c, and outputs partial decryption µ.

– m← Reconstruct({µi}i∈S , c): The Reconstruct is a deterministic algorithm that takes as input a set
of partial decryptions {µi}i∈S from a subset S of parties, a ciphertext c, and outputs a message m.
In case of failure, it outputs ⊥.

It shall satisfy the following guarantees.

– Statistical Correctness. For any weighted access structure ({wi}ni=1, T, t), authorized subset S ⊆
[n], and message m, it holds that

Pr

m∗ = m :

(pk, {ski}ni=1)← Gen(1λ, {w1}Ni=1, T, t)

c← Enc(pk,m)

∀i ∈ S : µi ← PartialDec(S, ski, c)

m∗ ← Reconstruct({µi}i∈S , c)

 ⩾ 1− negl(λ).

– ε-Strong CPA Security. For any PPT adversary A, any weighted access structure ({wi}ni=1, T, t),
and any unauthorized subset S ⊆ [n], it holds that

Pr

b∗ = b :

(pk, {ski}ni=1)← Gen(1λ, {w1}Ni=1, T, t)

(m0,m1)← AO(·)(pk, {sk}i∈S)
b← {0, 1}; c← Enc(pk,mb)

b∗ ← AO(·)(pk, {ski}i∈S ,m0,m1, c)

 ⩽ 1/2 + ε.

Here, the oracle O(A,B,m) takes as input an authorized set A and a subset B such that B ∪ S is
unauthorized, and a message m. Its outputs are sampled from the following distribution{

c← Enc(pk,m), ∀i ∈ B, µi = PartialDec(A, ski, c)

Output
(
c, {µi}i∈B

) }
.

In other words, the adversary is given access to the partial decryption oracle on honestly sampled
ciphertexts.

Remark 3. We notice that, in the threshold setting, the plain CPA security (where the adversary does
not have any access to partial decryption) is trivial to achieve. For instance, consider the following trivial
scheme. Take any CPA-secure PKE scheme and any secret-sharing scheme. Sample the public key and
secret key pair from the underlying PKE scheme and secret share the secret key with all parties. Now,
the partial decryption algorithm simply outputs the secret share. Observe that even this scheme satisfies
the plain CPA security.
Due to this observation, we consider a stronger definition, where the adversary has access to partial
decryption on ciphertexts that are honestly sampled. This stronger CPA-security definition excludes the
trivial construction above.

6.1 Building Blocks

ElGamal Encryption. Our construction is based on the ElGamal encryption system. Let us recall it. In
the ElGamal encryption scheme, a groupG with order p and generator g is sampled as (G, g)← Setup(1λ).
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The secret key sk and public key pk are sampled as s and gs where s ← Fp. To encrypt a message
m, one sample a random r ← Fp, and the ciphertext is defined as (m · pkr, gr). Given a ciphertext

(c1, c2), one could decrypt it as c1 · c−sk2 . This encryption scheme is semantically secure as long as the
Decisional Diffie-Hellman (DDH) problem is hard in G, which states that the following two distributions
are computationally indistinguishable

(g, ga, gb, gab) ≈ (g, ga, gb, gc),

where a, b, c← Fp.
We need the following definitions regarding min-entropy and randomness extractor. For a distribution
X, its min-entropy is defined as

H∞(X) = − log
(
max

x
Pr[X = x]

)
.

Definition 3 (Randomness Extractor). A function Ext : {0, 1}n×{0, 1}d → {0, 1}m is called a (k, ε)-
strong randomness extractor if, for all distributions X over {0, 1}n such that H∞(X) ⩾ k, we have

SD
( (

s,Ext(X, s)
)
;
(
U{0,1}d , U{0,1}m

) )
⩽ ε,

where the seed s is chosen uniformly at random from {0, 1}d.

For our purpose, we may use the leftover hash lemma [22] as a concrete instantiation of the randomness
extractor.

Definition 4 (Universal Hashing). A family of hash function {hk : {0, 1}λ → {0, 1}α}k, where
k ∈ {0, 1}β is called a universal hashing function family if, for any two distinct inputs x, y ∈ {0, 1}λ, it
holds that

Pr
k←{0,1}β

[hk(x) = hk(y)] = 1/2α.

