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Abstract. Anonymous authentication primitives, e.g., group or ring signatures, allow one to realize
privacy-preserving data collection applications, as they strike a balance between authenticity of data
being collected and privacy of data providers. At PKC 2021, Diaz and Lehmann defined group signatures
with User-Controlled Linkability (UCL) and provided an instantiation based on BBS+ signatures. In a
nutshell, a signer of a UCL group signature scheme can link any of her signatures: linking evidence can
be produced at signature time, or after signatures have been output, by providing an explicit linking
proof.
In this paper, we introduce Ring Signatures with User-Controlled Linkability (RS-UCL). Compared
to group signatures with user-controlled linkability, RS-UCL require no group manager and can be
instantiated in a completely decentralized manner. We also introduce a variation, User Controlled
and Autonomous Linkability (RS-UCAL), which gives the user full control of the linkability of their
signatures.
We provide a formal model for both RS-UCL and RS-UCAL and introduce a compiler that can upgrade
any ring signature scheme to RS-UCAL. The compiler leverages a new primitive we call Anonymous Key
Randomizable Signatures (AKRS) — a signature scheme where the verification key can be randomized
— that can be of independent interest. We also provide different instantiations of AKRS based on
Schnorr signatures and on lattices. Finally, we show that an AKRS scheme can additionally be used to
construct an RS-UCL scheme.

1 Introduction

Group signatures [CvH91,BMW03,BSZ05,BCC+16] and ring signatures [RST01] allow users to sign
messages, while providing anonymity of signers and unlinkability of signatures. Group signatures
require a central entity that manages group membership, whereas ring signatures allow a signer to
choose an arbitrary ring of public keys, and sign on behalf of that ring.

Many application scenarios do not require full anonymity/ unlinkability, and may actually ask for
mechanisms to identify the signer or link signatures produced by the same party. Group signatures
feature an opening authority that can de-anonymize signers and thereby test if two signatures have
the same signer.

Recently, researchers have proposed more flexible linkability options for group signature schemes,
where even less power is entrusted to the opener. In [HLC+11,HLC+13,SSU14,KTY04] group signa-
tures with an authority who can test whether two signatures have the same signer but cannot open
signatures were introduced. In [GL19,FGL21], group signatures are originally unlinkable, but later on
can be converted to linkable signatures by an oblivious “converter”. Group signatures with message-
dependant opening [SEH+12,OSEH13,LJ14,LMN16] introduce an additional entity, the admitter,
who can specify messages such that the corresponding signatures can be opened. Group signatures
with certified limited opening [ZWC19] introduce a certifier, instead of an admitter, who can certify
a particular opener to allow them to open signatures on messages within a particular context. Abe



et al., [ACHO13] use “public-key anonymous tag system” to build a traceable signature scheme. In
all these lines of work, linking is performed by a trusted party, and signers have no say in which of
their signatures can be linked together. Another line of work [BCC04,BFG+13,CDL16b,CDL16a]
considers scenarios where a so-powerful authority is undesirable, and achieves linkability by includ-
ing a one-way function of the signing key and a “scope" chosen by the signer — also known as
“pseudonym” — in each signature, so that two signatures with the same pseudonym can be trivially
linked.

Pseudonym-based linkability, however, require signers to decide at signature time whether their
signatures should be ever linked: two signatures using different scopes – hence, with different
pseudonyms – would be unlinkable by definition. Recently, Diaz and Lehmann [DL21] introduced
group signatures with User-Controlled Linkability (UCL) that provide pseudonym-based linkability
(labelled “implicit” linkability), but also allow a signer to link any set of her signatures generated
with the same linking secret, even if those had different pseudonyms (labelled “explicit” linkability).
This linking model turns useful in applications where authenticated data is collected in anonymous
fashion but, later on, one may be interested to link specific data items. For example, in smart-
metering applications, energy consumptions may be collected in a fully anonymous way, while, at a
later time, a user may want to link her measurements to, e.g., receive tailored offers from the energy
providers. Similarly, connected vehicles can anonymously report their mobility traces but, at a later
time, a driver may want to link her reports so to obtain discounts from insurance companies.

