
KEMTLS vs. Post-Quantum TLS:

Performance On Embedded Systems

Ruben Gonzalez1 and Thom Wiggers2

1 Neodyme AG, Garching, Germany
2 Radboud University, Nijmegen, The Netherlands

mail+kemtls@ruben-gonzalez.de

Abstract. TLS is ubiquitous in modern computer networks. It secures
transport for high-end desktops and low-end embedded devices alike. How-
ever, the public key cryptosystems currently used within TLS may soon be
obsolete as large-scale quantum computers, once realized, would be able
to break them. This threat has led to the development of post-quantum
cryptography (PQC). The U.S. standardization body NIST is currently in
the process of concluding a multi-year search for promising post-quantum
signature schemes and key encapsulation mechanisms (KEMs). With the
first PQC standards around the corner, TLS will have to be updated soon.
However, especially for small microcontrollers, it appears the current
NIST post-quantum signature finalists pose a challenge. Dilithium suffers
from very large public keys and signatures; while Falcon has significant
hardware requirements for efficient implementations.
KEMTLS is a proposal for an alternative TLS handshake protocol that
avoids authentication through signatures in the TLS handshake. Instead,
it authenticates the peers through long-term KEM keys held in the
certificates. The KEMs considered for standardization are more efficient in
terms of computation and/or bandwidth than the post-quantum signature
schemes.
In this work, we compare KEMTLS to TLS 1.3 in an embedded setting.
To gain meaningful results, we present implementations of KEMTLS and
TLS 1.3 on a Cortex-M4-based platform. These implementations are
based on the popular WolfSSL embedded TLS library and hence share a
majority of their code. In our experiments, we consider both protocols
with the remaining NIST finalist signature schemes and KEMs, except
for Classic McEliece which has too large public keys. Both protocols
are benchmarked and compared in terms of run-time, memory usage,
traffic volume and code size. The benchmarks are performed in network
settings relevant to the Internet of Things, namely low-latency broadband,
LTE-M and Narrowband IoT. Our results show that KEMTLS can reduce
handshake time by up to 38%, can lower peak memory consumption and
can save traffic volume compared to TLS 1.3.

Keywords: Post Quantum Cryptography · KEMTLS · Transport
Layer Security · Embedded Systems · Cortex-M4 · NIST PQC



2 Ruben Gonzalez and Thom Wiggers

1 Introduction

Transport Layer Security (TLS) is ubiquitous in modern computer networks.
It adds confidentiality, authenticity and integrity to application-layer protocols.
We trust it, among other things, with securing connections to websites, emails,
instant messages and virtual private networks. In its most recent version, TLS
1.3 [31], ephemeral (elliptic curve) Diffie-Hellman is used to establish encryption
keys. Server (and optionally client) authentication is achieved by using digital
signatures. To verify the signatures, public keys are transmitted in certificates
during the TLS handshake. These certificates are in turn signed by certificate
authorities, which are pre-installed on the verifying device.

As TLS is an integral part of today’s internet security architecture, it is
vital to integrate post-quantum cryptography soon. This promises to mitigate
the increasingly grave threat of large quantum computers to cryptography. The
United States National Institute of Standards and Technologies (NIST) launched
a multi-year standardization project for post-quantum algorithms [28]. The
project is calling for key encapsulation mechanisms (KEMs) and digital signature
algorithms that withstand large quantum computers.

While standardization of the primitives is ongoing, work on post-quantum
TLS (PQTLS) has also begun. This began with academic experiments in 2015,
demonstrating R-LWE key exchange in TLS 1.2 [5]. Like the previous work,
many have focused on the ephemeral key exchange in TLS, often using so-
called “hybrid” algorithms. These essentially perform a classic elliptic-curve
key and a post-quantum key exchange in parallel, to increase the confidence in
the security. Google and Cloudflare have already conducted large-scale industry
studies employing hybrid algorithms within TLS [21–23]. Amazon already includes
experimental support for post-quantum schemes in its S2N TLS implementation
and its Key Management Services product [16]. While previous works have mainly
focused on post-quantum confidentiality; there have been fewer experiments
deploying post-quantum authentication. Sikideris et al. [36] have measured the
performance of post-quantum signature schemes between servers in two data
centers. They concluded that out of the (NIST Round 2) schemes they tested,
only two (Falcon [30] and Dilithium [24]) seem viable for deployment in TLS 1.3.
Experiments by Cloudflare [38], that added dummy data to TLS connections to
measure the impact of the larger sizes of post-quantum signature schemes, seem
to support these results. Still, when using Dilithium as a drop-in replacement
for all of the signatures in TLS (which adds 17 kB to the handshake), Cloudflare
reports an expected 60–80% slowdown for the Linux default congestion window
of 10 packets. Falcon has much more favorable public key and signature sizes but
requires hardware support for double-precision floating-point operations. Without
this, Sikideris et al. report signing handshakes with Falcon is not viable.

There has also been some work investigating embedded devices rather than
large-scale, high-performance computers. Bürstinghaus-Steinbach et al. have
experimented with Kyber and stateless hash-based signature scheme SPHINCS+.
They integrated SPHINCS+ in mbedTLS’s [25] TLS 1.2 implementation and
showed the performance on various Arm boards [6]. More recently, George et



KEMTLS vs. Post-Quantum TLS on Embedded Systems 3

al. have evaluated the performance of post-quantum TLS 1.3 on embedded sys-
tems [13]. They investigated the performance of the NIST finalist KEMs and the
Dilithium and Falcon signature algorithms in WolfSSL’s TLS 1.3 implementation.

To mitigate the difficulties with post-quantum signatures, Wiggers et al.
proposed KEMTLS [33]. Instead of authenticating the handshake through a
signature, KEMTLS performs authentication through KEM key exchange with
KEM public keys in the certificates. As the KEMs currently considered for
standardization are generally smaller and/or more computationally efficient than
the post-quantum signature schemes, this can be more efficient. Additionally, it
reduces the size of the trusted code base: the code that facilitates the ephemeral
key exchange can also be used for authentication. Knowledge of the server’s long-
term key is imaginable in e.g. session resumption, or perhaps in IoT applications
where the clients speak to a single server. We note that the certificates are still
signed by a certificate authority using post-quantum signatures. We thus still
need to verify post-quantum signatures; we might however choose signature
algorithms that are optimized for size or verification time rather than signing
time.

While KEMTLS and PQTLS have been compared, these studies focused on
high-end hardware and high bandwidth connections [7,33,34]. However, TLS
is used for more than just protecting web browsing on desktop computers. The
Internet of Things (IoT) increasingly interconnects embedded devices over the
internet. Especially device-to-cloud communication is an omnipresent IoT use
case. New communication protocols like Matter [10] (formerly Connected Home
over IP) mark a new trend by using IPv6 and forcing every embedded device
to establish its own end-to-end-secure connection. From a security perspective,
this makes perfect sense. However, for embedded software developers this poses a
challenge. Key establishment, digital signatures and certificate transmission are
already problematic for low-cost, resource-constrained devices. With the advent
of post-quantum cryptography, it will become even more challenging to establish
TLS connections from those embedded devices.

1.1 Contribution

This work investigates if KEMTLS’ advantages transfer to the embedded realm
by comparing KEMTLS and PQTLS in an embedded setting. For this purpose,
KEMTLS and PQTLS were implemented including all NIST finalist signature
schemes and KEMs, except for Classic McEliece which has too large public keys.
As the PQTLS and KEMTLS implementation share large parts of their code
base, a direct performance comparison is possible. Our analysis focuses on the
relevant trade-offs embedded systems engineers face. To our knowledge, this
is the first work to investigate KEMTLS in an embedded setting. We bench-
mark runtime, memory usage, code size and bandwidth consumption of our
KEMTLS and PQTLS instantiations. The benchmark results were obtained by
running our implementations on a Cortex-M4-based platform. Our experiments
were conducted with a technology stack that is typically used in real-world
deployments, in which the embedded device is a TLS client talking to a TLS



4 Ruben Gonzalez and Thom Wiggers

server running on a high-end computer. This computer also simulated different
network technologies throughout the experiments. After a brief introduction
of post-quantum cryptography, previous work and the ongoing standardization
process, the PQTLS and KEMTLS protocols will be presented. The differences
between these protocols will be outlined afterward. To support our results, the
implementation and experimental setup will then be explained in detail. Finally,
the results will be presented and concluded.