Instantiation. We provide a simple instantiation as follows. Given a message space {0, 1}λ, one picks
α = λ/2 and β = λ. A message x ∈ {0, 1}λ is treated as a vector (x1, x2) ∈ F2α × F2α . Similarly, the
index of the hash function k ∈ {0, 1}λ is also treated as (k1, k2) ∈ F2α × F2α . Define the hash function
output as

hk1,k2(x1, x2) = k1 · x1 + k2 · x2,

where the operations are over F2α . One may verify that it is indeed a universal hash function.
For our purpose, observe that for any key (k1, k2) ̸= (0, 0) and any hash output σ ∈ {0, 1}λ/2, it holds
that

H∞

(
U{0,1}λ

∣∣∣ (k1, k2), hk1,k2

(
U{0,1}λ

)
= σ

)
= λ/2.

That is, a uniformly sampled message has at least λ/2 bits of entropy after being conditioned on the
hash function output.

6.2 Our Construction

Our construction based on the ElGamal encryption scheme is in Figure 4.

Efficiency. The efficiency of our threshold encryption scheme inherits the efficiency of the WRSS scheme
as the size of the secret key share is O(wi). Moreover, the partial decryption and reconstruction time
is O(W ) + poly(λ), where W is the total weights

∑
i∈S wi. This is because every party is computing an

O(W )-bit integer, i.e., ski · λi mod PS , which takes O(W ) time and the rest of the reconstruction time
is independent of the weight and takes poly(λ) time.
In comparison, if one uses Shamir’s secret sharing with the virtualization approach, every party needs to
interpolate a degree-(W−1) polynomial and evaluate it at 0. This needs at least W logW field operations
based on fast Fourier transform techniques, which takes at least O(W · λ) time.

Correctness. Observe that the decryption is correct as long as it finds the correct index j∗. Furthermore,
it might not find the correct j∗ if and only if there is a collision for the universal hash function hk. By the
property of the universal hash function, for any j ̸= j∗, the probability of the collision between j and j∗

is exp(−λ). Therefore, by union bound, the probability of incorrectness is upper-bounded by n ·exp(−λ).
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Gen(1λ, {w1}ni=1, T, t). The public key and secret keys are set up as follows.

– Sample (G, g)← Setup(1λ) and s← Fp.
– Set pk = s. Use the WRSS scheme with access structure ({w1}ni=1, T, t) to secret share s as s1, . . . , sn.

Set ski = si.

Enc(pk,m). To encrypt a message m, one computes:

– Sample a random exponent r ← Fp, a hash function k ← {0, 1}β , and a seed for the randomness
extractor sd← {0, 1}d.

– The ciphertext is defined as
m⊕ Ext(sd, pkr), sd, gr, k, hk(pk

r).

µ← PartialDec(S, sk′, c). The partial decryption is defined as follows. Note that the authorized set S im-
plicitly defined PS =

∏
i∈S pi and also the Lagrange coefficients λi. That is, the unique integer λi that

satisfies
λi = 1 mod pi and ∀j ∈ S \ {i}, λi = 0 mod pj .

Parse the ciphertext c as above and the partial decryption outputs

(gr)(sk
′·λi mod PS) .

m← Reconstruct({µi}i∈S , c). Given all the partial decryptions {µi}i∈S , the reconstruction does the follow-

ing. It set µ =
∏

i∈S µi and computes

µ, µ · (gr)−PS , . . . , µ · (gr)−(|S|−1)·PS .

It checks if there exists an j such that

hk

(
µ · (gr)−j·PS

)
= hk(pk

r).

If such an j does not exist, it output ⊥; otherwise, it finds any such j∗ and outputs

c⊕ Ext
(
sd, µ · (gr)−j∗·PS

)
.

Fig. 4: Our Efficient Threshold Encryption Scheme

Security. We now show the CPA security of our weighted public-key threshold encryption scheme. In
particular, in the generic group model [28], we shall prove that our scheme satisfies ε-strong CPA-security
where ε = poly(λ)/pmin where pmin = mini pi. Therefore, as long as the minimum weight is large enough,
e.g., wmin ⩾ log2 λ, our threshold encryption scheme satisfies the negl(λ)-strong CPA security.
We briefly explain why pmin needs to be large and we need the generic group model (instead of DDH).
Note that if wi is small, the total possibility of the secret share of party Pi is also small. Therefore, given
the partial decryption output of Pi, one could use an exhaustive search (in time pi) to find the exact si.
Therefore, it is inevitable that the security depends on the minimum wi.
Next, our proof relies on the generic group model as our WRSS is non-linear. In particular, for a linear
partial decryption, given gsi , one could easily simulate (gr, (gsi)r), where r ← Fp. However, in our case,
given gsi , it is not clear how to simulate (gr, (gr)(si·λi mod N)). Therefore, we have to rely on generic
group to argue that this distribution is indistinguishable from two random group elements.

