
Private Re-Randomization for Module LWE and
Applications to Quasi-Optimal ZK-SNARKs

Ron Steinfeld1, Amin Sakzad1, Muhammed F. Esgin1,2, and Veronika Kuchta3

1 Faculty of Information Technology, Monash University, Australia
2 CSIRO’s Data61, Australia

3 Florida Atlantic University, Florida, USA
{ron.steinfeld,amin.sakzad,muhammed.esgin}@monash.edu

and vkuchta@fau.edu

Abstract. We introduce the first candidate lattice-based Designated
Verifier (DV) ZK-SNARK protocol with quasi-optimal proof length (quasi-
linear in the security/privacy parameter), avoiding the use of the expo-
nential smudging technique. Our ZK-SNARK also achieves significant
improvements in proof length in practice, with proofs length below 6 KB
for 128-bit security/privacy level. Our main technical result is a new reg-
ularity theorem for ‘private’ re-randomization of Module LWE (MLWE)
samples using discrete Gaussian randomization vectors, also known as
a lattice-based leftover hash lemma with leakage, which applies with a
discrete Gaussian re-randomization parameter that is polynomial in the
statistical privacy parameter. To obtain this result, we obtain bounds on
the smoothing parameter of an intersection of a random q-ary SIS mod-
ule lattice, Gadget SIS module lattice, and Gaussian orthogonal module
lattice over standard power of 2 cyclotomic rings, and a bound on the
minimum of module gadget lattices. We then introduce a new candi-
date linear-only homomorphic encryption scheme called Module Half-
GSW (HGSW), which is a variant of the GSW somewhat homomorphic
encryption scheme over modules, and apply our regularity theorem to
provide smudging-free circuit-private homomorphic linear operations for
Module HGSW.

Keywords: Lattice · Zero-Knowledge Proof · Post-Quantum · SNARK

1 Introduction

Zero-knowledge proof (ZKP) systems were introduced by the authors of [36] in
1985 to allow a prover holding some secret witness w for a statement x satisfying
some NP relation R, to prove knowledge of w to a verifier (the soundness prop-
erty), without revealing any information on w to the verifier (the zero-knowledge
property) beyond that revealed by the NP statement x known to the verifier.
ZKPs have a myriad of applications in privacy-preserving cryptographic pro-
tocols. However, for statements with large witnesses w, the main limitation of
classical ZKPs is that their proof size is proportional to the witness size. To

support such applications, including verifiable computation [51] and privacy-
preserving cryptocurrencies [9] it is desirable to have succinct ZKPs in which
the proof (or argument) size is only polylogarithmic in the witness size. The first
such Zero-Knowledge Succinct Non-interactive ARgument of Knowledge (ZK-
SNARK) system for NP languages was proposed by Kilian [40]. While the first
ZK-SNARKs were theoretical results and resulted in long proofs in practice, sig-
nificant practical improvements followed over the last decade [6, 8, 11, 12, 15–17,
24,25,30,37,51,57]. The shortest known ZK-SNARK constructions [38] achieve
proof lengths in the order of 128 bytes, but rely on quantum-insecure discrete-log
assumptions.

Prior work on quantum-safe and lattice-based ZK-SNARKs. ZK-
SNARKs based on quantum-safe assumptions from symmetric-key cryptogra-
phy exist [6, 8, 11, 13] but currently do not achieve proof lengths below around
100KB for typical security parameters. For ZK-SNARKs based on conjectured
quantum-safe lattice problems, there are currently two main approaches. The
first approach constructs lattice-based ZK-SNARKs that are publicly verifiable
but currently yields very long proof sizes in the order of MBs [4]4. The second
approach, which we focus on in this paper, constructs lattice-based Designated-
Verifier (DV) ZK-SNARKs, which require a preprocessing setup procedure by
a designated-verifier run before the relations to be proved are known. In such a
preprocessing DV (DV for short) model of ZK-SNARKs, proofs can only be ver-
ified by the DV holding a secret verification key. DV ZK-SNARKs still suffice for
important privacy-preserving applications such as verifiable computation. The
first lattice-based DV SNARK following the latter approach was introduced by
Boneh et al. [18], and this lattice-based DV SNARK approach was later improved
by [31, 39, 50]. The approach in these works constructs a DV SNARK using a
cryptographic compiler introduced by Bitansky et al. [17], from two building
blocks: (1) a linear-only homomorphic vector encryption scheme (i.e. a homo-
morphic encryption scheme with vector plaintexts where only linear homomor-
phic operations are computationally feasible) and (2) a Linear Probabilistically
Checkable Proof (LPCP) system. Authors of [17] observed that if the linear-only
encryption scheme satisfies a re-randomization property (so that the randomness
in a ciphertext can be re-randomized without the secret key to produce a fresh
ciphertext), then their compiler can produce a DV ZK-SNARK, i.e. a SNARK
satisfying the zero-knowledge privacy property.

The work of [18] instantiated the candidate linear-only vector encryption
from the lattice-based Regev encryption scheme. A follow-up work on quasi-
optimal SNARGs was proposed by Boneh et al. in [19] and provided a construc-
tion for Boolean circuits from a Multi-Prover Interactive Proof (MIP) system.

4 A very recent concurrent and independent work to ours [14] constructs significantly
shorter publicly verifiable lattice-based ZK-SNARKS (LaBRADOR) than prior con-
structions. However, the LaBRADOR proof lengths reported in [14] for typical se-
curity parameters are still an order of magnitude longer than the proof lengths of
our designated verifier ZK-SNARKs constructed in this paper for similar security
parameters.

2

The main advantage over the first result in [18], this SNARK construction is
the reduction of computational overhead on the prover side. Although achiev-
ing sub-optimal proof length, these lattice-based constructions do not provide
succinct re-randomizable ciphertexts, so those constructions only provide plain
SNARKs, but not ZK-SNARKs (i.e. no zero-knowledge property).

Gennaro et al. [31] introduced the first lattice-based construction of SNARKs
which also achieved the zero-knowledge property and is built from square span
programs (SSP). This paper also provided the first implementation of a lattice-
based ZK-SNARK. However, the proof size ranges between 0.5 and 0.9 GB de-
pending on security level. Nitulescu [50] presented a lattice ZK-SNARG from
quadratic arithmetic program (QAP), which is defined for arithmetic circuit
satisfaction.

The state of the art work on lattice-based DV ZK-SNARKs by authors of [39]
(called ISW from hereon) provided a new construction of a shorter ZK-SNARK
from LPCP for rank-one constraint systems (R1CS) using new approaches. An
important new ingredient for the concrete proof succinctness of the ISW con-
struction versus earlier lattice-based constructions is the use of a large extension
field plaintext space for the underlying linear-only Regev encryption scheme
(where the large extension field size provides a low ZK-SNARK soundness error),
while keeping the field characteristic moderately small. The smaller field charac-
teristic for fresh ciphertexts gives a smaller fresh ciphertext modulus length and
leads to shorter proofs5 To support extension field plaintext spaces for Regev
encryption, ISW uses a structured lattice variant of Regev encryption based
on the hardness of the Module Learning With Errors (MLWE) problem over a
polynomial ring R. The main advantage of ZK-SNARK in [39] is a significant
reduction of the proof size compared to earlier work in [31].

Lattice ZK-SNARK succinctness problem: smudging-based ZK. How-
ever, even with the improvements of the ISW scheme, the resulting ZK-SNARK
proof length remains significantly higher than one would like, both from an
asymptotic theoretical view, as well as a practical concrete parameters view. In
particular, from the asymptotic theoretical view, the ZK-SNARK proof length
in ISW is quadratic in the security parameter λ6, which is suboptimal, as one
could hope to have a proof length quasilinear in λ (i.e. linear up to polylog fac-

5 The reduction in proof length arises due to the harder underlying lattice problem
with a smaller fresh ciphertext modulus, allowing a smaller lattice dimension pa-
rameter. The fresh ciphertext modulus does not directly impact proof lengths, as
the ISW construction uses modulus switching techniques to reduce the final proof
ciphertext modulus size.

6 For our asymptotic security analysis in this paper, we set the statistical ZK privacy
security parameter κ of ISW to be equal to the computational soundness security
parameter λ so there is just a single security/privacy parameter λ. For concrete
estimates, ISW set the statistical privacy parameter to a low figure of κ = 40, but
this would potentially allow ZK attacks with a non-negligible advantage 2−40; ideally,
one would want κ ≈ 128 to match the typical soundness security parameter λ. In
any case, this does not affect asymptotic estimates when κ is linear in λ.

3

tors). Also from a practical concrete parameter view, the shortest proof lengths
in ISW are more than 15KB (even for a relatively low statistical ZK security
parameter κ = 40) which is still about 20× the ciphertext length of the stan-
dard MLWE-based Kyber encryption scheme [20] for typical 128-bit soundness
security parameter (the ISW proof length would increase significantly more if
we aim for a more standard privacy parameter such as κ = 128).

A main reason behind the suboptimal proof length of ISW and prior lattice-
based ZK-SNARKs is the use of the exponential smudging technique to circum-
vent the difficulty of re-randomizing lattice-based ciphertexts of the underlying
linear only encryption scheme E for achieving circuit privacy of the underlying
encryption scheme when used inside the Bitansky et al. [17] DV ZK-SNARK
compiler. In particular, the first step of the SNARK prover algorithm in ISW
and other schemes based on the compiler in [17] consists in computing a linear
combination c of fresh ciphertexts {ci = E(µi, ei)}i from the preprocessing step:
c =

∑
i ai·ci =

∑
i ai·E(µi, ei) = E(

∑
i aiµi,

∑
i aiei). Here, the plaintexts µi are

the verifier’s query challenges in the underlying linear PCP and ei is the corre-
sponding fresh randomness used to encrypt µi. The coefficients ai are computed
using the underlying linear PCP from the prover’s witness. In the underlying
SNARK with no ZK privacy, the proof consists of c, and the verifier knowing
the decryption key for E can decrypt c to get the plaintext µ :=

∑
i aiµi, which

can then be verified using the underlying linear PCP verification. However, as
the decryption key is known to the verifier, c may also reveal the final cipher-
text randomness e :=

∑
i aiei to the verifier; this may in turn leak additional

information about the prover’s witness beyond what is revealed in µ and invali-
date the ZK property. To prevent this leakage and obtain the ZK property, the
exponential smudging technique used in ISW and earlier lattice-based schemes
consists in the prover masking e by adding an independent masking randomness
e′ and sending c′ = c+ E(0, e′) = E(µ, e+ e′) as the proof. However, in lattice-
based schemes the addition in e+e′ is over vectors of integers, so to obtain κ-bit
statistical ZK privacy with this smudging method7, the size (standard deviation)
of the entries of the smudging term e′ must exceed the size of the entries of e by
a factor exponential in κ. This exponential smudging then leads to ciphertext
and hence ZK-SNARK proof lengths of at least Ω(κλ) = Ω(λ2) assuming that
κ = θ(λ). The above problem with ISW leads us to ask the following main open
questions:

From a theoretical point of view, can we construct candidate lattice-based ZK-
SNARKs with proof length quasilinear in the security parameter λ = κ? From a
practical point of view, can we construct candidate ZK-SNARKs with concretely
shorter proofs than those of ISW?

Our main goal in this paper is to address these questions, focusing on the
minimization of ZK-SNARK proof length, even by trading off other aspects, such
as the size of the common reference string (CRS).

7 i.e. to make the distribution of e+ e′ within statistical distance ≤ 2−κ of the distri-
bution of e′

4

Directions and challenges. A first direction towards answering the above open
questions was suggested by ISW [39], who asked whether the circuit privacy re-
quirement for the underlying encryption scheme E and its associated smudging
technique is really needed for the ZK property of the resulting SNARK con-
structed with the compiler in [17] from the QAP-based Linear PCP (LPCP)
used in [39]. In particular, ISW defined an ‘honest-verifier ZK with leakage’
(HVZKL) property for the underlying LPCP. This property essentially asserts
that the ZK property of the LPCP is preserved even in the presence of the leak-
age of the final randomness e revealed to the verifier when no smudging is used
in the ISW SNARK. They observed that if this HVZKL property is satisfied for
the underlying LPCP, then the ISW SNARK with no smudging achieves ZK. If
the latter is true, it would give shorter ZK-SNARK proofs. However, the HVZKL
property of the used LPCP was not studied in [39], and it is not clear why it
should be true.

A second direction towards the open questions is to devise a more efficient
method for circuit privacy of the underlying linear-only encryption scheme E,
without resorting to exponential smudging. A natural approach to follow in this
direction is to look at circuit privacy techniques developed for lattice-based fully
homomorphic encryption (FHE) schemes. The FHE circuit privacy technique de-
vised by Gentry [32] relies on exponential smudging. The later works [21,28] pro-
vide FHE circuit privacy without exponential smudging and with small asymp-
totic overheads. However, trying to adopt the latter circuit privacy techniques to
our ZK-SNARK context faces several challenges that require new ideas. The first
challenge is that the soundness security of the ZK-SNARK setting crucially re-
quires the underlying encryption scheme to be linear-only homomorphic, whereas
the circuit-privacy techniques of [21,28] work for FHE schemes, which would be
insecure as linear-only encryption. In particular, the sanitization circuit privacy
procedure of [28] crucially relies on the FHE-based bootstrapping procedure. A
second challenge is that, to build on the extension-field SNARK succinctness
techniques of ISW, we need the underlying encryption scheme to be based on
structured MLWE lattices defined over a sufficiently high degree polynomial ring
R, whereas the circuit privacy analysis techniques of [21] rely on the use of a
general Leftover Hash Lemma with Leakage (LHLL) which applies over unstruc-
tured LWE over Zq but not over polynomial rings Rq with non-trivial subideals,
such as commonly used MLWE rings Rq = Zq[x]/(x

d + 1) for a power-of-2 d.

1.1 Our Contributions

In this paper, we make progress on the open question of constructing lattice-
based ZK-SNARKs with quasi-optimal succinct proofs, addressing both direc-
tions mentioned above.

Negative result: attack on zero-knowledge property of the short SNARK
in [39] with no smudging. Our first contribution gives a negative result in
the first direction mentioned above. In particular, we present a simple attack
(based on natural heuristic assumptions) on the Zero-Knowledge property of

5

Base encryption Quasi-opt. Size ZK property ZK
SNAR(G/K) scheme proof size CRS Proof (Yes/No) technique
scheme (Yes/No) (GB) (KB)

BISW17 [18] LWE-Regev Yes - - No N/A

BISW18 [19] RLWE-Regev Yes - - No N/A

GMNO18 [31] LWE-Regev No ?∗ ?∗ Yes exp. smudging

ISW21 [39] MLWE-Regev No (10, 337) 33 Yes exp. smudging

Our work MLWE-HGSW Yes (32, 410) 6 Yes poly. rerandom.

Table 1. Comparison of lattice (ZK-)SNAR(G/K)s for R1CS size of Ng = 220 for
both soundness and zero-knowledge (if applicable) security level at 128 bits. Here, we
estimated the sizes for the ISW21 protocol [39] for κ = 128 bit ZK privacy level, by
extending the ‘Shorter Proofs’ parameters in [39] for κ = 40 bit ZK privacy level,
while keeping their parameter choices for the initial noise (s = 64) and plaintext space
modulus (p = 213 − 1) (see Sec. 6.2 for further details). The two sizes given in CRS are
those for compressed and non-compressed versions, respectively. The former version
ignores the uniformly random part of the CRS that can be generated from a small
seed. See Table 2 for more on parameter settings. ∗We note that [39] pointed out that
the suggested parameters in [31] provide only 15 bits of provable soundness. Therefore,
in our table, we skip the proof and CRS sizes for [31].

SNARK in [39] with no smudging when it is instantiated with the QAP-based
Linear PCP presented in [39] (which in turn is a variant of the LPCPs given
in [10, 30]). As mentioned above, the latter ZK property of the SNARK in [39]
with no smudging is inherited from the assumed Honest Verifier ZK with Leak-
age (HVZKL) property of the underlying Linear PCP. Our attack in fact shows
that the underlying LPCP introduced in [10, 30] does not in general satisfy the
HVZKL property. We do so by exhibiting an R1CS relation R and a statement
x with two distinct witnesses w,w′, such that the leakage information provided
to the HVZKL distinguisher against the LPCP suffices to distinguish the two
witnesses with an O(1) distinguishing advantage (under natural heuristic as-
sumptions). Although our attack applies to a specific relation, it demonstrates
that the HVZKL property assumed in [39] does not hold in general for exist-
ing LPCPs, and therefore, that with such LPCPs, the exponential smudging
technique is in general necessary for the ZK property of the ISW ZK-SNARK
construction, which leads to non-succinct proofs of length Ω(λ2). To bypass this
issue, our ZK-SNARK does not rely on HVZKL of the LPCP.

Positive result: new candidate lattice-based ZK-SNARK with quasi-
optimal succinct proofs. Our main result addresses the second direction
discussed above. We construct the first candidate lattice-based ZK-SNARKs
with quasi-optimal succinct proofs, namely proof length quasi-linear in the secu-
rity parameter λ. Our new ZK-SNARK avoids the use of exponential smudging
for achieving the ZK property with its inherent inefficient parameters. Follow-
ing the second direction discussed above, we address the technical challenges
of constructing a linear-only encryption scheme E with a circuit-private re-

6

randomization procedure that does not require exponential smudging and pre-
serves the algebraic structure of Module LWE needed in the ISW ZK-SNARK
construction. Our encryption scheme E is derived from a suitable modification
of a Module LWE variant of the GSW homomorphic encryption scheme [35]. We
compare the main properties of our ZK-SNARK to prior lattice-based SNARK
constructions in Table 1. Our lattice-based ZK-SNARKs not only achieve the
shortest asymptotic proof length to date in theory but also in practice, with
substantial savings of more than 5× in proof length versus ISW21 at the same
security/privacy level of 128-bit (for lower statistical privacy parameters, e.g.
κ = 40 as used in the concrete parameters suggested in [39], our proof length
improvement is smaller but still significant; we refer to Sec. 6.2 for details). As
noted above, our work focuses on optimization for the minimum possible proof
length, and this comes at the tradeoff of a large CRS size compared to the ISW21
protocol. The main reason for the CRS overhead in our protocol versus ISW21
is our GSW-like base encryption scheme, which typically consists of several tens
of Regev ciphertexts used in the ISW21 protocol.

To obtain our main result, we introduce new tools described in the following.

