SoK: Getting started with open-source fault
simulation tools

Asmita Adhikary[0000-0002=2757-1271] 41)d [leana Buhan[0000—0001-5494-9164]

Radboud University, Houtlaan 4, 6525 XZ Nijmegen, The Netherlands
{asmita.adhikary,ileana.buhan}@ru.nl

Abstract. Fault injection attacks have caused implementations to be-
have unexpectedly, leading to the extraction of cryptographic keys and
the spectacular bypass of security features. Understandably, developers
want to ensure the robustness of the software against faults and elimi-
nate during production weaknesses that could lead to exploitation. Sev-
eral open-source fault simulation tools have recently been released to the
public, promising cost-effective fault evaluations. In this paper, we set
out to discover how suitable such tools are for a developer who wishes
to create robust software. The four fault simulation tools available to us
employ different techniques to navigate faults and present varying diffi-
culty levels to the user. We objectively compare the available open-source
tools and discuss their benefits and drawbacks.

Keywords: Fault injection - Simulation - Open-source - Software

1 Introduction

An adversary with physical access to a device can induce unforeseen effects in
a software program by subjecting the device to extreme operating conditions.
Faults can be introduced in several ways. Examples are clock glitches - where
short glitches are inserted into the clock signal, which may cause timing vio-
lations, wvoltage glitches - where the device is supplied with power outside the
range of values specified in the datasheet, light amplification - by stimulated
emission of radiation shots, or temperature variations. Modifying or skipping the
intended flow of operations or tweaking data values could result in the software
acting unexpectedly. Unauthorised individuals accessing off-limits memory lo-
cations or bypassing necessary authorisation conditions could crash the system
or cause it to behave unexpectedly, leading to dire consequences. Fault attacks
on the PlayStation hypervisor of Sony and the Xbox 360 [I] through the reset
glitch provide enough incentive to prevent further attacks by injection of faults.
Re-enabling debug access to EFM32WG [16] using electromagnetic fault injec-
tions or hacking Apple AirTags [2] gives us a glimpse of the consequences of fault
injection attacks. Glitching the Trezor One hardware wallet [0] to extract the
recovery seed leading to the wallet’s cloning by exploiting faults gives further
proof of the disastrous effects of fault injection attacks.

2 A. Adhikary and I. Buhan

A convenient solution for developers is to run their implementations through
fault simulation tools since injecting faults into the real hardware implementa-
tion is expensive, complex, and time-consuming. In addition to convenience, the
benefit of using fault simulation tools is the possibility of detecting the cause that
led to a successful fault. Detecting the cause of a leak is typically not possible
when we perform fault injection with real hardware.

Fault simulation tools replicate the underlying architecture on which faults
are supposed to be injected. This makes it possible for a user to determine
the cause of a successful fault and harden the implementation without needing
the device. Using fault simulators may prove less complex and expensive than
testing for faults using real fault injection tooling. Given the appeal of fault
simulators, we sought to investigate state-of-the-art open-source general-purpose
fault simulation tools. We found several fault simulation tools available in the
public domain. These tools serve different use cases. We divide fault simulators
into gemeral-purpose tools, which can test the resilience to faults for any software
programs, and cryptographic algorithms, which are intended to test the resilience
of cryptographic algorithms to specialized attacks. This paper focuses on general-
purpose tools since their scope is broader. We set out to discover how difficult it
is for a developer to get started with fault simulators, what features such tools
offer, which use case scenarios they cover, and how easy it is to adapt them to
different examples. Therefore, the research question we investigate in this paper
is:

Are existing open-source fault simulation tools ready to replace the hardware tool
when testing general purpose software?

Contribution In this paper, we objectively compare existing open-source fault
simulation tools designed for general-purpose software. We define a set of pa-
rameters for comparing the tools to help a prospective user quickly decide which
tools are best suited for his use case. We also propose a grammar for expressing
fault models, which can be used to compare each tool’s capabilities at a glance.
Finally, we discuss the pros and cons of all four tools.

Paper organization The rest of the paper is organized as follows. Section
presents the development of fault injection tools over the years. Section
describes the criteria we chose to evaluate the four fault injection tools. Section
[] details the experimental setup, while section [§] elucidates the results as well as
outlines the main features and workings of the tools, including their advantages
and drawbacks. Section [f]identifies the pros and cons of using one fault injection
tool over the other, followed by conclusions in Section [7]

2 Related Works

There are surprisingly many tools available to perform fault simulations. We
first divide existing tools according to their intended use, software vs hardware
circuits. We define the intended application for the verified target as the sec-
ond axis: general purpose hardware and software vs. cryptographic algorithms.
Lastly, we consider whether the tools are open source. As the subject of our pa-

SoK: Getting started with open-source fault simulation tools 3

per is general-purpose fault simulator tools for software, we only mention from
this category the tools that have not been open-sourced. Due to a large number
of available tools in both general purpose [3], [22], [14], [10], [I7], [24] tool and
cryptographic algorithm [7], [15], [21], [23], [26], [I9] tool categories, in the fol-
lowing, we make a representative selection of tools available for general-purpose
software.

General purpose, circuits. The first general purpose tool intended to test cir-
cuit fault resistance is MEFISTO (Multilevel Error / Fault Injection Simulation
TOol) [13]. Using VHDL as the simulation language, MEFISTO validates the
dependability of fault-tolerant systems by applying fault injection to different
levels of abstraction, which in turn is used to create an abstraction hierarchy of
fault /error models. Tt also estimates the possible coverage with the given fault-
tolerance mechanisms. MEFISTO is not open source. LIFTING (LIRMM Fault
Simulator) [6] is a tool designed in Verilog on an event-driven logic simulation
engine that focuses on both logic and fault simulations for stuck-at faults and
single event upsets (SEUs), and results show that its execution time is compa-
rable to commercial tools. It takes the netlist, test sequence, and fault list to
provide the test report as output. The simulator checks if the design meets the
expectations of ten functional specifications and introduces fault injections for
stuck-at and single-event upset fault models. LIFTING is open source. More
recently, AFIASIC(DFTS) has been proposed for the automated integration of
fault injection into the ASIC design flow [25].