Proof. In Shoup’s generic group model [28], there is an injective labeling oracle ξ : Fp → {0, 1}α that maps
an exponent r to the label of the group element gr. Additionally, there is an oracle F : {0, 1}α×{0, 1}α →
{0, 1}α that maps (u, v) to ξ(ga+b) if u = ξ(ga) and v = ξ(gb). That is, F is the oracle that helps compute
the group operations on the labels. Now, consider a generic adversary A that plays the CPA security
game. Without loss of generality, we may assume that all the queries that A asks to F are on labels that
it receives from ξ, since we may assume that the range {0, 1}α is large enough such that it is exponentially
hard to guess a valid label.
Our simulation strategy is as follows. For all the group elements in the security game, instead of querying
ξ, we shall give a random string from {0, 1}α as its label. This includes the following queries. For every
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partial decryption query to O, it receives

gr,
{
(gr)(si·λi mod PA)

}
i∈B

,

where r is freshly sampled for each query. In the setup and challenge ciphertext, we also sample
gs, gr

∗
, gr

∗·s. Therefore, all the queries that A makes to F will be a linear combination of these group
elements. Now if A asks a linear combination that has not been queried before, we answer this query
with a random label. Otherwise, we answer it with the same label, consistent with A’s view. This sim-
ulated view is identically distributed as the real view except when there is a collision on the exponent.
For instance, if it happens that s = r∗, then gs and gr

∗
should have the same label in the real view,

but in our simulated view, they have different labeling. We next argue that the collision probability is
small. Consider any linear combination of these group elements. Note that if there exists an r such that
the coefficient on r is non-zero, then the probability of collision is 1/p0. This is because r is a random
exponent. Therefore, it suffices to argue that the probability that the adversary may find a set of βi such
that

β0 · 1 +
∑
i∈B

βi · (si · λi mod PA) = 0

is small. Note that since B ∪ S is unauthorized, {si}i∈B are uniformly random by the security of the
WRSS. Therefore, for any such linear combination βi, the probability that si satisfies the above equation
is at most 1/pmin. Since the adversary makes some q = poly(λ) queries, by a union bound, the probability
that any two of those queries cause a collision is at most q2/pmin = poly(λ)/pmin. In conclusion, if we
simulate all the group elements in the security game as a random group element, this simulated view is
at most poly(λ)/pmin far from the real view.
Finally, in this simulated view, the choices bit b is hidden from the adversary because Ext(sd, gr

∗·s) is
statistically close to uniformly random by the property of the randomness extractor. This completes the
proof that our threshold encryption scheme is poly(λ)/pmin-strong CPA secure.

7 Efficient Weighted Threshold Signature

We show how to apply our weighted MPC protocol in the context of threshold signatures. More specif-
ically, we show how to construct a weighted multiparty signing protocol for ECDSA signatures. Such
protocol is also known as weighted threshold signature.

7.1 ECDSA Signatures

We first briefly recall the ECDSA signature scheme below:

ECDSA Signature Scheme
Let G be the elliptic curve base point which generates a subgroup of some prime order q. Let H(·) be a
cryptographic hash function. We use a×G to denote the multiplication of curve point G by a scalar a.

– Gen(1λ) : Sample signing key as sk← Fq and then set verification key as vk = sk×G.
– Sign(sk,m) : Sample random element k ← Fq. Compute curve point (rx, ry) = k × G and let r = rx.

Then set σ = k−1 · (H(m) + r · sk). Output (r, σ).
– Verify(vk,m, (r, σ)) : Compute (rx, ry) = σ−1 ·H(m) × G + σ−1 · r × vk. Then output 1 if and only if

rx = r.

Following the same general framework as previous approaches [24,18], our weighted threshold ECDSA
signature scheme starts with a WRSS of the secret signing key sk among all parties. We described this
step next.

Weighted Threshold ECDSA Key Generation Functionality FGen(1
λ, T, t) :

FGen takes as input the security parameter 1λ and CRT-based weighted (Ramp) secret-sharing scheme with
respect to reconstruction threshold T and privacy threshold t. Then it does the following:

1. Sample a secret signing key sk← Fq. Then it sets verification key as vk = sk×G.
2. Generate a WRSS of sk : {[sk]i} ← Share(P, T, t, sk). Then send (vk, {[sk]i}) to each party i.
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In order to build a weighted multiparty signing protocol for ECDSA signing functionality, we begin by
describing the ideal signing functionality, step by step as follows:

ECDSA Signing Functionality FSign

1. Generate a secret random value k ← Fq, and then compute (public) group element k ×G.
2. Parse k ×G as curve point (rx, ry).
3. Compute multiplication between inverse of secret random value k and secret signing key sk. We denote

this by s = k−1 · sk.
4. Compute two scalar multiplications: k−1 ·H(m) and rx · s.
5. Add up the above two values and obtain σ.

