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Abstract. The study of symmetric structures based on quasigroups is
relatively new and certain gaps can be found in the literature. In this
paper, we want to fill one of these gaps. More precisely, in this work
we study substitution permutation networks based on quasigroups that
make use of permutation layers that are non-linear relative to the quasi-
group operation. We prove that for quasigroups isotopic with a group
G, the complexity of mounting a differential attack against this type
of substitution permutation network is the same as attacking another
symmetric structure based on G. The resulting structure is interesting
and new, and we hope that it will form the basis for future secure block
ciphers.

1 Introduction

When designing a block cipher, one of the main challenges is to construct a set
of permutations that are easy to implement and at the same time behave as ran-
dom permutations. Keeping this in mind, three main approaches can be found in
the literature [22]. Substitution-permutation networks (SPNs) construct a large
block random looking permutation using a series of substitution3 and permuta-
tion layers iterated over several rounds. A different approach is used to construct
Feistel and Lai-Massey symmetric structures. Instead of using invertible building
blocks, these two structures construct permutations using non-invertible compo-
nents.

One of the most powerful tools used to attack block ciphers is differential
cryptanalysis [14]. Introduced by Biham and Shamir [2], this type of attack
exploits the way certain plaintext changes propagate to the ciphertext. If we used
truly random permutations, we could predict these changes with a probability
of 1/2n, where n is the number of input bits. Therefore, if n was for example
128 bits the probability would be negligible. Nevertheless, as stated before we
should be able to easily describe the permutation and this is not the case for
ideal permutations. Hence, in order to build practical block ciphers, designers
3 comprised of several substitution boxes (s-boxes) with small block length
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need to use theoretical estimates based on certain assumptions that are not
always valid in practice. In consequence, block ciphers are not ideal and this
makes them susceptible to differential cryptanalysis. Because of that, security
against differential cryptanalysis is one of the basic design criteria for symmetric
primitives [18].

Latin squares are ℓ × ℓ matrices which contain only ℓ symbols and have
the property that each symbol appears only once in each row and only once
in each column [10]. A set endowed with a multiplication table that is a Latin
square forms a quasigroup. These structures can be thought of as a group that
is not associative and does not have an identity element. Although quasigroups
are not a popular choice when constructing cryptographic primitives, various
designs based can still be found in the literature [1, 6, 7, 11–13,15,16].

A very recent approach [3–5, 8] uses commutative regular subgroups of the
symmetric group to design SPN structures that appear secure against classical
differential cryptanalysis, but are weaker with respect to a differential attack that
uses a different group operation. Specifically, such a symmetrical structure has
a level of security, in relation to differential attacks, which is dependent on the
intended operation. This methodology is similar to the one used in this paper,
because we also consider different operations to construct differential attacks
against the proposed SPNs. Nevertheless, the scope of [3–5, 8] is to show how
a designer can embed a trapdoor into a symmetric structure4, while ours is to
investigate whether changing the group operation to a quasigroup one could
strengthen an SPN structure against differential cryptanalysis.

In [20,21] the author introduces a straightforward generalization of the three
main symmetric structures: SPNs, Feistel and Lai-Massey. Namely, instead of
using a group operation between keys and (intermediary) plaintexts, the general-
isations use a quasigroup one. When studying their security the author restricts
the study to quasigroup operations that are isotopic with a group operation,
since this is the most popular method for constructing quasigroups. We further
discuss only the results concerning SPNs, since this is the topic of our paper. The
result of the two studies is that in the case of isotopies the resulting symmetric
structures are equivalent5 with another structure that uses a group operation.
Although the result is the same, the views considered in the two papers are
different. In [21], the author implicitly considers that the permutation layer is
linear with respect to the quasigroup operation. Therefore, differential probabil-
ities are induced only by the s-boxes, since the permutation layer and the key
mixing operation make differentials predictable with no uncertainty. Hence, we
can reduce the analysis of the differential probabilities induced by the round
function to those induced by the s-boxes. In the second paper [20], the view
is changed from an element wise one to a global one. More precisely, in the
first paper the key mixing operation between the key k = k1∥ . . . ∥kn and the
plaintext p = p1∥ . . . ∥pn is k1 ⊗ p1∥ . . . ∥kn ⊗ pn, while in the subsequent work
is simply k ⊗ p, where ⊗ is the quasigroup operation. Keep in mind that the

4 The trapdoor consists in knowing the group operation that weakens the structure.
5 from the point of view of differential attacks
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results from [21] still apply since the whole round transformation can be seen as
a permutation.