General purpose, software. A language and compiler-independent framework
named XEMU [4] is an extension of the QEMU software emulator and carries
out efficient mutation-based testing of software binaries by injecting mutations
at runtime using dynamic code translation (which prevents the software binaries
from getting affected). It uses the user-mode QEMU, which emulates a single
program on a Linux OS. Without access to the source code, the control flow
graph (CFQG) analysis of the disassembled code (before the execution of the soft-
ware binary) is used to create a mutation table to facilitate the injection. XEMU
approaches 100% accuracy for the test quality metrics compared to source code
instrumentation. The CFG offers a speed-up of up to 100 - 1000 times with a
GDB/ARMulator. An automatic, non-intrusive simulation-based fault injection
framework based on QEMU is put forward in [9]. The authors note that the tool
is an efficient, open-source instruction-accurate emulator for microprocessor ar-
chitectures. The tool can simulate the presence of permanent, intermittent, and
transient faults in the CPU registers of both RISC and CISC architectures.

QEFI (QEMU Fault Injector) [8] tool for system-wide, and kernel-based fault
injection is a QEMU-based fault injection framework focused on ARM archi-
tecture. It injects faults into the operating system to check its susceptibility
to faults and its reliability and robustness. Since it aims to simulate hardware
faults in software environments, there remains a trade-off between manageability
and scalability vs performance overhead and setup. The Tiny Code Generator
(TCG) of the QEMU simulation platform (on which the tool is based) covers
all possible faults. Models can be implemented for different levels of abstraction

4 A. Adhikary and I. Buhan

as microarchitecture simulation, instruction-level simulation, or virtualization.
However, setting up the environment for various abstraction levels can be costly,
while the test results can be inaccurate. That said, since it emulates different
architectures without modifying the software under test, it can be run in dis-
tributed environments. Having a python interface makes it quite user-friendly.
The chronology of running experiments would start with QEMU and application
run control, followed by fault injections and results processing. Being a hetero-
geneous environment, designing a logging mechanism is left to the lowest level
possible while providing specific log management mechanisms like a log directory
and a way to synchronize them with timestamps. The experiments demonstrate
flaws in both the Linux kernel and QEMU itself.

3 Criteria for evaluating the simulators

This section discusses our criteria for evaluating the four open-source general-
purpose fault simulation tools. From the user’s perspective, these criteria provide
a quick insight into the working of each tool to help decide which tool to use.

Table [1] is a concise overview of the four-fault simulation tools and the pa-
rameters we selected for comparison. The type parameter informs us of the un-
derlying simulation or emulation engines. Architecture describes the supported
hardware device on which the execution of the software can be replicated. The
OS parameter instructs us about the operating system for which the fault simula-
tion tool will run and compatible cross-compilers (together with the architecture
parameter). Range specifies whether a tool is ezhaustive(E) and will consider the
entire implementation or user-defined(U) where the user can specify the range of
instructions. Coverage determines whether the faults injected are deterministic
(D), where different fault injection experiments will always produce the same
results, or random(R), where different fault injection experiments will produce
different results. The fault models parameter notifies us of the various possibili-
ties of injecting faults. The problem we faced when looking for a way to compare
the supported fault models was that there was no unified view. Table [2| shows
our solution and describes every fault model composed of these characteristics.
The first is, how are the effects of the fault simulation manifested: permanent,
transient, or for a specified time interval. The second is who (or, which fragment)
is affected by faults, instruction, data, or addresses and what is the resolution,
bit, byte, or a full register. Finally, each fault model is described by an action
with the help of which the fault is injected.

For example, Table [I] shows that FiSim supports two fault models: transient
instruction skipping ([T][I][N]) and transient instruction bit flips([[T][I][b][G]]).
Finally, we note that the combination in fault models does not imply that tools
support all possible fault model combinations.

SoK: Getting started with open-source fault simulation tools 5

Table 1. Evaluation Criteria

lTool [Type [OS [Architecture[Range[Coverage[Fault Models ‘
Windows
FiSim Unicorn |(FTePUIE) |y gy E |D [T)[1][b][G,N]
Linux
& Mac
Native | .
ZOFI hardware Linux x86-64 E R [T][A][b,R][G]
ARMv6M,
ARMORY | M-ulator | Linux ARMvTM, |U D NI
ARMvTEM
. Depends
ARCHIE | QEMU |Linux on (SEMU U D [P, T]|L,D][b,R]
[C,S,G,F]

Table 2. Fault Models with Abbreviations

How ‘Who ‘Resolution ‘Action
Clear(C)
Permanent(P) |Instruction(I)| Bit(b) Fill(F)
Transient(T) Data(D) Byte(B) Set(S)
Until-overwrite(U)| Address(A) |Register(R) Flip/Toggle(G)
Skip/NOP (instruction)(N)

4 Experimental Setup

To evaluate the four fault simulation tools, we ran FiSim E] on Windows 11 Pro,
AMD Ryzen 5 PRO 5650U @ 2.30GHz and 16 GB of RAM to facilitate the use
of its GUL.

We installed ZOFI (version 0.9.7) E], ARMORY E] and ARCHIE E] on a Vir-
tualBox running Ubuntu 22.04.1 LTS with one core, one thread and 10.44 GB
of RAM. The VirtualBox was running on a PC with Ubuntu 20.04.4 LTS, with
Intel(R) Xeon(R) CPU ES-2620 v4 @ 2.10GHz, one physical processor, eight
cores, and sixteen threads with 50.43 GB of RAM. We installed the ARM GNU
toolchain and Meson build system as prerequisites for running ARMORY.

