

Merkle Tree Ladder Mode: Reducing the Size Impact

of NIST PQC Signature Algorithms in Practice

Andrew Fregly1,2[0000-0002-5760-9197], Joseph Harvey1[0000-0002-9047-9320],

Burton S. Kaliski Jr.1[0000-0002-1233-5380] and Swapneel Sheth1[0000-0002-0075-7914]

1 Verisign Labs, Reston, VA 20190, USA
2 afregly@verisign.com

Abstract. We introduce the Merkle Tree Ladder (MTL) mode of operation for

signature schemes. MTL mode signs messages using an underlying signature

scheme in such a way that the resulting signatures are condensable: a set of MTL

mode signatures can be conveyed from a signer to a verifier in fewer bits than if

the MTL mode signatures were sent individually. In MTL mode, the signer sends

a shorter condensed signature for each message of interest and occasionally

provides a longer reference value that helps the verifier process the condensed

signatures. We show that in a practical scenario involving random access to an

initial series of 10,000 signatures that expands gradually over time, MTL mode

can reduce the size impact of the NIST PQC signature algorithms, which have

signature sizes of 666 to 7856 bytes with example parameter sets, to a condensed

signature size of 472 bytes per message. Even adding the overhead of the

reference values, MTL mode signatures still reduce the overall signature size

impact under a range of operational assumptions. Because MTL mode itself is

quantum-safe, the mode can support long-term cryptographic resiliency in

applications where signature size impact is a concern without limiting

cryptographic diversity only to algorithms whose signatures are naturally short.

Keywords: Post-Quantum Cryptography, Digital Signatures, Merkle Trees,

Modes of Operation.

1 Introduction

The transition to post-quantum cryptography under NIST’s leadership [1] has resulted

in a remarkable variety of new, fully specified cryptographic techniques [2] that have

been assessed, through a public evaluation process, to resist cryptanalysis by both

classical and quantum computers. NIST has also issued recommendations for two

additional post-quantum signature schemes [3], which are also endorsed (along with

one of the other techniques) in the latest U.S. National Security Systems suite [4]. The

next step in the transition, as the various algorithms are standardized and incorporated

into cryptographic libraries, is to upgrade applications to support them [5].

Applications of cryptography in the “pre-quantum” era have often been designed

based on the characteristics of the cryptographic techniques available, one of which has

been relatively small signature sizes (by post-quantum standards). Classical signature

2 A. Fregly et al.

sizes range from 64 to 256 bytes in typical examples [6]. The leading post-quantum

signature algorithms in the NIST PQC project, in contrast, have minimum sizes that

range from 666 to 7856 bytes with example parameter sets (see Tables 8 and 9 in [1])

— an order of magnitude (or two) increase.

Given the increasing sizes of all kinds of data, the relatively large size of the new

signature algorithms won’t necessarily present an obstacle to their adoption. But size

concerns could still present a challenge in some environments, and for the greatest

benefit, it will be helpful to have techniques that reduce the size impact. In addition, it

would be desirable from the perspective of cryptographic diversity if these techniques

could be applied to multiple families of signature algorithms.

Our focus in this paper is on reducing signature size impact in a practical scenario

that we call message series signing. In this scenario, a signer continuously signs new

messages and publishes the messages and their signatures. A verifier then continuously

requests selected messages and verifies their signatures. As examples, the messages

could be web Public-Key Infrastructure certificates [7], Domain Name System Security

Extensions (DNSSEC) records [8] or signed certificate timestamps [9].

We are interested in a way for the signer to convey a set of signatures on messages

of interest to the verifier in fewer bits than if the signatures were sent individually. We

propose to do so through a process we call condensation and reconstitution. We show

how to make a signature scheme condensable through a technique we call Merkle Tree

Ladder (MTL) mode, named for both its relationship with Merkle trees [10] and with

modes of operation of cryptographic techniques pioneered by NIST for encryption

algorithms [11].

In brief, MTL mode constructs an evolving sequence of Merkle tree nodes, which

we call ladders, from the sequence of messages being signed, then signs each ladder

using the underlying signature scheme. An MTL mode signature has three parts: an

authentication path from a message to a Merkle tree ladder node or “rung”; the ladder;

and the signature on the ladder. A condensed signature conveys the authentication path;

a reference value conveys a ladder and its signature. The signer sends the verifier a

condensed signature and a handle pointing to a reference value; the verifier computes

a reconstituted signature from the condensed signature and a suitable reference value,

requesting a new reference value if needed, and then verifies the reconstituted signature.

The condensation process evolves the authentication paths to maximize reuse of ladders

and therefore minimize their size impact.

MTL mode improves upon the basic idea of forming a Merkle tree from a fixed set

of messages and then signing the Merkle tree root in two important ways. First, the

message series can expand as the signer continuously signs new messages without

explicitly constructing new trees. Second, both the initial (uncondensed) signature and

the reconstituted signature produced by MTL mode are actual signatures that can be

verified by the MTL mode verification operation. Condensation and reconstitution are

therefore optional upgrades that can be deployed incrementally.

Two other points are worth noting.

• MTL mode, like other Merkle tree techniques, is based only on hash functions. It’s

therefore quantum-safe under the same assumptions as hash-based signatures.

Merkle Tree Ladder Mode 3

• Condensation and reconstitution are public processes: They involve only the

signer’s public key, not the private key. The processes therefore don’t impact the

security of the underlying signature scheme and they can be performed by anyone.

Another party can perform the operations independently of the signer and verifier,

which adds to deployment flexibility. (We note that the operations are different than

compression / decompression in that the reconstituted signature may be different

than the initial signature on the message.)

Summary of Our Contributions. (1) We provide a formal model for condensing

and reconstituting signatures given a suitably constructed signature scheme; (2) We

show how to use Merkle tree ladders to transform an arbitrary underlying signature

scheme into a stateful tagged signature scheme suitable for condensation and

reconstitution; and (3) We demonstrate that the transformation can reduce the size

impact of NIST PQC signature algorithms in practice.

Organization. Section 2 gives the conventions for our Merkle tree constructions and

defines Merkle tree ladders. Section 3 defines a tagged signature scheme. Section 4

then defines a condensation scheme. Sections 5 and 6 show how to transform an

arbitrary signature scheme into a tagged signature scheme using MTL mode and how

to condense the resulting signatures. Section 7 discusses the practical impact of our

techniques on NIST PQC signature algorithms, Section 8 reviews related work, and

Section 9 concludes the main body of the paper. Appendices provide additional details

helpful for implementers as well as proof of one of the technical claims.

2 Merkle Tree Ladders

2.1 Conventions

For our constructions, we will use a Merkle graph — a variant of the classic Merkle

tree where nodes may have multiple parents, so long as no node is its own ancestor —

with the following additional restrictions:

1. Leaf nodes are indexed consecutively from 1 to 𝑁, where 𝑁 is the number of data

values being authenticated;

2. Every internal node has two child nodes, i.e., “left” and “right” subtrees;

3. The leaf node descendants of every internal node are consecutively indexed;

4. Every internal node has a different set of leaf node descendants; and

5. The left and right subtrees of an internal node have no leaf nodes in common.

Based on these properties, we can associate each node with a unique index pair 𝐿

and 𝑅 such that 1 ≤ 𝐿 ≤ 𝑅 ≤ 𝑁 where 𝐿 is the lowest and 𝑅 is the highest index of any

leaf node descendants of the node. (For a leaf node, we let 𝐿 = 𝑅 = 𝑖 be the index of

the leaf node itself.) The node with this index pair is denoted [𝐿: 𝑅]; we say that [𝐿: 𝑅]
spans leaf nodes 𝐿 through 𝑅. We denote the hash value associated with this node as

𝑉[𝐿: 𝑅]. We refer to the full set of leaf nodes associated with a set of data values, and

their internal node ancestors in the graph, a node set.

4 A. Fregly et al.

A conventional binary Merkle tree where 𝑁 is a power of 2 follows these restrictions

with the further convention that the descendants of the internal node [𝐿: 𝑅] are

adjacently and equally apportioned between its two child nodes, i.e., the children are

[𝐿: 𝑀] and [𝑀 + 1: 𝑅] where 𝑀 = (𝐿 + 𝑅 − 1)/2; the root node is [1: 𝑁].
For our more general case, we take an approach similar to Certificate Transparency

[9] in allowing 𝑁 to be different than a power of 2, and we apportion descendants

adjacently, but not necessarily equally, by choosing 𝑀 as the (unique) integer between

𝐿 and 𝑅 − 1 that is divisible by the largest power of 2. The successive left children of

the node [1: 𝑁], if present, and its descendants are thus always complete binary trees,

but the node set and its ladders need not include [1: 𝑁], depending on the rung strategy.

2.2 Ladders and Rungs

A subset of nodes that collectively spans every leaf node in a node set is a Merkle tree

ladder; the individual ladder nodes are called rungs. Our motivation for the terminology

is that the ladder provides a way to “climb the tree” and authenticate new leaf nodes.

The authentication path from a leaf node to a ladder is the set of sibling node hash

values (in the usual Merkle tree sense) from the leaf node to an associated rung in the

ladder that spans the leaf node.

A rung strategy, denoted ℛ𝒮, specifies the process for updating a ladder as new leaf

nodes are added and for choosing which rung in the ladder to use in an authentication

path if more than one rung spans a given leaf node. We define one such strategy below,

but others are possible (with different efficiency tradeoffs), including the traditional

single-rung strategy where the ladder includes just the evolving root node [1: 𝑁].

2.3 Hash Functions

In the following, 𝐻leaf and 𝐻int are cryptographically separated hash functions.

𝐻leaf(𝑆𝐼𝐷, 𝑖, 𝑑) ⟶ 𝑉 maps a series identifier 𝑆𝐼𝐷, an index 𝑖 and a data value 𝑑 to a

2ℓ-bit hash value 𝑉. 𝐻int(𝑆𝐼𝐷, 𝐿, 𝑅, 𝑉left, 𝑉right) ⟶ 𝑉 maps a series identifier 𝑆𝐼𝐷, two

indexes 𝐿 and 𝑅 and two 2ℓ-bit hash values 𝑉left and 𝑉right to a 2ℓ-bit hash value 𝑉.

(Here and elsewhere in this document, the integer ℓ is a variable security parameter

indicating the desired cryptographic bit strength, e.g., ℓ = 128.) The series identifier

should be generated at random for each node set or derived pseudorandomly from

another random value. Appendix A proposes instantiations of these functions and

recommends the length of the series identifier.

2.4 Node Set Operations

We define the following operations for interacting with a node set according to a rung

strategy ℛ𝒮:

• Node set initialization. INITNODESETℛ𝒮(𝑆𝐼𝐷) ⟶ 𝑇0 returns a new node set 𝑇0

associated with the series identifier 𝑆𝐼𝐷.

Merkle Tree Ladder Mode 5

• Leaf node count. GETLEAFNODECOUNTℛ𝒮(𝑇) ⟶ 𝑁 returns the number of leaf nodes

in the node set 𝑇.

• Leaf node addition. ADDLEAFNODEℛ𝒮(𝑇, 𝑑) ⟶ 〈𝑇′, Λ〉 adds a leaf node

corresponding to the data value 𝑑 to the node set 𝑇, assigning the next leaf node

index to it. The operation may also compute and add other nodes as needed to evolve

the next ladder per the rung strategy ℛ𝒮. ADDLEAFNODE returns the updated node set

𝑇′ and the ladder Λ spanning the leaf nodes in the node set.

• Authentication path construction. GETAUTHPATHℛ𝒮(𝑇, 𝑖) ⟶ Π returns the

authentication path Π from the 𝑖th leaf node in the node set 𝑇 to its associated rung

in the current ladder per the rung strategy ℛ𝒮. The operation requires that 1 ≤ 𝑖 ≤
𝑁 where 𝑁 is the current leaf node count.

• Authentication path verification. CHECKAUTHPATHℛ𝒮(𝑆𝐼𝐷, 𝑖, 𝑁, 𝑁′, 𝑑, Π, Λ) ⟶ 𝑏

verifies that the 𝑖th leaf node of a node set corresponds to a data value 𝑑 using an

authentication path Π and a ladder Λ, with the assumptions that Π is the

authentication path from the 𝑖th leaf node to its associated rung in the 𝑁th ladder and

Λ is the 𝑁′th
 ladder. The operation requires that 1 ≤ 𝑖 ≤ 𝑁′ ≤ 𝑁. CHECKAUTHPATH

returns 𝑏 = TRUE if the authentication path is valid and 𝑏 = FALSE otherwise.

ADDLEAFNODE is defined here so that the updated node set is returned as an output,

consistent with the tagged signature scheme operations and the condensation operations

returning the updated state. The operation could be redefined so that the node set is

updated in place as discussed in Appendix B. As also shown in Appendix B, a node set

with 𝑁 leaf nodes can be represented with at most 2𝑁 − 1 hash values (and in the case

that the node set is used only for generating signatures, not for condensing them, with

at most ⌊log2𝑁⌋ + 1 hash values).

2.5 Correctness

It is easy to see by the definition of a rung strategy that CHECKAUTHPATH will correctly

verify the authentication path for a data value when the ladders for CHECKAUTHPATH

and GETAUTHPATH are the same, i.e., 𝑁′ = 𝑁, and the same 𝑆𝐼𝐷 is input to

CHECKAUTHPATH as to INITNODESET. To make our schemes more efficient, however,

we’d like verification also to be correct when 𝑁′ ≠N. For this purpose, we will use the

rung strategy defined next.

2.6 Binary Rung Strategy

In the binary rung strategy, denoted ℬℛ𝒮, the rungs in the 𝑁th ladder Λ𝑁 are defined

based on the binary representation of 𝑁. Write

𝑁 = ∑ 2𝜈𝑗𝐵
𝑗=1 ,

where the 𝜈𝑗 are the indexes of the ones bits in the binary representation of 𝑁 from

highest to lowest, so that ⌊log2 𝑁⌋ = 𝜈1 > 𝜈2 > ⋯ > 𝜈𝐵 ≥ 0. The rungs of the 𝑁th

ladder Λ𝑁 are then

6 A. Fregly et al.

〈[𝐿𝑁(1): 𝑅𝑁(1)], … , [𝐿𝑁(𝐵): 𝑅𝑁(𝐵)]〉

where we define 𝑅𝑁(0) = 0 and for 𝑗 = 1 to 𝐵, we set 𝐿𝑁(𝑗) = 𝑅𝑁(𝑗 − 1) + 1 and

𝑅𝑁(𝑗) = 𝑅𝑁(𝑗 − 1) + 2𝜈𝑗 . It follows that the rung spans are adjacent and that 𝐿1(1) =
1 and 𝑅𝑁(𝐵) = 𝑁, so the ladder rungs collectively span every leaf node. Moreover, the

descendants of each rung form a complete binary tree. The rung associated with the 𝑖th

leaf node is the unique rung [𝐿𝑁(𝐵): 𝑅𝑁(𝐵)] for which 𝐿𝑁(𝐵) ≤ 𝑖 ≤ 𝑅𝑁(𝐵). The

number of rungs is 𝑂(log 𝑁). Fig. 1 gives an example.

Because the rung node index pairs can all be computed deterministically from 𝑁, as

long as the value 𝑁 is available, we don’t need to include the index pairs in a

representation of the ladder, just the rung node hash values.

Appendix B gives pseudocode for the node set operations for this strategy.