In this paper we study the remaining case, namely SPN structures with a
permutation layer that is non-linear with respect to the quasigroup operation.
When this assumption holds, the results from [20,21] do not apply. Therefore, a
new analysis is required. The results obtained using the techniques introduced in
this paper are twofold. First of all we confirm the results6 presented in [20,21] by
using a different approach than the original one. Secondly, we show that when
the permutation layer is non-linear relative to the quasigroup operation, then we
cannot reduce its security to a group based SPN structure. More precisely, we
obtain that the quasigroup based SPN is equivalent to a structure that has an
extra substitution layer before the key mixing operation takes place and which
uses a group based key mixing step. To the authors’ knowledge, this design was
never described in the literature. Therefore, we believe that this novel structure
is worth attention for future research from both a theoretical and a design point
of view.

Structure of the paper. We introduce notations and definitions in Section 2.
SPNs with generic permutation layers are studied in Section 3. We conclude in
Section 4.

2 Preliminaries

Notations. Throughout the paper |G| will denote the cardinality of set G and ⊕
the bitwise xor operation. Also, by x∥y we understand the concatenation of the
strings x and y. When defining a permutation π we further use the shorthand
π = {a0, a1, . . . , aℓ} which translates into π(i) = ai for all i values. We also
define the identity permutation Id = {0, . . . , ℓ}.

2.1 Quasigroups

In this section we introduce a few basic notions about quasigroups. We base our
exposition on [19].

Definition 1. A quasigroup (G,⊗) is a set G equipped with a binary operation
of multiplication ⊗ : G×G → G, in which specification of any two of the values
x, y, z in the equation x⊗ y = z determines the third uniquely.

Definition 2. For a quasigroup (G,⊗) we define the left division x ⊘z = y
as the unique solution y to x ⊗ y = z. Similarly, we define the right division
z ⊘ y = x as the unique solution x to x⊗ y = z.

Lemma 1. The following identities hold

y ⊘(y ⊗ x) = x, (x⊗ y)⊘ y = x,

y ⊗ (y ⊘x) = x, (x⊘ y)⊗ y = x.
6 restricted to quasigroups isotopic to commutative groups
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Lemma 2. If (G,⊗) is a group then x ⊘z = x−1 ⊗ z and z ⊘ y = z ⊗ y−1.

Definition 3. Let (G,⊗), (H, ⋆) be two quasigroups. An ordered triple of bijec-
tions π, ρ, ω of a set G onto the set H is called an isotopy of (G,⊗) to (H, ⋆) if
for any x, y ∈ G π(x) ⋆ ρ(y) = ω(x⊗ y). If such an isotopy exists, then (G,⊗),
(H, ⋆) are called isotopic.

A popular method for constructing quasigroups [12, 13, 15, 23] is the fol-
lowing. Choose a group (G, ⋆) (e.g. (Z2n ,⊕) or (Z2n ,+)) and three arbitrary
permutations π, ρ, ω : G → G. Then, define the quasigroup operation as x⊗ y =
ω−1(π(x) ⋆ ρ(y)). To see why this leads to a quasigroup, we note that x, y and z
are mapped uniquely to π(x), ρ(y) and ω(z), and thus any equation of the form
π(x) ⋆ ρ(y) = ω(z) is in fact uniquely resolved in the base group G given any of
π(x), ρ(y) and ω(z).

Example 1. Let (G, ⋆) = (Z4,⊕), ω−1 = {2, 1, 0, 3}, π = {2, 1, 3, 0} and ρ =
{2, 0, 3, 1}. The corresponding quasigroup operations for (Z4,⊗) can be found in
Table 1. [21]

⊗ 0 1 2 3

0 2 0 1 3

1 3 1 0 2

2 1 3 2 0

3 0 2 3 1

⊘0 1 2 3

0 1 2 0 3

1 2 1 3 0

2 3 0 2 1

3 0 3 1 2

⊘ 0 1 2 3

0 3 0 1 2

1 2 1 0 3

2 0 3 2 1

3 1 2 3 0

Table 1: Quasigroup operations.

