Scaling Blockchain-Based Tokens with Joint Cryptographic
Accumulators

Trevor Miller
trevormil@vt.edu
Virginia Tech
Blacksburg, Virginia, USA

ABSTRACT

As digital tokens on blockchains such as non-fungible tokens (NFTs)
increase in popularity and scale, the existing interfaces (ERC-721,
ERC-20, and many more) are being exposed for being expensive and
not scalable. As a result, tokens are being forced to be implemented
on alternative blockchains where it is cheaper but less secure. To
offer a solution without making security tradeoffs, we propose
using joint cryptographic accumulators (e.g. joint Merkle trees).
We propose a method of creating such joint accumulators in a
decentralized fashion which is secured by the same set of validating
nodes as existing blockchains. Such accumulators allow the tokens
for certain applications to be implemented using up to 99.99% less of
the blockchain’s resources by outsourcing most of the storage and
computational requirements to the users creating the tokens. This
is done without sacrificing permanence and verifiability of these
tokens. This system achieves optimizations mainly by allowing
certain storage of a blockchain to be used in a cross-application
manner, instead of a per-application manner. Additionally, we show
how it can be beneficial in other areas like privacy-preserving
timestamps or shortening file hashes.

KEYWORDS

blockchain, commitments, privacy, merkle, tokens, nfts, scaling,
accumulators

1 INTRODUCTION

Many digital and real-world applications have been touted to be rev-
olutionized by blockchains [10] [19]. This is because blockchains of-
fer these applications a unique set of characteristics which has never
been seen before in the digital world. Specifically, blockchains are
public, decentralized, distributed, and append-only ledgers whose
current state is continuously agreed upon through the consensus
of network participants and not by any centralized party [1]. So for
example, the finance sector can transition to using cryptocurren-
cies like Bitcoin which use blockchains for an immutable, public,
decentralized, tamper-proof ledger of digital payment transactions
[14]. This offers many advantages over existing currencies such as
not being controlled by a single, centralized entity [14].
Cryptocurrencies are a specific type of digital blockchain token
which has monetary value, but digital tokens can be used for many
different purposes on blockchains [24]. For example, a currently
popular use case of blockchain tokens is digital identity as seen with
the Ethereum Name Service (ENS). In ENS, individual tokens repre-
senting a unique username can be created, so instead of interacting
with others via a complex pseudonymous public key or address
consisting of random letters and numbers, blockchain interactions

can be done via verifiably owned human-readable username tokens
[20].

Different use cases of digital tokens will have different require-
ments. For ENS, each token should have its own unique properties
(i.e. representing a unique username) [20]. Alternatively, some use
cases may require all tokens being fungible. Some may require
different capabilities like being able to revoke a token. As a result
of these various needs, multiple different token interfaces have
been developed [24]. For example, Ethereum (the most popular
blockchain currently for digital tokens) has the ERC-721 interface
for non-fungible tokens (NFTs), ERC-20 interface for fungible to-
kens, and ERC-1155 interface for semi-fungible tokens [6]. Verifiable
credentials (VCs) is another token standard that is used for more
credential-based applications like diplomas or driver’s licenses [23].
Or, soulbound tokens (SBTs) have recently been proposed by Vitalik
Buterin which are tokens that permanently live in a user’s account
and can never be transferred [25].

These interfaces are versatile enough to handle a broad set of use
cases, but the problem is that they are all expensive, not scalable,
and take up a fair amount of storage which is especially scarce
for append-only, permanent, distributed blockchains. For example,
Seaport from OpenSea is recognized as the most gas efficient im-
plementation for an ERC-721 non-fungible token marketplace, but
transaction fees for buying a token can exceed $15 per purchase at
the time of writing this (136,736 gas * 50 gwei gas price * $1300 per
Ethereum) [21] [3] [13] [7].

While a solution is to use alternative blockchains which are
cheaper and have more storage available, this typically comes with
tradeoffs such as decreased security and less decentralization. For
example, many globally recognized brands like Instagram, Star-
bucks, and Reddit have chosen to implement their NFT projects
on the Polygon blockchain, a blockchain which is cheaper than
Ethereum but is less secure [18]. Given this dilemma, we ask the fol-
lowing question: can digital tokens be more efficiently and cheaply
implemented on the most secure and expensive blockchain which
decreases the need to use alternative blockchains and make such
security tradeoffs as often?

2 OVERVIEW
2.1 Hybrid Proof-of-Commitment Applications

This paper will focus mainly on the efficiency of implementation
for a specific subset of applications whose tokens have unique
properties. We will call such applications hybrid proof-of-record
(HPoR) applications. HPoR applications are applications which only
use the blockchain as a way to record some information in a tamper-
proof and permanent way, and everything else is done off-chain.
For example, a teacher in an in-person classroom setting may want

to use the blockchain to issue a tamper-proof, verifiable, permanent
attendance token to all students who attend class, and this token is
not used for anything else on-chain besides verifiable, permanent
record-keeping.

Furthermore, we will specifically focus on a subset of HPoR
applications: hybrid proof-of-commitment (HPoC) applications. In
these applications, the information to be recorded is stored off-chain,
but it is committed to using a binding cryptographic commitment
scheme on-chain, such as a hash, for verifiability and permanence.
For verification of the information at a later time, one can prove
the information committed to in the commitment matches the
information that is to be verified.

To demonstrate, let’s reuse our attendance token example from
above. A teacher could digitally sign the following message with
their key pair: "Student X attended class today on 1/1/2020". Then,
they could hash the signature (or use another commitment scheme),
post the hash to the blockchain, and send the signature-hash pair to
Student X off-chain. If the student needs to verify their attendance
in the future, they can just prove the preimage of the on-chain,
tamper-proof hash is the signature. If needed, the timestamp of the
on-chain hash is also public. Note how the blockchain is only used
for verification and permanent record-keeping and nothing else in
HPoC applications. Also, note how to other users on the network,
the attendance message is not actually visible, only the hash is.