To compare the tools, we first ran each tool with the default example. Next,
we run the tool with a different example. Initially, we aimed to run the same
code on all tools, but this was impossible due to the differences in platforms. In
the next section, we report the results of our experiments.

!mttps://github.com/Riscure/FiSim/releases

2 https://github.com/vporpo/zofi

3 https://github.com/emsec/arm-fault-simulator
* https://github.com/Fraunhofer-AISEC/archie

https://github.com/Riscure/FiSim/releases
https://github.com/vporpo/zofi
https://github.com/emsec/arm-fault-simulator
https://github.com/Fraunhofer-AISEC/archie

6 A. Adhikary and I. Buhan

5 Experimental Results

On executing the fault simulation tools with different implementations, we record
their execution times. Table |3] shows the results of the experiments for each tool

El

Table 3. Experimental Results

lTool [Implementation [Binary Size[Execution Time[#Faults‘
Fisi Secure bootloader 5KB 1:49.17 min 364
W5 ssword Checker 1KB 40.85 sec 139
ZOFI System file 48KB 55.015 sec 74
Counter 16KB 26.566 sec 82
Fault insertion 711B 0.979 sec 24
AES 6.1KB 24:38.730 min 823192
ARMORY Secure bootloader 3.5KB 24:46:39.962 hrs|{1124
Counter 227B 1.746 sec 2
Blinking LED on . .
STM32F0DISCOVERY 500B 6:16.714 min 4
ARCHIE |AES 7.1KB 2:06:58.019 hrs (4
Blinking LED on . .
STM32VLDISCOVERY 148KB 1:1.414 min 1

5.1 FiSim

FiSim [20] is an open-source, deterministic fault simulator prototype based on
the Unicorn emulator and the Capstone disassembler. Its GUI is pre-built for
Windows but also supports Linux and Mac OSX systems. It is a proprietary
closed-source tool [12] for ARM fault simulation. FiSim is made to work with
the pre-loaded implementation of a secure bootloader. It is based on a cross-
platform simulation of ARM32 and ARM64 architecture. FiSim implements two
fault models - the transient NOP instruction model and the transient single-bit
flip instruction.

The demo version comes pre-loaded with a secure bootloader implementa-
tion. The first boot stage takes the hardware model and the flash dump as input
and provides the console output (if any) for debugging purposes along with the
execution trace. In the second boot stage, the execution trace is used as input
to provide the good and bad signatures, giving two different execution traces.
Once the traces start to differ, the logic of the boot stage decides if the au-
thentication succeeded. Then the execution trace is put in the fault generator.
For every executed instruction and possible fault, the simulator is run with the
fault applied to the code and the flash with the bad signature. If and when

5 1:49.17 min implies 1 minute and 49.17 seconds
24:46:39.962 hrs implies 24 hours, 46 minutes and 39.962 seconds

SoK: Getting started with open-source fault simulation tools 7

the code is vulnerable, the authentication would succeed, and the next boot
stage would be executed, thus signifying that the glitch bypassed the authen-
tication. The target source code of the secure bootloader is compiled, and the
resulting binary code is used for the simulation. FiSim provides ways to harden
the bootloader by pointing out its weaknesses and testing the effectiveness of
its countermeasures. Adding redundancy makes the code more robust against
faults. On running the default example, FiSim shows a list of assembly instruc-
tions for both fault models. Clicking on the assembly instructions takes us to the
corresponding high-level instruction in the implementation. FiSim takes 1:49.17
minutes to report 364 faults.

However, loading other programs for simulation could be quite a task. The
new code must follow the structure of the bootloader, or, in case of an entirely
different program structure, the FiSim engine would have to be rewritten to
suit the needs. The other implementation we considered for FiSim was that of a
password authenticator. Similarly, as with the secure bootloader implementation,
the password aunthentication procedure would verify the input password with
the correct stored password. It takes 40.85 seconds to report 139 glitches.

By reusing existing components, FiSim ensures speed over accuracy and takes
the shortest path to reasonable results. It iterates over all the possible faults,
given the fault models, and then continues executing the target code over every
possible fault. However, all potential faults aren’t equally realistic or probable
in the real world. So, the simulation speed gets slower with more complex fault
models; it could become too slow to run the simulations in a reasonable amount
of time and computational resources.

5.2 ZOFI

ZOF1I (Zero Overhead Fault Injector) (version 0.9.7) [18], based on the Capstone
library, is a zero-overhead open-source timing-based transient fault simulation
tool. Its main feature is the speed with which it can analyze a given workload.
It employs the single-event upset fault model.

At first, ZOFI executes the unmodified binary at native speed to measure its
execution time and collect its original output (golden run). The execution time
of the golden run serves as an upper bound for the fault injection time. It helps in
approximating if the binary needs to be terminated in case it falls into an infinite
loop. The outcomes of the golden run help ZOFI compare the results of the sub-
sequent test runs to categorise the instructions as corrupted, masked, detected,
stuck in an infinite loop, or throwing an exception. A corrupted instruction is
one whose outputs vary from that of the golden run, whereas if an instruction
doesn’t terminate and takes far beyond the execution time of the golden run,
which demands ZOFI to terminate it, is categorised as infinite execution. If the
instruction doesn’t give the same or different outcome (compared to the golden
run) but throws an exception due to an illegal operation, it comes under the ex-
ception category. However, even though a fault is injected, it fails to show itself
because it doesn’t find use in any of the subsequent computations, in which case

8 A. Adhikary and I. Buhan

ZOFT names it as masked. The previous categories will not be enough to detect
exploitable faults in implementations that employ error detection mechanisms.
The error detection mechanisms inform ZOFT if the injected faults cause errors
and exit the binary using specific exit codes.