2 Background

In this section, we will give some background on the development of post-quantum
cryptography, providing some history and summarizing the NIST standardization
process. We will also detail the impact post-quantum cryptography has on TLS 1.3
and the development of KEMTLS.

2.1 Post-Quantum Cryptography

In 1994 Peter Shor published his famous quantum algorithms for discrete log-
arithms and factoring [35]. Virtually all of today’s deployed public-key cryp-
tography is based on the difficulty of computing discrete logarithms or integer
factorization. Shor’s algorithm, therefore, poses a severe threat to information
security. This affects key-exchange methods and signature algorithms alike. Un-
fortunately, all of today’s TLS key exchange and signature algorithms would be
broken once an adversary has access to a large quantum computer. Moreover,
advances in quantum computing give reason to believe that the arrival of large
quantum computers is on the horizon [26,27]. Since development, standardization
and adaptation of cryptographic algorithms is a slow process, preparations against
quantum computers have to be started now.

The NIST standardization project for post-quantum cryptography started in
2017 [28]. From over 60 proposed candidates, four KEMs and three signature
algorithms have proceeded as finalists to the competition’s third round. There are
an additional five KEMs and three signature algorithms still in the competition
as alternate candidates. NIST has announced that they will select at most one
of the lattice-based KEMs Kyber, SABER or NTRU as a standard, as well as
one of the two lattice-based signature schemes Falcon and Dilithium. They will
also be opening up an on-ramp for new signature schemes in the next round for
signature schemes based on other assumptions.

The algorithms in the NIST competition propose parameters at three security
levels, called I, III and V. Algorithms in these security levels should be at least as
hard to break as AES-128, AES-192 and AES-256. Due to the resource constraints
of embedded devices, we will only consider parameters of security level I.

NIST Finalists Three signature schemes remained as finalists in the third round
of the NIST standardization project. Two of them are lattice-based constructions,
and both were selected for standardization at the end of Round 3 in July 2022.



KEMTLS vs. Post-Quantum TLS on Embedded Systems 5

Falcon [30]’s security assumptions are based on NTRU, while Dilithium [24]’s
assumptions are based on the Module-LWE and the Short Integer Solution
problems. Rainbow [12] is a multivariate signature algorithm that is a variant
of UOV [18]. Its security is based on the hardness of finding solutions to systems
of equations in many variables over finite fields. Rainbow was recently broken
by Beullens [4], and later eliminated from the standardization process. However,
Rainbow is a good representative of UOV-based multivariate signature schemes
in terms of size and performance. In these schemes, public keys are very large,
but the very small signature sizes lead to interesting trade-offs. Since other
UOV-like multivariate schemes will likely be proposed during NIST’s next call
for post-quantum signatures, we choose to include Rainbow in this our analysis.

Key encapsulation mechanisms (KEMs) are used for key exchange. Within
TLS they can serve the same role as the Diffie-Hellman ephemeral key exchange.
Similar to public-key encryption (PKE), a KEM public key is used to generate
an encapsulated shared secret key. Only the corresponding private key can then
decrypt this ciphertext into the right shared secret key.

Four KEMs proceeded as finalists into the third round of NIST’s PQC com-
petition. Among them are the lattice-based schemes Kyber [32], Saber [11]
and NTRU [8]. Although these schemes are all based on lattices, their under-
lying lattice structure and implementation details differ substantially. Classic
McEliece [3] is the only non-lattice-based finalist; its security relies on the
hardness of decoding random linear codes instead. Code-based cryptography has
been around since the 1970s. Therefore, it has a longer history of cryptanalysis
than lattice-based cryptography. Because of this body of literature around Classic
McEliece, it is often considered the most conservative choice. However, Classic
McEliece’s parameter choices make for very large public key sizes. Also in terms
of speed, it can not compete with the lattice-based algorithms. Kyber was chosen
to be the next NIST standard for key exchange in July 2022, while Classic
McEliece was moved forward into the fourth round of the competition [2].

PQC on embedded devices Public-key cryptography was already challenging
for embedded systems in a pre-quantum setting. The more expensive post-
quantum algorithms will make this worse. To gain a better understanding of PQC
algorithm performance on embedded systems, the PQM4 [17] project collects
implementations for the Cortex-M4 platform and benchmarks them. Table 1
shows size and performance tradeoffs between the NIST PQC finalists based on
numbers from [17] and [9]. Here it is important to mention that these numbers are
accomplished on a clocked-down Cortex-M4. Using such a slowed-down embedded
processor is customary for measuring algorithm run times because it avoids flash
wait states. In a real deployment, code would be fetched from a fast ROM instead
of a flash. For our experiments, we are not exclusively interested in PQC algorithm
run-time, but in the performance of the overall system. Therefore, we do not
clock down our CPU. The ramifications of this are detailed in subsection 3.1.



6 Ruben Gonzalez and Thom Wiggers

Table 1. Comparison of NIST PQC Round 3 finalists at security level I. We show
the size (in bytes) of data transmitted during a handshake (public key, signature and
ciphertext), offline data (secret keys) and operation timings (from [9, 17]) on M4.

bytes transmitted stored computation (≈Kcycles)
Signatures pubkey sig. sum secret keygen sign verify

Dilithium ⋆ 1 312 2 420 3 732 2 528 1 597 4 095 1 572
Falcon ⋆ 897 690 1 587 1 281 163 994 39 014 473
Rainbow † 161 600 66 161 666 103 648 94 907 238

KEMs pubkey ciph. sum secret keygen encaps decaps

Kyber ⋆ 800 768 1 568 1 632 440 539 490
NTRU † 699 699 1 398 953 2 867 565 538
SABER † 672 736 1 408 1 568 352 481 453

⋆: Scheme was selected for standardization.
†: Scheme was eliminated from the NIST standardization project.

2.2 Post-Quantum TLS

We will briefly explain how TLS 1.3 post-quantum can be made post-quantum
and summarize the KEMTLS proposal for an alternatively authenticated TLS
handshake.

(Post-quantum) TLS TLS is a protocol that has seen widespread deployment,
famously as part of HTTPS. Its most recent iteration is TLS 1.3 [31]. In the
most common uses, it offers unilateral authentication of the server to the client.
Optionally, it also allows mutual, client-to-server authentication. The protocol
authenticates the peers through signatures, which are in turn verified using public
keys that are contained in (CA-signed) certificates. There is optional support for
pre-shared, symmetric keys in place of certificate authentication as well.

The unilateral, certificate-authenticated TLS 1.3 handshake consists of an
ephemeral, Diffie–Hellman (DH) key exchange followed by a signature over the
handshake to authenticate. Finally, the handshake is additionally authenticated
by a MAC. It is possible to make this handshake post-quantum, simply by
replacing the server’s DH key generation with KEMe.Encapsulate, to encapsulate
against the client’s ephemeral public key, and sending the ciphertext instead of
the server’s ephemeral DH public key. The client would derive the shared secret
by decapsulating the ciphertext. For authentication, we simply use post-quantum
signature algorithms in place of RSA or elliptic curve signatures. The TLS 1.3
handshake has been very carefully designed to be very efficient in the number of
round-trips and is a single round-trip (1-RTT) protocol. As we can see on the
left-hand side of Fig. 1, the server can already send data to the client in its first
response flow. The client can send it first message after the server’s first flow,
after 1.5 RTT.



KEMTLS vs. Post-Quantum TLS on Embedded Systems 7

Client Server
static (sig): pkS , skS

x←$ Zq
gx

y←$ Zq

ss← gxy

K, K′, K′′, K′′′ ← KDF(ss)
gy, AEADK(cert[pkS ]∥ Sig(skS , transcript)∥key confirmation)

ss← gyx

K, K′, K′′, K′′′ ← KDF(ss)
AEADK′ (application data)

AEADK′′ (key confirmation)

AEADK′′′ (application data)

Client Server
static (KEMs): pkS , skS

(pke, ske)← KEMe.Keygen() pke

(sse, cte)← KEMe.Encapsulate(pke)
K1, K′

1 ← KDF(sse)
cte, AEADK1 (cert[pkS ])

sse ← KEMe.Decapsulate(cte, ske)
K1, K′

1 ← KDF(sse)
(ssS , ctS)← KEMs.Encapsulate(pkS)

AEADK′
1
(ctS)

ssS ← KEMs.Decapsulate(ctS , skS)
K2, K′

2, K′′
2 , K′′′

2 ← KDF(sse∥ssS)
AEADK2 (key confirmation), AEADK′

2
(application data)

AEADK′′
2

(key confirmation), AEADK′′′
2

(application data)

Fig. 1. Simplified protocol flow diagrams of: (left) the TLS 1.3 handshake, using
signatures for server authentication; and (right) the KEMTLS handshake, using KEMs
for server authentication.