2.1.1 Categories. We further categorize the commitments for
HPoC applications into two categories: explicitly known and not
explicitly known. For applications that need the binding commit-
ments to be explicitly known, they have to be stored on-chain in
some queryable form where a user can not change their commit-
ment. This is typically needed in applications where volume needs
to be enforceable. For example, let’s say commitments are used
by students to prove knowledge of answers to a multiple choice
quiz question by the submission deadline. It doesn’t suffice for a
student to just reveal any previous arbitrary on-chain commitment.
This is because the student could potentially commit to all possible
answers before the deadline and when they later learn the right
answer, they can just use their commitment which had the right
answer. The solution is for each student’s commitment(s) to be
explicitly known by being queryable to others which enforces that
they can not change it.

For applications where commitments do not need to be explicitly
known, there is no such requirement. These applications typically
only require proving some unique knowledge by a specific time.
Our previous attendance token example is one such application. If
all that is required is for a student to prove their attendance in the
case of disputes, then as long as the unique attendance message
signed by the teacher is verifiable on-chain, that is satisfactory.

2.1.2 Optimizations. Because HPoC applications are hybrid and
only use the blockchain for permanent record keeping, there are
some optimizations that can be implemented to take advantage of
this. Notably, since the only requirement is verifiability, we can
efficiently combine multiple commitments for each application
into a cryptographic accumulator such as a Merkle tree and store
only the fixed-length digest on-chain [17]. This still maintains the
verifiability if additionally membership of the commitment in the

accumulator can be proven using the fixed length digest (ie. a
commitment’s Merkle path to the on-chain Merkle root).

By using cryptographic accumulators, this achieves optimiza-
tions for both commitments which do and do not need to be ex-
plicitly known. For commitments that do not need to be explicitly
known, this is straightforward as N commitments for an appli-
cation can now be stored using a fixed-length digest instead of
being stored directly. This decreases the on-chain storage require-
ment from O(32N) to O(32) (assuming 32 bytes for the digest and
commitments).

For commitments which do need to be explicitly known, this
is not as straightforward because volume is not verifiable from a
fixed-length digest which is required to be known. For example, if
presented only a Merkle root, the number of valid Merkle paths
and leaf node inputs is infinite.

However, what is possible is to store the commitments in a
cryptographic accumulator and then additionally make these com-
mitments explicitly known via a lightweight on-chain mapping. An
example of such a lightweight mapping could be claiming that your
commitment lies at location 4 in the Merkle root with ID #1000. In
this example, the on-chain storage requirements decreases from
O(32N) (assuming 32 bytes for each of the N commitments) to
O(32 + 8N) (assuming 32 bytes for the accumulator’s digest and 8
bytes for storing two unsigned 128-bit integers used as identifiers).
Future research can involve optimizing these mapping schemes.

2.1.3 Problem Overview. While joining multiple commitments
into accumulators is trivial for a single user and can be done off-
chain with no trust assumptions, multiple users must either mutu-
ally trust each other or introduce a blockchain to join all commit-
ments into a single accumulator. Mutual trust is dangerous because
if the trust is broken, this can result in severe consequences such as
manipulating an application’s outcome. On the other hand, when
a blockchain is introduced, all contents that are joined into the
accumulator must also be stored in a permanent manner on the
blockchain. Thus, this defeats the purpose of our idea of joining com-
mitments into accumulators off-chain first to save storage. While
this can be outsourced to a less secure blockchain with more storage
available, this results in sacrificing security, users needing to trust
an alternate set of validating nodes, and still uses up storage on
this alternative blockchain.

As a result, our idea can not realize its potential because it
achieves the best results as more commitments are combined within
every accumulator. In the next section, we will outline our approach
to solving this joint accumulator dilemma.

By enabling this, we allow A applications to all use the same
accumulator and on-chain fixed-length digest. This can drastically
decrease the on-chain storage requirements to O(32) for commit-
ments which do not need to be explicitly known and O(32 + AX)
for commitments which do need to be explicitly known. As a result
of this increased scalability, this eliminates the need to use less
secure blockchains for these applications.

2.2 Other Applications

In addition to optimizing HPoC applications, having the ability to
construct joint accumulators is beneficial to many other on-chain
applications. In this section, we dive further into a couple examples.

2.2.1 File Hashes. Many blockchain-based tokens use images as
a visual representation to display their tokens. Images files are large
and storage-intensive, so storing them on the blockchain is not a
realistic option in practice. Currently, the most popular method is
to store the image file using a permanent file storage solution like
IPFS or Arweave, and then, the permanent hash of the file is stored
directly along with the token on-chain [11]. Because such a hash is
collision-resistant, only the image can map to this hash.

However, this image is typically never used on-chain in any
computation and only used when querying the token. Thus, storing
a 46-byte hash (as used by IPES) for every digital token is incredi-
bly redundant and unnecessary. By combining all the hashes into
an accumulator and using a similar lightweight mapping such as
explained with the HPoC applications, we can greatly optimize the
storage of these hashes from 46-bytes per token down to a few
bytes on average per token.

2.2.2 Privacy-Preserving Timestamps. For applications which
require a commitment to some information without ever revealing
its timestamp, joint accumulators can be incredibly useful. An ex-
ample application is not revealing when a student submitted a test
because that may reveal if late penalties were applied. Or, one can
verifiably timestamp an important legal document while keeping
the timestamp and document contents private.

If commitments can be added to the joint accumulator in an
anonymous and confidential manner (as we will show in our pro-
posed system), this enables privacy-preserving timestamps for
such commitments (which is not currently possible on existing
blockchains). When the timestamp needs to be proven, one simply
needs to prove that the target commitment’s preimage maps to a
valid on-chain (digest, timestamp) pair. The timestamp can be pri-
vately but verifiably used in verifiable computations (either on or off
chain) using cryptographic techniques like zero-knowledge proofs.
For example, a student’s exact exam submission can be first mapped
to an on-chain (digest, timestamp) pair and then, the timestamp
can be used in calculation of their grade without ever revealing the
exact timestamp or if late penalties were applied. This is possible
due to the blockchain’s tamper-proofness and verifiability.