New regularity results for private re-randomization of MLWE sam-
ples. Our main technical contribution is a new regularity theorem for private
re-randomization of Module LWE (MLWE) samples over the standard polyno-
mial ring Rq := Zq[x]/(x

d + 1) (for d a power of 2) without smudging, which
can be applied for circuit-private homomorphic scaling of Module GSW cipher-
texts. Our regularity result applies to the following type of ‘gadget-based’ re-
randomization of a set of MLWE samples. Let G denote a ‘power of 2’ gadget
matrix [47]. Take a set of MLWE samples (A,B) with B = AS + E over the
polynomial ring Rq := Zq[x]/(x

d + 1), where A is a uniformly random MLWE
matrix, S is the MLWE secret matrix and E the small MLWE error matrix. The
re-randomized MLWE sample is computed as (uT ,vT) := (xTA,xT ·B+yT) =
(xTA,xT ·AS+xTE+yT), where x is a re-randomization vector sampled from
a discrete Gaussian distribution with small parameter r satisfying xTG = aT

for some scaling vector aT and y is an independent discrete Gaussian with same
parameter r. In the application to homomorphic scaling of GSW ciphertexts,
the scaling vector aT contains the homomorphic scaling factors for a corre-
sponding vector of plaintexts. Our regularity result shows that the distribution
of the re-randomized MLWE sample (uT ,vT) is statistically close to a distri-
bution that is independent of the scaling vector aT (ensuring circuit privacy
in the Module GSW homomorphic scaling application), and moreover, the lat-
ter statistical distance can be made exponentially small (≤ 2−κ) in the desired
statistical security parameter κ for some polynomial choice of Gaussian param-
eter r = poly(κ), avoiding the exponential blowup (r = 2Ω(κ)) in smudging
based re-randomization results as used in [39]. We, therefore, obtain a Module
LWE analogue of the regularity theorem for private re-randomization of (un-
structured) LWE samples in [21]. The latter LWE-based regularity result over
Zq uses general leftover hash lemmas over fields and does not extend to MLWE
over rings Rq with non-trivial subideals. Technically, our regularity proof for

7

MLWE requires different and more involved lattice smoothing-based techniques
(see technical overview) to deal with this issue.

Half GSW and application to ZK-SNARKs. We present a new candidate
linear-only vector encryption scheme with succinct ciphertexts that we call Half
GSW (HGSW), whose IND-CPA security is based on the hardness of MLWE.
Our HGSW scheme is obtained via simple modifications to an MLWE variant
of the GSW somewhat homomorphic encryption scheme that involves removing
a portion (typically half) of the GSW ciphertext. Our modifications of GSW
are designed to remove the undesirable (in the context of linear-only encryption
needed in ZK-SNARK applications) multiplicative homomorphism while sup-
porting succinct circuit-private homomorphic linear scaling based on our above
MLWE re-randomization regularity result, with ciphertext length quasilinear
in the security and circuit privacy parameter λ = κ. Like previous candidate
linear-only lattice-based encryption schemes (e.g. [18, 19, 39]), the linear-only
property of our HGSW scheme relies on a plausible conjecture that we call
‘HGSW linear-only’. Like previous such assumptions, this conjecture enjoys a
‘win-win’ flavour; if the conjecture turns out to be false, it is likely to imply
more succinct somewhat homomorphic encryption schemes (as HGSW is more
succinct that GSW). We note that our HGSW scheme can also be viewed as a
collection of ciphertexts of the Regev encryption scheme for the message vector
µgT , where gT = (1, 2, . . . , 2mq−1) with mq = log2 q is the power of 2 gad-
get vector. Thus the HGSW construction itself is not new, and indeed such an
encryption scheme has been used in other contexts, e.g. [33]. However, to our
knowledge, our work is the first application of such an encryption scheme in the
context of linear-only encryption.

1.2 Overview of Techniques

Regularity theorem for re-randomization of MLWE samples. The core
part of our regularity theorem (given in Lemma 8 in Sec. 4), is a ‘leftover hash
lemma with leakage’ for MLWE re-randomization. Given a uniformly random
MLWE matrix A over Rq := Zq[x]/(x

d + 1) for d a power of 2, and randomiza-
tion vectors xT and yT sampled from a discrete Gaussian of width parameter r
satisfying xTG = aT for some scaling vector a ∈ Rq and a Gaussian distributed
error matrix E, it shows that the re-randomized vector xTA+yT mod q is sta-
tistically close to a uniform vector over Rq over the randomness of x,y, even
conditioned on the leakage on x given by xTE+yT . Due to the splitting struc-
ture of the ring Rq, our proof uses a completely different approach to the one used
in the proof of the unstructured LHL with leakage over the field Zq in [21]. In
the latter field case, the authors apply in this core part the ‘generalized leftover
hash Lemma’ of [27] (Lemma 3.5 in [21]), which states that xTA is statistically
close to uniform over Zq conditioned on arbitrary bounded leakage on xT , as
long as the distribution of xT has enough min-entropy. However, this general
min-entropy based leftover hash fails in general when the field Zq is replaced by
a ring which has non-trivial subideals, such as our power of 2 ring Rq. Instead,

8

to derive our LHL with leakage over Rq, we use a different approach based on a
rather involved and delicate combination of lattice Discrete Gaussian smoothing
arguments that exploits the discrete Gaussian distribution of xT over a coset
cT + Λ⊥q (G) of the Gadget perp lattice Λ⊥q (G) := {v : vTG = 0} (where c

satisfies cTG = a). In particular, as a core technique underlying our LHL with
leakage, which may be of independent interest, we study the smoothing param-
eter of the intersection of the three underlying perp lattices associated with the
matrices A,E,G, i.e. the lattice Λ⊥q (A) ∩ Λ⊥(E) ∩ Λ⊥q (G), where the Λ⊥(E)
orthogonal lattice is defined over R and not mod q8. In bounding the intersection
lattice smoothing parameter, we also give a simple lower bound on the minimum
of the well-known Gadget primal lattice Λq(G), which to our knowledge, has not
explicitly appeared in the literature previously and may be of independent inter-
est for other cryptographic applications. We remark that although prior work on
lattice discrete-Gaussian smoothing-based regularity bounds has studied the dis-
tribution of xTA (e.g. [45,54,55]) or xTE (e.g. [1,2,41]) in various settings, the
leftover hash with leakage over modules, which we address here, is to our knowl-
edge a novel result. The work in [43] analyzes the distribution of x conditioned
on (xTA,xTE) in the unstructured case, rather than the joint distribution of
(xTA,xTE). The recent work of Dachman-Soled et al. [26] gives three results
on different special conditional distributions over rings than we deal with in this
paper.
Half GSW linear-only encryption scheme. Our new succinct and circuit-
private linear-only encryption scheme Half GSW is a variant of the GSW some-
what homomorphic encryption scheme [35] over modules. We recall that in the
(module version of) GSW scheme with secret key sk = s the ciphertext of a
message µ (typically a bit), has the form9[

C1

C2

]
=

[
A′ A′s+ e′

A As+ e

]
+ µ

[
g 0mq×1

0mq×1 g

]
,

with uniformly random LWE matrices (A′,A)←↩ U(Rmq×1
q ×R

mq×1
q), short er-

ror vectors (e′, e), and a power-of-2 gadget vector gT = (1, 2, . . . , 2mq−1), where
mq = log2 q. The GSW scheme enjoys both additive and multiplicative homo-
morphisms. It also enjoys circuit-privacy with succinct ciphertexts [21]. How-
ever, the multiplicative homomorphism is undesirable for linear-only encryp-
tion and its applications. Our first and main observation towards our HGSW
scheme is that if we remove the top half (C1) of the GSW ciphertext, the GSW
multiplicative homomorphism algorithm no longer applies (and it seems diffi-
cult to find a different algorithm for multiplicative homomorphism), but the

8 We remark that this discussion is a slight simplification; the orthogonal lattice related
to E that we study is actually Λ⊥(Ē), where Ē is an extension of E with an
appended identity matrix, to account for the added error vector yT .

9 We show here for simplicity the case where the MLWE secret s is a single ring
element (i.e. GSW based on rank 1 MLWE); for GSW based on rank n MLWE, the
top GSW ciphertext part C1 consists of nmq rows, and in that case our HGSW
ciphertext C2 consists of only 1/(n+ 1) of the GSW ciphertext, rather than 1/2.

9

linear homomorphism and private homomorphic scaling with succinct cipher-
texts property is preserved, allowing us to apply our re-randomization result.
Indeed, to privately perform homomorphic scaling by a scaling factor a, we
can sample a discrete Gaussian matrix X such that Xg = ag and compute
C ′2 = XC2 = [B,Bs+e′+aµg], where the distribution of (B = XA, e′ = Xe)
is independent of a by our re-randomization result. However, this latter linear
homomorphic scheme (when considered over the plaintext space Rp for some p
smaller than q) still suffers from a circuit privacy problem: a homomorphic sum
of m such scaled ciphertexts with messages µi and scaling coefficients ai (for
i ∈ [m]) has the form [B,Bs + e′ + (

∑
i aiµi)g], and in general leaks informa-

tion (to an attacker with the secret key s) about
∑

i aiµi in Rq, rather than only
revealing the desired value

∑
i aiµi mod p in the plaintext space Rp. To address

this problem, we use a modulus q that is a multiple of p, and premultiply the
message by q

p
10. We extend the scheme to a vector encryption scheme using

the standard randomness sharing technique [53], and reduce scaled ciphertexts
to succinct Regev ciphertexts by using just a single row vector xT to perform
homomorphic scaling.

1.3 Roadmap

In section 2, we provide the main preliminaries on lattices. Further definitions
and syntax for vector encryptions and linear PCPs are provided in the supple-
mentary material. We present an attack on the zero-knowledge property of ISW
construction [39] in Section 3. In Section 4, we give our main result of the paper
comprising the new results for a private re-randomization technique of MLWE
samples. Our construction of the module-based Half-GSW (HGSW) scheme and
its correctness and security analysis are provided in Section 5. In section 6, we
show how to apply our new HGSW to construct a lattice-based ZK-SNARK.
Finally, in section 7, we analyse and provide optimal and concrete parameters
for our HGSW and ZK-SNARK construction. All the missing proofs are given in
the Appendices.

2 Preliminaries

We denote column vectors by bold lower case and matrices by bold upper case.
For a column vector x, we denote the corresponding row vector by xT . For a
matrix M we use ∥M∥ (resp. ∥M∥∞) to denote the maximal Euclidean norm
(resp. infinity norm) over all rows of M . The integer set {1, . . . , n} is denoted by
[n]. The zero matrix and identity matrix of dimensions m×n and n are denoted
by 0m×n and In, respectively. The transposition and inversion operations of a
matrix M are written as MT and M−1, respectively. For a distribution D, we
10 We remark that using the rounded value of q/p in case q is not divisible by p does

not fix the circuit privacy problem, as the rounding error will cause a circuit privacy
leakage.

10

write x ←↩ D to say that x is sampled from D. For an algorithm A, we use
a ← A to show the output of A is assigned to a. We use U(X) to denote a
uniform distribution over X. We denote the base 2 and natural logarithm by log
and ln, respectively.

2.1 Lattice Preliminaries

Lattices. A n-dimensional lattice Λ is a discrete additive subgroup of Rn. For an
integer t ≤ n and a basis matrix B ∈ Rn×t of rank t, Λ(B) = {Bx ∈ Rn|x ∈ Zt}
is the lattice generated by the column vectors (i.e. basis vectors) of B. If n = t,
the lattice Λ(B) is called full-rank. The dual lattice Λ∗ of lattice Λ is defined as
Λ∗ := {w ∈ Rn : ∀v ∈ Λ,wTv ∈ Z}. For i ∈ [t], the i’th successive minimum
λi(Λ) is defined as λi(Λ) := inf{r : dim(Span(Λ ∩ B(r))) ≥ i}, where B(r)
denotes the closed zero-centered Euclidean ball of radius r.

Definition 1 (q-ary Lattices). For any positive integer n ≤ l and q, and
matrix A ∈ Zl×n

q define the following l-dimensional lattices:

Λ⊥q (A) = {x ∈ Zl|xTA = 0 mod q},
Λq(A) = {v ∈ Zl|v = As mod q, for some s ∈ Zn}.

The two q-ary lattices for a matrix A satisfy the following duality relation:
Λ⊥q (A)∗ = 1

qΛq(A). For the polynomial ring R := Z[x]/(xd + 1), where d
is a power of 2, and a, b ∈ R, the ring multiplication c = ab corresponds
over Z to a matrix product rot(c) = rot(a) · rot(b), where for a ring element
a, rot(a) ∈ Zd×d denotes the negacyclic matrix whose i’th row consists of
the coefficient vector of xia mod xd + 1, for i = 0, . . . , d − 1. Similarly, for a
matrix A ∈ Rl×n, we let rot(A) ∈ Zld×nd be the corresponding representa-
tion of A over Z, where each ring element of A is replaced by its rot ma-
trix, and we analogously use rot(A) to define the ld-dimensional q-ary lat-
tices Λ⊥q (A) = {x ∈ Zld|xT rot(A) = 0 mod q} and Λq(A) = {v ∈ Zld|v =

rot(A)s mod q, for some s ∈ Znd} over Z. The lattice Λq(A) is related to the

lattice Λ̃q(A) = {v ∈ Zld|v is the coeff. vector of As mod q, for some s ∈ Rn}
by a full rank and norm-preserving linear transformation (this is the transforma-
tion which maps the first column of a rot matrix to its first row, applied to each
coefficient vector; for the ring R this is the mapping that maps the coefficient
vector (a0, a1, . . . , ad−1) to (a0,−ad−1, . . . ,−a1)). Therefore, the minima of the
latter two lattices are the same, and hence (in a slight abuse of notation), we do
not distinguish between those two definitions of those lattices in our analysis of
their minima, and refer to both as Λq(A).

Definition 2 (Module Learning With Errors (MLWE) [42]). Let λ be a
fixed security parameter and n = n(λ), l = l(λ), q = q(λ), d = d(λ), where d is
a power of two. Let R = Z[x]/(xd + 1) and Rq = R/qR and χ = χ(λ) be an
error distribution over Rq. The (decisional) module learning with errors (MLWE)

11

assumption MLWEn,l,d,q,χ states that for A←↩ U(Rl×n
q), s←↩ χn, e←↩ χl and

u←↩ U(Rl
q) the following two distributions are indistinguishable

(A,As+ e) and (A,u).

Definition 3 (Gaussian Function). For any r > 0 the Gaussian function
with parameter r11 and for any x ∈ Rn is defined as ρr(x) = exp (−π∥x∥2/r2).
Given a lattice Λ ⊆ Rn, a parameter r and a vector c ∈ Rn, the discrete Gaussian
distribution with parameter r and support Λ+ c is defined as

DΛ+c,r(x) =
ρr(x)

ρr(Λ+ c)
, ∀x ∈ Λ+ c,

where ρr(Λ+ c) =
∑

x∈Λ+c

ρr(x).

Definition 4 (The g−1rand Algorithm [47]). Let β, q ∈ Z, with β ≥ 2, gT =
(1, β, β2, . . . , βmq−1) ∈ R1×mq , where mq = ⌈logβ q⌉. There is a randomized,

efficiently computable function g−1rand(·) : Rq → R1×mq such that xT ← g−1rand(a)
is sampled from a discrete Gaussian distribution with parameter r, such that
xTg = a mod q (i.e. x←↩ DΛ⊥

q (g)+c,r, where c is fixed vector satisfying cTg = a

mod q). Note that the output of g−1rand is always a row vector. Furthermore, let
G = g ⊗ Iρ ∈ RL×ρ

q with ρ := L/mq. For a vector a ∈ Rn
q , the xT = g−1rand(a)

satisfy xTG = a mod q, where x←↩ DΛ⊥
q (G)+c,r and c is fixed vector satisfying

cTG = a mod q.

Definition 5 (Smoothing Parameter [48]). For an n-dimensional lattice
Λ ⊆ Zn and a positive real ϵ > 0, the smoothing parameter ηϵ(Λ) is the smallest
real r > 0, such that ρ1/r(Λ

∗ \ {0}) ≤ ϵ.

Lemma 1 ([44], Lemma 4.4). For r > 0, n ≥ 1 and k > 1, we have

Pr
z←↩DZn,r

[∥z∥ > kr
√
n/(2π)] < kn · exp(n/2 · (1− k2)).

Lemma 2 ([48], Lemma 4.4). Let Λ be any n-dimensional lattice. Then for
any ϵ ∈ (0, 1), r ≥ ηϵ(Λ), and c ∈ Rn, we have Prz←↩DΛ+c,r

[∥z∥ > r
√
n] ≤

(1 + ϵ)/(1− ϵ) · 2−n.

Lemma 3 ([44], Lemma 4.3). For n ≥ 1, v ∈ Rn, σ, r, t > 0, we have that
Prz←↩DZn,r

[|⟨v, z⟩| > t · r∥v∥] ≤ 2 exp(−πt2).

Lemma 4 ([34, 48]). Let Λ be any n-dimensional lattice. Then for any ϵ ∈
(0, 1), r ≥ ηϵ(Λ), and c ∈ Rn, we have ρr(c+ Λ) ∈ [(1 + ϵ)/(1− ϵ), 1] · ρr(Λ).

Lemma 5 (Banasczcyk [7]). For any rank−n lattice Λ ⊂ Rm and for all
i ∈ [n], we have 1 ≤ λi(Λ) · λn−i+1(Λ

∗) ≤ n.

11 Note that the parameter r is related to the standard deviation σ by r =
√
2π · σ.

12

Lemma 6 ([52]). For any n-dimensional lattice Λ and real ϵ > 0, we have

ηϵ(Λ) ≤
√
ln(2n(1 + ϵ−1))/π

λ∞1 (Λ∗)
.

Lemma 7 ([41], Lemma 7). For any rank-d lattice Λ and ϵ ∈ (0, 1/2), we
have λd(Λ)/

√
d ≤ ηϵ(Λ) ≤ λd(Λ) ·

√
ln (2d(1 + ϵ−1))/π.

3 Attack on Zero-Knowledge Property of ISW
Construction [39] with no Smudging

For definitions of HVZK and linear PCP and other related syntax, please refer
to Appendix A. We now present an attack on the zero-knowledge property of
the variant of the ZK-SNARK in [39] which uses no smudging. We first recall
the construction of linear-only vector encryption from [39].

Description of attack. Let κ denote the zero-knowledge parameter as it is
used in [39]. For κ = 0, we present an attack against the δ-HVZK with (D, q)
leakage property defined in Definition 14 for the linear PCP ΠLPCP used in the
lattice-based ZK-SNARK instantiation in [39], where D is the distribution over
matrices over R := Z[x]/(xd + 1) defined as follows (see Lemma 3.26 in [39]):

– Sample A←↩ U(Rn×mq
q) and E ←↩ Dn×ℓ

R,s .

– Output the matrix Z = [A,E] ∈ Rn×(mq+ℓ).

For the attack to break δ-HVZK with (D, q) leakage property of the linear PCP
ΠLPCP, it suffices to exhibit an R1CS family CSN such that there exists a state-
ment x and two distinct witnesses w,w′ such that:

– CSN (x,w) = CSN (x,w′) = 1, but
– the statistical distance ∆ between the distribution of (Z, b) and (Z, b′) is

greater than 2δ, where Z ←↩ D, b = Z · π ∈ Rn
q , π ← ΠLPCP.Prove(x,w),

and b′ = Z · π′ ∈ Rn
q , π

′ ← ΠLPCP.Prove(x,w
′).

We focus here on the bottom ℓ coordinates b̃ = Eπ, b̃
′
= Eπ′ of b, b′ re-

spectively. Due to the correctness of decryption, the parameters are chosen

such that ∥b̃∥∞, ∥b̃′∥∞ < q/2, so the computation is over R (without any
modulus reduction). Notice that according to Definition 9, π has the form

πT = (δ1, δ2, δ3,h
T , w̄T) ∈ R

4+Ng+Nw−n
p , where (δ1, δ2, δ3) is uniformly ran-

dom in R3
p, w̄ ∈ RNw−n

p is the R1CS witness (excluding the statement x ∈ Rn
p ,

i.e. wT = (xT , w̄T)), and h ∈ R
Ng+1
p is the coefficient vector of the poly-

nomial H(X) := A(X)B(X)−C(X)
ZS(X) constructed from x, w̄, δ1, δ2, δ3 (see Defini-

tion 9). For our attack analysis, we will make the heuristic assumption that

rT := (δ1, δ2, δ3,h
T) behaves as a (pseudo) uniformly random vector in R

Ng+4
p

independent of w̄ (respectively, r′T := (δ′1, δ
′
2, δ
′
3,h
′T) is uniform and indepen-

dent of w̄′ for π′).

