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Abstract—Distributed key generation (DKG) allows bootstrap-
ping threshold cryptosystems without relying on a trusted party,
nowadays enabling fully decentralized applications in blockchains
and multiparty computation (MPC). While we have recently seen
new advancements for asynchronous DKG (ADKG) protocols,
their performance remains the bottleneck for many applications,
with only one protocol being implemented (DYX+ ADKG, IEEE
S&P 2022). DYX+ ADKG relies on the Decisional Composite
Residuosity assumption (expensive to instantiate) and the Deci-
sional Diffie-Hellman assumption, incurring a high latency (more
than 100s with a failure threshold of 16). Moreover, the security of
DYX+ ADKG is based on the random oracle model (ROM) which
takes hash function as an ideal function; assuming the existence of
random oracle is a strong assumption and up to now we cannot
find any theoretically-sound implementation. Furthermore, the
ADKG protocol needs public key infrastructure (PKI) to support
the trustworthiness of public keys. The strong models (ROM
and PKI) further limit the applicability of DYX+ ADKG, as
they would add extra and strong assumptions to underlying
threshold cryptosystems. For instance, if the original threshold
cryptosystem works in the standard model, then the system using
DYX+ ADKG would need to use ROM and PKI.

In this paper, we design and implement a modular ADKG
protocol that offers improved efficiency and stronger security
guarantees. We explore a novel and much more direct reduction
from ADKG to the underlying blocks, reducing both the com-
putational overhead and communication rounds of ADKG in
the normal case. Our protocol works for both the low-threshold
and high-threshold scenarios, being secure under the standard
assumption (the well-established discrete logarithm assumption
only) in the standard model (no trusted setup, ROM, or PKI).

I. INTRODUCTION

Distributed key generation (DKG) allows a group of servers
to jointly generate a public and private key pair such that each
server obtains a system public key and a share of the secret key
corresponding to the public key. The DKG mechanism can be
used to avoid trusted setup in various threshold cryptosystems,

such as threshold encryption [46], threshold signatures [8],
[45], [10], threshold common coins [15], all of which are
essential building blocks in modern blockchains, cryptocurren-
cies, and Byzantine fault-tolerant (BFT) protocols [41], [28],
[34], [32], [48], [14].

While DKG has been extensively studied in synchronous
environments, we still lack efficient asynchronous DKG
(ADKG) protocols—which are increasingly needed in both
partially synchronous and asynchronous BFT protocols such
as SBFT [32], HotStuff [48], HoneyBadger [41], Dumbo [34],
Narwhal&Tusk [24], and PACE [50]. Only until very recently,
we have the first implementation of ADKG [27] (which we call
DYX+ ADKG). The DYX+ ADKG protocol supports both low
(regular) threshold (t+1 out of n = 3t+1) and high threshold
(at least 2t + 1 out of n = 3t + 1). Being able to support
the high threshold is of particular importance, as popular
BFT protocols such as SBFT [32] and HotStuff [48] and
various decentralized crypto wallets require high thresholds.
The DYX+ ADKG protocol, however, incurs a high latency
(more than 100s for t = 16 for high threshold). Moreover,
the protocol is based on strong assumptions and models: 1)
it assumes both the hardness of Decisional Diffie-Hellman
(DDH) problem and Decisional Composite Residuosity (DCR)
problem [43] (more expensive to instantiate than conventional
elliptic curve hardness problems), 2) relies on the random
oracle model (ROM) by treating hash functions as ideal
random oracles [5] (no secure instantiations in practice), and
3) needs to use PKI (public key infrastructure) to support
the trustworthiness of public keys. Therefore, the resulting
threshold cryptosystems using the DYX+ ADKG protocol
would need all these assumptions. Consider the well-known
threshold encryption scheme of Boneh, Boyen, and Halevi
[9] under the Bilinear Diffie-Hellman (BDH) assumption in
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the standard model. If using DYX+ ADKG, then its security
would additionally rely on the DCR assumption, the DDH
assumption, ROM, and PKI—hindering the application and
adoption of DYX+ ADKG.

A. Our Contributions

We design and implement a simple and efficient ADKG
protocol that supports both the low threshold and the high
threshold. The runtime of DYX+ ADKG is about 2x-4.6x that
of our protocol. Moreover, our protocol relies on the classic
discrete logarithm (DL) assumption only (weaker than the
DDH assumption and cheaper to instantiate than the DCR
assumption), and does not assume ROM or PKI, thereby
improving the security guarantees of ADKG.

At the core of our protocol are 1) a new and direct reduction
from ADKG to the underlying building block—a variant of
asynchronous complete secret sharing (ACSS) protocols [19],
and 2) a latency-optimized and computationally efficient ACSS
construction supporting both the low threshold and the high
threshold in the standard model (without using PKI or ROM).

First, we show a more efficient and direct reduction from
(high-threshold) ADKG to (high-threshold) ACSS. Our re-
duction deviates from existing constructions, building on top
of the PACE [50] and WaterBear [51] BFT framework. In
particular, we first run n parallel regular ACSS or high-
threshold ACSS (HACSS) instances to distribute the secret
shares, and then run n parallel reproposable asynchronous
binary Byzantine agreement (RABA) instances [50] based on
local coins to agree on which (H)ACSS secrets are included
in the agreed public/secret pairs. RABA protocols offer a
fast path such that in the normal case our ADKG has fast
termination.

Second, we build an efficient ACSS protocol with the
homomorphic partial commitment property [27], where servers
that terminate will output a commitment (e.g., gs) of the
secret shared (e.g., s) and the commitments are additively
homomorphic. Our protocol works for both the low threshold
and the high threshold. Our protocol relies on the standard
discrete logarithm (DL) assumption only and incurs O(λn3)
communication (where λ is a security parameter), outperform-
ing protocols of the same kind.

We summarize our contributions in the following:
• We propose a novel reduction approach to building an

efficient ADKG protocol that is not only more efficient
than DYX+ ADKG protocol but also relies on the standard
DL assumption in the standard model (no ROM and no
PKI). Besides, our ADKG protocol supports both the low
and high thresholds and supports the field element as the
secret key, so it is compatible with state-of-the-art threshold
cryptosystems and distributed applications.
• We build the first high-threshold asynchronous complete

secret sharing (HACSS) protocol that simultaneously sat-
isfies 1) the homomorphic partial commitment property, 2)
optimal resilience, 3) O(λn3) communication, 4) security
using the standard assumption (the DL assumption), and 5)
security in the standard model (no ROM or PKI).

• We offer a formal definition of security for ADKG and
provide a proof of correctness for our ADKG protocol.

• We implement and evaluate our ADKG protocol, showing
our protocol is more efficient (2x-4.6x) than DYX+ proto-
col. We provide an open-source library for our protocol.

