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Abstract. We introduce the Merkle Tree Ladder (MTL) mode of operation for 

signature schemes. MTL mode signs messages using an underlying signature 

scheme in such a way that the resulting signatures are condensable: a set of MTL 

mode signatures can be conveyed from a signer to a verifier in fewer bits than if 

the MTL mode signatures were sent individually. In MTL mode, the signer sends 

a shorter condensed signature for each message of interest and occasionally 

provides a longer reference value that helps the verifier process the condensed 

signatures. We show that in a practical scenario involving random access to an 

initial series of 10,000 signatures that expands gradually over time, MTL mode 

can reduce the size impact of the NIST PQC signature algorithms, which have 

signature sizes of 666 to 7856 bytes with example parameter sets, to a condensed 

signature size of 472 bytes per message. Even adding the overhead of the 

reference values, MTL mode signatures still reduce the overall signature size 

impact under a range of operational assumptions. Because MTL mode itself is 

quantum-safe, the mode can support long-term cryptographic resiliency in 

applications where signature size impact is a concern without limiting 

cryptographic diversity only to algorithms whose signatures are naturally short. 

Keywords: Post-Quantum Cryptography, Digital Signatures, Merkle Trees, 

Modes of Operation. 

1 Introduction 

The transition to post-quantum cryptography under NIST’s leadership [1] has resulted 

in a remarkable variety of new, fully specified cryptographic techniques [2] that have 

been assessed, through a public evaluation process, to resist cryptanalysis by both 

classical and quantum computers. NIST has also issued recommendations for two 

additional post-quantum signature schemes [3], which are also endorsed (along with 

one of the other techniques) in the latest U.S. National Security Systems suite [4]. The 

next step in the transition, as the various algorithms are standardized and incorporated 

into cryptographic libraries, is to upgrade applications to support them [5]. 

Applications of cryptography in the “pre-quantum” era have often been designed 

based on the characteristics of the cryptographic techniques available, one of which has 

been relatively small signature sizes (by post-quantum standards). Classical signature 
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sizes range from 64 to 256 bytes in typical examples [6]. The leading post-quantum 

signature algorithms in the NIST PQC project, in contrast, have minimum sizes that 

range from 666 to 7856 bytes with example parameter sets (see Tables 8 and 9 in [1]) 

— an order of magnitude (or two) increase. 

Given the increasing sizes of all kinds of data, the relatively large size of the new 

signature algorithms won’t necessarily present an obstacle to their adoption. But size 

concerns could still present a challenge in some environments, and for the greatest 

benefit, it will be helpful to have techniques that reduce the size impact. In addition, it 

would be desirable from the perspective of cryptographic diversity if these techniques 

could be applied to multiple families of signature algorithms. 

Our focus in this paper is on reducing signature size impact in a practical scenario 

that we call message series signing. In this scenario, a signer continuously signs new 

messages and publishes the messages and their signatures. A verifier then continuously 

requests selected messages and verifies their signatures. As examples, the messages 

could be web Public-Key Infrastructure certificates [7], Domain Name System Security 

Extensions (DNSSEC) records [8] or signed certificate timestamps [9]. 

We are interested in a way for the signer to convey a set of signatures on messages 

of interest to the verifier in fewer bits than if the signatures were sent individually. We 

propose to do so through a process we call condensation and reconstitution. We show 

how to make a signature scheme condensable through a technique we call Merkle Tree 

Ladder (MTL) mode, named for both its relationship with Merkle trees [10] and with 

modes of operation of cryptographic techniques pioneered by NIST for encryption 

algorithms [11]. 

In brief, MTL mode constructs an evolving sequence of Merkle tree nodes, which 

we call ladders, from the sequence of messages being signed, then signs each ladder 

using the underlying signature scheme. An MTL mode signature has three parts: an 

authentication path from a message to a Merkle tree ladder node or “rung”; the ladder; 

and the signature on the ladder. A condensed signature conveys the authentication path; 

a reference value conveys a ladder and its signature. The signer sends the verifier a 

condensed signature and a handle pointing to a reference value; the verifier computes 

a reconstituted signature from the condensed signature and a suitable reference value, 

requesting a new reference value if needed, and then verifies the reconstituted signature. 

The condensation process evolves the authentication paths to maximize reuse of ladders 

and therefore minimize their size impact. 

MTL mode improves upon the basic idea of forming a Merkle tree from a fixed set 

of messages and then signing the Merkle tree root in two important ways. First, the 

message series can expand as the signer continuously signs new messages without 

explicitly constructing new trees. Second, both the initial (uncondensed) signature and 

the reconstituted signature produced by MTL mode are actual signatures that can be 

verified by the MTL mode verification operation. Condensation and reconstitution are 

therefore optional upgrades that can be deployed incrementally. 

Two other points are worth noting. 

• MTL mode, like other Merkle tree techniques, is based only on hash functions. It’s 

therefore quantum-safe under the same assumptions as hash-based signatures. 
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• Condensation and reconstitution are public processes: They involve only the 

signer’s public key, not the private key. The processes therefore don’t impact the 

security of the underlying signature scheme and they can be performed by anyone. 

Another party can perform the operations independently of the signer and verifier, 

which adds to deployment flexibility. (We note that the operations are different than 

compression / decompression in that the reconstituted signature may be different 

than the initial signature on the message.) 

Summary of Our Contributions. (1) We provide a formal model for condensing 

and reconstituting signatures given a suitably constructed signature scheme; (2) We 

show how to use Merkle tree ladders to transform an arbitrary underlying signature 

scheme into a stateful tagged signature scheme suitable for condensation and 

reconstitution; and (3) We demonstrate that the transformation can reduce the size 

impact of NIST PQC signature algorithms in practice. 

Organization. Section 2 gives the conventions for our Merkle tree constructions and 

defines Merkle tree ladders. Section 3 defines a tagged signature scheme. Section 4 

then defines a condensation scheme. Sections 5 and 6 show how to transform an 

arbitrary signature scheme into a tagged signature scheme using MTL mode and how 

to condense the resulting signatures. Section 7 discusses the practical impact of our 

techniques on NIST PQC signature algorithms, Section 8 reviews related work, and 

Section 9 concludes the main body of the paper. Appendices provide additional details 

helpful for implementers as well as proof of one of the technical claims. 

2 Merkle Tree Ladders 

2.1 Conventions 

For our constructions, we will use a Merkle graph — a variant of the classic Merkle 

tree where nodes may have multiple parents, so long as no node is its own ancestor — 

with the following additional restrictions: 

1. Leaf nodes are indexed consecutively from 1 to 𝑁, where 𝑁 is the number of data 

values being authenticated;  

2. Every internal node has two child nodes, i.e., “left” and “right” subtrees; 

3. The leaf node descendants of every internal node are consecutively indexed;  

4. Every internal node has a different set of leaf node descendants; and 

5. The left and right subtrees of an internal node have no leaf nodes in common. 

Based on these properties, we can associate each node with a unique index pair 𝐿 

and 𝑅 such that 1 ≤ 𝐿 ≤ 𝑅 ≤ 𝑁 where 𝐿 is the lowest and 𝑅 is the highest index of any 

leaf node descendants of the node. (For a leaf node, we let 𝐿 = 𝑅 = 𝑖 be the index of 

the leaf node itself.) The node with this index pair is denoted [𝐿: 𝑅]; we say that [𝐿: 𝑅] 
spans leaf nodes 𝐿 through 𝑅. We denote the hash value associated with this node as 

𝑉[𝐿: 𝑅]. We refer to the full set of leaf nodes associated with a set of data values, and 

their internal node ancestors in the graph, a node set. 
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A conventional binary Merkle tree where 𝑁 is a power of 2 follows these restrictions 

with the further convention that the descendants of the internal node [𝐿: 𝑅] are 

adjacently and equally apportioned between its two child nodes, i.e., the children are 

[𝐿: 𝑀] and [𝑀 + 1: 𝑅] where 𝑀 = (𝐿 + 𝑅 − 1)/2; the root node is [1: 𝑁]. 
For our more general case, we take an approach similar to Certificate Transparency 

[9] in allowing 𝑁 to be different than a power of 2, and we apportion descendants 

adjacently, but not necessarily equally, by choosing 𝑀 as the (unique) integer between 

𝐿 and 𝑅 − 1 that is divisible by the largest power of 2. The successive left children of 

the node [1: 𝑁], if present, and its descendants are thus always complete binary trees, 

but the node set and its ladders need not include [1: 𝑁], depending on the rung strategy. 

2.2 Ladders and Rungs 

A subset of nodes that collectively spans every leaf node in a node set is a Merkle tree 

ladder; the individual ladder nodes are called rungs. Our motivation for the terminology 

is that the ladder provides a way to “climb the tree” and authenticate new leaf nodes. 

The authentication path from a leaf node to a ladder is the set of sibling node hash 

values (in the usual Merkle tree sense) from the leaf node to an associated rung in the 

ladder that spans the leaf node. 

A rung strategy, denoted ℛ𝒮, specifies the process for updating a ladder as new leaf 

nodes are added and for choosing which rung in the ladder to use in an authentication 

path if more than one rung spans a given leaf node. We define one such strategy below, 

but others are possible (with different efficiency tradeoffs), including the traditional 

single-rung strategy where the ladder includes just the evolving root node [1: 𝑁]. 

2.3 Hash Functions 

In the following, 𝐻leaf and 𝐻int are cryptographically separated hash functions. 

𝐻leaf(𝑆𝐼𝐷, 𝑖, 𝑑) ⟶ 𝑉 maps a series identifier 𝑆𝐼𝐷, an index 𝑖 and a data value 𝑑 to a 

2ℓ-bit hash value 𝑉. 𝐻int(𝑆𝐼𝐷, 𝐿, 𝑅, 𝑉left, 𝑉right) ⟶ 𝑉 maps a series identifier 𝑆𝐼𝐷, two 

indexes 𝐿 and 𝑅 and two 2ℓ-bit hash values 𝑉left and 𝑉right to a 2ℓ-bit hash value 𝑉. 

(Here and elsewhere in this document, the integer ℓ is a variable security parameter 

indicating the desired cryptographic bit strength, e.g., ℓ = 128.) The series identifier 

should be generated at random for each node set or derived pseudorandomly from 

another random value. Appendix A proposes instantiations of these functions and 

recommends the length of the series identifier. 

2.4 Node Set Operations 

We define the following operations for interacting with a node set according to a rung 

strategy ℛ𝒮: 

• Node set initialization. INITNODESETℛ𝒮(𝑆𝐼𝐷) ⟶ 𝑇0 returns a new node set 𝑇0 

associated with the series identifier 𝑆𝐼𝐷. 
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• Leaf node count. GETLEAFNODECOUNTℛ𝒮(𝑇) ⟶ 𝑁 returns the number of leaf nodes 

in the node set 𝑇. 

• Leaf node addition. ADDLEAFNODEℛ𝒮(𝑇, 𝑑) ⟶ 〈𝑇′, Λ〉 adds a leaf node 

corresponding to the data value 𝑑 to the node set 𝑇, assigning the next leaf node 

index to it. The operation may also compute and add other nodes as needed to evolve 

the next ladder per the rung strategy ℛ𝒮. ADDLEAFNODE returns the updated node set 

𝑇′ and the ladder Λ spanning the leaf nodes in the node set. 

• Authentication path construction. GETAUTHPATHℛ𝒮(𝑇, 𝑖) ⟶ Π returns the 

authentication path Π from the 𝑖th leaf node in the node set 𝑇 to its associated rung 

in the current ladder per the rung strategy ℛ𝒮. The operation requires that 1 ≤ 𝑖 ≤
𝑁 where 𝑁 is the current leaf node count. 

• Authentication path verification. CHECKAUTHPATHℛ𝒮(𝑆𝐼𝐷, 𝑖, 𝑁, 𝑁′, 𝑑, Π, Λ) ⟶ 𝑏 

verifies that the 𝑖th leaf node of a node set corresponds to a data value 𝑑 using an 

authentication path Π and a ladder Λ, with the assumptions that Π is the 

authentication path from the 𝑖th leaf node to its associated rung in the 𝑁th ladder and 

Λ is the 𝑁′th
 ladder. The operation requires that 1 ≤ 𝑖 ≤ 𝑁′ ≤ 𝑁. CHECKAUTHPATH 

returns 𝑏 = TRUE if the authentication path is valid and 𝑏 = FALSE otherwise. 

ADDLEAFNODE is defined here so that the updated node set is returned as an output, 

consistent with the tagged signature scheme operations and the condensation operations 

returning the updated state. The operation could be redefined so that the node set is 

updated in place as discussed in Appendix B. As also shown in Appendix B, a node set 

with 𝑁 leaf nodes can be represented with at most 2𝑁 − 1 hash values (and in the case 

that the node set is used only for generating signatures, not for condensing them, with 

at most ⌊log2𝑁⌋ + 1 hash values). 

2.5 Correctness 

It is easy to see by the definition of a rung strategy that CHECKAUTHPATH will correctly 

verify the authentication path for a data value when the ladders for CHECKAUTHPATH 

and GETAUTHPATH are the same, i.e., 𝑁′ =  𝑁, and the same 𝑆𝐼𝐷 is input to 

CHECKAUTHPATH as to INITNODESET. To make our schemes more efficient, however, 

we’d like verification also to be correct when 𝑁′ ≠N. For this purpose, we will use the 

rung strategy defined next. 