13

Then we can write b̃ = E1r+E2w̄, where the first term is a random ‘error’

term, while the second term is a known ‘shift’ (respectively, b̃
′
= E1r

′+E2w̄
′).

Now, each integer coefficient of the ‘error’ term E1r (resp. E1r
′) is an inner-

product between a (pseudo) uniformly random r with coefficients uniformly
random in (−p/2, p/2) and hence of standard deviation p/

√
12, and a row of E1

whose expected norm is ≈ s
√
(Ng + 4)/(2π). Therefore, we heuristically expect

the distribution of the error term coordinates (conditioned on E1) to be approx-
imately a discrete Gaussian with standard deviation σb := sp

√
(Ng + 4)/12

for both b̃ and b̃
′
. Let

(
e
(i)
2

)T
denote the i’th row of E2. For b ∈ {b̃, b̃

′
},

conditioned on E, the distribution of y(i) := b(i) −
(
e
(i)
2

)T
w̄ should therefore

be approximately either DZ,
√
2πσb

(if b = b̃) or DZ,
√
2πσb

+ c
(i)
b (if b = b̃

′
),

with centre c
(i)
b :=

(
e
(i)
2

)T · (w̄′ − w̄). The i’th coordinate distinguisher, there-
fore, achieves a distinguishing advantage approximately equal to the statistical
distance between the corresponding continuous Gaussian distributions namely

∆(i) ≈ 2Φ

(
|c(i)b |
2σb

)
− 1 = erf

(
|c(i)b |
2
√
2σb

)
, where Φ and erf respectively denote the

cumulative distribution function and standard error function for a continuous
Gaussian distribution with mean 0 and unit standard deviation. Since

(
e
(i)
2

)T
has coordinates with standard deviation s/

√
2π, the distribution of cb (wrt the

choice of e
(i)
2) is approximately DZ,s∥w̄′−w̄∥. Therefore, by a continuous Gaussian

approximation, the expected value of |c(i)b | is c̄
(i)
b ≈

s
π∥w̄

′ − w̄∥, and hence we
expect to get

∆(i) ≈ erf

(
c̄
(i)
b

2
√
2σb

)
= erf

(√
6∥w̄′ − w̄∥

2πp
√
Ng + 4

)
. (1)

Example. We now give an example R1CS relation for which our attack has a
non-negligible distinguishing advantage. For a prime p and a positive integer N ,
we define the following relation:

C(x ∈ Zp,w ∈ FN
p) = 1⇐⇒ ∨i∈[N](wi = x) = 1.

Let Pw(z) :=
∏

i∈[N](z − wi) ∈ F<N
p . Note that Pw(z) is a polynomial in z of

degree N with coefficients over Fp such that Pw(wj) = 0 for all j ∈ [N]. Now
let us define A(x,w) := 1 − Pw(x). It is clear that A(x,w) = 1 iff Pw(x) = 0
iff C(x,w) = 1, so A computes C, as required. Now consider the following two
valid witnesses for the statement x ∈ Fp \ {0}: w = (x, 0, . . . , 0) ∈ FN

p and

w′ = (x, x, . . . , x) ∈ FN
p . It is easy to see that ∥w−w′∥ = x

√
N − 1. We convert

the natural arithmetic circuit for A (consisting of N + 1 input wires, N + 1
addition gates with weighted inputs, N − 1 multiplication gates, and one out-
put wire) into an R1CS relation CSN following the method outlined in Sec. 7.4
of [30]. This gives a number Ng of R1CS constraints equal to the sum of the num-
ber of internal multiplication gates plus 1 for the circuit output wire (i.e. a total
of Ng = N constraints in our case), and the corresponding R1CS witness vec-
tor w̄T

R1CS has the form (w̄T ,oT
M , oC), where oT

M denotes the vector of internal

14

multiplication gate outputs and oC denotes the circuit output value. Hence, in
our case, the R1CS witness vectors corresponding to w̄ and w̄′ are w̄T

R1CS =
((x, 0, . . . , 0), (0, 0, . . . , 0), 1) and w̄′R1CS

T = ((x, x, . . . , x), (0, 0, . . . , 0), 1) and
hence ∥w̄R1CS − w̄′R1CS∥ = x

√
N − 1. Plugging in (1) with Ng := N → ∞

and x ≥ p/c for some c = O(1), one can see that the expected distinguishing

advantage ∆(i) ≈ erf
(√

6
2πc

)
= Ω(1) is non-negligible.

4 New Regularity Results for Private Re-randomization
of MLWE Samples

Our main regularity result on private re-randomization MLWE samples is the
following. Looking ahead, in the next Section, we will apply this Theorem for
circuit-private linear homomorphic computation of our HGSW encryption scheme.
Namely, given a block of ν ciphertextsC1, . . . ,Cν for message vectors µ1, . . . ,µν ,
we will compute a ciphertext C for the linear combination message vector
µ =

∑
i aiµi as C =

∑
i x

T
i Ci + yT . Here, each randomized vector xT

i en-
codes the corresponding scaling coefficient ai by sampling xT

i from a discrete
Gaussian over the set of solutions to xT

i g = ai, i.e the Gadget lattice coset
Λ⊥q (g) + ci, where ci is any solution to cTi g = ai. The vector c = (c1, . . . , cν)
in the below Theorem will therefore encode the scaling coefficients (a1, . . . , aν)
and we will apply it to show that the final ciphertext C hides the coefficients
encoded in c (note also that x̄T = (xT

1 , . . . ,x
T
ν ,y

T) in the below Theorem).

Theorem 1 (Private Re-randomization of MLWE Samples). Let Rq :=
Zq[x]/(x

d + 1) with d a power of 2, q = pq̄ with prime q̄ = 2ℓq + 1 mod 4ℓq,
where ℓq ≥ 2 is a power of 2 so that xd + 1 splits into ℓq irreducible factors
f (u)(x) mod q̄ for u ∈ [ℓq], where each f (u)(x) has degree d/ℓq. Let L, ν ∈ Z,
0 < ϵ ≤ 1/2, G = g⊗Iν ∈ RL×ν

q with g = (1, β, . . . , βmq−1), c ∈ RL
q be arbitrary,

mq := ⌈logβ(q)⌉ and ν := L/mq ≥ 1. For A ←↩ U(RL×n
q), E ←↩ DL×ℓ′

R,s , and

x̄ ←↩ D(Λ⊥
q (G)+c)×Rℓ′ ,r, let Ē :=

(
E
Iℓ′

)
∈ R(L+ℓ′)×ℓ′ and Ā :=

(
A

0ℓ′×n

)
∈

R(L+ℓ′)×n. Let E∞ := s
√

2 ln(Lℓ′d/ϵ)+ln ln(Lℓ′d/ϵ)
2π ≥ 1 with ϵ/(L′ℓd) ≤ 0.001. If

q > max
(
2(L+ ℓ′)dcp

√
1 + 4s2Ld/(2π), 2r(s

√
Ld+ 1)

√
ln(2ℓ′d/ϵ)/π

)
(2)

and

r ≥ max
(
(L+ ℓ′)dc

√
ln(2Ld(1 + ϵ−1))/π, rG

)
and ℓ′d2−Ld ≤ ϵ, (3)

with c := max(c1, c2, c3), where c1 ≥ 2 satisfies

p1(c1) :=

ℓq−1∑
r=0

(
ℓq
r

)
q̄((1−r/ℓq)n+ν+ℓ′)d · (2q̄1−r/ℓq/c1 + 1)Ld

q̄Ld(1−r/ℓq)
≤ ϵ (4)

15

and

c2 := 2β2, and Ld2−ℓ
′d ≤ ϵ, (5)

and

c3 := 4β2s
√
dℓ′/(2π) with 4s2dℓ′ ≥ 2π, (6)

and

rG :=
(√

mq(β − 1) +
√
ℓ′d((mq − 1)(β − 1) + 1)E∞

)
·
√

ln(2Ld(1 + ϵ−1))

π
(7)

then

∆
(
(x̄T Ā mod q, x̄T Ē mod q,A,E), (U(Rn

q),DZℓ′d,r·rot(Ē),A,E
)
≤ 24ϵ.

The proof of Theorem 1 consists of two parts presented in the following two
subsections. The first part (Part 1: LHL over Rq with leakage), given in Lemma 8,
shows that the re-randomized matrix x̄T Ā mod q is statistically close to uniform
over Rq with respect to the short randomizing randomness x̄, even conditioned
on the leakage on x̄ given by x̄Ē. The second part (Part 2: Gaussian LHL),
given in Corollary 1, shows that the distribution of the leakage component xT Ē
is statistically close to a skewed discrete Gaussian. The proof is an adaptation of
Lemma 3.6 of [21] in the unstructured lattice case (which itself is an adaptation
of the result of [1]) to the structured module case, which requires also handling
higher dimensional skewed (non-spherical) Gaussian distributions as opposed to
the spherical distributions considered in [21].

Remark 1. We note that Theorem 1 still holds if G is replaced by any other
lattice with a minimum distance greater than a constant fraction of q. The only
reason we stated this result specific to G is that later we will use this in or
HGSW and ZK-SNARK constructions.

Asymptotic Parameter Setting. We give sample asymptotic parameter set-
tings for Theorem 1 to show how it can be instantiated with parameters q, r, L =
poly(κ) for ϵ := 2−κ, to achieve a desired statistical distance security param-
eter κ. Let j∗ be defined as the large integer such that 2q̄1−j

∗/ℓq/c1 ≤ 1. A
straightforward computation shows that the sum of the first j∗ terms in condi-
tion (4) is at most 2−κ if c1 := 2k/(Ld)+2q̄1/α, where α := L/(n + ν + ℓ′), and
the sum of the remaining ℓq − j∗ terms is at most 2−κ if L ≥ n + (ν + ℓ′)ℓq +
ℓq/ log(q̄)(1 + (log(d) + κ)/d). With this setting for c1, the condition on the left

hand side of (2) is satisfied if q̄ >
(
(2(L+ ℓ′)d)

√
1 + 9s2Ld/(2π)2k/Ld+2

)α/(α−1)
which leads to c1 ≥ 2κ/Ld+2[(2(L+ℓ′)d)

√
1 + 9s2Ld/(2π)]1/α. For example, if we

choose some d = θ̃(κ), n, ℓ′, s = O(1), then it is sufficient to set some β = θ(1),

ℓq = o(log κ) = Õ(1), α = θ(log κ) = Õ(1), L = α · (n + ℓ′ + ν) = Õ(1) to get

c = Õ(κmax(0.5,1.5/(α−1)) = Õ(κ0.5), r = Õ(κ2), and q = Õ(κ2).

16

4.1 Private rerandomization of MLWE - Part 1: LHL over Rq with
leakage

The LHL Lemma used in [21] (Lemma 3.5) uses a general LHL with leakage
result over Zq, which is not known to work over Rq. Instead, we aim to derive a
LHL over Rq with linear leakage, using smoothing arguments and lemmas 2-7.

Lemma 8 (LHL with leakage over Rq). Let Rq := Zq[x]/(x
d + 1) with d a

power of 2, q = pq̄ with prime q̄ = 2ℓq+1 mod 4ℓq, where ℓq ≥ 2 is a power of 2 so
that xd+1 splits into ℓq irreducible factors f (u)(x) mod q̄ for u ∈ [ℓq], where each
f (u)(x) has degree d/ℓq. Let L, ν ∈ Z, 0 < ϵ ≤ 1/2, G = g ⊗ Iν ∈ RL×ν

q with

g = (1, β, . . . , βmq−1), mq := ⌈logβ(q)⌉ and ν := L/mq. For A ←↩ U(RL×n
q),

E ←↩ DL×ℓ′
R,s , and x̄ ←↩ D(Λ⊥

q (G)+c)×Rℓ′ ,r, let Ē :=

(
E
Iℓ′

)
∈ R(L+ℓ′)×ℓ′ , Ā :=(

A
0ℓ′×n

)
∈ R(L+ℓ′)×n. If

q > max
(
2(L+ ℓ′)dcp

√
1 + 4s2Ld/(2π), 2r(s

√
Ld+ 1)

√
ln(2ℓ′d/ϵ)/π

)
(8)

and
r ≥ (L+ ℓ′)dc

√
ln(2Ld(1 + ϵ−1))/π and ℓ′d2−Ld ≤ ϵ, (9)

with c := max(c1, c2, c3), where c1 ≥ 2 satisfies

p1(c1) :=

ℓq−1∑
r=0

(
ℓq
r

)
q̄((1−r/ℓq)n+ν+ℓ′)d · (2q̄1−r/ℓq/c1 + 1)Ld

q̄Ld(1−r/ℓq)
≤ ϵ (10)

and
c2 := 2β2, and Ld2−ℓ

′d ≤ ϵ, (11)

and
c3 := 4β2s

√
dℓ′/(2π) with 4s2dℓ′ ≥ 2π (12)

then

∆
(
(x̄T Ā mod q, x̄T Ē mod q,A,E), (U(Rn

q), x̄
T Ē mod q,A,E)

)
≤ 21ϵ.

Proof. Let x̄T := (xT ,yT) ←↩ DΛ⊥
q (G)+c,r × DRℓ′ ,r := DΛ⊥

q (Ḡ)+c̄,r, where Ḡ :=(
G

0ℓ′×ν

)
∈ R(L+ℓ′)×ν and c̄ :=

(
c
0ℓ′

)
∈ RL+ℓ′ . We first observe that thanks to

(2), we have ∥x̄T Ē∥∞ < q/2 (i.e. no wraparound mod q in x̄T Ē mod q) except
with probability ≤ 4ϵ. Indeed, we have ∥x̄T Ē∥∞ ≤ ∥xTE∥∞ + ∥y∥∞. Now,
by Lemma 2, we have ∥x∥ ≤ r

√
Ld except with probability ≤ 1+ϵ

1−ϵ · 2
−Ld ≤ 3ϵ

using ϵ ≤ 1/2 and the choice of r in (9), where we have used the fact that
ηϵ(Λ

⊥
q (G)) ≤ β2

√
ln(2Ld(1 + ϵ−1))/π by Lemma 6 and Lemma 11 below, and

that c ≥ c2 ≥ β2. Therefore, by Lemma 3, a fixed integer coefficient of xTE
has absolute value ≤

√
ln(2/ϵ′)/πs∥x∥ ≤

√
ln(2/ϵ′)/πsr

√
Ld except with prob-

ability ≤ ϵ′ and therefore, by a union bound over the ℓ′d integer coordinates of

17

xTE, setting ϵ′ := ϵ/(ℓ′d), we conclude that ∥xTE∥∞ ≤
√
ln(2ℓ′d/ϵ)/πsr

√
Ld,

except with probability ≤ 4ϵ. Similarly using Lemma 2 and the union bound,
we have ∥y∥∞ ≤

√
ln(2ℓ′d/ϵ)/πr, except with probability ≤ ϵ. Overall, we have

∥x̄T Ē∥∞ < r(s
√
Ld + 1)

√
ln(2ℓ′d/ϵ)/π < q/2, except with probability ≤ 5ϵ,

where the last inequality is due to the second part of (8). The claimed bound of
the Lemma therefore follows if we show that

∆
(
(x̄T Ā mod q, x̄T Ē,A,E), (U(Rn

q), x̄
T Ē,A,E)

)
≤ 11ϵ.

(i.e. with no mod q reduction on x̄T Ē). To show that latter bound we use
a smoothing-based approach. Namely, it is enough to show that, except with
negligible probability ≤ 3ϵ over the choice of A,E, the conditional distribution
of x̄T Ā mod q conditioned on x̄T Ē over the choice of x̄T is within neg. statistical
distance ≤ 8ϵ to U(Rn

q).

For fixed Ā, Ē and ê and v̂, let Pê(v̂) := Prx̄[x̄
T Ā mod q = v̂T |x̄T Ē mod

q = êT]. Then, for v̂ in the support of Pê, and êT in the support of x̄T Ē, there
exists x̄T

0 ∈ Λ⊥q (Ḡ) + c̄T such that x̄T
0 · (Ā, Ē) = (v̂T , êT) mod q. Then:

Pê(v̂) =
Prx̄T←↩D

Λ⊥
q (Ḡ)+c̄T ,r

[x̄T · Ā mod q, x̄T · Ē) = (v̂T , êT)]

Prx̄T←↩D
Λ⊥
q (Ḡ)+c̄T ,r

[x̄T · Ē = êT]
. (13)

The numerator pn of (13) has the form

pn := Pr
x̄T←↩D

Λ⊥
q (Ḡ)+c̄T ,r

[x̄T ∈ (x̄T
0 + Λ⊥q (Ā)) ∩ (x̄0

T + Λ⊥(Ē))] (14)

=
ρr((x̄

T
0 + Λ⊥q (Ā)) ∩ (x̄T

0 + Λ⊥(Ē)) ∩ (c̄+ Λ⊥q (Ḡ)))

ρr(c̄+ Λ⊥q (Ḡ))
(15)

=
ρr((x̄

T
0 + Λ⊥q (Ā)) ∩ (x̄T

0 + Λ⊥(Ē)) ∩ (x̄T
0 + Λ⊥q (Ḡ)))

ρr(x̄T
0 + Λ⊥q (Ḡ))

(16)

=
ρr(x̄

T
0 + Λ⊥q (Ā) ∩ Λ⊥(Ē) ∩ Λ⊥q (Ḡ))

ρr(x̄T
0 + Λ⊥q (Ḡ))

(17)

∈ (1± 4ϵ) ·
ρr(Λ

⊥
q (Ā) ∩ Λ⊥(Ē) ∩ Λ⊥q (Ḡ))

ρr(Λ⊥q (Ḡ))
(18)

where the second equality uses the fact that both c̄T and x̄T
0 are in same coset

of Λ⊥q (Ḡ), and the last equation uses smoothing Lemma 4 twice, assuming that

r ≥ η′, where η′ := ηϵ(Λ
⊥
q (Ā) ∩ Λ⊥(Ē) ∩ Λ⊥q (Ḡ)), (19)

and note that the orthogonality relation defining the lattice Λ⊥(Ē) := {v ∈
RL+ℓ′ : vT · Ē = 0} is over R, not just Rq. Let Λ̄

′ := Λ⊥q (Ā)∩Λ⊥(Ē)∩Λ⊥q (Ḡ).