Example 2. Let (G, ⋆) = (Zn,−). Then G is isotopic with (Zn,+), where ω, π =
Id and ρ(i) = n− i mod n. [23]

2.2 Quasigroup Differential Cryptanalysis

The notion of differential cryptanalysis was first introduced in [2] for analyz-
ing the Data Encryption Standard block cipher. Since the key mixing layer was
simply bitwise addition modulo 2 between the key and the (intermediary) plain-
text, differential attacks where defined only for (Z2n ,⊕). Later on, the concept
was extended to commutative groups [17], non-commutative groups [21] and
quasigroups [20, 21]. We further present the notions of quasigroup differential
probabilities for a permutation. Note that when the quasigroup is replaced with
a (non-)commutative group the notions are in accordance with [17, 21]. Also,
in the case of groups the KDP notions coincide with the corresponding DP
probability (i.e. are key independent).

Definition 4. Let G be a set equipped with a binary operation • : G×G → G.
The difference between two elements X,X ′ ∈ (G, •) is defined as ∆•(X,X ′) =
X •X ′.
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Definition 5. Let K be a key, (G,⊗) a quasigroup and • ∈ { ⊘,⊘}. We define
the quasigroup differential probabilities

DP•(σ, α, β) =
1

|G|
∑

X,X′∈G
∆•(X,X′)=α

[∆•(σ(X), σ(X ′)) = β],

KDP ⊘(σ, α, β,K) =
1

|G|
∑

X,X′∈G
∆ ⊘(X,X′)=α

[∆ ⊘(σ(K ⊗X), σ(K ⊗X ′)) = β],

KDP⊘(σ, α, β,K) =
1

|G|
∑

X,X′∈G
∆⊘(X,X′)=α

[∆⊘(σ(X ⊗K), σ(X ′ ⊗K)) = β],

where σ : G → G is a permutation and α, β ∈ G.

2.3 Quasigroup Substitution Permutation Network

Let n be a positive integer and (G,⊗) a quasigroup. An SPN is an iterated
structure that processes a plaintext for r rounds. Each round consist of a key
mixing operation, a substitution layer and a permutation layer. Also, the SPN
has a final round that consists only of a key mixing operation. Note that for each
round i the key schedule algorithm derives the subkey ki from the initial key.
We refer the reader to Figure 1 for some SPN examples that have three rounds.7

To exemplify the different types of possible generalisations of the SPN struc-
ture we will use Figure 1 as a reference. Let pi = p̃1i ∥ . . . ∥p̃8i = p̂1i ∥ . . . ∥p̂4i and
ki = k̃1i ∥ . . . ∥k̃8i = k̂1i ∥ . . . ∥k̂8i be the intermediary plaintext and the subkey for
round i ∈ {1, 2, 3}.

In Figure 1a we have an example of an element wise key mixing layer p̃1i ⊗
k̃1i ∥ . . . ∥p̃8i ⊗ k̃8i (right quasigroup operation8) and a permutation layer that is
linear with respect to ⊗. Therefore, is sufficient to study the differential prop-
erties of the s-box with respect to x⊗̄y = x1 ⊗ y1∥x2 ⊗ y2, where x = x1∥x2 and
y = y1∥y2. This variant was studied in [21].

In Figure 1b we have an example of an element wise key mixing layer p̂1i ⊗
k̂1i ∥ . . . ∥p̂4i ⊗ k̂4i (right quasigroup operation) and a permutation layer that is
non-linear with respect to ⊗. This is the version that we further study in our
paper.

The last version is presented in Figure 1c and represents an example of a
global key mixing layer pi⊗ki (right quasigroup operation). Here the permutation
layer is inherently non-linear with respect to ⊗. This type of SPN was studied
in [20].

7 Figure 1 is based on the TikZ found in [9].
8 left quasigroup operation: k̃1

i ⊗ p̃1i ∥ . . . ∥k̃8
i ⊗ p̃8i
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Fig. 1: Variations of the SPN structure

3 Security Analysis

We further assume that the permutation layer P is non-linear with respect to ⊗.
Since P shuffles b-bit blocks of data we further assume, without loss of generality,
that it is linear with respect to addition modulo 2b, further denoted by ⊙. In
the worse case, the permutation shuffles bits, and thus is linear with respect
to ⊕. Note that since P shuffles blocks composed of bits that means that the
quasigroup operation ⊗ must be isotopic to addition modulo some 2b

′ , for some
b′ > b.9 We also assume, without loss of generality, that b′ is a multiple of b.10

In the worse case, we take b = 1 and this condition is fulfilled. To simplify
our exposition we use the multiplicative notation for the inverse of an element
modulo 2b.