Then, it forks and launches a new process to run the binary, where it pauses
the binary for a random period (between zero and the execution time of the
golden run) to simulate faults, after which the execution of the binary is resumed.
For the fault simulation, the execution of the binary gets interrupted by a signal
emitted by ZOFI and it acquires access to the register states. ZOFI has access to
the instruction pointer but, oblivious to the instruction type needs the Capstone
library’s help to determine the list of accessed registers and each access type
(explicit or implicit). Then ZOFI modifies the state of the binary by injecting
a register bit-flip fault. ZOFI takes a slightly different approach to introduce
faults into the register depending upon whether they are read by instruction
or written by an instruction - unlike in the case of the registers being read, for
the registers being written to, ZOFT steps into the next instruction to modify
the register bit so that it doesn’t get overwritten. Either the execution leads to
completion or gets interrupted by a signal. In the case of an infinite loop, ZOFI
sets up an alarm to receive a signal if the binary gets stuck. In either case, the
tool compares the outcomes of the multiple test runs with the golden run.

ZOFT offers a variety of optional arguments to fine-tune a fault simulation
experiment. The user can inject faults into specific registers which are read
or written by instructions, explicitly or implicitly accessed, or an instruction
pointer. Faults can also be injected into particular bits (of specific registers).

ZOFI does not come with a default example but takes any x86_64 Linux
binary. We use /usr/bin/seq as the binary and run a fault simulation campaign
of 100 experiments. ZOFI displays the time taken for the golden and test runs,
respectively. On our machine, ZOFT takes 55.015 seconds to complete the exe-
cution of both golden and test runs to report 74 faults. It reported the number
and the percentage of masked instructionsﬂ instructions that led to exceptions,
instructions that led to infinite execution, and corrupted instructions. We also
ran an implementation of a counter which took ZOFI 26.566 seconds to report
82 faults. ZOFI consumes about 50% memory while its CPU usage is varied.

Its lack of cycle accuracy facilitates maximum speed while keeping up the ac-
curacy of statistical analysis. ZOFI simulates faults on binaries at native speed.
It provides flexibility in choosing whether or not the user would want to inject
faults into the system’s library code. It provides users with different arguments
making the tool customizable, handles binaries protected by error detection tech-
niques, and can run multiple concurrent test runs depending upon the number
of threads of the CPU. It has a built-in tracking system for workload executions,
output checking and statistics collection. ZOFI provides ample optional argu-
ments to users to fine-tune their search for exploitable faults. It lets us check for
faults even in the case of error detection mechanism protected implementations.

5 by masked instructions, the authors mean instructions that are not vulnerable to
fault effects

SoK: Getting started with open-source fault simulation tools 9

It provides options for enabling debugging. It lets the user choose particular
bits in particular registers to inject faults as well as the timstamp after which
faults should be injected. It lets us determine the number of test runs as well as
the number of faults to be injected per test run. Depending upon user’s choice,
outputs can be obtained in CSV file and Moufoplot format apart from having it
on the console. We can decide the maximum number of fault injection attempts
and the degree of parallelization.

However, there are downsides to ZOFI. Due to its timing-based design, it
fails to function correctly if the workload runs for a variable or short time as
it attempts to inject faults after the binary has completed its execution. Hence,
executing the binary needs to take at least 0.5 seconds. If the binary shows un-
expected behaviour when stopped with a signal, ZOFI cannot analyze it since
it uses a signal to pause test runs. ZOFI cannot guarantee micro-architectural
accuracy because it’s limited to the state provided by the instruction set archi-
tecture (ISA).

5.3 ARMORY

ARMORY [12], a fully automated open-source hardware emulation framework
for exhaustive fault simulation of the ARM-M binaries, simulates all exploitable
arbitrary (and customizable) fault combinations (including higher-order faults)
while automatically utilizing all the available CPU cores. Using various fault
models, it efficiently scans a compiled binary for potential weaknesses against
arbitrary (including multivariate) fault combinations. It demonstrates that con-
sidering machine code for fault injection analysis instead of code written in
comparatively high-level language could prevent overlooking specific faults that
don’t present themselves in higher levels of abstraction.

ARMORY is based on an efficient instruction-accurate open-source emulator
for ARMv6-M, ARMv7-M and ARMv7-EM architectures, named M-ulator. M-
ulator can work according to a specific instruction set architecture and handle
faulty assembly instructions.

ARMORY takes as input an M-ulator instance (loaded with binary), a set of
fault models to inject, an exploitability model (a set of conditions which deter-
mines if a specific fault could be considered exploitable if met) and halting points
(addresses where the exploitability is to be evaluated). It outputs the fault com-
binations along with fault tracers. It considers a total of 24 fault models, both
instruction-level (permanent or transient) and register-level (permanent or tran-
sient or active until overwrite) - instruction skipping, faults on flash (program
memory), faults on RAM (data memory), faulting operand registers, faulting
addresses, diverting control flow, or instruction replacement. ARMORY uses an
optimized fault simulation strategy by executing a dry run first, followed by fault
simulation until the next fault injection point. M-ulator runs a fault-free simu-
lation at first until the execution of the binary gets completed or the supplied
timeout is reached, thus providing the sequence of executed instructions and used
registers. This sequence gives all the injection points in order. After doing so,
M-ulator continues until the next injection point, and the current state is stored

10 A. Adhikary and I. Buhan

as backup. This saves emulation time by eliminating the need to start from the
beginning for each fault. Then the fault model is applied. On reaching one of the
halting points, it checks the exploitability model to determine whether the fault
encountered is to be added to the list of exploitable faults. If no such halting
point is reached or an invalid instruction is met, then the M-ulator’s state is
stored. However, this might not be enough when dealing with multivariate fault
simulation. So, in the case of higher-order fault simulation, even if the current
fault combination isn’t found to be exploitable, the tool recursively runs the cur-
rent state with the next fault model. Hence, the following fault model starts with
M-ulator where a specific fault combination has already been applied. Also, in
the case of multivariate faults, the order of faults holds significance. ARMORY
attempts to optimize using M-ulator backups and efficient multicore support.