2.7 General Path Verification

Claim. For all positive integers 𝑖, 𝑁, 𝑁′ where 𝑖 ≤ 𝑁′ ≤ 𝑁, if 𝑑𝑖 is the data value

corresponding to the 𝑖th leaf node in a node set assembled using the binary rung

strategy, Π𝑖,𝑁 is the authentication path from the 𝑖th leaf node to its associated rung in

the 𝑁th ladder and Λ𝑁′ is the 𝑁′th
 ladder, then

CHECKAUTHPATHℬℛ𝒮(𝑆𝐼𝐷, 𝑖, 𝑁, 𝑁′, 𝑑𝑖 , Π𝑖,𝑁 , Λ𝑁′) = TRUE.

The proof is given in Appendix C.

3 Tagged Signature Schemes

We adopt the generalization of the framework proposed by Abe et al. [12] for one-time

signatures where messages are associated with tags. Tagging provides a convenient way

to divide messages signed under the same public/private key pair into multiple series,

while providing cryptographic separation between the series. We allow a tagged

signature scheme to be stateful. Following Yuan, Tibouchi and Abe [13], our scheme

operations take the current state as an input and return the updated state as an output.

(The scheme operations could be redefined so that the state is updated in place.)

An implementation may place constraints on the lengths of the tags, the number of

different tags allowed, and the number of messages that may be associated with a given

tag. In MTL mode, we allow the tag to be an arbitrary string.

3.1 Scheme Definition

A tagged signature scheme 𝒯𝒮𝒮 is a stateful signature scheme where signatures are

associated with tags. A tagged signature scheme has three operations:

Merkle Tree Ladder Mode 7

• Key pair generation. KEYGEN(1ℓ) ⟶ ⟨𝑝𝑘, 𝑠𝑘, 𝑠𝑡0⟩ generates a public/private key

pair ⟨𝑝𝑘, 𝑠𝑘⟩ with security parameter ℓ and returns the newly generated key pair and

an initial state 𝑠𝑡0.

• Signature generation. SIGN𝑠𝑘(𝑚, τ, 𝑠𝑡) ⟶ 〈𝜎, 𝑠𝑡′〉 signs a message 𝑚 and a tag τ

with a private key 𝑠𝑘 under the state 𝑠𝑡 and returns the resulting signature 𝜎 and an

updated state 𝑠𝑡′. SIGN returns an error if the scheme does not support the tag τ.

• Signature verification. VERIFY𝑝𝑘(𝑚, τ, 𝜎) ⟶ 𝑏 verifies a signature 𝜎 on a message

𝑚 and a tag τ with a public key 𝑝𝑘. VERIFY returns 𝑏 = TRUE if the verification check

is successful and 𝑏 = FALSE otherwise. We say that the tuple 〈𝑚, τ, 𝜎〉 is valid if

VERIFY(𝑚, τ, 𝜎) = TRUE.

We define the message series for a tag τ as the sequence of messages 𝑀𝑁
τ =

〈𝑚1, … , 𝑚𝑁〉 input to successive calls to SIGN in association with τ, and the signature

series for τ as the corresponding sequence of signatures Σ𝑁
τ = 〈𝜎1, … , 𝜎𝑁〉 returned.

3.2 Correctness and Unforgeability

The security objectives for a tagged signature scheme are similar to those for an

ordinary signature scheme. We want the objectives to hold for a randomly generated

 14

Fig. 1. Example of a Merkle tree ladder and node set following a binary rung strategy. Rungs

[1: 8], [9: 12] and [13: 14] collectively span all 14 leaf nodes.

8 A. Fregly et al.

key pair, every supported tag τ and every polynomially bounded (in ℓ) message series

𝑀𝑁
τ (and corresponding signature series Σ𝑁

τ):

• Correctness. For all 𝑚𝑖 ∈ 𝑀𝑁
τ , if 𝜎 ∈ Σ𝑁

τ is the corresponding signature, then

〈𝑚𝑖, τ, 𝜎〉 is valid.

• Unforgeability. For all messages 𝑚 ∉ 𝑀𝑁
τ , it is computationally infeasible (in ℓ) for

an adversary to produce a valid 〈𝑚, τ, 𝜎〉 with more than a negligible probability of

success, even if the adversary otherwise has full control of the messages and the tags

input to the scheme operations.

We assume that the adversary respects the scheme’s state, i.e., when calling an

operation, the adversary inputs the state output by the previous operation (intervening

calls may be made with different tags). State management is an important consideration

and would benefit from a more complete treatment than given herein, including the

impact on the underlying signature scheme and on MTL mode itself.

3.3 Signature Malleability

We allow a tagged signature scheme to be malleable [14] in the sense that given a valid

tuple 〈𝑚, τ, 𝜎〉, an adversary (and anyone else) may be able to produce a valid tuple

〈𝑚, τ, 𝜎′〉 where 𝜎′ ≠ 𝜎. (Our definition of unforgeability doesn’t require that 𝜎 ∈ Σ𝑁
τ .)

While the condensation / reconstitution process (as well as MTL mode) demonstrates

a beneficial use of signature malleability, the property also introduces potential

vulnerabilities [15]. In particular, a signer using a malleable signature scheme cannot

assume that a transaction has not been processed simply because the initial signature

on the transaction does not appear in a transaction log. A malleated version of the

signature could have been posted instead, i.e., a reconstituted signature in our case.

4 Signature Series Condensation Schemes

Given a signature series, we are looking for a way for the signer to convey a subset of

the signatures to the verifier in fewer bits than if the signatures were sent individually.

We envision the following arrangement (see Fig. 2):

• A signer signs a series of messages, producing initial signatures on the messages.

• (Condensation.) The signer or an intermediary produces a condensed signature and

a reference value handle from an initial signature. These values are sent to the signer

instead of the initial signature with messages of interest to the verifier. The values

may depend on previous signatures produced by the signer.

• (Reconstitution.) The verifier or an intermediary produces a reconstituted signature

from a condensed signature and a reference value. If the verifier or intermediary

doesn’t have a suitable reference value, it requests one based on the handle.

• The verifier then verifies the reconstituted signature.

Merkle Tree Ladder Mode 9

These operations involve access only to the public key, not the private key, so they

can be performed by anyone, not just the signer and the verifier. For instance, a server

that publishes messages and signatures on behalf of the signer could incorporate

signatures into the condensation state, produce condensed signatures and reference

value handles, and resolve reference value handles into reference values. Similarly, an

agent that requests messages and signatures on behalf of the verifier could request

condensed signatures and reference values. The mapping from handles to reference

values could also be implemented by a database.

The handle provides a layer of indirection. Different condensed signatures may be

associated with different reference values, and verifiers and their intermediaries may

request reference values at different times. The handle indicates the specific reference

value of interest.

Because we allow 𝒯𝒮𝒮 to be malleable, the reconstituted signature on a message

may be different than the initial signature.

Although we define condensation and reconstitution relative to a tagged signature

scheme, the tagging is a convenience, making it possible for the signature scheme to

support multiple signature series that can be condensed and reconstituted independently

of one another under the same key pair. The processes could also be applied to a non-

tagged signature scheme, as illustrated in Appendix D.

4.1 Scheme Definition

A condensation scheme 𝒞𝒮 has five operations defined relative to an associated tagged

signature scheme 𝒯𝒮𝒮. As in Section 3, the operations below could also be redefined

so that the state is updated in place.

• Initialization. CONDENSEINIT𝑝𝑘() ⟶ 𝑠𝑡0 returns a new scheme state 𝑠𝑡0.

• Signature incorporation. ADDINITSIG𝑝𝑘(τ, σ, 𝑠𝑡) ⟶ 〈𝑖, 𝑠𝑡′〉 incorporates an initial

signature σ associated with a tag τ into the state 𝑠𝑡 and returns the signature index 𝑖
for this signature (relative to τ) and the updated state 𝑠𝑡′.

• Condensed signature production. GETCONDENSEDSIG𝑝𝑘(τ, 𝑖, 𝑠𝑡) ⟶ 〈ς, χ, 𝑠𝑡′〉

produces a condensed version ς of the 𝑖th signature associated with the tag τ under

Fig. 2. Condensation and reconstitution processes applied to a signature scheme.

10 A. Fregly et al.

the state 𝑠𝑡 and returns the condensed signature ς, the associated reference value

handle χ, and the updated state 𝑠𝑡′.

• Reference value production. GETREFVAL𝑝𝑘(τ, χ, 𝑠𝑡) ⟶ ⟨υ, 𝑠𝑡′⟩ produces the

reference value υ associated with the tag τ and the handle χ under the state 𝑠𝑡 and

returns υ and the updated state 𝑠𝑡′.

• Signature reconstitution. RECONSTSIG𝑝𝑘(τ, ς, υ) ⟶ σ′ reconstitutes a signature σ′

from a condensed signature ς and a reference value υ associated with a tag τ and

returns σ′. (Appendix E proposes an alternative stateful set of reconstitution

operations that includes a check for reference value compatibility.)

4.2 Correctness

A condensation scheme has one security objective. As above, we want it to hold for a

randomly generated key pair, every supported tag τ and every polynomially bounded

(in ℓ) message series 𝑀𝑁
τ :

• Correctness. For all 𝑚𝑖 ∈ 𝑀𝑁
τ , if the corresponding signature series Σ𝑁

τ is

incorporated into the condensation state with calls to CONDENSEINIT and ADDINITSIG,

then a condensed signature ς and a reference handle χ are obtained from τ and 𝑖 with

a call to GETCONDENSEDSIG, then a reference value υ is obtained from τ and χ with a

call to GETREFVAL, and finally a reconstituted signature σ′ is obtained τ, ς and χ with

a call to RECONSTSIG, then 〈𝑚𝑖 , τ, σ′〉 is valid under 𝒯𝒮𝒮.

We didn’t include unforgeability as a security objective because a condensation scheme

doesn’t introduce any new access to the signer’s private key. We again assume for

simplicity that the calls respect the schemes state (with the possibility of intervening

calls for other tags, or to get other condensed signatures and/or reference values).

4.3 Reference Value Compatibility

We’d like the verifier to be able to reconstitute a signature from a condensed signature

and a previously produced reference value, i.e., one obtained with a call to GETREFVAL

from τ and a reference value handle χ′ older than the one returned by

GETCONDENSEDSIG. A scheme with this property is reference value compatible.

5 Merkle Tree Ladder Mode

We now describe a general technique that can be applied to any signature scheme 𝒮 to

transform it into a tagged signature scheme that can then be condensed, asymptotically,

to the size of a Merkle tree authentication path. Our basic approach is to construct an

evolving sequence of Merkle tree ladders from the message series and sign each ladder

using the underlying signature scheme. We call the transformation Merkle Tree Ladder

(MTL) mode.

Merkle Tree Ladder Mode 11

MTL mode operations follow the binary rung strategy ℬℛ𝒮 described in Section 2.6.

Because of the general path verification property of this rung strategy, the verification

operation will accept both initial MTL mode signatures and reconstituted MTL mode

signatures. The reference value υ is identified by the MTL mode reference value handle

χ = 𝑁′.

We chose to transform the underlying signature scheme into a tagged signature

scheme so that an application can sign multiple message series with the same

public/private key pair and have cryptographic separation between the series. We could

have instead transformed 𝒮 into a non-tagged, stateful signature scheme, but the mode

would have directly supported only a single message series.

MTL mode applied to an underlying signature scheme 𝒮 has the following profile:

• Public key. 𝑝𝑘 = 〈𝑝𝑘𝒮 , 𝑆〉 where 𝑝𝑘𝒮 is a public key for 𝒮 and 𝑆 is a 2ℓ-bit seed;

• Private key. 𝑠𝑘 = 𝑠𝑘𝒮 where 𝑠𝑘𝒮 is the corresponding private key for 𝒮;

• Signature: σ = 〈𝑆𝐼𝐷, 𝑐𝑖 , 𝑖, 𝑁, 𝑁′, Π𝑖,𝑁 , Λ𝑁′ , σ𝑁′
𝒮 , 𝑑𝑖

∗〉 where 𝑆𝐼𝐷 is a series identifier,

𝑐𝑖 is a randomizer, 𝑖, 𝑁 and 𝑁′ are indexes, Π𝑖,𝑁 is an authentication path, Λ𝑁′ is a

ladder, σ𝑁′
𝒮 is a signature under 𝒮 and 𝑑𝑖

∗ is an optional data value. For an initial

signature, 𝑖 = 𝑁 = 𝑁′ and 𝑑𝑖
∗ is included in σ. For a reconstituted signature, as

discussed in Section 6, 𝑖 ≤ 𝑁 ≤ 𝑁′ and 𝑑𝑖
∗ is omitted.

Note that 𝑆𝐼𝐷 could be omitted from the signature because it can be computed from the

seed and the tag. Including 𝑆𝐼𝐷 makes it possible to start the node set operations before

the public key is obtained, provided that other scheme parameters are already known.

5.1 Hash Functions

𝐻msg and 𝐻SID are additional cryptographically separated hash functions. 𝐻SID(𝑆, τ) ⟶

𝑆𝐼𝐷 maps a 2ℓ-bit seed 𝑆 and a tag τ to a series identifier 𝑆𝐼𝐷. 𝐻msg(𝑆𝐼𝐷, 𝑖, 𝑚, 𝑐) ⟶ 𝑑

maps a series identifier 𝑆𝐼𝐷, an index 𝑖, a message 𝑚 and a randomizer 𝑐 to a 2ℓ-bit

data value. We use a message-specific randomizer to base the security of MTL mode

on second-preimage-resistance than collision-resistance, similar to all of the example

signature schemes except CRYSTALS–Dilithium. (Having randomizers in both parts

also protects against adversarial access either to MTL mode or to the underlying

scheme.) The randomizer should be generated randomly or derived pseudorandomly

from another random value. Appendix A proposes instantiations of these functions and

also recommends lengths for the tag, series identifier and randomizer.

5.2 Tag Constraints

The tag τ input to MTL mode operations may be a bit string of any length. The mode

doesn’t specify any constraints on the number of different tags allowed or the number

of messages that may be associated with a given tag. (Implementations may have

practical limits.)

12 A. Fregly et al.

5.3 Scheme State

The scheme state includes a security parameter ℓ, a seed 𝑆 and a set of series tuples

〈𝑆𝐼𝐷, 𝑇〉 where 𝑆𝐼𝐷 is a series identifier and 𝑇 is the node set for the series. (We

maintain the formality of taking the current state as input to the scheme operation and

returning the updated state as output, with the caveat that the large size of the state for

MTL motivates the alternative suggested in Section 3 of updating the state in place.)

Although we’ve defined MTL mode in terms of a stateless underlying signature

scheme, the mode can also readily be applied to a stateful underlying signature scheme

by maintaining the state of the underlying scheme in the mode’s scheme state.

5.4 Key Pair Generation

KEYGEN(1ℓ) ⟶ ⟨𝑝𝑘, 𝑠𝑘, 𝑠𝑡0⟩ generates a key pair ⟨𝑝𝑘𝒮 , 𝑠𝑘𝒮⟩ with security parameter

ℓ using 𝒮, generates a random 2ℓ-bit seed 𝑆, creates a new state 𝑠𝑡0 including ℓ, 𝑆, and

an empty set of series tuples, formats the public key 𝑝𝑘 as

𝑝𝑘 ⟸ 〈𝑝𝑘𝒮 , 𝑆〉,

sets the private key 𝑠𝑘 = 𝑠𝑘𝒮 , and returns 𝑝𝑘, 𝑠𝑘 and 𝑠𝑡0.