KEMTLS The post-quantum KEMs and signature algorithms are further apart
than their classic variants were. KEMTLS is an alternative proposal for a PQTLS
handshake, which allows using KEMs (which are typically much smaller and/or
more computationally efficient than post-quantum signatures) instead of signa-
tures in the online handshake. In KEMTLS, the certificates contain public keys for
a KEM instead of a signature scheme. There are still signatures for the verification
of the certificate chain, but these only need to be verified. As those signatures
are done offline, it is also possible to use algorithms optimized for public key and
signature size, rather than signing time. For example, [33, Appendix D] gives
parameters for such a variant of XMSSMT.

KEMTLS is inspired by the OPTLS proposal by Krawczyk and Wee [19].
OPTLS was an early proposal for TLS 1.3, where the authentication would be
done via Diffie–Hellman key exchange. However, as observed by Kuhnen [20],
OPTLS requires the non-interactive key exchange properties of DH, which KEMs
do not offer. To authenticate a server via KEM, the client encapsulates a ciphertext
to the long-term public key contained in the server’s certificate. This would naively
result in a 2-RTT protocol. KEMTLS avoids the performance penalty this would
imply by observing that, in many applications including HTTP, for a useful
response from the server, it first needs to receive a request from the client. For
example, which page the client is requesting from the server. KEMTLS allows
the client to send its request in the same flow as it would in TLS 1.3, returning
the protocol to 1.5-RTT. This is achieved by encrypting the data with a key
that is derived from both the ephemeral key exchange and the shared secret
encapsulated to the server’s long-term key. This key is implicitly authenticated,
as the client can not be sure of the server’s presence before it receives a message
(ServerFinished) in which the server uses the encapsulated secret. The right-
hand side of Fig. 1 describes a simplified version of a (unilaterally authenticated)
KEMTLS handshake.



8 Ruben Gonzalez and Thom Wiggers

3 Experimental Setup

The following section describes the experimental setup used to acquire our
results. Both protocols were benchmarked for handshake times, run-times of
algorithms, peak memory usage, code size, and network traffic. Handshake times
were measured in three network environments relevant to the IoT domain. This
includes regular “broadband” internet, as well as two low-power wide-area network
standards, LTE-Machine Type Communication (LTE-M) and Narrowband-IoT
(NB-IoT), developed by the 3rd Generation network Partnership Project (3GPP).
We give the characteristics employed for these environments in Table 2. While
the performance characteristics of LTE-M and NB-IoT are based on numbers
of the 3GPP [1], the broadband scenario is based on realistic round-trip times
of client-to-cloud communication within West Europe using a consumer-grade
connection [29].

Table 2. Connection Characteristics according to 3GPP [1]

Name Abbrev. Bandwidth RTT time
Broadband BB 1 Mbit 26 ms
LTE Machine Type Communication LTE-M 1 Mbit 120 ms
Narrowband-IoT NB-IoT 46 kbit 3 s

Cryptographic Primitives As KEMTLS is a post-quantum protocol, it is not
specifically designed for transitional security. Although KEMTLS does not preclude
their use, we do not consider mixed classic/post-quantum certificates or hybrid
(post-quantum plus elliptic curve) key-exchange methods in our experiments. For
comparability, our PQTLS implementation is also exclusively using post-quantum
algorithms. We evaluated all combinations of NIST finalists, except for the KEM
Classic McEliece. Classic McEliece’s public keys are too large to fit into memory
and do not fit in the ClientHello’s KeyShareEntry extension [31, Sec. 4.2.8].

Both KEMTLS and PQTLS make use of a certificate authority (CA) that
signs certificates. The CA’s certificate, containing the CA’s public key used
for signature verification, is stored on the client device. Only leaf certificates,
transmitted by the server during the handshake, differ in KEMTLS and TLS 1.3.
For PQTLS they include the public key of a signature algorithm, in KEMTLS a
KEM public key.

We only evaluate primitives at the lowest security level, NIST level I. These
are the smallest and most efficient parametersets.

3.1 Implementation

All benchmarks were conducted on a Silicon Labs STK3701A board, also known
as the “Giant Gecko”. This board was chosen because it features a 72 MHz ARM



KEMTLS vs. Post-Quantum TLS on Embedded Systems 9

Cortex-M4F embedded processor and offers large enough memory (2 MB flash
storage, 512 kB SRAM) to fit Rainbow public keys. As Cortex-M4 is the desig-
nated NIST PQC reference platform for embedded devices, there are optimized
assembly implementations available for most finalist algorithms. The PQM4
project collects these implementations and provides extensive benchmarks [17].
All PQC implementations used for benchmarking were taken from the PQM4
project. Only minor modifications, such as adding verify functions to signature
schemes, fixing alignment issues and name-spacing symbol names had to be
conducted. The code was compiled using GCC version 11.1, with the -O3 speed
optimization flag. In contrast to experiments run within the PQM4 project, we
do not clock down the processor to avoid wait states. Instead, the processor runs
at full speed. This makes sense since we are not exclusively interested in the
run times of the primitives, but the performance of the overall system. Running
the processor at full speed makes the PQC algorithms consume more cycles due
to flash wait states and higher costs of memory accesses. However, since the
PQC algorithms do not consume more wall-clock time, the actual handshake
durations are not negatively affected. The Giant Gecko board exclusively takes
on the role of an embedded (KEM)TLS client, wanting to connect to a backend
server. To validate certificates send in the handshake, we flash the CA’s root
certificate into the Giant Gecko’s persistent memory during setup. For efficiency,
the CA directly signs the server’s certificate. This avoids the need for transmitting
intermediate CAs, reducing the size of the certificate chain. As both endpoints
in embedded scenarios are usually under some level of manufacturer control, this
is a common deployment. Communication to the backend server is done via the
Giant Gecko’s Ethernet port, which is directly connected to a high-end computer.
This host computer simulates different network environments by using Linux’s
netem network emulation framework [15]. The network emulation framework is
set up to throttle bandwidth and delay round trip times (RTTs) according to
the aforementioned network environments. Wiggers’ original KEMTLS imple-
mentation [33,34] is used as server software. When running an iteration of the
experiment, the corresponding PQC algorithms and the CA certificate are linked
into the binary using Zephyr’s West build tool. We then flash the binary onto
the board via JLink. Benchmark results are received via serial communication.

Platform To have a realistic setup, we employed a typical embedded systems
software stack. In our case that includes an embedded real-time operating system
(RTOS) with an open-source TCP/IP stack and added TLS support. For repro-
ducibility, we used the Apache-licensed Zephyr RTOS [39]. Zephyr supports over
200 boards and is backed by the Linux Foundation and multiple large corporations
involved with developing embedded systems, such as NXP, NORDIC or Memfault.
It provides its own optimized embedded network stack and allows cycle-accurate
run time measurements (given a board’s hardware supports it). Our application
code runs as the exclusive Zephyr thread, eliminating scheduling costs. PQTLS
and KEMTLS support was added to the operating system via a custom WolfSSL
module. All code, including reproducible build system and server software, used



10 Ruben Gonzalez and Thom Wiggers

in this work is publicly available.3 KEMTLS certificate generation was conducted
using a customized Python script based on Wiggers et al. code. Post-quantum
certificates for PQTLS were generated using a fork of OpenSSL’s command-line
tool maintained by the Open Quantum Safe project [37]. The TLS 1.3 cipher
suite TLS_CHACHA20_POLY1305_SHA256 was used in all experiments.

WolfSSL Integration Previous work [6, 13] also uses WolfSSL for running
benchmarks on embedded systems. We decided to use WolfSSL for the same
reasons as the mentioned works and to make comparisons with our results easier.
WolfSSL is designed to be memory efficient and fast on embedded systems. On
top, it already supports TLS 1.3 and has a clean implementation of TLS’s state
machine. This makes it an ideal basis for implementing PQTLS and KEMTLS.
Adding post-quantum algorithms to WolfSSL is straightforward. WolfSSL’s crypto
provider, called WolfCrypt, has a clean API that can be extended easily. As
the KEM Kyber was already included in WolfSSL by [6], we did not need to
make changes to the TLS 1.3 state machine. Apart from including the relevant
ASN.1 object identifiers for KEMs and post-quantum signatures, only small
changes such as increasing the maximum size of certificates had to be applied.
Our embedded KEMTLS implementation is based on the same WolfSSL version as
our PQTLS implementation. The majority of the code is identical in the PQTLS
and KEMTLS implementation. However, adding support for KEMTLS to WolfSSL
still required significant effort. Apart from altering the certificate/ASN.1 parser
to allow KEM keys in certificates (and using those), WolfSSL’s internal state
machine, key derivations and state structures had to be modified. In both our
PQTLS and KEMTLS experiments the client only performs signature verification,
so no code for signing was linked into the final binary.