ARMORY comes with three default examples; one inserted faults at spe-
cific addresses, another was an AES and finally, a secure bootloader. ARMORY
displays the details of its version, compiler, linker for ARMORY and M-ulator,
and run-time dependency threads. It simulates all 24 kinds of fault models using
threads 16 times and provides a comprehensive report which includes the fault
models, number of threads used, elapsed time for each type of fault injected,
number of faults exploited and number of faults injected, along with the position
and time-stamp of exploited faults (if any), the assembly instruction where the
fault could be injected, the total time taken and the total number of exploitable
faults. ARMORY took 0.979 seconds, 24:38.730 minutes and 24:46:39.962 hours
to exhaustively simulate and report 24, 823192 and 1124 faults respectively. It
provides outputs both on the console and as a log file which helps in future
referencing. We chose an implementation of a counter to run on ARMORY. We
defined the directory for storing temporary data, the path to build the ARM
binary, and disassembly to accumulate the results, start the fault injection simu-
lation, and clear the temporary data. We also defined the start and halt symbols
for the fault simulation. For simulating faults on the binary of the counter impl-
mentation, ARMORY took 1.746 seconds to report 2 faults. ARMORY consumes
about 50% memory while utilizing the entire CPU resources.

Besides being highly customizable, it offers fault injection simulation for mul-
tivariate faults. ARMORY automatically utilizes all the available CPU cores.
M-ulator, explicitly designed for fault simulation, outperforms the Unicorn em-
ulator and harbours the ability to handle incorrect assembly code, unlike other
emulators. ARMORY focusses on lower abstraction levels for fault simulation
binaries of ARM-M since applying isloated fault models on higher abstraction
levels overlook exploitable faults.

ARMORY also comes with a few limitations, mainly because of M-ulator. M-
ulator doesn’t support certain ARMv6-M instructionsm Even though ARMORY
exhaustively simulates faults, it fails to decide if a fault model is feasible in reality
since every fault model is not equally probable in the real world.

" such as MSR, (move to special register from ARM register), MRS (move to regis-
ter from the special register), CPS (change processor state), SVC (supervisor call
instruction)

SoK: Getting started with open-source fault simulation tools 11

5.4 ARCHIE

ARCHIE (ARCHitecture-Independent Evaluation) [II] is an open-source, au-
tomated, QEMU-based fault simulation tool for analyzing transient and perma-
nent instruction and data faults in RAM, flash and processor registers of em-
bedded devices. QEMU is used as the underlying emulator because it is generic,
open-source, operating system independent, and supports numerous architec-
tures. ARCHIE can autonomously execute a user-defined fault campaign. It
supports four fault models. The Set 0 and Set 1 fault models replaces the bits to
0 and 1 respectively while the toggle fault model switches the bits represented
by the fault mask. The overwrite fault model ensures that an instruction could
be skipped.

The underlying emulator, QEMU, replicates the architecture of the target
hardware. The controller script of ARCHIE takes the inputs, the compiled bi-
nary, QEMU configuration and fault configuration, to launch several parallel
processes. Each of these parallel processes handles one QEMU instance one of
the fault models from the fault configuration to run their experiment indepen-
dently. Once these processes end their task, they collect all the results to store
in a HDF5 file. The number of parallel processes can be set by the user.

For fault simulation on its default example, which implemented the blinking
of LEDs on an STM32F0DISCOVERY board, ARCHIE displays the version, the
fault campaign, timestamps, system RAM consumed, the worker number (paral-
lelization) and the assembly instruction where the fault injection was simulated
as it went along, checking for exploitable faults. It is equipped with debugging
functionality. AES was another default example that came with ARCHIE. AES’s
fault configuration contained 4 faults which took ARCHIE 2:06:58.019 hours to
simulate. We executed ARCHIE on an implementation that led to the blinking
of LEDs on a STM32VLDISCOVERY board. We defined the QEMU configura-
tion, which comprised the path to the QEMU build and the compiled binary,
as well as the name of the machine, i.e., STM32VLDISCOVERY. For the fault
campaign, we determined the starting and ending address, the fault address,
type, model, livespan, mask and trigger address, and counter with reference to
the assembly instructions of the compiled binary. In effect, ARCHIE does not
exhaustively or randomly simulate the entire space. So, it can’t be categorised
as either deterministic or non-deterministic. It checks whether our hypothesis
regarding the faults turns out to be correct or not. For its default example, with
4 faults defined, it took 6:16.714 mins for ARCHIE to execute the simulation.
For the fault configuration on STM32VLDISCOVERY board, we set 1 fault to
be simulated. ARCHIE reported the results of the fault simulation in 1:1.414
minutes. ARCHIE uses both terminal and log files to record its findings. It uses
up the entire memory and varied percentages of the CPU. Since, ARCHIE takes
up the entire RAM, it causes the kernel to kill or terminate the execution of the
tool. For a few executions of these mentioned binaries, the process was killed by
the kernel.

ARCHIE has a few limitations. The golden run stores the content of only
ARM registers instead of storing multiple register dumps for numerous points

12 A. Adhikary and I. Buhan

in time. The golden run stores memory dumps for specific locations and lengths
instead of multiple memory dumps. Register dumps are not possible - only mem-
ory dumps are implemented. With overwrite fault model, up to only 16 bytes
can be overwritten. While running the tool on our virtual machine, it has been
seen that it consumes almost the entire memory and CPU and causes the virtual
machine to get stuck.

