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Abstract. Differential cryptanalysis is a block cipher analysis technology
that infers a key by using the difference characteristics. Input differences
can be distinguished using a good difference characteristic, and this
distinguishing task can lead to key recovery. Artificial neural networks are
a good solution for distinguishing tasks. For this reason, recently, neural
distinguishers have been actively studied. We propose a distinguisher
based on a quantum-classical hybrid neural network by utilizing the
recently developed quantum neural network. To our knowledge, we are the
first attempt to apply quantum neural networks for neural distinguisher.
The target ciphers are simplified ciphers (S-DES, S-AES, S-PRESENT-[4]),
and a quantum neural distinguisher that classifies the input difference
from random data was constructed using the Pennylane library. Finally,
we obtained quantum advantages in this work: improved accuracy and
reduced number of parameters. Therefore, our work can be used as a
quantum neural distinguisher with high reliability for simplified ciphers.

Keywords: Quantum Neural Network · Simplified Block Ciphers · Dis-
tinguisher.

1 Introduction

Differential cryptanalysis is one of cryptanalysis for block ciphers. It
is a technique for inferring a key by analyzing the output difference
according to the input difference when the cryptographic algorithm is
designed to be weak. Block ciphers are designed to prevent differential
attacks using wide-trail design strategies [9] and Shannon’s principles [22].
Therefore, the method of analyzing the differential trail requires a large
number of data, which causes a bottleneck, which makes the differential
trail analysis fail. If, in order to distinguish the r-round data of the n-
bit block cipher from random data, a difference characteristic having
a probability greater than 1 ÷ 2n is required. That is, the probability



of the output difference with respect to the input difference must be
greater than the random probability (1÷ 2n) [26]. Otherwise, we cannot
succeed in differential cryptanalysis. If the good difference characteristic
is used, the input difference can be distinguished, and when the difference
characteristic is not satisfied, the random data and the ciphertext data are
not distinguished. Distinguishing differential data can lead to key recovery
attacks [18]. For this distinguishing task, artificial neural networks can be
a good solution. An artificial neural network-based distinguisher is called
a neural distinguisher, and related works have been conducted.

In addition, as quantum computers have been developed in recent
years, quantum neural network utilizing quantum computer is attracting
attention. Quantum neural networks replaces the training process of
classical neural networks with quantum circuits. In other words, the
quantum circuit acts as a neural network. Simply, we use the rotation
gate of a quantum circuit to update the output value of the circuit by
changing the state of the qubit. This is similar to the traning process in
which classical neural networks reduce losses while updating weights of
network. Quantum neural networks have the advantage of being able to
achieve fewer parameters and higher performance compared to classical
neural networks. However, since current quantum computers are noisy
intermediate-scale quantum computers, it is difficult to correct errors
in qubits. Therefore, a hybrid neural network that combines a classical
neural network and a quantum neural network is now stable in terms of
performance.

1.1 Our Contribution

In this work, we designed a quantum neural network-based distinguisher
and compared it with existing classical neural distinguisher approaches.
The contribution of this paper can be summarised as follows:

1. First attempt on Quantum Neural Distinguisher based on
Quantum-classical Hybrid Neural Network As far as we know,
this work is the first attempt for a distinguisher using a quantum
neural network. We targeted the simplified block ciphers S-DES, S-AES,
and S-PRESENT-[4], and achieved accuracies of 98%, 99%, and 94%,
respectively. Therefore, our work can be successfully used as a quantum
neural distinguisher with high confidence.

2. Quantum Advantage We obtained quantum advantages in terms
of accuracy and the number of parameters by applying a quantum
neural network to the distinguisher. In 2-round S-DES, we achieved 2%
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higher test accuracy and reduced the number of parameters by 29%. In
2-round S-AES, we got 1% higher accuracy and reduced the number of
parameters by 29%. Finally, in 3-round S-PRESENT-[4], we achieved
7% higher accuracy and reduced parameters by 32%. As can be seen
from these results, the largest quantum benefit was obtained in the
most complex data, 3-round S-PRESENT-[4]. In summary, in this work,
we designed a quantum neural distinguisher with quantum advantages
over classical neural networks by utilizing a quantum neural network
that can represent more sophisticated and wide range of data.

2 Background

2.1 Classical Neural Networks
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Fig. 1: Training process of artificial neural network.