5.5 Tagged Signature Generation

 SIGN𝑠𝑘(𝑚, τ, 𝑠𝑡) ⟶ 〈𝜎, 𝑠𝑡′〉 computes a series identifier 𝑆𝐼𝐷 as

𝑆𝐼𝐷 ≔ 𝐻SID(𝑆, τ),

where 𝑆 is the seed in the state 𝑠𝑡. Let 〈𝑆𝐼𝐷, 𝑇〉 be the series tuple for 𝑆𝐼𝐷 in 𝑠𝑡. If 𝑠𝑡

doesn’t have a series tuple for 𝑆𝐼𝐷, then SIGN adds a new tuple 〈𝑆𝐼𝐷, 𝑇〉 to 𝑠𝑡 where the

node set 𝑇 is initialized as

𝑇 ∶= INITNODESETℬℛ𝒮(𝑆𝐼𝐷).

SIGN then obtains the leaf node count as

𝑁 ∶= GETLEAFNODECOUNTℬℛ𝒮(𝑇)

and sets 𝑖 = 𝑁 + 1. SIGN next generates a randomizer 𝑐𝑖, and computes a data value 𝑑𝑖

via randomized hashing and incorporates it into the node set, obtaining an updated node

set 𝑇′ and a ladder Λ𝑖 :

𝑑𝑖 ∶= 𝐻msg(𝑆𝐼𝐷, 𝑖, 𝑚, 𝑐𝑖);

〈𝑇′, Λ𝑖〉 ∶= ADDLEAFNODEℬℛ𝒮(𝑇, 𝑑𝑖).

SIGN then obtains an authentication path Π𝑖,𝑖 from the leaf node to the ladder as

Π𝑖,𝑖 ∶= GETAUTHPATHℬℛ𝒮(𝑇′, 𝑖).

Merkle Tree Ladder Mode 13

SIGN then computes an underlying signature σ𝑖
𝒮 on Λ𝑖 as

σ𝑖
𝒮 ∶= 𝒮. SIGN𝑠𝑘(〈𝑆𝐼𝐷, 1, 𝑖, Λ𝑖〉)

and formats the signature σ as

σ ⟸ 〈𝑆𝐼𝐷, 𝑐𝑖 , 𝑖, 𝑖, 𝑖, Π𝑖,𝑖 , Λ𝑖 , σ𝑖
𝒮 , 𝑑𝑖〉.

SIGN finally updates the state with the updated series tuple 〈𝑆𝐼𝐷, 𝑇′〉 and returns 𝜎 and

the updated state 𝑠𝑡′.

5.6 Tagged Signature Verification

VERIFY𝑝𝑘(𝑚, τ, 𝜎) ⟶ 𝑏 parses the public key 𝑝𝑘 and the signature σ as

𝑝𝑘 ⟹ 〈𝑝𝑘𝒮 , 𝑆〉;

σ ⟹ 〈𝑆𝐼𝐷, 𝑐𝑖 , 𝑖, 𝑁, 𝑁′, Π𝑖,𝑁 , Λ𝑁′ , σ𝑁′
𝒮 , 𝑑𝑖

∗〉,

then checks that 𝑆𝐼𝐷 = 𝐻SID(𝑆, τ) and verifies the underlying signature σ𝑁′
𝒮 on Λ𝑁′ as

𝑏𝒮 ∶= 𝒮. VERIFY𝑝𝑘𝒮(〈𝑆𝐼𝐷, 1, 𝑁′, Λ𝑁′〉, σ𝑁′
𝒮).

If the parsing or the check fails, or if 𝑏𝒮 = FALSE, then VERIFY returns FALSE. VERIFY

then computes a data value 𝑑𝑖 via randomized hashing:

𝑑𝑖 = 𝐻msg(𝑆𝐼𝐷, 𝑖, 𝑚, 𝑐𝑖),

verifies the presumed authentication path Π𝑖,𝑁 from the leaf node corresponding to 𝑑𝑖

to the ladder Λ𝑁′ as

𝑏 ≔ CHECKAUTHPATHℬℛ𝒮(𝑆𝐼𝐷, 𝑖, 𝑁, 𝑁′, 𝑑𝑖 , Π𝑖,𝑁 , Λ𝑁′)

and returns 𝑏. For completeness, VERIFY may also check that the final signature

component 𝑑𝑖
∗, if present, matches 𝑑𝑖.

5.7 Correctness and Unforgeability

Correctness follows from the general path verification property of the binary rung

strategy (where we set 𝑖 = 𝑁 = 𝑁′) and from the correctness of 𝒮.

Unforgeability can be shown with the usual arguments for a Merkle tree signature

scheme. In particular, for an adversary to produce a valid tuple 〈𝑚, τ, 𝜎〉 where the

message 𝑚 has not been input to SIGN with tag τ, the adversary must do one of the

following: (i) forge an underlying signature on a ladder under 𝒮; (ii) produce a second

authentication path to a previously signed ladder; (iii) produce a second data value that

maps to a leaf hash value in a previous node set; (iv) produce a second randomizer /

message pair that maps to the data value in a previous signature; or (v) produce a second

tag that maps to the same series identifier as a previously signed tag. If 𝒮 is unforgeable

14 A. Fregly et al.

then the first is infeasible, and if 𝐻int, 𝐻leaf, 𝐻msg and 𝐻SID are second-preimage-resistant

(as appropriately defined) then the rest are infeasible.

Because we include 𝑆𝐼𝐷 and the node indexes in the inputs to 𝒮. SIGN, 𝐻int and 𝐻leaf,

and because a node set is “append only” (node hash values don’t change), an adversary

can target only one node in one node set per hash function invocation, making MTL

mode secure in a multi-user (and multi-tag) setting. A full security proof would need to

consider the interactions of the MTL mode hash function instantiations with the

underlying signature scheme (see Appendix A).

6 Condensing and Reconstituting MTL Mode Signatures

We now show how to condense and reconstitute the signatures produced in the previous

section, following the framework in Section 4.

Observe that the signature series for a given tag has enough information to

reconstruct the full node set for the series without access to the messages. In particular,

each signature includes the relevant leaf node, either as part of a ladder or as an explicit

component. The leaf nodes can then be incorporated into the node set in the order in

which they were computed to reconstruct the node set.

The condensation scheme produces condensed signatures relative to the current

node set and thus to the current ladder. The condensed signature includes the

authentication path; the reference values include the ladder. Multiple condensed

signatures can thus reference the same ladder, making the reference values reusable.

6.1 Scheme State

The condensation scheme state includes a seed 𝑆 and a set of signed series tuples

〈𝑆𝐼𝐷, 𝑇, 𝑐̅, Λ̅, Σ𝒮〉 where 𝑆𝐼𝐷 is a series identifier, 𝑇 is the node set for the series, 𝑐̅ is the

sequence of randomizers for the series, Λ̅ is the sequence of ladders , and Σ𝒮 is the

sequence of underlying signatures. (Similar to Section 5, the operations below could

also be defined so that the state is updated in place.)

6.2 Initialization

CONDENSEINIT𝑝𝑘() ⟶ 𝑠𝑡0 parses the public key 𝑝𝑘 as

𝑝𝑘 ⟹ 〈𝑝𝑘𝒮 , 𝑆〉,

then creates a new state 𝑠𝑡0 including the seed 𝑆 and an empty set of signed series

tuples.

6.3 Signature Incorporation

ADDINITSIG𝑝𝑘(τ, σ, 𝑠𝑡) ⟶ 〈𝑖, 𝑠𝑡′〉 parses the signature σ as

Merkle Tree Ladder Mode 15

σ ⟹ 〈𝑆𝐼𝐷, 𝑐𝑖 , 𝑖, 𝑖, 𝑖, Π𝑖,𝑖 , Λ𝑖 , σ𝑖
𝒮 , 𝑑𝑖〉.

Let 〈𝑆𝐼𝐷, 𝑇, 𝑐̅, Λ̅, Σ𝒮〉 be the current signed series tuple for 𝑆𝐼𝐷. If the state 𝑠𝑡 doesn’t

include a signed series tuple for 𝑆𝐼𝐷, then ADDINITSIG adds a new tuple 〈𝑆𝐼𝐷, 𝑇, 𝑐̅, Λ̅, Σ𝒮〉
to 𝑠𝑡 where the node set 𝑇 is initialized as

𝑇 ∶= INITNODESETℬℛ𝒮(𝑆𝐼𝐷)

and where 𝑐̅ = Λ̅ = Σ𝒮 = ∅, where ∅ denotes an empty sequence ADDINITSIG then

obtains the leaf node count as

𝑁 ∶= GETLEAFNODECOUNTℬℛ𝒮(𝑇)

and sets 𝑖 = 𝑁 + 1 (which should be the same as the 𝑖 in the signature). ADDINITSIG

next incorporates the data value 𝑑𝑖 into the node set, obtaining an updated node set 𝑇′

and a ladder Λ𝑖
∗ (which should be the same as the Λ𝑖 in the signature) as

〈𝑇′, Λ𝑖
∗〉 ∶= ADDLEAFNODEℬℛ𝒮(𝑇, 𝑑𝑖).

ADDINITSIG then appends the randomizer 𝑐𝑖 to 𝑐̅, producing 𝑐̅′; appends the ladder Λ𝑖 to

Λ̅, producing Λ̅′; and appends the underlying signature σ𝑖
𝒮 to Σ𝒮 , producing Σ𝒮′

.

ADDINITSIG finally updates the state with the updated signed series tuple

〈𝑆𝐼𝐷, 𝑇′, 𝑐̅′, Λ̅′, Σ𝒮′
〉 and returns the index 𝑖 and the updated state 𝑠𝑡′.

6.4 Condensed Signature Production

GETCONDENSEDSIG𝑝𝑘(τ, 𝑖, 𝑠𝑡) ⟶ 〈ς, χ, 𝑠𝑡′〉 computes a series identifier 𝑆𝐼𝐷 as

𝑆𝐼𝐷 ≔ 𝐻SID(𝑆, τ),

where 𝑆 is the seed in the state 𝑠𝑡. Let 〈𝑆𝐼𝐷, 𝑇, 𝑐̅, Λ̅, Σ𝒮〉 be the current signed series

tuple for 𝑆𝐼𝐷. If 𝑠𝑡 doesn’t include a signed series tuple for 𝑆𝐼𝐷, then GETCONDENSEDSIG

returns an error. GETCONDENSEDSIG then obtains the current leaf node count 𝑁 and

computes an authentication path Π𝑖,𝑁 from the 𝑖th leaf node to the current ladder as

𝑁 ∶= GETLEAFNODECOUNTℬℛ𝒮(𝑇);

Π𝑖,𝑁 ∶= GETAUTHPATHℬℛ𝒮(𝑇, 𝑖).

GETCONDENSEDSIG next formats the condensed signature ς as

ς ⟸ 〈𝑆𝐼𝐷, 𝑐𝑖 , 𝑖, 𝑁, Π𝑖,𝑁〉

where 𝑐𝑖 is the 𝑖th randomizer in the randomizer sequence 𝑐̅. GETCONDENSEDSIG sets the

reference value handle χ = 𝑁 and returns ς, χ and the (unchanged) state 𝑠𝑡′ = 𝑠𝑡.

6.5 Reference Value Production

GETREFVAL𝑝𝑘(τ, χ, 𝑠𝑡) ⟶ 〈υ, 𝑠𝑡′〉 computes a series identifier 𝑆𝐼𝐷 as

16 A. Fregly et al.

𝑆𝐼𝐷 ≔ 𝐻SID(𝑆, τ),

where 𝑆 is the seed in the state 𝑠𝑡. Let 〈𝑆𝐼𝐷, 𝑇, Λ̅, Σ𝒮〉 be the current signed series tuple

for 𝑆𝐼𝐷. If 𝑠𝑡 doesn’t include a signed series tuple for 𝑆𝐼𝐷, then GETREFVAL returns an

error. GETREFVAL then sets 𝑁′ = χ and formats the reference value υ as

υ ⟸ 〈𝑁′, Λ𝑁′ , σ𝑁′
𝒮 〉

where Λ𝑁′ is the 𝑁′
th

 ladder in the ladder sequence Λ̅ and σ𝑁′
𝒮 is the 𝑁′

th
underlying

signature in the underlying signature sequence Σ𝒮 . The operation returns υ and the

(unchanged) state 𝑠𝑡′ = 𝑠𝑡.

6.6 Signature Reconstitution

RECONSTSIG𝑝𝑘(τ, ς, υ) ⟶ σ′ parses the condensed signature ς and the reference value υ

as

ς ⟹ 〈𝑆𝐼𝐷, 𝑐𝑖 , 𝑖, 𝑁, Π𝑖,𝑁〉;

υ ⟹ 〈𝑁′, Λ𝑁′ , σ𝑁′
𝒮 〉

RECONSTSIG then formats the reconstituted signature σ′ as

σ′ ⟸ 〈𝑆𝐼𝐷, 𝑐𝑖 , 𝑖, 𝑁, 𝑁′, Π𝑖,𝑁 , Λ𝑁′ , σ𝑁′
𝒮 , ∅〉.

and returns σ′. (The data value is empty as it’s not needed for signature verification.)

6.7 Correctness and Reference Value Compatibility

We want to show that if a reconstituted signature σ′ =
〈𝑆𝐼𝐷, 𝑐𝑖 , 𝑖, 𝑁, 𝑁′, Π𝑖,𝑁 , Λ𝑁′ , σ𝑁′

𝒮 , ∅〉 for a message 𝑚𝑖 and a tag τ is obtained from

RECONSTSIG following the condensation / reconstitution process, and 𝑖 ≤ 𝑁′ ≤ 𝑁, then

〈𝑚𝑖 , τ, σ′〉 is valid. This follows from the general path verification property of the binary

rung strategy in Section 2.6 and from the correctness of 𝒮. We rely on the fact that

CHECKAUTHPATH can verify the authentication path Π𝑖,𝑁 using any ladder Λ𝑁′ where

𝑖 ≤ 𝑁′ ≤ 𝑁. Any handle returned by GETCONDENSEDSIG after the 𝑖th signature is

incorporated into the state leads to a ladder Λ𝑁′ that is compatible with the

authentication path Π𝑖,𝑁.

6.8 Error Checks

We haven’t included many error checks in these operations because they’re not

necessary for the formal definition of correctness, which assumes that inputs are

provided correctly (the only question is whether the outputs are computed correctly).

In practice, an implementation should check that inputs are in valid ranges, that series

Merkle Tree Ladder Mode 17

identifiers are consistent with the tags, that authentication paths and ladders are

consistent with data values, and possibly even that signatures can be verified.

We’ve also left out optimizations such as caching the results of previous calls to

GETCONDENSEDSIG and GETREFVAL in the condensation state, recomputing the ladders

from the node set rather than storing them separately and removing older signatures and

ladders from the state when they’re no longer likely to be requested because the

condensation process has moved on to newer reference values. An implementation

should take these optimizations into account as well.

7 Practical Impact of MTL Mode

We now show that MTL mode can reduce the size impact of the NIST PQC signature

algorithms and other signature algorithms with large signature sizes in practice.

For simplicity, we divide our operations into iterations, and we assume that prior to

the first iteration, the signer has signed an initial message series with 𝑁0 messages all

in association with the same tag 𝜏 and the verifier has received the reference value υ𝑁0
.

We further assume that during each iteration, the signer signs α additional messages

and the verifier requests condensed signatures on ρ messages, where the signatures of

interest are randomly and independently chosen among the signatures generated up to

and including that iteration.