Now, notice that due to the ℓ′ × ℓ′ identity matrix at the bottom ℓ′ rows of Ē,
the rank of lattice Λ̄′ and Λ⊥(Ē) over R is Ld (rather than the rank (L+ ℓ′)d of
Λ⊥q (Ḡ)). To upper bound η′, by Lemma 6, it suffices to get an upper bound on

18

λLd(Λ̄
′), namely η′ ≤

√
ln(2Ld(1 + ϵ−1))/π · λLd(Λ̄′). To upper bound λLd(Λ̄

′),
we use a transference bound argument which can be viewed as a generalization
of the bound on ηϵ(Λ

⊥(E)) in Corollary 3 of [2]. The idea is to do it in two steps,
where the first step involves finding an upper bound on the Ld’th minimum of
the q-ary lattice Λ̄ := Λ⊥q (Ā) ∩ Λ⊥q (Ē) ∩ Λ⊥q (Ḡ) and then the second step is to

show that this bound also applies to the non q-ary lattice Λ̄′, as follows:

– Step 1: Use the transference bound in Lemma 5 to transform the problem
of upper bounding λLd(Λ̄) to the problem of lower bounding the (ℓ′d+1)’th
minimum λℓ′d+1(Λ̄

∗) of the dual lattice Λ̄∗:

λLd(Λ̄) ≤
(L+ ℓ′)d

λℓ′d+1(Λ̄∗)
=

(L+ ℓ′)d
1
qλℓ′d+1(Λq(M̄))

,

where M̄ := (Ā, Ē, Ḡ) ∈ R
(L+ℓ′)×(n+ℓ′+ν)
q . In this step, we give a lower

bound λℓ′d+1(Λq(M̄)) of the form q/c for some ‘small’ c.
We first observe that λℓ′d+1(Λq(M̄)) is lower bounded by the norm of the
shortest vector w in the lattice Λq(M̄) excluding those lattice vectors in the
integer column span of rot(Ē); therefore it suffices to lower bound the latter
minimum norm which we denote by λ1(Λq(M̄ \ ĒZℓ′d)). This is because, if
v1, . . . ,vℓ′d+1 are ℓ′d+1 linearly independent vectors in Λq(M̄) all of norm
at most λℓ′d+1, one of them must not be in the span of Ē since the latter has
dimension less than ℓ′d, so that vector has norm λℓ′d+1 ≥ λ1(Λq(M̄\ĒZℓ′d)).

Next, to lower bound λ1(Λq(M̄ \ ĒZℓ′d)), we proceed as follows. First, to
simplify the following analysis, we focus on the prime modulus ring Rq̄,

using the observation that, since q̄ divides q, we have that Λq(M̄ \ ĒZℓ′d) is

a subset of λ1(Λq̄(M̄ \ ĒZℓ′d)), and hence λ1(Λq(M̄ \ ĒZℓ′d)) ≥ λ1(Λq̄(M̄ \
ĒZℓ′d)). Now, for any vector w in Λq̄(M̄ \ ĒZℓ′d), write w = ĀvA+ ĒvE +
GvG mod q. We can divide this problem into three sub cases, whose results
we summarise below and provide the detailed analysis of subcases 1 and
2 in Lemma 10, Lemma 13 in the following pages. Namely, we show that
∥w∥ ≥ q̄/c with c := max(c1, c2, c3) for some ‘small’ c1, c2, c3:
• Subcase 1 (vA ̸= 0 mod q̄, Lemma 10): Here, we use a probabilistic ap-
proach to lower bound ∥w∥ over the randomness of A and using a union
bound over vE ,vG by extending the approach from [49, 55] for lower
bounding the minimum of Module SIS lattices. In particular, Lemma 10
shows that ∥w∥ ≥ q̄/c1 for some ‘small’ c1, except with negligible prob-
ability p1(c1) ≤ ϵ, for the assumed choice of parameters.
• Subcase 2 (vA = 0 mod q̄ and ∥vE∥ ≤ q̄/c3 for a ‘small’ c3, Lemma 12):
Here, if vG = 0, the smallness of ∥vE∥ and ∥E∥ implies that w = ĒvE

is < q̄/2 over the integers and hence does not wrap around mod q̄ and
is in Λq̄(M̄ \ ĒZℓ′d)) with negligible probability over the choice of E.
On the other hand, if vG ̸= 0, the length of w is lower bounded up to
a ‘small’ additive norm ∥ĒvE∥ from the minimum of the Gadget lattice
Λq̄(G), which we show in turn (in Lemma 11) is lower bounded by q̄/β2.
The above arguments are made precise in Lemma 10, which shows that

19

in this subcase, we get ∥w∥ ≥ q̄/c2 for a ‘small’ c2 = 2β2, except with
negligible probability Ld2−dℓ

′ ≤ ϵ, for the assumed choice of parameters.

• Subcase 3 (vA = 0 mod q̄ and ∥vE∥ > q̄/c3): Here, we use the observa-
tion that ∥w∥ ≥ ∥vE∥ > q̄/c3, since the bottom ℓ′d Z coordinates of w
consists of vE , thanks to the identity matrix in the bottom rows of Ē.

– Step 2: We observe that any Ld R-linearly independent vectors w1, . . . ,wLd

in Λ̄ all of norm ≤ λLd(Λ̄) are also in Λ̄′ (i.e. orthogonal to Ē over R
and not just Rq), thanks to short norm of those vectors and the short-
ness of Ē compared to q, except with negligible probability ≤ ϵ over the
choice of E. This shows that λLd(Λ̄

′) ≤ λLd(Λ̄) except with negligible
probability ≤ ϵ over choice of E. Indeed, by Cauchy-Schwartz inequal-

ity, we have ∥wT
i · Ē∥ ≤ ∥wi∥ · ∥Ē

T ∥. Using the Step 1 bound we have
∥wi∥ ≤ (L + ℓ′)dcp and using Lemma 1 and a union bound over the ℓ′d

columns of E, we have the bound ∥ĒT ∥2 ≤ 1 + (2s
√
Ld/
√
2π)2 except

with probability ≤ ℓ′d2−Ld ≤ ϵ over the choice of E. According to (8),

we get ∥wT
i · Ē∥ < (L + ℓ′)dcp

√
1 + (2s

√
Ld/
√
2π)2 < q/2 and therefore

λLd(Λ̄
′) ≤ λLd(Λ̄), except with negligible probability ≤ ϵ as required.

Putting together Steps 1 and Steps 2, we get the upper bound λLd(Λ̄
′) ≤

λLd(Λ̄) ≤ (L + ℓ′)dpc and hence the smoothing parameter bound η′ ≤ (L +
ℓ′)dpc

√
ln(2Ld(1 + ϵ−1))/π, except with probability ≤ 3ϵ over the choice of

A,E. The assumed bound on r therefore implies that r ≥ η′ except with prob-
ability ≤ 3ϵ and hence from (18), we conclude that except with negligible prob-
ability ≤ 3ϵ over the choice of A,E, the conditional distribution of x̄T Ā mod q
conditioned on x̄T Ē over the choice of x̄T is within neg. statistical distance 8ϵ
to U(Rn

q), as required.

To complete the proof of Lemma 8, it remains to prove Lemma 10 for the
Subcase 1 and Lemma 12 for the Subcase 2.

Subcase 1 of LHL with Leakage (Lemma 8) We will use the following
Lemma lower bounding the minimum of ideal lattices (see Cor. 1 in [29]).

Lemma 9 (Adapted from Cor. 1.2 of [46]). Let Rq̄ := Zq̄[x]/(x
d + 1) with

d a power of 2, q̄ = 2ℓq +1 mod 4ℓq, where ℓq ≥ 2 is a power of 2 so that xd +1
splits into ℓq irreducible factors f (u)(x) mod q̄ for u ∈ [ℓq], where each f (u)(x)
has degree d/ℓq. Let Z ⊆ [ℓq] with |Z| = r. The λ1(IZ,Rq̄

) over all non-zero

vectors of the ideal lattice IZ,Rq̄ := {a ∈ R : a mod (f (u)), q̄) = 0 for j ∈ Z} is
lower bounded as

λ1(IZ,Rq̄
) ≥ q̄r/ℓq .

We now present our subcase 1 of LHL with leakage bound.

Lemma 10. Let Rq̄ := Zq̄[x]/(x
d+1) with d a power of 2, q̄ = 2ℓq+1 mod 4ℓq,

where ℓq ≥ 2 is a power of 2 so that xd + 1 splits into ℓq irreducible factors

20

f (u)(x) mod q̄ for u ∈ [ℓq], where each f (u)(x) has degree d/ℓq. Let w := AvA +

EvE +GvG ∈ RL
q̄ with (vA,vE ,vG) ∈ Rn

q̄ \ 0×Rℓ′

q̄ ×Rν
q̄ and c1 ≥ 2. Then

∥w∥2 ≥ q̄/c1 (20)

except with probability p1 over the choice of A←↩ U(RL×n
q̄), where

p1 ≤
ℓq−1∑
r=0

(
ℓq
r

)
q̄((1−r/ℓq)n+ν+ℓ′)d · (2q̄1−r/ℓq/c1 + 1)Ld

q̄Ld(1−r/ℓq)
. (21)

Subcase 2 of LHL with Leakage (Lemma 8) For w ∈ Λq̄(M) but not in
the column span of E over Z in subcase where vA = 0 mod q̄ and vE ̸= 0 mod q̄,
write w = EvE+GvG mod q̄. We first, prove the following lemma, which upper
bounds the minimum distance of a lattice generated by Gadget matrix G. This
result is stated as general as possible as it might be of an independent interest
in other cryptography contexts.

Lemma 11 (Minimum Distance of Gadget Matrix G). Let G = g⊗ Iν ∈
RL×ν

q̄ with g = (1, β, . . . , βmq−1), mq ≥ ⌈logβ(q̄)⌉ and ν := L/mq. Then we get

λ∞1 (Λq̄(G)) ≥ q̄/β2. (22)

Proof. It suffices to prove the claim with mq = ⌈logβ(q̄)⌉ since the minimum dis-
tance of Λq̄(G)) cannot decrease as mq increases. Let q̄ = βmq−1+q̄mq−2β

mq−2+
· · · + q̄0β

0, where 0 ≤ q̄i < β, for 0 ≤ i ≤ mq − 1. Every nonzero lattice vector
in Λq̄(G) will have components like v · βi mod q̄ for 0 ≤ i ≤ mq − 1. The goal is
to show that

λ∞1 (Λq̄(G)) = min
v ̸=0

max
0≤i≤mq−1

|v · βi mod q̄| ≥ q̄/β3.

If λ∞1 (Λq̄(G)) < q̄/β3, we show a contradiction. Assume that λ∞1 (Λq̄(G)) is
achieved for a non-zero v∗. Let i∗ := argmax0≤i≤mq−1 |v∗ · βi mod q̄|. We now

claim that i∗ = mq−1, otherwise we have that |v∗ ·βi∗+1| < q̄/β3 (due to upper
bound on λ∞1) and hence |v∗ · βi∗+1| = |v∗ · βi∗+1 mod q̄| > |v∗ · βi∗ mod q̄|,
which is a contradiction. This yields i∗ = mq − 1 and therefore λ∞1 (Λq̄(G)) =
|v∗ ·βmq−1 mod q̄|. Let us re-write |v∗ ·βmq−1 mod q̄| = |v∗0 ·βi∗0 mod q̄|, for some
integer v∗0 and 0 < i∗0 ≤ mq − 1 such that gcd(v∗0 , β) = 1. Since i∗ = mq − 1, we
get that i∗0 ̸= 0. Let v∗0 := βv0 + (v0 mod β), we also see that

|v∗ · βmq−1 mod q̄| = |v∗0 · βi∗0 mod q̄| ≥ |v∗0 · βi∗0−1 mod q̄| ≥ · · ·
≥ |v∗0 · β−1 mod q̄| = |v∗0 | · |β−1 mod q̄|
≥ |βv0 + (v0 mod β)| · |q̄/β mod q̄| (23)

= |q̄ · (v0 mod β)/β mod q̄| ≥ |q̄/β mod q̄|, (24)

where (23) is induced from the fact that |β · (β−1 mod q̄)| ≥ q̄ and (24) is true
because (v0 mod β)/β ≥ 1/β. It is now clear that (24) is in a contradiction with
λ∞1 (Λq̄(G)) < q̄/β3 and hence λ1(Λq̄(G)) ≥ q̄/β2. ⊓⊔

21

We now move to state the main result of Subcase 2.

Lemma 12. Let L, d, q̄, ℓ′, ν ≥ 2 be integers. Let also c2 := 2β2 for an integer

β ≥ 2, c3 := 4β2s
√
dℓ′/(2π) with 4s2dℓ′ ≥ 2π, M̄ := (Ē, Ḡ) ∈ R

(L+ℓ′)×(ℓ′+ν)
q̄

with (Ē, Ḡ) as defined above, so that every w ∈ Λq̄(M̄) can be written as w =

ĒvE + ḠvG with (vE ,vG) ∈ Rℓ′

q̄ ×Rν
q̄ . Then

Pr
E←↩DL×ℓ′

R,s

[∃(vE ,vG), ∥vE∥ ≤ q̄/c3 : w ∈ Λq̄(M̄) \ ĒZℓ′d, ∥w∥ < q̄/c2] ≤ Ld2−dℓ
′
.

(25)

Proof. We distinguish between two cases: vG = 0 and vG ̸= 0. The first case
(vG = 0) is similar to Lemma 11 of [41] and follows from a probabilistic up-
per bound on ∥ĒvE∥. Indeed, by the Cauchy-Schwartz inequality, ∥ĒvE∥ ≤
∥Ē∥ · ∥vE∥. Since each row of E has norm less than 2s

√
dℓ′/(2π) except with

probability ≤ 2−dℓ
′
by Lemma 1 with k = 2, we get by a union bound over the

Ld rows of E that ∥E∥ ≤ 2s
√

dℓ′/(2π) except with probability ≤ Ld2−dℓ
′
. The

same bound holds for ∥Ē∥ since 2s
√
dℓ′/(2π) ≥ 1. Since c3 ≥ c2 · 2s

√
dℓ′/(2π)

and c2 > 2, we therefore get for the first case:

Pr

[
∃vE ∈ Zdℓ′ , ∥vE∥ ≤

q̄

c3
: ĒvE mod q̄ ∈ Λq̄(Ē) \ ĒZdℓ′

]
≤ Ld2−dℓ

′
. (26)

We now proceed to the second case (vG ̸= 0). In this case, it suffices to show that,
if ∥E∥ ≤ 2s

√
dℓ′/(2π) and ∥vE∥ ≤ q/c3, then ∥ĒvE+ḠvG∥ ≥ ∥EvE+GvG∥ ≥

q̄/c2. Indeed,

∥EvE +GvG∥ ≥ ∥GvG∥ − ∥EvE∥ ≥ q̄/β2 − ∥EvE∥ (27)

≥ q̄/β2 − ∥E∥ · ∥vE∥ (28)

≥ q̄/β2 − 2s
√

dℓ′/(2π) · q̄

4β2s
√
dℓ′/(2π)

= q̄/2β2 (29)

where (27) is induced from triangle inequality and Lemma 11, in (28) we used
Cauchy-Schwartz inequality, and (29) is true by the assumed bounds on ∥E∥
and ∥vE∥.

⊓⊔

4.2 Private Rerandomization of MLWE - Part 2: Gaussian LHL

We now adapt the Gaussian Leftover Hash Lemma from [21] to our module case.

Lemma 13 (Gaussian LHL over modules, adapted from [21]). Let G =
g⊗Iν ∈ RL×ν

q with g = (1, β, . . . , βℓ−1) and ν := L/ℓ. For a fixed E ∈ RL×ℓ′ , Let

Ē :=

(
E
Iℓ′

)
∈ R(L+ℓ′)×ℓ′ , E∞ := ∥rot(ET)∥∞, x ←↩ DΛ⊥

q (G)+c,r ×DRℓ′ ,r and

ϵ > 0. Then, if r ≥
(√

ℓ(β − 1) +
√
ℓ′d((ℓ− 1)(β − 1) + 1)E∞

)
·
√

ln(2Ld(1+ϵ−1))
π ,

we have

∆
(
xT Ē,DZℓ′d,r·rot(Ē)

)
≤ 2ϵ.

22

It remains to upper bound the smoothing parameter of the lattice Λ in the
proof of Lemma 13.

Lemma 14 (Smoothing parameter of orthogonal module lattice,
adapted from [21]). Let L = νmq with mq and ν be defined as above.
For G and E, E∞ and ϵ > 0 as defined in Lemma 13, and the lat-
tice Λ := {v ∈ Λ⊥q (G) × Rℓ′ : vT Ē = 0T }, we have ηϵ(Λ) ≤(√

mq(β − 1) +
√
ℓ′d((mq − 1)(β − 1) + 1)E∞

)
·
√

ln(2Ld(1+ϵ−1))
π .

When E ∈ RL×ℓ′ is chosen from a Gaussian distribution DRL×ℓ′ ,s, Lemma 1
and a union bound over the ℓ′Ld integer coefficients of the entries of E implies
that the maximal absolute value E∞ is upper bounded by ks/

√
2π except with

probability ≤ ϵ if k2−2 ln(k)+1 ≥ 2 ln(1/ϵ̄) where ϵ̄ := ϵ/(Lℓ′d). We observe that
the latter inequality is satisfied with k :=

√
2 ln(1/ϵ̄) + ln ln(1/ϵ̄) if ϵ̄ ≤ 0.001.

This immediately gives the following.

Corollary 1 (Gaussian LHL over modules with Gaussian E). Let 0 ≤
ϵ < 1/2, G = g ⊗ Iν ∈ RL×ν

q with g = (1, β, . . . , βmq−1) and ν := L/mq,

E ←↩ DL×ℓ′
R,s , and Ē as above, let E∞ := s

√
2 ln(Lℓ′d/ϵ)+ln ln(Lℓ′d/ϵ)

2π ≥ 1 with

ϵ/(L′ℓd) ≤ 0.001. Then, if r ≥
(√

mq(β − 1) +
√
ℓ′d((mq − 1)(β − 1) + 1)E∞

)
·√

ln(2Ld(1+ϵ−1))
π , we have

∆
(
(xT Ē, Ē), (DZℓ′d,r·rot(Ē), Ē)

)
≤ 3ϵ.

5 New Half-GSW Candidate Linear-Only Encryption

5.1 Module Half-GSW (HGSW)

Since we only need the good private scaling property, we can modify the Full-
GSW construction such that we keep the scaling property and remove the mul-
tiplicative homomorphism property, which is not needed for the ZK-SNARK
construction. We introduce the ‘Half-GSW’ scheme, where we keep only the
bottom mq rows of the Full-GSW ciphertext, which can also be viewed as a
collection of mq Regev ciphertexts for the plaintexts 20µ, . . . , 2mq−1µ. For our
ZK-SNARK construction, it is necessary that the only way for an adversary to
create a valid ciphertext is to take linear combinations of given valid cipher-
texts. As a result, the set of valid ciphertexts must be sparse. Therefore, as
in [39], we include a sparsification parameter τ and encrypt the extended mes-
sage µ̄ = [µT |(Tµ)T] ∈ Rℓ′

p (instead of µ), where T is a random matrix. The
decryption checks that the recovered message has this form to circumvent obliv-
ious sampling of a valid ciphertext.

Module Half-GSW Construction. We now define our Half-GSW encryption
scheme HGSW. It consists of three algorithms HGSW.Setup,HGSW.Encrypt,

23

HGSW.Decrypt. Let gT = (1, β1, . . . , βmq−1) ∈ R
mq
q and ℓ′ = ℓ + τ , where τ

is the sparsification parameter. We remark that the scheme is a stateful deter-
ministic encryption scheme, that takes the encrypted message index i (in practice
a counter) as input, all the randomness is in the secret key and generated in the
Setup algorithm.

– HGSW.Setup(1λ, 1ℓ): On input a security parameter 1λ, samples S ← Dn×ℓ′
R,s ,

the matrices A ←↩ U(Rmmq×n
q) and E ←↩ Dmmq×ℓ′

R,s and the transformation

matrix T ←↩ U(Rτ×ℓ
p). For i ∈ [m], we denote by Ei ∈ Rmq×ℓ′ and Ai ∈

R
mq×n
q the ith blocks of consecutive mq rows from E and A, respectively.