3 DESIGN

In this section, we propose our approach to enables users to com-
bine multiple inputs into a joint accumulator in a decentralized
fashion and post the fixed-length digest on-chain while outsourc-
ing most of the storage overhead of the accumulators to the users.
While this can potentially be done using an alternative blockchain
(similar to a Layer-2 rollup), this requires applications to trust a
second decentralized network with an alternative set of validating
nodes. Additionally, this requires the accumulator’s contents to be
permanently stored on this alternative blockchain, using up a large
amount of this chain’s resources. Our system can be built on top of
any existing blockchain and use the same set of validating nodes
which eliminates the need to split such trust. This can also be done
in a way that only uses up a trivial amount of any network’s re-
sources and does not add any additional trust assumptions that are
not already common practice today. We design our system to only
temporarily store the accumulators while users locally store what

they need. Because most of the storage of the accumulators is out-
sourced to the users, this does not permanently burden the network,
as would be the case if it was stored directly on the blockchain.
To our knowledge, there has been no existing research which has
demonstrated such a system.

3.1 Overview

Our system is to be used in parallel with some "main" blockchain
(the one which the accumulator is to be posted). All validating nodes
of the main blockchain will also run our system which joins users’
commitments into a joint accumulator. A generated accumulator
is to be posted on the main blockchain once per block via being
stored directly in each block’s header, exactly how the Merkle root
of all transactions is stored in a blockchain’s block header.

For the implementation, we have chosen Merkle trees as our
choice of cryptographic accumulator for their efficiency, augmentabil-
ity, and simplicity. But, this can be replaced with any cryptographic
accumulator [17].

Our approach does not have any financial-based incentive mech-
anisms to prevent spam like typical blockchain transactions do,
but we will show how this will not be a problem in practice and is
similar to existing systems put in place already. While we believe
our proposed solution is the most applicable in practice, we note
it is not the only solution. In a later section, we will show some
potential alternative approaches which can be used and show the
pros / cons of each approach.

3.2 Algorithm

To demonstrate our approach, we will explain chronologically
through the execution flow starting with a user generating their
commitment until it is stored on-chain. For reference, see Figure
1. For explanation purposes, we split our algorithm into six stages.
We will call the user Bob, the information he wants to commit to
Ip, and his cryptographic commitment to that information CMp
(e.g. Hash(Ig) = CMp). Ip is to be kept confidential by Bob at the
minimum until our algorithm is complete and potentially forever
depending on what it is being used for.

3.2.1 Stage 1: Commitment Generation. First, Bob will generate
his commitment, CMp, locally. The commitment CMp is to be pub-
licly known, but Ig should only be known by Bob. If Bob doesn’t
even want CMp to be public, he can optionally doubly nest his
commitment, (e.g. Hash(CMp) = CMé)

3.2.2 Stage 2: Node Selection. Next, Bob will either run his own
validating node in our system, Np, or he can select a validating
blockchain node N4 from the set of all blockchain nodes {N7, N2,
..., NN} which he minimally trusts. The trust assumptions with a
minimally trusted node are explained later in this paper. There is
no trust assumption if Bob runs his own node.

For convenience, we will say Bob selected a node which we will
denote Ny4. Bob will send CMpg to N4. No other information besides
CMp is sent like a pseudonym, digital signature, or fees. Bob should
also use privacy-preserving tools like Tor to maintain anonymity,
so this node can learn nothing even from the network level.

3.2.3 Stage 3: Local Merkle Tree Generation. Each node will
maintain a local Merkle tree constructed using all commitments

Joint Merkle Tree Root N Joint Merkle Tree Root N + 1

Joint Merkle Tree Root N + 3 Joint Merkle Tree Root N + 4

Stored by Network

Stored by Users

(Temporarily Joint Merkle Tree

Stored By
Network)

Local Merkle Tree (Node A)

Local Merkle Tree

|J =What User A
Stores

User A

User B

User C

(Node B)

User D

User E

User F

Figure 1: System architecture that demonstrates our approach, specifically the difference between local Merkle trees / roots

(LMTs / LMRs) and joint Merkle trees / roots (JMTs/ JMRs).

submitted to them. So, N4 will have a local Merkle tree which
includes CMp and any other commitments sent to them. We will
call these local Merkle trees maintained by each node, LMTs, and
the local Merkle roots of these trees, LMRs. This can be seen in
Figure 1.

3.2.4 Stage 4: Broadcasting the Root of the Local Merkle Tree.
Periodically, each node will broadcast their LMR to the network
along with a signature and nonce that is unique to that node,
(LocalMerkleRootx, Sigx (LocalMerkleRootx, Noncey)). At this
point, the LMR and LMT is finalized and cannot be edited. At this
point, in addition to broadcasting the LMR to the network, the
broadcasting node will also relay the LMT contents back to the
users (such as Bob) whose commitments are stored somewhere in
the LMT.

Bob will now have a valid Merkle path from CMp to LMR. Once
all such users have received the LMT contents, the LMT can be
safely discarded by the node to save storage. Although, we recom-
mend nodes to store this temporarily for some additional length of
time, such as a day.

The broadcasting of the LMR to the network is done in the same
way that a typical blockchain transaction is broadcasted in a peer-to-
peer manner, but these broadcasted LMRs will be treated differently
than normal transactions. They should have a separate mempool
(which we will call LMR mempool) from "normal" transactions.
Whenever a node receives a new (LMR, signature, nonce) pair from
another node, they will add it to their LMR mempool.

3.25 Stage 5: Block Producing. Whenever a validating node is
chosen to produce a block, they will join all the LMRs currently
stored in their local mempool into a single joint Merkle tree (JMT),
as seen in Figure 1. The joint Merkle root (JMR) of this JMT will
then be stored within the 32-byte slot in the block header, thus
making it permanently stored on-chain.

The JMT and all its contents will then be propagated back to all
other nodes. When each node receives the JMT contents, they can
then compare it to their local LMR mempool and remove all the
LMRs included in the JMT. At this point, they will also verify the
JMT is well-formed and only consists of valid LMRs signed by other
nodes with valid nonces. We also propose to set an upper limit on
the JMT size and check this to prevent the attack where the block
producing node makes the JMT super large to attempt to clog the
network. If these checks fail, the block is to not be accepted.