If the verifier is interested in a signature on message 𝑚𝑖′ and 𝑖′ ≤ 𝑁0, then because

of MTL mode’s reference value compatibility, the verifier can produce a valid

reconstituted signature from a newly received condensed signature corresponding to

𝑚𝑖′ and the reference value υ𝑁0
. (We assume that the condensed signature was

produced relative to the current message series, which has 𝑁 ≥ 𝑁0 messages.) If 𝑖′ >
𝑁0, however, then the verifier will need to request a new reference value.

7.1 Condensed Signatures Per Reference Value

Under our operational assumptions, the probability that a verifier doesn’t need to

request a new reference value during any of the first κ iterations is the product

∏ (
𝑁0

𝑁0 + 𝑡𝛼
)

𝜌κ

𝑡=1

= ∏ (
1

1 + 𝑡𝛼/𝑁0

)
𝜌κ

𝑡=1

 .

Assuming 𝑁0 is much larger than 𝜌 and 𝛼, we can approximate this probability as:

∏ exp(− 𝑡αρ 𝑁0⁄)

κ

𝑡=1

≈ exp(− 𝜅2αρ 2𝑁0⁄) .

(The analysis is similar to the Birthday Paradox.) Accordingly, we can estimate the

number of iterations until the probability reaches 1/2 as κ ≈ √2 ln 2 √𝑁0/αρ. It

18 A. Fregly et al.

follows that we can estimate the number of condensed signatures until the verifier will

need to request a new reference value as 𝐾 = κρ ≈ √2 ln 2 √𝑁0ρ/α.

7.2 Impact on Example PQC Signature Algorithms

We now consider the reduction in signature overhead for five NIST PQC signature

algorithms with example parameters given in Table 1. We selected the variants of

CRYSTALS–Dilithium, FALCON and SPHINCS+ with the shortest signatures (see

Tables 8 and 9 in [1]). We selected the recommended parameterization of XMSS^MT

with the shortest signatures (see Table 5 in [20]) and opted for a comparable

parameterization of HSS/LMS.

For our analysis, we set 𝑁0 = 10,000, so our ladders include up to 14 hash values

and our authentication paths include up to 13. We selected a security parameter of 128

and hash size of 256 bits to match the underlying signature algorithms, and used the

hash function instantiations in Appendix A. The sizes of the various MTL mode

components in bytes can be computed as follows:

• Initial signature σ = 〈𝑆𝐼𝐷, 𝑐𝑖 , 𝑖, 𝑖, 𝑖, Π𝑖,𝑖, Λ𝑖 , σ𝑖
𝒮 , 𝑑𝑖〉 is 16 + 32 + 4 + 4 + 4 + 13 ∙

32 + 14 ∙ 32 + 32 = 956 plus the size of the underlying signature σ𝑖
𝒮 .

• Condensed signature ς = 〈𝑆𝐼𝐷, 𝑐𝑖 , 𝑖, 𝑁, Π𝑖,𝑁〉 is 16 + 32 + 4 + 4 + 13 ∙ 32 = 472.

• Reference value υ = 〈𝑁′, Λ𝑁′ , σ𝑁′
𝒮 〉 is 4 + 14 ∙ 32 = 452 plus the size of σ𝑁′

𝒮 .

Here, we’ve ignored the overhead of the tag τ and the reference value handle χ, which

may be relatively small, as well as protocol overheads such as identifying algorithms

and public keys that would also be needed in the underlying signature scheme.

We define the effective signature size as

𝜙(𝐾, 𝐾′) = |ς| +
𝐾′

𝐾
|υ|;

where 𝐾 is the number of condensed signatures received, 𝐾′ is the number of reference

values received, |ς| is the size in bits of a condensed signature and |υ| is the size in bits

Signature Algorithm /

Parameters
Claimed Security

Signature Size

(bytes)
Reference

CRYSTALS–Dilithium Level 2 2420 [16]

FALCON-512 Level 1 666 [17]

SPHINCS+-128s Level 1 7856 [18]

HSS/LMS (𝐿 = 2,

LMS_SHA256_M32_H10,

LMOTS_SHA256_N32_W8)

n/a 2964 [19]

XMSS^MT (XMSSMT-

SHA2_20/2_256)
n/a 4963 [20]

Table 1. NIST PQC signature algorithms with example parameters selected for analysis.

Merkle Tree Ladder Mode 19

of a reference value. The effective signature size thus reflects the average number of

bits that the signer sends per signature of interest. (We’ve assumed that |ς| and |υ| are

constant and have ignored the presumably short handle χ and other protocol overheads.)

Fig. 3 shows the effective signature size 𝜙(𝐾, 1) as a function of 𝐾 for the five

examples. We’ve set 𝐾′ = 1, given that only the initial reference value has been

received up until this point. The effective signature size becomes smaller than the

underlying signature size when 𝐾 = 6 for FALCON and 𝐾 = 2 for the other examples.

Fig. 4 shows the expected value of 𝐾 as a function of ρ for three values of α (10,
100, 1000). Under nearly all of this range of operational assumptions, except when ρ

is near its low end and α is at its high end, it is reasonable to expect that 𝐾 will be large

enough that the effective signature size will be less than the underlying signature size

for all five examples. We expect the ongoing effective signature size to be even less

than our estimate because the signature series is expanding, thus increasing 𝐾.

7.3 Further Considerations

The example just given illustrates one practical scenario and one mode of operation.

Other modes may also be helpful in this and other scenarios. A few suggestions follow:

• Multiple message series. We can reduce the condensed signature size (and/or

accommodate more messages) by arranging the messages into multiple series, each

with a different tag; each individual series would potentially have a shorter

maximum authentication path size than a combined series. Our analysis would need

to account for the larger number of reference values that would have to be

maintained.

• Condensing underlying signatures. It may also be helpful to consider constructions

where part of the authentication path is included in the reference value or where the

underlying signature within the reference value is itself conveyed via a condensable

signature scheme. As discussed in Appendix D, the three hash-based signature

schemes all support a modest amount of condensation with certain parameter sets.

• Storage optimizations. With MTL mode, a server that performs condensation

operations potentially only needs to store for each message series, the current ladder,

its underlying signature, the Merkle tree nodes and the per-message randomizers —

an average of less than two nodes and one randomizer per message, plus the

overhead of the ladder and the underlying signature. This can be a significant savings

compared to storing an underlying signature for each message.

• Batch signing and verification. When multiple messages are signed during an

iteration, it is possible to “batch” the signing and reduce the number of underlying

signatures by signing just a single updated ladder that spans all the newly signed

messages. The initial signatures produced for these messages would then be relative

to this single ladder rather than per-message ladders. The verifier can also effectively

batch verification if the underlying signatures are verified as reference values are

received. MTL mode may therefore improve effective signing and verification

performance compared to the underlying signature algorithm.

20 A. Fregly et al.

• Hybrid signature schemes. MTL mode can help make hybrid signature schemes

[21,22] more practical. In these schemes, the signer employs two or more signature

schemes in parallel. If the underlying signature scheme itself is a hybrid scheme,

then MTL mode can be applied to it directly. Alternatively, a variant MTL mode of

operation could be defined in terms of multiple underlying signature schemes, where

the evolving Merkle tree ladder is signed using each of the schemes. Either way, the

additional signatures involved would only increase the size of the reference values,

not the condensed signatures.

• Caching condensed signatures may require special processing because the reference

values held in a cache may be older than the one held by the verifier and the reference

value compatibility property may not necessarily apply. Appendix F provides

guidance on how to handle caching of condensed signatures in practice.

8 Related Work

The binary rung strategy appears under different names in other cryptographic

constructions based on Merkle trees. Champine defines a binary numeral tree [23] with

similar structure (the successive complete binary subtrees are called eigentrees) and

also specifies additional operations on the tree such as a proof that leaf nodes are

consecutively ordered. Champine also references related constructions including

Certificate Transparency [9]. The earlier constructions also include Crosby and

Wallach’s history trees [24] and Todd’s Merkle mountain ranges [25]. Bünz et al. [26]

provide a formal definition and analysis of the latter.

Cryptographic accumulators [27] have a similar structure to condensation and

reconstitution in that a common accumulator value (viz, reference value) helps a

Fig. 3. Effective signature size in bytes for five post-quantum algorithms with example

parameters as a function of number of condensed signatures per reference value. signature

rate.

Merkle Tree Ladder Mode 21

verifier authenticate multiple elements, each of which has a witness relative to the

accumulator value (viz, condensed signature). Reyzin and Yakoubov’s accumulator

[28], applying a binary rung strategy-like construction, also achieves an “old-

accumulator compatibility” property comparable to general path verification for Merkle

tree ladders.

Verkle trees, proposed by Kuszmaul [29] and further elaborated by Buterin [30]

replace the hash function that authenticates pairs of subtrees in a conventional Merkle

tree construction with a vector commitment scheme [31] that authenticates a large

number of subtrees. With the proposed construction, the size of the authentication path

can be significantly reduced. However, the construction is based on pre-quantum

techniques. Peikert, Pepin and Sharp [32] propose a post-quantum vector commitment

scheme, but the size of its authentication path is on the same order as a conventional

Merkle tree. Buterin [30] suggests Scalable Transparent ARguments of Knowledge

(STARKs) [33] as a future post-quantum alternative for Verkle trees.

Aggregate signatures convert multiple signatures into a shorter common value. In

Boneh et al.’s original construction [34], a verifier can authenticate each signed

message based only on the aggregate signature, provided that the verifier also has

access to the other messages that were signed. Aggregate signatures can thus reduce the

size impact of the signature scheme to which they’re applied when the verifier has a

large number of messages to verify. Khaburzaniya et al. show how to aggregate hash-

based signatures using hash-based constructions [35]. Goyal and Vaikuntanathan [36]

propose an improved scheme where the signatures can be made “locally verifiable”

such that the verifier only needs access to specific messages of interest. However, their

constructions are based on pre-quantum techniques (bilinear maps, RSA).

Merkle tree constructions are applied to the problem in of authenticating an evolving

or “streaming” data series by Li et al. [37]. Papamanthou et al. propose an authenticated

Fig. 4. Expected number of condensed signatures per reference value as a function of request

rate and new signature rate.

22 A. Fregly et al.

data structure for a streaming data series [38] that uses lattice-based cryptography rather

than traditional hash functions. The construction provides additional flexibility and

efficiency, as well as another potential path toward post-quantum cryptography.

Stern et al. [14] define signature malleability in the limited sense we have adopted

here. Chase et al. [39], building on work by Ahn et al. [40] and Attrapadung, Libert and

Peters [41] broaden the definition to include the ability to produce a new signature on

a message related in a specified way to a message that has already been signed. MTL

mode only requires the narrower property. Decker and Wattenhofer [15] analyze claims

that the bankruptcy of the MtGox exchange was a result of an attack involving signature

malleability. They concluded that while signature malleability is a concern for the

Bitcoin network, there is little evidence of such attacks prior to MtGox’s bankruptcy.

Focusing on the Transport Layer Security protocol, Sikeridis, Kampanakis and

Devetsikiotis anticipate that the TLS certificate chain and the server’s signature in the

TLS handshake would become the “bottleneck of [post-quantum] authentication” from

a size and processing perspective [42]. Their observations further motivate TLS

protocol extensions where the server omits any certificates that the client already has.

Sikeridis et al. [43] propose an efficient signaling technique for determining which

intermediate certificates to omit or “suppress.” Suppression is complementary to

condensation in that it reduces communication cost when the client already has a given

certificate, whereas condensation helps when the client has a different certificate signed

by the same certification authority.

Kudinov et al. [44] propose several techniques for reducing the size of SPHINCS+

signatures, including an example with 20% savings. Baldimtsi et al. [45] describe a

general framework for reducing the size of cryptographic outputs using brute-force

“mining” techniques, estimating 5– 12% savings. Such techniques are complementary

to condensation as they reduce the size of the underlying signature whereas

condensation reduces the need to send full underlying signatures at all.

9 Conclusion

We have shown that MTL mode can help reduce signature size impact in practical

application scenarios. We suggest this mode, or another mode with similar properties,

can be a standard way to use NIST PQC signature algorithms in message series-signing

applications where signature size impact is a concern.

We plan to develop a more detailed, interoperable specification for MTL mode and

its implementation choices (parameter values, functions 𝐻msg, 𝐻leaf, 𝐻int, 𝐻SID,

signature and reference value formats, algorithm identifiers, etc.). We also intend to

model the operational characteristics of MTL mode for various underlying signature

schemes and operational assumptions.

In addition, we plan to consider how MTL mode can be integrated into applications

such as those involving web PKI, DNSSEC and certificate transparency. As an initial

approach, we imagine a “semi-indirect” format where a signer conveys a condensed

signature ς together with information on how the verifier may resolve the associated

handle χ into a reference value, such as a uniform resource identifier (URI) or a domain

Merkle Tree Ladder Mode 23

name where the reference value is stored, or from which it may be obtained. (Some

information about how to resolve a handle or access condensation scheme operations

may also be conveyed in the representation of the public key and/or in the format for

an uncondensed signature.)

NIST recently announced a call for additional signature candidates with shorter

signature sizes and more cryptographic diversity than the current NIST PQC signature

algorithms [46]. The call complements our suggestion of modes of operation. Indeed,

even if a new algorithm with a much shorter signature size were introduced, MTL mode

may still be helpful because it can be applied to any of the current algorithms, thereby

maintaining diversity.

Modes of operation have historically provided a way to realize additional capabilities

from an underlying cryptographic technique, such as a block cipher in the case of

NIST’s classic modes. We hope that modes of operation such as MTL mode can offer

a way to achieve additional capabilities from post-quantum signature schemes as well.

References

1. Post-Quantum Cryptography Standardization, NIST, https://csrc.nist.gov/projects/post-

quantum-cryptography/post-quantum-cryptography-standardization, last accessed

2022/12/02.

2. Alagic, G., Apon, D., Cooper, D., Dang, Q., Dang, T., Kelsey, J., et al.: NIST IR 8413-upd1:

Status Report on the Third Round of the NIST Post-Quantum Cryptography Standardization

Process. NIST (2022); includes updates as of 2022/09/26.

https://doi.org/10.6028/NIST.IR.8413-upd1, last accessed 2022/12/02.

3. Cooper, D.A., D. Apon, Q.H. Dang, Davidson, M.S., Dworkin, M.J., Miller, C.A.: NIST

Special Publication 800-208: Recommendation for Stateful Hash-Based Signature Schemes.

NIST (2020). https://doi.org/10.6028/NIST.SP.800-208.

4. Announcing the Commercial National Security Algorithm Suite 2.0, National Security

Agency, https://media.defense.gov/2022/Sep/07/2003071834/-1/-

1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF, last accessed 2022/12/02.

5. Migration to Post-Quantum Cryptography. NIST National Cybersecurity Center of

Excellence, https://www.nccoe.nist.gov/crypto-agility-considerations-migrating-post-

quantum-cryptographic-algorithms, last accessed 2022/12/02.

6. Wouters, P., Sury, O: RFC 8624, Algorithm Implementation Requirements and Usage

Guidance for DNSSEC. IETF (2019). https://doi.org/10.17487/RFC8624.

7. Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., Polk, W.: RFC 5280, Internet

X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile.

IETF (2008). https://doi.org/10.17487/RFC5280.

8. Arends, R., Austein, R., Larson, M., Massey, D., Rose, S.: DNS Security Introduction and

Requirements. IETF (2005). https://doi.org/10.17487/RFC4033.

9. Laurie, B., Messeri, E., Stradling, R.: RFC 9162: Certificate Transparency Version 2.0. IETF

(2021). https://doi.org/10.17487/RFC9162.