4 Results

For developers of embedded systems, the trade-offs between ROM (code size),
RAM (memory usage), network traffic and CPU time (run-time of code) are
most crucial. In this section, we present our findings regarding the consumption
of these resources by KEMTLS and TLS 1.3 using NIST PQC finalists.

The run-time of algorithms impacts the device’s energy consumption. This
is especially relevant for battery-powered devices that rely on the possibility
to hibernate when inactive. Network traffic also affects energy consumption, as
operating an antenna is usually a very energy-consuming operation. Depending on
the underlying wireless technology, network traffic can also be expensive in terms
of network provider fees. Our results are representative for Cortex-M4-based
platforms in general. Hence we focus on benchmarks that are independent of
our specific evaluation board. As energy consumption varies heavily based on
a board’s design, choice of peripherals and transmission technology we did not

3Source code is available at https://github.com/rugo/wolfssl-kemtls-experiments/
tree/paperv1.

https://github.com/rugo/wolfssl-kemtls-experiments/tree/paperv1
https://github.com/rugo/wolfssl-kemtls-experiments/tree/paperv1


KEMTLS vs. Post-Quantum TLS on Embedded Systems 11

include direct energy measurements into our results. Instead, we present code size,
consumed memory, handshake traffic, handshake duration and run-time of PQC
primitives. All KEMTLS and PQTLS instantiations were run 1000 times, with
each run using a different CA and leaf certificate. The presented benchmarks are
averaged over all runs. The NIST signature finalist Rainbow, which is included
as a representative for multivariate-based cryptography, is only present in the
KEMTLS results. This is because Rainbow public keys are very large. There was
not enough memory to fit Rainbow as well as another signature scheme. It could
therefore not be included into the PQTLS benchmarks. We emphasize that all
employed PQC algorithms were optimized for speed, and not stack consumption.

4.1 Storage and Memory Consumption

Both protocol implementations are roughly the same size. Without post-quantum
primitives, they have a code size of around 111 kB. Table 3 shows combinations of
PQC algorithms with their measured code size. For KEMTLS, only instantiations
with one KEM used for both ephemeral key exchange and authentication are
shown. Including two KEMs does not give an advantage, but increases code
size. However, for completeness, a table with all combinations can be found in
Appendix A. Similarly, PQTLS instantiations with the same signature algorithm
used for CA and leaf certificates are shown. Additionally, we include the combina-
tion of Dilithium and Falcon, where Dilithium is used as the handshake signature
algorithm. This combination was suggested by Sikideris et al. [36] to make use of
Dilithiums faster signing times for servers without hardware support for Falcon’s
double-precision floating-point operations.

The table also shows the PQC code’s share of the overall code size as a
percentage. Also included in Table 3 is memory consumption. Shown is the peak
of consumed memory, in both heap and stack, during the handshake. This includes
the memory consumed by the protocol implementation and PQC primitives.

In contrast to TLS 1.3, KEMTLS uses a KEM encapsulation instead of a
signature verification to authenticate the connection. KEMTLS, therefore, needs
code for KEM encapsulation, whereas TLS 1.3 does not. TLS 1.3 on the other
hand needs the code for two distinct verification algorithms if different signature
algorithms are used for CA and leaf certificates. Instantiations with NTRU
ephemeral key exchange are notable outliers in terms of code size, requiring over
200 kB of code. This is in line with results reported by PQM4 [17]. Interestingly,
this big increase in code size can not be observed when NTRU is used exclusively
for authentication. This is because the client requires key generation and de-
capsulation code for ephemeral key exchange, whereas authentication via KEM
only requires encapsulation functionality. Whenever Rainbow is used, the CA
certificate containing a Rainbow public key takes up between 33% and 53% of the
overall consumed storage space. This, however, does not disqualify Rainbow from
usage on embedded systems, due to its small signature and very fast verification
times (see Section 4.2).

Further, the results show that the lattice-based schemes perform well in terms
of memory consumption. The consumed memory is mainly driven by stack usage



12 Ruben Gonzalez and Thom Wiggers

Table 3. Code and CA certificate sizes (and as percentage of total ROM size), and
peak memory usage in the experiments. Parametersets used are NIST level I.

KEX Auth. CA PQC code (%) CA size (%) Memory
KE

M
TL

S

Kyber Kyber Dilithium 29.0 kB(20.1%) 3.9 kB (2.7%) 49.7 kB
Kyber Kyber Falcon 25.7 kB(18.6%) 1.7 kB (1.2%) 52.8 kB
Kyber Kyber Rainbow 29.8 kB (9.8%) 161.8 kB(53.4%) 167.0 kB
NTRU NTRU Dilithium 203.4 kB(63.9%) 3.9 kB (1.2%) 49.7 kB
NTRU NTRU Falcon 200.0 kB(63.9%) 1.7 kB (0.6%) 52.8 kB
NTRU NTRU Rainbow 204.0 kB(42.8%) 161.8 kB(33.9%) 182.9 kB
SABER SABER Dilithium 31.5 kB(21.5%) 3.9 kB (2.7%) 49.7 kB
SABER SABER Falcon 28.2 kB(20.0%) 1.7 kB (1.2%) 52.8 kB
SABER SABER Rainbow 32.2 kB(10.5%) 161.8 kB(53.0%) 167.9 kB

PQ
T

LS

Kyber Dilithium Dilithium 29.0 kB(20.1%) 4.0 kB (2.8%) 58.0 kB
Kyber Falcon Dilithium 34.4 kB(23.0%) 4.0 kB (2.7%) 60.7 kB
Kyber Falcon Falcon 25.8 kB(18.6%) 1.8 kB (1.3%) 56.2 kB
NTRU Dilithium Dilithium 203.4 kB(63.8%) 4.0 kB (1.3%) 56.6 kB
NTRU Falcon Dilithium 208.7 kB(64.4%) 4.0 kB (1.2%) 59.3 kB
NTRU Falcon Falcon 200.1 kB(63.9%) 1.8 kB (0.6%) 54.8 kB
SABER Dilithium Dilithium 31.5 kB(21.5%) 4.0 kB (2.7%) 58.0 kB
SABER Falcon Dilithium 36.8 kB(24.2%) 4.0 kB (2.6%) 60.7 kB
SABER Falcon Falcon 28.2 kB(20.0%) 1.8 kB (1.3%) 56.2 kB

of the PQC signature algorithms. Only Rainbow is an exception here. With a
Rainbow-powered CA certificate, the very large public key has to be loaded into
memory and held during signature verification. This requires a large allocation of
heap space. In a custom certificate loader implementation it would be possible to
store the public key in an already usable form in flash. Then the public key could
directly be streamed in from flash (similar to [14]), without the need to hold it in
memory entirely. However, since we present comparable results of reusable code,
we did not include this kind of optimization for an individual algorithm.

4.2 Handshake Times

Apart from storage and memory consumption, handshake times are key in an
embedded environment. Table 4 shows handshake times for different transmission
technologies measured in millions of cycles. A complete table, with all possible
instantiations, can be found in Appendix A. In Fig. 2 we show the handshake
times and traffic for the broadband and NB-IoT scenarios. In a real deployment,
the device would likely go into a low power mode or sleep instead of actively
polling data during a slow transmission. This behavior however depends highly on
the specifics of the embedded system and its transmission technology. Therefore,
to achieve reproducible results, the CPU was running at a constant speed of
72MHz during all experiments. This also makes a direct translation to wall time
possible. The table also shows the percentage of cycles spend on the underlying



KEMTLS vs. Post-Quantum TLS on Embedded Systems 13

PQC primitives. The remaining cycles are spent in the TLS state machine,
memory operations or waiting for I/O.