Artificial neural networks [15] are supervised learning algorithms. As
shown in Figure 1, a neural network is constructed in the form of stacked
layers of multiple nodes, and multiple layers that exist between the input
layer and the output layer are called hidden layers. Neurons (nodes) of
each layer is multiplied by weights and the values of neurons in the
previous layer connected to them, and then they are added [1]. The
calculated values are input to the non-linear activation function, then
the values are determined as the value of the current node. All nodes
of the corresponding layer are input to the next layer and are used to
calculate the values of the nodes. After performing this process in all
layers, the final value of the network is output. The output is input to the
loss function along with the label (the correct answer of the actual data).
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A loss is then calculated that represents the difference between the label
and the predicted value. In order to minimize the loss, the weights of the
neural network are updated, and the neural network is trained to make
a correct prediction. Artificial neural networks can solve classification
and regression problems. Classifying into two classes is called binary
classification, and classifying into multiple classes is multiple classification.
In addition, for this task, various structures of neural network can be used.
There are Multi Layer Perceptron (MLP) with the most basic structure,
Convolutional Neural Network (CNN) [2] effective for image processing,
Recurrent Neural Network (RNN) [25] suitable for processing time series
data, and Generative Adversarial Network (GAN) [14] etc.

2.2 Quantum Neural Networks

Quantum Circuit Quantum circuits are constructed through bits and
gates like classical logic circuits. However, instead of the classic bits
and gates, quantum circuit use qubits and quantum gates that have the
superposition and entanglement principles of quantum mechanics, and it
works in quantum computers. A qubit is like a classical bit, but through
superposition states, values exist as probabilities and are determined to be
a single value after observation. In addition, since qubit can represent any
value in the bloch sphere, it can represent a richer range of values than
classical bits. In addition, multiple physical qubits are required for one
logical qubit (without error), and error correction techniques are required.
However, current quantum computers don’t have enough resources and
techniques to correct errors.

There are several types of gates used in quantum circuits [10], and the
state of a qubit can be changed by applying quantum gates. Figure 2 shows
some of the quantum gates. The hadamard (H) gate make superposition
so that qubits can have both 0 and 1 states at the same time. Also, when
the same qubit passes through the hadamard gate again, it is restored to
its original state. The X gate changes the state of the qubit (e.g. from 0 to
1), and it changes the probability in the superposition state. The CNOT
gate uses the first qubit as the control qubit. When the control qubit is 1,
the NOT operation is applied to the second qubit. Here, entanglement for
two qubits is used. Next, there are Rx, Ry, and Rz rotation gates that
rotate the qubits about the x, y, and z axes. These gates rotate the qubit
by the rotation angle based on a specific axis.

Quantum circuits can be constructed by applying these quantum gates
to qubits. At this time, an efficient circuit design is required considering
the depth (length of the circuit) and width (the number of qubits) of
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Fig. 2: Quantum gates.

the circuit. Quantum circuits can be implemented using the quantum
language QASM and host languages such as Python and JavaScript in
various quantum computing frameworks [12] such as Qiskit, ProjectQ,
and Cirq.

Quantum Neural Network A quantum neural network [20] is an
artificial intelligence that utilizes quantum mechanics phenomenon (en-
tanglement and superposition). Figure 3 shows the training process of
quantum neural network. A quantum neural network consists of qubits
and quantum gates on a quantum computer. Therefore, it learns quantum
state data by encoding the classical data into quantum data. There are
several types of encoding. For angle embedding, n input data are used
as rotation angles of the rotation gate for n qubits. For amplitude em-
bedding, 2n input data are converted into amplitude vectors of n qubits.
After embedding, the quantum circuit is executed. In quantum circuit, the
parameter for training is the rotation angle of the rotating gate. At this
time, each qubit state is changed as it passes through the quantum gate.
A quantum circuit with trainable parameters is called a parameterized
quantum circuit. Finally, when a qubit is measured, the state of the qubit
is determined to be a classical value. The loss is calculated based on
that value and the rotation angles of the quantum gate are changed. The
parameterized quantum circuit is trained by re-executing the quantum
circuit to which the changed parameter is applied and repeating this
process.

Quantum neural networks require fewer parameters and fewer training
data than classical neural networks. It also has the advantage of being able
to perform better than classical neural networks. However, with current
quantum computers, it is difficult to use many qubits [5]. Therefore, the
quantum-classical hybrid neural network [7,11] combined with the classical
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Fig. 3: Training process of quantum neural network.

neural network is now widely used. In quantum-classical hybrid neural
network, a parameterized quantum circuit is used as one of the layers
of a classical neural network. Therefore, elements such as loss functions,
optimization functions, metrics, and epochs are used the same as in
classical neural networks. Currently, hybrid neural networks have the
advantage of being more stable and able to obtain higher accuracy than
using only quantum circuits.