2.6 Binary Rung Strategy 

In the binary rung strategy, denoted ℬℛ𝒮, the rungs in the 𝑁th ladder Λ𝑁 are defined 

based on the binary representation of 𝑁. Write 

𝑁 = ∑ 2𝜈𝑗𝐵
𝑗=1 , 

where the 𝜈𝑗 are the indexes of the ones bits in the binary representation of 𝑁 from 

highest to lowest, so that ⌊log2 𝑁⌋ =  𝜈1  >  𝜈2  > ⋯ > 𝜈𝐵  ≥  0. The rungs of the 𝑁th 

ladder Λ𝑁 are then 
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〈[𝐿𝑁(1): 𝑅𝑁(1)], … , [𝐿𝑁(𝐵): 𝑅𝑁(𝐵)]〉 

where we define 𝑅𝑁(0) = 0 and for 𝑗 = 1 to 𝐵, we set 𝐿𝑁(𝑗) = 𝑅𝑁(𝑗 − 1) + 1 and 

𝑅𝑁(𝑗) = 𝑅𝑁(𝑗 − 1) + 2𝜈𝑗 . It follows that the rung spans are adjacent and that 𝐿1(1) =
1 and 𝑅𝑁(𝐵) = 𝑁, so the ladder rungs collectively span every leaf node. Moreover, the 

descendants of each rung form a complete binary tree. The rung associated with the 𝑖th 

leaf node is the unique rung [𝐿𝑁(𝐵): 𝑅𝑁(𝐵)] for which 𝐿𝑁(𝐵) ≤ 𝑖 ≤ 𝑅𝑁(𝐵). The 

number of rungs is 𝑂(log 𝑁). Fig. 1 gives an example. 

Because the rung node index pairs can all be computed deterministically from 𝑁, as 

long as the value 𝑁 is available, we don’t need to include the index pairs in a 

representation of the ladder, just the rung node hash values. 

Appendix B gives pseudocode for the node set operations for this strategy. 

2.7 General Path Verification 

Claim. For all positive integers 𝑖, 𝑁, 𝑁′ where 𝑖 ≤ 𝑁′ ≤ 𝑁, if 𝑑𝑖 is the data value 

corresponding to the 𝑖th leaf node in a node set assembled using the binary rung 

strategy, Π𝑖,𝑁 is the authentication path from the 𝑖th leaf node to its associated rung in 

the 𝑁th ladder and Λ𝑁′  is the 𝑁′th
 ladder, then 

CHECKAUTHPATHℬℛ𝒮(𝑆𝐼𝐷, 𝑖, 𝑁, 𝑁′, 𝑑𝑖 , Π𝑖,𝑁 , Λ𝑁′) = TRUE. 

The proof is given in Appendix C. 

3 Tagged Signature Schemes 

We adopt the generalization of the framework proposed by Abe et al. [12] for one-time 

signatures where messages are associated with tags. Tagging provides a convenient way 

to divide messages signed under the same public/private key pair into multiple series, 

while providing cryptographic separation between the series. We allow a tagged 

signature scheme to be stateful. Following Yuan, Tibouchi and Abe [13], our scheme 

operations take the current state as an input and return the updated state as an output. 

(The scheme operations could be redefined so that the state is updated in place.) 

An implementation may place constraints on the lengths of the tags, the number of 

different tags allowed, and the number of messages that may be associated with a given 

tag. In MTL mode, we allow the tag to be an arbitrary string. 

3.1 Scheme Definition 

A tagged signature scheme 𝒯𝒮𝒮 is a stateful signature scheme where signatures are 

associated with tags. A tagged signature scheme has three operations:  
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• Key pair generation. KEYGEN(1ℓ) ⟶ ⟨𝑝𝑘, 𝑠𝑘, 𝑠𝑡0⟩ generates a public/private key 

pair ⟨𝑝𝑘, 𝑠𝑘⟩ with security parameter ℓ and returns the newly generated key pair and 

an initial state 𝑠𝑡0. 

• Signature generation.  SIGN𝑠𝑘(𝑚, τ, 𝑠𝑡) ⟶ 〈𝜎, 𝑠𝑡′〉 signs a message 𝑚 and a tag τ 

with a private key 𝑠𝑘 under the state 𝑠𝑡 and returns the resulting signature 𝜎 and an 

updated state 𝑠𝑡′. SIGN returns an error if the scheme does not support the tag τ. 

• Signature verification. VERIFY𝑝𝑘(𝑚, τ, 𝜎) ⟶ 𝑏 verifies a signature 𝜎 on a message 

𝑚 and a tag τ with a public key 𝑝𝑘. VERIFY returns 𝑏 = TRUE if the verification check 

is successful and 𝑏 = FALSE otherwise. We say that the tuple 〈𝑚, τ, 𝜎〉 is valid if 

VERIFY(𝑚, τ, 𝜎) = TRUE. 

We define the message series for a tag τ as the sequence of messages 𝑀𝑁
τ =

〈𝑚1, … , 𝑚𝑁〉 input to successive calls to SIGN in association with τ, and the signature 

series for τ as the corresponding sequence of signatures Σ𝑁
τ = 〈𝜎1, … , 𝜎𝑁〉 returned. 

3.2 Correctness and Unforgeability 

The security objectives for a tagged signature scheme are similar to those for an 

ordinary signature scheme. We want the objectives to hold for a randomly generated 
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Fig. 1. Example of a Merkle tree ladder and node set following a binary rung strategy. Rungs 

[1: 8], [9: 12] and [13: 14] collectively span all 14 leaf nodes. 
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key pair, every supported tag τ and every polynomially bounded (in ℓ) message series 

𝑀𝑁
τ  (and corresponding signature series Σ𝑁

τ ): 

• Correctness. For all 𝑚𝑖 ∈ 𝑀𝑁
τ , if 𝜎 ∈ Σ𝑁

τ  is the corresponding signature, then 

〈𝑚𝑖, τ, 𝜎〉 is valid. 

• Unforgeability. For all messages 𝑚 ∉ 𝑀𝑁
τ , it is computationally infeasible (in ℓ) for 

an adversary to produce a valid 〈𝑚, τ, 𝜎〉 with more than a negligible probability of 

success, even if the adversary otherwise has full control of the messages and the tags 

input to the scheme operations. 

We assume that the adversary respects the scheme’s state, i.e., when calling an 

operation, the adversary inputs the state output by the previous operation (intervening 

calls may be made with different tags). State management is an important consideration 

and would benefit from a more complete treatment than given herein, including the 

impact on the underlying signature scheme and on MTL mode itself. 

3.3 Signature Malleability 

We allow a tagged signature scheme to be malleable [14] in the sense that given a valid 

tuple 〈𝑚, τ, 𝜎〉, an adversary (and anyone else) may be able to produce a valid tuple 

〈𝑚, τ, 𝜎′〉 where 𝜎′ ≠ 𝜎. (Our definition of unforgeability doesn’t require that 𝜎 ∈ Σ𝑁
τ .)  

While the condensation / reconstitution process (as well as MTL mode) demonstrates 

a beneficial use of signature malleability, the property also introduces potential 

vulnerabilities [15]. In particular, a signer using a malleable signature scheme cannot 

assume that a transaction has not been processed simply because the initial signature 

on the transaction does not appear in a transaction log. A malleated version of the 

signature could have been posted instead, i.e., a reconstituted signature in our case. 

4 Signature Series Condensation Schemes 

Given a signature series, we are looking for a way for the signer to convey a subset of 

the signatures to the verifier in fewer bits than if the signatures were sent individually. 

We envision the following arrangement (see Fig. 2): 

• A signer signs a series of messages, producing initial signatures on the messages. 

• (Condensation.) The signer or an intermediary produces a condensed signature and 

a reference value handle from an initial signature. These values are sent to the signer 

instead of the initial signature with messages of interest to the verifier. The values 

may depend on previous signatures produced by the signer. 

• (Reconstitution.) The verifier or an intermediary produces a reconstituted signature 

from a condensed signature and a reference value. If the verifier or intermediary 

doesn’t have a suitable reference value, it requests one based on the handle. 

• The verifier then verifies the reconstituted signature. 
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These operations involve access only to the public key, not the private key, so they 

can be performed by anyone, not just the signer and the verifier. For instance, a server 

that publishes messages and signatures on behalf of the signer could incorporate 

signatures into the condensation state, produce condensed signatures and reference 

value handles, and resolve reference value handles into reference values. Similarly, an 

agent that requests messages and signatures on behalf of the verifier could request 

condensed signatures and reference values. The mapping from handles to reference 

values could also be implemented by a database. 

The handle provides a layer of indirection. Different condensed signatures may be 

associated with different reference values, and verifiers and their intermediaries may 

request reference values at different times. The handle indicates the specific reference 

value of interest. 

Because we allow 𝒯𝒮𝒮 to be malleable, the reconstituted signature on a message 

may be different than the initial signature. 

Although we define condensation and reconstitution relative to a tagged signature 

scheme, the tagging is a convenience, making it possible for the signature scheme to 

support multiple signature series that can be condensed and reconstituted independently 

of one another under the same key pair. The processes could also be applied to a non-

tagged signature scheme, as illustrated in Appendix D. 

4.1 Scheme Definition 

A condensation scheme 𝒞𝒮 has five operations defined relative to an associated tagged 

signature scheme 𝒯𝒮𝒮. As in Section 3, the operations below could also be redefined 

so that the state is updated in place. 

• Initialization. CONDENSEINIT𝑝𝑘() ⟶ 𝑠𝑡0 returns a new scheme state 𝑠𝑡0. 

• Signature incorporation. ADDINITSIG𝑝𝑘(τ, σ, 𝑠𝑡) ⟶ 〈𝑖, 𝑠𝑡′〉 incorporates an initial 

signature σ associated with a tag τ into the state 𝑠𝑡 and returns the signature index 𝑖 
for this signature (relative to τ) and the updated state 𝑠𝑡′. 

• Condensed signature production. GETCONDENSEDSIG𝑝𝑘(τ, 𝑖, 𝑠𝑡) ⟶ 〈ς, χ, 𝑠𝑡′〉 

produces a condensed version ς of the 𝑖th signature associated with the tag τ under 

          
            

       

              

       

        

             

          

       

             

          

                

           

         

          

 

       

                                         

Fig. 2. Condensation and reconstitution processes applied to a signature scheme. 
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the state 𝑠𝑡 and returns the condensed signature ς, the associated reference value 

handle χ, and the updated state 𝑠𝑡′. 

• Reference value production. GETREFVAL𝑝𝑘(τ, χ, 𝑠𝑡) ⟶ ⟨υ, 𝑠𝑡′⟩ produces the 

reference value υ associated with the tag τ and the handle χ under the state 𝑠𝑡 and 

returns υ and the updated state 𝑠𝑡′. 

• Signature reconstitution. RECONSTSIG𝑝𝑘(τ, ς, υ) ⟶ σ′ reconstitutes a signature σ′ 

from a condensed signature ς and a reference value υ associated with a tag τ and 

returns σ′. (Appendix E proposes an alternative stateful set of reconstitution 

operations that includes a check for reference value compatibility.) 

4.2 Correctness 

A condensation scheme has one security objective. As above, we want it to hold for a 

randomly generated key pair, every supported tag τ and every polynomially bounded 

(in ℓ) message series 𝑀𝑁
τ : 

• Correctness. For all 𝑚𝑖 ∈ 𝑀𝑁
τ , if the corresponding signature series Σ𝑁

τ  is 

incorporated into the condensation state with calls to CONDENSEINIT and ADDINITSIG, 

then a condensed signature ς and a reference handle χ are obtained from τ and 𝑖 with 

a call to GETCONDENSEDSIG, then a reference value υ is obtained from τ and χ with a 

call to GETREFVAL, and finally a reconstituted signature σ′ is obtained τ, ς and χ with 

a call to RECONSTSIG, then 〈𝑚𝑖 , τ, σ′〉 is valid under 𝒯𝒮𝒮. 

We didn’t include unforgeability as a security objective because a condensation scheme 

doesn’t introduce any new access to the signer’s private key. We again assume for 

simplicity that the calls respect the schemes state (with the possibility of intervening 

calls for other tags, or to get other condensed signatures and/or reference values). 

4.3 Reference Value Compatibility 

We’d like the verifier to be able to reconstitute a signature from a condensed signature 

and a previously produced reference value, i.e., one obtained with a call to GETREFVAL 

from τ and a reference value handle χ′ older than the one returned by 

GETCONDENSEDSIG. A scheme with this property is reference value compatible. 

5 Merkle Tree Ladder Mode 

We now describe a general technique that can be applied to any signature scheme 𝒮 to 

transform it into a tagged signature scheme that can then be condensed, asymptotically, 

to the size of a Merkle tree authentication path. Our basic approach is to construct an 

evolving sequence of Merkle tree ladders from the message series and sign each ladder 

using the underlying signature scheme. We call the transformation Merkle Tree Ladder 

(MTL) mode. 
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MTL mode operations follow the binary rung strategy ℬℛ𝒮 described in Section 2.6. 

Because of the general path verification property of this rung strategy, the verification 

operation will accept both initial MTL mode signatures and reconstituted MTL mode 

signatures. The reference value υ is identified by the MTL mode reference value handle 

χ = 𝑁′. 

We chose to transform the underlying signature scheme into a tagged signature 

scheme so that an application can sign multiple message series with the same 

public/private key pair and have cryptographic separation between the series. We could 

have instead transformed 𝒮 into a non-tagged, stateful signature scheme, but the mode 

would have directly supported only a single message series. 