The secret key is sk = (S,T ,A,E).
– HGSW.Encrypt(i, sk,µ): Given the message index i, secret key sk =

(S,T ,A,E) and a vector of messages µT
i = (µi,1, . . . , µi,ℓ) ∈ Rℓ

p, com-

putes the vector µ̄T
i = [µT

i |(Tµi)
T] ∈ Rℓ′

p . Parse µ̄T
i = (µ̄i,1, . . . , µ̄i,ℓ′). The

algorithm then computes the ciphertext:

Ci =
[
Ai AiS +Ei

]
+

q

p
·Hi ∈ Rmq×(n+ℓ′)

q ,

where:
Hi :=

[
0mq×n, µ̄i,1g, . . . , µ̄i,ℓ′g

]
∈ Rmq×(n+ℓ′)

q .

– HGSW.Add({Ci}i∈[m], {ai}i∈[m]): Let L denote the add block size parameter,
where ν := L/mq is a positive integer (number of ciphertexts per block). For
i ∈ [m], given the scaling factor ai ∈ R, sample g−1rand(ai) (see Def. 4) and for

j = 0, . . . ,m/ν − 1, sample yj from discrete Gaussian Dℓ′

r ,

g−1rand(ai) ·Ci =
[
bTi bTi S + eTi

]
+

q

p
·
[
0n, µ̄i,1ai, . . . , µ̄i,ℓ′ai

]
∈ Rmq×(n+ℓ′)

q ,

where bTi = g−1rand(ai) ·A, and eTi = g−1rand(ai) ·Ei. Finally one computes

c∗ :=

m/ν−1∑
j=0

(
ν∑

i=1

g−1rand(ajν+i) ·Cjν+i + [0n,yT
j]

)
.

Note that the output of HGSW.Add does not match the format of a ciphertext
created by HGSW.Encrypt. Instead, it is a one-row Regev-type ciphertext.

– HGSW.Decrypt(S, c∗): given a ciphertext c∗ and the secret key sk =

(S,T ,A,E), computes the inner product of c∗ with S̄
T
=
[
−ST , IT

ℓ′

]
, i.e.

H̄ := ⟨c∗, S̄⟩ and computes ⌈(p/q)·H̄⌋. Set µ̄ = [µ̄1, µ̄2], where µ̄1 = µ ∈ Rℓ
q

and µ̄2 ∈ Rτ
q and return µ̄1 if µ̄2 = µ̄1 and ⊥ otherwise. Note that the given

decryption algorithm applies only to the output of HGSW.Add, which was
mentioned to be a one-row Regev-type ciphertext.

The main advantage of our construction of Module HGSW is that it keeps the
property of homomorphic scaling and drops the multiplicative homomorphism
property. Because of this fact, this scheme can be used in our ZK-SNARK from
LPCP construction.

24

Conjecture 1 (HGSW Linear Only). For security parameter λ and the parame-
ters p, d, τ as defined in the construction of HGSW, if 1/|Rp|τ = p−dτ is negligible
in λ, then the construction of HGSW is strictly linear-only.

Remark 2. For a ZK-SNARK from linear-only FHE construction, we only re-
quire the properties of homomorphic scaling and homomorphic addition, as in
the inner-product homomorphism in ZK-SNARK [39]. Therefore it is sufficient if
we compute only one row (one Regev ciphertext) of themq rows of g

−1
rand(ag), and

apply the homomorphic additions on that one. It means that the ZK-SNARK
proof will only consist of short Regev ciphertexts. The longer HGSW ciphertexts
will only be needed in the generation of the common reference string.

Lack of Multiplicative Homomorphism. As we have seen earlier, the multiplica-
tive homomorphism is undesirable for the soundness of a secure ZK-SNARK con-
struction. For our HGSW scheme, the GSW multiplicative homomorphism idea
seems to fail due to the missing half of the GSW ciphertext. For example, sup-
pose ℓ′ = 1 and consider two HGSW ciphertexts C1 = [C1,1,C1,2] = [A1,A1S+
E1 + µ1g] and C2 = [C2,1,C2,2] = [A2,A2S +E2 + µ2g]. Then to compute a
ciphertext C3 for the product µ1µ2, we could try to compute C3 = g−1rand(C2,2) ·
C1 = [C3,1,C3,2] = [g−1rand(C2,2)A1, g

−1
rand(C2,2)A1S+g−1rand(C2,2)E1+µ1C2,2] =

[C3,1,C3,1S + g−1rand(C2,2)E1 + µ1E2 + µ1µ2g+ µ1A2S]. Note that C3 is not a
valid ciphertext for µ1µ2 due to the last ‘large’ term µ1A2S in C3,2. It seems
that without the missing ‘top half’ of the GSW ciphertext, we cannot get rid of
such extra terms to get a multiplicative homomorphism. This is the motivation
for our linear-only conjecture for HGSW.

Modulus switching. To achieve noise reduction after applying the required num-
ber of homomorphic additions, we use the modulus switching technique intro-
duced in [22]. While the initial modulus q is needed to be large enough to allow
the homomorphic operations, it can be reduced to q′ by directly applying mod-
ulus switching from [22] to our Regev ciphertext computed in HGSW.Add.

5.2 Correctness and Security Analysis

Theorem 2 (Additive Homomorphism (Correctness)). Let λ be a secu-
rity parameter and p, q, n,mq, β, ℓ

′, ℓ, τ be as defined in Module HGSW Con-
struction. Suppose Ds be a Gaussian with parameter s. If p, q, n,mq, β, ℓ

′, ℓ, τ =
poly(λ), then this Construction is additively homomorphic with respect to S =
Dm

r ⊆ Rm
p for all m = m(λ). In particular, if n > 8 and

q > 2ps
√
(r2(mmq +m/ν)d+ 1) ln(2((mmq +m/ν)d+ 1)/ϵ)/π (30)

then (32) holds with probability ϵ for all y ∈ S.

Circuit Privacy Remark: the j’th non-zero component in Rq of a q
p ·H has

the form aµj
q
p mod q = (aµj mod p) qp mod q, where we have used the fact that p

25

divides q. Here, it seems that we cannot obtain circuit privacy if p does not divide
q and we replace in the encryption scheme q

p by its rounded version ⌈ qp⌋ =
q
p + ϵ

for |ϵ| ≤ 1/2. With this, we get aµj⌈ qp⌋ mod q = (aµj mod p) qp + aµjϵ mod q,
and the term aµjϵ depends on aµj mod q, not just aµj mod p, and therefore can
leak more about a. However, Theorem 1 assumes in some places that q is prime
(e.g. subcase 1 Lemma).

Theorem 3 (Computationally Circuit Privacy). Let ϵ > 0 and
p, q, n,mq, β, ℓ

′, ν, L, s, r be as defined in the Module HGSW Construction. If
these parameters satisfy the conditions of Theorem 1 , with ϵ = negl(λ) then the
HGSW construction is statistically circuit private. In particular, for every circuit
privacy adversary A, there exists an efficient simulator S such that

Pr[Gamecirc−privΠHGSW.Encrypt,A,S(1
λ) = 1] ≤ 1/2 + 18(m/ν) · ϵ.

Theorem 4 (CPA Security of Module HGSW). For a security parameter
λ let p = p(λ), q = q(λ), n = n(λ),D = D(λ) be the lattice parameters and ℓ
be the plaintext dimension. Let Q = poly(λ) denote the number of queries to
the encryption oracle. Under the hardness of MLWEn,mq,d,q,D assumption with
mq = n+Q, the HGSW construction is Q-query IND-CPA secure.

The IND-CPA security of our Module HGSW follows directly from [35] and
Module-LWE assumption.

Asymptotic Parameter Settings. Based on the hardness of MLWE against

known lattice attacks (attack time T = 2Ω̃(nd log q/ log2(q/s)), which we require to
be ≥ 2λ), we can satisfy conditions of the above Theorems with HGSW cipher-
text length quasi-linear in the security/privacy parameter λ and poly-log in the
number of homomorphic plaintext additions m. For example, similarly to Sec. 4,
if choose some d = θ̃(λ), n, ℓ′, p, s, ν, τ = O(1), then it is sufficient to set some

β = θ(1), ℓq, ℓp = O(1), α = θ(log(λm)) = Õ(1), L = α · (n + ℓ′ + ν) = Õ(1),

r = Õ(λ2), and q = Õ(λ3
√
m). The HGSW ciphertext length before homomor-

phic addition is mqd(n+ℓ′) log q = O(log2 m) ·Õ(λ), whereas after homomorphic

addition the Regev ciphertext length is d(n+ ℓ′) log q = O(logm) · Õ(λ).

6 Application of HGSW to ZK-SNARK

This section is dedicated to an application of our HGSW scheme to ZK-SNARK.
The construction of ZK-SNARK follows directly by applying the cryptographic
compiler from [17]. Similar to the ZK-SNARK construction in [39], we provide
a construction based on linear PCPs for R1CS systems. The main difference
to [39] is the underlying linear-only encryption scheme. In our case, we use
HGSW defined in Section 5.1.

We propose to use the following encoding scheme of field elements into the
CRT slots of Rp. According to the Chinese Remainder Theorem it holds that
Rp = Zp[x]/(x

d + 1) is isomorphic (denoted by ∼=) to
∏

i=[ℓp]
Zp[x]/(fi(x)) for

irreducible polynomials fi(x) which are factors of xd+1 mod p. As shown in [23],

26

there is an isomorphism Rp
∼=
∏

i=[ℓp]
Zp[x]/(fi(x)) with deg(fi) = f for all

i ∈ [ℓp]. Furthermore, Zp[x]/(fi(x)) ∼= F(pf) where f = d/ℓp. While compiling
LPCP into a ZK-SNARK, we encode ℓp LPCP plaintexts µ1, . . . , µℓp ∈ F(pf) of
the HGSW encryption scheme into the ℓ plaintext slots in Zp[x]/(fi(x)).

6.1 Our ZK-SNARK Construction

For a family of R1CS systems CS = {CSN}N∈N defined over a finite field F, the
ZK-SNARK construction consists of two building blocks: a linear PCP and an
additively-homomorphic vector encryption for Fk.

– Let ΠLPCP = (ΠLPCP.Query, ΠLPCP.Prove, ΠLPCP.Verify) be a k-query linear
PCP for CS. Let m denote the query length of ΠLPCP.

– Let HGSW = (HGSW.Setup,HGSW.Encrypt,HGSW.Decrypt) be our additively-
homomorphic half-GSW symmetric encryption over Fk.

The designated-verifier ZK-SNARK ΠSNARK = (ΠSNARK.Setup, ΠSNARK.Prove,
ΠSNARK.Verify) is defined as follows:

– ΠSNARK.Setup(1
λ, 1N): On input the security parameter λ and the system

index N , run (st,Q)← ΠLPCP.Setup(1
N), where Q ∈ Fm×k with F = F(pf)

and f is the degree of splitting factors of (xd + 1) mod p. For i ∈ [m],
let qT

i denote the i-th row of Q. Run sk ← HGSW.Setup(1λ) and compute
Ci = HGSW.Encrypt(i, sk, q) for each i ∈ [m]. Output crs = (N, {Ci}i∈[m])
and the verification key st = (stLPCP,S).

– ΠSNARK.Prove(crs,x,w): On input common reference string crs =
(N, {Ci}i∈[m]), a statement x and a witness w, compute a proof of the un-
derlying LPCP system π ← ΠLPCP.Prove(1

N ,x,w), i.e. π = (π1, . . . , πm).
Then homomorphically compute the response of linear PCP as c∗ ←
HGSW.Add({Ci}i∈[m], {πi}i∈[m]). The prover outputs the proof π∗ = c∗.

– ΠSNARK.Verify(st,π
∗,x): On input st = (stLPCP, sk), the statement x

and the proof π∗ = c∗, the verifier computes a =
∑m

i=1 πiq
T
i ←

HGSW.Decrypt(S, c∗). If a = ⊥, the verifier outputs 0, otherwise it runs
the verification of LPCP, i.e. ΠLPCP.Verify(stLPCP,x,a) and outputs the cor-
responding output.

Security Discussion. Completeness of our ZK-SNARK follows from the cor-
rectness of the underlying HGSW and from the completeness property of the
underlying LPCP protocol. Soundness of ZK-SNARK follows from the linear-
only property of our HGSW and the soundness property of the LPCP protocol.

Theorem 5 (ZK-SNARK Security). If ΠLPCP is honest-verifier zero-
knowledge and the underlying encryption scheme HGSW is IND-CPA secure and
computationally circuit private, then ΠSNARK is computationally zero-knowledge.

27

6.2 Parameter Setting for Our ZK-SNARK

In our work, we adopt a set of notations similar to those in [39] to make it easy
to connect the two works together. The notations are summarized in Table 3 in
the appendices. For the parameters and requirements common in both [39] and
our work, we employ a similar strategy to choose such parameters. For example,
as in [39], we assume that the number of variables, Nw is roughly equal to the
number of constraints, Ng, i.e., Nw ≈ Ng. Particularly, we take Ng = 220, which
is used as a common example setting in prior works, including [39]. Of course, for
certain parameters, we have different requirements and optimizations, in which
case we rely on our new results.
Plaintext dimension. First of all, for all parameter settings, the plaintext
dimension over Rp is set as ℓ = ⌈4ρ/ℓp⌉. As in [39], there are 4ρ PCP queries in
total to be encrypted since each linear PCP has 4 queries and we repeat ρ times
to amplify soundness. While the plaintext space in [39] is a field and, therefore,
does not split (i.e., ℓp = 1 in [39]), we can pack ℓp messages into a single Rp

element. As a result, we get ℓ = ⌈4ρ/ℓp⌉. Note that this setting is the same as
in [39] with ℓp = 1.
Ciphertext sparsification. For all parameter settings, the sparsification pa-
rameter is set as τ = ⌈128/(d log p)⌉. The reason behind this choice is based
on the linear-only encryption conjecture (similar to [39]) adapted to our base
encryption scheme. Observe that for τ = ⌈128/(d log p)⌉, we have p−τd ≤ 2−128

as in [39]. The difference in our case is that we work over a ring Rq instead
of a field. However, the rationale described in [39] extends to the ring case as
follows. For any fixed vector (µ1,µ2) recovered in decryption, the probability
that µ2 = Tµ1 over Rp is equal to the probability that µ2 = Tµ1 over all the

fields R
(i)
p that Rp splits into. Since over each R

(i)
p , the probability is p−τd

′
for

d′ = dim(R
(i)
p), overall we end up with the same requirement p−τd ≤ 2−128.

Modulus switching. Theorem 3.19 in [39] provides a general modulus switch-
ing result for Regev-like encryption schemes. Since our final ciphertext after ho-
momorphic scaling has a similar Regev structure, we can apply the results of [39,
Theorem 3.19]. Particularly, since we have the same notations for p, n, d, s, q′ as
in [39], we can simplify the modulus switching requirement to

q′ > 12pnds, (31)

where we use the same constant C = 6 as in [39] for Gaussian “tail-cut” bound.

Observation 1 Note that from the MLWE security perspective the product nd
in (31) is roughly fixed, and therefore, an approach to reduce the proof length is
by reducing the Gaussian parameter s and/or the plaintext modulus p. This stems
from the fact that the proof length is equal to (n+ ℓ′)d log q′ = (n+ ℓ+ τ)d log q′.
We will exploit this observation when choosing s and p.

PCP Knowledge Error. The knowledge error of the PCP is tightly related
to the size of the finite field F over which the PCP is instantiated. Particularly,
as in [39], the knowledge error ε is at most

2Ng

|F|−Ng
, assuming the number of

28

variables Nw ≈ Ng, where Ng is the number of constraints in the system. In our

construction, we have ε ≤ 2Ng

pf−Ng
since |F| = pf where f = d/ℓp is the degree

of the irreducible factors of xd + 1 mod p. Observe that the ability to choose
a larger f allows us to reduce the size of p significantly, which in turn allows
the reduction of q′ due to Observation 1. For all parameter settings, we set the
number of repetitions as the smallest integer ρ such that ερ ≤ 2−128.

Correctness for m homomorphic additions. According to the correctness
requirement of our ZK-SNARK, Theorem 2, we choose q large enough to en-
sure that (30) is satisfied. Here, we set ϵ = 2−128 and also have m ≈ 2Ng as
ΠSNARK.Prove involves about 2Ng homomorphic additions assuming Nw ≈ Ng.

CPA/MLWE security. Due to Theorem 4, the required CPA security of the
base encryption scheme (HGSW) relies on MLWE assumption with a secret key
in Rn

q (i.e., total dimension of nd) and secret/error distribution of discrete Gaus-
sian with parameter s. To establish a fair comparison with [39], we calculated
the “root Hermite factor” δLWE of the parameter settings in [39] and found it
to be δLWE ≈ 1.00427. The root Hermite factor is a common metric to measure
the hardness of solving lattice problems in practice. Therefore, we also aim for
a similar root Hermite factor when setting the lattice parameters and use the
LWE estimator [5] to compute δLWE. For lattice attacks, the number of MLWE
samples does not play a major role and we assume that the attacker has access
to (at least) the optimal number of samples.

In choosing s, we need to consider algebraic attacks [3] and the number
of MLWE samples revealed to the adversary, which can in fact be quite large
for the PCP-based SNARK approach we employ. However, even for s = 1, we
observed from the LWE estimator that the estimated complexity (time to success
probability ratio) of algebraic attacks are well above 2128 operations for the
dimension parameters we consider. To be conservative and avoid having a very
sparse secret, we set s = 2 to optimize the proof length in light of Observation 1.
Overall, in our choice of parameters, we ensure that the parameters (n, d, log q)
with s = 2 lead to a root Hermite factor of δLWE ≈ 1.00427.

Zero-knowledge. The zero-knowledge property of our ZK-SNARK relies on
our new private re-randomization results, particularly Theorem 1. These new
results of our work (that only impose a poly(κ) condition on the system modulus
q for κ-bit zero-knowledge security) are the main reason for the improvements
in the SNARK proof size of our approach. As a consequence, we ensure that all
conditions in Theorem 1 are satisfied, which particularly means choosing a large
enough Gaussian width r for the scaling vectors and a large enough modulus q.
In these conditions, we set ϵ = 2−κ for κ = 128.

In light of all constraints and settings described above, we provide a set of
sample parameter settings in Table 2. Note that the proof output is a Regev-like
ciphertext of (n+ℓ′)d log q′ bits. In the table, ‘crs size’ refers to the setting where
the random first n columns of the ciphertexts in the CRS are ignored as they
can be generated from a small seed in practice. As a result, a crs size is equal to
mqℓ

′d log q · 2Ng bits. The ‘crs size full’ column refers to the uncompressed full
CRS size (including the random n columns) and therefore is equal to mq(n +

29

p n d ℓp f log q log q′ ℓ τ ρ β L log r c ν
proof size
(KB)

crs size
(GB)

crs size full
(GB)

5 31 64 2 32 48.00 17.86 6 1 3 2 288 24.78 271 6 5.30 252.00 1368.00

5 32 64 2 32 49.66 17.91 6 1 3 4 325 26.94 1081 13 5.46 135.79 756.54

5 33 64 2 32 51.55 17.95 6 1 3 9 289 29.12 5472 17 5.61 95.85 547.72

29 33 64 2 32 51.54 20.49 2 1 1 4 312 26.26 708 12 5.76 62.81 753.77

5 34 64 2 32 53.12 17.99 6 1 3 17 252 30.83 20480 18 5.76 75.53 442.39

29 34 64 2 32 53.06 20.53 2 1 1 8 270 28.05 2830 15 5.93 44.77 552.16

5 35 64 2 32 54.65 18.04 6 1 3 32 242 32.53 69173 22 5.92 65.75 394.50

29 35 64 2 32 54.56 20.57 2 1 1 15 238 29.72 10240 17 6.11 35.80 453.53

29 36 64 2 32 56.04 20.61 2 1 1 27 228 31.32 32239 19 6.28 31.52 409.79

53 73 32 2 16 56.12 21.50 4 1 2 26 444 31.04 27290 37 6.55 26.31 410.38
Table 2. Example parameter setting of our ZK-SNARK proposal. We have κ = 128,
ℓq = 2, s = 2 and Ng = 220 always.