Since the permutation layer is ⊙-linear, we have to study the following dif-
ferential properties

LKDP⊙,⊗(σ, α, β,K) =
1

|G|
∑

X,X′∈G
X⊙X′−1=α

[σ(K ⊗X)⊙ σ(K ⊗X ′)−1 = β],

RKDP⊙,⊗(σ, α, β,K) =
1

|G|
∑

X,X′∈G
X⊙X′−1=α

[σ(X ⊗K)⊙ σ(X ′ ⊗K)−1 = β],

where σ : G → G is a permutation and α, β ∈ G.

9 This condition is implied by the fact that the permutation is not linear.
10 This condition implies that the sets G = Z2b

′ and (Z2b)
b′/b are isomorphic.
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Lemma 3. Let σ′ = σ ◦ ω−1. We define x ∗ y = π(x) ⋆ ρ(y). Then the following
identities hold

LKDP⊙,⊗(σ, α, β,K) = LKDP⊙,∗(σ
′, α, β,K),

RKDP⊙,⊗(σ, α, β,K) = RKDP⊙,∗(σ
′, α, β,K).

Proof. First we rewrite

β = σ(K ⊗X)⊙ σ(K ⊗X ′)−1

= σ(ω−1(π(K) ⋆ ρ(X)))⊙ σ(ω−1(π(K) ⋆ ρ(X ′)))−1

= σ′(π(K) ⋆ ρ(X))⊙ σ′(π(K) ⋆ ρ(X ′))−1

= σ′(K ∗X)⊙ σ′(K ∗X ′)−1.

Then we obtain

LKDP⊙,⊗(σ, α, β,K) =
1

|G|
∑

X,X′∈G
X⊙X′−1=α

[σ(K ⊗X)⊙ σ(K ⊗X ′)−1 = β]

=
1

|G|
∑

X,X′∈G
X⊙X′−1=α

[σ′(K ∗X)⊙ σ′(K ∗X ′)−1 = β]

= LKDP⊙,∗(σ
′, α, β,K).

Similarly, we obtain RKDP⊙,⊗(σ, α, β,K) = RKDP⊙,∗(σ
′, α, β,K). ⊓⊔

Lemma 3 tells us that it is irrelevant from a differential point of view if we
define the quasigroup operation with ω ̸= Id or ω = Id. Thus, we further restrict
our study to the quasigroup operation x⊗ y = π(x) ⋆ ρ(y).

A closer analysis of LKDP and RKDP shows some interesting properties.
These are presented in the following lemma.

Lemma 4. The following equalities hold

LKDP⊙,⊗(σ, α, β,K) = LKDP⊙,⊗(Id, α, γ,K) ·DP⊙(σ, γ, β),

RKDP⊙,⊗(σ, α, β,K) = RKDP⊙,⊗(Id, α, γ,K) ·DP⊙(σ, γ, β).

Proof. We only prove the lemma for LKDP , since the proof for RKPD is
similar. Therefore, we have

LKDP⊙,⊗(σ, α, β,K) =
1

|G|
∑

X,X′∈G
X⊙X′−1=α

[σ(K ⊗X)⊙ σ(K ⊗X ′)−1 = β]

=
1

|G|2
∑

X,X′∈G
X⊙X′−1=α

∑
Y,Y ′−1∈G
Y⊙Y ′−1=γ

[(K ⊗X)⊙ (K ⊗X ′)−1 = γ]
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· [σ(Y )⊙ σ(Y ′)−1 = β]

=

{
1

|G|
∑

X,X′∈G
X⊙X′−1=α

[(K ⊗X)⊙ (K ⊗X ′)−1 = γ]

}

·
{

1

|G|
∑

Y,Y ′∈G
Y⊙Y ′−1=γ

[σ(Y )⊙ σ(Y ′)−1 = β]

}

= LKDP⊙,⊗(Id, α, γ,K) ·DP⊙(σ, γ, β),

as desired. ⊓⊔

Looking more closely at Lemma 4 we can observe that DP⊙(σ, γ, β) is inde-
pendent of ⊗. Hence, the only components that need to be studied further are
LKDP⊙,⊗(Id, α, γ,K) and RKDP⊙,⊗(Id, α, γ,K). Using a similar argument as
in Lemma 4 we can further breakdown the two differential probabilities.