Time spent in crypto operations is significant in the broadband and LTE-M
setting. Whereas the NB-IoT transmission is so slow, that the share of cycles spent
in cryptographic operations is very low (0.8% - 1.7%). In low-bandwidth/high-
RTT settings like NB-IoT, the transmission size of certificates and public keys is
the main driving factor of run time. Loading large public keys from storage into
memory is a relevant factor as well, slowing down the otherwise fast Rainbow
signature algorithm. Cycles spent to access memory and storage also become
increasingly negligible when using slow transportation mediums. This is visible
in Fig. 2b, where the instantiations with similarly sized handshake traffic clearly
form clusters.

Table 4. TLS handshake traffic and runtime for various scenarios. Parametersets used
are NIST level I.

Handshake
traffic

Handshake time in Mcycles (% of crypto)
KEX Auth. CA BB (%) LTE-M (%) NB-IoT (%)

KE
M

TL
S

Kyber Kyber Dilithium 6.3 kB 17.1 (30.2%) 34.0 (15.2%) 593.6 (0.9%)
Kyber Kyber Falcon 4.5 kB 12.3 (27.2%) 25.7 (13.0%) 467.8 (0.7%)
Kyber Kyber Rainbow 3.9 kB 11.3 (25.1%) 20.4 (13.9%) 459.0 (0.6%)
NTRU NTRU Dilithium 6.0 kB 21.3 (46.0%) 38.1 (25.6%) 595.8 (1.6%)
NTRU NTRU Falcon 4.2 kB 16.6 (47.8%) 25.9 (30.6%) 469.7 (1.7%)
NTRU NTRU Rainbow 3.6 kB 15.7 (47.4%) 24.7 (30.1%) 361.6 (2.1%)
SABER SABER Dilithium 6.0 kB 16.3 (29.4%) 33.3 (14.4%) 590.8 (0.8%)
SABER SABER Falcon 4.2 kB 11.6 (25.5%) 21.0 (14.1%) 464.8 (0.6%)
SABER SABER Rainbow 3.6 kB 10.7 (23.1%) 19.8 (12.5%) 356.8 (0.7%)

PQ
T

LS

Kyber Dilithium Dilithium 8.4 kB 19.9 (35.9%) 36.8 (19.5%) 818.1 (0.9%)
Kyber Falcon Dilithium 6.3 kB 15.5 (33.0%) 29.0 (17.6%) 586.4 (0.9%)
Kyber Falcon Falcon 4.5 kB 10.9 (30.1%) 21.0 (15.6%) 464.6 (0.7%)
NTRU Dilithium Dilithium 8.3 kB 24.3 (47.6%) 41.1 (28.1%) 821.3 (1.4%)
NTRU Falcon Dilithium 6.1 kB 19.9 (47.8%) 33.4 (28.5%) 590.6 (1.6%)
NTRU Falcon Falcon 4.3 kB 15.2 (50.3%) 25.4 (30.2%) 468.0 (1.6%)
SABER Dilithium Dilithium 8.3 kB 19.7 (35.2%) 36.6 (19.0%) 817.3 (0.8%)
SABER Falcon Dilithium 6.1 kB 15.3 (32.0%) 28.8 (17.0%) 586.2 (0.8%)
SABER Falcon Falcon 4.3 kB 10.7 (28.5%) 20.9 (14.6%) 464.0 (0.7%)

Both PQTLS and KEMTLS use a KEM for key exchange. While the perfor-
mance of the module lattice KEMs Kyber and SABER is similar, they both
outperform NTRU for this task. This is mainly due to the rather slow key gen-
eration of NTRU increasing handshake time. Slow key generation is also the
reason why PQTLS and KEMTLS instantiations using NTRU have the highest
percentage of cycles spent in PQC operations.

All KEMs outperform Dilithium when used for authentication. This makes
sense as Dilithium’s verify routine is slower than the encapsulation routine
of all investigated KEMs. Dilithium’s performance also suffers from its large
public key and signature that increase the required transmission size. In slow,



14 Ruben Gonzalez and Thom Wiggers

bandwidth-constrained network environments, such as NB-IoT, this drawback
becomes even more apparent. Rainbow performs well in terms of handshake
times when used as a CA certificate. Not only because it has a fast, bitsliced
Cortex-M4 implementation. Since the large Rainbow public key is stored on the
client device, only the small signature has to be transmitted during the handshake.
Rainbow’s small signature and fast runtime make it a good fit for CA certificates
if the storage and memory demands can be afforded. The instantiations with
Rainbow offer the fastest KEMTLS handshake times throughout all transmission
mediums. Additionally, the shortest NB-IoT handshake times use KEMTLS
with Rainbow and SABER. Falcon on the other hand performs very well on the
Cortex-M4 platform in our experiments. In terms of runtime, it even outperforms
KEMs for server authentication. However, this is only true for the client side.
Signing operations using Falcon are considerably more expensive than KEM
decapsulations. But these operations are conducted on the server side, increasing
server load, which is not part of our measurements. Additionally, Falcon’s public
key and signature sizes are comparable to the sizes of the KEM’s public keys
and ciphertexts. So it is not surprising that PQTLS instantiations using Falcon
perform well. In the broadband and LTE-M setting, PQTLS with Falcon and
SABER performs as well as KEMTLS with Rainbow and SABER.

2 3 4 5 6 7 8 9

20

25

30

35

40

KKD

KKF

KKR

NND

NNF
NNR

SSD

SSF

SSR

KDD

KFF

KFD

NDD

NFF

NFD

SDD

SFF

SFD

Transmission size (kB)

H
an

ds
ha

ke
ti

m
e

(M
cy

cl
es

) PQTLS
KEMTLS

(a) Broadband

2 3 4 5 6 7 8 9

400

500

600

700

800

KKD

KKFKKR

NND

NNF

NNR

SSD

SSF

SSR

KDD

KFF

KFD

NDD

NFF

NFD

SDD

SFF

SFD

Transmission size (kB)

H
an

ds
ha

ke
ti

m
e

(M
cy

cl
es

) PQTLS
KEMTLS

(b) Narrowband-IoT

Fig. 2. Handshake times and traffic for instantiations of KEMTLS and PQTLS. Letters
represent the algorithms Dilithium, Falcon, Kyber, NTRU, Rainbow, and SABER in
the roles of ephemeral key exchange, handshake authentication and CA, in that order.

5 Discussion

Our results show that KEMTLS with server-only authentication uses less memory
than PQTLS and has similar code sizes. Due to Falcon’s verification algorithm
being very efficient, in terms of bandwidth and computation time, PQTLS with



KEMTLS vs. Post-Quantum TLS on Embedded Systems 15

Falcon performs as well as or better than any KEMTLS instantiation. The only
exception are the KEMTLS instantiations using SABER or NTRU with Rainbow,
where the ability of KEMTLS to use Rainbow due to lower memory usage saves
a few bytes and thus become the best-performing instantiations in the NB-IoT
scenario. Falcon also performs better than Dilithium on the client side, in any
scenario.

Although we have not measured client authentication or an embedded server,
we can extrapolate from our results. As reported by PQM4 [17] and Sikideris
et al. [36], Falcon’s signing algorithm, especially without hardware support,
is significantly more costly than Dilithium’s or any of the KEM operations.
This suggests that Falcon is perhaps not generically suitable for post-quantum
authentication.

Sikideris et al. also suggested a combination of Dilithium and Falcon for
PQTLS, in scenarios where there is no hardware support for Falcon’s double-
precision floating-point operations. Dilithium would be put in the leaf certificate,
to make use of its efficient signing times for online handshake signatures. Falcon’s
smaller public key and signature sizes would be beneficial for the CA certificate
algorithm, which signs the leaf certificate only once, but the signature is transmit-
ted many times. However, our results show that for embedded clients that only
need to do signature validation Falcon is preferable over Dilithium, especially in
very low bandwidth scenarios like NB-IoT.

6 Conclusion and Future Work

In this paper, we compared the performance of KEMTLS and TLS 1.3 using NIST
PQC finalists in an embedded environment. This environment was represented
by a Cortex-M4-based client communicating with a desktop-class server. We
showed that a KEMTLS client consumes less memory than TLS 1.3, due to
the smaller memory footprint of KEMs. The code size did not differ between
KEMTLS and TLS 1.3. Since only server authentication was used, both protocols
require a signature verify function and KEM for key exchange. Our run times
show that in both protocols PQC primitives require a significant amount of
computational time during the handshake, sometimes requiring over 50% of the
entire handshake time. Even in the LTE-M setting, the percentage of cycles spent
in PQC computations is considerable. However, in the bandwidth-constrained
NB-IoT setting, handshake times are mostly driven by handshake size. In these
conditions, Rainbow’s very small signatures are an advantage. While Dilithium is
generally outperformed by KEMs when used for authentication, Falcon performs
very well due to its efficient verification algorithm. However, signing in Falcon is
a very costly operation. Future work should therefore investigate KEMTLS and
TLS 1.3 using client authentication, and embedded KEMTLS and post-quantum
TLS 1.3 servers. In both of these applications, the embedded TLS 1.3 client
needs to produce handshake signatures. This would increase the cost of using
signatures instead of KEMs significantly, leading to new trade-offs. Another
avenue of research is the pre-distributed key setting, where the client already



16 Ruben Gonzalez and Thom Wiggers

knows the server’s public key. In this setting, bandwidth can be reduced even
further, which may be compelling for the NB-IoT application.