ℓ′)d log q · 2Ng bits. We note that by choosing s = 1, the proof sizes in Table 2
can be reduced by 6-8%.

As our main motivation in this work is reducing the proof size, we build on
the “shorter proof” parameters of [39] to estimate their proof size for κ = 128.
Here, the main change is due to the (exponential) noise smudging, which requires
128− 40 = 88 bits larger q compared to the setting of κ = 40. Therefore, we get
log q ≈ 186 (instead of log q ≈ 98). With the increased q, we need to set a larger
dimension parameter for MLWE. Particularly, for the same Gaussian parameter
s = 64 and ring dimension d = 2 in [39], we observed using the MLWE estimator
that n = 3600 leads to a root Hermite factor of ≈ 1.00427 as before. Since the
parameter n is doubled compared to [39], the modulus q′ after mod switching
also doubles and so log q′ = 36. The other parameters are kept the same as
in [39], i.e., p = 213 − 1, ρ = 26, ℓ = 104 and τ = 5. This produces a proof of 33
KB, a compressed CRS of 10 GB, and a full CRS of 337 GB as given in Table 1.

Compared to [39], our proposal can reduce the proof size up to 6× (with
much larger CRS). Alternatively, along with about 5× proof reduction, our full
CRS size becomes close to that of [39] while having about 3× larger compressed
CRS. The reason behind larger CRS in our case is that our ciphertexts in the
CRS are matrices (instead of vectors) that are mq times bigger in dimension. We
need this matrix structure due to the use of GSW-like base encryption scheme.

Asymptotic Parameter Settings. Asymptotically, we can use the same pa-
rameter settings for HGSW as in the previous Section, with m = 2Ng. Therefore,
based on MLWE hardness against known lattice attacks, the asymptotic proof
length is logarithmic in circuit size and quasi-linear in the security parameter λ.

Acknowledgements. This research was supported in part by ARC Discovery
Project grants DP180102199 and DP220101234.

30

References

1. D. Aggarwal and O. Regev. A note on discrete gaussian combinations of lattice
vectors. Chic. J. Theor. Comput. Sci., 2016, 2016.

2. S. Agrawal, C. Gentry, S. Halevi, and A. Sahai. Discrete gaussian leftover hash
lemma over infinite domains. In ASIACRYPT 2013, volume 8269, pages 97–116,
2013.

3. M. R. Albrecht, C. Cid, J. Faugère, R. Fitzpatrick, and L. Perret. Algebraic
algorithms for LWE problems. ACM Commun. Comput. Algebra, 49(2):62, 2015.

4. M. R. Albrecht, V. Cini, R. W. F. Lai, G. Malavolta, and S. A. K. Thyagarajan.
Lattice-based snarks: Publicly verifiable, preprocessing, and recursively compos-
able. IACR Cryptol. ePrint Arch., page 941, 2022.

5. M. R. Albrecht, R. Player, and S. Scott. On the concrete hardness of learning with
errors. J. Math. Cryptol., 9(3):169–203, 2015.

6. S. Ames, C. Hazay, Y. Ishai, and M. Venkitasubramaniam. Ligero: Lightweight
sublinear arguments without a trusted setup. In ACM SIGSAC CCS 2017, pages
2087–2104, 2017.

7. W. Banaszczyk. New bounds in some transference theorems in the geometry of
numbers. In Mathematische Annalen, volume 296(4), pages 625—-635, 1993.

8. E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. Scalable, transparent, and
post-quantum secure computational integrity. IACR Cryptology ePrint Archive,
2018:46, 2018.

9. E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza.
Zerocash: Decentralized anonymous payments from bitcoin. In IEEE S&P 2014,
pages 459–474. IEEE Computer Society, 2014.

10. E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza. Snarks for C:
verifying program executions succinctly and in zero knowledge. In CRYPTO 2013,
volume 8043, pages 90–108, 2013.

11. E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and N. P. Ward.
Aurora: Transparent succinct arguments for R1CS. In EUROCRYPT 2019, volume
11476, pages 103–128, 2019.

12. E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. Scalable zero knowledge via
cycles of elliptic curves. In CRYPTO 2014, volume 8617, pages 276–294, 2014.

13. E. Ben-Sasson, L. Goldberg, S. Kopparty, and S. Saraf. DEEP-FRI: sampling
outside the box improves soundness. In ITCS, volume 151 of LIPIcs, pages 5:1–
5:32. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

14. W. Beullens and G. Seiler. Labrador: Compact proofs for R1CS from module-sis.
IACR Cryptol. ePrint Arch., page 1341, 2022.

15. N. Bitansky, R. Canetti, A. Chiesa, S. Goldwasser, H. Lin, A. Rubinstein, and
E. Tromer. The hunting of the SNARK. J. Cryptol., 30(4):989–1066, 2017.

16. N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. From extractable collision
resistance to succinct non-interactive arguments of knowledge, and back again. In
ITCS 2012, pages 326–349. ACM, 2012.

17. N. Bitansky, A. Chiesa, Y. Ishai, R. Ostrovsky, and O. Paneth. Succinct non-
interactive arguments via linear interactive proofs. In TCC 2013, volume 7785,
pages 315–333, 2013.

18. D. Boneh, Y. Ishai, A. Sahai, and D. J. Wu. Lattice-based snargs and their appli-
cation to more efficient obfuscation. In EUROCRYPT 2017, volume 10212, pages
247–277, 2017.

31

19. D. Boneh, Y. Ishai, A. Sahai, and D. J. Wu. Quasi-optimal snargs via linear multi-
prover interactive proofs. In EUROCRYPT 2018, volume 10822, pages 222–255,
2018.

20. J. W. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, G. Seiler, and D. Stehlé. CRYSTALS - kyber: A cca-secure module-
lattice-based KEM. In IEEE EuroS&P 2018, pages 353–367, 2018.

21. F. Bourse, R. D. Pino, M. Minelli, and H. Wee. FHE circuit privacy almost for
free. In CRYPTO, volume 9815, pages 62–89, 2016.

22. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (leveled) fully homomorphic
encryption without bootstrapping. ACM Trans. Comput. Theory, 6(3):13:1–13:36,
2014.

23. L. Brieulle, L. D. Feo, J. Doliskani, J. Flori, and É. Schost. Computing isomor-
phisms and embeddings of finite fields. J. Math. Comput., 88(317):1391–1426,
2019.

24. B. Bünz, B. Fisch, and A. Szepieniec. Transparent snarks from DARK compilers.
In EUROCRYPT 2020, volume 12105, pages 677–706, 2020.

25. A. Chiesa and E. Yogev. Subquadratic snargs in the random oracle model. In
CRYPTO 2021, volume 12825, pages 711–741, 2021.

26. D. Dachman-Soled, H. Gong, M. Kulkarni, and A. Shahverdi. Towards a ring
analogue of the leftover hash lemma. J. of Mathematical Cryptology, 15(1):87–110,
2021.

27. Y. Dodis, L. Reyzin, and A. D. Smith. Fuzzy extractors: How to generate strong
keys from biometrics and other noisy data. In EUROCRYPT 2004, volume 3027,
pages 523–540, 2004.

28. L. Ducas and D. Stehlé. Sanitization of FHE ciphertexts. In EUROCRYPT 2016,
volume 9665, pages 294–310, 2016.

29. M. F. Esgin, R. Steinfeld, and R. K. Zhao. Efficient verifiable partially-decryptable
commitments from lattices and applications. In PKC (1), volume 13177, pages
317–348, 2022.

30. R. Gennaro, C. Gentry, B. Parno, and M. Raykova. Quadratic span programs and
succinct nizks without pcps. In EUROCRYPT 2013, volume 7881, pages 626–645,
2013.

31. R. Gennaro, M. Minelli, A. Nitulescu, and M. Orrù. Lattice-based zk-snarks from
square span programs. In ACM SIGSAC CCS 2018, pages 556–573. ACM, 2018.

32. C. Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford Univer-
sity, USA, 2009.

33. C. Gentry, S. Halevi, and V. Lyubashevsky. Practical non-interactive publicly
verifiable secret sharing with thousands of parties. In EUROCRYPT (1), volume
13275 of Lecture Notes in Computer Science, pages 458–487. Springer, 2022.

34. C. Gentry, C. Peikert, and V. Vaikuntanathan. Trapdoors for hard lattices and
new cryptographic constructions. In ACM STOC, 2008, pages 197–206. ACM,
2008.

35. C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In CRYPTO
2013, volume 8042, pages 75–92, 2013.

36. S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof-systems (extended abstract). In ACM STOC 1985, pages 291–304. ACM,
1985.

37. J. Groth. Short pairing-based non-interactive zero-knowledge arguments. In ASI-
ACRYPT 2010, volume 6477, pages 321–340, 2010.

32

38. J. Groth. On the size of pairing-based non-interactive arguments. In EUROCRYPT
2016, volume 9666, pages 305–326, 2016.

39. Y. Ishai, H. Su, and D. J. Wu. Shorter and faster post-quantum designated-verifier
zksnarks from lattices. In ACM SIGSAC CCS 2021, CCS ’21, page 212–234, 2021.

40. J. Kilian. A note on efficient zero-knowledge proofs and arguments (extended
abstract). In ACM STOC 1992, pages 723–732. ACM, 1992.

41. E. Kirshanova, H. Nguyen, D. Stehlé, and A. Wallet. On the smoothing parameter
and last minimum of random orthogonal lattices. Des. Codes Cryptogr., 88(5):931–
950, 2020.

42. A. Langlois and D. Stehlé. Worst-case to average-case reductions for module lat-
tices. Des. Codes Cryptogr., 75(3):565–599, 2015.

43. B. Libert, A. Sakzad, D. Stehlé, and R. Steinfeld. All-but-many lossy trapdoor
functions and selective opening chosen-ciphertext security from LWE. In CRYPTO
(3), volume 10403 of Lecture Notes in Computer Science, pages 332–364. Springer,
2017.

44. V. Lyubashevsky. Lattice signatures without trapdoors. In EUROCRYPT 2012,
volume 7237, pages 738–755, 2012.

45. V. Lyubashevsky, C. Peikert, and O. Regev. A toolkit for ring-lwe cryptography.
In EUROCRYPT, volume 7881, pages 35–54, 2013.

46. V. Lyubashevsky and G. Seiler. Short, invertible elements in partially splitting
cyclotomic rings and applications to lattice-based zero-knowledge proofs. In EU-
ROCRYPT 2018, volume 10820, pages 204–224, 2018.

47. D. Micciancio and C. Peikert. Trapdoors for lattices: Simpler, tighter, faster,
smaller. In EUROCRYPT 2012, volume 7237, pages 700–718, 2012.

48. D. Micciancio and O. Regev. Worst-case to average-case reductions based on
gaussian measures. SIAM J. Comput., 37(1):267–302, 2007.

49. N. K. Nguyen. On the non-existence of short vectors in random module lattices.
In ASIACRYPT 2019, volume 11922, pages 121–150, 2019.

50. A. Nitulescu. Lattice-based zero-knowledge snargs for arithmetic circuits. In LAT-
INCRYPT 2019, volume 11774, pages 217–236, 2019.

51. B. Parno, J. Howell, C. Gentry, and M. Raykova. Pinocchio: Nearly practical
verifiable computation. In IEEE S&P, pages 238–252, 2013.

52. C. Peikert. Limits on the hardness of lattice problems in ℓp norms. In IEEE CCC
2007), pages 333–346. IEEE Computer Society, 2007.

53. C. Peikert, V. Vaikuntanathan, and B. Waters. A framework for efficient and
composable oblivious transfer. In CRYPTO 2008, volume 5157, pages 554–571,
2008.

54. M. Rosca, D. Stehlé, and A. Wallet. On the ring-lwe and polynomial-lwe problems.
In EUROCRYPT (1), volume 10820, pages 146–173, 2018.

55. D. Stehlé and R. Steinfeld. Making NTRU as secure as worst-case problems over
ideal lattices. In EUROCRYPT 2011, volume 6632, pages 27–47, 2011.

56. D. Stehlé and R. Steinfeld. Making ntruencrypt and ntrusign as secure as standard
worst-case problems over ideal lattices. IACR Cryptol. ePrint Arch., page 4, 2013.

57. T. Xie, J. Zhang, Y. Zhang, C. Papamanthou, and D. Song. Libra: Succinct zero-
knowledge proofs with optimal prover computation. In CRYPTO 2019, volume
11694, pages 733–764, 2019.

33

A Additional Preliminaries and Definitions

A.1 Table of Notations.

In Table 3, we have summarized all important notations used in this paper.

Notation Explanation Remarks

Ng the number of constraints

Nw the witness length (i.e., w ∈ FNw) Nw ≈ Ng

n MLWE secret key dimension over Rq

k the number of PCP queries k = 4

m the PCP query length m = 2Ng

Q ∈ Fm×k the PCP query matrix

π : Fm → F the linear oracle

ρ num. of repetitions for knowledge amplification

p the plaintext modulus

q the ciphertext modulus before mod switching

q′ the ciphertext modulus after mod switching

R the polynomial ring of dimension d R = Z[x]/(xd + 1)

ℓp number of ring splitting factors mod p

f degree of the irreducible factors of xd + 1 mod p d = f · ℓp
ℓq number of ring splitting factors mod q

ℓ the plaintext dimension over Rp ℓ = ⌈4ρ/ℓp⌉
τ sparsification parameter τ = ⌈ 128

d log p
⌉

ℓ′ = ℓ+ τ extended plaintext dimension over Rp

χ LWE error distribution

s Gaussian parameter for initial LWE error

r crypto Gaussian parameter for re-randomization

κ statistical ZK security parameter

mq number of digits of q base β mq = ⌈logβ q⌉
ν num. of ctxts in re-randomization privacy analysis

L num. of rows of the uniform re-randomization matrix L = ν ·mq

Table 3. List of common parameters and their definitions.

A.2 Field Extensions.

A degree-d field-extension Fpd of Fp is a d-dimensional vector space over Fp. For
an element s ∈ Fpd , let vs ∈ Fd

p denote its representation in Fd
p. There is an

efficient isomorphism ϕ : s 7→ vs, i.e. for all s, t ∈ Fd
p, vs + vt = vs+t ∈ Fd

p. Let

M s ∈ Fd×d
p denote the linear transformation over Fd

p corresponding to scalar
multiplication by s over Fpd .

34

A.3 Linear PCP Preliminaries

Definition 6. (Linear PCP [39]) Let p be a polynomial and let CS = {CSN}N
be the family of R1CS systems over a finite field F, where each system CSN =
(nN , Ng,N , Nw,N , {ai,N , bi,N , ci,N}i∈[Ng,N]) has size at most |CSN | ≤ p(N).
In the following, we write n = n(N) to denote a polynomially-bounded function
where n(N) = nN for all N ∈ N. We define Ng = Ng(N) and Nw = Nw(N)
similarly. A k-query input-independent linear PCP for CS with query length
m = m(N) and knowledge error ϵ = ϵ(N) is a tuple of algorithms ΠLPCP =
(ΠLPCP.Query, ΠLPCP.Prove, ΠLPCP.Verify) with the following properties:

– (st,Q) ← ΠLPCP.Query(1
N): The query-generation algorithm takes as input

the system index N ∈ N and outputs a query matrix Q ∈ Fm×k and a
verification state st.

– π ← ΠLPCP.Prove(1
N ,x,w): On input the system index N ∈ N, a statement

x ∈ Fn, and a witness w ∈ FNw , the prove algorithm outputs a proof π ∈ Fm.
– b ← ΠLPCP.Verify(st,x,a): On input the verification state st, the statement

x ∈ Fn, and a vector of responses a ∈ Fk, the verification algorithm outputs
a bit b ∈ {0, 1}.

In addition, ΠLPCP should satisfy the following properties:

– Completeness: For all N ∈ N,x ∈ Fn, w ∈ FNw where CSN (x,w) = 1,

Pr[ΠLPCP.Verify(st,x,π
TQ) = 1|(st,Q)← ΠLPCP.Query(1

N),

π ← ΠLPCP.Prove(1
N ,x,w)] = 1.

– Knowledge: There exists an efficient extractor ELPCP such that for all N ∈
N,x ∈ Fn, and π∗ ∈ Fm, if

Pr[ΠLPCP.Verify(st,x, (π
∗)TQ) = 1|(st,Q)← ΠLPCP.Query(1

N)] > ϵ,

then

Pr[CSN (x,w) = 1|w ← E⟨π
∗,·⟩

LPCP (1N ,x)] = 1,

where ϵ denotes the knowledge error of the linear PCP.
– Perfect honest-verifier zero knowledge (HVZK): There exists an ef-

ficient simulator SLPCP = (S1,S2) such that for all N ∈ N and all instances
(x,w) where CSN (x,w) = 1,

{(st,Q,πTQ)} ≡ {(s̃t, Q̃, ã)},

where (st,Q)← ΠLPCP.Query(1
N),π ← ΠLPCP.Prove(1

N ,x,w),
(s̃t, Q̃, stS)← S1(1N), and ã← S2(stS ,x).

Definition 7. (Succinct Non-Interactive Argument) Let CS = {CSN}N∈N be a
family of R1CS systems over a finite field F, where |CSN | ≤ s(N) for some fixed
polynomial s(·). A succinct non-interactive argument in the pre-processing model
for CS is a tuple ΠSNARK = (Setup,Prove,Verify) with the following properties:

35

– (crs, st)← Setup(1λ, 1N): On input the security parameter λ and the system
index N , the setup algorithm outputs a common reference string crs and
verification state st.

– π ← Prove(crs,x,w): On input a common reference string crs, a statement
x and a witness w, the prove algorithms outputs a proof π.

– b ← Verify(st,x,π): On input the verification state st, a statement x and a
proof π, the verification algorithm outputs a bit b ∈ {0, 1}.

A secure ΠSNARK should satisfy the following properties:

– Completeness: For all security parameters λ ∈ N, system indices N ∈ N,
and instances (x,w) where CSN (x,w) = 1,

Pr[Verify(st,x,π) = 1] = 1,

where (crs, st)← Setup(1λ, 1N),π ← Prove(crs,x,w).
– Knowledge: For all polynomial-size provers P∗, there exists a polynomial-

size extractor E, such that for all security parameters λ ∈ N, system indices
N ∈ N, and auxiliary inputs z ∈ {0, 1}poly(λ),

Pr[Verify(st,x,π) = 1 ∧ CSN (x,w) ̸= 1] = negl(λ),

where (crs, st)← Setup(1λ, 1N), (x,π)← P∗(1∗, 1N , crs; z), and w ← E(1λ, 1N ,
crs, st,x; z).