Lemma 5. We define x∗1 y = π(x)⋆y and x∗2 y = x⋆ρ(y). Then the following
identities hold

LKDP⊙,⊗(Id, α, γ,K) = DP⊙(ρ, α, δ) · LKDP⊙,∗1
(Id, δ, γ,K),

RKDP⊙,⊗(Id, α, γ,K) = DP⊙(ρ, α, δ) ·RKDP⊙,∗2
(Id, δ, γ,K).

Proof. For LKDP the following relations hold

LKDP⊙,⊗(Id, α, γ,K) =
1

|G|
∑

X,X′∈G
X⊙X′−1=α

[(K ⊗X)⊙ (K ⊗X ′)−1 = γ]

=
1

|G|2
∑

X,X′∈G
X⊙X′−1=α

∑
Y,Y ′−1∈G
Y⊙Y ′−1=δ

[ρ(X)⊙ ρ(X ′)−1 = δ]

· [(π(K) ⋆ Y )⊙ (π(K) ⋆ Y ′)−1 = γ]

=

{
1

|G|
∑

X,X′∈G
X⊙X′−1=α

[ρ(X)⊙ ρ(X ′)−1 = δ]

}

·
{

1

|G|
∑

Y,Y ′∈G
Y⊙Y ′−1=δ

[(K ∗1 Y )⊙ (K ∗1 Y ′)−1 = γ]

}

= DP⊙(ρ, α, δ) · LKDP⊙,∗1
(Id, δ, γ,K).

Similarly, we obtain the result for RKDP . ⊓⊔

Corollary 1. The following properties are true

LKDP⊙,⊗(σ, α, β,K) = DP⊙(ρ, α, δ) · LKDP⊙,∗1
(Id, δ, γ,K) ·DP⊙(σ, γ, β),

RKDP⊙,⊗(σ, α, β,K) = DP⊙(ρ, α, δ) ·RKDP⊙,∗2
(Id, δ, γ,K) ·DP⊙(σ, γ, β).
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The following corollary tell us that if P is linear with respect to ⋆ then LKDP
and RKDP are key independent.

Corollary 2. If ⋆ = ⊙, then following properties are true

LKDP⊙,⊗(σ, α, β,K) = RKDP⊙,⊗(σ, α, β,K) = DP⊙(ρ, α, δ) ·DP⊙(σ, δ, β).

Proof. Let X ⊙X ′ = δ. Then

γ = (K ∗1 X)⊙ (K ∗1 X ′)−1

= π(K)⊙X ⊙ π(K)−1 ⊙X ′−1

= X ⊙X ′−1

= δ,

and thus LKDP⊙,∗1
(Id, δ, γ,K) = 1 if and only if γ = δ. Similarly, we have

RKDP⊙,∗2
(Id, δ, γ,K) = 1 if and only if γ = δ. Therefore, we obtain the desired

results. ⊓⊔

According to Corollary 2 the notions of LKDP and RKDP coincide if ⋆ = ⊙.
A consequence of this is the following result from [20]. Note that our proof is
different from the one given in the original paper.

Corollary 3. The left and right quasigroup SPNs derived from a commutative
group SPN using an isotopy are equivalent from a differential point of view.

Corollary 4. Let σ′ = σ ◦ ρ. If ⋆ = ⊙, then following equalities hold

LKDP⊙,⊗(σ, α, β,K) = RKDP⊙,⊗(σ, α, β,K) = DP⊙(σ, α, β).

Proof. From Corollary 2 we know that

LKDP⊙,⊗(σ, α, β,K) = DP⊙(ρ, α, δ) ·DP⊙(σ, δ, β).

Rewriting the right hand side RHS term of the equality we obtain

RHS =

{
1

|G|
∑

X,X′∈G
X⊙X′−1=α

[ρ(X)⊙ ρ(X ′)−1 = δ]

}

·
{

1

|G|
∑

Y,Y ′∈G
Y⊙Y ′−1=δ

[σ(Y )⊙ σ(Y ′)−1 = β]

}

=
1

|G|2
∑

X,X′∈G
X⊙X′−1=α

∑
ρ(X),ρ(X′)∈G

ρ(X)⊙ρ(X′)−1=δ

[σ(ρ(X))⊙ σ(ρ(X ′))−1 = β]

· [ρ(X)⊙ ρ(X ′)−1 = δ]

=
1

|G|
∑

X,X′∈G
X⊙X′−1=α

[σ′(X)⊙ σ(X ′)−1 = β],
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which leads to

LKDP⊙,⊗(σ, α, β,K) = DP⊙(σ
′, α, β),

as desired. ⊓⊔

When ⊗ = ⊙, Corollary 4 tells us that is irrelevant from a differential point
of view if we replace the group operation with a quasigroup one isotopic to a
commutative group operation. Therefore, using different techniques we arrive at
the main result from [21].