MTL mode applied to an underlying signature scheme 𝒮 has the following profile: 

• Public key. 𝑝𝑘 = 〈𝑝𝑘𝒮 , 𝑆〉 where 𝑝𝑘𝒮  is a public key for 𝒮 and 𝑆 is a 2ℓ-bit seed; 

• Private key. 𝑠𝑘 = 𝑠𝑘𝒮 where 𝑠𝑘𝒮  is the corresponding private key for 𝒮; 

• Signature: σ = 〈𝑆𝐼𝐷, 𝑐𝑖 , 𝑖, 𝑁, 𝑁′, Π𝑖,𝑁 , Λ𝑁′ , σ𝑁′
𝒮 , 𝑑𝑖

∗〉 where 𝑆𝐼𝐷 is a series identifier, 

𝑐𝑖 is a randomizer, 𝑖, 𝑁 and 𝑁′ are indexes, Π𝑖,𝑁 is an authentication path, Λ𝑁′  is a 

ladder, σ𝑁′
𝒮  is a signature under 𝒮 and 𝑑𝑖

∗ is an optional data value. For an initial 

signature, 𝑖 = 𝑁 = 𝑁′ and 𝑑𝑖
∗ is included in σ. For a reconstituted signature, as 

discussed in Section 6, 𝑖 ≤ 𝑁 ≤ 𝑁′ and 𝑑𝑖
∗ is omitted. 

Note that 𝑆𝐼𝐷 could be omitted from the signature because it can be computed from the 

seed and the tag. Including 𝑆𝐼𝐷 makes it possible to start the node set operations before 

the public key is obtained, provided that other scheme parameters are already known. 

5.1 Hash Functions 

𝐻msg and 𝐻SID are additional cryptographically separated hash functions. 𝐻SID(𝑆, τ) ⟶

𝑆𝐼𝐷 maps a 2ℓ-bit seed 𝑆 and a tag τ to a series identifier 𝑆𝐼𝐷. 𝐻msg(𝑆𝐼𝐷, 𝑖, 𝑚, 𝑐) ⟶ 𝑑 

maps a series identifier 𝑆𝐼𝐷, an index 𝑖, a message 𝑚 and a randomizer 𝑐 to a 2ℓ-bit 

data value. We use a message-specific randomizer to base the security of MTL mode 

on second-preimage-resistance than collision-resistance, similar to all of the example 

signature schemes except CRYSTALS–Dilithium. (Having randomizers in both parts 

also protects against adversarial access either to MTL mode or to the underlying 

scheme.) The randomizer should be generated randomly or derived pseudorandomly 

from another random value. Appendix A proposes instantiations of these functions and 

also recommends lengths for the tag, series identifier and randomizer. 

5.2 Tag Constraints 

The tag τ input to MTL mode operations may be a bit string of any length. The mode 

doesn’t specify any constraints on the number of different tags allowed or the number 

of messages that may be associated with a given tag. (Implementations may have 

practical limits.) 
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5.3 Scheme State 

The scheme state includes a security parameter ℓ, a seed 𝑆 and a set of series tuples 

〈𝑆𝐼𝐷, 𝑇〉 where 𝑆𝐼𝐷 is a series identifier and 𝑇 is the node set for the series. (We 

maintain the formality of taking the current state as input to the scheme operation and 

returning the updated state as output, with the caveat that the large size of the state for 

MTL motivates the alternative suggested in Section 3 of updating the state in place.) 

Although we’ve defined MTL mode in terms of a stateless underlying signature 

scheme, the mode can also readily be applied to a stateful underlying signature scheme 

by maintaining the state of the underlying scheme in the mode’s scheme state. 

5.4 Key Pair Generation 

KEYGEN(1ℓ) ⟶ ⟨𝑝𝑘, 𝑠𝑘, 𝑠𝑡0⟩ generates a key pair ⟨𝑝𝑘𝒮 , 𝑠𝑘𝒮⟩ with security parameter 

ℓ using 𝒮, generates a random 2ℓ-bit seed 𝑆, creates a new state 𝑠𝑡0 including ℓ, 𝑆, and 

an empty set of series tuples, formats the public key 𝑝𝑘 as 

𝑝𝑘 ⟸ 〈𝑝𝑘𝒮 , 𝑆〉, 

sets the private key 𝑠𝑘 = 𝑠𝑘𝒮 , and returns 𝑝𝑘, 𝑠𝑘 and 𝑠𝑡0. 

5.5 Tagged Signature Generation 

 SIGN𝑠𝑘(𝑚, τ, 𝑠𝑡) ⟶ 〈𝜎, 𝑠𝑡′〉 computes a series identifier 𝑆𝐼𝐷 as 

𝑆𝐼𝐷 ≔ 𝐻SID(𝑆, τ), 

where 𝑆 is the seed in the state 𝑠𝑡. Let 〈𝑆𝐼𝐷, 𝑇〉 be the series tuple for 𝑆𝐼𝐷 in 𝑠𝑡. If 𝑠𝑡 

doesn’t have a series tuple for 𝑆𝐼𝐷, then SIGN adds a new tuple 〈𝑆𝐼𝐷, 𝑇〉 to 𝑠𝑡 where the 

node set 𝑇 is initialized as 

𝑇 ∶= INITNODESETℬℛ𝒮(𝑆𝐼𝐷). 

SIGN then obtains the leaf node count as 

𝑁 ∶= GETLEAFNODECOUNTℬℛ𝒮(𝑇) 

and sets 𝑖 = 𝑁 + 1. SIGN next generates a randomizer 𝑐𝑖, and computes a data value 𝑑𝑖 

via randomized hashing and incorporates it into the node set, obtaining an updated node 

set 𝑇′ and a ladder Λ𝑖 : 

𝑑𝑖 ∶= 𝐻msg(𝑆𝐼𝐷, 𝑖, 𝑚, 𝑐𝑖); 

〈𝑇′, Λ𝑖〉 ∶= ADDLEAFNODEℬℛ𝒮(𝑇, 𝑑𝑖). 

SIGN then obtains an authentication path Π𝑖,𝑖 from the leaf node to the ladder as 

Π𝑖,𝑖 ∶= GETAUTHPATHℬℛ𝒮(𝑇′, 𝑖). 
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SIGN then computes an underlying signature σ𝑖
𝒮  on Λ𝑖  as 

σ𝑖
𝒮 ∶= 𝒮. SIGN𝑠𝑘(〈𝑆𝐼𝐷, 1, 𝑖, Λ𝑖〉) 

and formats the signature σ as 

σ ⟸ 〈𝑆𝐼𝐷, 𝑐𝑖 , 𝑖, 𝑖, 𝑖, Π𝑖,𝑖 , Λ𝑖 , σ𝑖
𝒮 , 𝑑𝑖〉. 

SIGN finally updates the state with the updated series tuple 〈𝑆𝐼𝐷, 𝑇′〉 and returns 𝜎 and 

the updated state 𝑠𝑡′. 

5.6 Tagged Signature Verification 

VERIFY𝑝𝑘(𝑚, τ, 𝜎) ⟶ 𝑏 parses the public key 𝑝𝑘 and the signature σ as 

𝑝𝑘 ⟹ 〈𝑝𝑘𝒮 , 𝑆〉; 

σ ⟹ 〈𝑆𝐼𝐷, 𝑐𝑖 , 𝑖, 𝑁, 𝑁′, Π𝑖,𝑁 , Λ𝑁′ , σ𝑁′
𝒮 , 𝑑𝑖

∗〉, 

then checks that 𝑆𝐼𝐷 = 𝐻SID(𝑆, τ) and verifies the underlying signature σ𝑁′
𝒮  on Λ𝑁′  as 

𝑏𝒮 ∶= 𝒮. VERIFY𝑝𝑘𝒮(〈𝑆𝐼𝐷, 1, 𝑁′, Λ𝑁′〉, σ𝑁′
𝒮 ). 

If the parsing or the check fails, or if 𝑏𝒮 = FALSE, then VERIFY returns FALSE. VERIFY 

then computes a data value 𝑑𝑖 via randomized hashing: 

𝑑𝑖 = 𝐻msg(𝑆𝐼𝐷, 𝑖, 𝑚, 𝑐𝑖), 

verifies the presumed authentication path Π𝑖,𝑁 from the leaf node corresponding to 𝑑𝑖 

to the ladder Λ𝑁′  as 

𝑏 ≔  CHECKAUTHPATHℬℛ𝒮(𝑆𝐼𝐷, 𝑖, 𝑁, 𝑁′, 𝑑𝑖 , Π𝑖,𝑁 , Λ𝑁′) 

and returns 𝑏. For completeness, VERIFY may also check that the final signature 

component 𝑑𝑖
∗, if present, matches 𝑑𝑖. 

5.7 Correctness and Unforgeability 

Correctness follows from the general path verification property of the binary rung 

strategy (where we set 𝑖 = 𝑁 = 𝑁′) and from the correctness of 𝒮.  

Unforgeability can be shown with the usual arguments for a Merkle tree signature 

scheme. In particular, for an adversary to produce a valid tuple 〈𝑚, τ, 𝜎〉 where the 

message 𝑚 has not been input to SIGN with tag τ, the adversary must do one of the 

following: (i) forge an underlying signature on a ladder under 𝒮; (ii) produce a second 

authentication path to a previously signed ladder; (iii) produce a second data value that 

maps to a leaf hash value in a previous node set; (iv) produce a second randomizer / 

message pair that maps to the data value in a previous signature; or (v) produce a second 

tag that maps to the same series identifier as a previously signed tag. If 𝒮 is unforgeable 
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then the first is infeasible, and if 𝐻int, 𝐻leaf, 𝐻msg and 𝐻SID are second-preimage-resistant 

(as appropriately defined) then the rest are infeasible. 

Because we include 𝑆𝐼𝐷 and the node indexes in the inputs to 𝒮. SIGN, 𝐻int and 𝐻leaf, 

and because a node set is “append only” (node hash values don’t change), an adversary 

can target only one node in one node set per hash function invocation, making MTL 

mode secure in a multi-user (and multi-tag) setting. A full security proof would need to 

consider the interactions of the MTL mode hash function instantiations with the 

underlying signature scheme (see Appendix A). 

6 Condensing and Reconstituting MTL Mode Signatures 

We now show how to condense and reconstitute the signatures produced in the previous 

section, following the framework in Section 4. 

Observe that the signature series for a given tag has enough information to 

reconstruct the full node set for the series without access to the messages. In particular, 

each signature includes the relevant leaf node, either as part of a ladder or as an explicit 

component. The leaf nodes can then be incorporated into the node set in the order in 

which they were computed to reconstruct the node set. 

The condensation scheme produces condensed signatures relative to the current 

node set and thus to the current ladder. The condensed signature includes the 

authentication path; the reference values include the ladder. Multiple condensed 

signatures can thus reference the same ladder, making the reference values reusable. 

6.1 Scheme State 

The condensation scheme state includes a seed 𝑆 and a set of signed series tuples 

〈𝑆𝐼𝐷, 𝑇, 𝑐̅, Λ̅, Σ𝒮〉 where 𝑆𝐼𝐷 is a series identifier, 𝑇 is the node set for the series, 𝑐̅ is the 

sequence of randomizers for the series, Λ̅ is the sequence of ladders , and Σ𝒮  is the 

sequence of underlying signatures. (Similar to Section 5, the operations below could 

also be defined so that the state is updated in place.) 

6.2 Initialization 

CONDENSEINIT𝑝𝑘() ⟶ 𝑠𝑡0 parses the public key 𝑝𝑘 as 

𝑝𝑘 ⟹ 〈𝑝𝑘𝒮 , 𝑆〉, 

then creates a new state 𝑠𝑡0 including the seed 𝑆 and an empty set of signed series 

tuples. 

6.3 Signature Incorporation 

ADDINITSIG𝑝𝑘(τ, σ, 𝑠𝑡) ⟶ 〈𝑖, 𝑠𝑡′〉 parses the signature σ as 
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σ ⟹ 〈𝑆𝐼𝐷, 𝑐𝑖 , 𝑖, 𝑖, 𝑖, Π𝑖,𝑖 , Λ𝑖 , σ𝑖
𝒮 , 𝑑𝑖〉. 

Let 〈𝑆𝐼𝐷, 𝑇, 𝑐̅, Λ̅, Σ𝒮〉 be the current signed series tuple for 𝑆𝐼𝐷. If the state 𝑠𝑡 doesn’t 

include a signed series tuple for 𝑆𝐼𝐷, then ADDINITSIG adds a new tuple 〈𝑆𝐼𝐷, 𝑇, 𝑐̅, Λ̅, Σ𝒮〉 
to 𝑠𝑡 where the node set 𝑇 is initialized as  

𝑇 ∶= INITNODESETℬℛ𝒮(𝑆𝐼𝐷) 

and where 𝑐̅ = Λ̅ = Σ𝒮 = ∅, where ∅ denotes an empty sequence ADDINITSIG then 

obtains the leaf node count as 

𝑁 ∶= GETLEAFNODECOUNTℬℛ𝒮(𝑇) 

and sets 𝑖 = 𝑁 + 1 (which should be the same as the 𝑖 in the signature). ADDINITSIG 

next incorporates the data value 𝑑𝑖 into the node set, obtaining an updated node set 𝑇′ 

and a ladder Λ𝑖
∗ (which should be the same as the Λ𝑖  in the signature) as 

〈𝑇′, Λ𝑖
∗〉 ∶= ADDLEAFNODEℬℛ𝒮(𝑇, 𝑑𝑖). 

ADDINITSIG then appends the randomizer 𝑐𝑖 to 𝑐̅, producing 𝑐̅′; appends the ladder Λ𝑖  to 

Λ̅, producing Λ̅′; and appends the underlying signature σ𝑖
𝒮  to Σ𝒮 , producing Σ𝒮′

. 

ADDINITSIG finally updates the state with the updated signed series tuple 

〈𝑆𝐼𝐷, 𝑇′, 𝑐̅′, Λ̅′, Σ𝒮′
〉 and returns the index 𝑖 and the updated state 𝑠𝑡′. 