Acknowledgements This work has been supported by Neodyme AG, the
European Research Council through Starting Grant No. 805031 (EPOQUE) and
by an NLnet Assure grant for the project “Standardizing KEMTLS”.

References

1. 3rd Generation Partnership Project (3GPP): The mobile broad-
band standard specification release 13. Tech. rep., 3GPP (Sep 2015),
https://www.3gpp.org/ftp/Information/WORK_PLAN/Description_Releases/
Rel-13_description_20150917.zip

2. Alagic, G., Apon, D., Cooper, D., Dang, Q., Dang, T., Kelsey, J., Lichtinger, J.,
Miller, C., Moody, D., Peralta, R., Perlner, R., Robinson, A., Smith-Tone, D., Liu,
Y.K.: Status report on the third round of the nist post-quantum cryptography
standardization process. Tech. Rep. NISTIR 8413, National Institute of Standards
and Technology (2022). https://doi.org/https://doi.org/10.6028/NIST.IR.8413

3. Albrecht, M.R., Bernstein, D.J., Chou, T., Cid, C., Gilcher, J., Lange, T., Maram,
V., von Maurich, I., Misoczki, R., Niederhagen, R., Paterson, K.G., Persichetti, E.,
Peters, C., Schwabe, P., Sendrier, N., Szefer, J., Tjhai, C.J., Tomlinson, M., Wang,
W.: Classic McEliece. Tech. rep., National Institute of Standards and Technology
(2020), available at https://csrc.nist.gov/projects/post-quantum-cryptography/
round-3-submissions

4. Beullens, W.: Breaking Rainbow takes a weekend on a laptop. Cryptology ePrint
Archive, Report 2022/214 (2022), https://eprint.iacr.org/2022/214

5. Bos, J.W., Costello, C., Naehrig, M., Stebila, D.: Post-quantum key exchange for the
TLS protocol from the ring learning with errors problem. In: 2015 IEEE Symposium
on Security and Privacy. pp. 553–570. IEEE Computer Society Press (May 2015).
https://doi.org/10.1109/SP.2015.40

6. Bürstinghaus-Steinbach, K., Krauß, C., Niederhagen, R., Schneider, M.: Post-
quantum TLS on embedded systems: Integrating and evaluating kyber and
SPHINCS+ with mbed TLS. In: Sun, H.M., Shieh, S.P., Gu, G., Ateniese, G.
(eds.) ASIACCS 20. pp. 841–852. ACM Press (Oct 2020). https://doi.org/10.1145/
3320269.3384725

7. Celi, S., Faz-Hernández, A., Sullivan, N., Tamvada, G., Valenta, L., Wiggers, T.,
Westerbaan, B., Wood, C.A.: Implementing and measuring KEMTLS. In: Longa,
P., Ràfols, C. (eds.) LATINCRYPT 2021. LNCS, vol. 12912, pp. 88–107. Springer,
Heidelberg (Oct 2021). https://doi.org/10.1007/978-3-030-88238-9_5

8. Chen, C., Danba, O., Hoffstein, J., Hulsing, A., Rijneveld, J., Schanck, J.M.,
Schwabe, P., Whyte, W., Zhang, Z., Saito, T., Yamakawa, T., Xagawa, K.: NTRU.
Tech. rep., National Institute of Standards and Technology (2020), available at
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

9. Chou, T., Kannwischer, M.J., Yang, B.Y.: Rainbow on cortex-M4. IACR TCHES
2021(4), 650–675 (2021). https://doi.org/10.46586/tches.v2021.i4.650-675, https:
//tches.iacr.org/index.php/TCHES/article/view/9078

10. Connectivity Standards Alliance: Build with Matter (2022), https://
buildwithmatter.com, [accessed 2022-05-16]

https://www.3gpp.org/ftp/Information/WORK_PLAN/Description_Releases/Rel-13_description_20150917.zip
https://www.3gpp.org/ftp/Information/WORK_PLAN/Description_Releases/Rel-13_description_20150917.zip
https://doi.org/https://doi.org/10.6028/NIST.IR.8413
https://doi.org/https://doi.org/10.6028/NIST.IR.8413
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://eprint.iacr.org/2022/214
https://doi.org/10.1109/SP.2015.40
https://doi.org/10.1109/SP.2015.40
https://doi.org/10.1145/3320269.3384725
https://doi.org/10.1145/3320269.3384725
https://doi.org/10.1145/3320269.3384725
https://doi.org/10.1145/3320269.3384725
https://doi.org/10.1007/978-3-030-88238-9_5
https://doi.org/10.1007/978-3-030-88238-9_5
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.46586/tches.v2021.i4.650-675
https://doi.org/10.46586/tches.v2021.i4.650-675
https://tches.iacr.org/index.php/TCHES/article/view/9078
https://tches.iacr.org/index.php/TCHES/article/view/9078
https://buildwithmatter.com
https://buildwithmatter.com


KEMTLS vs. Post-Quantum TLS on Embedded Systems 17

11. D’Anvers, J.P., Karmakar, A., Roy, S.S., Vercauteren, F., Mera, J.M.B., Beirendonck,
M.V., Basso, A.: SABER. Tech. rep., National Institute of Standards and Technology
(2020), available at https://csrc.nist.gov/projects/post-quantum-cryptography/
round-3-submissions

12. Ding, J., Chen, M.S., Petzoldt, A., Schmidt, D., Yang, B.Y., Kannwischer, M.,
Patarin, J.: Rainbow. Tech. rep., National Institute of Standards and Technology
(2020), available at https://csrc.nist.gov/projects/post-quantum-cryptography/
round-3-submissions

13. George, T., Li, J., Fournaris, A.P., Zhao, R.K., Sakzad, A., Steinfeld, R.: Perfor-
mance evaluation of post-quantum TLS 1.3 on embedded systems. Cryptology
ePrint Archive, Report 2021/1553 (2021), https://eprint.iacr.org/2021/1553

14. Gonzalez, R., Hülsing, A., Kannwischer, M.J., Krämer, J., Lange, T., Stöttinger,
M., Waitz, E., Wiggers, T., Yang, B.Y.: Verifying post-quantum signatures in 8
kB of RAM. In: Cheon, J.H., Tillich, J.P. (eds.) Post-Quantum Cryptography -
12th International Workshop, PQCrypto 2021. pp. 215–233. Springer, Heidelberg
(2021). https://doi.org/10.1007/978-3-030-81293-5_12

15. Hemminger, S., Ludovici, F., Pfeiffer, H.P.: (Nov 2011), https://man7.org/linux/
man-pages/man8/tc-netem.8.html, man ip netem

16. Hopkins, A.: Post-quantum tls now supported in AWS KMS. Amazon
AWS Security Blog (Nov 2019), https://aws.amazon.com/blogs/security/
post-quantum-tls-now-supported-in-aws-kms/, [accessed 2022-05-20]

17. Kannwischer, M.J., Rijneveld, J., Schwabe, P., Stoffelen, K.: PQM4: Post-quantum
crypto library for the ARM Cortex-M4, https://github.com/mupq/pqm4

18. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced Oil and Vinegar signature schemes.
In: Stern, J. (ed.) EUROCRYPT’99. LNCS, vol. 1592, pp. 206–222. Springer,
Heidelberg (May 1999). https://doi.org/10.1007/3-540-48910-X_15

19. Krawczyk, H., Wee, H.: The OPTLS protocol and TLS 1.3. In: 2016 IEEE European
Symposium on Security and Privacy (EuroS&P). pp. 81–96 (2016). https://doi.
org/10.1109/EuroSP.2016.18

20. Kuhnen, W.: OPTLS revisited. Master’s thesis, Radboud University (2018), https:
//www.ru.nl/publish/pages/769526/thesis-final.pdf