10. Merkle, R.: Secrecy, Authentication, and Public Key Systems. Ph.D. thesis, Stanford

University (1979). http://www.ralphmerkle.com/papers/Thesis1979.pdf, last accessed

2002/12/02.

11. FIPS PUB 81: DES Modes of Operation. National Bureau of Standards, U.S. Department of

Commerce (1980). https://doi.org/10.6028/NBS.FIPS.81.

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://doi.org/10.6028/NIST.IR.8413-upd1
https://doi.org/10.6028/NIST.SP.800-208
https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://www.nccoe.nist.gov/crypto-agility-considerations-migrating-post-quantum-cryptographic-algorithms
https://www.nccoe.nist.gov/crypto-agility-considerations-migrating-post-quantum-cryptographic-algorithms
https://doi.org/10.17487/RFC8624
https://doi.org/10.17487/RFC5280
https://doi.org/10.17487/RFC4033
https://doi.org/10.17487/RFC9162
http://www.ralphmerkle.com/papers/Thesis1979.pdf
https://doi.org/10.6028/NBS.FIPS.81

24 A. Fregly et al.

12. Abe, M., Chase, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Constant-size

structure-preserving signatures: Generic constructions and simple assumptions. Journal of

Cryptology 29(4), 833–878 (2016). https://doi.org/10.1007/s00145-015-9211-7.

13. Yuan, Q., Tibouchi, M., Abe, M.: Security notions for stateful signature schemes. IET

Information Security 16(1), 1–17 (2022). https://doi.org/10.1049/ise2.12040.

14. Stern, J., Pointcheval, D., Malone-Lee, J., Smart, N.P.: Flaws in applying proof

methodologies to signature schemes. In: Yung, M. (ed.) Advances in Cryptology —

CRYPTO 2002, LNCS, vol. 2442, pp. 93–110. Springer, Berlin, Heidelberg (2002).

https://doi.org/10.1007/3-540-45708-9_7.

15. Decker, C., Wattenhofer, R.: Bitcoin transaction malleability and MtGox. In: Kutyłowski,

M., Vaidya, J. (eds.) Computer Security — ESORICS 2014, LNCS, vol. 8173, pp. 313–326.

Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11212-1_18.

16. Bai, S., L. Ducas, E. Kiltz, Lepoint, T., Lyubashevsky, V., Schwabe, P. et al.: CRYSTALS-

Dilithium Algorithm Specifications and Supporting Documentation (Version 3.1), dated

2021/02/08, https://pq-crystals.org/dilithium/data/dilithium-specification-round3-

20210208.pdf, last accessed 2022/12/20.

17. Fouque, P.-A., J. Hoffstein, P. Kirchner, Lyubashevsky, V., Pornin, T., Prest, T., et al.:

Falcon: Fast-Fourier Lattice-based Compact Signatures over NTRU Specification v1.2,

dated 2020/01/10, https://falcon-sign.info/falcon.pdf, last accessed 2022/12/02.

18. Aumasson, J.-P., D.J. Bernstein, W. Beullens, Dobraunig, C., Eichlseder, M., Fluhrer, S., et

al.: SPHINCS+ Submission to the NIST post-quantum project, v.3.1, dated 2022/06/10,

https://sphincs.org/data/sphincs+-r3.1-specification.pdf, last accessed 2022/12/02.

19. McGrew, D., Curcio, M., Fluhrer, S.: RFC 8554, Leighton-Micali Hash-Based Signatures

(2019). https://doi.org/10.17487/RFC8554.

20. Huelsing, A., Butin, D., Gazdag, S., Rijneveld, J., Mohaisen, A.: RFC8391, XMSS:

eXtended Merkle Signature Scheme. IETF (2018). https://doi.org/10.17487/RFC8391.

21. Barker, W., Polk, W., Souppaya, M.: Getting Ready for Post-Quantum Cryptography:

Exploring Challenges Associated with Adopting and Using Post-Quantum Cryptographic

Algorithms, NIST Cybersecurity White Paper, 2021/04/28.

https://doi.org/10.6028/NIST.CSWP.04282021.

22. Driscoll, F.: Terminology for Post-Quantum Traditional Hybrid Schemes,.

https://datatracker.ietf.org/doc/draft-driscoll-pqt-hybrid-terminology, last accessed

2022/12/02. Work in progress.

23. Champine, L.: Streaming Merkle Proofs within Binary Numeral Trees. In: Cryptology ePrint

Archive, Paper 2021/038. https://eprint.iacr.org/2021/038, last accessed 2022/12/02.

24. Crosby, S., Wallach, D.: Efficient data structures for tamper-evident logging. In Proceedings

of the 18th USENIX Security Symposium, pp. 317–334. USENIX Association (2009).

https://dl.acm.org/doi/abs/10.5555/1855768.1855788.

25. Todd, P.: Merkle Mountain Ranges, https://github.com/opentimestamps/opentimestamps-

server/blob/master/doc/merkle-mountain-range.md, last accessed 2022/12/02.

26. Bünz, B., Kiffer, L., Luu, L., Zamani, M.: FlyClient: Super-light clients for cryptocurrencies.

In: 2020 IEEE Symposium on Security and Privacy (SP), pp. 928–946. IEEE (2020),

https://doi.org/10.1109/SP40000.2020.00049.

27. Benaloh, J., de Mare, M.: One-way accumulators: A decentralized alternative to digital

signatures. In: Helleseth, T. (ed.) Advances in Cryptology — EUROCRYPT ’93, LNCS,

vol. 765, pp. 274–285. Springer, Berlin, Heidelberg (1993). https://doi.org/10.1007/3-540-

48285-7_24.

28. Reyzin, L., Yakoubov, S.: Efficient asynchronous accumulators for distributed PKI. In:

Zikas, V., De Prisco, R. (eds) Security and Cryptography for Networks, SCN 2016, LNCS,

https://doi.org/10.1007/s00145-015-9211-7
https://doi.org/10.1049/ise2.12040
https://doi.org/10.1007/3-540-45708-9_7
https://doi.org/10.1007/978-3-319-11212-1_18
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://falcon-sign.info/falcon.pdf
https://sphincs.org/data/sphincs+-r3.1-specification.pdf
https://doi.org/10.17487/RFC8554
https://doi.org/10.17487/RFC8391
https://doi.org/10.6028/NIST.CSWP.04282021
https://datatracker.ietf.org/doc/draft-driscoll-pqt-hybrid-terminology
https://eprint.iacr.org/2021/038
https://dl.acm.org/doi/abs/10.5555/1855768.1855788
https://github.com/opentimestamps/opentimestamps-server/blob/master/doc/merkle-mountain-range.md
https://github.com/opentimestamps/opentimestamps-server/blob/master/doc/merkle-mountain-range.md
https://doi.org/10.1109/SP40000.2020.00049
https://doi.org/10.1007/3-540-48285-7_24
https://doi.org/10.1007/3-540-48285-7_24

Merkle Tree Ladder Mode 25

vol. 9841, pp. 292–309. Springer, Cham, 2016. https://doi.org/10.1007/978-3-319-44618-

9_16.

29. Kuszmaul, J.: Verkle Trees,

https://math.mit.edu/research/highschool/primes/materials/2018/Kuszmaul.pdf, last

accessed 2022/12/02.

30. Buterik, V.: Verkle Trees, https://vitalik.ca/general/2021/06/18/verkle.html, last accessed

2022/12/02.

31. Catalano, D., Fiore, D.: Vector commitments and their applications. In: Kurosawa, K.,

Hanaoka, G. (eds.) Public-Key Cryptography — PKC 2013, LNCS, vol. 7778, pp. 55–72.

Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36362-7_5.

32. Peikert, C., Pepin, Z., Sharp, C.: Vector and functional commitments from lattices. In:

Nissim, K., Waters, B. (eds.) Theory of Cryptography, TCC 2021, LNCS, vol. 13044, pp.

480–511. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90456-2_16.

33. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, Transparent, and Post-

Quantum Secure Computational Integrity. In: Cryptology ePrint Archive, Paper 2018/046,

https://eprint.iacr.org/2018/046, last accessed 2022/12/02.

34. Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted

signatures from bilinear maps. In: Biham, E. (ed.) Advances in Cryptology —

EUROCRYPT 2003, LNCS, vol. 2656, pp. 416–432. Springer, Berlin, Heidelberg (2003).

https://doi.org/10.1007/3-540-39200-9_26.

35. Khaburzaniya, I., Konstantinos, C., Lewi, K., Malvai, H.: Aggregating and thresholdizing

hash-based signatures using STARKs. In: Proceedings of the 2022 ACM on Asia

Conference on Computer and Communications Security, pp. 393–407. ACM, New York

(2022). https://doi.org/10.1145/3488932.3524128.

36. Goyal, R., Vaikuntanathan, V.: Locally Verifiable Signature and Key Aggregation, In:

Cryptology ePrint Archive, Paper 2022/179, https://eprint.iacr.org/2022/179, last accessed

2022/12/02. To appear, Advances in Cryptology — CRYPTO 2022.

37. Li, F., Yi, K., Hadjieleftheriou, M., Kollios, G.: Proof-infused streams: Enabling

authentication of sliding window queries on streams. In: Proceedings of the 33rd

International Conference on Very Large Data Bases, pp. 147–158. VLDB Endowment

(2007). https://dl.acm.org/doi/10.5555/1325851.1325871.

38. Papamanthou, C., Shi, E., Tamassia, R., Yi, K.: Streaming authenticated data structures. In:

Johansson, T., Nguyen, P.Q. (eds.) Advances in Cryptology – EUROCRYPT 2013, LNCS,

vol. 7881, pp. 353–370. Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-

642-38348-9_22.

39. Chase, M., Kohlweiss, M., Lysyanskaya, A., Meiklejohn, S.: Malleable signatures: New

definitions and delegatable anonymous credentials. In 2014 IEEE 27th Computer Security

Foundations Symposium, pp. 199–213. IEEE (2014). https://doi.org/10.1109/CSF.2014.22.

40. Ahn, J.H., Boneh, D., Camenisch, J., Hohenberger, S., Shelat, A., Waters, B.: Computing

on authenticated data. Journal of Cryptology 28(2), 351–395.

https://doi.org/10.1007/s00145-014-9182-0.

41. Attrapadung, N., Libert, B., Peters, T.: Computing on authenticated data: New privacy

definitions and constructions. In: Wang, X., Sako, K. (eds) Advances in Cryptology —

ASIACRYPT 2012, LNCS, vol. 7658, pp. 367–385. Springer, Berlin, Heidelberg (2012).

https://doi.org/10.1007/978-3-642-34961-4_23.

42. Sikeridis, D., Kampanakis, P., Devetsikiotis, M.: Post-quantum authentication in TLS 1.3: a

performance study. In: Network and Distributed Systems Security (NDSS) Symposium

2020, The Internet Society (2020). https://dx.doi.org/10.14722/ndss.2020.24203.

https://doi.org/10.1007/978-3-319-44618-9_16
https://doi.org/10.1007/978-3-319-44618-9_16
https://math.mit.edu/research/highschool/primes/materials/2018/Kuszmaul.pdf
https://vitalik.ca/general/2021/06/18/verkle.html
https://doi.org/10.1007/978-3-642-36362-7_5
https://doi.org/10.1007/978-3-030-90456-2_16
https://eprint.iacr.org/2018/046
https://doi.org/10.1007/3-540-39200-9_26
https://doi.org/10.1145/3488932.3524128
https://eprint.iacr.org/2022/179
https://dl.acm.org/doi/10.5555/1325851.1325871
https://doi.org/10.1007/978-3-642-38348-9_22
https://doi.org/10.1007/978-3-642-38348-9_22
https://doi.org/10.1109/CSF.2014.22
https://doi.org/10.1007/s00145-014-9182-0
https://doi.org/10.1007/978-3-642-34961-4_23
https://dx.doi.org/10.14722/ndss.2020.24203

26 A. Fregly et al.

43. Sikeridis, D., Huntley, S., Ott, D., Devetsikiotis, M.: Intermediate Certificate Suppression

in Post-Quantum TLS: An Approximate Membership Querying Approach, In: Cryptology

ePrint Archive, Paper 2022/1556, https://eprint.iacr.org/2022/1556, last accessed

2022/12/02. To appear, 18th International Conference on Emerging Networking

EXperiments and Technologies (CoNEXT ’22).

44. Kudinov, M., Hülsing, A., Ronen, E. Yogev, E., SPHINCS+C: Compressing SPHINCS+

With (Almost) No Cost, In: Cryptology ePrint Archive, Paper 2022/778,

https://eprint.iacr.org/2022/778, last accessed 2022/12/02.

45. Baldimtsi, F., Chalkias, K., Chatzigiannis, P., Kelkar, M.: Truncator: Time-space Tradeoff

of Cryptographic Primitives, In: Cryptology ePrint Archive, Paper 2022/1581,

https://eprint.iacr.org/2022/1581, last accessed 2022/12/02.

46. Draft Call for Additional Digital Signature Schemes for the Post-Quantum Cryptography

Standardization Process, NIST, https://csrc.nist.gov/csrc/media/Projects/pqc-dig-

sig/documents/call-for-proposals-dig-sig-sept-2022.pdf, last accessed 2022/12/02.

47. FIPS PUB 180-4: Secure Hash Standard. NIST (2015).

https://doi.org/10.6028/NIST.FIPS.180-4.

48. Hülsing, A., Rijneveld, J., Song, F.: Mitigating multi-target attacks in hash-based signatures.

In: Cheng, CM., Chung, KM., Persiano, G., Yang, BY. (eds) Public-Key Cryptography —

PKC 2016, LNCS, vol. 9614, pp. 387–416. Springer, Berlin, Heidelberg, 2016.

https://doi.org/10.1007/978-3-662-49384-7_15.

49. Sloane, N.J.A.: The ruler function: 2^a(n) divides 2n. Or, a(n) = 2-adic valuation of 2n. In:

The On-Line Encyclopedia of Integer Sequences, Entry A001511, https://oeis.org/A001511,

last accessed 2022/12/02.

50. Sloane, N.J.A., Wilks, A.: a(n) = a(floor(n/2)) + n; also denominators in expansion of

1/sqrt(1-x) are 2^a(n); also 2n - number of 1’s in binary expansion of 2n. In: The On-Line

Encyclopedia of Integer Sequences, Entry A005187, https://oeis.org/A005187, last accessed

2022/12/02.

https://eprint.iacr.org/2022/1556
https://eprint.iacr.org/2022/778
https://eprint.iacr.org/2022/1581
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.1007/978-3-662-49384-7_15
https://oeis.org/A001511
https://oeis.org/A005187

Merkle Tree Ladder Mode 27

Appendix A Hash Function Instantiations

MTL mode uses four hash functions as noted in Sections 2 and 5:

• 𝐻msg(𝑆𝐼𝐷, 𝑖, 𝑚, 𝑐) ⟶ 𝑑 maps a series identifier 𝑆𝐼𝐷, an index 𝑖, a message 𝑚 and a

randomizer 𝑐 to a data value 𝑑;

• 𝐻leaf(𝑆𝐼𝐷, 𝑖, 𝑑) ⟶ 𝑉 maps a series identifier 𝑆𝐼𝐷, an index 𝑖 and a data value 𝑑 to a

2ℓ-bit leaf hash value 𝑉;

• 𝐻int(𝑆𝐼𝐷, 𝐿, 𝑅, 𝑉left, 𝑉right) ⟶ 𝑉 maps a series identifier 𝑆𝐼𝐷, two indexes 𝐿 and 𝑅,

and two 2ℓ-bit hash values 𝑉left and 𝑉right to a 2ℓ-bit hash value 𝑉; and

• 𝐻SID(𝑆, τ) ⟶ 𝑆𝐼𝐷 maps a 2ℓ-bit seed and a tag to a series identifier 𝑆𝐼𝐷.