Concurrent work. Concurrent to our work, Das, Xiang,
Kokoris-Kogias, and Ren (DXKR) provide a beautiful ADKG
protocol [25] that offers improved performance to the DYX+
ADKG protocol. The DXKR protocol is more efficient than
DYX+ ADKG protocol and appears more efficient than ours
with the high threshold. However, the DXKR protocol relies
on both ROM and PKI, while our protocol does not use ROM
or PKI, thereby offering stronger security guarantees. Our
protocol follows a path that is different from DYX+ ADKG
and DXKR ADKG and is of independent interest. Besides,
our ACSS and HACSS protocols do not rely on ROM, PKI,
or follow the accusation paradigm (which can lead to extra
rounds of communication). In addition, we contribute a new
Golang library for both ADKG and ACSS to the community.

II. RELATED WORK

Synchronous DKG. Unlike ADKG, synchronous DKG
has been studied since 1990’s and a considerable
amount of synchronous DKG protocols have been
proposed [44],[18],[29],[20],[31],[42],[35],[33].
Partially synchronous DKG. In partial synchronous settings,
the protocol of Kate, Huang, and Goldberg [36] has O(λn4)
communication. The work [36] has recently been improved
by a factor of O(n/ log n) in computation at the cost of an
O(log n) communication increase [47].
ADKG. In completely asynchronous environments, Kokoris-
Kogias, Malkhi, and Spiegelman (KMS) provided the first
ADKG protocol that has a total communication cost of
O(λn4) and expected round complexity of O(n) [38].

Abraham et al. proposed the first ADKG protocol with
O(1) time and O(λn3 log n) communication [3]. Later and
independently, Gao et al. [30] and Das, Xiang, and Ren [26]
reduced the communication by a factor of O(log n). All these
protocols [3], [30], [26] rely on a special publicly verifiable
secret sharing (PVSS) scheme [35], so they only support the
scenario where the secret key is a group element and cannot
be used in the conventional threshold cryptosystems [46], [8],
[45], [10], [15] where the secret key is a field element.
AVSS, ACSS, and HACSS. Our work is based on asyn-
chronous complete secret sharing (ACSS) which compared
to the conventional asynchronous verifiable secret sharing
(AVSS), additionally ensures that if an ACSS protocol ter-
minates at one server, then all correct servers will eventually
receive valid shares. Earlier ACSS protocols proposed in the
1990s achieved unconditional security [19], [6], [17], yet at
the expense of huge communication. The first practical ACSS
scheme was achieved by Cachin et al. [13] (assuming the
discrete logarithm assumption). Their protocol achieves an op-
timal message complexity of O(n2) and resilience of n > 3t,
but has O(λn3) communication complexity. Various ACSS
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protocols have been proposed to improve the communication
complexity [49], [26], [4].

If an ACSS supports a high threshold of 2t+1 out of 3t+1,
then we call it HACSS. The same paper of Cachin et al. [13]
proposed the first dual-threshold ACSS with consensus thresh-
old t < n/4 (not optimal) and privacy threshold p < n/2, with
the same message and communication complexity as the above
one. In KMS ADKG, the authors proposed the first HAVSS
with optimal resilience. The construction comes with a price of
O(λn4) communication with 4 rounds of communication and
the need for PKI. Alhaddad et al. reduced the communication
complexity of HACSS to O(λn2 log n) without assuming PKI
or trusted setup [4]. Das et al. further reduced the communi-
cation to O(λn2) communication at the price of relying on
ROM, PKI and non-standard assumptions [27].

III. SYSTEM MODEL AND SYSTEM OVERVIEW

We consider distributed key generation in asynchronous
environments making no timing assumptions on message
processing or transmission delays. We assume t ≤ ⌊n−1

3 ⌋,
which is optimal. For simplicity, we assume n = 3t+ 1.

Unlike prior constructions, our protocol in this paper does
not rely on PKI (public key infrastructure). Namely, we neither
use public-key encryption or digital signatures, nor rely on any
properties that the model has. We only assume authenticated
and private channels, the collision resistance property of hash
functions, and the hardness of discrete logarithm. Also, our
protocol works in the standard model, while prior construc-
tions assume the random oracle model (ROM) treating hash
functions as ideal random oracles.

Throughout the paper, λ denotes the security parameter, and
negl(λ) refers to a negligible function vanishing faster than
any inverse polynomial in the security parameter, “overwhelm-
ing” refers to 1− negl(λ) for a negligible function negl.

We define asynchronous distributed key generation (ADKG)
as an interactive protocol that generates a key pair
(pk, sk), where pk is the public key generated from
ADKG protocol, and sk is a vector of n secret keys. Let
(transcript, pk) $← ADKG(I, n), where n is the number of the
servers, I denotes the indices of the faulty servers (|I| ≤ t),
and transcript represents the messages exchanged throughout
the process. We consider a recover algorithm that takes as
input secret shares submitted by any set of p + 1 correct
servers and outputs the secret key sk corresponding to pk.
Here, p is the recovery threshold. If p = t, the threshold
is a (regular) low threshold. If p = 2t, the threshold is a
high threshold: Such a setting is needed for the popular BFT
protocols (e.g., SBFT [32], HotStuff [48]). We consider the
following properties of ADKG:

• Termination. All correct servers eventually terminate with
probability 1.
• Agreement. All correct servers that terminate output the

same ADKG public key pk.
• Completeness. Each correct server will output a secret key

share ski.

• Robustness. There exists an efficient algorithm recover
such that sk ← recover(ADKG, sk1, . . . , skl), where the
set of secret key shares contains shares from at least
p + 1 correct servers and sk is the unique key such that
pk ← KeyGen(1λ; sk).

• Security preservation. A threshold cryptographic scheme
under ADKG retains all the properties of the standard
scheme under the key generation (KeyGen) algorithm.

The formal definition of security preservation
is described as below. We define a protocol
(transcript, pk, sk, st) $←OracleDKG(I, n) that knows
the internal state of each server, including the internal
state st of the adversary A and also the key pair
(pk, sk). We define Game as a game containing the
line pk

$← KeyGen(1λ; sk) (denoted linepk) and where pk
is the input to an adversary A. Define Game′(line, x) as
Game but with linepk replaced by line and A given x
as input rather than pk. We go on to define lineadkg as
the line (transcript, pk, sk, st) $←OracleADKG(I, n),
and define ADKG-Game ← Game′(lineadkg, st).
We say ADKG preserves security for Game if
AdvADKG-Game

A (λ) ≤ AdvGame
A (λ) + negl(λ), for any

probabilistic polynomial-time adversary A.
Our definition of security preservation follows that of dis-

tributed key generation of Gurkan et al. [35]: we consider the
security of ADKG and the underlying threshold cryptosystem
altogether. We extent [35] to the asynchronous setting.

A. System Overview

Review of DYX+ ADKG. Existing ADKG protocols follow
a common approach as follows: each of the n servers con-
currently and independently runs an AVSS instance to share a
random secret among all the servers; as long as t + 1 AVSS
instances terminate, all servers can locally add their shares as
the secret key, because the added secret key contains at least
a share from a correct server. The crux, however, is to agree
on which AVSS shares to aggregate for the final secret key—a
challenging task in asynchronous settings.