6.4 Condensed Signature Production 

GETCONDENSEDSIG𝑝𝑘(τ, 𝑖, 𝑠𝑡) ⟶ 〈ς, χ, 𝑠𝑡′〉 computes a series identifier 𝑆𝐼𝐷 as 

𝑆𝐼𝐷 ≔ 𝐻SID(𝑆, τ), 

where 𝑆 is the seed in the state 𝑠𝑡. Let 〈𝑆𝐼𝐷, 𝑇, 𝑐̅, Λ̅, Σ𝒮〉 be the current signed series 

tuple for 𝑆𝐼𝐷. If 𝑠𝑡 doesn’t include a signed series tuple for 𝑆𝐼𝐷, then GETCONDENSEDSIG 

returns an error. GETCONDENSEDSIG then obtains the current leaf node count 𝑁 and 

computes an authentication path Π𝑖,𝑁 from the 𝑖th leaf node to the current ladder as 

𝑁 ∶= GETLEAFNODECOUNTℬℛ𝒮(𝑇); 

Π𝑖,𝑁 ∶= GETAUTHPATHℬℛ𝒮(𝑇, 𝑖). 

GETCONDENSEDSIG next formats the condensed signature ς as 

ς ⟸ 〈𝑆𝐼𝐷, 𝑐𝑖 , 𝑖, 𝑁, Π𝑖,𝑁〉 

where 𝑐𝑖 is the 𝑖th randomizer in the randomizer sequence 𝑐̅. GETCONDENSEDSIG sets the 

reference value handle χ = 𝑁 and returns ς, χ and the (unchanged) state 𝑠𝑡′ = 𝑠𝑡. 

6.5 Reference Value Production 

GETREFVAL𝑝𝑘(τ, χ, 𝑠𝑡) ⟶ 〈υ, 𝑠𝑡′〉 computes a series identifier 𝑆𝐼𝐷 as 
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𝑆𝐼𝐷 ≔ 𝐻SID(𝑆, τ), 

where 𝑆 is the seed in the state 𝑠𝑡. Let 〈𝑆𝐼𝐷, 𝑇, Λ̅, Σ𝒮〉 be the current signed series tuple 

for 𝑆𝐼𝐷. If 𝑠𝑡 doesn’t include a signed series tuple for 𝑆𝐼𝐷, then GETREFVAL returns an 

error. GETREFVAL then sets 𝑁′ = χ and formats the reference value υ as 

υ ⟸ 〈𝑁′, Λ𝑁′ , σ𝑁′
𝒮 〉 

where Λ𝑁′  is the 𝑁′
th

 ladder in the ladder sequence Λ̅ and σ𝑁′
𝒮  is the 𝑁′

th
underlying 

signature in the underlying signature sequence Σ𝒮 . The operation returns υ and the 

(unchanged) state 𝑠𝑡′ = 𝑠𝑡. 

6.6 Signature Reconstitution 

RECONSTSIG𝑝𝑘(τ, ς, υ) ⟶ σ′ parses the condensed signature ς and the reference value υ 

as 

ς ⟹ 〈𝑆𝐼𝐷, 𝑐𝑖 , 𝑖, 𝑁, Π𝑖,𝑁〉; 

υ ⟹ 〈𝑁′, Λ𝑁′ , σ𝑁′
𝒮 〉 

RECONSTSIG then formats the reconstituted signature σ′ as 

σ′ ⟸ 〈𝑆𝐼𝐷, 𝑐𝑖 , 𝑖, 𝑁, 𝑁′, Π𝑖,𝑁 , Λ𝑁′ , σ𝑁′
𝒮 , ∅〉. 

and returns σ′. (The data value is empty as it’s not needed for signature verification.) 

6.7 Correctness and Reference Value Compatibility  

We want to show that if a reconstituted signature σ′ =
〈𝑆𝐼𝐷, 𝑐𝑖 , 𝑖, 𝑁, 𝑁′, Π𝑖,𝑁 , Λ𝑁′ , σ𝑁′

𝒮 , ∅〉 for a message 𝑚𝑖 and a tag τ is obtained from 

RECONSTSIG following the condensation / reconstitution process, and 𝑖 ≤ 𝑁′ ≤ 𝑁, then 

〈𝑚𝑖 , τ, σ′〉 is valid. This follows from the general path verification property of the binary 

rung strategy in Section 2.6 and from the correctness of 𝒮. We rely on the fact that 

CHECKAUTHPATH can verify the authentication path Π𝑖,𝑁 using any ladder Λ𝑁′  where 

𝑖 ≤ 𝑁′ ≤ 𝑁. Any handle returned by GETCONDENSEDSIG after the 𝑖th signature is 

incorporated into the state leads to a ladder Λ𝑁′  that is compatible with the 

authentication path Π𝑖,𝑁. 

6.8 Error Checks 

We haven’t included many error checks in these operations because they’re not 

necessary for the formal definition of correctness, which assumes that inputs are 

provided correctly (the only question is whether the outputs are computed correctly). 

In practice, an implementation should check that inputs are in valid ranges, that series 
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identifiers are consistent with the tags, that authentication paths and ladders are 

consistent with data values, and possibly even that signatures can be verified.  

We’ve also left out optimizations such as caching the results of previous calls to 

GETCONDENSEDSIG and GETREFVAL in the condensation state, recomputing the ladders 

from the node set rather than storing them separately and removing older signatures and 

ladders from the state when they’re no longer likely to be requested because the 

condensation process has moved on to newer reference values. An implementation 

should take these optimizations into account as well. 

7 Practical Impact of MTL Mode 

We now show that MTL mode can reduce the size impact of the NIST PQC signature 

algorithms and other signature algorithms with large signature sizes in practice. 

For simplicity, we divide our operations into iterations, and we assume that prior to 

the first iteration, the signer has signed an initial message series with 𝑁0 messages all 

in association with the same tag 𝜏 and the verifier has received the reference value υ𝑁0
. 

We further assume that during each iteration, the signer signs α additional messages 

and the verifier requests condensed signatures on ρ messages, where the signatures of 

interest are randomly and independently chosen among the signatures generated up to 

and including that iteration. 

If the verifier is interested in a signature on message 𝑚𝑖′  and 𝑖′ ≤ 𝑁0, then because 

of MTL mode’s reference value compatibility, the verifier can produce a valid 

reconstituted signature from a newly received condensed signature corresponding to 

𝑚𝑖′  and the reference value υ𝑁0
. (We assume that the condensed signature was 

produced relative to the current message series, which has 𝑁 ≥  𝑁0 messages.) If 𝑖′ >
𝑁0, however, then the verifier will need to request a new reference value. 

7.1 Condensed Signatures Per Reference Value 

Under our operational assumptions, the probability that a verifier doesn’t need to 

request a new reference value during any of the first κ iterations is the product 

∏ (
𝑁0

𝑁0 + 𝑡𝛼
)

𝜌κ

𝑡=1

= ∏ (
1

1 + 𝑡𝛼/𝑁0

)
𝜌κ

𝑡=1

 . 

Assuming 𝑁0 is much larger than 𝜌 and 𝛼, we can approximate this probability as: 

∏ exp(− 𝑡αρ 𝑁0⁄ )

κ

𝑡=1

≈ exp(− 𝜅2αρ 2𝑁0⁄ ) . 

(The analysis is similar to the Birthday Paradox.) Accordingly, we can estimate the 

number of iterations until the probability reaches 1/2 as κ ≈  √2 ln 2 √𝑁0/αρ. It 
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follows that we can estimate the number of condensed signatures until the verifier will 

need to request a new reference value as 𝐾 = κρ ≈ √2 ln 2 √𝑁0ρ/α. 

7.2 Impact on Example PQC Signature Algorithms 

We now consider the reduction in signature overhead for five NIST PQC signature 

algorithms with example parameters given in Table 1. We selected the variants of 

CRYSTALS–Dilithium, FALCON and SPHINCS+ with the shortest signatures (see 

Tables 8 and 9 in [1]). We selected the recommended parameterization of XMSS^MT 

with the shortest signatures (see Table 5 in [20]) and opted for a comparable 

parameterization of HSS/LMS. 

For our analysis, we set 𝑁0 = 10,000, so our ladders include up to 14 hash values 

and our authentication paths include up to 13. We selected a security parameter of 128 

and hash size of 256 bits to match the underlying signature algorithms, and used the 

hash function instantiations in Appendix A. The sizes of the various MTL mode 

components in bytes can be computed as follows: 

• Initial signature σ = 〈𝑆𝐼𝐷, 𝑐𝑖 , 𝑖, 𝑖, 𝑖, Π𝑖,𝑖, Λ𝑖 , σ𝑖
𝒮 , 𝑑𝑖〉 is 16 + 32 + 4 + 4 + 4 + 13 ∙

32 + 14 ∙ 32 + 32 = 956 plus the size of the underlying signature σ𝑖
𝒮 . 

• Condensed signature ς = 〈𝑆𝐼𝐷, 𝑐𝑖 , 𝑖, 𝑁, Π𝑖,𝑁〉 is 16 + 32 + 4 + 4 + 13 ∙ 32 = 472. 

• Reference value υ = 〈𝑁′, Λ𝑁′ , σ𝑁′
𝒮 〉 is 4 + 14 ∙ 32 = 452 plus the size of σ𝑁′

𝒮 . 

Here, we’ve ignored the overhead of the tag τ and the reference value handle χ, which 

may be relatively small, as well as protocol overheads such as identifying algorithms 

and public keys that would also be needed in the underlying signature scheme. 

We define the effective signature size as  

𝜙(𝐾, 𝐾′) = |ς| +
𝐾′

𝐾
|υ|; 

where 𝐾 is the number of condensed signatures received, 𝐾′ is the number of reference 

values received, |ς| is the size in bits of a condensed signature and |υ| is the size in bits 

Signature Algorithm /  

Parameters 
Claimed Security 

Signature Size 

(bytes) 
Reference 

CRYSTALS–Dilithium Level 2 2420 [16] 

FALCON-512 Level 1 666 [17] 

SPHINCS+-128s Level 1 7856 [18] 

HSS/LMS (𝐿 =  2, 

LMS_SHA256_M32_H10, 

LMOTS_SHA256_N32_W8) 

n/a 2964 [19] 

XMSS^MT (XMSSMT-

SHA2_20/2_256) 
n/a 4963 [20] 

Table 1. NIST PQC signature algorithms with example parameters selected for analysis. 
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of a reference value. The effective signature size thus reflects the average number of 

bits that the signer sends per signature of interest. (We’ve assumed that |ς| and |υ| are 

constant and have ignored the presumably short handle χ and other protocol overheads.)  

Fig. 3 shows the effective signature size 𝜙(𝐾, 1) as a function of 𝐾 for the five 

examples. We’ve set 𝐾′ = 1, given that only the initial reference value has been 

received up until this point. The effective signature size becomes smaller than the 

underlying signature size when 𝐾 = 6 for FALCON and 𝐾 = 2 for the other examples. 

Fig. 4 shows the expected value of 𝐾 as a function of ρ for three values of α (10, 
100, 1000). Under nearly all of this range of operational assumptions, except when ρ 

is near its low end and α is at its high end, it is reasonable to expect that 𝐾 will be large 

enough that the effective signature size will be less than the underlying signature size 

for all five examples. We expect the ongoing effective signature size to be even less 

than our estimate because the signature series is expanding, thus increasing 𝐾. 

7.3 Further Considerations 

The example just given illustrates one practical scenario and one mode of operation. 

Other modes may also be helpful in this and other scenarios. A few suggestions follow: 

• Multiple message series. We can reduce the condensed signature size (and/or 

accommodate more messages) by arranging the messages into multiple series, each 

with a different tag; each individual series would potentially have a shorter 

maximum authentication path size than a combined series. Our analysis would need 

to account for the larger number of reference values that would have to be 

maintained. 

• Condensing underlying signatures. It may also be helpful to consider constructions 

where part of the authentication path is included in the reference value or where the 

underlying signature within the reference value is itself conveyed via a condensable 

signature scheme. As discussed in Appendix D, the three hash-based signature 

schemes all support a modest amount of condensation with certain parameter sets. 

• Storage optimizations. With MTL mode, a server that performs condensation 

operations potentially only needs to store for each message series, the current ladder, 

its underlying signature, the Merkle tree nodes and the per-message randomizers — 

an average of less than two nodes and one randomizer per message, plus the 

overhead of the ladder and the underlying signature. This can be a significant savings 

compared to storing an underlying signature for each message. 

• Batch signing and verification. When multiple messages are signed during an 

iteration, it is possible to “batch” the signing and reduce the number of underlying 

signatures by signing just a single updated ladder that spans all the newly signed 

messages. The initial signatures produced for these messages would then be relative 

to this single ladder rather than per-message ladders. The verifier can also effectively 

batch verification if the underlying signatures are verified as reference values are 

received. MTL mode may therefore improve effective signing and verification 

performance compared to the underlying signature algorithm. 
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• Hybrid signature schemes. MTL mode can help make hybrid signature schemes 

[21,22] more practical. In these schemes, the signer employs two or more signature 

schemes in parallel. If the underlying signature scheme itself is a hybrid scheme, 

then MTL mode can be applied to it directly. Alternatively, a variant MTL mode of 

operation could be defined in terms of multiple underlying signature schemes, where 

the evolving Merkle tree ladder is signed using each of the schemes. Either way, the 

additional signatures involved would only increase the size of the reference values, 

not the condensed signatures. 

• Caching condensed signatures may require special processing because the reference 

values held in a cache may be older than the one held by the verifier and the reference 

value compatibility property may not necessarily apply. Appendix F provides 

guidance on how to handle caching of condensed signatures in practice. 