Users such as Bob can now query these JMT contents via any
node to find the JMT which includes the LMR which holds their
commitment. Once found, Bob can now construct and locally store
the valid Merkle path all the way from CMp to the JMR posted
on-chain. Thus, Bob’s commitment is now stored in a verifiable
and tamper-proof manner on the blockchain. This Merkle path is
to be stored by Bob for as long as needed. For reference, see the
blue path for User A in Figure 1.

3.2.6 Stage 6: Discardable Storage. Up until now, our algorithm
has practically the same timeline as a typical transaction being

submitted and broadcasted to the network. However, our system
achieves great benefits in this stage.

The JMT contents are recommended to be stored by nodes for a
long enough predefined time period (such as a day) to allow for all
users to locally store their augmented Merkle path. But after such
a time period, nodes will permanently discard all JMT contents
(except the JMR which is already on-chain) to continue operating
in a lightweight manner.

Note that this is permanently discarding and not just pruning (i.e.
where it is discarded by some nodes but is still required to be stored
by archive nodes in order to reconstruct the blockchain verifiably
from genesis). This is okay because if the JMR is not discarded,
none of the users’ verifiability is sacrificed. Additionally, since the
contents of the JMT are never used in any on-chain computation
and users who need their Merkle paths for their commitments
already have them stored, there will be no future need for nodes to
store such contents.

As a result of these discards, our system only adds a constant
of storage overhead to the network because over time, almost all
the storage is outsourced to the users storing it locally, and all that
needs to be stored by the network is the temporary storage.

3.3 Threats

In this section, we outline the potential threats and security of such
a system and why we designed it in the way it is.

3.3.1 Doubly Storing. To start, let’s explain some concepts that
are unique to our approach. We take the unique approach of not
caring if commitments are doubly stored in the rare case in order
to achieve a much higher throughput and efficiency. All we care
about is that a user ends up with a valid verifiable Merkle path to
the on-chain JMR for their respective commitments. If not being
doubly stored is an important requirement for an application, an
alternative system must be used, potentially one in Section 3.5.

We do not care about double storing because there is no extra
overhead added if it does happen. Only the 32-byte JMT will be
stored in the long run, and there is no financial penalty like a gas
fee in our approach for the user if it is added multiple times.

3.3.2 Learning Information from Pending Commitments. First,
there is nothing to be learned by any party who knows some binding

commitment from a user before it is added to the chain (i.e. pending).

We assume that the preimage to the binding commitment is kept
confidential by the user, at the minimum until our algorithm is
complete. This also includes potentially applying randomness to the
commitment so that the preimage can not be brute forced. Because
the commitments are binding, their preimages kept confidential,
and having no identity or pseudonyms attached. there is nothing to
be learned from knowing some commitment value before it is posted
on-chain. While network traffic can be potentially analyzed to learn
information about who submitted a commitment, our algorithm
uses privacy-preserving tools like Tor to keep this anonymous and
confidential.

3.3.3 Minimally Trusting a Node. As explained in the previous
section, users have the option to run their own node or minimally

trust a node. Running one’s own node has no additional trust as-
sumptions when using our system. Minimally trusting a node re-
quires trusting the node for availability and not denying service. We
define two ways to deny service in our context: a) simply ignoring
some received information or b) editing the received information.

If a minimally trusted node denies service to a user, the user
can simply submit to another minimally trusted node or run their
own node. Nothing malicious can ultimately happen in this case.
If the node refused to broadcast the user’s commitment, we have
already shown how there is no information that can be learned. If
the node edits the user’s commitment, there is no financial penalty
for the user, and they can simply resubmit. This is practically the
same as refusing to broadcast. While a minor inconvenience in the
rare case, this trust relationship is common practice in existing
blockchain settings today, and running your own node with no
trust assumptions is always a possibility.

Other trust assumptions for minimally trusting a node includes
that they actually construct the LMT correctly. If they do not, this is
again practically the same as refusing to broadcast. Or, if the node
broadcasts the LMR but refuses to relay the LMT contents back to
the users, this is again practically the same. This will be caught
early in the process, and users can simply resubmit.

3.3.4 Trusting the Block Producing Node. Now, let’s say the
user’s commitment was properly broadcasted to the network as a
LMR. All nodes will eventually receive this LMR as it is propagates
in a peer-to-peer fashion.

The next trust assumption we will look at is the block producing
node. If the block producing node chooses to exclude or edit any
LMRs it has received when constructing the JMT, this ultimately
again does not matter. Other nodes will still have such an LMR in
their local mempool, and it can be trivially added in the next block
by the next block producing node. This again is common practice in
existing blockchain settings. Block producers choose which trans-
actions to include and which to exclude, and the excluded ones will
eventually be added in subsequent blocks.

3.3.5 Discarding Storage Too Early. Lastly, the JMT and LMT
contents are to be discarded after a predefined time period by nodes
in our system. If the contents are discarded too early before a user
gets the chance to store locally, the user’s augmented Merkle path
is broken and cannot be verified. We believe one day is long enough
to allow the users enough time to store their Merkle paths locally.
If users still have not stored their Merkle paths locally after a day,
we believe this is the user’s fault and not our system’s. The user
will then have to repeat the process.

3.4 Spam Prevention

Our system has no inbuilt spam prevention mechanism like typical
blockchains do with transaction fees. With typical blockchain trans-
actions, each transaction has a fee associated with it, and nodes
can individually set a threshold of a minimum fee to recognize and
relay to other nodes. This prevents the attack of spamming $0 no-op
transactions being propagated throughout the network. However,
this does not prevent such transactions from being spammed to a
node in the first place; it only prevents the propagation.

Our system is similarly prone to spam submitting commitments
to a single node launching a DoS (denial-of-service) attack. However,
to bring down the whole decentralized blockchain network, one
would need to attack every node individually which is very costly
and very computationally infeasible in practice. They would need
to bring down every node individually because in our solution,
only the LMR of each node is broadcasted to the network. So for
example, regardless if an attacker spammed 10,000 commitments or
only 1 commitment to a node, only a single LMR (a 32-byte hash)
will be propagated.