Corollary 5. A quasigroup SPN derived from a commutative group SPN using
an isotopy has the same differential security as the same group SPN instantiated
with a different s-box.

Remark that in LKDP⊙,∗1
and RKDP⊙,∗2

we apply a permutation to the
key K. Since K and, for example, π are generated as a pair, it suffices from a
differential point of view to simply consider K ′ = π(K) as being the key that we
want to recover. This is possible, since our final scope is to recover the plaintexts
and not the initial key used by the block cipher. As a consequence, it suffices to
study LKDP⊙,⋆ and RKDP⊙,⋆. Therefore, we can rewrite the results presented
in Corollary 1 as follows

LKDP⊙,⊗(σ, α, β,K) = DP⊙(ρ, α, δ) · LKDP⊙,⋆(Id, δ, γ,K
′) ·DP⊙(σ, γ, β),

RKDP⊙,⊗(σ, α, β,K) = DP⊙(ρ, α, δ) ·RKDP⊙,⋆(Id, δ, γ,K
′) ·DP⊙(σ, γ, β).

Using the results obtained so far the SPN construction shown in Figure 1b
is equivalent with the symmetric structure presented in Figure 2. To summarise
all the lemmas and observations we provide the reader with Proposition 1.

Proposition 1. Let (G,⊗) be a quasigroup isotopic with a group (G, ⋆). Then, in
the case of SPNs that use element wise key mixing based on ⊗ and a permutation
that is non-linear relative to ⊗, the equivalent structure11 is composed of

a. r− 1 rounds consisting of a substitution layer, a key mixing operation based
on ⋆, a substitution layer and a permutation layer,

b. a final round consisting only of a substitution layer and a key mixing oper-
ation based on ⋆.

The last thing we will prove is that it does not matter if we use the left
or right differential probability. As a consequence, the left and right versions of
structure presented in Figure 2 are equivalent from a differential point of view.

Lemma 6. Let i(x) = x−1, where the inverse is with respect to ⋆. Then

LKDP⊙,⋆(Id, δ, γ,K) = RKDP⊙,⋆(i, δ, γ, i(K)),

RKDP⊙,⋆(Id, δ, γ,K) = LKDP⊙,⋆(i, δ, γ, i(K)).

11 from a differential point of view



11

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

ρ

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

S

S

S

S

S

S

S

S

k1

k2

k3

k1

k2

k3

Fig. 2: Equivalent symmetric structure

Proof. Let Z = i(Y ), Z ′ = i(Y ′) and K ′ = i(K). Then we have

LKDP⊙,⋆(Id, δ, γ,K) =
1

|G|
∑

Y,Y ′∈G
Y⊙Y ′−1=δ

[(K ⋆ Y )⊙ (K ⋆ Y ′)−1 = γ]

=
1

|G|
∑

Y,Y ′∈G
Y⊙Y ′−1=δ

[i(i(Y ) ⋆ i(K))⊙ (i(i(Y ′) ⋆ i(K)))−1 = γ]

=
1

|G|
∑

Z,Z′∈G
Z⊙Z′−1=δ

[i(Z ⋆ K ′)⊙ (i(Z ′ ⋆ K ′))−1 = γ]

= RKDP⊙,⋆(i, δ, γ,K
′),

as desired. ⊓⊔

Corollary 6. Let i(x) = x−1, where the inverse is with respect to ⋆. Then

LKDP⊙,⊗(σ, α, β,K) = DP⊙(ρ, α, δ) ·RKDP⊙,⋆(i, δ, γ, i(K)) ·DP⊙(σ, γ, β),

RKDP⊙,⊗(σ, α, β,K) = DP⊙(ρ, α, δ) · LKDP⊙,⋆(i, δ, γ, i(K)) ·DP⊙(σ, γ, β).