As shown in Figure 1a, DYX+ ADKG has four phases:
sharing phase, key set proposal phase, agreement phase, and
key derivation phase. In the sharing phase, each server uses
an ACSS instance to secret share a random secret. In the
key set proposal phase, each server waits for t + 1 ACSS
instances completed, and uses Byzantine reliable broadcast
(BRB) [16], [11] to broadcast the key set of the indexes of
the t + 1 instances. In the agreement phase, servers agree
on the valid key sets using n asynchronous binary Byzantine
agreement (ABA) instances. As in [7], the phase consists of
two subphases: ABA instances refrain from inputting 0 to any
ABA until the first ABA terminates with 1. The random coins
needed for the i-th ABA are generated from the aggregated
secrets from the key set proposal phase; for ABA instances
that have not received the corresponding key sets, servers
rely on the good-case-coin-free property of ABA to guarantee
termination [27], [23]. Finally, in the key derivation phase,
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(a) DYX+ ADKG [27]. (b) Our ADKG.

Fig. 1: DYX+ ADKG vs. Our ADKG.

servers exchange commitments of secret shares and reconstruct
the final public key [42].

DYX+ ADKG relies on various strong assumptions which
we illustrate as follows:

• Random oracle model (ROM) needed. In the low
threshold case, DYX+ ADKG implements the DXR ACSS
scheme [26]. For the high threshold case, DYX+ ADKG
implements DCR-ACSS. In both cases, zero-knowledge
proofs and Fiat-Shamir heuristic are used to ensure prov-
able security in the random oracle model (ROM). Addition-
ally, the key derivation phase also uses a variant of Chaum-
Pederson’s protocol [22] to ensure share consistency—
again requiring ROM.
• PKI and strong cryptograhic assumptions needed. The

HACSS scheme used in DYX+ ADKG requires PKI.
This is due to usage of publicly verifiable secret sharing
(PVSS) scheme used in [26]. The HACSS scheme relies
on the both the Decisional Composite Residuosity (DCR)
assumption [43] (expensive to instantiate than elliptic curve
based DL problems) and the DDH assumption (stronger
than DL). Both assumptions are strong, adding additional
requirements to the underlying threshold crytosystems.
For instance, if we want to use the threshold encryption
algorithm of Shoup and Gennaro [46] (based on the CDH
assumption) with DYX+ ADKG, then we must additionally
require PKI and the stronger DCR and DDH assumptions.

Our ADKG protocol. When designing our ADKG protocol,
we have two goals in mind: 1) improved efficiency and 2)
stronger security guarantees. Correspondingly, our resulting
protocol makes ADKG more practical and more applicable.

Our protocol first benefits from a direct reduction from
ADKG to ACSS or HACSS. As depicted in Figure 1b, our
protocol has only two phases—a sharing phase (using ACSS
or HACSS as usual) and an agreement phase (using repro-
posable ABA (RABA) [50] instead of using the conventional
ABA). Our idea remains the same as prior works, yet being
more terse. Namely, the sharing phase runs n parallel ACSS
instances and the agreement phase agrees on which ACSS
shares to aggregate for the final secret key. There are several
challenges for this idea to work; moreover, we aim at building
our ADKG protocol with stronger security guarantees—no
ROM, PKI, or non-standard assumptions.

The first challenge is to ensure that ACSS and HACSS can

be built efficiently and without the need of ROM, PKI, or non-
standard assumptions. Recall we need an ACSS scheme with
the homomorphic partial commitment property. In a sense, the
property requires leaking gs (where s is the shared secret) and
gs is additively homomorphic. Recall that in the DCR-ACSS
of the DYX+ ADKG protocol, a standard ACSS scheme is
used and a verifiable encryption is then applied to ensure the
property. But we cannot use the same strategy, as doing so
would necessarily use ROM.

To tackle the issue, we directly build a new HACSS scheme
that natively has the homomorphic partial commitment prop-
erty and avoids using non-standard cryptographic assumptions,
ROM, or PKI. We develop the technique in Haven HACSS [4]
yet leaking the commitment for the secret. We carefully design
our protocol to ensure provable security in the sense of
reduction-based modern cryptography.

Second, compared to the agreement phase in DYX+ ADKG,
RABA in our agreement phase is fully parallelizable, reducing
the running time of ABA phases in DYX+ ADKG. However,
RABA requires using random coins as input. If we use the
same approach as in DYX+ ADKG to derive random coins,
then we would have to rely on ROM and stronger assumptions.
We instead use the local coin based RABA in [51].

Last, in our approach, each server can obtain its private key
by locally adding the shares agreed, and obtain the public key
by aggregating the commitments of shares agreed. Namely, we
do not need the key derivation phase in DYX+ ADKG. Hence,
our approach gains in simplicity, modularity, and efficiency.
But crucially, all these features benefit from a careful (and
subtle) security proof (see Sec. VI).

IV. BUILDING BLOCKS

A. ACSS and HACSS

An AVSS scheme is an interactive protocol between n
servers and allows a dealer server to share a secret among
all servers in such a way that they obtain consensus over the
shared secret while also protecting the privacy of the secret
until reconstruction time even in the presence of Byzantine
servers. For dual-threshold AVSS, the number of servers
required for reconstruction of the secret may be different from
the number of faulty servers that the protocol can tolerate. For
instance, a typical privacy threshold (called high threshold) is
2t+ 1 out of n = 3t+ 1 servers.
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A (n, p, t) dual-threshold asynchronous verifiable secret
sharing (DAVSS) protocol has two stages:

• Sharing stage. This stage begins when a special server (the
“dealer”) pd, is activated on an input message of the form
(ID.d, in, share, s). Here, the value ID.d is a tag identifying
the session, and s is the dealer’s secret. pd begins the
protocol to share s using ID.d. A server pi has completed
the sharing for ID.d when it generates a local output of the
form (ID.d, out, shared).
• Reconstruction stage. After server pi has completed the

sharing stage, it may start reconstruction for ID.d when
activated on a message (ID.d, in, reconstruct). Eventually,
the server outputs (ID.d, out, reconstructed, zi), in which
case we say that pi reconstructs zi for ID.d.

An (n, p, t)-DAVSS satisfies the following security properties
with an adversary A controlling up to t servers.

• Privacy. If a correct dealer shared s using ID.d and at most
p − t correct servers started reconstruction for ID.d, then
A has no information about s.
• Liveness. 1) If the dealer pd is correct throughout the shar-

ing stage, then with overwhelming probability all correct
servers complete the sharing. 2) If some correct server
completes the sharing for ID.d, then all correct servers
complete the sharing for ID.d. 3) If all correct servers start
reconstruction for ID.d, then with overwhelming probabil-
ity every correct server pi reconstructs some si for ID.d.
• Correctness. Once p + 1 correct servers have completed

the sharing for ID.d, there exists a fixed value z such that
the following holds with overwhelming probability: 1) if
the dealer shared s using ID.d and is correct throughout
the sharing stage, then z = s and 2) if a correct server pi
reconstructs zi for ID.d, then zi = z.