We want the functions to be cryptographically separate from one another and also

from any hash functions involved in the underlying signature scheme 𝒮. Because the

example underlying signature schemes instantiate their own hash functions in different

ways, we find it more practical to propose custom instantiations of the four hash

functions for each scheme than to construct a generic set for use across all schemes.

While we’ve adopted a concatenate-then-hash style for our instantiations, the flexibility

gives the option to move to a different style, e.g., mask-then-hash, to align better with

the security proofs for the underlying schemes. An implementation of MTL can use the

same underlying hash function as the underlying signature scheme or a different hash

function.

In the following, let 𝐻 be a second-preimage-resistant hash function with a 2ℓ-bit

output (e.g., SHA-256 [47] for the case ℓ = 128). We assume the 2ℓ-bit hash function

output is represented as an octet string as per the hash function’s specification, e.g.,

Section 3 of [47]; ℎ𝐿𝑒𝑛 = ℓ/4 denotes the length of the octet string. We also adopt the

following notation: [𝑥]𝑤 converts a non-negative integer 𝑥 to its 𝑤-octet unsigned

representation, most significant octet first; 𝑥〈1: 𝑤〉 returns the first 𝑤 octets of an octet

string 𝑥 (we start our numbering with octet 1); and 𝟶x denotes a hexadecimal

representation.

The next sections propose instantiations for the five underlying post-quantum

signature schemes mentioned in the paper. While Section 7 focuses on specific

parameter sets for analysis, the instantiations are more general and could be applied to

other parameter sets as well.

A.1 HSS/LMS Instantiations

HSS/LMS defines its hash functions by formatting their inputs into input strings to the

underlying hash function 𝐻; the values of the 21st and 22nd octets provide separation

between the different uses (see Section 9.1 of [19]). We take a similar approach for the

MTL mode’s uses and propose

𝐻msg(𝑆𝐼𝐷, 𝑖, 𝑚, 𝑐) ∶= 𝐻(𝑆𝐼𝐷 ∥ [𝑖]4 ∥ 𝐷MTLM ∥ 𝑐 ∥ 𝑚);

𝐻leaf(𝑆𝐼𝐷, 𝑖, 𝑑) ∶= 𝐻(𝑆𝐼𝐷 ∥ [𝑖]4 ∥ 𝐷MTLL ∥ 𝑑);

28 A. Fregly et al.

𝐻int(𝑆𝐼𝐷, 𝐿, 𝑅, 𝑉left, 𝑉right) ∶= 𝐻(𝑆𝐼𝐷 ∥ [𝐿]4 ∥ 𝐷MTLI ∥ [𝑅]4 ∥ 𝑉left ∥ 𝑉right); and

𝐻SID(𝑆, τ) ∶= 𝐻([0]16 ∥ τ ∥ 𝐷MTLS ∥ 𝑆)〈1: 16〉.

To align with HSS/LMS’s formats, we place three constraints on our MTL mode

implementation: 𝑆𝐼𝐷 must be a 16-octet string; 𝑖, 𝐿 and 𝑅 must be at most 232 − 1; and

τ must be a four-octet string. We suggest 𝐷MTLM = 𝟶x𝟿0𝟿0, 𝐷MTLL = 𝟶x𝟿1𝟿1,

𝐷MTLI = 𝟶x𝟿2𝟿2 and 𝐷MTLS = 𝟶x𝟿3𝟿3, contrasting with HSS/LMS’s identifiers

which either start with 𝟶𝑥8 or have most significant bit 𝟶. In addition, so that the

boundary between 𝑐 and 𝑚 is unambiguous, we require that the randomizer has a fixed

length. We suggest 2ℓ bits, the same length as HSS/LMS’s own message randomizer

(see Section 7.1 of [19]). We put the seed 𝑆 at the end of the input format for 𝐻SID so

that an implementation can choose a length larger than 16 octets, which would be the

limit if we put it at the beginning. If 𝑆 is 32 octets or shorter, then the input to the hash

function in 𝐻𝑆𝐼𝐷 is at most 54 octets, which, after padding, fits within a single SHA-

256 compression function call. 𝐻leaf similarly takes a single call and 𝐻int takes two,

matching their counterparts in HSS/LMS.

With these instantiations, up to 232 − 1 messages can be associated with a given tag

and up to 264 − 232 messages can be signed in MTL mode with a given HSS/LMS key

pair. The latter limit is greater than the total number of messages supported by any of

the recommended HSS/LMS parameter sets (i.e., 240; see Section 6.4 of [19]).

A.2 Instantiations for Other Underlying Signature Schemes

We now provide some suggestions on how one might instantiate the four hash functions

when MTL mode is applied to the other underlying schemes.

XMSS^MT. Like HSS/LMS, XMSS^MT separates its hash functions by

distinguishing certain octets in the inputs to 𝐻; here, the first hLen octets vary (see

Section 5.1 of [20]). Following this approach, we propose

𝐻msg(𝑆𝐼𝐷, 𝑖, 𝑚, 𝑐) ∶= 𝐻(𝐷MTLM ∥ 𝑆𝐼𝐷 ∥ [𝑖]4 ∥ 𝑐 ∥ 𝑚);

𝐻leaf(𝑆𝐼𝐷, 𝑖, 𝑑) ∶= 𝐻(𝐷MTLL ∥ 𝑆𝐼𝐷 ∥ [𝑖]4 ∥ 𝑑);

𝐻int(𝑆𝐼𝐷, 𝐿, 𝑅, 𝑉left, 𝑉right) ∶= 𝐻(𝐷MTLI ∥ 𝑆𝐼𝐷 ∥ [𝐿]4 ∥ [𝑅]4 ∥ 𝑉left ∥ 𝑉right); and

𝐻SID(𝑆, τ) ∶= 𝐻(𝐷MTLS ∥ 𝑆 ∥ τ ∥)〈1: 16〉.

We suggest 𝐷MTLM = [256]ℎ𝐿𝑒𝑛, 𝐷MTLL = [257]ℎ𝐿𝑒𝑛, 𝐷MTLI = [258]ℎ𝐿𝑒𝑛 and

𝐷MTLS = [259]ℎ𝐿𝑒𝑛, contrasting with XMSS^MT’s identifiers which involve integers

in the range 0–3. For consistency with our HSS/LMS instantiations and make to the

formats unambiguous, we again constrain 𝑆𝐼𝐷 to be a 16-octet string; 𝑖, 𝐿 and 𝑅 to be

at most 232 − 1; and τ to be a four-octet string. However, the instantiations could be

redefined with different lengths. As above, with these constraints up to 264 − 232

messages can be signed in MTL mode with a given XMSS^MT key pair, a limit that

again is greater than the total number of messages supported by any of the

recommended parameter sets (i.e., 260; see Section 5.4.1 of [20]).

Note that we’ve maintained the concatenate-then-hash style of our HSS/LMS

instantiations. We could instead follow XMSS^MT’s mask-then-hash style where

bitmasks are derived from “address” components such as 𝑆𝐼𝐷, 𝐿 and 𝑅 and exclusive-

Merkle Tree Ladder Mode 29

ored with other inputs. We could also adjust the formatting to align with the boundaries

of the hash function’s internal compression function, as XMSS^MT does.

(Notational comment: the 𝐻msg we define here is the MTL mode function, not

XMSS^MT’s H_msg; and the 𝐻 we use here is the underlying hash function, e.g.,

SHA-256, not XMSS^MT’s H.)

SPHINCS+. A 32-octet address field separates different uses of the underlying hash

function for this scheme (see Sections 7.2 and 2.7.3 of [18]). The first four octets are

the layer address. SPHINCS+’s own layer addresses are in the range 0–6, so we again

suggest the range 256–259 for the MTL mode functions. The other inputs would be

formatted to align with SPHINCS+’s formats (e.g., padding the first field to the length

of the compression function). We could also adopt a mask-then-hash style in addition

to the concatenate-then-hash style as SPHINCS+ does in its “robust” variant. The

instantiations could impose the same constraints as the other instantiations above, or

they could move to larger sizes (e.g., eight-octet indexes and tag), given that SPHINCS+

is stateless and therefore doesn’t have a built-in limit on the number of messages that

can be signed.

FALCON’s only internal use of a hash function is for mapping a 320-bit salt and a

message to a polynomial; the scheme uses SHAKE-256, where the input is the

concatenation of the salt and the message (see Section 3.9.1 of [17]). FALCON’s own

instantiation thus doesn’t directly provide a way to separate other uses of the underlying

hash function, and it doesn’t support SHA-256 (it requires an extendable-output

function (XOF)). Given that we don’t have an opportunity to separate from MTL

mode’s uses from FALCON’s, any of the instantiations for the other schemes seems an

equally reasonable choice.

CRYSTALS–Dilithium uses a hash function (SHAKE-256 or SHAKE-128) for

several purposes (see Section 5.3 of [16]). Like FALCON, it doesn’t directly provide a

way to separate other uses from its own, nor does it support SHA-256. Again, any of

the previous instantiations would seem to be equally reasonable.

A.3 Hash Function Usage Outside Signature Schemes

As evidenced above, two of the five example post-quantum signature schemes

considered don’t provide a direct way to separate their uses of an underlying hash

function from other uses outside the signature scheme.

Given that a signature scheme will often be combined with other uses of the same

hash function in an application, it would be worthwhile to have a common convention

for using a hash function within a signature scheme that does provide for such

separation. The convention would be another aspect of the ongoing improvements in

multi-user / multi-target security [48], where a design goal is to limit each of the

adversary’s hash function queries to a specific context.

30 A. Fregly et al.

Appendix B Binary Rung Strategy Operations

We now give example pseudocode for the Merkle tree ladder operations in the binary

rung strategy ℬℛ𝒮 described in Section 2.6, which is the basis for the MTL mode

operations in Section 5. The pseudocode takes an iterative approach where the

authentication paths and ladders are constructed with “for” loops, following the tree

structure from leaf to ladder. An alternative would be a recursive approach where the

components are constructed with recursive calls that proceed from ladder to leaf. Arrays

are indexed starting with 1.

Signature-generation-only optimizations. MTL mode’s signature generation

operation calls ADDLEAFNODE to add a leaf node corresponding to a message being

signed and to obtain a ladder spanning the leaf nodes added so far. The operation then

calls GETAUTHPATH to obtain an authentication path from the newly added leaf node to

the newly produced ladder. The mode’s condensation operations (Section 6) likewise

call ADDLEAFNODE to add a leaf node corresponding to the signature being incorporated,

but in contrast, call GETAUTHPATH to obtain an authentication path from an arbitrary

leaf node to the current ladder. An implementation such as a hardware security module

that is intended only to support signature generation, not condensation, therefore only

needs to maintain enough hash values to produce the next ladder and the authentication

path to it from the newly added leaf node. The pseudocode below covers the general

case and requires storage for 𝑂(𝑁) hash values, where 𝑁 is the number of leaf nodes

in the node set. The notes suggest optimizations for the signature-generation-only case

and require storage for only 𝑂(log 𝑁) hash values.

B.1 Node Set Representation

A node set 𝑇 includes three parts: the series identifier, denoted 𝑇. 𝑆𝐼𝐷; the number of

leaf nodes, denoted 𝑇. 𝑁; and zero or more node hash values, each denoted 𝑇. 𝑉[𝐿: 𝑅]
where 𝐿 and 𝑅 is the pair of indexes that uniquely identifies the node.

We assume a suitable data structure for mapping the index pair to the hash value.

For instance, an implementation could maintain a lookup table (𝐿, 𝑅) → 𝑉, which

would effectively serve as a sparse representation for an expanding 𝑇. 𝑁 × 𝑇. 𝑁 array.

Alternatively, an implementation could map the index pair to a single index 𝑍

corresponding to the order in which the value 𝑇. 𝑉[𝐿: 𝑅] is computed by ADDLEAFNODE,

and keep the value at this index in a one-dimensional array.

For the binary rung strategy, the (𝐿, 𝑅) → 𝑍 mapping could take the form

𝑍 ∶= 2𝑅 − 𝐵(𝑅) − 𝜈𝐵(𝑅) + 𝑘(𝐿, 𝑅).

where 𝐵(𝑅) is the number of ones bits in the binary representation of 𝑅, 𝜈𝐵(𝑅) is the

index of the lowest ones bit in the representation (where bits are indexed starting at 0),

and 𝑘(𝐿, 𝑅) is the unique integer such that 𝐿 = 𝑅 − 2𝑘 + 1 (if such an integer exists;

otherwise (𝐿, 𝑅) is not a valid index pair for the binary rung strategy).

To see this, consider that the hash values added during the 𝑅th call to ADDLEAFNODE,

i.e., when 𝑖 = 𝑅 are those with right index 𝑅 and left index 𝐿 = 𝑅 − 2𝑘 + 1 for each

Merkle Tree Ladder Mode 31

value of 𝑘 between 0 and 𝜈𝐵(𝑅); they’re added in increasing order of 𝑘. To determine

the one-dimensional index 𝑍, then, we only need to know how many hash values are

added up to and including the 𝑅th call.

The index of the lowest ones bit in an the binary representation of an integer 𝑥, plus

one, i.e., 𝜈𝐵(𝑥) + 1, is the ruler function of the integer 𝑥 [49]. The total number of hash

values added up to and including the 𝑅th call, i.e., ∑ (𝜈𝐵(𝑥) + 1)𝑅
𝑥=1 , thus equals the

sequential sum of the ruler function up to 𝑅, which is 2𝑅 − 𝐵(𝑅) [50]. It follows that

the overall order in which the hash value 𝑇. 𝑉[𝐿: 𝑅] is added is 2𝑅 − 𝐵(𝑅) − 𝜈𝐵(𝑅) +
𝑘(𝐿, 𝑅). This order can then be used as an index to a one-dimensional array for storing

and retrieving 𝑇. 𝑉[𝐿: 𝑅].
Another way to see the result is to consider that the ladder after the 𝑅th call will

include 𝐵(𝑅) complete, adjacent binary trees spanning the 𝑅 leaf nodes. A complete

binary tree has one fewer internal nodes than leaf nodes, so collectively, the 𝐵(𝑅) trees

have 𝑅 − 𝐵(𝑅) internal nodes and 2𝑅 − 𝐵(𝑅) total nodes. These are the only nodes

whose hash values will have been added up to and including this call. A node set with

𝑁 leaf nodes can therefore be represented with 2𝑁 − 𝐵(𝑁) ≤ 2𝑁 − 1 hash values.

Signature-generation-only case. If GETAUTHPATH and ADDLEAFNODE will be used

only for signature generation, then the node set representation only needs to maintain

enough to produce the next ladder and authentication path. In this case, the node set has

four parts: 𝑇. 𝑆𝐼𝐷; 𝑇. 𝑁; the current ladder, denoted 𝑇. Λ; and the current authentication

path, denoted 𝑇. Π. In this case, the node set representation would include 𝐵(𝑁) +
𝜈𝐵(𝑁) hash values (corresponding to the number of hash values in the ladder and in the

authentication path); the sum is at most the number of bits in the binary representation

of 𝑁. It follows that the storage requirement in the signature-only case is at most

⌊𝑙𝑜𝑔2𝑁⌋ + 1 hash values.