2.3 Differential Cryptanalysis

Differential cryptanalysis [16] is a representative cryptanalysis method of
block ciphers. The input difference (δ) is the XOR between the plaintext
pairs (P0, P1), and the output difference (∆) is the XOR between the
ciphertext pairs. That is, as in Equation 1, if the delta is XORed to the
random plaintext, it is calculated as P1. Also, the results of encrypting
(E) P0 and P1 are C0 and C1, respectively. Finally, by XORing C0 and
C1, the output difference (∆) can be calculated. A pair of input and
output differences ((δ,∆)) is called differential. If encrypted data can
be distinguished from random using the difference characteristic, data
complexity is significantly lower than that of exhaustive search. In the
case of an ideal encryption algorithm, when plaintext with any input
difference is encrypted, the output difference should be uniform. Conversely,
a weak cipher has a certain output difference. If there is a difference
characteristic in which the value of the output difference with respect to
the input difference is greater than the random distribution probability,
the random distribution and the ciphertext can be distinguished from
uniform distribution. In this case, the encryption algorithm is considered
weak.

P1 = P0 ⊕ δ,
C0 = E(P0), C1 = E(P1),
∆ = C0 ⊕ C1

(1)
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2.4 Neural Network based Distinguisher for Differential
Cryptanalysis

At CRYPTO 2019, Gohr [13] proposed a first deep learning-based neural
distinguisher for round-reduced SPECK. They used a deep learning-based
classifier to distinguish random data from input difference, and reduced
data complexity for key recovery attacks compared to classical distin-
guisher. The accuracy of the neural network distinguisher for 8 round
SPECK is about 0.514, and since we obtained an accuracy of 0.5 or more,
we can classify cipher data from random data. After Gohr’s work, in
[17], differential cryptanalysis for SIMON was performed using the deep
learning-based neural distinguisher. In [13], one ciphertext pair (two ci-
phertexts) was used as input data, whereas k (k > 1) ciphertext pairs
were used as input data in [8]. That is, k ciphertext pairs are input to
the neural distinguisher and classified. Their target ciphers are SPECK,
CHASKEY, PRESENT, and DES. The experiment was conducted according
to the k, and accuracy of 0.5 or more was obtained in all cases. In [6],
they conducted experiments on multiple input differentials in 5 round
SPECK. It was analyzed that there are difference characteristics with a
higher probability than 0x00400000, which is the input difference of the
5 round SPECK used in Gohr’s work. They experimented with the top
25 input differences. In most cases, an accuracy of 75% or better was
achieved, and for 0x28000010, an accuracy of 90% or more was achieved.
In [4], the target ciphers are GIMLI, ASCON, KNOT, and CHASKEY, and two
models were proposed considering multiple input differences and single
difference. The neural distinguisher for multiple input differences performs
multi classification by setting each input difference as a class, and the
neural distinguisher for single input difference performs binary classifica-
tion on random data and ciphertext data. Baksi et al. experimented using
MLP, CNN, and LSTM (Long Short Term Memory) for GIMLI-CIPHER.
In this task, MLP performed the best, and CNN could not achieve an
accuracy higher than 0.5. Therefore, in their work, the MLP model was
used for other ciphers. However, the existing deep learning-based neural
distinguisher has limitations in round expansion due to memory lack and
data complexity. To overcome this, a new approach combining classical
distinguisher and neural distinguisher has been proposed in [26]. Input the
input difference to the classical distinguisher to find the output difference
for r rounds. Then, the distinguisher for the extended round was proposed
using the output difference of the r round as the input difference of the
neural distinguisher. As such, research on various ciphers, input differences,
neural network structures, etc. is being actively conducted using neural
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distinguisher, and current studies are the result of round reduced ciphers,
not full rounds.

2.5 Quantum Neural Networks based Quantum Cryptanalysis

On the other hand, machine learning and deep learning are recently applied
to classical cryptanalysis. Cryptanalysis using quantum neural networks
has only one case [21]. They performed a known-plaintext attack on the
caesar cipher. They used a quantum support vector machine(QSVM) [19]
and could attack up to a 3-bit key due to the lack of resources such as
qubits. As a result of the experiment, 100% accuracy was achieved when
the shot was 5 for the 2-bit key, and 84% accuracy was achieved when the
shot was 150 for the 3-bit key. In addition, when the attack on the 2-bit
key was performed using a real quantum processor, there was a loss of
accuracy of 7%. In addition, a real quantum computer requires about 5.5
times longer learning time than a simulator. Therefore, cryptanalysis using
only quantum computers still has limitations due to a lack of resources.