Lemma 7. Let i(x) = x−1, where the inverse is with respect to ⋆. Then

LKDP⊙,⋆(i, δ, γ,K) = LKDP⊙,⋆(Id, δ, η,K) ·DP⊙(i, η, γ),

RKDP⊙,⋆(i, δ, γ,K) = RKDP⊙,⋆(Id, δ, η,K) ·DP⊙(i, η, γ).
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Proof. For the left version, we have

LKDP⊙,⋆(i, δ, γ,K) =
1

|G|
∑

X,X′∈G
X⊙X′−1=δ

[i(K ⋆X)⊙ i(K ⋆X ′)−1 = γ]

=
1

|G|2
∑

X,X′∈G
X⊙X′−1=δ

∑
Y,Y ′−1∈G
Y⊙Y ′−1=η

[(K ⋆X)⊙ (K ⋆X ′)−1 = η]

· [i(Y )⊙ i(Y ′)−1 = γ]

=

{
1

|G|
∑

X,X′∈G
X⊙X′−1=δ

[(K ⋆X)⊙ (K ⋆X ′)−1 = η]

}

·
{

1

|G|
∑

Y,Y ′∈G
Y⊙Y ′−1=η

[i(Y )⊙ i(Y ′)−1 = γ]

}

= LKDP⊙,⋆(Id, δ, η,K) ·DP⊙(i, η, γ),

as desired. Similarly, we obtain the relation for the right version. ⊓⊔

Lemma 8. Let i(x) = x−1, where the inverse is with respect to ⋆. Also, let
σ′ = i ◦ σ. Then

DP⊙(i, η, γ) ·DP⊙(σ, γ, β) = DP⊙(σ
′, η, β),

DP⊙(i, η, γ) ·DP⊙(σ, γ, β) = DP⊙(σ
′, η, β).

Proof. For the first relation we have

LHS =

{
1

|G|
∑

X,X′∈G
X⊙X′−1=η

[i(X)⊙ (i(X ′))−1 = γ]

}

·
{

1

|G|
∑

Y,Y ′∈G
Y⊙Y ′−1=γ

[σ(Y )⊙ σ(Y ′)−1 = β]

}

=
1

|G|2
∑

X,X′∈G
X⊙X′−1=η

∑
i(X),i(X′)∈G

i(X)⊙i(X′)−1=γ

[σ(i(X))⊙ σ(i(X ′))−1 = β]

· [i(X)⊙ i(X ′)−1 = γ]

=
1

|G|
∑

X,X′∈G
X⊙X′−1=η

[σ′(X)⊙ σ′(X ′)−1 = β],

as desired. The second relation is proven similarly. ⊓⊔
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Corollary 7. Let i(x) = x−1, where the inverse is with respect to ⋆. Also, let
σ′ = i ◦ σ. Then

LKDP⊙,⊗(σ, α, β,K) = DP⊙(ρ, α, δ) ·RKDP⊙,⋆(Id, δ, γ, i(K)) ·DP⊙(σ
′, γ, β),

RKDP⊙,⊗(σ, α, β,K) = DP⊙(ρ, α, δ) · LKDP⊙,⋆(Id, δ, γ, i(K)) ·DP⊙(σ
′, η, β).

Proof. We only prove the corollary for the first equality. Using Corollary 6 and
Lemmas 6 and 7 we obtain

LHS = DP⊙(ρ, α, δ) ·RKDP⊙,⋆(i, δ, γ, i(K)) ·DP⊙(σ, γ, β)

= DP⊙(ρ, α, δ) ·RKDP⊙,⋆(Id, δ, η, i(K)) ·DP⊙(i, η, γ) ·DP⊙(σ, γ, β)

= DP⊙(ρ, α, δ) ·RKDP⊙,⋆(Id, δ, η, i(K)) ·DP⊙(σ
′, η, β).

Hence, we obtain the equality. ⊓⊔

4 Conclusions

In this paper we filled a gap found in the literature. Namely, the study of SPN
structures that use a quasigroup operation to mix keys and plaintexts, and a per-
mutation layer that is non-linear relative to the quasigroup operation. Therefore,
we studied the effect of quasigroups isotopic to groups in the design of these SPN
structures. We managed to link their security to another symmetric structure
that has an extra substitution layer before key mixing takes place. Also, in the
case of the equivalent structure, the key and the plaintext are combined using
the initial group operation. Note that, to our knowledge, the resulting structure
is novel, and thus can lead to a new designs of secure block ciphers.
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