Our weighted MPC protocol will proceed as follows: For the first step of signing, the secret random value
k shall be contributed by all parties. More specifically, each party i will sample its own secret random
value ki, broadcast the group element ki × G, and then distribute the WRSS of ki among all parties.
This allows each party to obtain a share of the combined random value k =

∑
i∈[n] ki as well as the

group element k × G =
∑

i∈[n] ki × G. The subsequent steps naturally fit into our MPC protocol: step
2 only incurs public operations, and step 5 only incurs addition, both of which can be computed locally
by every party. Step 3 involves first computing the inversion k−1 and then multiplying it with sk. Using
the inversion protocol as suggested in [5], these operations can be handled via FMult and FOpen. Finally,
step 4 involves scalar multiplications. While in our weighted MPC protocol parties need to run degree
reduction to keep the integer value of share small for subsequent multiplications; here each party can
perform scalar multiplication locally since there are no multiplications afterward.
We describe our weighted multiparty ECDSA signing protocol which realizes the ideal ECDSA signing
functionality in Figure 5. We split our signing protocol into two phases: a pre-signing protocol which only
depends on the shares of the signing key, followed by a non-interactive signing protocol which depends
on the actual message.

Correctness and Security Both correctness and security of our weighted multiparty ECDSA signing
protocol follow from these of weighted MPC protocol. The only catch is that we also need to simulate
the value ki×G sent by each honest party. However, since those values form an additive sharing of k×G,
they can be simulated given only k ×G.

Efficiency. The aforementioned pre-signing phase involves three rounds. However, instead of having the
parties perform a multiplication protocol on [γ]i · [k]i and then open the result, we can directly let the
parties open the multiplication of their local shares, thus bringing the pre-signing phase to two rounds.
The communication cost per party in the pre-signing phase is O(W + λ).
The online signing phase is non-interactive. Each party i broadcasts a share of final signature [σ]i which
has size O(wi).

Weighted Threshold ECDSA Signing Protocol
Let there be a total of n parties where each party i has base pi, its secret input [sk]i, public input vk and m.
Let S ⊆ [n] be the subset of parties participating in the weighted threshold ECDSA signing protocol and
let W be the total weight of these parties. We will rely on the following protocols: (FRandom, FMult, FOpen).

Pre-signing Phase

1. Parties generate CRT shares of random values {[γ]i}i∈S ← FRandom(γ =
∑

i∈S γi), and {[k]i}i∈S ←
FRandom(k =

∑
i∈S ki). Each party i also broadcasts ki ×G.

2. Parties compute {[δ]i}i∈S = FMult({[γ]i}i∈S , {[k]i}i∈S), and {[θ]i}i∈S = FMult({[γ]i}i∈S , {[sk]i}i∈S).
3. Parties compute δ = FOpen({[δ]i}i∈S)). Then they compute R =

∑
i∈S ki × G and set curve point

R = (rx, ry)
4. Each party i computes [σ0]i = δ−1 · [γ]i and [σ1]i = rx · δ−1 · [θ].

Note that [σ0]i is a share of k−1 and [σ1]i is a share of k−1 · sk.
5. Each party i saves the values (rx, [σ

0]i, [σ
1]i).

Signing Phase

1. Each party i locally computes [σ]i = H(m) · [σ0]i + [σ1]i.
2. Parties compute σ = FOpen({[σ]i}i∈S)). The signature of m is (σ, rx).
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Fig. 5: Weighted Threshold ECDSA Signing
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A Missing Proofs

A.1 Proof of Claim 1

Proof. Suppose L = M · q + r for some 0 ⩽ r < M . Let L′ = M · q. We have

SD ((s+ p · UL) mod M , UM )

⩽SD ((s+ p · UL) mod M , (s+ p · UL′) mod M) + SD ((s+ p · UL′) mod M , UM )
(Triangle inequality)

⩽SD (UL, UL′) + SD ((s+ p · UL′) mod M , UM ) . (Data processing inequality)

Observe that
SD ((s+ p · UL′) mod M , UM ) = 0

since p is coprime with M and L′ is a multiple of M . On the other hand,

SD (UL, UL′) = r/N < M/N.

This completes the proof.

A.2 Proof of Lemma 1

Proof. We first truncate N to be a multiple of p. Suppose N = N ′+ r′, where N ′ = m ·p and 0 ⩽ r′ < p.
Note that for any r,

SD ((UN |UN mod p = r) , (UN ′ |UN ′ mod p = r)) ⩽ p/N.