2.6 Simplified Block Ciphers

S-DES S-DES [24] is a reduced version of the DES algorithm, and has an
8-bit block size and a 10-bit key size. In key scheduling, two 8-bit sub-keys
are generated by permutation and shift operations on a 10-bit key.

The encryption procedure can be summarized as C = E(P,K) =
IP−1(ρ2(ρ1(IP (P ))). S-DES consists of initial permutation (IP ), Cipher
function f (expansion, key addition, substitution and permutation), and
swap operations. Before the 1-round, the plaintext that has been subjected
to initial permutation is divided into L0 and R0 (They are plaintext to
be encrypted). The round function(ρ) is performed twice in total and is
calculated as follows Li = Ri−1, Ri = Li−1 ⊕ f(Ri−1,Ki).

S-AES S-AES [23] is composed of nibbles substitution(NS), shift rows(SR),
mixcolumns(MC), and key addition(AK). The S-AES key expansion and
encryption algorithms are all based on an S-box (94ABD1856203CEF7) that
depends on a finite field with 16 elements. This cipher has a 16-bit key,
operates on 16-bit plaintext, and goes through 2 rounds to generate 16-bit
ciphertext. The encryption algorithm consists of 8 functions (AK2 ◦ SR ◦
NS ◦AK1 ◦MC ◦ SR ◦NS ◦AK0) for 2 round, and AK0 is applied first.
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S-PRESENT-[4] S-PRESENT-[4] [3], the small scale variant of the lightweight
block cipher PRESENT, is based on 80-bit key. It was designed by reducing
the block size to 4n-bits while maintaining the PRESENT structure. There-
fore S-PRESENT-[4] means block size of 16-bit. In other words, when n
is 16, it becomes a PRESENT with an 80-bit key and a 64-bit block size.
The algorithm is an substitution-permutation network (SPN) structure,
and each round consists of AddRoundKey, S-Box Layer (Substitution
layer), and P-Layer (Permutation layer). S-Box Layer is based on a single
4-bit S-box (C56B90AD3EF84712). The bit permutation function of P-Layer
follows Pi = [0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15].

3 Design of Quantum Neural Network for Distinguisher

In this paper, we present quantum neural distinguisher for differential
cryptanalysis on simplified block ciphers. We implemented neural distin-
guisher using quantum-classical hybrid neural network, and the target
ciphers are S-DES, S-AES and S-PRESENT-[4]. The purpose of quantum
neural distinguisher is distinguishing the ciphertext pair from random
pair for differential cryptanalysis. In other words, by utilizing the differ-
ence characteristic, an attacker can distinguish between random data and
differential data, thereby reducing data complexity.

Figure 4 shows the system diagram of quantum neural distinguisher.
First, plaintext pairs with a difference and random plaintext pairs are
encrypted. The generated data are input to the quantum-classical hybrid
neural network.The network then distinguishes the differential ciphertext
pair from the random pair.

3.1 Dataset

Input difference characteristic In this work, the target ciphers are
S-DES, S-AES, and S-PRESENT-[4]. S-DES has 8-bit plaintext and cipher-
text. And S-AES and S-PRESENT-[4] have 16-bit plaintext and ciphertext.
Therefore, the input differences is 8-bit for S-DES, 16-bit for S-AES and
S-PRESENT-[4]. These input differences are the first round input differ-
ence for each cipher. To generate dataset for this work, we used these
input differences. The input difference is equal to the length of the plain-
text because it is a value obtained by XORing the plaintext and another
plaintext.

• S-DES [24]: 0x04 (0000 0100)
• S-AES [23]: 0x8000 (1000 0000 0000 0000)
• S-PRESENT-[4] [3]: 0x0007 (0000 0000 0000 0111)
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1
(Cipher)

Quantum-classical hybrid NN

Input layer

Hidden layer

Output layer

Input data

Fig. 4: Diagram of proposed method.