8 Related Work 

The binary rung strategy appears under different names in other cryptographic 

constructions based on Merkle trees. Champine defines a binary numeral tree [23] with 

similar structure (the successive complete binary subtrees are called eigentrees) and 

also specifies additional operations on the tree such as a proof that leaf nodes are 

consecutively ordered. Champine also references related constructions including 

Certificate Transparency [9]. The earlier constructions also include Crosby and 

Wallach’s history trees [24] and Todd’s Merkle mountain ranges [25]. Bünz et al. [26] 

provide a formal definition and analysis of the latter. 

Cryptographic accumulators [27] have a similar structure to condensation and 

reconstitution in that a common accumulator value (viz, reference value) helps a 

Fig. 3. Effective signature size in bytes for five post-quantum algorithms with example 

parameters as a function of number of condensed signatures per reference value. signature 

rate. 
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verifier authenticate multiple elements, each of which has a witness relative to the 

accumulator value (viz, condensed signature). Reyzin and Yakoubov’s accumulator 

[28], applying a binary rung strategy-like construction, also achieves an “old-

accumulator compatibility” property comparable to general path verification for Merkle 

tree ladders. 

Verkle trees, proposed by Kuszmaul [29] and further elaborated by Buterin [30] 

replace the hash function that authenticates pairs of subtrees in a conventional Merkle 

tree construction with a vector commitment scheme [31] that authenticates a large 

number of subtrees. With the proposed construction, the size of the authentication path 

can be significantly reduced. However, the construction is based on pre-quantum 

techniques. Peikert, Pepin and Sharp [32] propose a post-quantum vector commitment 

scheme, but the size of its authentication path is on the same order as a conventional 

Merkle tree. Buterin [30] suggests Scalable Transparent ARguments of Knowledge 

(STARKs) [33] as a future post-quantum alternative for Verkle trees. 

Aggregate signatures convert multiple signatures into a shorter common value. In 

Boneh et al.’s original construction [34], a verifier can authenticate each signed 

message based only on the aggregate signature, provided that the verifier also has 

access to the other messages that were signed. Aggregate signatures can thus reduce the 

size impact of the signature scheme to which they’re applied when the verifier has a 

large number of messages to verify. Khaburzaniya et al. show how to aggregate hash-

based signatures using hash-based constructions [35]. Goyal and Vaikuntanathan [36] 

propose an improved scheme where the signatures can be made “locally verifiable” 

such that the verifier only needs access to specific messages of interest. However, their 

constructions are based on pre-quantum techniques (bilinear maps, RSA). 

Merkle tree constructions are applied to the problem in of authenticating an evolving 

or “streaming” data series by Li et al. [37]. Papamanthou et al. propose an authenticated 

Fig. 4. Expected number of condensed signatures per reference value as a function of request 

rate and new signature rate. 
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data structure for a streaming data series [38] that uses lattice-based cryptography rather 

than traditional hash functions. The construction provides additional flexibility and 

efficiency, as well as another potential path toward post-quantum cryptography. 

Stern et al. [14] define signature malleability in the limited sense we have adopted 

here. Chase et al. [39], building on work by Ahn et al. [40] and Attrapadung, Libert and 

Peters [41] broaden the definition to include the ability to produce a new signature on 

a message related in a specified way to a message that has already been signed. MTL 

mode only requires the narrower property. Decker and Wattenhofer [15] analyze claims 

that the bankruptcy of the MtGox exchange was a result of an attack involving signature 

malleability. They concluded that while signature malleability is a concern for the 

Bitcoin network, there is little evidence of such attacks prior to MtGox’s bankruptcy. 

Focusing on the Transport Layer Security protocol, Sikeridis, Kampanakis and 

Devetsikiotis anticipate that the TLS certificate chain and the server’s signature in the 

TLS handshake would become the “bottleneck of [post-quantum] authentication” from 

a size and processing perspective [42]. Their observations further motivate TLS 

protocol extensions where the server omits any certificates that the client already has. 

Sikeridis et al. [43] propose an efficient signaling technique for determining which 

intermediate certificates to omit or “suppress.” Suppression is complementary to 

condensation in that it reduces communication cost when the client already has a given 

certificate, whereas condensation helps when the client has a different certificate signed 

by the same certification authority. 

Kudinov et al. [44] propose several techniques for reducing the size of SPHINCS+ 

signatures, including an example with 20% savings. Baldimtsi et al. [45] describe a 

general framework for reducing the size of cryptographic outputs using brute-force 

“mining” techniques, estimating 5– 12% savings. Such techniques are complementary 

to condensation as they reduce the size of the underlying signature whereas 

condensation reduces the need to send full underlying signatures at all. 

9 Conclusion 

We have shown that MTL mode can help reduce signature size impact in practical 

application scenarios. We suggest this mode, or another mode with similar properties, 

can be a standard way to use NIST PQC signature algorithms in message series-signing 

applications where signature size impact is a concern. 

We plan to develop a more detailed, interoperable specification for MTL mode and 

its implementation choices (parameter values, functions 𝐻msg, 𝐻leaf, 𝐻int, 𝐻SID, 

signature and reference value formats, algorithm identifiers, etc.). We also intend to 

model the operational characteristics of MTL mode for various underlying signature 

schemes and operational assumptions. 

In addition, we plan to consider how MTL mode can be integrated into applications 

such as those involving web PKI, DNSSEC and certificate transparency. As an initial 

approach, we imagine a “semi-indirect” format where a signer conveys a condensed 

signature ς together with information on how the verifier may resolve the associated 

handle χ into a reference value, such as a uniform resource identifier (URI) or a domain 
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name where the reference value is stored, or from which it may be obtained. (Some 

information about how to resolve a handle or access condensation scheme operations 

may also be conveyed in the representation of the public key and/or in the format for 

an uncondensed signature.) 

NIST recently announced a call for additional signature candidates with shorter 

signature sizes and more cryptographic diversity than the current NIST PQC signature 

algorithms [46]. The call complements our suggestion of modes of operation. Indeed, 

even if a new algorithm with a much shorter signature size were introduced, MTL mode 

may still be helpful because it can be applied to any of the current algorithms, thereby 

maintaining diversity. 

Modes of operation have historically provided a way to realize additional capabilities 

from an underlying cryptographic technique, such as a block cipher in the case of 

NIST’s classic modes. We hope that modes of operation such as MTL mode can offer 

a way to achieve additional capabilities from post-quantum signature schemes as well. 
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Appendix A Hash Function Instantiations 

MTL mode uses four hash functions as noted in Sections 2 and 5: 

• 𝐻msg(𝑆𝐼𝐷, 𝑖, 𝑚, 𝑐) ⟶ 𝑑 maps a series identifier 𝑆𝐼𝐷, an index 𝑖, a message 𝑚 and a 

randomizer 𝑐 to a data value 𝑑; 

• 𝐻leaf(𝑆𝐼𝐷, 𝑖, 𝑑) ⟶ 𝑉 maps a series identifier 𝑆𝐼𝐷, an index 𝑖 and a data value 𝑑 to a 

2ℓ-bit leaf hash value 𝑉; 

• 𝐻int(𝑆𝐼𝐷, 𝐿, 𝑅, 𝑉left, 𝑉right) ⟶ 𝑉 maps a series identifier 𝑆𝐼𝐷, two indexes 𝐿 and 𝑅, 

and two 2ℓ-bit hash values 𝑉left and 𝑉right to a 2ℓ-bit hash value 𝑉; and 

• 𝐻SID(𝑆, τ) ⟶ 𝑆𝐼𝐷 maps a 2ℓ-bit seed and a tag to a series identifier 𝑆𝐼𝐷. 

We want the functions to be cryptographically separate from one another and also 

from any hash functions involved in the underlying signature scheme 𝒮. Because the 

example underlying signature schemes instantiate their own hash functions in different 

ways, we find it more practical to propose custom instantiations of the four hash 

functions for each scheme than to construct a generic set for use across all schemes. 

While we’ve adopted a concatenate-then-hash style for our instantiations, the flexibility 

gives the option to move to a different style, e.g., mask-then-hash, to align better with 

the security proofs for the underlying schemes. An implementation of MTL can use the 

same underlying hash function as the underlying signature scheme or a different hash 

function. 

In the following, let 𝐻 be a second-preimage-resistant hash function with a 2ℓ-bit 

output (e.g., SHA-256 [47] for the case ℓ = 128). We assume the 2ℓ-bit hash function 

output is represented as an octet string as per the hash function’s specification, e.g., 

Section 3 of [47]; ℎ𝐿𝑒𝑛 = ℓ/4 denotes the length of the octet string. We also adopt the 

following notation: [𝑥]𝑤 converts a non-negative integer 𝑥 to its 𝑤-octet unsigned 

representation, most significant octet first; 𝑥〈1: 𝑤〉 returns the first 𝑤 octets of an octet 

string 𝑥 (we start our numbering with octet 1); and 𝟶x denotes a hexadecimal 

representation. 

The next sections propose instantiations for the five underlying post-quantum 

signature schemes mentioned in the paper. While Section 7 focuses on specific 

parameter sets for analysis, the instantiations are more general and could be applied to 

other parameter sets as well. 

A.1 HSS/LMS Instantiations 

HSS/LMS defines its hash functions by formatting their inputs into input strings to the 

underlying hash function 𝐻; the values of the 21st and 22nd octets provide separation 

between the different uses (see Section 9.1 of [19]). We take a similar approach for the 

MTL mode’s uses and propose 

𝐻msg(𝑆𝐼𝐷, 𝑖, 𝑚, 𝑐) ∶= 𝐻(𝑆𝐼𝐷 ∥ [𝑖]4 ∥ 𝐷MTLM ∥ 𝑐 ∥ 𝑚); 

𝐻leaf(𝑆𝐼𝐷, 𝑖, 𝑑) ∶= 𝐻(𝑆𝐼𝐷 ∥ [𝑖]4 ∥ 𝐷MTLL ∥ 𝑑); 
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𝐻int(𝑆𝐼𝐷, 𝐿, 𝑅, 𝑉left, 𝑉right) ∶= 𝐻(𝑆𝐼𝐷 ∥ [𝐿]4 ∥ 𝐷MTLI ∥ [𝑅]4 ∥ 𝑉left ∥ 𝑉right); and 

𝐻SID(𝑆, τ) ∶= 𝐻( [0]16 ∥ τ ∥ 𝐷MTLS ∥ 𝑆)〈1: 16〉. 

To align with HSS/LMS’s formats, we place three constraints on our MTL mode 

implementation: 𝑆𝐼𝐷 must be a 16-octet string; 𝑖, 𝐿 and 𝑅 must be at most 232 − 1; and 

τ must be a four-octet string. We suggest 𝐷MTLM = 𝟶x𝟿0𝟿0, 𝐷MTLL = 𝟶x𝟿1𝟿1, 

𝐷MTLI = 𝟶x𝟿2𝟿2 and 𝐷MTLS = 𝟶x𝟿3𝟿3, contrasting with HSS/LMS’s identifiers 

which either start with 𝟶𝑥8 or have most significant bit 𝟶. In addition, so that the 

boundary between 𝑐 and 𝑚 is unambiguous, we require that the randomizer has a fixed 

length. We suggest 2ℓ bits, the same length as HSS/LMS’s own message randomizer 

(see Section 7.1 of [19]). We put the seed 𝑆 at the end of the input format for 𝐻SID so 

that an implementation can choose a length larger than 16 octets, which would be the 

limit if we put it at the beginning. If 𝑆 is 32 octets or shorter, then the input to the hash 

function in 𝐻𝑆𝐼𝐷 is at most 54 octets, which, after padding, fits within a single SHA-

256 compression function call. 𝐻leaf similarly takes a single call and 𝐻int takes two, 

matching their counterparts in HSS/LMS. 

With these instantiations, up to 232 − 1 messages can be associated with a given tag 

and up to 264 − 232 messages can be signed in MTL mode with a given HSS/LMS key 

pair. The latter limit is greater than the total number of messages supported by any of 

the recommended HSS/LMS parameter sets (i.e., 240; see Section 6.4 of [19]). 

A.2 Instantiations for Other Underlying Signature Schemes 

We now provide some suggestions on how one might instantiate the four hash functions 

when MTL mode is applied to the other underlying schemes. 

XMSS^MT. Like HSS/LMS, XMSS^MT separates its hash functions by 

distinguishing certain octets in the inputs to 𝐻; here, the first hLen octets vary (see 

Section 5.1 of [20]). Following this approach, we propose 

𝐻msg(𝑆𝐼𝐷, 𝑖, 𝑚, 𝑐) ∶= 𝐻(𝐷MTLM ∥ 𝑆𝐼𝐷 ∥ [𝑖]4 ∥ 𝑐 ∥ 𝑚); 

𝐻leaf(𝑆𝐼𝐷, 𝑖, 𝑑) ∶= 𝐻(𝐷MTLL ∥ 𝑆𝐼𝐷 ∥ [𝑖]4 ∥ 𝑑); 

𝐻int(𝑆𝐼𝐷, 𝐿, 𝑅, 𝑉left, 𝑉right) ∶= 𝐻( 𝐷MTLI ∥ 𝑆𝐼𝐷 ∥ [𝐿]4 ∥ [𝑅]4 ∥ 𝑉left ∥ 𝑉right); and 

𝐻SID(𝑆, τ) ∶= 𝐻(𝐷MTLS ∥ 𝑆 ∥ τ ∥)〈1: 16〉. 