A high-threshold AVSS (HAVSS) protocol is a (n, p, t)-DAVSS
that supports any choice of t < n/3 and p < n− t.

For our purpose, we consider the following privacy notion,
where the adversary learns the commitment gs for the secret s.
• Privacy. If a correct dealer shared s using ID.d and at most
p − t correct servers started reconstruction for ID.d, then
A has no information about s except for what is implied
by the value y = gs.

An HACSS is an HAVSS scheme that additionally ensures
every correct server receives its share of the secret. Formally,
an HACSS should additionally satisfy completeness:
• Completeness. If a correct server terminates the sharing

protocol, then there exists a degree p polynomial R(·) such
that R(0) = s′ and each correct server will hold a secret
share s′i = R(i). If the dealer is correct, then s′ = s.

If an HACSS scheme satisfies privacy and the commitments
are additively homomorphic, we say it satisfies the homomor-
phic partial commitment property.

B. Commitment Schemes

In this work, we consider non-interactive commitment
schemes for polynomials and vectors. For our purpose, we use

Feldman commitment for the polynomial commitment and use
Merkle tree for the vector commitment [40].

Let G be a cyclic group of a prime order q with a generator
g. Given a polynomial R(x) of degree p: R(x) = r0 + r1x+
· · ·+ rpx

p, where the coefficients ri ∈ Zq , Feldman commit-
ment for R(x) is (gr0 , gr1 , · · · , grp). A Feldman commitment
for R(x) uniquely determines R(x).

Vector commitments are succinct encodings of ordered lists
in such a way that one can later open a value at a specific
location [21], [39]. A vector commitment scheme V = (VCom,
VGen, VVerify) consists of three algorithms:
• VCom(v⃗) → C is given a vector v⃗ ∈ U ℓ where ℓ ≤ L. It

outputs a commitment string C.
• VGen(v⃗, i) → wi is given a vector v⃗ and an index i. It

outputs a witness string wi.
• VVerify(C, u, i, w) → b takes as input a vector commit-

ment C, an element u ∈ U , an index i, and a witness
string w. It outputs a Boolean value b that only equals 1 if
u = v⃗[i] and w is the corresponding witness.

We need the binding property of vector commitments:

• Binding. No probabilistic polynomial-time adversary can
compute a vector commitment C, a position i, two ele-
ments u and v, and two witnesses w1 and w2 such that
VVerify(C, u, i, w1) = VVerify(C, v, i, w2) = 1 with non-
negligible probability.

C. RABA

This work requires the use of a special asynchronous binary
Byzantine agreement (ABA)—RABA (reproposable ABA), a
notion that is proposed by Zhang and Duan [50]. We first
review ABA and then introduce RABA.
Asynchronous (binary) Byzantine agreement (ABA). An
ABA protocol is specified by propose and decide. Each server
proposes an initial binary value for consensus and servers will
decide on some value.
• Validity. If all correct servers propose v, then any correct

server that terminates decides v.
• Agreement. If a correct server decides v, then any correct

server that terminates decides v.
• Termination. Every correct server eventually decides some

value.
• Integrity. No correct server decides twice.

RABA. In contrast to conventional ABA protocols, where
servers can vote once only, RABA allows servers to change
their votes. Formally, a RABA protocol tagged with a unique
identifier id is specified by propose(id, ·), repropose(id, ·),
and decide(id, ·), with the input domain being {0, 1}. For
our purpose, RABA is “biased towards 1.” Each server can
propose a vote v at the beginning of the protocol. Each server
can propose a vote only once. A correct server that proposed
0 is allowed to change its mind and repropose 1. A server
that proposed 1 is not allowed to repropose 0. If a server
reproposes 1, it does so at most once. A server terminates
the protocol identified by id by generating a decide message.
RABA (biased toward 1) satisfies the following properties:
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• Validity: If all correct servers propose v and never repro-
pose v̄, then any correct server that terminates decides v.
• Unanimous termination: If all correct servers propose v

and never repropose v̄, then all correct servers eventually
terminate.
• Agreement: If a correct server decides v, then any correct

server that terminates decides v.
• Biased validity: If t + 1 correct servers propose 1, then

any correct server that terminates decides 1.
• Biased termination: Let Q be the set of correct servers.

Let Q1 be the set of correct servers that propose 1 and
never repropose 0. Let Q2 be correct servers that propose
0 and later repropose 1. If Q2 ̸= ∅ and Q = Q1∪Q2, then
each correct server eventually terminates.
• Integrity: No correct server decides twice.

Here validity is modified to accommodate the RABA syn-
tax. Integrity ensures RABA decides once only. Meanwhile,
unanimous termination and biased termination are introduced
to help achieve RABA termination. External operations are
needed to force the protocol to meet these termination con-
ditions. Last, biased validity in RABA requires that if t + 1
servers, not simply all correct servers, propose 1, then a correct
server that terminates decides 1.

V. OUR HACSS AND ACSS PROTOCOLS

In this section, we show how to build our ACSS and
HACSS protocols. Both protocols are based on the discrete
logarithm (DL) assumption and rely on authenticated and
private channels only. Namely, they do not assume PKI or
ROM. Both protocols achieve a communication complexity of
O(λn3). Our ACSS protocol can be viewed as a special case
of HACSS, so we focus on HACSS.

A. Our HACSS

Our HACSS protocol follows the Haven framework due
to AlHaddad, Varia, and Zhang [4] but differs from it in
significant manners. The two instantiations in Haven (based
on KZG commitments [37] and Bulletproofs [12]) perfectly
hide the secret key. They cannot be directly used in threshold
crytosystems, as we require the underlying HACSS to satisfy
the homomorphic partial commitment property. We therefore
propose a new HACSS protocol exposing gs where s is the
secret to be shared. Our construction is devised to satisfy
provable security, where an efficient simulator can simulate
the view of the adversary and the adversary can learn no
information about s except for what is implied by the value gs.
Crucially, we need to avoid using PKI and ROM. We compare
our HACSS scheme with existing ones in Table I.

HACSS proceeds in two phases: a sharing phase in which
the dealer distributes shares of a secret s (Algorithm 1),
and a reconstruction phase in which the servers collectively
reconstruct the secret (Algorithm 2).
Sharing phase. The sharing phase of our HACSS has three
stages, following the same communication pattern as Bracha’s

Fig. 2: Illustration of our initial work.

BRB [11]. The dealer pd transmits an O(n2)-size send mes-
sage to all servers. Then each server broadcasts an O(n)-size
echo and ready messages. Hence, our has O(n2) messages
and O(λn3) communication.

The initial work of the dealer pd is shown in lines 1-16 and
in Figure 2.