Next, let’s look at the attack where a node spams the network
with lots of new LMRs in an attempt to flood the network. In our sys-
tem, we accompany each LMR with the node’s signature and nonce.
What we propose is a threshold of only five (can be customized)
LMRs from any single node that can be in their local mempool at
any given time. If they receive any more, they are to be ignored
and not propagated, similar to how transactions with $0 gas fee
may not be propagated. This is because in practice, Merkle trees
can be joined, and we do not care about doubly storing information.
So, any honest node who has multiple LMTs can simply join them
and submit it as a single LMR, instead of submitting multiple. This
serves the same purpose as not propagating $0 fee transactions
across the network.

The final attack we will explore is an attacker running a large
number of unique nodes to get around the above upper limit re-
quirement. First, it is very costly to run a large enough number
of nodes to be able to clog the network due to the time and space
efficiency of Merkle trees and creating a JMT every block. Second,
this can be protected against using other methods. While out of
scope for this paper, an initial idea for a proof-of-stake consensus
model is to weight each node’s LMR by their amount staked in the
network. When the queue overflows, the LMRs from the nodes with
the least amount staked are ignored first.

3.5 Alternative Approaches

While we believe our explained approach above is most applicable in
practice, there are definitely alternative approaches. In this section,
we will explore two other approaches and compare them to our
approach.

The first approach is the smart contract approach. In the smart
contract approach, instead of storing the joint Merkle root in the
block header, anyone can append a Merkle root at any time by
interacting with a smart contract. The joining process is to be done
in an off-chain manner, but such a process involves additional trust
assumptions in other parties (not validating nodes). This approach
also may run into problems with regards to who pays the transac-
tion fee and how the Merkle tree contents are stored.

The second approach is to use a Layer-2 blockchain. With a
Layer-2 blockchain, users will submit their commitments to the
Layer-2 blockchain, and periodically, the roots will be posted to
the main blockchain. With such a system, this is more verifiable
as this blockchain can permanently store all users’ commitments
and their Merkle paths to the on-chain posted one. This increases
the verifiability of the whole joining process instead of relying
on performing this in an off-chain manner. Additionally, a native
incentive and spam prevention mechanism can be worked in such as

gas fees for every submitted commitment. Although, this approach
will not scale as well for high volume and high storage needs. Also,
it involves trusting an alternative decentralized blockchain system
which was a main problem we identified for this paper.

While these solutions are acceptable alternatives, our goal was to
achieve construction of a joint accumulator secured by the same set
of blockchain validating nodes and only using a constant amount
of the network’s storage resources. We believe our approach is the
best approach in practice to achieve this functionality.

4 IMPLEMENTATION

We built a simple blockchain framework with JavaScript to demon-
strate and evaluate our approach which can be found on GitHub
under trevormil/demo-chain. In all, everything was about 450 lines
of code.

We tested our system assuming the blockchain has 7,187 nodes
and a block time of 12 seconds, which are the current numbers for
Ethereum mainnet [15]. For evaluation purposes, we assume that
users will submit their commitments to nodes in a perfectly load
balanced way. We assume that each node broadcasts one LMR to
the network per block on average (although, we envision this will
probably be much, much lower on average in practice).

We use SHA-256 for our Merkle tree hashing algorithm, ECDSA
signatures (65 bytes), and a uint256 (32 bytes) for the nonce. So in
all, each LMR broadcast will be 129 bytes. The LMT and JMT will
only consist of the SHA-256 hashes, but the signature and nonce
are needed to accompany the Merkle leaves in the JMT to make
sure everything is well-formed.

We evaluated this on a laptop with a 4-core Intel(R) Core(TM)
17-8650U CPU @ 1.90GHz, 16 GB RAM, and a 512 GB hard drive.

5 EVALUATION

Our solution’s optimization performance is variable based on the
number of applications who use such a joint cryptographic accumu-
lator. Thus, we will not be able to provide exact evaluation metrics
if our solution is not used in practice yet, but we can show how it
will perform based on some estimations.

5.1 Storage Saved

Our solution adds a constant 32-bytes of on-chain storage per block.
For convenience, we will assume ~12 second block time (average
for Ethereum), 32-byte commitments, and 32-byte Merkle roots. As
explained in Section 2.1.1, there are two categories of commitments:
a) commitments that need to be explicitly known and b) those
that do not. As a refresher, commitments that need to be explicitly
known are for applications where the actual value of a users’ com-
mitment must be queryable so that they can not change it (i.e. not
changing your input commitment in a game of rock-paper-scissors).
For these applications, we achieve optimizations from O(32N) to
O(32 + 8N) where it is assumed 8-bytes for a lightweight mapping
and N is the total number of commitments per block (see Section
2.1.2). This means that we achieve positive scaling results if > %/
commitments are made on average per block. In other words, as
the number of commitments per block grows to infinity, we are
only adding 8-bytes per commitment instead of 32-bytes. This is
shown in Figure 1.

Storage Overhead - Explicitly Known Commitments

300 —— Before
—— After
@
8
5
2
< 200 |
&
(5]
<
b
>
@)
9]
a0
o 100
S
)
0 : : : |
0 4 6 8 10

2
N Commitments per Accumulator

Figure 2: Storage optimizations for explicitly known commit-
ments on the main blockchain.

For applications with commitments that do not need to be explic-
itly known, we achieve optimizations from O (32N) to O(32) where
N is the total number of commitments per block (see Section 2.1.2).
This means that we achieve positive results if > 1 commitments
are made per block. And as the number of commitments per block
grows, we achieve almost a 32-byte per commitment optimization.
In other words, as the number of commitments per block grows,
we are not adding anything per commitment instead of 32-bytes
each time. This is shown in Figure 2.