Table 4. Inputs/Outputs for FiSim, ZOFI, ARMORY and ARCHIE

]Tools [Inputs [Outputs [
Fault-list in
Riscure FiSim Binary in assembly code
(Demo Edition) high-level code redirecting to
program locations
1. Timing of
golden run

2. Numbers, percentages
of masked and
corrupted instructions,
instruction resulting
in exceptions
and infinite loops
1. Total number
of faults
2. Number of
faults injected
Path to 3. Type2 1.1umb.er, elapsed time,

position, timestamp of

4. directory for .
each fault exploited
ARMORY temporary data 4 Number of

5. build ARM binary
6. dissasembly to
store results
7. start emulation
8. clean up
temporary data

ZOFI Compiled binary

1. Binary in
high-level code
2. Start symbol
3. Halt symbol

threads used
5. Faulted instruction
in assembly code
6. Affected instruction,
register, bit
or byte

1. Compiled binary
ARCHIE 2. QEMU configuration
3. Fault configuration

Detailed working
(for debugging)

6 Discussion

We ran all four fault simulation tools on their default example(s) followed by
executing each of them on an implementation of our choice.

SoK: Getting started with open-source fault simulation tools 13

There is a trade-off between user-friendliness and convenience vs usability of
the fault simulation tool. FiSim and ZOFI are user-friendly and convenient to
use. However, to analyze a binary, it would require the binary to include cer-
tain functions already defined in FiSim. If a binary does not follow the program
structure of a secure bootloader, then one needs to re-write the engine too. Then
it is possible to cross-compile the binary with the respective GNU ARM Embed-
ded Toolchain before it can be made ready for simulation in its GUI. Plugging
in the inputs for ARMORY (Table {4) is sufficient to execute it on a binary. In
contrast, for ARCHIE, the user needs to determine the fault configuration from
the assembly code of the binary. ARCHIE simulates and verifies our guesses
with respect to the fault configuration. Working with ARCHIE, requires one to
be acquainted with QEMU to decide the implementation based on the machines
QEMU emulates and if one would like to provide additional arguments. Only the
ARM architecture of QEMU comes pre-built. So, for using other architectures,
the user needs to build it. One must cross-compile and comprehend the assembly
generated well enough to decide the exact locations to inject faults. So, ARCHIE
is better suited for an experienced user who is accustomed to dealing with mem-
ory locations, storage, and errors like hard faults. Also, ARCHIE writes all the
generated data together at the end of each experiment which consumes a lot of
RAM memory and sometimes causes the kernel to terminate or kill the process.

For reasons mentioned above, FiSim, being a prototype, isn’t nearly as flex-
ible as the other tools under comparison. Both ZOFI and ARMORY provides
us with ample optional arguments to fine-tune the fault simulations. In the case
of a multi-core system, ZOFI can run parallel jobs and limits the number of
parallel jobs if the parameter is set mistakenly when the system doesn’t support
it. However, the user needs to provide ZOFI with a binary whose execution time
isn’t too small (0.05 seconds), or it will not return correct results. The execution
of ARCHIE depends entirely on the expertise of the user.

ARMORY supports 24 fault models (Table [1)) followed by that of ARCHIE
which in turn is followed by ZOFI. Fisim supports the least with 2 fault models.

On the console, some tools provide helpful messages along with the details
of injected faults to assist in debugging. However, unlike the other three tools,
ZOFT refrains from providing the fault address and the respective instruction.

When it comes to speed, ZOFI is the fastest since it runs almost as fast as
a native run. It is closely followed by FiSim. However, as we can see from Table
ARMORY and ARCHIE can take quite a while to complete their executions.
For ARMORY, we can reduce the range by modifying the start and the halt
symbols to decrease its execution time. For ARCHIE, we can reduce the scope
by adjusting the start and end addresses and reducing the number of faults to
be injected.

7 Conclusion

In our attempt to evaluate four open-source fault simulation tools, we had the
opportunity to compare FiSim, ZOFI, ARMORY and ARCHIE objectively. They

14 A. Adhikary and I. Buhan

Table 5. Comparison among FiSim, ZOFI, ARMORY and ARCHIE

Use of
Tools CPU cores Granularity
& Memory

Injection Access to
Accuracy |Micro-architecture

Automatically utilizes
Riscure FiSim |all available CPU cores
(Demo Edition) About 50%

of memory
Automatically utilizes
ZOFI all ava;lil;ft (;OP(;j €T Instruction |Low No

of memory

Instruction | Medium |[No

Automatically utilizes
all available CPU cores . .
ARMORY More than 50% Instruction | Medium |No
of memory
Automatically utilizes
all available CPU cores

ARCHIE About 100% Instruction | Medium [No

of memory

employ different techniques to navigate faults and present varying difficulty levels
to the user.

FiSim could be the simplest to use if only its engine were written in a way
to incorporate different kinds of implementations. Barring this drawback, if the
user intends to figure out fault injection locations in implementations similar
to that of a secure bootloader, FiSim would be the tool of choice. However, it
reports faults deterministically, which doesn’t conform with the concept of fault
injections. However, FiSim is one of the most elegant (equipped with GUI) tools
if we re-write its engine according to our needs.

ZOFT is the simplest because it just takes the binary and the number of test
runs. However, it supports binaries that run on x86_64 Linux. Though there are
several arguments to fine-tune the search for faults, defining them is optional.
As long as the golden run takes more than 0.5 seconds to execute, ZOFI would
return valid results. It tends to produce only the number of faulted instructions
sans any details. So, the tool doesn’t provide any address pointing to the fault.
This means it could be tedious to make an implementation fault attack resistant
since one would need to run it through ZOFI numerous times. Furthermore,
lack of addresses where faults are injected could make it relatively harder to
rectify the faulty locations. Though, ZOFT’s non-deterministic nature captures
the essence of fault injection.