Hence, it suffices to prove

SD
((

D + UN ′

∣∣∣ UN ′ mod p = r2

)
,
(
UN ′

∣∣∣ UN ′ mod p = r1 + r2

))
⩽ M/N.

Define the set S as
S = {x |M + 1 ⩽ x < N ′, x mod p = r1 + r2}

Observe that for all x ∈ S, conditioned on UN ′ mod p = r2, we have

Pr[D + UN ′ = x] =
∑

y∈supp
Pr[D = y] · Pr[UN ′ = x− y] =

M∑
y=1

Pr[D = y] · p

N ′
=

p

N ′
.

Moreover, conditioned on UN ′ mod p = r1 + r2, Pr[UN ′ = x] = p
N ′ . Therefore, the statistical distance is

strictly bounded by the maximum probability that the distribution D + UN ′ and UN ′ falls outside the
set S. Since the probability mass of the set S is already

p

N ′
· |S| = p

N ′
· N
′ −M

p
= 1−M/N ′.

This concludes that the statistical distance is at most M/N .

A.3 Security Proof for Weighted MPC Protocol

Now, we argue the security of our weighted MPC protocol. In particular, the simulator S does the
following.

– Preprocessing: The simulator simulates the protocol honestly. There is no simulation error for this.
– Input Sharing: For any malicious party i ∈ I, the simulator samples a fresh secret sharing of its input

xi. For any honest party j ∈ I, the simulator samples a fresh secret sharing of 0 as the secret share
that the adversary receives. The simulation error in this step is 2−λ since the adversary corrupts at
most t weights and the WRSS is sampled with threshold L = 2t+λ. By the security of the WRSS,
the statistical distance between the simulated view and the real view is at most 2−λ.
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– Addition: The simulator locally computes the addition of the secret shares of the adversary. There
is no simulation error in this step.

– Negation: The simulator locally computes the negation of the secret shares of the adversary. There
is no simulation error in this step.

– Multiplication x · y: The simulator locally computes the secret share [x]i · [y]i + [r]1i . Recall that
r = r1 + · · · + rn is the summation of randomness from every party. For the malicious party ri,
the simulator knows the corresponding integer Ri. For all honest parties ri, it samples the integer
Ri honestly except for one honest party, say party P1. It samples R1 as follows. It picks a random
element r′ ← F and picks a random integer R′1 = r′ + u · p0 where u ← {1, . . . , 22t+5λ} conditioned
on that

∀i ∈ I, R′1 mod pi = [x]i · [y]i + [r1]
1
i .

Finally, it computes
R′ = R′1 +R2 + · · ·+Rn.

It proceeds to simulate the view of the adversary by using R′ mod pi as party Pi’s message in the
degree reduction protocol. It then subtracts r′ from the secret shares [r]0 as the sharing of x · y.
Next, we argue that the simulation error is exp(−λ). Note that the adversary’s view in the degree
reduction protocol is uniquely determined by the reconstructed integer R′. Hence, we directly argue
that the distribution of R′ is exp(−λ)-close to the distribution of the integer associated with [x] · [y]+
[r]. In particular, it suffices to argue that the distribution of R′1 is exp(−λ)-close to the distribution
of the integer associated with [x] · [y] + [r1]

1.
Now, this is exactly what Lemma 1 proves. That is, the distributionD describes the distribution of the
integer associated with [x]·[y]. Due to our invariant, both integersX and Y are at most poly(λ)·2t+2λ.
Hence, the integer associated with [x] · [y] is some distribution over the range poly(λ) · 22t+4λ. The
distribution UN describes the distribution of R1 = Lift([r]1) and R′1, which is uniformly distributed
over the range 22t+5λ. Lemma 1 implies that the simulation error here is bounded by

poly(λ) · 22t+4λ

22t+5λ
= exp(−λ).

– Output Reconstruction: The simulator locally computes [out]i+[0]i mod pi. It proceeds to simulate
the reconstruction message by simulating the reconstructed integer. This is entirely analogous to
the multiplication gate case. Recall that the sharing [0] is the summation of all parties’ share of [0].
The simulator picks one honest party, say P1, and proceeds to simulate the integer associated with
[01]+ [out]. This is again by our integer masking lemma (Lemma 1). Note that the integer associated
with [out] is of range poly(λ) ·2t+2λ and [01] is sampled by picking an integer over range 2t+3λ. Hence,
the simulation error in this step is at most

poly(λ) · 2t+2λ

2t+3λ
= exp(−λ).

Overall, the simulation error of the simulator is at most exp(−λ), which completes the proof.
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