Storage Overhead - Not Explicitly Known Commitments

300 | —— Before
—— After
"
2
S
2
= 200
<
(9]
<
-
[}
>
o
]
e
£ 100 |
je
w
0 : : : |
0 4 6 8 10

2
N Commitments per Accumulator

Figure 3: Storage optimizations for explicitly known commit-
ments on the main blockchain.

With a block time of 12 seconds and one 32 byte Merkle root
added per block, our approach would take 11.88 years to add 1 GB
of storage to the "main" blockchain. For comparison, Ethereum
grew 1.65 gigabytes in a day from June 14, 2022 to June 15, 2022
[26].

Table 1 shows the storage saved when X explicitly known com-
mitments are spread across Y accumulators (or Y blocks). Table 2
shows the storage saved when X non-explicitly known commit-
ments are spread across Y accumulators (or Y blocks).

5.2 NFT File Hashes

For an evaluation of its performance in practice, let’s see how much
it optimizes if all current digital token file hashes used our approach.
As of June 2022, there were 12,359,778 NFTs on the Ethereum
blockchain, and about 6,124,261 or 49.55% of them used IPFS 46-
byte file hashes stored on-chain which point to large files stored
off-chain on IPFS like images [11]. If these file hashes were effi-
ciently represented in accumulators and stored via a lightweight
mapping (which we will assume 8-bytes), this save about 38-bytes
per file hash (46-bytes minus 8-bytes). This could save an additional
~232.721918 megabytes of on-chain storage for digital tokens, if
everything was represented in a single accumulator. To break even
and start using additional storage, these file hashes must be spread
out over ~7,272,560 accumulators. On Ethereum with a ~12 second
block time, this means that all NFT files hashes would need to be
spread out over a period of 2.7655 years to break even and start
gaining extra storage with our approach. And, note these metrics
are only if the joint accumulators are explicitly used for NFT IPFS
file hashes within these 2.7655 years. Our joint accumulators can be
used in a cross-application manner and will achieve further scaling
and efficiency as additional applications use them.

5.3 Overhead of Our System

The metrics explained so far only focus on the overhead and storage
saved of the "main" blockchain. In this section, we focus on the
time and space overhead of our additional proposed system which
runs in parallel to the main blockchain. This can be found in Table
3.

As seen in Table 3, the time overhead from tree generation is very
efficient, and if implemented in practice, this will have minimal
effect on the main blockchain’s current operations and is quick
enough to be performed and verified during every 12 second block
interval. Network propagation may add slight end-to-end delay of a
transaction being confirmed. According to [12], block propagation
in Bitcoin ranges from ~0.5-2.5 seconds for a 1 MB block size. We
will need to propagate ~1-2MB worth of data per block, as seen
in Table 2. However, this should not be an issue in practice as
existing blockchains have comparable block sizes and block times
(e.g. ZCash has a 2MB block limit with 75 second block times [8]).

If we assume that the LMTs and JMTs are stored temporarily for
a day and discarded afterwards, the total storage added is in the
range of ~8-14 GB. While not trivial, this is a constant storage cost
and does not accumulate over time because it acts as a first in first
out queue; it can be thought of as a one-time cost addition. Because
this cost is one-time, we can potentially save a large amount of
overhead as shown in Tables 1 and 2 with only adding a one-time

Storage Overhead Saved - Explicitly Known Commitments
Number of Accumulators (or Blocks)
Commitments 102 10 10% 10° 107 108 10° 1010

10° -0.8KB
103 20.8KB -8KB
10% 236.8KB | 208KB -80KB
10° 2.396 MB | 2.368MB | 2.08MB | -800KB
10° ~24MB | 23.96 MB | 23.68MB | 20.8MB -8MB
107 ~240 MB | ~240 MB | 239.6 MB | 236.8MB | 208MB | -80MB
108 ~24GB | ~24GB | ~24GB | 2396 GB | 2.368GB | 2.08GB | -800MB
10° ~24GB | ~24GB | ~24GB | ~24GB | 23.96GB | 23.68GB | 20.8GB | -8GB
1010 ~240 GB | ~240 GB | ~240 GB | ~240 GB | ~240 GB | 239.6 GB | 236.8GB | 208GB | -80GB

Table 1: Storage saved for explicitly known commitments assuming a 32 byte accumulator and 8 byte lightweight mapping.

Storage Overhead Saved - Not Explicitly Known Commitments

Number of Accumulators (or Blocks)

Commitments 102 103 10% 106 10 108 107 1010
102 0 KB
103 28.8 KB 0 KB
10% 316.8 KB | 288 KB 0 KB
10° ~3.2MB | 3.168 MB | 2.88 MB
10° ~32MB | ~32MB | 31.68 MB | 28.8 MB 0KB
107 ~320 MB | ~320 MB | ~320 MB | 316.8 MB | 288 MB 0 KB
108 ~32GB | ~32GB | ~32GB | ~32GB | 3.16GB | 2.88GB 0 KB
10° ~32GB | ~32GB | ~32GB | ~32GB | ~32GB | 31.68GB | 28.8GB | O0KB
1010 ~320 GB | ~320 GB | ~320 GB | ~320 GB | ~320 GB | ~320 GB | 316.8 GB | 288 GB | 0 KB

Table 2: Storage saved for non-explicitly known commitments assuming a 32 byte accumulator.

storage cost overhead and minimal time overhead seen in Table 3,
especially as the number of commitments grows larger.

Also, note that we believe these numbers, especially the JMT
numbers, to be on the very high-end. In practice, we do not believe
that all nodes will have enough volume of submitted commitments
to submit a LMR each block on average. And if this is true, our
system will add even less overhead.

6 RELATED WORK
6.1 Digital Tokens

Digital tokens on blockchains have been touted to revolutionize
many different applications, but every application will have their
own implementation requirements. As a result, many different to-
ken interfaces have been developed to support such requirements
for each application [24]. The goal for such interfaces is to be im-
plemented in a way which uses as little of a blockchain’s time
and space resources as possible. The most popular interfaces cur-
rently are the ERC-721 and ERC-20 for non-fungible and fungible
tokens on Ethereum, respectively [6]. Due to their popularity and
reach, most existing research has gone into optimizing these inter-
faces in terms of space and time complexity. For example, Seaport
and TinyERC721 have proposed many micro-optimizations to im-
prove implementations and transaction fees for these interfaces

[13] [4]. Or, LiftChain attempts to optimize through batching NFT
transactions off-chain without using an alternative blockhain and
benefitting from the security of the mainnet [2]. Although, these
works are trying to optimize within the limits of existing interfaces
which as a whole are still very expensive and not scalable (i.e. still
costs >$15 per token transfer as shown in the introduction).