21. Kwiatkowski, K., Langley, A., Sullivan, N., Levin, D., Mislove, A., Valenta, L.:
Measuring TLS key exchange with post-quantum KEM (Aug 2019), https://csrc.nist.
gov/Presentations/2019/measuring-tls-key-exchange-with-post-quantum-kem

22. Langley, A.: CECPQ2. ImperialViolet (Dec 2018), https://www.imperialviolet.org/
2018/12/12/cecpq2.html, [accessed 2021-02-16]

23. Langley, A.: Real-world measurements of structured-lattices and supersingular
isogenies in TLS. ImperialViolet (Oct 2019), https://www.imperialviolet.org/2019/
10/30/pqsivssl.html, [accessed 2021-02-16]

24. Lyubashevsky, V., Ducas, L., Kiltz, E., Lepoint, T., Schwabe, P., Seiler, G.,
Stehlé, D., Bai, S.: CRYSTALS-DILITHIUM. Tech. rep., National Institute of
Standards and Technology (2020), available at https://csrc.nist.gov/projects/
post-quantum-cryptography/round-3-submissions

25. mbed TLS, https://www.trustedfirmware.org/projects/mbed-tls/, [accessed 2022-
04-29]

26. Mosca, M.: Cybersecurity in an era with quantum computers: Will we be ready?
Cryptology ePrint Archive, Report 2015/1075 (2015), https://eprint.iacr.org/2015/
1075

27. Mosca, M., Piani, M.: Quantum threat timeline. Tech. rep., Globval Risk Institute
(Oct 2019), https://globalriskinstitute.org/publications/quantum-threat-timeline/

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://eprint.iacr.org/2021/1553
https://doi.org/10.1007/978-3-030-81293-5_12
https://doi.org/10.1007/978-3-030-81293-5_12
https://man7.org/linux/man-pages/man8/tc-netem.8.html
https://man7.org/linux/man-pages/man8/tc-netem.8.html
https://aws.amazon.com/blogs/security/post-quantum-tls-now-supported-in-aws-kms/
https://aws.amazon.com/blogs/security/post-quantum-tls-now-supported-in-aws-kms/
https://github.com/mupq/pqm4
https://doi.org/10.1007/3-540-48910-X_15
https://doi.org/10.1007/3-540-48910-X_15
https://doi.org/10.1109/EuroSP.2016.18
https://doi.org/10.1109/EuroSP.2016.18
https://doi.org/10.1109/EuroSP.2016.18
https://doi.org/10.1109/EuroSP.2016.18
https://www.ru.nl/publish/pages/769526/thesis-final.pdf
https://www.ru.nl/publish/pages/769526/thesis-final.pdf
https://csrc.nist.gov/Presentations/2019/measuring-tls-key-exchange-with-post-quantum-kem
https://csrc.nist.gov/Presentations/2019/measuring-tls-key-exchange-with-post-quantum-kem
https://www.imperialviolet.org/2018/12/12/cecpq2.html
https://www.imperialviolet.org/2018/12/12/cecpq2.html
https://www.imperialviolet.org/2019/10/30/pqsivssl.html
https://www.imperialviolet.org/2019/10/30/pqsivssl.html
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://www.trustedfirmware.org/projects/mbed-tls/
https://eprint.iacr.org/2015/1075
https://eprint.iacr.org/2015/1075
https://globalriskinstitute.org/publications/quantum-threat-timeline/


18 Ruben Gonzalez and Thom Wiggers

28. National Institute for Standards and Technology: Submission requirements and
evaluation criteria for the post-quantum cryptography standardization process (Dec
2016), https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/
documents/call-for-proposals-final-dec-2016.pdf

29. Paul, S., Kuzovkova, Y., Lahr, N., Niederhagen, R.: Mixed certificate chains for the
transition to post-quantum authentication in TLS 1.3. Cryptology ePrint Archive,
Report 2021/1447 (2021), https://eprint.iacr.org/2021/1447

30. Prest, T., Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T.,
Ricosset, T., Seiler, G., Whyte, W., Zhang, Z.: FALCON. Tech. rep., National
Institute of Standards and Technology (2020), available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-3-submissions

31. Rescorla, E.: The Transport Layer Security TLS Protocol Version 1.3. RFC 8446,
RFC Editor (Aug 2018). https://doi.org/10.17487/RFC8446

32. Schwabe, P., Avanzi, R., Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky,
V., Schanck, J.M., Seiler, G., Stehlé, D.: CRYSTALS-KYBER. Tech. rep., National
Institute of Standards and Technology (2020), available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-3-submissions

33. Schwabe, P., Stebila, D., Wiggers, T.: Post-quantum TLS without handshake
signatures. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) ACM CCS 2020. pp.
1461–1480. ACM Press (Nov 2020). https://doi.org/10.1145/3372297.3423350

34. Schwabe, P., Stebila, D., Wiggers, T.: More efficient post-quantum KEMTLS
with pre-distributed public keys. In: Bertino, E., Shulman, H., Waidner, M. (eds.)
ESORICS 2021, Part I. LNCS, vol. 12972, pp. 3–22. Springer, Heidelberg (Oct
2021). https://doi.org/10.1007/978-3-030-88418-5_1

35. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring.
In: 35th FOCS. pp. 124–134. IEEE Computer Society Press (Nov 1994). https:
//doi.org/10.1109/SFCS.1994.365700

36. Sikeridis, D., Kampanakis, P., Devetsikiotis, M.: Post-quantum authentication in
TLS 1.3: A performance study. In: NDSS 2020. The Internet Society (Feb 2020)

37. The Open Quantum Safe project: Open Quantum Safe, https://openquantumsafe.
org, [accessed 2022-05-20]

38. Westerbaan, B.: Sizing up post-quantum signatures (Nov 2021), https://blog.
cloudflare.com/sizing-up-post-quantum-signatures/

39. Zephyr Project: Zephyr project, https://www.zephyrproject.org

A Extended Benchmark Tables

In Table 5 we report code sizes, CA certificate sizes and memory usage for all
experiments we ran. Table 6 provides all results for the handshake traffic and
handshake timing metrics.

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://eprint.iacr.org/2021/1447
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.17487/RFC8446
https://doi.org/10.17487/RFC8446
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1145/3372297.3423350
https://doi.org/10.1145/3372297.3423350
https://doi.org/10.1007/978-3-030-88418-5_1
https://doi.org/10.1007/978-3-030-88418-5_1
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://openquantumsafe.org
https://openquantumsafe.org
https://blog.cloudflare.com/sizing-up-post-quantum-signatures/
https://blog.cloudflare.com/sizing-up-post-quantum-signatures/
https://www.zephyrproject.org


KEMTLS vs. Post-Quantum TLS on Embedded Systems 19

Table 5. Code and CA certificate sizes (and as percentage of total ROM size), and
peak memory usage in the experiments.

KEX Auth. CA PQC code (%) CA size (%) Memory

KE
M

TL
S

Kyber Kyber Dilithium 29.0 kB(20.1%) 3.9 kB (2.7%) 49.7 kB
Kyber Kyber Falcon 25.7 kB(18.6%) 1.7 kB (1.2%) 52.8 kB
Kyber Kyber Rainbow 29.8 kB (9.8%) 161.8 kB(53.4%) 167.0 kB
Kyber NTRU Dilithium 41.0 kB(26.3%) 3.9 kB (2.5%) 49.7 kB
Kyber NTRU Falcon 37.7 kB(25.0%) 1.7 kB (1.1%) 52.8 kB
Kyber NTRU Rainbow 41.7 kB(13.3%) 161.8 kB(51.4%) 182.9 kB
Kyber SABER Dilithium 44.9 kB(28.1%) 3.9 kB (2.4%) 49.7 kB
Kyber SABER Falcon 41.7 kB(26.9%) 1.7 kB (1.1%) 52.8 kB
Kyber SABER Rainbow 45.7 kB(14.3%) 161.8 kB(50.8%) 167.9 kB
NTRU Kyber Dilithium 216.3 kB(65.3%) 3.9 kB (1.2%) 49.7 kB
NTRU Kyber Falcon 213.0 kB(65.4%) 1.7 kB (0.5%) 52.8 kB
NTRU Kyber Rainbow 217.1 kB(44.3%) 161.8 kB(33.0%) 182.9 kB
NTRU NTRU Dilithium 203.4 kB(63.9%) 3.9 kB (1.2%) 49.7 kB
NTRU NTRU Falcon 200.0 kB(63.9%) 1.7 kB (0.6%) 52.8 kB
NTRU NTRU Rainbow 204.0 kB(42.8%) 161.8 kB(33.9%) 182.9 kB
NTRU SABER Dilithium 219.7 kB(65.6%) 3.9 kB (1.2%) 49.7 kB
NTRU SABER Falcon 216.4 kB(65.7%) 1.7 kB (0.5%) 52.8 kB
NTRU SABER Rainbow 220.4 kB(44.7%) 161.8 kB(32.8%) 182.9 kB
SABER Kyber Dilithium 44.5 kB(27.9%) 3.9 kB (2.4%) 49.7 kB
SABER Kyber Falcon 41.3 kB(26.8%) 1.7 kB (1.1%) 52.8 kB
SABER Kyber Rainbow 45.3 kB(14.2%) 161.8 kB(50.8%) 167.9 kB
SABER NTRU Dilithium 43.9 kB(27.6%) 3.9 kB (2.5%) 49.7 kB
SABER NTRU Falcon 40.6 kB(26.4%) 1.7 kB (1.1%) 52.8 kB
SABER NTRU Rainbow 44.6 kB(14.0%) 161.8 kB(50.9%) 182.9 kB
SABER SABER Dilithium 31.5 kB(21.5%) 3.9 kB (2.7%) 49.7 kB
SABER SABER Falcon 28.2 kB(20.0%) 1.7 kB (1.2%) 52.8 kB
SABER SABER Rainbow 32.2 kB(10.5%) 161.8 kB(53.0%) 167.9 kB