We suggest 𝐷MTLM = [256]ℎ𝐿𝑒𝑛, 𝐷MTLL = [257]ℎ𝐿𝑒𝑛, 𝐷MTLI = [258]ℎ𝐿𝑒𝑛 and 

𝐷MTLS = [259]ℎ𝐿𝑒𝑛, contrasting with XMSS^MT’s identifiers which involve integers 

in the range 0–3. For consistency with our HSS/LMS instantiations and make to the 

formats unambiguous, we again constrain 𝑆𝐼𝐷 to be a 16-octet string; 𝑖, 𝐿 and 𝑅 to be 

at most 232 − 1; and τ to be a four-octet string. However, the instantiations could be 

redefined with different lengths. As above, with these constraints up to 264 − 232 

messages can be signed in MTL mode with a given XMSS^MT key pair, a limit that 

again is greater than the total number of messages supported by any of the 

recommended parameter sets (i.e., 260; see Section 5.4.1 of [20]). 

Note that we’ve maintained the concatenate-then-hash style of our HSS/LMS 

instantiations. We could instead follow XMSS^MT’s mask-then-hash style where 

bitmasks are derived from “address” components such as 𝑆𝐼𝐷, 𝐿 and 𝑅 and exclusive-
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ored with other inputs. We could also adjust the formatting to align with the boundaries 

of the hash function’s internal compression function, as XMSS^MT does. 

(Notational comment: the 𝐻msg we define here is the MTL mode function, not 

XMSS^MT’s H_msg; and the 𝐻 we use here is the underlying hash function, e.g., 

SHA-256, not XMSS^MT’s H.) 

SPHINCS+. A 32-octet address field separates different uses of the underlying hash 

function for this scheme (see Sections 7.2 and 2.7.3 of [18]). The first four octets are 

the layer address. SPHINCS+’s own layer addresses are in the range 0–6, so we again 

suggest the range 256–259 for the MTL mode functions. The other inputs would be 

formatted to align with SPHINCS+’s formats (e.g., padding the first field to the length 

of the compression function). We could also adopt a mask-then-hash style in addition 

to the concatenate-then-hash style as SPHINCS+ does in its “robust” variant. The 

instantiations could impose the same constraints as the other instantiations above, or 

they could move to larger sizes (e.g., eight-octet indexes and tag), given that SPHINCS+ 

is stateless and therefore doesn’t have a built-in limit on the number of messages that 

can be signed. 

FALCON’s only internal use of a hash function is for mapping a 320-bit salt and a 

message to a polynomial; the scheme uses SHAKE-256, where the input is the 

concatenation of the salt and the message (see Section 3.9.1 of [17]). FALCON’s own 

instantiation thus doesn’t directly provide a way to separate other uses of the underlying 

hash function, and it doesn’t support SHA-256 (it requires an extendable-output 

function (XOF)). Given that we don’t have an opportunity to separate from MTL 

mode’s uses from FALCON’s, any of the instantiations for the other schemes seems an 

equally reasonable choice. 

CRYSTALS–Dilithium uses a hash function (SHAKE-256 or SHAKE-128) for 

several purposes (see Section 5.3 of [16]). Like FALCON, it doesn’t directly provide a 

way to separate other uses from its own, nor does it support SHA-256. Again, any of 

the previous instantiations would seem to be equally reasonable. 

A.3 Hash Function Usage Outside Signature Schemes 

As evidenced above, two of the five example post-quantum signature schemes 

considered don’t provide a direct way to separate their uses of an underlying hash 

function from other uses outside the signature scheme.  

Given that a signature scheme will often be combined with other uses of the same 

hash function in an application, it would be worthwhile to have a common convention 

for using a hash function within a signature scheme that does provide for such 

separation. The convention would be another aspect of the ongoing improvements in 

multi-user / multi-target security [48], where a design goal is to limit each of the 

adversary’s hash function queries to a specific context. 
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Appendix B Binary Rung Strategy Operations 

We now give example pseudocode for the Merkle tree ladder operations in the binary 

rung strategy ℬℛ𝒮 described in Section 2.6, which is the basis for the MTL mode 

operations in Section 5. The pseudocode takes an iterative approach where the 

authentication paths and ladders are constructed with “for” loops, following the tree 

structure from leaf to ladder. An alternative would be a recursive approach where the 

components are constructed with recursive calls that proceed from ladder to leaf. Arrays 

are indexed starting with 1. 

Signature-generation-only optimizations. MTL mode’s signature generation 

operation calls ADDLEAFNODE to add a leaf node corresponding to a message being 

signed and to obtain a ladder spanning the leaf nodes added so far. The operation then 

calls GETAUTHPATH to obtain an authentication path from the newly added leaf node to 

the newly produced ladder. The mode’s condensation operations (Section 6) likewise 

call ADDLEAFNODE to add a leaf node corresponding to the signature being incorporated, 

but in contrast, call GETAUTHPATH to obtain an authentication path from an arbitrary 

leaf node to the current ladder. An implementation such as a hardware security module 

that is intended only to support signature generation, not condensation, therefore only 

needs to maintain enough hash values to produce the next ladder and the authentication 

path to it from the newly added leaf node. The pseudocode below covers the general 

case and requires storage for 𝑂(𝑁) hash values, where 𝑁 is the number of leaf nodes 

in the node set. The notes suggest optimizations for the signature-generation-only case 

and require storage for only 𝑂(log 𝑁) hash values. 

B.1 Node Set Representation 

A node set 𝑇 includes three parts: the series identifier, denoted 𝑇. 𝑆𝐼𝐷; the number of 

leaf nodes, denoted 𝑇. 𝑁; and zero or more node hash values, each denoted 𝑇. 𝑉[𝐿: 𝑅] 
where 𝐿 and 𝑅 is the pair of indexes that uniquely identifies the node.  

We assume a suitable data structure for mapping the index pair to the hash value. 

For instance, an implementation could maintain a lookup table (𝐿, 𝑅) → 𝑉, which 

would effectively serve as a sparse representation for an expanding 𝑇. 𝑁 × 𝑇. 𝑁 array. 

Alternatively, an implementation could map the index pair to a single index 𝑍 

corresponding to the order in which the value 𝑇. 𝑉[𝐿: 𝑅] is computed by ADDLEAFNODE, 

and keep the value at this index in a one-dimensional array.  

For the binary rung strategy, the (𝐿, 𝑅) → 𝑍 mapping could take the form 

𝑍 ∶= 2𝑅 − 𝐵(𝑅) − 𝜈𝐵(𝑅) + 𝑘(𝐿, 𝑅). 

where 𝐵(𝑅) is the number of ones bits in the binary representation of 𝑅, 𝜈𝐵(𝑅) is the 

index of the lowest ones bit in the representation (where bits are indexed starting at 0), 

and 𝑘(𝐿, 𝑅) is the unique integer such that 𝐿 = 𝑅 − 2𝑘 + 1 (if such an integer exists; 

otherwise (𝐿, 𝑅) is not a valid index pair for the binary rung strategy). 

To see this, consider that the hash values added during the 𝑅th call to ADDLEAFNODE, 

i.e., when 𝑖 = 𝑅 are those with right index 𝑅 and left index 𝐿 = 𝑅 − 2𝑘 + 1 for each 
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value of 𝑘 between 0 and 𝜈𝐵(𝑅); they’re added in increasing order of 𝑘. To determine 

the one-dimensional index 𝑍, then, we only need to know how many hash values are 

added up to and including the 𝑅th call. 

The index of the lowest ones bit in an the binary representation of an integer 𝑥, plus 

one, i.e., 𝜈𝐵(𝑥) + 1, is the ruler function of the integer 𝑥 [49]. The total number of hash 

values added up to and including the 𝑅th call, i.e., ∑ (𝜈𝐵(𝑥) + 1)𝑅
𝑥=1 , thus equals the 

sequential sum of the ruler function up to 𝑅, which is 2𝑅 − 𝐵(𝑅) [50]. It follows that 

the overall order in which the hash value 𝑇. 𝑉[𝐿: 𝑅] is added is 2𝑅 − 𝐵(𝑅) − 𝜈𝐵(𝑅) +
𝑘(𝐿, 𝑅). This order can then be used as an index to a one-dimensional array for storing 

and retrieving 𝑇. 𝑉[𝐿: 𝑅]. 
Another way to see the result is to consider that the ladder after the 𝑅th call will 

include 𝐵(𝑅) complete, adjacent binary trees spanning the 𝑅 leaf nodes. A complete 

binary tree has one fewer internal nodes than leaf nodes, so collectively, the 𝐵(𝑅) trees 

have 𝑅 − 𝐵(𝑅) internal nodes and 2𝑅 − 𝐵(𝑅) total nodes. These are the only nodes 

whose hash values will have been added up to and including this call. A node set with 

𝑁 leaf nodes can therefore be represented with 2𝑁 − 𝐵(𝑁) ≤ 2𝑁 − 1 hash values. 

Signature-generation-only case. If GETAUTHPATH and ADDLEAFNODE will be used 

only for signature generation, then the node set representation only needs to maintain 

enough to produce the next ladder and authentication path. In this case, the node set has 

four parts: 𝑇. 𝑆𝐼𝐷; 𝑇. 𝑁; the current ladder, denoted 𝑇. Λ; and the current authentication 

path, denoted 𝑇. Π. In this case, the node set representation would include 𝐵(𝑁) +
𝜈𝐵(𝑁) hash values (corresponding to the number of hash values in the ladder and in the 

authentication path); the sum is at most the number of bits in the binary representation 

of 𝑁. It follows that the storage requirement in the signature-only case is at most 

⌊𝑙𝑜𝑔2𝑁⌋ + 1 hash values. 

B.2 Node Set Initialization 

INITNODESETℬℛ𝒮(𝑆𝐼𝐷) ⟶ 𝑇0 returns a new node set 𝑇0 associated with the series 

identifier 𝑆𝐼𝐷. 

1. Create a new, empty node set 𝑇0. 

2. Set 𝑇0. 𝑆𝐼𝐷 ∶= 𝑆𝐼𝐷 and 𝑇0. 𝑁 ∶= 0. The initial node set will include no node hash 

values. 

3. Return 𝑇0. 

Signature-generation-only case. Step 2 also sets 𝑇. Λ and 𝑇. Π to empty arrays. 

B.3 Leaf Node Count 

GETLEAFNODECOUNTℬℛ𝒮(𝑇) ⟶ 𝑁 returns the number of leaf nodes in the node set 𝑇. 

1. Set 𝑁 ∶= 𝑇. 𝑁. 

2. Return 𝑁. 
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B.4 Leaf Node Addition 

ADDLEAFNODEℬℛ𝒮(𝑇, 𝑑) ⟶ 〈𝑇′, Λ〉 adds a leaf node corresponding to the data value 𝑑 

to the node set 𝑇, assigning the next leaf node index to it, and returns the updated node 

set 𝑇′ and the next ladder Λ spanning the leaf nodes in the node set, following the binary 

rung strategy. 

1. Set 𝑆𝐼𝐷 ∶= 𝑇. 𝑆𝐼𝐷. 

2. Set 𝑖 ∶= 𝑇. 𝑁 + 1. 

3. Set 𝑇′: =  𝑇. 

4. Set 𝑇′. 𝑁 ∶= 𝑖. 
5. Compute 𝑉 ∶= 𝐻leaf(𝑆𝐼𝐷, 𝑖, 𝑑). 

6. Set 𝑇′. 𝑉[𝑖: 𝑖] ∶= 𝑉, adding the new leaf node to the node set. 

7. Write 𝑖 = ∑ 2𝜈𝑗𝐵
𝑗=1  where the 𝜈𝑗 are the indexes of the ones bits in the binary 

representation of 𝑖 from highest to lowest. 

8. For 𝑘 from 1 to 𝜈𝐵 do: 

a. Compute 𝑉 ∶= 𝐻int(𝑆𝐼𝐷, 𝑖 − 2𝑘 + 1, 𝑖, 𝑇′. 𝑉[𝑖 − 2𝑘 + 1: 𝑖 − 2𝑘−1], 𝑉). 

b. Set 𝑇′. 𝑉[𝑖 − 2𝑘 + 1: 𝑖] ∶= 𝑉, adding the new internal node to the node set. 

9. Create a new empty array Λ. 

10. Set 𝑅 ∶= 0. 

11. For 𝑗 from 1 to 𝐵 do: 

a. Set 𝐿 ∶= 𝑅 + 1 and 𝑅 ∶= 𝑅 + 2𝜈𝑗. 

b. Set Λ[𝑗] ∶= 𝑇′. 𝑉[𝐿: 𝑅], adding this rung hash value to the ladder. 

12. Return 𝑇′ and Λ, which will be an array of 𝐵 hash values. 

Step 8 computes the new ladder rung [𝑖 − 2𝜈𝐵 + 1: 𝑖] from leaf to ladder. As also 

noted in Appendix C, Step 8 computes this rung from the last 𝜈𝐵 rungs of Λ𝑁−1, so the 

rung is their ancestor. Step 11 then assembles the rungs into the ladder. 

Signature-generation-only case. Instead of retrieving 𝑇′. 𝑉[𝑖 − 2𝑘 + 1: 𝑖 − 2𝑘−1] 
from the set of node hash values during the call to 𝐻int, Step 8a selects the rung 

𝑇. Λ[𝐵 + 𝜈𝐵 − 𝑘] from the input node set. Instead of storing the new hash value, Step 

8b copies the selected rung to the authentication path in the new node set by setting 

𝑇′. Π[𝑘] ∶= 𝑇. Λ[𝐵 + 𝜈𝐵 − 𝑘]. Similarly, instead of retrieving 𝑇′. 𝑉[𝐿: 𝑅] from the set 

of node hash values, Step 11b sets Λ[𝑗] ∶= 𝑇. Λ[𝑗] (if 𝑗 < 𝐵) or Λ[𝑗] ∶= 𝑉 (if 𝑗 = 𝐵). 