Dataset preparation Algorithm 1 shows the process for preparing
dataset. First, we select random plaintext P0 and P1. The two plaintexts
are not in a relationship that satisfies the input difference, but are random
values. Next, P ′

0 is obtained by XORing the input difference (δ) to P0.
After generating three plaintexts in this way, all plaintexts are encrypted,
and these become C0, C1, and C ′

0, respectively. C0 and C1 are random
ciphertext pairs because they encrypt a random pair of plaintexts that are
not related to each other. In addition, C0 and C ′

0 are differential ciphertext
pairs obtained by encrypting plaintext pairs satisfying the input difference.
Thus, the random ciphertext pair is labeled class 0, and the differential
ciphertext pair is labeled class 1. In addition, if a total of Nds data is to
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Algorithm 1: Dataset preparation

Input: Input difference (δ), The number of data (Nds), Encryption function(Enc)
Output: Dataset (DS)
1: for i = 1 to Nds ÷ 2 do
2: Choose random P0, P1 (P1 ̸= P0 ⊕ δ)
3: P ′

0 = P0 ⊕ δ
4: C0 = Enc(P0)
5: C1 = Enc(P1)
6: C′

0 = Enc(P ′
0)

7: (C0||C1) is labeled class 0 (Random ciphertext pair)
8: (C0||C′

0) is labeled class 1 (Difference ciphertext pair)
9: DSi ← (C0||C1)
10: DSi+(Nds÷2) ← (C0||C′

0)
11: end for
12: return DS

be generated, a random ciphertext pair and a differential ciphertext pair
are equally generated in half.

3.2 Design of Quantum Neural Distinguisher

Training Algorithm 2 shows training process using quantum-classical
hybrid neural network, and Figure 5 shows the architecture of quantum-
classical hybrid neural network. The dataset (DS) generated in 3.1 is
used for training. The overall flow is the same as the existing neural
distinguisher [4]. The part that is different from the existing one is that the
quantum circuit is used for training. First, input data (ciphertext pairs and
random pairs) are input to the input layer. Since each input bit is assigned
to each neuron, the number of the neuron of input layer is set to twice the
block size. Then, the result obtained after passing through the input layer
is output to 64 neurons and then input to the hidden layer. We used a
quantum circuit as a hidden layer and optionally a classical hidden layer
(only for S-PRESENT). Therefore, 64 neurons, the outputs of the input
layer, are input to the quantum circuit used as the hidden layer after going
through the classical hidden layer (optional). Quantum circuits consist
of data embedding and quantum layer. We used amplitude embedding
(Qamp) as the data embedding layer. For amplitude embedding, 2Nqubit

features can be embedded using Nqubit qubits. Therefore, the quantum
circuit must be repeatedly executed as much as the number of neurons
in the hidden layer (NeuronH) divided by 2Nqubit . That is, data from the
previous layer is divided and allocated to quantum circuit having Nqubit

number of qubits. Since we used 4-qubits in our implementation, we input
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the 0th data (H0) to the 15th data (H15) into the first quantum circuit.
Then, the 16th data (H16) to the 31st data (H31) are input to the second
quantum circuit. This process is repeated 4 times to allocate all NeuronH

hidden neurons.

After performing this embedding process, the parameterized quantum
circuit for training is operated. In other words, implementing quantum
circuits with rotating gates (with parameters). We used a strongly entan-
gling layer as the quantum layer. In this quantum circuit, three quantum
rotation gates are applied to each qubit, and entanglement is set by a
certain rule. We will explain the details in 3.2.

After passing through a quantum neural network (layer), the output of
each quantum neural network is merged back into one. In other words, each
output vector of quantum circuit into one vector. By inputting this into
the output layer, we get the final output of the quantum neural network.
The loss is calculated using the final output value, and the parameters of
the entire neural network including the quantum circuit are updated to
minimize the loss. Finally, after the neural network is trained, we can get
accuracy. If the accuracy is less than 0.5, this quantum neural distinguisher
cannot distinguish ciphertext data from random data, so it is discarded.
Conversely, if the classification probability is greater than 0.5, our model
succeeds in distinguishing, so it can be used successfully as a quantum
neural distinguisher.

Before using the quantum neural distinguisher, the test data must be
generated in the same way as the training data. After preparing plaintext
pairs and random pairs that satisfy the input difference, input them into
the oracle to obtain ciphertext pairs. Then, the obtained ciphertext pairs
are input into a trained quantum neural distinguisher. If the algorithm
that generated the test data is an encryption algorithm, the distinguisher
will be able to distinguish the ciphertext data from random, otherwise it
will output an accuracy of 0.5 or less. That is, a well-trained quantum
neural network can be used as a distinguisher.

Amplitude Embedding Figure 6 shows the 4-qubits quantum circuit
for amplitude embedding. The amplitude embedding circuit consists of
RY (for rotation) and CNOT (for entanglements) gates. A rotation gate is
used, but it is different from the parameters of a quantum neural network
because it is to embed the input data. Also, unlike angle embedding,
amplitude embedding can use 4-qubits to embed 16 values. That is, 16
values among the input data are used to express the amplitude vector
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Fig. 5: Architecture of quantum-classical hybrid neural network.

representing the state of the qubit. In this way, the input data in the
classical state can be transformed into the quantum state.