• In lines 2-4, the dealer first randomly samples a degree-p
recovery polynomial R such that R(0) = s. Then the dealer
computes a Feldman polynomial commitment for R.

• In line 5, we let G denote gs.
• In lines 6-9, the dealer first samples n degree-t share

polynomials S1, . . . , Sn. It holds Si(i) = R(i), but the n
share polynomials are otherwise uniformly sampled. Then
the dealer computes polynomial commitments of all Si.

• In lines 11-12, the dealer forms a vector yS
i containing n

evaluations (in a transposed order). The vector contains
the evaluation of one point on each share polynomial
S1, . . . , Sn. In total, the vector contains n2 points.

• In lines 13-14, the dealer forms the root commitment C, a
vector commitment to all of the polynomial commitments.
Abusing notation, we assume each polynomial commitment
contains the witness to its own inclusion in C. We will
ignore the witness when running PVerify for simplicity.

• In lines 15-16, the dealer sends to server pi the root com-
mitment, all n+1 polynomial commitments, one evaluation
on everybody’s share polynomial.

Once a server pi receives the send message from the dealer,
it verifies if the message is “consistent” (lines 17-20):

• All polynomial commitments link back to the root com-
mitment.

• All polynomial evaluations received are verifiably part of
Sj .

• The recovery and share polynomials are equal at R(i) =
Si(i).

If all checks pass, the server pi sends an echo message to
each server pm containing the root commitment C and two
pieces of information about server m’s share polynomial: its
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Algorithm 1 Sharing phase of HACSS, for server pi and tag ID.d

1: upon receiving (ID.d, in, share, s): ▷ send stage; only if pi is the dealer pd
2: randomly choose recovery polynomial R of degree p s.t. R(0) = s
3: ▷ concretely, R(x) = r0 + r1x+ · · ·+ rpx

p where r0 = s
4: R̂← PCom(R, p) ▷ make polynomial commitment for R(x); concretely, R̂ = (gr0 , gr1 , · · · , grp)
5: G← gs ▷ let G denote gs

6: for j ∈ [1..n] do ▷ j denotes the row of the matrix
7: randomly choose share polynomial Sj of degree t s.t. Sj(j) = R(j)
8: ▷ concretely, Sj(x) = sj,0 + sj,1x+ · · ·+ sj,tx

t s.t. Sj(j) = R(j)
9: Ŝj ← PCom(Sj , t) ▷ concretely, Ŝj = (gsj,0 , gsj,1 , · · · , gsj,t)

10: Ŝ ← (Ŝ1, Ŝ2, . . . , Ŝn)

11: for i ∈ [1..n] do ▷ evaluate and create witnesses (n2 points in total))
12: yS

i ← [Sj(i)] for j ∈ [1..n] ▷ one point on each Sj

13: C ← VCom(R̂, Ŝ1, Ŝ2, . . . , Ŝn) ▷ root vector commitment
14: append to R̂ and each Ŝj a witness of inclusion in C at the right location
15: for i ∈ [1..n] do
16: send (ID.d, send, seti) to server pi, where seti = {C,G, R̂, Ŝ,yS

i }

17: upon receiving (ID.d, send, setj) from pd for the first time: ▷ echo stage
18: if R̂ and all Ŝ are in C at the expected locations then
19: if PVerify(Ŝj , Sj(i), t) = 1 for all j ∈ [1..n] then ▷ concretely, verify if all gSj(i) =

∏t
k=0(Ŝj(k))

ik

20: if Sj(j) = R(j) for all j ∈ [1..n] then ▷ concretely, verify if all
∏t

k=0(Ŝj(k))
jk =

∏p
k=0(R̂(k))j

k

21: for m ∈ [1..n] do ▷ server i sends message to each server pm
22: send (ID.d, echo, infoi,m) to pm, where infoi,m = {C,G, Ŝm, Sm(i)}

23: upon receiving (ID.d, echo, infom,i) from pm for the first time: ▷ ready stage
24: if Ŝi is in C at location i and PVerify(Ŝi, Si(m), t) = 1 then
25: if not yet sent ready and received 2t+ 1 valid echo with C and G then
26: send (ID.d, ready, C, G) to all servers

27: upon receiving (ID.d, ready, C, G) from pm for the first time:
28: if not yet sent ready and received t+ 1 ready with this C and G then
29: send (ID.d, ready, C, G) to all servers ▷ amplification step

30: if received 2t + 1 ready with this C and G then ▷ delivery
31: wait to receive t+ 1 valid echo with this C and G
32: interpolate Si from the t+ 1 valid Si(m) in the received echo
33: compute Si(i)
34: output (ID.d, out, shared)

commitment Ŝm and the evaluation at one point Sm(i) to help
pm interpolate the polynomial. The step is vital to achieve
the “completeness” property for our HACSS protocol. The
remainder of the protocol proceeds as in Bracha’s broadcast.
Upon receiving 2t + 1 valid echo messages with the same
C, a server broadcasts a ready message. If a server receives
t+1 ready message with the same C, and if a server has not
broadcast a ready message, then it broadcasts a ready message.

For our construction, we use Merkle tree as the under-
lying vector commitment. The Merkle tree root element is
a vector of O(n) group elements and a Merkle tree proof
has O(λn log n) communication. The total communication
incurred by Merkle tree in send is bounded by O(λn2 log n),
while the communication in send is O(λn3).
Reconstruction phase. If a server pi completes the sharing
and starts the reconstruction stage, then this server knows the

share polynomial Si (and a witness that it links back to some
agreed root commitment C). The server sends all servers an
evaluation of Si(i) and together the witness linking Si to C.
Each server verifies the evaluation and interprets this point
as R(i). Given p + 1 valid messages from other servers, pi
interpolates the corresponding points and recovers the secret.

B. Low-Threshold ACSS

Our technique works for the case of the single-threshold
ACSS, where the privacy threshold equals the threshold t. To
do this, one just needs to choose a recovery polynomial of
degree t, while the rest of algorithms remain the same as those
of our HACSS.
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resilience communication rounds no PKI? no ROM? crypto assumption homomorphic partial commitment?
CKLS [13] n > 4f O(λn3) 3 ✓ ✓ DL ✗

KMS [38] n > 3f O(λn4) 4 ✗ ✓ DL ✓

AVZ [4] n > 3f O(λn2 logn) 3 ✓ ✗ DL ✗

DYX+ [27] n > 3f O(λn2) 3 ✗ ✗ DCR + DDH ✓

Our HACSS n > 3f O(λn3) 3 ✓ ✓ DL ✓

TABLE I: Comparison of HACSS protocols. HACSS without the homomorphic partial commitment property cannot be used
for ADKG: we include them just for a comparison.