B.2 Node Set Initialization

INITNODESETℬℛ𝒮(𝑆𝐼𝐷) ⟶ 𝑇0 returns a new node set 𝑇0 associated with the series

identifier 𝑆𝐼𝐷.

1. Create a new, empty node set 𝑇0.

2. Set 𝑇0. 𝑆𝐼𝐷 ∶= 𝑆𝐼𝐷 and 𝑇0. 𝑁 ∶= 0. The initial node set will include no node hash

values.

3. Return 𝑇0.

Signature-generation-only case. Step 2 also sets 𝑇. Λ and 𝑇. Π to empty arrays.

B.3 Leaf Node Count

GETLEAFNODECOUNTℬℛ𝒮(𝑇) ⟶ 𝑁 returns the number of leaf nodes in the node set 𝑇.

1. Set 𝑁 ∶= 𝑇. 𝑁.

2. Return 𝑁.

32 A. Fregly et al.

B.4 Leaf Node Addition

ADDLEAFNODEℬℛ𝒮(𝑇, 𝑑) ⟶ 〈𝑇′, Λ〉 adds a leaf node corresponding to the data value 𝑑

to the node set 𝑇, assigning the next leaf node index to it, and returns the updated node

set 𝑇′ and the next ladder Λ spanning the leaf nodes in the node set, following the binary

rung strategy.

1. Set 𝑆𝐼𝐷 ∶= 𝑇. 𝑆𝐼𝐷.

2. Set 𝑖 ∶= 𝑇. 𝑁 + 1.

3. Set 𝑇′: = 𝑇.

4. Set 𝑇′. 𝑁 ∶= 𝑖.
5. Compute 𝑉 ∶= 𝐻leaf(𝑆𝐼𝐷, 𝑖, 𝑑).

6. Set 𝑇′. 𝑉[𝑖: 𝑖] ∶= 𝑉, adding the new leaf node to the node set.

7. Write 𝑖 = ∑ 2𝜈𝑗𝐵
𝑗=1 where the 𝜈𝑗 are the indexes of the ones bits in the binary

representation of 𝑖 from highest to lowest.

8. For 𝑘 from 1 to 𝜈𝐵 do:

a. Compute 𝑉 ∶= 𝐻int(𝑆𝐼𝐷, 𝑖 − 2𝑘 + 1, 𝑖, 𝑇′. 𝑉[𝑖 − 2𝑘 + 1: 𝑖 − 2𝑘−1], 𝑉).

b. Set 𝑇′. 𝑉[𝑖 − 2𝑘 + 1: 𝑖] ∶= 𝑉, adding the new internal node to the node set.

9. Create a new empty array Λ.

10. Set 𝑅 ∶= 0.

11. For 𝑗 from 1 to 𝐵 do:

a. Set 𝐿 ∶= 𝑅 + 1 and 𝑅 ∶= 𝑅 + 2𝜈𝑗.

b. Set Λ[𝑗] ∶= 𝑇′. 𝑉[𝐿: 𝑅], adding this rung hash value to the ladder.

12. Return 𝑇′ and Λ, which will be an array of 𝐵 hash values.

Step 8 computes the new ladder rung [𝑖 − 2𝜈𝐵 + 1: 𝑖] from leaf to ladder. As also

noted in Appendix C, Step 8 computes this rung from the last 𝜈𝐵 rungs of Λ𝑁−1, so the

rung is their ancestor. Step 11 then assembles the rungs into the ladder.

Signature-generation-only case. Instead of retrieving 𝑇′. 𝑉[𝑖 − 2𝑘 + 1: 𝑖 − 2𝑘−1]
from the set of node hash values during the call to 𝐻int, Step 8a selects the rung

𝑇. Λ[𝐵 + 𝜈𝐵 − 𝑘] from the input node set. Instead of storing the new hash value, Step

8b copies the selected rung to the authentication path in the new node set by setting

𝑇′. Π[𝑘] ∶= 𝑇. Λ[𝐵 + 𝜈𝐵 − 𝑘]. Similarly, instead of retrieving 𝑇′. 𝑉[𝐿: 𝑅] from the set

of node hash values, Step 11b sets Λ[𝑗] ∶= 𝑇. Λ[𝑗] (if 𝑗 < 𝐵) or Λ[𝑗] ∶= 𝑉 (if 𝑗 = 𝐵).

The step then copies the selected rung to the ladder in the new node set by setting

𝑇′. Λ[𝑗] ∶= Λ[𝑗]. Step 11a is omitted.

Updating in place. ADDLEAFNODE can be changed to update the node set in place

simply by removing the 𝑇′: = 𝑇 step from the pseudocode and operating on the input

𝑇 directly thereafter (and not returning 𝑇′).

B.5 Authentication Path Construction

GETAUTHPATHℬℛ𝒮(𝑇, 𝑖) ⟶ Π returns the authentication path Π from the 𝑖th leaf node

in the node set 𝑇 to its associated rung in the current ladder following the binary rung

strategy.

Merkle Tree Ladder Mode 33

1. Set 𝑆𝐼𝐷 ∶= 𝑇. 𝑆𝐼𝐷.

2. Set 𝑁 ∶= 𝑇. 𝑁.

3. If 𝑖 < 1 or 𝑖 > 𝑁 then return “index out of range.”

4. Write 𝑁 = ∑ 2𝜈𝑗𝐵
𝑗=1 where the 𝜈𝑗 are the indexes of the ones bits in the binary

representation of 𝑁 from highest to lowest.

5. Set 𝑅 ∶= 0.

6. For 𝑗 from 1 to 𝐵 do:

a. Set 𝐿 ∶= 𝑅 + 1 and 𝑅 ∶= 𝑅 + 2𝜈𝑗.

b. If 𝑖 ≤ 𝑅 then break.

7. Set Δ ∶= 𝑖 – 𝐿.

8. Write Δ = ∑ 𝛿𝑘2𝑘−1𝜈𝑗

𝑘=1 where the 𝛿𝑘 are the bits of the binary representation of Δ

from lowest to highest.

9. Create a new empty array Π.

10. For 𝑘 from 1 to 𝜈𝑗 do:

a. If 𝛿𝑘 = 0 then set Π[𝑘] ∶= 𝑇. 𝑉[𝐿 + Δ + 2𝑘−1: 𝐿 + Δ + 2𝑘 − 1].
b. Else (𝛿𝑘 = 1) set Π[𝑘] ∶= 𝑇. 𝑉[𝐿 + Δ − 2𝑘−1: 𝐿 + Δ − 1] and Δ ∶= Δ − 2𝑘−1.

11. Return Π, which will be an array of 𝜈𝑗 hash values.

Step 6 determines which rung of the ladder spans the leaf node, and Step 10 then

constructs the authentication path from leaf to ladder, based on the binary

representation of Δ, the relative position of the leaf node within the ladder rung span.

(Recall that each rung spans a complete binary tree.)

Signature-generation-only case: Step 3 instead checks if 𝑖 ≠ 𝑁, given that this case

assumes that the authentication path is from the newly added leaf node to the newly

produced ladder only. Steps 5–10 are replaced by a loop that copies 𝑇. Π[𝑘] to Π[𝑘] for

𝑘 from 1 to 𝜈𝐵. (In Step 11, we have 𝜈𝑗 = 𝜈𝐵.)

B.6 Authentication Path Verification

CHECKAUTHPATHℬℛ𝒮(𝑆𝐼𝐷, 𝑖, 𝑁, 𝑁′, 𝑑, Π, Λ) ⟶ 𝑏 verifies that the 𝑖th leaf node of a node

set corresponds to the data value 𝑑 using an authentication path Π and a ladder Λ

following the binary rung strategy.

1. If 𝑖 < 1 or 𝑖 > 𝑁′ or 𝑁′ > 𝑁 then return “index out of range.”

2. Write 𝑁′ = ∑ 2𝜈𝑗𝐵
𝑗=1 where 𝜈1, … , 𝜈𝐵 are the indexes of the ones bits in the binary

representation of 𝑁′ from highest to lowest.

3. If Λ is an array of fewer than 𝐵 hash values then return “ladder too short.”

4. Set 𝑅 ∶= 0.

5. For 𝑗 from 1 to 𝐵 do:

a. Set 𝐿 ∶= 𝑅 + 1 and 𝑅 ∶= 𝑅 + 2𝜈𝑗.

b. If 𝑖 ≤ 𝑅 then break.

6. If Π is an array of fewer than 𝜈𝑗 hash values then return “authentication path too

short.”

7. Set Δ ∶= 𝑖 – 𝐿.

34 A. Fregly et al.

8. Write Δ = ∑ 𝛿𝑘2𝑘−1𝜈𝑗

𝑘=1
 where the 𝛿𝑘 are the bits of the binary representation of Δ

from lowest to highest.

9. Compute 𝑉 ∶= 𝐻leaf(𝑆𝐼𝐷, 𝑖, 𝑑).

10. For 𝑘 from 1 to 𝜈𝑗 do:

a. If 𝛿𝑘 = 0 then compute 𝑉 ∶= 𝐻int(𝑆𝐼𝐷, 𝐿 + Δ, 𝐿 + Δ + 2𝑘 − 1, 𝑉, Π[𝑘]).

b. Else (𝛿𝑘 = 1) compute 𝑉 ∶= 𝐻int(𝑆𝐼𝐷, 𝐿 + Δ − 2𝑘−1, 𝐿 + Δ + 2𝑘−1 −
1, Π[𝑘], 𝑉) and set Δ ∶= Δ − 2𝑘−1.

11. If 𝑉 == Λ[𝑗] then return TRUE else return FALSE.

Step 5, similar to the previous operation, selects the rung of the ladder to match. The

rung may be reached by just a portion of the authentication path, given that the

operation allows 𝑁′ and 𝑁 to be different. Step 10 then evaluates the authentication

path from leaf to ladder based on the binary representation of Δ, similar to the previous

operation.

Appendix C Proof of General Path Verification for Binary Rung

Strategy

Claim. For all positive integers 𝑖, 𝑁, 𝑁′ where 𝑖 ≤ 𝑁′ ≤ 𝑁, if 𝑑𝑖 is the data value

corresponding to the 𝑖th leaf node in a node set assembled using the binary rung

strategy, Π𝑖,𝑁 is the authentication path from the 𝑖th leaf node to its associated rung in

the 𝑁th ladder and Λ𝑁′ is the 𝑁′th
 ladder, then

CHECKAUTHPATHℬℛ𝒮(𝑆𝐼𝐷, 𝑖, 𝑁, 𝑁′, 𝑑𝑖 , Π𝑖,𝑁 , Λ𝑁′) = TRUE.

Proof. If 𝑁 = 1 then the result is trivial. Suppose 𝑁 > 1 and consider the binary

representation of 𝑁 − 1. We write

𝑁 − 1 = ∑ 2𝜈𝑗𝐵
𝑗=1 − 1 = ∑ 2𝜈𝑗𝐵−1

𝑗=1 + (2𝜈𝐵 − 1) = ∑ 2𝜈𝑗𝐵−1
𝑗=1 + ∑ 2𝑘−1𝜈𝐵

𝑘=1 .

The first 𝐵 − 1 ones bits of 𝑁 are the same as the first 𝐵 − 1 ones bits of 𝑁 − 1, while

the last ones bit of 𝑁 is replaced by 𝜈𝐵 consecutive lower-order ones bits of 𝑁 − 1. The

first 𝐵 − 1 rungs in Λ𝑁 are thus the same as the corresponding rungs in Λ𝑁−1 and the

last rung in Λ𝑁 is an ancestor of each of the last 𝜈𝐵 rungs in Λ𝑁−1 (compare Step 10 in

Appendix B. 5 where 𝜈𝑗 = 𝜈𝐵). Each of the rungs in Λ𝑁−1 is therefore either the same

as, or a descendant of, one of the rungs in Λ𝑁. By induction, the same holds for each of

the rungs in Λ𝑁′ where 1 ≤ 𝑁′ ≤ 𝑁.

The evaluation of the authentication path from the 𝑖th leaf node to its associated rung

in ladder Λ𝑁 recomputes the rung as well as every descendant of the rung whose span

includes 𝑖. Because the rungs in each ladder have non-overlapping sets of descendants,

it follows that the rung in Λ𝑁′ that spans the 𝑖th leaf node is either the same as or a

descendant of the rung in Λ𝑁that spans the 𝑖th leaf node. CHECKAUTHPATHℬℛ𝒮can

therefore verify Π𝑖,𝑁 using Λ𝑁′ . ∎

Merkle Tree Ladder Mode 35

Appendix D Condensing and Reconstituting Hash-Based

Signatures

The three hash-based signature schemes among the NIST PQC signature algorithms,

with certain parameter sets, all support a modest amount of condensation. (To fit our

framework, we re-cast each scheme as a tagged signature scheme that allows only a

null tag.)

We consider again the three example parameterizations given in Section 7:

• SPHINCS+-128s

• HSS/LMS with parameters 𝐿 = 2, LMS_SHA256_M32_H10 and

LMOTS_SHA256_N32_W8

• XMSS^MT with parameter XMSSMT-SHA2_20/2_256

All three schemes involve multiple layers of Merkle trees; their signatures include

multiple sets of one-time signatures and authentication paths. Condensation can be

achieved by treating the one-time signature and authentication path for the top-layer

tree as a reference value and the rest of each signature as a condensed signature. The

SPHINCS+ example has seven layers of trees, so its condensed signature size will be

roughly 86% of its initial (i.e., uncondensed) signature size. The HSS/LMS and

XMSS^MT examples have two layers; their condensation ratio will be roughly 50%.

The handle returned by GETCONDENSEDSIG resolves to the top part of the signature,

which is common to all signatures involving a particular leaf of the top-layer tree. A

verifier only needs to obtain a new reference value when a new top-level leaf is

encountered.

In the HSS/LMS and XMSS^MT examples, the top-layer tree has 210 = 1024 leaf

nodes. As a result, the number of reference values needed is at most 1024 regardless

of 𝐾, leading to an upper bound on the effective signature size of

𝜙(𝐾, 𝐾′) ≤ |ς| +
1024

𝐾
|υ|.

If 𝐾 is more than about 1024 × 2 = 2048 for two-layer HSS/LMS or XMSS^MT, the

effective signature size will be lower than the initial signature size and thereafter will

continue to decrease, converging to the 50% ratio above. In the SPHINCS+ example,

the top-layer tree has 29 = 512 leaf nodes and the transition point is around 512 × 7 =
3584.

The actual transition points for all three examples will be lower in practice because

not every top-level leaf will necessarily be involved in the first 𝐾 signatures, especially

for HSS/LMS and XMSS^MT which exhaust each top-level leaf node before moving

to the next one. If we want to reduce further, faster, and for non-hash-based signatures

schemes, however, we need a different approach such as MTL mode.

36 A. Fregly et al.

Appendix E Stateful Reconstitution Operations

Just as the condensation operations are stateful, we could similarly restructure

RECONSTSIG so that it maintains state between operations, e.g., with operations such as

the following:

• RECONSTINIT𝑝𝑘() ⟶ 𝑠𝑡0 returns a new scheme state 𝑠𝑡0.

• ADDCONDENSEDSIG𝑝𝑘(τ, ς, χ, 𝑠𝑡) ⟶ 〈𝑖, 𝑏, 𝑠𝑡′〉 incorporates a condensed signature ς

associated with the tag τ and the handle χ into the state 𝑠𝑡 and returns the signature

index 𝑖 for this signature (relative to τ), a flag 𝑏 indicating whether a new reference

value is needed and the updated state 𝑠𝑡′.