– Efficiency: There exist a universal polynomial p (independent of CS) such
that Setup and Prove run in time p(λ + |CSN |), Verify runs in time p(λ +
|x|+ log |CSN |), and the proof size is p(λ+ log |CSN |).

Definition 8. (Zero-Knowledge) A SNARK ΠSNARK = (Setup,Prove,Verify) for
an R1CS system CS = {CSN}N∈N is computational zero knowledge (i.e., a ZK-
SNARK) if there exists an efficient simulator SSNARK = (S1,S2) such that for
all N ∈ N and all efficient and stateful adversaries A, we have that

Pr[ExptZKΠSNARK,A,SSNARK(1
λ, 1N) = 1] ≤ 1/2 + negl(λ),

where the experiment ExptZKΠSNARK,A,SSNARK(1
λ, 1N) is defined as follows:

1. The challenger samples b ←↩ U({0, 1}). If b = 0, the challenger computes
(crs, st) ← Setup(1λ, 1N) and gives (crs, st) to A. If b = 1, the challenger
computes (c̃rs, s̃t, stS)← S1(1λ, 1N) and gives (c̃rs, s̃t) to A.

2. The adversary A outputs a statement x and a witness w.
3. If CSN (x,w) ̸= 1, then the experiment halts with output 0. Otherwise, the

challenger proceeds as follows:

– If b = 0, the challenger replies with π ← Prove(crs,x,w).
– If b = 1, the challenger replies with π̃ ← S2(stS ,x).

At the end of the experiment, A outputs a bit b′ ∈ {0, 1}. The output of the
experiment is 1 if b′ = b and is 0 otherwise.

36

We say a SNARK is a designated verifier if st cannot be efficiently computed
from the crs.

Definition 9 (LPCP for R1CS construction [39]). Let CS = {CSN}N∈N
be a family of R1CS instances over a finite field F, where CSN = (nN , Ng,N ,
Nw,N , {ai,N , bi,N , ci,N}i∈[Ng,N]), ai,N , bi,N , ci,N ∈ FNw,N+1. We define Ng =
Ng(N), Nw = Nw(N),ai = ai(N), bi = bi(N), ci = ci(N). We additionally
define:

– S = {α1, . . . , αNg
} ⊂ F be an arbitrary subset of F.

– For each i ∈ {0, . . . , Nw} let Ai, Bi, Ci : F→ F unique polynomials of degree
Ng − 1 and for all j ∈ [Ng]:

Ai(αj) = aj,i, Bi(αj) = bj,i, Ci(αj) = cj,i

– Let ZS : F→ F be the polynomial ZS(z) :=
∏

j∈[Ng]
(z − αj).

The 4-query LPCP ΠLPCP = (ΠLPCP.Query, ΠLPCP.Prove, ΠLPCP.Verify) for CS is
defined as follows:

ΠLPCP.Query(1
N): On input N ∈ N, sample τ ←↩ U(F\S). Let a = (A1(τ), . . . , An(τ)),

b = (B1(τ), . . . , Bn(τ)), c = (C1(τ), . . . , Cn(τ)). Output the state st =
(A0(τ), B0(τ), C0(τ),a, b, c, ZS(τ)) and the query matrix:

Q =


ZS(τ) 0 0 An+1(τ) · · · ANw

(τ) 0 0 · · · 0
0 ZS(τ) 0 Bn+1(τ) · · · BNw(τ) 0 0 · · · 0
0 0 ZS(τ) Cn+1(τ) · · · CNw(τ) 0 0 · · · 0
0 0 0 0 · · · 0 1 τ · · · τNg


T

∈ F(4+Ng+Nw−n)×4

ΠLPCP.Prove(1
N ,x,w): On input N ∈ N and an instance (x,w) where CSN (x,w) =

1, sample δ1, δ2, δ3 ←↩ U(F). Construct polynomials A,B,C : F→ F, each of
degree Ng:

A(z) := δ1ZS(z) +A0(z) +
∑
i∈Nw

wiAi(z)

B(z) := δ2ZS(z) +B0(z) +
∑
i∈Nw

wiBi(z)

C(z) := δ3ZS(z) + C0(z) +
∑
i∈Nw

wiCi(z)

Let H(z) := (A(z)B(z)− C(z)) /ZS(z) and let h = (h0, . . . , hNg
) ∈ FNg+1

be the coefficients of H. Parse wT = [xT |w̄T]. Output the proof vector π =
(δ1, δ2, δ3, w̄,h) ∈ F4+Ng+Nw−n.

ΠLPCP.Verify(st,x,a): On input st = (a0, b0, c0,a, b, c, z),x ∈ Fn and a ∈ F4,
the verifier computes a′1 = a1 + a0 + xTa, a′2 = a2 + b0 + xT b, a′3 = a3 +
c0 + xT c. It accepts if a′1a

′
2 − a′3 − a4z = 0

37

Definition 10 (Fpd LPCP to Fp LPCP [39]). Let Π ′LPCP = (Π ′LPCP.Query,
Π ′LPCP.Prove, Π

′
LPCP.Verify) be a k-query linear PCP for a family of R1CS sys-

tems CS = {CSN}N∈N over an extension field Fpd with query length m. A
(dk)-query linear PCP ΠLPCP = (ΠLPCP.Query, ΠLPCP.Prove, ΠLPCP.Verify) for
CS with query length dℓ over the base over the base field Fp:

– ΠLPCP.Query(1
N): Run (st,Q′) ← Π ′LPCP.Query(1

λ) where Q′ ∈ Fm×k
pd . Let

Q ∈ Fdℓ×dk
p be the matrix formed by taking each component q′i,j ∈ Fpd in

Q′ and replacing it with the transpose of the “multiplication-by-q′i,j” matrix

MT
q′i,j
∈ Fd×d

p . It holds:

Q′ =

 q
′
1,1 · · · q′1,k
...

. . .
...

q′m,1 · · · q′m,k

 , Q =

M
T
q′1,1
· · · MT

q′1,k

...
. . .

...

MT
q′m,1 · · ·M

T
q′m,k

 ,

– ΠLPCP.Prove(1
N ,x,w): Compute π′ ← Π ′LPCP.(1

N ,x,w) ∈ Fm
pd . Let π ∈

Fdm
p be the vector formed by taking each component π′i ∈ Fpd in π′ and

replacing it with the vector vπ′
i
∈ Fd

p representing πi. Output the proof vector
π.

– ΠLPCP.Verify(st,x,a): Parse a ∈ Fdk
p as [va′

1
, . . . ,va′

k
] for some a′ = (a′1, . . . ,

a′k) ∈ Fk
pd . Output Π ′LPCP.Verify(st,x,a

′).

ΠLPCP is complete, perfect HVZK and has knowledge error ϵ if the underlying
Π ′LPCP has the same properties. (see proof of Theorem 3.2 in [39]).

A.4 Vector Encryption Preliminaries

Definition 11 (Linear-Only Vector Encryption (adapted from [18]). Let
F be a finite field. A secret-key additively-homomorphic vector encryption scheme
over a vector space Fℓ consists of a tuple of algorithms ΠEncrypt = (Setup,Encrypt,
Decrypt,Add) which are defined as follows:

– (pp, sk)← Setup(1λ, 1ℓ): On input the security parameter λ and the plaintext
dimension ℓ, the setup algorithm outputs public parameters pp and a secret
key sk.

– C ← Encrypt(sk,v): On input the secret key sk and a vector v ∈ Fℓ, the
encryption algorithm outputs ciphertext C.

– v/⊥ ← Decrypt(sk,C): On input the secret key sk and a ciphertext C, the
decryption algorithm either outputs a vector v ∈ Fℓ or a special symbol ⊥.

– C∗ ← Add(pp, {Ci}i∈[m], {yi}y∈[m]): On input the public parameters, a col-
lection of ciphertexts {Ci}i∈[m] and scalars {yi} ∈ F, i ∈ [m], the addition
algorithm outputs a new ciphertext c∗.

The linear-only vector encryption satisfies the property of CPA security stated
above, and the properties of additive homomorphism and circuit privacy are
defined as follows:

38

IND-CPA Security. For all security parameters λ ∈ N and all efficient adversaries
A their advantage of winning the security game Gameind−cpaA,ΠEncrypt

is given by the
following probability:

Pr[Gameind−cpaA,ΠEncrypt
(1λ) = 1] = 1/2 + negl(λ),

where Gameind−cpaA,ΠEncrypt
is defined as follows:

1. sk← Setup(1λ)
2. µ0, µ1 ← AOEncrypt(sk,·)(1λ)
3. Select b←↩ U({0, 1}), and compute c = Encrypt(sk, µb)
4. b′ ← AOEncrypt(sk,·)(c)

If b′ = b and c has not been queried to the encryption oracle, output 1, otherwise
output 0.

Additive homomorphism: For all security parameters λ ∈ N, vectors {vi}i∈[m] ⊆
Fℓ, and scalars {yi}i∈[m] ⊆ F where m = m(λ),

Pr[
∑
i∈[m]

yivi ← Decrypt(sk,C∗)] = 1− negl(λ), (32)

where (pp, sk) ← Setup(1λ, 1ℓ),Ci ← Encrypt(sk,vi) for all i ∈ [m] and c∗ ←
Add(pp, {Ci}i∈[m], {yi}i∈[m]). We say that the linear-only vector encryption is
additively homomorphic with respect to a set S ⊆ Rm

p if (32) holds for all
(y1, . . . , ym) ∈ S.
Note: The additive homomorphism implies the correctness of the decryption.

Circuit Privacy [32] Let ΠEnc = (Setup,Encrypt,Decrypt,Add) be a secret-key
vector encryption scheme over Fℓ. ΠEnc is circuit private if for all efficient and
stateful adversaries A, there exists an efficient simulator S, such that for all
security parameters λ ∈ N

Pr[Gamecirc−privΠEnc,A,S(1
λ) = 1] = 1/2 + negl(λ),

where Gamecirc−privΠEnc,A,S(1
λ) is defined as follows:

1. The challenger lets (pp, sk)← Setup(1λ, 1ℓ) and gives (pp, sk) to A. A replies
with a collection of vectors (v1, . . . ,vm) ∈ Fm.

2. The challenger constructs Ci ← Encrypt(sk,vi) for all i ∈ [m] and gives
{Ci}i∈[m] to A. The adversary replies with a collection of F coefficients
{yi}i∈[m].

3. The challenger computes c∗0 ← Add(pp, {Ci}i∈[m], {yi}i∈[m]) and c∗1 ← S(1λ,
pp, sk,

∑
i∈[m] yivi). It samples b←↩ {0, 1} and replies to A with c∗b .

4. The adversary outputs a bit b′ ∈ {0, 1}. The output of the Game is 1 if b = b′

and 0 otherwise.

39

Definition 12 (Linear-only property (adapted from [17]). A vector en-
cryption scheme ΠEncrypt = (Setup,Encrypt,Decrypt,Add) over Fℓ is strictly
linear-only if for all polynomial-size adversaries A, there is a polynomial-size
extractor E such that for all security parameters λ ∈ N, auxiliary inputs
z ∈ {0, 1}poly(λ), and any efficient plaintext generatorM,

Pr[ExptLinearExtΠEncrypt,A,M,E,z(1
λ) = 1] = negl(λ),

where the experiment ExptLinearExtΠEncrypt,A,M,E,z(1
λ) is defined as follows:

– The challenger samples (pp, sk) ← Setup(1λ, 1ℓ) and {vi}i∈[m] ←
M(1λ, pp). It computes Ci ← Encrypt(sk,vi) for each i ∈ [m] and runs
A(pp, {Ci}i∈[m]; z) to obtain a tuple (C ′1, . . . ,C

′
k)

– The challenger computes Π ← E(pp, {Ci}i∈[m]; z) and V ′ ← Π ·
[v1, . . . ,vm]T , where Π ∈ Fk×m and V ′ ∈ Fk×ℓ. The experiment out-
puts 1 if there exists an index i ∈ [k] such that Decrypt(sk,C ′i) ̸= ⊥ and
Decrypt(sk,C ′i) ̸= v′i, where v′i ∈ Fℓ is the i-th row of V ′. Otherwise, the
experiment outputs 0.

A.5 ISW Definitions and Constructions

Definition 13 (Vector Encryption [39]). Let d = d(λ) be a power of two and
let R = Z[x]/(xd + 1). Fix lattice parameters p = p(λ), q = q(λ), n = n(λ) and
an error distribution χ = χ(λ) over Rq. Let ℓ denote the plaintext parameter,
τ denote the sparsification parameter and B denote the noise smudging bound.
Set ℓ′ = ℓ+ τ . A secret-key vector encryption scheme is defined by the following
four algorithms Setup,Encrypt,Decrypt,Add:

– Setup(1λ, 1ℓ): Sample matrices A ←↩ U(Rn×n
q),S ←↩ χn×ℓ′ ,T ←↩ Rr×ℓ

q and

E ←↩ χn×ℓ′ . Compute D = STA + pE ∈ Rℓ′×n
q . Output the secret key

sk = (S,T) and the public parameters pp = (A,D).
– Encrypt(sk,v): On input the secret key sk = (S,T) and a vector v ∈ Rℓ

q

construct the concatenated vector uT = [vT , (Tv)T] ∈ Rℓ′

p . Sample a ←↩
U(Rn

q), e←↩ χℓ′ and compute c = STa+pe+u ∈ Rℓ′

q . Output the ciphertext
C = (a, c).

– Add(pp, {Ci}i∈[m], {yi}i∈[m]): On input the public parameters pp = (A,D),
ciphertexts Ci = (ai, ci) for i ∈ [m], and scalars yi ∈ Rp, sample r ←↩ χn,

ea ←↩ χn, ec ←↩ U([−B,B]dℓ
′
) and output the ciphertext

C∗ =

∑
i∈[m]

yiai +Ar + pea,
∑
i∈[m]

yici +Dr + pec

 . (33)

– Decrypt(sk,C): On input the secret key sk = (S,T) and a ciphertext C =
(a, c), compute z = c − STa ∈ Rℓ′

q . Compute u = z mod p and parse

uT = [vT
1 ,v

T
2] where v1 ∈ Rℓ

p and v2 ∈ Rr
p. Output v1 if v2 = Tv1 ∈ Rr

p

and ⊥ otherwise.

40

Definition 14 (Honest-Verifier Zero-Knowledge with Leakage [39]). Let
R = Z[X]/f(X) be a polynomial ring where deg(f) = d. Let p be a prime such
that Rp

∼= Fpd is a finite field. Let ΠLPCP = (QueryLPCP,ProveLPCP,VerifyLPCP)
be a linear PCP for a family of R1CS systems CS = {CSκ}κ∈N over Rp. Let
D be a distribution on matrices over R and q > p be a modulus. We say that
ΠLPCP satisfies honest-verifier zero-knowledge with (D, q)-leakage if there exists
an efficient simulator SLPCP = (S1,S2) such that for all κ ∈ N and all instances
(x,w) where CSκ(x,w) = 1,

{(st,Q, [Qπ]q,Z, [Zπ]q)}
s
≈ {(s̃t, Q̃, ã, Z̃, b̃)}, (34)

where (st,Q) ← QueryLPCP(1
κ),Z ← D,π ← ProveLPCP(1

κ,x,w),
(s̃t, Q̃, Z̃, stS)← S1(1κ) and (ã, b̃)← S2(stS ,x), and we write [Qπ]q and [Zπ]q
to denote computations over the ring Rq (i.e. teh elements of Rq are first lifted
to R and teh value of the matrix-vector product is then reduced modulo q). When
the statistical distance between the two distributions in (34) is δ, we say that
ΠLPCP is δ-HVZK with (D, q)-leakage.

B Proofs of Subsection 4.1

B.1 Proof of Lemma 10

Proof. We use a union bound argument similar to that used in Lemma 3.2 of [56]
(see also [49]) to lower bound the minimum of random q-ary module lattices. For
β ∈ R, we denote by S2,β the set of elements of R of Euclidean norm less than
β, i.e. S2,β := {w ∈ R : ∥w∥2 < β}. By a union bound, we have:

p1 ≤
∑

(vA,vE ,vG,t)

∈Rn
q̄ \0×R

ℓ′
q̄ ×R

ν
q̄×S

L
2,β

Pr
AT←↩U(RL×n

q̄)
[AvA = t−EvE −GvG]. (35)

Let p(vA,vE ,vG, t) := PrA←↩U(RL×n
q̄)[AvA = t−EvE−GvG]. Since the L rows

of A are sampled independently and uniformly random in Rn
q̄ , we have

p(vA,vE ,vG, t) =
∏
i∈[L]

|Ai(vA,vE ,vG, t)|
q̄dn

, (36)

where Ai(vA,vE ,vG, t) := {aT
i ∈ Rn

q̄ : aT
i vA = ti − eTi vE − gT

i vE} for i ∈ [L].
The d-dimensional (over Zq̄) ring Rq̄ is isomorphic by the Chinese Remainder

Theorem (CRT) to the cross-product of the (d/ℓq)-dimensional fields R
(u)
q̄ :=

Zq̄[x]/(fu(x)) for u ∈ [ℓq]. For z ∈ Rq̄, we denote by z(u) := z mod fu(x) ∈ R
(u)
q̄

its reduction mod fu(x) (and analogously for vectors and matrices over Rq̄). Let
aT
i , e

T
i , and gT

i , be the i’th row of A, E, and G, respectively. We then have

p(vA,vE ,vG, t) =
∏
i∈[L]

∏
u∈[ℓq] |A

(u)
i (vA,vE ,vG, t)|
q̄dn

, (37)

41

where for i ∈ [L] and u ∈ [ℓq], we define A
(u)
i (vA,vE ,vG, t) as below:

{a(u)
i ∈

(
R

(u)
q̄

)n
:
(
a
(u)
i

)T
v
(u)
A = t

(u)
i −

(
e
(u)
i

)T
v
(u)
E −

(
g
(u)
i

)T
v
(u)
G }.

Now, for each u ∈ [ℓq] and fixed vA,vE ,vG, t, since R
(u)
q̄ is a field of size

q̄d/ℓq , there are two possible cases for |A(u)
i (vA,vE ,vG, t)|, depending on the

value of v
(u)
A ∈ (R

(u)
q̄)n:

– Case 1: v
(u)
A ̸= 0. In this case, there exists ℓ′ ∈ [n] such that v

(u)
A,ℓ′ ̸= 0

and hence is invertible in the field R
(u)
q̄ . This implies that for any possible

choice of {a(u)i,ℓ′′}ℓ′′ ̸=ℓ′ ∈
(
R

(u)
q̄

)n−1
, there exists a unique value for a

(u)
i,ℓ′ ∈ R

(u)
q̄

satisfying
(
a
(u)
i

)T
v
(u)
A = t

(u)
i −

(
e
(u)
i

)T
v
(u)
E −

(
g
(u)
i

)T
v
(u)
G . Hence, in this case,

we have |A(u)
i (vA,vE ,vG, t)| = |(R(u)

q̄)n−1| = q̄d/ℓq(n−1).