Algorithm 2 Reconstruction phase of HACSS, for server pi
and tag ID.d

1: upon receiving (ID.d, in, reconstruct):
2: for j ∈ [1, n] do
3: send (ID.d, share, C, G, Ŝj , Sj(j)) to pj

4: upon receiving (ID.d, share, C, G, Ŝm, Sm(m)):
5: ▷ from pm
6: if Ŝm in C and PVerify(Ŝm, Sm(m), t) = 1 then
7: if received p+1 valid share with the same C and

G then
8: interpolate R from the p+ 1 valid points
9: output (ID.d, out, reconstructed, R(0))

C. Analysis

We show the proof for our HACSS protocol and the proof
easily follows for our low-threshold ACSS protocol.

Theorem 1. Assuming the DL assumption and a secure vector
commitment (that can be realized using Merkle tree), our
HACSS protocol is a high-threshold ACSS achieving liveness,
correctness, completeness, and privacy. Besides, our HACSS
protocol achieves O(n2) message complexity and O(λn3)
communication complexity.

Proof. We begin with the liveness properties.
Liveness-1. If the dealer pd is correct, then pd will send all
servers the same root commitment and polynomial commit-
ments. Hence, each server receives one point on each share
polynomial. After receiving the send message, all checks will
pass for each server. Hence, the correct servers can echo these
points. The echo message will be accepted and each server will
be able to send ready messages and interpolate their own share
polynomial.
Liveness-2. (Liveness-2 corresponds to the usual “agreement”
property of BRB. But the proof is trickier than that for
Bracha’s broadcast.) Assume that a correct server pi has
completed the sharing for ID.d. We show that another correct
pj will also complete the sharing.

First, as pi completed the sharing, it must have received
2t+1 ready messages with the same root commitment C. At
least t+1 ready messages are from correct servers. Due to line
29 (the amplification step), this will cause all correct servers
to send ready messages if they have not done so. Hence,
pj will eventually receive 2t + 1 ready messages with root
commitment C, thereby satisfying the conditional on line 30.

Second, as pi completed the sharing, pi must have sent a
ready message in line 26 or line 29. Note that the condition for

line 29 cannot be satisfied until t+1 servers sent a ready due to
line 26, at least one of whom must be correct (say, server pm).
Therefore, server pm must have observed 2t+1 echo messages
that are consistent and linked to the same root commitment
C. Hence, we know that at least t+ 1 of those echo message
senders are correct. Thus, they will also send consistent echo
messages to server pj . So pj can complete the wait step on line
31. Meanwhile, the echo messages have sufficient information
for pj to compute lines 32-33 and complete the sharing.
Liveness-3. Suppose all correct servers start reconstruction for
ID.d. First, note that there are at least n − t ≥ p + 1 correct
servers. As these servers completed the sharing, they each have
a share polynomial that can be linked back to the common
root commitment C. Hence, these servers can construct an
evaluation at Si(i) that will be accepted by others. Once p+1
such points are received, each correct server can verify the
correctness of points and recover a secret.
Privacy. To formally prove the privacy property of our HACSS
protocol, we need to build a simulator S that simulates
the view of adversary using gs for some unknown s. The
simulation is technically non-trivial, but it is simpler than the
one we will present for our ADKG protocol in Sec. VI. One
can similarly build a simulator based on our ADKG simulator,
so we simply omit the proof here.
Correctness-1. Assume that a correct dealer shared a secret s.
Then, the share polynomial evaluations at all {Si(i)}i∈[1..n]

lie on a degree p polynomial that will recover s. Due to the
Liveness-2 property, if a correct server completes the sharing,
correct servers will have a common root commitment C. Due
to the (perfect) binding property of vector commitment and
Feldman commitment, it must hold z = s.
Correctness-2. If a correct server pi reconstructs zi, it must
have received at least p+1 valid shares with the same vector
commitment C. Any set of p+1 points uniquely determine a
polynomial of degree p. As we have agreed on the commitment
C, the commitments for different subsets of points must be
the same due to the binding property of vector commitment.
As Feldman commitment is also binding, the reconstruction is
therefore unique.
Completeness. This is implied by the correctness proof and
the liveness-2 proof. Indeed, once a correct server completes
the sharing, each correct server pi will receive at least t + 1
valid echo messages allowing each correct server to obtain its
share polynomial Si and therefore obtain R(i) = Si(i).
Efficiency. The protocol achieves a message complexity of
O(n2), just as in Bracha’s BRB. In the send stage the dealer
sends n messages of size O(λn2), and in the other two stages
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Algorithm 3 ADKG, for server pi and tag ID

1: upon initialization
2: ski; pk ▷ the secret key, the public key of server pi
3: cs← ∅ ▷ the index set of agreed HACSS instances
4: select random si ▷ the HACSS secret shared by pi
5: Gi ← gsi ▷ the commitment of si
6: HACSS.share(i, in, share, si) ▷ server i shares si

7: upon (ID.j, out, shared) ▷ the sharing phase of pj’s
HACSS completes

8: if RABAj has not been started then
9: propose 1 for RABAj

10: else
11: repropose 1 for RABAj

12: upon receiving (ID.d, out, shared) from n − t HACSS
instances

13: for RABA instances that have not been started do
14: propose 0

15: upon RABAj decides 1
16: cs← cs∪{j}

17: upon all n RABA instances decide
18: wait until (ID.j, out, shared) for all j ∈ cs
19: output ski ←

∑
j∈cs s

i
j ; pk ←

∏
j∈cs Gj

each server broadcasts n messages of size O(λ). Therefore,
our HACSS has O(λn3) communication.

VI. OUR ADKG PROTOCOL

We present our ADKG protocol in Algorithm 3. Our
ADKG uses HACSS and RABA. In particular, we use the
HACSS.share and HACSS.reconstruct primitives of HACSS,
and propose, repropose and decide primitives of RABA [50],
[51]. To avoid trusted setup, we use the Quadratic RABA from
local coins [51].

Concretely, our ADKG protocol consists of n parallel
HACSS instances and n parallel RABA instances. In the
HACSS phase, each server pi HACSS.shares a secret si for
the i-th HACSS instance. If pi delivers a secret share sij
from j-th HACSS instance, it proposes 1 for RABAj . Upon
delivery of n− t HACSS instances, pi immediately proposes
0 for all RABA instances that have not been started. If
pi later delivers a secret share from some HACSSj , it has
proposed 0 for RABAj , and has not terminated RABAj , then
it reproposes 1 for RABAj . Let cs be the set of indexes where
RABAj decides 1. When all RABA instances terminate and
all HACSSi (i ∈ cs) instances are delivered, pi locally adds
the shares with indexes in cs (i.e.,

∑
j∈cs s

i
j) as the secret key

share, and locally aggregates the corresponding commitments
as the public key.

We first prove termination needed to prove other properties.

Theorem 2. All correct servers eventually terminate.

Proof. If all correct servers are activated on HACSS for ID,
they will disperse their secret shares. Eventually, all correct

servers will complete at least 2t+1 HACSS instances. Hence,
all correct servers will propose 0 for all RABA instances that
have not been started. We distinguish three cases and show
for each case all RABA instances will terminate.