Fig. 6: Quantum circuit for amplitude embedding.

Parameterized Circuit Figure 7 shows the part of 4-qubits quantum
circuit with 10 quantum layer for strongly entangling quantum layer.
That is, it shows one strongly entangling layer and is composed of Rot
(RZ+RY+RZ) gates and CNOT gates. And, the entire circuit is con-
structed by stacking several quantum layers. This circuit is designed for
rich entanglement and rotation, and the number of layer iterations (r) is
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Algorithm 2: Training process using quantum-classical hybrid network

Input: Dataset (DS), The number of qubits (Nqubit), Classical input, hidden and
output layer (Input,H,Output), Quantum circuit for amplitude embedding (Qamp),
Quantum circuit for quantum layer (Qent)

Output: Trained hybrid model (QCHybrid)
1: NeuronH ← the number of neuron of hidden layer
2: Hi ← i-th neuron of classical hidden layer
3: Nq ← 2Nqubit

4: Nqc ← (NeuronH ÷Nq) ; the number of quantum circuit
5: Qamp(i) is i-th Qamp

6: Qent(i) is i-th Qent

7: Qstates(i) ← states of qubits of i-th quantum circuit
8: for i = 0 to Epoch− 1 do
9: x← Input(DS)
10: x← H(x)
11: for i = 0 to Nqc − 1 do
12: Qstates(i) ← Qamp(i)(HNq∗i+0, · · · , HNq∗i+15)
13: Qstates(i) ← Qent(i)(Qstates(i))
14: xi ← measure(Qstates(i))
15: end for
16: x← (x0||x1||· · · ||xNqc−1)
17: outputs← Output(x)
18: Compute loss and accuracy
19: Adjust the parameters of the quantum circuit
20: end for
21: if accuracy < 0.5 then
22: Abort QCHybrid

23: else if accuracy > 0.5 then
24: return QCHybrid

25: end if

required to design such entanglement. First, when designing a quantum
neural network, we can set how many quantum layers to stack. Let the
number of quantum layers and the number of qubits be Nql and Nqubit,
respectively. Also, when the quantum circuit is executed, it is assumed
that the currently operating layer is the lth layer (l < Nql). Then, as
in Equation 2, the number of layer repetitions (r) can be obtained. The
obtained r value is used to design the entanglements. If the second layer is
operating in a 4-qubit quantum circuit, r = 2. As a result, the i-th qubit
is entangled with the (i+ r mod Nqubit)-th qubit. In other words, rather
than being entangled with adjacent qubits, one qubit is evenly entangled
with other qubits, resulting in more influence.

Also, the circuit uses rotation gates and CNOT gates. The rotation
gates used here requires angle of rotation. These are called parameters of
a quantum neural network, and these values are updated through training.
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That is, the output of the circuit is changed while changing the rotation
angle of the rotation gate to minimize the loss.

r = l mod Nqubit (2)

Fig. 7: Quantum circuit for strongly entangling quantum layer.

4 Experiment and Evaluation

We used AMD Ryzen 7 4800h with radeon graphicx16 processor, 15GB
RAM, Ubuntu 20.04.2 LTS, Python 3.9, Tensorflow 2.9.1 and keras 2.9.0.
For design of the quantum circuit, Pennylane [7], a library for hybrid
neural networks, was used, and the ’default.mixed’ simulator provided by
pennylane was used as a device for circuit execution.

4.1 Quantum-classical Hybrid Neural Network

Table 1 shows the detail of quantum-classical hybrid neural network
for differential cryptanalysis on S-DES, S-AES and S-PRESENT-[4]. The
following is the details of Table 1.

• Quantum embedding: 4-qubits are a level that can be used with-
out difficulty even with current quantum computers. This is possible
because we use amplitude embedding and hybrid neural network. Am-
plitude embedding allocates 2Nqubit features to Nqubit, so fewer qubits
can be used. In addition to this method, we also experimented with a
quantum machine learning approach called Quantum Support Vector
Machine (QSVM). However, QSVM only uses quantum, not quantum-
classical hybrid approach, which uses angle embedding. Therefore, if
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Table 1: Details of quantum-classical hybrid neural network for differential cryptanaly-
sis.