Alternative interfaces and scaling techniques with various prop-
erties, attributes, and functionality are being proposed which are
more suited to specific applications (i.e. Verifiable Credentials, Soul-
bound Tokens, ERC-1155, etc.) [25] [23] [6]. But from our observa-
tions, all these interfaces share one common property: they all rely
on a per-application implementation basis. In other words, every
application must still individually implement such a token interface,
and as a result, this uses up more of the blockchain’s time and space
resources for every additional application.

What our solution focuses on is optimizing on a cross-application
basis. Our optimizations come from focusing on reusing the same
blockchain resources like storage for multiple applications with-
out sacrificing key properties like verifiability. This enables us to
achieve great scaling results over any existing research because less
resources (if any) are additionally used when more applications are
implemented. Although, this is only applicable to a specific subset

Time and Space Overhead of Our Parallel System on Average Per Node - 7187 Total Nodes
LMR / LMT Generation JMR / JMT Generation Total - 1 Day (7200 Blocks)
Commitments per Block | Storage (KB) | TreeGen (ms) | Storage (KB) | TreeGen (ms) | Cumulative Storage (GB)
102 0.0004 0.068 1157.33 146.40 8.33
103 0.004 0.073 1157.33 146.40 8.33
104 0.057 0.752 1157.33 146.40 8.33
10° 0.89 2.164 1157.33 146.40 8.34
10° 9.03 7.622 1157.33 146.40 8.40
10 89.13 35.956 1157.33 146.40 8.97
108 890.66 231.14 1157.33 146.40 14.75

Table 3: Time and storage overhead of our proposed parallel system.

of applications which are able to be use their resources in such a
cross-application manner.

6.2 Layer-2 Blockchains and Decentralized
Storage Solutions

Our solution utilizes a decentralized blockchain system in parallel
with the "main" blockchain in order to save storage for NFTs and
scale without sacrificing verifiability and security. Many such multi-
chain compatible systems do exist, but, they often operate as a whole
separate blockchain or decentralized system with their own set of
validating nodes, such as Polygon, Optimism, IPFS, or Arweave
[18] [16] [5] [22]. Our system is proposed in parallel using the same
set of validating nodes as the "main" blockchain, and thus, users
do not have to rely on two separate decentralized networks with
different sets of validating nodes.

Works such as StateSnap have identified the same problem and
proposed a solution without such trust assumptions for quick re-
trievable storage for tokens [9]. But, this still adds significant stor-
age overhead to existing networks, where storage is already a scarce
resource. Additionally, StateSnap focuses on storage that is retriev-
able on-chain which is not necessary for many applications, as
explained with HPoC applications. To our knowledge, there is no
such system which is custom tailored to the creation of joint accu-
mulators in a discardable, temporary fashion like ours does.

7 CONCLUSION

In this paper, we presented a decentralized system to be run in
parallel with existing blockchains. This system allows for great
storage savings for digital tokens and other applications by focus-
ing on discardable rather than permanent storage for the network
and combining multiple commitments into an efficient fixed-length
digest cryptographic accumulator. These accumulators are to be
stored off-chain by the users who need them instead of permanently
burdening the network if stored on-chain. We do this while not
sacrificing verifiability and only ever needing to trust the same set
of validating nodes as existing blockchains, thus not sacrificing
security. As a result of these storage optimizations, this lessens
the need for applications to have to settle for implementation on
a blockchain which is less secure but has more storage available.
Our system also is beneficial in many other ways such as enabling

privacy-preserving timestamps. In the future, we believe it is worth-
while for all blockchains to implement a system similar to ours.

REFERENCES

[1] Fran Casino, Thomas K. Dasaklis, and Constantinos Patsakis. 2019. A systematic
literature review of blockchain-based applications: Current status, classification
and open issues. Telematics and Informatics 36 (2019), 55-81. https://doi.org/10.
1016/j.tele.2018.11.006

[2] Hari Kishore Chaparala, Sai Vineeth Doddala, Ahmad Showail, Abhishek Singh,
Samaa Gazzaz, and Faisal Nawab. 2022. LiftChain: A scalable multi-stage
NFT transaction protocol. 2022 IEEE International Conference on Blockchain
(Blockchain) (2022). https://doi.org/10.1109/blockchain55522.2022.00057

[3] CoinGecko. 2022. Ethereum Price in USD: ETH Live Price Chart and News.
(2022). https://www.coingecko.com/en/coins/ethereum

[4] tajijen.eth (ETH: 0x2dFD38D75f090A40DcFC1dce816B75378ffAaBcB). 2022.
TINYERC721: A new standard in NFT gas optimization. (2022). https://mirror.
xyz/tajigen.eth/fraoPkDEYf1U5yOmke3SdFny5EnA6fZwiupaWMX3Yeg

[5] Ethereum. 2022. Scaling. (2022). https://ethereum.org/en/developers/docs/
scaling/

[6] Ethereum. 2022. Token standards. (2022). https://ethereum.org/en/developers/
docs/standards/tokens/

[7] Etherscan. 2022. (2022). https://etherscan.io/gastracker

[8] ZCashFAQ. 2022. Frequently asked questions. (Aug 2022). https://z.cash/support/
faq/

[9] Siqi Feng, Wenquan Li, Lanju Kong, Lijin Liu, Fuqi Jin, and Xinping Min. 2022.
STATESNAP: A state-aware P2P storage network for blockchain NFT content
data. Algorithms and Architectures for Parallel Processing (2022), 3-18. https:
//doi.org/10.1007/978-3-030-95391-1_1