We first consider case 1, where all correct servers propose
1 for an RABA. In this case, according to unanimous termi-
nation, the RABA instance eventually terminates.

We then consider case 2, where all correct servers propose 0.
In this case, we further distinguish two sub-cases: 1) If they
never repropose 1, the RABA instance eventually terminates
due to unanimous termination. 2) If some servers repropose
1, then these servers must have delivered the corresponding
secret shares. According to the agreement property (liveness
2) of HACSS, all correct servers will complete the HACSS
instances and repropose 1. The protocol will terminate due to
biased termination.

Finally, we consider case 3, where some correct servers
propose 0 and some other correct servers propose 1. The
case is similar to Case 2-2. Due to the agreement property of
HACSS, correct servers will eventually repropose 1 and the
RABA instance will terminate. Therefore, the protocol will
eventually terminate.

We are now ready to prove that each correct server will
have the same set cs.

Lemma 3. If any correct server outputs cs, then each correct
server outputs cs.

Proof. We consider the case where a correct server pj delivers
a set cs. We assume the corresponding set of secret shares is
K: the i-th element in K, K[i], may be empty or sji (a secret
share sent by pi), depending on if the corresponding RABA
instance RABAi decides 0 or 1, where i ∈ [1..n]. The index
set cs contains the indexes i ∈ [1..n] where K[i] is non-empty.

We just need to show that each server pk will output a set K ′

with a corresponding cs′ such that cs = cs′. If pj outputs a set
K, then all RABA instances either decide 0 or 1. According to
Lemma 2, we know all RABA instances must terminate. Due
to the agreement property of RABA, these RABA instances
decide the same values for pk. Therefore, all RABA instances
for pk will terminate and decide the same values as pj . Thus,
pk will have the same subset cs.

We now prove a crucial theorem on completeness.

Theorem 4. The set cs containing at least t + 1 non-empty
values will be output.

Proof. For simplicity, we assume n = 3t + 1. Conditioned
on termination for all RABA instances (shown in Lemma 2),
we now bound the number of RABA instances that decide 1
which corresponds to the number of non-empty elements. The
proof is almost identical to the proof for efficiency in PACE
BFT [50].

According to the biased validity property, a RABA instance
RABAi will definitely decide 1, if t + 1 or more correct
servers propose 1. We just need to bound the number of RABA
instances where less than t+ 1 correct servers propose 1.
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A crucial observation is that a correct server will propose
1 for at least 2t + 1 RABA instances, a fact guaranteed by
HACSS. All correct servers will input 1 for (2t+ 1)(2t+ 1)
for all RABA instances. There are at most (3t + 1)(2t + 1)
inputs for correct servers. Hence, the total number of the 0
input from all correct servers for all RABA instances is at
most (3t + 1)(2t + 1) − (2t + 1)(2t + 1) = 2t2 + t. Thus,
the number of RABA instances that decide 0 is bounded by
2t2+t
t+1 < 2t2+2t

t+1 = 2t. Thus, the number of RABA instances
that decide 1 is at least t+ 1.

We now prove the robustness property.

Theorem 5. Our ADKG protocol achieves robustness.

Proof. At the end of ADKG protocol, it holds that if i ∈ cs,
then pi has successfully performed the dealing of si under our
HACSS protocol. For each such dealing of si, each correct
server pj holds shares sji . According to the completeness
property of HACSS, these shares sji can interpolate to a unique
polynomial with constant coefficient si. For any set S of
p + 1 shares, si =

∑
j∈S lj · sji , where lj are the Lagrange

interpolation coefficients for the set S. We know each correct
server pj obtains their ADKG key skj as skj =

∑
i∈cs s

j
i .

Hence, for the set S of shares, we have

sk =
∑
i∈cs

si =
∑
i∈cs

(
∑
j∈S

lj · sji ) =
∑
j∈S

lj · (
∑
i∈cs

sji ) =
∑
j∈S

ljskj .

Namely, all ADKG secret keys {skj} correspond to the
unique secret key sk. Meanwhile, it is easy to distinguish
valid shares from invalid shares based on the polynomial
commitments broadcast. Therefore, the ADKG secret key sk
can be reconstructed in an efficient manner using interpolation.
Hence, we have completed the proof for robustness.

Finally, we prove that our ADKG protocol satisfies se-
curity preservation. Following Gurkan et al. [35], we just
need to prove that our ADKG protocol satisfies the key
expressability property. We review the definition of key-
expressable DKG. For a simulator Sim, we define as
(transcript, pk, α, pk2, sk2) ← SimDKG(Sim, I, n) a run of
the ADKG protocol, where all correct servers are controlled by
Sim which takes as input a public key pk1 and outputs α, pk2,
and sk2. We say a DKG is key-expressable if there exists such
a simulator Sim such that 1) (transcript, pk) is distributed
identically to the output of ADKG(I, n), 2) (pk2, sk2) is a
valid key pair, and 3) pk = f(α, pk1, pk2) = αpk1 + pk2.

Theorem 6. Our ADKG protocol satisfies security preserva-
tion.

Proof. We present a simulator S that takes as input pk1, and
when the ADKG outputs pk1, outputs α and sk2 such that
pk = αpk1 + pk2. Suppose pk1 = gs for some unknown
secret s. The simulator S runs the ADKG with an adversary
A that corrupts at most t servers. Due to Theorem 4, we know
cs ≥ t + 1. Hence, | cs | contains at least one correct server.
Let | cs | = b. Let IC and IM denote the set of correct servers

and faulty servers in cs, respectively. Clearly, we have cs =
IC ∪ IM , |IC | ≥ 1, and |IM | ≤ t.

At a high level, the simulation works as follows. First,
it is easy to simulate the behavior of corrupted servers in
cs and knows the secrets of corrupted servers distributed,
as the simulator knows enough points on the polynomials
shared by the corrupted servers. Second, it is also easy to
simulate the view of adversary on behalf of correct servers,
as the simulator controls all correct servers. But for one of
the correct servers, say, pk, the simulator has to change the
value broadcasted by pk to “hit” pk1. While the simulator (in
asynchronous environments) cannot enforce the final output
to be exactly pk1, it can, however, generate the output public
key that has a known relation with its input public key pk1,
thereby completing the proof.

We distinguish three cases where pi serves as an HACSS
dealer. For pi ∈ IC/{k}, the simulator S can easily generate
the messages transmitted to the faulty servers in IM , as S
can itself generate the random secret shared for these correct
servers. In particular, S follows the ADKG protocol and
generates the messages on behalf of correct servers.

For pi ∈ IM , the simulator S can also perfectly simulate
the messages transmitted to faulty servers. When the ADKG
protocol terminates, we know the HACSS process initiated
by pi ∈ IM completes. Due to the set agreement property
of the asynchronous common subset approach, we know all
correct servers include pi in their agreed subset. Hence, due to
the liveness property of the HACSS, all correct servers must
have obtained their secret shares corresponding to si. As the
simulator controls at least n − t ≥ p + 1 correct servers and
the recovery threshold for the recovery polynomial is exactly
p, the simulator can interpolate the p+ 1 shares to obtain si.
Thus, the simulator S can perfectly simulate the view of the
adversary and hence the transcript of ADKG for all pi ∈ IM .