– Case 2: v
(u)
A = 0. In this case, since

(
a
(u)
i

)T
v
(u)
A = 0 regardless of the

choice of
(
a
(u)
i

)T
, we have |A(u)

i (vA,vE ,vG, t)| = |(R(u)
q̄)n| = q̄d/ℓqn if

t
(u)
i −

(
e
(u)
i

)T
v
(u)
E −

(
g
(u)
i

)T
v
(u)
G = 0 and |A(u)

i (vA,vE ,vG, t)| = 0 other-
wise.

For a vector v ∈ Rm
q̄ and any m ≥ 1, let us denote by Z(v) ⊆ [ℓq] the set of

u ∈ [ℓq] such that v(u) = 0 ∈
(
R

(u)
q̄

)m
(i.e. the set of CRT slots that are zero for

all m coordinates of v over Rq̄).
We conclude from the above that for any fixed vA,vE ,vG, t, we have∏

u∈[ℓq]

|A(u)
i (vA,vE ,vG, t)| ={
q̄d(n−1)+d/ℓq|Z(vA)|, if Z(vA) ⊆ Z(ti − eTi vE − gT

i vG)

0, otherwise.

For r ∈ [ℓq−1], let Vr denote the set of (vA,vE ,vG, t) ∈ Rn
q̄ \0×Rℓ′

q̄ ×Rν
q̄×SL

2,β

such that |Z(vA)| = r and Z(vA) ⊆ Z(ti − eTi vE − gT
i vG) for all i ∈ [L].

Summarising, the above discussion shows that

p1 ≤
∑

r∈[ℓq−1]

|Vr|
q̄Ld(1−r/ℓq)

(38)

and it remains to upper bound |Vr| for r ∈ [ℓq − 1]. For each possible choice

of vA ∈ Rn
q̄ \ 0 with Z(vA) := Z and |Z| = r and (vE ,vG) ∈ Rℓ′

q̄ × Rν
q̄ , let

T (vA,vE ,vG) denote the set of t ∈ SL
2,β such that (vA,vE ,vG, t) ∈ Vr. We

denote by IZ,Rq̄
the ideal lattice of elements w in Rq̄ with Z ⊆ Z(w), i.e having

zero CRT slots in Z, i.e. IZ,Rq̄
:= {w ∈ R : w(u) = 0 mod q̄ for all u ∈ Z}.

Notice that t ∈ T (vA,vE ,vG) if and only if

ti ∈ IZ,Rq̄
+ ci

42

where ci := eTi vE + gT
i vG for i ∈ [L]. For each i ∈ [L], let Ni(ci) denote

the number of ti in (IZ,Rq̄
+ ci) ∩ S2,β , i.e. the number of points in the coset

containing ci of the lattice IZ,Rq̄ that are inside the Euclidean ball S2,β of radius
β. We upper bound Ni(ci) by a volume argument. Namely, let λ denote the
minimum of IZ,Rq̄

, i.e. the Euclidean norm of the shortest non-zero vector in
IZ,Rq̄

. We consider the enlarged ball S2,β+λ/2 of radius β + λ/2, which contains
the union of Ni(ci) non-intersecting balls of radius λ/2 centered on the points

of (IZ,Rq̄
+ ci) ∩ S2,β . It follows that Ni(ci) ≤

vol(S2,β+λ/2)

vol(λ/2) = (2β/λ+ 1)d for all

i ∈ [L]. By Lemma 9, we have λ ≥ q̄r/ℓq , and we conclude that, setting β := q̄/c,
we have

Ni(ci) ≤ (2q̄1−r/ℓq/c+ 1)d for i ∈ [L].

It follows that, for each r ∈ [ℓq − 1]

|Vr| ≤ NZNANENG

∏
i∈L

Ni(ci) ≤ q̄(1−r/ℓq)n+ℓ′+ν)d · (2q̄1−r/ℓq/c+ 1)Ld, (39)

where NZ =
(
ℓq
r

)
is the number of possible Z ⊂ [ℓq] with |Z| = r, NA ≤

q̄(1−r/ℓq)nd is the number of possible vA ∈ Rn
q̄ \ 0 with Z(vA) = Z and |Z| = r,

NE ≤ q̄ℓ
′d is the number of possible vE in Rℓ′

q̄ , and NG ≤ q̄νd is the number of
possible vG in Rν

q̄ . Plugging (39) into (38) give (21) and completes the proof. ⊓⊔

C Proofs of Subsection 4.2

Proof of Lemma 13

Proof. The proof proceeds similarly to [21]. The support of the distribution D
of xT Ē is Rℓ′ = Zℓ′d due to the submatrix Iℓ′ in Ē and the fact that the last ℓ′

coordinates of xT over R are independently sampled over support Rℓ′ . Now let
z ∈ Rℓ′ . We have

D(z) = DΛ⊥
q (G)×Rℓ′+(c,0),r(Λz) =

ρr(Λz)

ρr(Λ⊥q (G)×Rℓ′ + (c, 0))
,

where Λz := {v ∈ Λ⊥q (G)×Rℓ′ : vT Ē = zT }. Note that Λz is a coset of a Z-rank
L ·d lattice Λ := {v ∈ Λ⊥q (G)×Rℓ′ : vT ·Ē = 0T }, so we can write Λz = Λ+wz,

where wz ∈ RL+ℓ′ is any solution to wT
z ·Ē = zT . Now let uz (resp. u⊥z) denote

the projection of wz along (resp. orthogonally to) the rank ℓ′ · d subspace VĒ of
R(L+ℓ′)d spanned by the rows of Ē. Then, writing wz = u⊥z + uz, we have

ρr(Λz) = ρr(Λ+ u⊥z + uz) = ρr(Λ+ u⊥z) · ρr(uz),

where in the last equality we used the orthogonality of uz to Λ + u⊥z . We
show in Lemma 14 below that r ≥ ηϵ(Λ). Using this and the fact that u⊥z
is in the span of Λ, Lemma 4 implies that ρr(Λ + u⊥z) ∈ [1−ϵ1+ϵ , 1] · ρr(Λ).
Plugging in the expression for ρr(Λz) and then into the expression for D(z)

43

shows that D(z) is within statistical distance ≤ 2ϵ of DRℓ′ ,r(uz). We claim

that DRℓ′ ,r(uz) = DZdℓ′ ,r·S(z), where S := rot(Ē). Indeed, note that the

projection uz of wz on the row span of rot(Ē) (over R) can be written as
uT
z = wT

z · (rot(Ē)∗)T · rot(Ē)∗, where rot(Ē)∗ = L−TE · rot(Ē) has along
its rows the normalized Gram-Schmidt Orthognalization (GSO) of the rows
of rot(Ē), and LE denotes the upper diagonal GSO coefficient matrix. There-
fore, uT

z = wT
z · rot(Ē)TL−1E rot(Ē)∗ = zT · L−1E rot(Ē)∗, using the fact that

wT
z · rot(Ē)T = zT . It follows that uT

zuz = zT · L−1E rot(Ē)∗(rot(Ē)∗)TL−TE z =
zT · (LT

ELE)
−1z = zT · (STS)−1z with S := rot(Ē), as required. ⊓⊔

C.1 Proof of Lemma 14

Proof. Recall that that Λ has a Z-rank L·d. By Lemma 7, it suffices to show that

the last minimum λLd(Λ) of Λ is upper bounded by γ :=
√
mq ·

(
1 +
√
ℓ′d · E∞

)
.

Namely we exhibit Ld R-linearly independent vectors ui (i ∈ [Ld]) in Λ whose
Euclidean norm is upper bounded by γ. Let B̄ ∈ Zmqd×mqd denote a column
Z-basis for Λq(rot(g)). We take B̄ = Id ⊗ B̄

′
with B̄

′ ∈ Zmq×mq having its
j’th column of the form b′j = βej − ej+1 for j ∈ [mq − 1] (with ej denot-
ing the jth unit vector having 1 in coordinate j and zeroes elsewhere) and
b′mq

= (q0, q1, . . . , qmq−1)
T , here qi ∈ {0, . . . , β − 1} is the i’th digit in the β-ary

representation of q (i.e. q =
∑mq−1

j=0 qjβ
j).

Let B ∈ Z(L+ℓ′)d×(L+ℓ′)d denote a column Z-basis for Λq(rot(G)) (namely,

we take for B the matrix whose first Ld rows consist of (Iν ⊗ B̄,0Ld×ℓ′d) and

whose last ℓ′d rows consist of (0ℓ′d×Ld, Iℓ′d)). Let B2 ∈ Z(L+ℓ′)d×ℓ′d denote
the last ℓ′d columns of B. Note that with rot(Ē)T = (rot(E)T , Iℓ′d), we get
rot(Ē)T ·B2 = Iℓ′d. Now, for i ∈ [Ld], we let bi denote the ith column of B, and
define ui := bi−B2 ·rot(Ē)T ·bi = K ·bi, with K := I(L+ℓ′)d−B2 ·rot(Ē)T . The
vectors (u1, . . . ,uLd) are linearly independent over R since the top Ld rows of K

is a full-rank Ld matrix (ILd,0
Ld×ℓ′d). Moreover, from rot(Ē)T ·B2 = Iℓ′d and

the definition of bi we have uT
i rot(Ē) = 0 so ui ∈ Λ for i ∈ [Ld] as required. It

remains to bound the norm of the ui’s. Note that each entry y ∈ Z of rot(Ē)T ·bi
is an inner product between a row of rot(Ē)T of infinity norm ≤ E∞ and a vector
bi having a 1-norm ∥bi∥1 ≤ max(β+1, (mq−1)(β−1)+1) = (mq−1)(β−1)+1
(where we have used the form of B′ defined above and mq ≥ 3), so |y| ≤
((mq − 1)(β − 1) + 1) ·E∞. Since there are ℓ′d coordinates in ui, we get ∥ui∥ ≤
∥bi∥+

√
ℓ′d·((mq−1)(β−1)+1)·E∞ ≤

√
mq(β−1)+

√
ℓ′d((mq−1)(β−1)+1)E∞.

⊓⊔

D Proofs of Section 5

D.1 Proof of Theorem 2

Proof. Let (S,T ,A,E) ← HGSW.Setup(1λ, 1ℓ) and Ck ←
HGSW.Encrypt(k,S,µ) for k ∈ [m]. For a = (a1, . . . , am) ∈ S := Dm

r , we

44

have that

c∗ =

m/ν−1∑
j=0

(
ν∑

i=1

g−1rand(ajν+i) ·Cjν+i + [0n,yT
j]

)
Let us now find the HGSW.Decrypt(c∗,S) by calculating H∗ = ⌈(p/q) · ⟨c∗, S̄⟩⌋,
where S̄

T
=
[
−ST Iℓ′

]
. Replacing g−Trand(ajν+i) = xT

j,i and Ci from the above
and their definitions, we get that:

H∗ =

pq
m/ν−1∑
j=0

(
ν∑

i=1

xT
jν+i

(
Cjν+i +

q

p
Hjν+i + [0,yT

j]

)
·
[
−S
Iℓ′

])
=

pq
m/ν−1∑
j=0

(
ν∑

i=1

(
xT
jν+iEjν+i +

q

p
ajν+iµ̄jν+i

)
+ yT

j

)
=

pq
m−1∑

k=0

q

p
akµ̄k +

m−1∑
k=0

xT
kEk +

m/ν−1∑
j=0

yT
j


Letting X̄

T
:=

[
xT
1 , . . . ,x

T
m ,yT

0 , . . . ,yT
m/ν−1

]
and Ē :=[

E1, . . . ,Em , Iℓ′ , . . . , Iℓ′
]
, we now observe that thanks to (30), we have

∥X̄T
Ē∥∞ < q/(2p) (i.e. no wraparound mod q) except with probability

≤ ϵ. Indeed, by Lemma 2, we have ∥X̄∥ ≤ r
√
(mmq +mℓ′/ν)d except with

probability ≤ 1+ϵ
1−ϵ · 2

−(mmq+mℓ′/ν)d ≤ 2−(mmq+mℓ′/ν)d+2 ≤ 4ϵ using ϵ ≤ 1/2 and
the choice of

r ≥ (mmq + ℓ′)dc
√
ln(2(mmq +mℓ′/ν)d(1 + ϵ−1))/π and 2−(mmq+mℓ′/ν)d ≤ ϵ,

where we have used the fact that ηϵ(Λ
⊥
q (G)T) ≤

β2
√
ln(2(mmq +mℓ′/ν)d(1 + ϵ−1))/π by Lemma 6 and Lemma 11, and that

c ≥ c2 ≥ β2. Therefore, by Lemma 3, each integer coefficient of X̄
T
Ē has ab-

solute value ≤ s
√
(r2(mmq +mℓ′/ν)d+ 1) ln(2((mmq +mℓ′/ν)d+ 1)/ϵ)/π <

q/(2p) except with probability ϵ over the choice of Ei and yi for all i ∈ [m].

D.2 Proof of Theorem 4

Proof. To prove the circuit privacy of our HGSW, we need to build a simulator
S. On input the security parameter λ, the secret key sk = (S,T ,A,E) and a
message vector µ ∈ Rℓ

p, the simulator computes the following:

– For j = 0, . . . ,m/ν−1, sample bTj ← U(Rn
q) and eTj ← DZℓ′d,r·rot(Ēj)

, where

Ē
T
j := [ET

j , Iℓ′] ∈ R(L+ℓ′)×ℓ′ .

– Compute the sum (bT , eT) :=
∑m/L−1

j=0 (bTj , e
T
j) ∈ Rn

q ×Rℓ′ .

– Compute µ̄T = [µT |(Tµ)T] ∈ Rℓ′

p and output the simulated ciphertext

c∗1 := (bT , bTS + eT + q
p µ̄

T) ∈ Rn
q ×Rℓ′

q .

45

We show that the output c∗1 of the simulator is statistically indistinguishable from
the ciphertext c∗0 computed by the challenger with the original Add algorithm.
For this, observe that the latter is computed as

c∗0 :=

m/ν−1∑
j=0

(
ν∑

i=1

g−1rand(ajν+i) ·Cjν+i + [0n,yj]

)
(40)

=

m/ν−1∑
j=0

bTj , (

m/ν−1∑
j=0

bTj)S +

m/ν−1∑
j=0

eTj +
q

p
(

m/ν−1∑
j=0

µ̄T
j mod p)

 , (41)

where bTj :=
∑ν

i=1 x
T
jν+iAjν+i, eTj :=

∑ν−1
i=0 xT

jν+iEjν+i + yj and xT
jν+i :=

g−1rand(ajν+i), and µ̄T
j :=

∑ν
i=1 x

T
jν+i

q
pH(µ̄i) =

q
p

(∑ν
i=1 ajν+iµ̄jν+i mod p

)
. We

have that
∑m/ν−1

j=0 µ̄T
j mod p =

∑m
i=1 aiµ̄i mod p, equal to the sum message

vector µ̄ computed by the simulator. Furthermore, for each j = 0, . . . ,m/ν − 1
we apply Theorem 1, to conclude that in the Add algorithm, the distribu-
tion of (bTj , e

T
j) is within statistical distance O(ϵ) from the distribution Dj :=

U(Rn
q)×DZℓ′d,r·rot(Ēj)

used by the simulator to sample (bTj , e
T
j). It follows that

the distribution of (bT , eT) :=
∑m/ν−1

j=0 (bTj , e
T
j) in the Add algorithm is within

statistical distance 18(m/ν) ·ϵ of its distribution in the simulation, and the same
bound therefore applies for the statistical distance between the distributions of
c∗1 and c∗0. ⊓⊔

E Proof of Theorem 5

Proof. Bitansky et al. [17] showed that the zero-knowledge property of a ZK-
SNARK construction from linear-only encryption and LPCP follows from the re-
randomization (circuit privacy) property of the underlying linear-only encryption
and from the honest-verifier zero-knowledge property of the underlying LPCP
protocol. In Section 4 we proved the rerandomization property of our module
full GSW and half GSW schemes.

Let SLPCP = (SLPCP,1,SLPCP,2) be a simulator of linear PCPΠLPCP and SHGSW
be the simulator for circuit privacy of the underlying HGSW scheme. We build
a simulator SSNARK = (SSNARK,1,SSNARK,2) of our ZK-SNARK construction from
the simulators of the underlying building blocks, LPCP and HGSW:

– SSNARK,1(1λ, 1N): Take as input a security parameter λ and the system pa-

rameter N of {CSN} and run the LPCP simulator SLPCP, i.e.
(
s̃t, Q̃, stS

)
←

SLPCP,1, for a Q̃ ∈ Fm×k is a query matrix. Let S̃ ← HGSW.Setup(1λ)
and compute Ci = HGSW.Encrypt(S, qT

i) for each i ∈ [m]. Output c̃rs =
(N, C̃1, . . . , C̃m) and the verification key s̃t = (s̃tLPCP, S̃) and the simula-
tion state stS = (stLPCP, S̃).

– SSNARK,2(stS ,x): Take as input stS = (stLPCP, S̃) and the statement x, com-
pute ã← SLPCP,2(st∫ ,x).
Output the simulated proof π̃ = SHGSW.Encrypt(1

λ, S̃, ã)

46

The proof is done via a hybrid argument (similar to [39])

– Hybrid0: This hybrid is equivalent to the original game of zero-knowledge of
ΠSNARK:
The challenger samples b ←r {0, 1}. If b = 0, the challenger computes
(crs, st) ← Setup(1λ, 1N) and gives (crs, st) to A. If b = 1, the challenger
computes (c̃rs, s̃t, stS) ← S1(1λ, 1N) and gives (c̃rs, s̃t) to A. The adversary
outputs a statement x and a witness w. The challengers checks the circuit
satisfiability, i.e. CSN (x,w) = 1. If the check succeeds, the challenger com-
putes the following:
If b = 0, the challenger replies with π ← Prove(crs, x, w). If b = 1, the chal-
lenger replies with π̃ ← S2(stS , x).
At the end of the experiment, A outputs a bit b′ ∈ {0, 1}. The final output
of the experiment is b′ ∈ {0, 1} indicating a win of A if b′ = b.

– Hybrid1: This hybrid is the same as Hybrid0 except the proof π is constructed
using SHGSW.Encrypt. Let Q ∈ Fm×k be the query matrix sampled by the
challenger to construct crs = (N,C1, . . . ,Cm) and let st = (stLPCP,S) be
the corresponding verification state. To compute π the challenger runs π ←
ΠLPCP.Prove(1

N ,x,w) and computes π ← SHGSW.Encrypt(1
λ,ST ,a), where

a←
∑m

i=1 πiqi = Qπ where qi is the i-th row of Q.
– Hybrid2: This hybrid is the same as Hybrid1 except the challenger runs SLPCP

to simulate the proof π and crs. The challenger samples (st,Q, stS) ←
SLPCP,1(1N). Then the challenger computes a ← SLPCP,2(stSx) which re-
places a = Qπ in Hybrid1.

We denote by Hybi(A) the output of Hybridi. The difference between Hybrid0 and
Hybrid1 is the computation of π using SHGSW.Encrypt. Since our HGSW is ϵ-circuit
private, then

|Pr[Hyb0(A) = 1]− Pr[Hyb1(A) = 1]| =≤ 2ϵ.

Now, the difference between Hybrid1 and Hybrid2 is the computation of S,a using
SLPCP. Therefore if ΠLPCP is honest-verifier zero-knowledge then

Pr[Hyb1(A) = 1] = Pr[Hyb2(A) = 1]

Since the challenger behaves independently of the bit b it follows Pr[Hyb2 = 1] =
1/2. ⊓⊔

47

	Private Re-Randomization for Module LWE and Applications to Quasi-Optimal ZK-SNARKs