S-DES S-AES S-PRESENT-[4]

Quantum embedding Amplitude

Quantum layer Strong entangling

Nqubit 4

Nqc 1 4 4

Nql 15 10 10

NRotation 180 480 480

NParams 457 777 25393

NData 1300 2500 9000

Rounds 2 2 3

Epoch 25 25 20

Test accuracy 98% 99% 94%

the ciphertext pair is a total of 16 bits, 16 qubits are needed to em-
bed one feature to one qubit. However, as mentioned earlier, we used
amplitude embeddings and quantum-classical hybrid neural networks.
Since we used amplitude embeddings we can use fewer qubits. Also in
hybrid neural networks we can add or reduce classical hidden layers.
So we can adjust the dimensions of the hidden layers and use fewer
qubits accordingly.

• Quantum layer: Next, the strongly entangling quantum layer was
used as a parameterized quantum circuit for training. This is a quantum
circuit with strong entanglement and rich rotation, as mentioned in
3.2. Random quantum circuit or basic quantum circuit (entangled with
adjacent qubits) can also be used, but as a result of our experiments,
this quantum circuit achieved the most stable and best performance.

• The number of qubits (Nqubit): We use 4-qubits for both ciphers.
As a result of experimenting with circuits of 2-qubits, sufficient per-
formance could not be obtained. When using 4-qubits, it took about
5300 seconds for 1 epoch. If the number of qubits used doubles, the
training time also doubles. Therefore, the execution time is too long if
more than 4-qubits are used. So we used 4-qubits.

• The number of quantum circuit (Nqc), layer (Nql), rotation
gate (NRotation): In S-DES, 1 quantum circuit and 15 quantum layers
were used, and 4 quantum circuits and 10 quantum layers were used
in S-AES and S-PRESENT-[4]. Nqc means the number of times the
same quantum circuit is repeatedly executed. If the 4-qubit circuit is
executed 4 times, the number of qubits used is 4 instead of 16, and
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Nqc is 4. However, the number of all gates for 4 iterations should be
considered as quantum resource. The reason is that the rotation gate of
the circuit has parameters, and the parameters are stored and combined
into one vector and then input to the classical output layer, so the
number of quantum parameters as many as the number of rotation
gates must be learned. Considering Nqc, Nqubit and Nql, the number of
rotation gates can be obtained as in Equation 3. The reason why it is
multiplied by 3 is that the rotation gate used in a strongly entangling
circuit is a combination of three rotation gates (RZ+RY+RZ). In
addition, CNOT is also quantum gate, but it doesn’t have parameters.
Therefore, NRotation is equal to the number of quantum parameters
for the parameterized circuit (not the entire quantum neural network).
S-DES, which is a relatively simple cipher, required the least amount
of quantum resources, and the same number of quantum resources was
used in S-AES and S-PRESENT-[4].

• The number of parameters: NParams is the number of parameters
of the entire neural network combined with quantum and classical net-
work. As mentioned earlier, since the classical layers have parameters,
NParams and quantum parameters depends on the number of neurons
and the number of layers. The smallest 457 parameters were used
in S-DES, and 777 parameters were used in S-AES. S-PRESENT-[4]
requires the same number of quantum resources as S-AES, but more
classical parameters are used, so NParams is larger than S-AES.

• The number of data and rounds: For the 2-round S-DES, 1000
training data, 200 validation data, and 100 test data were used, and
for the 2-round S-AES, 2000, 400, and 100 data were used for training,
validation and test, respectively. In 3-round S-PRESENT-[4], we used
7000 training data, 1900 validation data, and 100 test data.

• Epoch: We used 25 epochs for S-DES and S-AES. When more than
25 epochs were used, little convergence was performed and the overall
accuracy was not significantly affected. For S-PRESENT-[4], in 20
epochs, loss was reduced enough.

• Test accuracy: Finally, for the test data of S-DES, S-AES and S-PRESENT-[4],
accuracies of 98 %, 99 % and 94 % were achieved, respectively. When
other values were used as input differences, the accuracy was barely
over 0.5, or lower than our results, but as a result of using the correct
input differences, we successfully distinguished with high accuracy.

NRotation = Nqc · (3 · (Nqubit ·Nql)) (3)
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4.2 Comparison with Quantum-classical Hybrid Network and
Classical Neural Network

We compared our quantum neural distinguisher with classical neural
distinguisher. Table 2, Table 3, Table 4, and Table 5 show the comparison
result for S-DES, S-AES and S-PRESENT-[4]. In these tables, Tr, V al, Ts
are training, validation and test accuracy, NParams is the number of
parameters, NData is the number of data.

Result for S-DES In Table 2, for the same epoch and the number of
training data, the quantum neural distinguisher achieved 2% higher accu-
racy and required fewer parameters. However, since S-DES is a relatively
simple cryptographic algorithm, it has reached sufficient performance even
with classical neural networks.