Now we examine the case of pk (for i = k). Given an
cs set with b servers, we assume w.l.o.g. the identities of
faulty servers and correct servers in cs are {1, . . . , t} and
{t+1, . . . , b}, respectively. We also assume k ∈ {t+1, . . . , b}.
(It is possible that less than t servers are faulty in cs, but this
does not cause any problems for the simulation.)

Below we show how S would simulate the transcript for the
case where pk serves as the HACSS dealer. We describe the
simulation step by step. The steps are depicted in Figure 3.

Step 1: We first consider the send stage of HACSS. We need
to first simulate the polynomial commitment for the unknown
recovery polynomial R(x) where R(0) = s and gs = pk1.
The simulator S chooses p points (j, zj) for j ∈ [1..p] where
zj

$← Zq . Namely, we randomly choose R(k) = zk, for k ∈
[1..p].

The simulator interpolates (pk1, g
z1 , . . . , gzp) for the set

{0, 1, . . . , p} to obtain R̂ = (R̂[0], R̂[1], . . . , R̂[p]), where
R̂[0] = pk1 = gs, R̂[1] = gr1 , . . . , R̂[p] = grp . In particular,
for j ∈ [1..p], R̂[j] = grj =

∏p
k=0(g

R(k))λjk , where λjk are
coefficients such that rj =

∑p
k=0 λjkR(k). Note the above

process is different from the conventional “interpolation in the
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Fig. 3: Step-by-step simulation for the send stage.

exponent,” as now we are not evaluating a new point in the
exponent but computing the coefficients in the exponent.

We then simulate all the commitments for the n share
polynomials and all secret shares distributed to (at most) t
faulty servers [1..t] (which contains at most t × n points).
For the commitments for share polynomials, we distinguish
two cases: the commitments for Sj where j ∈ [1..p], and the
commitments for Sj for the remaining j ∈ [p+ 1..n].

Step 2: For the first case, the simulator S chooses p random
polynomials subject to Sj(j) = R(j). With the p share
polynomials fixed, it is easy to first compute the commitment
for each Sj , i.e., Ŝj , and then directly compute p × t secret
share values Sj(i), where j ∈ [1..p] and i ∈ [1..t].

Step 3: What about Sj for j ∈ [p + 1..n]? Note that the
simulator does not know R(j) for j ∈ [p+1..n]. In this case,
the simulator performs the following steps:

1) Step 3-1: S first uses R̂ to obtain gR(j) for j ∈ [p+1..n].
Equivalently, S obtains gSj(j) = gR(j) for j ∈ [p+1..n].

2) Step 3-2: S then chooses random points Sj(i) for j ∈
[p+ 1..n] and i ∈ [1..t].

3) Step 3-3: For each j ∈ [p + 1..n], S directly computes
gSj(i) for i ∈ [1..t] and then interpolates them and gSj(j)

to obtain the commitment of Sj for j ∈ [p+ 1..n].
Note the simulation for the two cases is quite different. In

particular, when simulating for the first case, we randomly
choose the share polynomials such that the polynomials are
subject to Sj [j] = R(j). However, in the second case, we first
randomly select t points for each share polynomial.

Step 4: In the echo stage, the simulator S knows the share
polynomials Sj for j ∈ [1..t] (and in fact knows Sj for j ∈
[1..p]) and easily simulates all shares sent to the faulty servers.
(Note according to our protocol, the simulator does not need
to send shares related to Sj(i) for j ∈ [t+ 1..n].)

Step 5: In the ready stage, the simulator S can easily
simulate all messages transmitted. The same holds for the
RABA phase.

Finally, when the ADKG terminates, the simulator S obtains
the public key pk = y1 · · · yb. Then the simulator S extracts
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Fig. 4: Evaluation and comparison.

pk2 =
∏b

j=1,j ̸=k yj and sk2 =
∑b

j=1,j ̸=k sj . Clearly, we have
pk = pk1 · pk2 and sk = sk1 + sk2. The simulator outputs
(1, pk2, sk2). Thus, our ADKG protocol is key-expressable,
which completes the proof of security preservation.

VII. IMPLEMENTATION AND EVALUATION

Implementation. We implement1 our ADKG protocol using
Golang. We use gRPC as the communication library. For the
HACSS protocol, we implement the one in Sec. V. For the
RABA protocol, we use the Quadratic RABA proposed in [51]
and implemented in [2]. Our library contains about 8,000 LOC
in total.

For the HACSS protocol, we use Merkle tree as the vector
commitment. As we commented earlier, doing so would not
incur more communication. We use HMAC for the authen-
ticated channels. We use CBC and HMAC to instantiate the
authenticated and private channels. We use Dedis Kyber crypto
library for all public-key cryptographic operations [1].

As part of our library, we include a visualized interface for
our protocol to facilitate its adoption (detailed in our library).
Evaluation. We evaluate our ADKG protocol implementation
on Amazon EC2 using up to 49 virtual machines (VM) evenly
distributed in four EC2 regions. Each VM is a t3a.medium
instance (with two virtual CPUs and 4GB RAM) running
ubuntu 20.04.

We vary the network sizes to evaluate our protocol and
compare the performance with DYX+ ADKG [27] using curve
25519. In each experiment, we use n = 3t+1 servers in total.
We evaluate the ADKG protocols using the high threshold of
2t+ 1 and report the average latency (runtime) for each n.

As shown in Figure 4a, our ADKG protocol consistently
outperforms DYX+ ADKG. The runtime of DYX+ ADKG
is about 2x-4.6x that of our ADKG protocol. The latency

1https://github.com/fififish/hacss
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difference becomes comparably smaller as n increases. We
did not evaluate the protocols for a larger n, as DYX+
ADKG library cannot complete as n further increases (which
is consistent with the result in their paper [27] that does not
report results for larger n’s).

We also show a runtime breakdown of our ADKG protocol
in Figure 4b. According to the results, the clear bottleneck is
HACSS. The result justifies our design that aims at reducing
the overall steps of ADKG. Also, we find that a faster HACSS
would directly imply a more efficient ADKG protocol.

VIII. CONCLUSION

In this paper, we design and implement a simple and
efficient ADKG protocol that improves both the efficiency
and security guarantees of the-state-of-the-art DYX+ ADKG.
In particular, the latency of DYX+ ADKG is about 2x-
4.6x that of our protocol; unlike DYX+ ADKG requiring
the both DDH and DCR assumptions, ROM, and PKI, our
protocol relies on the classic and weaker discrete logarithm
assumption only, and avoids ROM or PKI. We also build an
efficient HACSS protocol with stronger security guarantees
(the standard assumption and the standard model). Last, we
contribute an open-source library for our HACSS and ADKG
protocols.
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