If the user is interested in an ARMv6M, ARMv7M or ARM7EM implemen-
tation or any other implementation that could be efficiently modified to one,
then ARMORY would be the fault simulation tool to pick. Apart from being
restricted to the ARM architecture, there isn’t much downside. However, unlike

SoK: Getting started with open-source fault simulation tools 15

other tools based upon an existing emulator, ARMORY comes with an emulator
of its own, M-ulator. Naturally, there are pros and cons to both sides. Built upon
an existing emulator gets the tools more confidence, acceptance, and access to all
the architectures that the emulator can emulate. Building one’s emulator could
be advantageous in designing it per target, making it more compatible with the
fault injection tool.

Unlike the other fault simulation tools, which inspect the space for faults,
ARCHIE only confirms if the user’s estimate regarding the faults is accurate. It
supports all the architectures that QEMU emulates. Though if that architecture
isn’t ARM, then the user would need to build it before executing ARCHIE, as
only the ARM architecture of QEMU is pre-built with the tool. Also, it uses an
older version of QEMU and remains to be seen if it is forward compatible with
the current QEMU version.

The choice of fault simulation tool depends on the user’s purpose. If the
implementation follows the program structure of a bootloader, and the user cares
about first-order faults, then FiSim works best. If it’s a x86_64 Linux binary and
the user doesn’t require the fault locations then they can prefer ZOFI. In case
it’s an ARM-M binary, ARMORY is the tool of choice. If the user is experienced
enough to estimate fault configurations and has ample memory resources, then
going for ARCHIE is preferable since it provides detailed working for debugging
purposes.

References
1. The reset glitch hack : A new exploit on
xbox 360 [en l, http://www.logic-sunrise.com/

news-341321-the-reset-glitch-hack-a-new-exploit-on-xbox-360-en.html

2. How the apple airtags were hacked (May 2021), https://www.youtube.com/watch?
v=_EOPWQvW-14

3. Arribas, V., Wegener, F., Moradi, A., Nikova, S.: Cryptographic fault diagnosis
using verfi. Cryptology ePrint Archive, Paper 2019/1312 (2019), https://eprint.
iacr.org/2019/1312, https://eprint.iacr.org/2019/1312

4. Becker, M., Baldin, D., Kuznik, C., Joy, M.M., Xie, T., Mueller, W.: Xemu:
An efficient gemu based binary mutation testing framework for embedded soft-
ware. In: Proceedings of the Tenth ACM International Conference on Embed-
ded Software. p. 33-42. EMSOFT ’12, Association for Computing Machinery,
New York, NY, USA (2012). https://doi.org/10.1145/2380356.2380368, https:
//doi.org/10.1145/2380356.2380368

5. BlackHatOfficialY'T: Minimum failure - stealing bitcoins with electromagnetic fault
injection (Jan 2020), https://www.youtube.com/watch?v=WOMAOGOvXnA

6. Bosio, A., Natale, G.D.: Lifting: A flexible open-source fault sim-
ulator. In: 2008 17th Asian Test Symposium. pp. 3540 (2008).
https://doi.org/10.1109/ATS.2008.17

7. Burchard, J., Gay, M., Ekossono, A.S.M., Horacek, J., Becker, B., Schubert, T.,
Kreuzer, M., Polian, I.: Autofault: Towards automatic construction of algebraic
fault attacks. In: 2017 Workshop on Fault Diagnosis and Tolerance in Cryptography
(FDTC). pp. 65-72 (2017). https://doi.org/10.1109/FDTC.2017.13

http://www.logic-sunrise.com/news-341321-the-reset-glitch-hack-a-new-exploit-on-xbox-360-en.html
http://www.logic-sunrise.com/news-341321-the-reset-glitch-hack-a-new-exploit-on-xbox-360-en.html
https://www.youtube.com/watch?v=_E0PWQvW-14
https://www.youtube.com/watch?v=_E0PWQvW-14
https://eprint.iacr.org/2019/1312
https://eprint.iacr.org/2019/1312
https://eprint.iacr.org/2019/1312
https://doi.org/10.1145/2380356.2380368
https://doi.org/10.1145/2380356.2380368
https://doi.org/10.1145/2380356.2380368
https://www.youtube.com/watch?v=WOMAOGOvXnA
https://doi.org/10.1109/ATS.2008.17
https://doi.org/10.1109/FDTC.2017.13

16

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

A. Adhikary and I. Buhan

Chylek, S., Goliszewski, M.: Qemu-based fault injection framework. Studia Infor-
matica 33, 25-42 (01 2012)

Ferraretto, D., Pravadelli, G.: Efficient fault injection in gemu. In:
2015 16th Latin-American Test Symposium (LATS). pp. 1-6 (2015).
https://doi.org/10.1109/LATW.2015.7102401

Grycel, J., Schaumont, Pp.: Simplifi: Hardware simulation of
embedded software fault attacks. Cryptography 5(2) (2021).
https://doi.org/10.3390/cryptography5020015, https://www.mdpi.com/

2410-387X/5/2/15

Hauschild, F., Garb, K., Auer, L., Selmke, B., Obermaier, J.: Archie: A gemu-based
framework for architecture-independent evaluation of faults. In: 2021 Workshop
on Fault Detection and Tolerance in Cryptography (FDTC). pp. 20-30 (2021).
https://doi.org/10.1109/FDTC53659.2021.00013

Hoffmann, M., Schellenberg, F., Paar, C.: Armory: Fully automated and exhaustive
fault simulation on arm-m binaries. IEEE Transactions on Information Forensics
and Security 16, 1058-1073 (2021). https://doi.org/10.1109/TIFS.2020.3027143
Jenn, E., Arlat, J., Rimen, M., Ohlsson, J., Karlsson, J.: Fault injec-
tion into vhdl models: the mefisto tool. In: Proceedings of IEEE 24th In-
ternational Symposium on Fault- Tolerant Computing. pp. 66-75 (1994).
https://doi.org/10.1109/FTCS.1994.315656