PQ
T

LS

Kyber Dilithium Dilithium 29.0 kB(20.1%) 4.0 kB (2.8%) 58.0 kB
Kyber Dilithium Falcon 34.4 kB(23.3%) 1.8 kB (1.2%) 60.0 kB
Kyber Falcon Dilithium 34.4 kB(23.0%) 4.0 kB (2.7%) 60.7 kB
Kyber Falcon Falcon 25.8 kB(18.6%) 1.8 kB (1.3%) 56.2 kB
NTRU Dilithium Dilithium 203.4 kB(63.8%) 4.0 kB (1.3%) 56.6 kB
NTRU Dilithium Falcon 208.7 kB(64.9%) 1.8 kB (0.6%) 58.6 kB
NTRU Falcon Dilithium 208.7 kB(64.4%) 4.0 kB (1.2%) 59.3 kB
NTRU Falcon Falcon 200.1 kB(63.9%) 1.8 kB (0.6%) 54.8 kB
SABER Dilithium Dilithium 31.5 kB(21.5%) 4.0 kB (2.7%) 58.0 kB
SABER Dilithium Falcon 36.8 kB(24.6%) 1.8 kB (1.2%) 60.0 kB
SABER Falcon Dilithium 36.8 kB(24.2%) 4.0 kB (2.6%) 60.7 kB
SABER Falcon Falcon 28.2 kB(20.0%) 1.8 kB (1.3%) 56.2 kB



20 Ruben Gonzalez and Thom Wiggers

Table 6. TLS handshake traffic and runtime for various scenarios

Handshake
traffic

Handshake time in Mcycles (% of crypto)
KEX Auth. CA BB (%) LTE-M (%) NB-IoT (%)

KE
M

TL
S Kyber Kyber Dilithium 6.3 kB 17.1 (30.2%) 34.0 (15.2%) 593.6 (0.9%)

Kyber Kyber Falcon 4.5 kB 12.3 (27.2%) 25.7 (13.0%) 467.8 (0.7%)
Kyber Kyber Rainbow 3.9 kB 11.3 (25.1%) 20.4 (13.9%) 459.0 (0.6%)
Kyber NTRU Dilithium 6.1 kB 17.1 (31.5%) 34.1 (15.8%) 592.2 (0.9%)
Kyber NTRU Falcon 4.4 kB 12.4 (28.8%) 21.7 (16.4%) 466.2 (0.8%)
Kyber NTRU Rainbow 3.8 kB 11.4 (27.0%) 20.5 (15.0%) 358.1 (0.9%)
Kyber SABER Dilithium 6.1 kB 16.8 (30.0%) 33.6 (15.0%) 591.5 (0.8%)
Kyber SABER Falcon 4.4 kB 12.0 (26.6%) 21.5 (14.9%) 465.4 (0.7%)
Kyber SABER Rainbow 3.8 kB 11.0 (24.5%) 20.2 (13.4%) 357.4 (0.8%)
NTRU Kyber Dilithium 6.1 kB 21.3 (44.8%) 38.2 (25.0%) 596.9 (1.6%)
NTRU Kyber Falcon 4.4 kB 16.6 (46.4%) 25.9 (29.7%) 470.8 (1.6%)
NTRU Kyber Rainbow 3.8 kB 15.5 (46.3%) 24.7 (29.1%) 462.4 (1.6%)
NTRU NTRU Dilithium 6.0 kB 21.3 (46.0%) 38.1 (25.6%) 595.8 (1.6%)
NTRU NTRU Falcon 4.2 kB 16.6 (47.8%) 25.9 (30.6%) 469.7 (1.7%)
NTRU NTRU Rainbow 3.6 kB 15.7 (47.4%) 24.7 (30.1%) 361.6 (2.1%)
NTRU SABER Dilithium 6.0 kB 20.8 (45.1%) 37.7 (24.9%) 594.9 (1.6%)
NTRU SABER Falcon 4.2 kB 16.2 (46.6%) 25.6 (29.5%) 468.9 (1.6%)
NTRU SABER Rainbow 3.6 kB 15.3 (46.3%) 24.3 (29.1%) 360.9 (2.0%)
SABER Kyber Dilithium 6.1 kB 16.8 (29.4%) 33.6 (14.7%) 593.0 (0.8%)
SABER Kyber Falcon 4.4 kB 11.9 (26.1%) 22.7 (13.7%) 466.8 (0.7%)
SABER Kyber Rainbow 3.8 kB 11.0 (23.7%) 20.2 (12.8%) 458.3 (0.6%)
SABER NTRU Dilithium 6.0 kB 16.8 (30.8%) 33.7 (15.3%) 591.5 (0.9%)
SABER NTRU Falcon 4.2 kB 12.0 (27.9%) 21.5 (15.5%) 465.6 (0.7%)
SABER NTRU Rainbow 3.6 kB 11.0 (25.8%) 20.2 (14.1%) 357.6 (0.8%)
SABER SABER Dilithium 6.0 kB 16.3 (29.4%) 33.3 (14.4%) 590.8 (0.8%)
SABER SABER Falcon 4.2 kB 11.6 (25.5%) 21.0 (14.1%) 464.8 (0.6%)
SABER SABER Rainbow 3.6 kB 10.7 (23.1%) 19.8 (12.5%) 356.8 (0.7%)

PQ
T

LS Kyber Dilithium Dilithium 8.4 kB 19.9 (35.9%) 36.8 (19.5%) 818.1 (0.9%)
Kyber Dilithium Falcon 6.7 kB 14.7 (35.4%) 31.0 (16.8%) 595.8 (0.9%)
Kyber Falcon Dilithium 6.3 kB 15.5 (33.0%) 29.0 (17.6%) 586.4 (0.9%)
Kyber Falcon Falcon 4.5 kB 10.9 (30.1%) 21.0 (15.6%) 464.6 (0.7%)
NTRU Dilithium Dilithium 8.3 kB 24.3 (47.6%) 41.1 (28.1%) 821.3 (1.4%)
NTRU Dilithium Falcon 6.5 kB 19.0 (50.3%) 35.3 (27.2%) 599.2 (1.6%)
NTRU Falcon Dilithium 6.1 kB 19.9 (47.8%) 33.4 (28.5%) 590.6 (1.6%)
NTRU Falcon Falcon 4.3 kB 15.2 (50.3%) 25.4 (30.2%) 468.0 (1.6%)
SABER Dilithium Dilithium 8.3 kB 19.7 (35.2%) 36.6 (19.0%) 817.3 (0.8%)
SABER Dilithium Falcon 6.5 kB 14.5 (34.2%) 30.7 (16.2%) 595.2 (0.8%)
SABER Falcon Dilithium 6.1 kB 15.3 (32.0%) 28.8 (17.0%) 586.2 (0.8%)
SABER Falcon Falcon 4.3 kB 10.7 (28.5%) 20.9 (14.6%) 464.0 (0.7%)


	KEMTLS vs. Post-Quantum TLS: Performance On Embedded Systems