[10] Tharaka Mawanane Hewa, Yining Hu, Madhusanka Liyanage, Salil S. Kanhare,
and Mika Ylianttila. 2021. Survey on Blockchain-based smart contracts: Technical
Aspects and Future Research. IEEE Access 9 (Mar 2021), 87643-87662. https:
//doi.org/10.1109/access.2021.3068178

[11] Nick Hladek. 2022. How many nfts are actually on the
blockchain? (2022). https://www.rightclicksave.com/article/
how-many-nfts-are-actually- on-the-blockchain

[12] DSN Kastel. 2022. DSN Bitcoin Monitoring. (2022). https://www.dsn.kastel.kit.
edu/bitcoin/

[13] Allie Mack. 2022. Launching Seaport and Saving the community mil-
lions in fees. (Jun 2022). https://opensea.io/blog/announcements/
launching-seaport-saving-the-community-millions-in-fees/

[14] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. (2008).
https://bitcoin.org/bitcoin.pdf

[15] Ether Nodes. 2022. Ethereum Mainnet statistics. (2022). https://ethernodes.org/

[16] Optimism. 2022. (2022). https://www.optimism.io/

[17] Tker Ozcelik, Sai Medury, Justin Broaddus, and Anthony Skjellum. 2021. An
Overview of Cryptographic Accumulators. In Proceedings of the 7th International
Conference on Information Systems Security and Privacy. SCITEPRESS - Science
and Technology Publications. https://doi.org/10.5220/0010337806610669

[18] Polygon. 2022. Bring the world to ethereum. (2022). https://polygon.technology/

[19] Ashutosh Ranade and Zaheed Shaikh. 2020. A survey on blockchain technology
with Use-cases in governance. SSRN Electronic Journal (Apr 2020). https://doi.
org/10.2139/ssrn.3568629

[20] Ethereum Name Service. 2022. Ethereum Name Service Domains. (2022). https:
//ens.domains/

[21] OpenSea Support. 2022. Seaport Gas Costs. (Jun 2022). https://twitter.com/
opensea_support/status/1537815479061868545

https://doi.org/10.1016/j.tele.2018.11.006
https://doi.org/10.1016/j.tele.2018.11.006
https://doi.org/10.1109/blockchain55522.2022.00057
https://www.coingecko.com/en/coins/ethereum
https://mirror.xyz/tajigen.eth/fraoPkDEYf1U5yOmke3SdFny5EnA6fZwiupaWMX3Yeg
https://mirror.xyz/tajigen.eth/fraoPkDEYf1U5yOmke3SdFny5EnA6fZwiupaWMX3Yeg
https://ethereum.org/en/developers/docs/scaling/
https://ethereum.org/en/developers/docs/scaling/
https://ethereum.org/en/developers/docs/standards/tokens/
https://ethereum.org/en/developers/docs/standards/tokens/
https://etherscan.io/gastracker
https://z.cash/support/faq/
https://z.cash/support/faq/
https://doi.org/10.1007/978-3-030-95391-1_1
https://doi.org/10.1007/978-3-030-95391-1_1
https://doi.org/10.1109/access.2021.3068178
https://doi.org/10.1109/access.2021.3068178
https://www.rightclicksave.com/article/how-many-nfts-are-actually-on-the-blockchain
https://www.rightclicksave.com/article/how-many-nfts-are-actually-on-the-blockchain
https://www.dsn.kastel.kit.edu/bitcoin/
https://www.dsn.kastel.kit.edu/bitcoin/
https://opensea.io/blog/announcements/launching-seaport-saving-the-community-millions-in-fees/
https://opensea.io/blog/announcements/launching-seaport-saving-the-community-millions-in-fees/
https://bitcoin.org/bitcoin.pdf
https://ethernodes.org/
https://www.optimism.io/
https://doi.org/10.5220/0010337806610669
https://polygon.technology/
https://doi.org/10.2139/ssrn.3568629
https://doi.org/10.2139/ssrn.3568629
https://ens.domains/
https://ens.domains/
https://twitter.com/opensea_support/status/1537815479061868545
https://twitter.com/opensea_support/status/1537815479061868545

[22]
[23]
[24]

[25]

[26]

ThorChain. 2022. ThorChain. (2022). https://thorchain.com/

W3C. 2022. Verifiable credentials data model V1.1. (2022). https://www.w3.org/
TR/vc-data-model/

Qin Wang, Rujia Li, Qi Wang, and Shiping Chen. 2021. Non-Fungible Token
(NFT): Overview, Evaluation, Opportunities and Challenges. (2021). https:
//doi.org/10.48550/ARXIV.2105.07447

Eric Glen Weyl, Puja Ohlhaver, and Vitalik Buterin. 2022. Decentralized society:

Finding web3’s soul. SSRN Electronic Journal (2022). https://doi.org/10.2139/ssrn.

4105763
YCharts. 2022. Ethereum Chain Size. (2022). https://ycharts.com/indicators/
ethereum_chain_full_sync_data_size

10

https://thorchain.com/
https://www.w3.org/TR/vc-data-model/
https://www.w3.org/TR/vc-data-model/
https://doi.org/10.48550/ARXIV.2105.07447
https://doi.org/10.48550/ARXIV.2105.07447
https://doi.org/10.2139/ssrn.4105763
https://doi.org/10.2139/ssrn.4105763
https://ycharts.com/indicators/ethereum_chain_full_sync_data_size
https://ycharts.com/indicators/ethereum_chain_full_sync_data_size

	Abstract
	1 Introduction
	2 Overview
	2.1 Hybrid Proof-of-Commitment Applications
	2.2 Other Applications

	3 Design
	3.1 Overview
	3.2 Algorithm
	3.3 Threats
	3.4 Spam Prevention
	3.5 Alternative Approaches

	4 Implementation
	5 Evaluation
	5.1 Storage Saved
	5.2 NFT File Hashes
	5.3 Overhead of Our System

	6 Related Work
	6.1 Digital Tokens
	6.2 Layer-2 Blockchains and Decentralized Storage Solutions

	7 Conclusion
	References