Table 2: Comparison between classical and quantum classical neural networks for
S-DES (25 epochs, 1000 data).

Target
S-DES

(Classical)
S-DES

(Quantum)

Tr 96 97

V al 97 97

Ts 96 98

NParams 641 457

Result for S-AES In Table 3 and 4, we tested 1000 and 2000 data for 25
epochs. In (25 epochs, 1000 data) case, the accuracy of the quantum version
achieved 18% higher accuracy than the classical version. And in (25 epochs,
2000 data) case, the classical and quantum versions achieved similar
performance because the number of data increased, but the accuracy
of the quantum neural distinguisher was 1% higher. In other words, a
larger quantum benefit (a significant improvement in accuracy) can be
achieved when the less data is used. Also, the quantum version used
fewer parameters than the classical neural distinguisher. In 1000 data, the
number of parameters was reduced by about 43%, and in 2000 data it was
reduced by 29%. Therefore, it can be seen that by using a quantum neural
network, higher accuracy can be achieved despite using fewer parameters.

Result for S-PRESENT-[4] Table 5 shows the accuracy when training
20 epochs using 9000 data for S-PRESENT-[4]. Compared to the classical
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Table 3: Comparison between classical and quantum classical neural networks for
S-AES (25 epochs, 1000 data).

Target
S-AES

(Classical)
S-AES

(Quantum)

Tr 68 92

V al 75 86

Ts 65 83

NParams 1089 617

Table 4: Comparison between classical and quantum classical neural networks for
S-AES (25 epochs, 2000 data).

Target
S-AES

(Classical)
S-AES

(Quantum)

Tr 92 100

V al 99 99

Ts 98 99

NParams 1089 777

method, the test accuracy is increased by 7% and the number of parameters
is reduced by 32%. Also, 3-round S-PRESENT-[4] was tested, 1-round more
than the other two ciphers, and more data and parameters were used
because the plaintext size was longer and more complex than S-DES.

Table 5: Comparison between classical and quantum classical neural networks for
S-PRESENT-[4] (20 epochs, 9000 data).

Target
S-PRESENT-[4]

(Classical)
S-PRESENT-[4]

(Quantum)

Tr 84 99

V al 80 96

Ts 87 94

NParams 37377 25393

4.3 Quantum Advantage

Table 6 shows the comparison of quantum advantage (compared with
classical method) for S-DES, S-AES and S-PRESENT-[4]. I(Tr) means the
improvement rate in training accuracy obtained by using a quantum neural
network, and I(V al) and I(Ts) mean the improvement rate in validation
and test. R(NParams) is the reduction rate of the parameter obtained by
using a quantum neural network.
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Table 6: Comparison of quantum advantage for S-DES, S-AES and S-PRESENT-[4].

Target S-DES S-AES S-PRESENT-[4]

I(Tr) 1% 8% 15%

I(V al) 0% 0% 16%

I(Ts) 2% 1% 7%

R(NParams) 29% 29% 32%

S-DES and S-AES achieved similar levels for I(Ts) and R(NParams). It
can also be seen that the quantum benefit of S-PRESENT-[4] is greater
because the I(Ts) and R(NParams) of 3-round S-PRESENT-[4] are large
compared to 2-round S-DES and S-AES. In addition, in case of S-AES, a
greater quantum advantage can be obtained when the number of data
is smaller for the same epoch and round. This shows that the quantum
method converges better (faster) than the classical method when less data
is used. However, when the data is sufficiently increased, classical method
and quantum method achieve similar accuracy. Therefore, we confirmed
that for the same epoch, a larger quantum advantage occurs when using
more complex data or less data. The reason for higher accuracy while
using fewer parameters and fewer data is thought to be because qubit has
a wider and more sophisticated data representation than classical bits.

5 Conclusion and Future Work

In this work, we implemented the first neural distinguisher for simplified
block ciphers based on quantum-classical hybrid neural networks. The
neural distinguisher is the task of classifying ciphertext from random
data using differential characteristics, which can be developed into a key
recovery attack. Our work obtained higher accuracies (2% for S-DES, 18%
(1000 data) and 1% (2000 data) for S-AES, 7% for S-PRESENT-[4]) than
classical neural distinguisher. In addition, it required a reduced number of
parameters by 29% to 32% compared to the classical method. That is, we
designed a distinguisher with quantum advantage in terms of parameters
and accuracy by using a quantum neural network. As a future work, we
will design a distinguisher for other ciphers and multiple input differences.

6 Data Availability

Source codes of proposed method are available in https://github.com/

khj1594012/QND.
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