The step then copies the selected rung to the ladder in the new node set by setting 

𝑇′. Λ[𝑗] ∶= Λ[𝑗]. Step 11a is omitted. 

Updating in place. ADDLEAFNODE can be changed to update the node set in place 

simply by removing the 𝑇′: =  𝑇 step from the pseudocode and operating on the input 

𝑇 directly thereafter (and not returning 𝑇′). 

B.5 Authentication Path Construction 

GETAUTHPATHℬℛ𝒮(𝑇, 𝑖) ⟶ Π returns the authentication path Π from the 𝑖th leaf node 

in the node set 𝑇 to its associated rung in the current ladder following the binary rung 

strategy. 
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1. Set 𝑆𝐼𝐷 ∶= 𝑇. 𝑆𝐼𝐷. 

2. Set 𝑁 ∶= 𝑇. 𝑁. 

3. If 𝑖 < 1 or 𝑖 > 𝑁 then return “index out of range.” 

4. Write 𝑁 = ∑ 2𝜈𝑗𝐵
𝑗=1  where the 𝜈𝑗 are the indexes of the ones bits in the binary 

representation of 𝑁 from highest to lowest. 

5. Set 𝑅 ∶= 0. 

6. For 𝑗 from 1 to 𝐵 do: 

a. Set 𝐿 ∶= 𝑅 + 1 and 𝑅 ∶= 𝑅 + 2𝜈𝑗. 

b. If 𝑖 ≤ 𝑅 then break. 

7. Set Δ ∶=  𝑖 –  𝐿. 

8. Write Δ = ∑ 𝛿𝑘2𝑘−1𝜈𝑗

𝑘=1  where the 𝛿𝑘 are the bits of the binary representation of Δ 

from lowest to highest. 

9. Create a new empty array Π. 

10. For 𝑘 from 1 to 𝜈𝑗 do: 

a. If 𝛿𝑘 = 0 then set Π[𝑘] ∶= 𝑇. 𝑉[𝐿 + Δ + 2𝑘−1: 𝐿 + Δ + 2𝑘 − 1]. 
b. Else (𝛿𝑘 = 1) set Π[𝑘] ∶= 𝑇. 𝑉[𝐿 + Δ − 2𝑘−1: 𝐿 + Δ − 1] and Δ ∶= Δ − 2𝑘−1. 

11. Return Π, which will be an array of 𝜈𝑗 hash values. 

Step 6 determines which rung of the ladder spans the leaf node, and Step 10 then 

constructs the authentication path from leaf to ladder, based on the binary 

representation of Δ, the relative position of the leaf node within the ladder rung span. 

(Recall that each rung spans a complete binary tree.) 

Signature-generation-only case: Step 3 instead checks if 𝑖 ≠ 𝑁, given that this case 

assumes that the authentication path is from the newly added leaf node to the newly 

produced ladder only. Steps 5–10 are replaced by a loop that copies 𝑇. Π[𝑘] to Π[𝑘] for 

𝑘 from 1 to 𝜈𝐵. (In Step 11, we have 𝜈𝑗 = 𝜈𝐵.) 

B.6 Authentication Path Verification 

CHECKAUTHPATHℬℛ𝒮(𝑆𝐼𝐷, 𝑖, 𝑁, 𝑁′, 𝑑, Π, Λ) ⟶ 𝑏 verifies that the 𝑖th leaf node of a node 

set corresponds to the data value 𝑑 using an authentication path Π and a ladder Λ 

following the binary rung strategy. 

1. If 𝑖 < 1 or 𝑖 > 𝑁′ or 𝑁′ > 𝑁 then return “index out of range.” 

2. Write 𝑁′ = ∑ 2𝜈𝑗𝐵
𝑗=1  where 𝜈1, … , 𝜈𝐵 are the indexes of the ones bits in the binary 

representation of 𝑁′ from highest to lowest. 

3. If Λ is an array of fewer than 𝐵 hash values then return “ladder too short.” 

4. Set 𝑅 ∶= 0. 

5. For 𝑗 from 1 to 𝐵 do: 

a. Set 𝐿 ∶= 𝑅 + 1 and 𝑅 ∶= 𝑅 + 2𝜈𝑗. 

b. If 𝑖 ≤ 𝑅 then break. 

6. If Π is an array of fewer than 𝜈𝑗 hash values then return “authentication path too 

short.” 

7. Set Δ ∶=  𝑖 –  𝐿. 
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8. Write Δ = ∑ 𝛿𝑘2𝑘−1𝜈𝑗

𝑘=1
 where the 𝛿𝑘 are the bits of the binary representation of Δ 

from lowest to highest. 

9. Compute 𝑉 ∶= 𝐻leaf(𝑆𝐼𝐷, 𝑖, 𝑑). 

10. For 𝑘 from 1 to 𝜈𝑗 do: 

a. If 𝛿𝑘 = 0 then compute 𝑉 ∶= 𝐻int(𝑆𝐼𝐷, 𝐿 + Δ, 𝐿 + Δ + 2𝑘 − 1, 𝑉, Π[𝑘]). 

b. Else (𝛿𝑘 = 1) compute 𝑉 ∶= 𝐻int(𝑆𝐼𝐷, 𝐿 + Δ − 2𝑘−1, 𝐿 + Δ + 2𝑘−1 −
1, Π[𝑘], 𝑉) and set Δ ∶= Δ − 2𝑘−1. 

11. If 𝑉 == Λ[𝑗] then return TRUE else return FALSE. 

Step 5, similar to the previous operation, selects the rung of the ladder to match. The 

rung may be reached by just a portion of the authentication path, given that the 

operation allows 𝑁′ and 𝑁 to be different. Step 10 then evaluates the authentication 

path from leaf to ladder based on the binary representation of Δ, similar to the previous 

operation. 

Appendix C Proof of General Path Verification for Binary Rung 

Strategy 

Claim. For all positive integers 𝑖, 𝑁, 𝑁′ where 𝑖 ≤ 𝑁′ ≤ 𝑁, if 𝑑𝑖 is the data value 

corresponding to the 𝑖th leaf node in a node set assembled using the binary rung 

strategy, Π𝑖,𝑁 is the authentication path from the 𝑖th leaf node to its associated rung in 

the 𝑁th ladder and Λ𝑁′  is the 𝑁′th
 ladder, then 

CHECKAUTHPATHℬℛ𝒮(𝑆𝐼𝐷, 𝑖, 𝑁, 𝑁′, 𝑑𝑖 , Π𝑖,𝑁 , Λ𝑁′) = TRUE. 

Proof. If 𝑁 = 1 then the result is trivial. Suppose 𝑁 > 1 and consider the binary 

representation of 𝑁 − 1. We write 

𝑁 − 1 = ∑ 2𝜈𝑗𝐵
𝑗=1 − 1 = ∑ 2𝜈𝑗𝐵−1

𝑗=1 + (2𝜈𝐵 − 1) = ∑ 2𝜈𝑗𝐵−1
𝑗=1 + ∑ 2𝑘−1𝜈𝐵

𝑘=1 . 

The first 𝐵 − 1 ones bits of 𝑁 are the same as the first 𝐵 − 1 ones bits of 𝑁 − 1, while 

the last ones bit of 𝑁 is replaced by 𝜈𝐵 consecutive lower-order ones bits of 𝑁 − 1. The 

first 𝐵 − 1 rungs in Λ𝑁 are thus the same as the corresponding rungs in Λ𝑁−1 and the 

last rung in Λ𝑁 is an ancestor of each of the last 𝜈𝐵 rungs in Λ𝑁−1 (compare Step 10 in 

Appendix B. 5 where 𝜈𝑗 = 𝜈𝐵). Each of the rungs in Λ𝑁−1 is therefore either the same 

as, or a descendant of, one of the rungs in Λ𝑁. By induction, the same holds for each of 

the rungs in Λ𝑁′  where 1 ≤ 𝑁′ ≤ 𝑁. 

The evaluation of the authentication path from the 𝑖th leaf node to its associated rung 

in ladder Λ𝑁 recomputes the rung as well as every descendant of the rung whose span 

includes 𝑖. Because the rungs in each ladder have non-overlapping sets of descendants, 

it follows that the rung in Λ𝑁′  that spans the 𝑖th leaf node is either the same as or a 

descendant of the rung in Λ𝑁that spans the 𝑖th leaf node. CHECKAUTHPATHℬℛ𝒮can 

therefore verify Π𝑖,𝑁 using Λ𝑁′ . ∎ 
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Appendix D Condensing and Reconstituting Hash-Based 

Signatures 

The three hash-based signature schemes among the NIST PQC signature algorithms, 

with certain parameter sets, all support a modest amount of condensation. (To fit our 

framework, we re-cast each scheme as a tagged signature scheme that allows only a 

null tag.)  

We consider again the three example parameterizations given in Section 7: 

• SPHINCS+-128s 

• HSS/LMS with parameters 𝐿 = 2, LMS_SHA256_M32_H10 and 

LMOTS_SHA256_N32_W8 

• XMSS^MT with parameter XMSSMT-SHA2_20/2_256 

All three schemes involve multiple layers of Merkle trees; their signatures include 

multiple sets of one-time signatures and authentication paths. Condensation can be 

achieved by treating the one-time signature and authentication path for the top-layer 

tree as a reference value and the rest of each signature as a condensed signature. The 

SPHINCS+ example has seven layers of trees, so its condensed signature size will be 

roughly 86% of its initial (i.e., uncondensed) signature size. The HSS/LMS and 

XMSS^MT examples have two layers; their condensation ratio will be roughly 50%. 

The handle returned by GETCONDENSEDSIG resolves to the top part of the signature, 

which is common to all signatures involving a particular leaf of the top-layer tree. A 

verifier only needs to obtain a new reference value when a new top-level leaf is 

encountered. 

In the HSS/LMS and XMSS^MT examples, the top-layer tree has 210 = 1024 leaf 

nodes. As a result, the number of reference values needed is at most 1024 regardless 

of 𝐾, leading to an upper bound on the effective signature size of 

𝜙(𝐾, 𝐾′) ≤  |ς| +
1024

𝐾
|υ|. 

If 𝐾 is more than about 1024 × 2 = 2048 for two-layer HSS/LMS or XMSS^MT, the 

effective signature size will be lower than the initial signature size and thereafter will 

continue to decrease, converging to the 50% ratio above. In the SPHINCS+ example, 

the top-layer tree has 29 = 512 leaf nodes and the transition point is around 512 × 7 =
3584. 

The actual transition points for all three examples will be lower in practice because 

not every top-level leaf will necessarily be involved in the first 𝐾 signatures, especially 

for HSS/LMS and XMSS^MT which exhaust each top-level leaf node before moving 

to the next one. If we want to reduce further, faster, and for non-hash-based signatures 

schemes, however, we need a different approach such as MTL mode. 
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Appendix E Stateful Reconstitution Operations 

Just as the condensation operations are stateful, we could similarly restructure 

RECONSTSIG so that it maintains state between operations, e.g., with operations such as 

the following: 

• RECONSTINIT𝑝𝑘() ⟶ 𝑠𝑡0 returns a new scheme state 𝑠𝑡0. 

• ADDCONDENSEDSIG𝑝𝑘(τ, ς, χ, 𝑠𝑡) ⟶ 〈𝑖, 𝑏, 𝑠𝑡′〉 incorporates a condensed signature ς 

associated with the tag τ and the handle χ into the state 𝑠𝑡 and returns the signature 

index 𝑖 for this signature (relative to τ), a flag 𝑏 indicating whether a new reference 

value is needed and the updated state 𝑠𝑡′. 

• ADDREFVAL𝑝𝑘(τ, χ, υ, 𝑠𝑡) ⟶ 𝑠𝑡′ incorporates a reference value υ associated with the 

tag τ and a handle χ into the state 𝑠𝑡 and returns the updated state 𝑠𝑡′. 

• GETCONDENSEDSIG𝑝𝑘(τ, 𝑖, 𝑠𝑡) ⟶ 〈σ′, 𝑠𝑡′〉 produces a reconstituted version σ′ of the 

𝑖th signature associated with the tag τ under the state 𝑠𝑡 and returns σ′ and the 

updated state 𝑠𝑡′. 

By returning the flag, ADDCONDENSEDSIG automates the reference value 

compatibility checks mentioned above. If the flag is TRUE, then the verifier requests a 

new reference value and incorporates it with ADDREFVAL. Otherwise, the verifier 

proceeds directly to GETRECONSTSIG. With the stateless version of RECONSTSIG, the 

application would need to do the reference value compatibility check itself. While this 

is straightforward in a mode based on the binary rung strategy (just compare 𝑖 ≤ 𝑁′ ≤
𝑁), the check may be more complex in general (e.g., when directly condensing and 

reconstituting hash-based signatures as proposed in Appendix D). 

Appendix F Caching Condensed Signatures 

In Section 7, we assumed that each condensed signature ς received by the verifier was 

produced relative to a reference value υ𝑁 that was newer than the reference value υ𝑁0
 

held by the verifier, i.e., 𝑁0 ≤ 𝑁. The assumption was the basis for our use of the 

reference value compatibility property of the binary rung strategy (Section 4.3). It 

enabled the verifier to reconstitute a signature provided that the message index 𝑖 
satisfied 𝑖 ≤ 𝑁0. As a result, the verifier only needed to request a new reference value 

when 𝑖 > 𝑁0. 