• ADDREFVAL𝑝𝑘(τ, χ, υ, 𝑠𝑡) ⟶ 𝑠𝑡′ incorporates a reference value υ associated with the

tag τ and a handle χ into the state 𝑠𝑡 and returns the updated state 𝑠𝑡′.

• GETCONDENSEDSIG𝑝𝑘(τ, 𝑖, 𝑠𝑡) ⟶ 〈σ′, 𝑠𝑡′〉 produces a reconstituted version σ′ of the

𝑖th signature associated with the tag τ under the state 𝑠𝑡 and returns σ′ and the

updated state 𝑠𝑡′.

By returning the flag, ADDCONDENSEDSIG automates the reference value

compatibility checks mentioned above. If the flag is TRUE, then the verifier requests a

new reference value and incorporates it with ADDREFVAL. Otherwise, the verifier

proceeds directly to GETRECONSTSIG. With the stateless version of RECONSTSIG, the

application would need to do the reference value compatibility check itself. While this

is straightforward in a mode based on the binary rung strategy (just compare 𝑖 ≤ 𝑁′ ≤
𝑁), the check may be more complex in general (e.g., when directly condensing and

reconstituting hash-based signatures as proposed in Appendix D).

Appendix F Caching Condensed Signatures

In Section 7, we assumed that each condensed signature ς received by the verifier was

produced relative to a reference value υ𝑁 that was newer than the reference value υ𝑁0

held by the verifier, i.e., 𝑁0 ≤ 𝑁. The assumption was the basis for our use of the

reference value compatibility property of the binary rung strategy (Section 4.3). It

enabled the verifier to reconstitute a signature provided that the message index 𝑖
satisfied 𝑖 ≤ 𝑁0. As a result, the verifier only needed to request a new reference value

when 𝑖 > 𝑁0.

Our assumption may be realistic when the verifier interacts directly with a signer or

intermediary that performs condensation operations. However, it may not be realistic

when the verifier interacts with a responder that merely holds condensed signatures

obtained from other parties. Indeed, a condensed signature held by such a responder

will be associated with a reference value υ𝑁 that was available when the responder itself

obtained the condensed signature. That reference value may be older than the one held

by the verifier, i.e., we may have 𝑁 < 𝑁0. If so, the reference value compatibility

property won’t necessarily apply and special processing may be required, potentially

increasing the effective signature size and diminishing the benefit of MTL mode.

Merkle Tree Ladder Mode 37

We refer to a responder that holds but does not produce condensed signatures as a

condensed signature caching server. Two examples of such a responder include:

• A recursive DNS server that requests and holds signed resource record sets (RRsets)

on behalf of its clients. The condensed signatures on the resource record sets would

previously have been produced by an authoritative DNS server or its provisioning

system (or by an intermediary that performs condensation operations). A DNS RRset

has a time to live (TTL) value indicating how long the RRset should be held before

requesting a new version from the authoritative name server. The reference value

associated with a condensed signature returned by the recursive DNS server will thus

generally be at most as old as the authoritative name server’s maximum TTL, e.g.,

on the order of a day. The validity period for the signature can be much longer, on

the order of weeks or months. The new signed version of the RRset can thus include

a new condensed version of the same initial signature of the RRset (if the RRset

hasn’t changed).

• A web server that holds certificates for the websites it serves and provides these

certificates to its clients. Here, the condensed signatures on the certificates would

previously have been produced by a certification authority (or, again, by an

intermediary). A web PKI certificate doesn’t have an independent TTL, however;

the certificate is simply held until the end of its validity period. Thus, the reference

value associated with a condensed signature returned by a web server could be as

old as the certificate itself, e.g., on the order of a year.

Given the importance of caching for application performance, it’s worth considering

how to mitigate the effect of caching on effective signature size for clients of these

servers, e.g., for an browser or other application that validates a condensed signature

on a resource record set or certificate. For this purpose we need to look more closely at

how a verifier processes condensed signatures.

F.1 Processing Condensed Signatures with Caching

As a starting point, let’s review a typical approach by which a verifier may process a

condensed signature in MTL mode, taking caching into account.

Expanding on Section 7, we assume that the verifier already holds a set of reference

values υ
𝑁0

(1) , υ
𝑁0

(2), …, where the reference value υ
𝑁0

(𝑏) includes the 𝑁0
(𝑏)

th Merkle tree

ladder and an underlying signature on the ladder. The processing may involve the

following steps. (We omit the public key 𝑝𝑘 and the tag τ for simplicity.)

1. The verifier obtains a condensed signature ς on a message 𝑚𝑖 with index 𝑖, and

a reference value handle χ. The condensed signature ς includes an authentication

path Π𝑖,𝑁 relative to the 𝑁th ladder where 1 ≤ 𝑖 ≤ 𝑁; the reference value handle

χ = 𝑁.

2. If there exists a 𝑏 such that 𝑖 ≤ 𝑁0
(𝑏)

≤ 𝑁, then the verifier reconstitutes a

signature from ς and υ
𝑁0

(𝑏) . Note that there can be more than 𝑏 for which this

condition holds.

38 A. Fregly et al.

3. If there doesn’t exist a 𝑏 such that 𝑖 ≤ 𝑁0
(𝑏)

, then the verifier requests the

reference value υ𝑁 and reconstitutes a signature from ς and υ𝑁. The verifier then

adds the reference value υ𝑁 to its set of reference values.

4. If there exists a 𝑏 such that (a) 𝑁 < 𝑁0
(𝑏)

 and (b) 𝑖, 𝑁 and 𝑁0
(𝑏)

 are compatible

(in the sense defined below), then the verifier reconstitutes a signature from ς

and υ
𝑁0

(𝑏).

5. If there doesn’t exist a 𝑏 such that (a) and (b) in Step 4 hold (the only remaining

possibility), then the verifier performs special processing as discussed below.

Note that if 𝑁0
(𝑏)

≤ 𝑁 for all 𝑏 (as we effectively assumed in Section 7), then only

Steps 1–3 are needed. Steps 4 and 5 occur as a result of the 𝑁 < 𝑁0 case associated

with caching condensed signatures.

We say that 𝑖, 𝑁 and 𝑁′ are compatible in a rung strategy if the authentication path

from the 𝑖th leaf node to its associated rung in the 𝑁th ladder can be verified using the

𝑁′th
 ladder. Appendix C shows that 𝑖, 𝑁 and 𝑁′ are compatible if 𝑖 ≤ 𝑁′ ≤ 𝑁; this is

the basis for reconstitution in Step 2 above. We can also show that 𝑖, 𝑁 and 𝑁′ are

compatible if 𝑖 ≤ 𝑁 < 𝑁′ and 𝑁′ < 𝑅 + 2𝑣 where 𝑅 = 2𝑣 is the (unique) integer

between 𝑖 and 𝑁 that is divisible by the largest power of 2; this is the basis for Step 4.

(To see, this consider that 𝑅 is then also the unique integer with this property between

𝑖 and 𝑁′ and that [𝑅 − 2𝑣 + 1: 𝑅] is then the rung associated with both Π𝑖,𝑁 and Π𝑖,𝑁′

— so the authentication paths are the same.) Special processing is therefore required

when 𝑁′ ≥ 𝑅 + 2𝑣.

The effective signature size for conveying a signature following Steps 1–5 includes

the condensed signature size from Step 1, the overhead of the occasional reference

value in Step 3, and the overhead of the occasional special processing in Step 5. We

can mitigate the effect of caching on effective signature size by reducing the impact of

special processing and/or the likelihood that special processing is performed. We may

also be able to mitigate the effect of caching by changing to a different rung strategy.

The next three subsections go into further detail on each of these mitigations.

F.2 Reducing Impact of Special Processing

A straightforward way to implement the special processing in Step 5 is for the verifier

to request the reference value υ𝑁 and then reconstitute a signature from ς and υ𝑁.

However, this approach would involve the overhead of sending a full underlying

signature (and a ladder) every time special processing is performed.

A more efficient approach is for the verifier instead to request the current version ς′
of the condensed signature on 𝑚𝑖, and then reconstitute a signature from ς′ and υ

𝑁0
(𝑏) ,

where υ
𝑁0

(𝑏) is any one of its reference values. The signer or another intermediary could

fulfill requests for the current version of the condensed signature by providing an

externally accessible interface to GETCONDENSEDSIG in the same way that it fulfills

requests for reference values via an interface to GETREFVAL. This approach would

involve only the overhead of sending a condensed signature.

Merkle Tree Ladder Mode 39

An even more efficient approach is for the verifier to request the difference between

ς and the current version of the condensed signature. We suggest the following

additional condensation scheme operations for this purpose:

• GETEXTVAL𝑝𝑘(τ, 𝑖, χ, 𝑠𝑡) ⟶ 〈β, 𝑠𝑡′〉 produces an extension value β that can be used

to transform a condensed signature associated with the tag τ and the handle χ to a

condensed signature relative to the current reference value. It returns 𝛽 and the

updated state 𝑠𝑡′.

• EXTENDCONDENSEDSIG𝑝𝑘(τ, χ, ς, β) ⟶ ς′ transforms a condensed signature ς

associated with the tag τ and the handle χ into a condensed signature ς′ relative to τ

and the reference value associated with the extension value 𝛽, and returns ς′.

In this approach, the verifier would request the extension value β for τ, 𝑖 and χ, then

call EXTENDCONDENSEDSIG to obtain a condensed signature ς′ relative to the current

reference value. The verifier could then reconstitute a signature from ς′ and any of its

reference values. As above, the signer or another intermediary would provide an

external interface to GETEXTVAL. This approach would involve only the overhead of the

extension value, which in MTL mode would include the missing sibling nodes in the

authentication path. The combined overhead of ς and β would thus be comparable to

the current condensed signature ς′.

F.3 Reducing Likelihood of Special Processing

Intuitively, the reason that special processing may be required is that a condensed

signature received from a caching server is “too short” relative to the verifier’s

reference values — it’s missing one or more sibling nodes. Therefore, a natural way to

reduce the need for special processing is to refresh each condensed signature

periodically to add the missing sibling hash nodes. Following the discussion above,

assume that a condensed signature for index 𝑖 is first added to the cache when 𝑁 is the

current number of leaf nodes, and that the condensed signature’s authentication path is

associated with the rung [𝑅 − 2𝑣 + 1: 𝑅] in the current reference value’s ladder. A new

sibling node will then need to be added whenever the number of leaf nodes reaches a

multiple of a larger power of 2, i.e., at 𝑅 + γ1, 𝑅 + γ2, 𝑅 + γ3, etc., where

γ𝑗 = {
γ0 + 2𝜈𝐵−𝑗+1 if 1 ≤ 𝑗 ≤ 𝐵;

2⌊log2 𝑅⌋+𝑗−𝐵 if 𝑗 > 𝐵,

with γ0 = 0 and where 𝜈1, … , 𝜈𝐵 are the indexes of the ones bits in the binary

representation of 2⌊log2 𝑅⌋+1 − 𝑅 from highest to lowest:

2⌊log2 𝑅⌋+1 − 𝑅 = ∑ 2𝜈𝑗

𝐵

𝑗=1

 .

Because 2𝑣 is the largest power of 2 dividing 𝑅, we have γ1 = 2𝜈𝐵 = 2𝜈 .
The TTL on a cache entry will automatically lead to a refresh. However, a sibling

node may already need to be added before a typical TTL is reached. Consequently, it

may be helpful to set the TTL on the condensed signature in proportion to the time

expected until the next sibling node would be added. Because the rate at which leaf

40 A. Fregly et al.

nodes are added may be hard to predict, a time-based approach for refreshing condensed

signatures may provide inconsistent results as a mitigation for the likelihood of special

processing. An approach based on the number of leaf nodes may be more effective.

We suggest the following tactic: When a responder receives a condensed signature

relative to reference value newer than any others it has encountered, say the 𝑁′th

reference value, or otherwise learns that there are 𝑁′ (or more) leaf nodes, it invalidates

any condensed signature in the cache that is based on an authentication path Π𝑖,𝑁 where

𝑖, 𝑁 and 𝑁′ are incompatible. The responder then either proactively refreshes the

condensed signature or waits until the associated record is requested by a client, and

then refreshes. By updating condensed signatures based on newly encountered

reference values, the responder then stays ahead of any verifier that relies on the same

source of reference values. It may not be necessary to stay this far ahead, e.g., the

verifier may be able to verify Π𝑖,𝑁 with the reference values it holds, but it’s sufficient.

(A full treatment would require modeling of the evolution of the set of reference values

held by a verifier.)

F.4 Changing Rung Strategy

The extended binary rung strategy makes the following enhancement to the binary rung

strategy: In addition to the 𝐵 rungs in the ladder corresponding to the ones bits of the

binary representation of 𝑁, the ladder also includes ⌊log2 𝑁⌋ + 1 − 𝐵 rungs

corresponding to the zero bits. The span of each such rung is the same as it was the

previous time the binary representation had a one bit in the corresponding position (say,

the 2𝑣 position). The rung is thus “extended” for an additional 2𝑣 leaf nodes compared

to the binary rung strategy (the number of leaf nodes until the position next has a one

bit). (Only rungs corresponding to ones bits are used for constructing authentication

paths, which are the same as in the binary rung strategy.)

The extended binary rung strategy shares the binary rung strategy’s 𝑂(log 𝑁)

authentication path and ladder sizes as well as its general path verification property.

Due to the extension of the rungs, the extended binary rung strategy also has a lower

likelihood of incompatibility in the 𝑖 ≤ 𝑁 < 𝑁′ case. In particular, a new sibling node

will not need to be added until the number of leaf nodes reaches 𝑅 + 2γ1, 𝑅 + 2γ2, 𝑅 +
2γ3, etc. — a doubling of the distance from 𝑅.

The extension can offer a significant advantage in refresh timing over the binary rung

strategy for the following reason. In the binary rung strategy, rungs are removed from

the ladder immediately after they’ve been in use as selected rungs for producing new

authentication paths. Moreover, multiple rungs may be removed at the same time

Consider the example in Fig. 1: When the number of leaf nodes in the tree reaches 16,

all three rungs shown, [1: 8], [9: 12] and [13: 14], will no longer be used for producing

new authentication paths and all three will be removed from the ladder. The addition of

a leaf node may therefore trigger many condensed signature refreshes at the same time.

Indeed, although the average number of condensed signatures that need to be refreshed

for each leaf node added is 𝑂(log 𝑁), some leaf node additions may trigger as many as

𝑁 − 1 refreshes. For instance, all 14 authentication paths leading to the three rungs

Merkle Tree Ladder Mode 41

shown in the example (as well as the one leading to [15: 15]) will need to be refreshed

when the number of leaf nodes in the tree reaches 16.

In the extended binary rung strategy, in contrast, rungs remain in the ladder for an

extended period during which they are still available for verifying previous

authentication paths. Condensed signature refreshes for authentication paths relative to

a rung can therefore be staggered. Returning to Fig. 1, [1: 8] will no longer be used for

producing new authentication paths when the number of leaf nodes reaches 16, but it

won’t be removed until the number reaches 24. For the eight authentication paths

associated with [1: 8], then, we would have eight leaf node additions in which to make

the refresh. Put another way, although a sibling node doesn’t need to be added until

𝑅 + 2γ𝑗, it can be added as early as 𝑅 + γ𝑗. As a result, we can schedule the refreshes

so that there are 𝑂(log 𝑁) refreshes for each and every new leaf node added, not just

on average, thus distributing the workload more evenly than in the binary rung strategy.