K, K., Roy, I., Rebeiro, C., Hazra, A., Bhunia, S.: Feds: Comprehensive fault
attack exploitability detection for software implementations of block ciphers.
TACR Transactions on Cryptographic Hardware and Embedded Systems 2020(2),
272-299 (2020). https://doi.org/https://doi.org/10.13154 /tches v2020.i2.272-299,
https://tches.iacr.org/index.php/TCHES/article/view/8552

Khanna, P., Rebeiro, C., Hazra, A.: Xfc: A framework for exploitable fault charac-
terization in block ciphers. In: 2017 54th ACM/EDAC/IEEE Design Automation
Conference (DAC). pp. 1-6 (2017). |https://doi.org/10.1145/3061639.3062340
LimitedResults: Enter the efm32 gecko (Jun 2021), https://limitedresults.com/
2021/06/enter-the-efm32-gecko/

Nasahl, P., Osorio, M., Vogel, P., Schaffner, M., Trippel, T., Rizzo, D., Man-
gard, S.: Synfi: Pre-silicon fault analysis of an open-source secure element
(2022). https://doi.org/10.48550/ ARXIV.2205.04775, https://arxiv.org/abs/
2205.04775

Porpodas, V.: ZOFI: zero-overhead fault injection tool for fast transient fault cover-
age analysis. CoRR abs/1906.09390 (2019), http://arxiv.org/abs/1906.09390
Richter-Brockmann, J., Rezaei Shahmirzadi, A., Sasdrich, P., Moradi, A., Glineysu,
T.: FIVER — robust verification of countermeasures against fault injections. IACR
Transactions on Cryptographic Hardware and Embedded Systems 2021(4), 447—
473 (Aug 2021). https://doi.org/10.46586/tches.v2021.i14.447-473, artifact avail-
able at https://artifacts.iacr.org/tches/2021/a16

Riscure: Riscure/fisim: An open-source deterministic fault attack simulator proto-
type, https://github.com/Riscure/FiSim

Roy, L., Rebeiro, C., Hazra, A., Bhunia, S.: Safari: Automatic synthesis of fault-
attack resistant block cipher implementations. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 39(4), 752-765 (2020).
https://doi.org/10.1109/TCAD.2019.2897629

Saha, S., Alam, M., Bag, A., Mukhopadhyay, D., Dasgupta, P.: Leakage assess-
ment in fault attacks: A deep learning perspective. Cryptology ePrint Archive,
Paper 2020/306 (2020), https://eprint.iacr.org/2020/306, https://eprint.
iacr.org/2020/306

https://doi.org/10.1109/LATW.2015.7102401
https://doi.org/10.3390/cryptography5020015
https://www.mdpi.com/2410-387X/5/2/15
https://www.mdpi.com/2410-387X/5/2/15
https://doi.org/10.1109/FDTC53659.2021.00013
https://doi.org/10.1109/TIFS.2020.3027143
https://doi.org/10.1109/FTCS.1994.315656
https://doi.org/https://doi.org/10.13154/tches.v2020.i2.272-299
https://tches.iacr.org/index.php/TCHES/article/view/8552
https://doi.org/10.1145/3061639.3062340
https://limitedresults.com/2021/06/enter-the-efm32-gecko/
https://limitedresults.com/2021/06/enter-the-efm32-gecko/
https://doi.org/10.48550/ARXIV.2205.04775
https://arxiv.org/abs/2205.04775
https://arxiv.org/abs/2205.04775
http://arxiv.org/abs/1906.09390
https://doi.org/10.46586/tches.v2021.i4.447-473
https://artifacts.iacr.org/tches/2021/a16
https://github.com/Riscure/FiSim
https://doi.org/10.1109/TCAD.2019.2897629
https://eprint.iacr.org/2020/306
https://eprint.iacr.org/2020/306
https://eprint.iacr.org/2020/306

23.

24.

25.

26.

SoK: Getting started with open-source fault simulation tools 17

Saha, S., Kumar, S.N., Patranabis, S., Mukhopadhyay, D., Dasgupta, P.: Alafa:
Automatic leakage assessment for fault attack countermeasures. In: 2019 56th
ACM/IEEE Design Automation Conference (DAC). pp. 1-6 (2019)

Saha, S., Mukhopadhyay, D., Dasgupta, P.: Expfault: An automated
framework for exploitable fault characterization in block ciphers (re-
vised version). Cryptology ePrint Archive, Paper 2018/295 (2018).
https://doi.org/10.13154/tches.v2018.i2.242-276, https://eprint.iacr.org/
2018/295, https://eprint.iacr.org/2018/295

Simevski, A., Kraemer, R., Krstic, M.: Automated integration of fault injection
into the asic design flow. In: 2013 IEEE International Symposium on Defect and
Fault Tolerance in VLSI and Nanotechnology Systems (DFTS). pp. 255-260 (2013).
https://doi.org/10.1109/DFT.2013.6653615

Srivastava, M., SLPSK, P., Roy, I., Rebeiro, C., Hazra, A., Bhunia, S.: Solomon:
An automated framework for detecting fault attack vulnerabilities in hardware. In:
Design, Automation, and Test in Europe Conference Exhibition (DATE). pp. 310—
313. DATE, IEEE (2020). https://doi.org/10.23919/DATEA8585.2020.9116330,
https://ieeexplore.ieee.org/document/9116380

https://doi.org/10.13154/tches.v2018.i2.242-276
https://eprint.iacr.org/2018/295
https://eprint.iacr.org/2018/295
https://eprint.iacr.org/2018/295
https://doi.org/10.1109/DFT.2013.6653615
https://doi.org/10.23919/DATE48585.2020.9116380
https://ieeexplore.ieee.org/document/9116380

	SoK: Getting started with open-source fault simulation tools