Our assumption may be realistic when the verifier interacts directly with a signer or 

intermediary that performs condensation operations. However, it may not be realistic 

when the verifier interacts with a responder that merely holds condensed signatures 

obtained from other parties. Indeed, a condensed signature held by such a responder 

will be associated with a reference value υ𝑁 that was available when the responder itself 

obtained the condensed signature. That reference value may be older than the one held 

by the verifier, i.e., we may have 𝑁 < 𝑁0. If so, the reference value compatibility 

property won’t necessarily apply and special processing may be required, potentially 

increasing the effective signature size and diminishing the benefit of MTL mode. 
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We refer to a responder that holds but does not produce condensed signatures as a 

condensed signature caching server. Two examples of such a responder include: 

• A recursive DNS server that requests and holds signed resource record sets (RRsets) 

on behalf of its clients. The condensed signatures on the resource record sets would 

previously have been produced by an authoritative DNS server or its provisioning 

system (or by an intermediary that performs condensation operations). A DNS RRset 

has a time to live (TTL) value indicating how long the RRset should be held before 

requesting a new version from the authoritative name server. The reference value 

associated with a condensed signature returned by the recursive DNS server will thus 

generally be at most as old as the authoritative name server’s maximum TTL, e.g., 

on the order of a day. The validity period for the signature can be much longer, on 

the order of weeks or months. The new signed version of the RRset can thus include 

a new condensed version of the same initial signature of the RRset (if the RRset 

hasn’t changed). 

• A web server that holds certificates for the websites it serves and provides these 

certificates to its clients. Here, the condensed signatures on the certificates would 

previously have been produced by a certification authority (or, again, by an 

intermediary). A web PKI certificate doesn’t have an independent TTL, however; 

the certificate is simply held until the end of its validity period. Thus, the reference 

value associated with a condensed signature returned by a web server could be as 

old as the certificate itself, e.g., on the order of a year. 

Given the importance of caching for application performance, it’s worth considering 

how to mitigate the effect of caching on effective signature size for clients of these 

servers, e.g., for an browser or other application that validates a condensed signature 

on a resource record set or certificate. For this purpose we need to look more closely at 

how a verifier processes condensed signatures. 

F.1 Processing Condensed Signatures with Caching 

As a starting point, let’s review a typical approach by which a verifier may process a 

condensed signature in MTL mode, taking caching into account.  

Expanding on Section 7, we assume that the verifier already holds a set of reference 

values υ
𝑁0

(1) , υ
𝑁0

(2), …, where the reference value υ
𝑁0

(𝑏) includes the 𝑁0
(𝑏)

th Merkle tree 

ladder and an underlying signature on the ladder. The processing may involve the 

following steps. (We omit the public key 𝑝𝑘 and the tag τ for simplicity.) 

1. The verifier obtains a condensed signature ς on a message 𝑚𝑖 with index 𝑖, and 

a reference value handle χ. The condensed signature ς includes an authentication 

path Π𝑖,𝑁 relative to the 𝑁th ladder where 1 ≤ 𝑖 ≤ 𝑁; the reference value handle 

χ = 𝑁. 

2. If there exists a 𝑏 such that 𝑖 ≤ 𝑁0
(𝑏)

≤ 𝑁, then the verifier reconstitutes a 

signature from ς and υ
𝑁0

(𝑏) . Note that there can be more than 𝑏 for which this 

condition holds. 
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3. If there doesn’t exist a 𝑏 such that 𝑖 ≤ 𝑁0
(𝑏)

, then the verifier requests the 

reference value υ𝑁 and reconstitutes a signature from ς and υ𝑁. The verifier then 

adds the reference value υ𝑁 to its set of reference values. 

4. If there exists a 𝑏 such that (a) 𝑁 < 𝑁0
(𝑏)

 and (b) 𝑖, 𝑁 and 𝑁0
(𝑏)

 are compatible 

(in the sense defined below), then the verifier reconstitutes a signature from ς 

and υ
𝑁0

(𝑏). 

5. If there doesn’t exist a 𝑏 such that (a) and (b) in Step 4 hold (the only remaining 

possibility), then the verifier performs special processing as discussed below. 

Note that if 𝑁0
(𝑏)

≤ 𝑁 for all 𝑏 (as we effectively assumed in Section 7), then only 

Steps 1–3 are needed. Steps 4 and 5 occur as a result of the 𝑁 < 𝑁0 case associated 

with caching condensed signatures.  

We say that 𝑖, 𝑁 and 𝑁′ are compatible in a rung strategy if the authentication path 

from the 𝑖th leaf node to its associated rung in the 𝑁th ladder can be verified using the 

𝑁′th
 ladder. Appendix C shows that 𝑖, 𝑁 and 𝑁′ are compatible if 𝑖 ≤ 𝑁′ ≤ 𝑁; this is 

the basis for reconstitution in Step 2 above. We can also show that 𝑖, 𝑁 and 𝑁′ are 

compatible if 𝑖 ≤ 𝑁 < 𝑁′ and 𝑁′ < 𝑅 + 2𝑣 where 𝑅 = 2𝑣 is the (unique) integer 

between 𝑖 and 𝑁 that is divisible by the largest power of 2; this is the basis for Step 4. 

(To see, this consider that 𝑅 is then also the unique integer with this property between 

𝑖 and 𝑁′ and that [𝑅 − 2𝑣 + 1: 𝑅] is then the rung associated with both Π𝑖,𝑁 and Π𝑖,𝑁′ 

— so the authentication paths are the same.) Special processing is therefore required 

when 𝑁′ ≥ 𝑅 + 2𝑣. 

The effective signature size for conveying a signature following Steps 1–5 includes 

the condensed signature size from Step 1, the overhead of the occasional reference 

value in Step 3, and the overhead of the occasional special processing in Step 5. We 

can mitigate the effect of caching on effective signature size by reducing the impact of 

special processing and/or the likelihood that special processing is performed. We may 

also be able to mitigate the effect of caching by changing to a different rung strategy. 

The next three subsections go into further detail on each of these mitigations. 

F.2 Reducing Impact of Special Processing 

A straightforward way to implement the special processing in Step 5 is for the verifier 

to request the reference value υ𝑁 and then reconstitute a signature from ς and υ𝑁. 

However, this approach would involve the overhead of sending a full underlying 

signature (and a ladder) every time special processing is performed. 

A more efficient approach is for the verifier instead to request the current version ς′ 
of the condensed signature on 𝑚𝑖, and then reconstitute a signature from ς′ and υ

𝑁0
(𝑏) , 

where υ
𝑁0

(𝑏) is any one of its reference values. The signer or another intermediary could 

fulfill requests for the current version of the condensed signature by providing an 

externally accessible interface to GETCONDENSEDSIG in the same way that it fulfills 

requests for reference values via an interface to GETREFVAL. This approach would 

involve only the overhead of sending a condensed signature.  
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An even more efficient approach is for the verifier to request the difference between 

ς and the current version of the condensed signature. We suggest the following 

additional condensation scheme operations for this purpose: 

• GETEXTVAL𝑝𝑘(τ, 𝑖, χ, 𝑠𝑡) ⟶ 〈β, 𝑠𝑡′〉 produces an extension value β that can be used 

to transform a condensed signature associated with the tag τ and the handle χ to a 

condensed signature relative to the current reference value. It returns 𝛽 and the 

updated state 𝑠𝑡′. 

• EXTENDCONDENSEDSIG𝑝𝑘(τ, χ, ς, β) ⟶ ς′ transforms a condensed signature ς 

associated with the tag τ and the handle χ into a condensed signature ς′ relative to τ 

and the reference value associated with the extension value 𝛽, and returns ς′. 

In this approach, the verifier would request the extension value β for τ, 𝑖 and χ, then 

call EXTENDCONDENSEDSIG to obtain a condensed signature ς′ relative to the current 

reference value. The verifier could then reconstitute a signature from ς′ and any of its 

reference values. As above, the signer or another intermediary would provide an 

external interface to GETEXTVAL. This approach would involve only the overhead of the 

extension value, which in MTL mode would include the missing sibling nodes in the 

authentication path. The combined overhead of ς and β would thus be comparable to 

the current condensed signature ς′.  

F.3 Reducing Likelihood of Special Processing 

Intuitively, the reason that special processing may be required is that a condensed 

signature received from a caching server is “too short” relative to the verifier’s 

reference values — it’s missing one or more sibling nodes. Therefore, a natural way to 

reduce the need for special processing is to refresh each condensed signature 

periodically to add the missing sibling hash nodes. Following the discussion above, 

assume that a condensed signature for index 𝑖 is first added to the cache when 𝑁 is the 

current number of leaf nodes, and that the condensed signature’s authentication path is 

associated with the rung [𝑅 − 2𝑣 + 1: 𝑅] in the current reference value’s ladder. A new 

sibling node will then need to be added whenever the number of leaf nodes reaches a 

multiple of a larger power of 2, i.e., at 𝑅 + γ1, 𝑅 + γ2, 𝑅 + γ3, etc., where 

γ𝑗 = {
γ0 + 2𝜈𝐵−𝑗+1 if 1 ≤ 𝑗 ≤ 𝐵;

2⌊log2 𝑅⌋+𝑗−𝐵 if 𝑗 > 𝐵,
 

with γ0 = 0 and where 𝜈1, … , 𝜈𝐵  are the indexes of the ones bits in the binary 

representation of 2⌊log2 𝑅⌋+1 − 𝑅 from highest to lowest: 

2⌊log2 𝑅⌋+1 − 𝑅 = ∑ 2𝜈𝑗

𝐵

𝑗=1

 . 

Because 2𝑣 is the largest power of 2 dividing 𝑅, we have γ1 = 2𝜈𝐵 = 2𝜈 . 
The TTL on a cache entry will automatically lead to a refresh. However, a sibling 

node may already need to be added before a typical TTL is reached. Consequently, it 

may be helpful to set the TTL on the condensed signature in proportion to the time 

expected until the next sibling node would be added. Because the rate at which leaf 
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nodes are added may be hard to predict, a time-based approach for refreshing condensed 

signatures may provide inconsistent results as a mitigation for the likelihood of special 

processing. An approach based on the number of leaf nodes may be more effective. 

We suggest the following tactic: When a responder receives a condensed signature 

relative to reference value newer than any others it has encountered, say the 𝑁′th
 

reference value, or otherwise learns that there are 𝑁′ (or more) leaf nodes, it invalidates 

any condensed signature in the cache that is based on an authentication path Π𝑖,𝑁 where 

𝑖, 𝑁 and 𝑁′ are incompatible. The responder then either proactively refreshes the 

condensed signature or waits until the associated record is requested by a client, and 

then refreshes. By updating condensed signatures based on newly encountered 

reference values, the responder then stays ahead of any verifier that relies on the same 

source of reference values. It may not be necessary to stay this far ahead, e.g., the 

verifier may be able to verify Π𝑖,𝑁 with the reference values it holds, but it’s sufficient. 

(A full treatment would require modeling of the evolution of the set of reference values 

held by a verifier.) 

F.4 Changing Rung Strategy 

The extended binary rung strategy makes the following enhancement to the binary rung 

strategy: In addition to the 𝐵 rungs in the ladder corresponding to the ones bits of the 

binary representation of 𝑁, the ladder also includes ⌊log2 𝑁⌋ + 1 − 𝐵 rungs 

corresponding to the zero bits. The span of each such rung is the same as it was the 

previous time the binary representation had a one bit in the corresponding position (say, 

the 2𝑣 position). The rung is thus “extended” for an additional 2𝑣 leaf nodes compared 

to the binary rung strategy (the number of leaf nodes until the position next has a one 

bit). (Only rungs corresponding to ones bits are used for constructing authentication 

paths, which are the same as in the binary rung strategy.) 

The extended binary rung strategy shares the binary rung strategy’s 𝑂(log 𝑁) 

authentication path and ladder sizes as well as its general path verification property. 

Due to the extension of the rungs, the extended binary rung strategy also has a lower 

likelihood of incompatibility in the 𝑖 ≤ 𝑁 < 𝑁′ case. In particular, a new sibling node 

will not need to be added until the number of leaf nodes reaches 𝑅 + 2γ1, 𝑅 + 2γ2, 𝑅 +
2γ3, etc. — a doubling of the distance from 𝑅. 

The extension can offer a significant advantage in refresh timing over the binary rung 

strategy for the following reason. In the binary rung strategy, rungs are removed from 

the ladder immediately after they’ve been in use as selected rungs for producing new 

authentication paths. Moreover, multiple rungs may be removed at the same time 

Consider the example in Fig. 1: When the number of leaf nodes in the tree reaches 16, 

all three rungs shown, [1: 8], [9: 12] and [13: 14], will no longer be used for producing 

new authentication paths and all three will be removed from the ladder. The addition of 

a leaf node may therefore trigger many condensed signature refreshes at the same time. 

Indeed, although the average number of condensed signatures that need to be refreshed 

for each leaf node added is 𝑂(log 𝑁), some leaf node additions may trigger as many as 

𝑁 − 1 refreshes. For instance, all 14 authentication paths leading to the three rungs 
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shown in the example (as well as the one leading to [15: 15]) will need to be refreshed 

when the number of leaf nodes in the tree reaches 16. 

In the extended binary rung strategy, in contrast, rungs remain in the ladder for an 

extended period during which they are still available for verifying previous 

authentication paths. Condensed signature refreshes for authentication paths relative to 

a rung can therefore be staggered. Returning to Fig. 1, [1: 8] will no longer be used for 

producing new authentication paths when the number of leaf nodes reaches 16, but it 

won’t be removed until the number reaches 24. For the eight authentication paths 

associated with [1: 8], then, we would have eight leaf node additions in which to make 

the refresh. Put another way, although a sibling node doesn’t need to be added until 

𝑅 + 2γ𝑗, it can be added as early as 𝑅 + γ𝑗. As a result, we can schedule the refreshes 

so that there are 𝑂(log 𝑁) refreshes for each and every new leaf node added, not just 

on average, thus distributing the workload more evenly than in the binary rung strategy. 