Our contributions In this paper, we continue the study of UCL but focus on ring signatures.
Compared to group signatures, a ring signature scheme enables fully decentralized applications as
no group manager is needed. Previous linkable ring signatures [LWW04,SALY17] solely allow anyone
to link two signatures by the same signer on the same ring.

Our first contribution is the formalization of UCL in ring signatures. We introduce the first formal
model for ring signatures with UCL allowing for both implicit and explicit linkability, as in [DL21].
Next, we introduce ring signatures with User Controlled Autonomous Linkability (UCAL) to give
signers full control over the linkability of their signatures. Different from UCL, UCAL does not
use the signing key to create pseudonyms, but instead uses a “linking secret" which can be re-used
or chosen afresh. A fresh linking secret ensures that signatures cannot be linked (i.e., via implicit
linkability) even if they have the same scope. Of course, a signer can use the same linking secret
on multiple signatures with the same scope so to provide implicit linkability. Ultimately, a signer
can prove linkability of any set of her signatures generated with the same linking secret, even if
those had different pseudonyms. Further, using different linking secrets ensures that past signatures
cannot be linked even if the signer is corrupted, providing a form of forward anonymity.

As a second contribution we propose constructions of UCL and UCAL ring signatures. To do so,
we introduce a new cryptographic primitive that we label Anonymous Key Randomizable Signatures
(AKRS) that may be of independent interest. AKRS is essentially a signature scheme where public
keys can be re-randomized, while maintaining the correspondence to the same secret key, so that a
randomized public key cannot be linked to the original one. However, by using the secret, the signer
can prove that multiple public keys are all randomized versions of the original one. The primitive
is in a similar spirit to Signatures with Flexible Public Key [BHKS18], which however is not fully
suitable for our requirements. We elaborate more on the differences in section 4.

We show that AKRS can be used to upgrade any ring signature scheme to UCAL. In particular,
we use an AKRS public key that has been re-randomised with the scope as the pseudonym for the
(ring) signature. By using a public key corresponding to the same AKRS secret key and scope, we
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provide implicit linkability. Otherwise, the signer may use a different AKRS secret key to make two
signatures unlinkable even on the same scope. At a later time, the signer can use her AKRS secret
key to link the pseudonyms of a set of ring signatures, thereby proving that all such signatures are
linked. Notably, our construction does not modify the original ring signature public keys and thus
can be used to upgrade to UCAL an already up-and-running system using ring signatures.

We also show how to use AKRS, along with a NIZK, to build a UCL ring signature. The linking
mechanism is obtained using the AKRS in a similar way to the UCAL construction. The difference is
that, for UCL the AKRS secret key is used as the ring signature secret. Therefore, to sign a message
with some scope, in addition to using the AKRS secret key to compute the pseudonym, we also
add a non-interactive signature of knowledge [CS97] that the secret used to derive the pseudonym
corresponds to one of the public keys in the ring.

Finally, we propose two instantiations of AKRS: one based on Schnorr’s signatures in prime order
groups, and one based on Lyubashevsky’s signatures [Lyu12] on lattices. Compiling our AKRS with
a ring signature scheme we get UCAL ring signatures with minimal overhead: one additional Schnorr
or Lyubashevsky signature, respectively. In contrast to previous works (on group signatures) [DL21],
the constructions are generic and can bootstrap any arbitrary ring signature scheme to a UCAL
one. For instance we can achieve UCAL without pairings.

Related Work There is an extensive line of work studying and constructing efficient ring signatures
from various settings and assumptions, with the today’s state-of-the art achieving signatures of size
logarithmic in the size of the ring [GK15,BCC+15,LPQ18,LRR+19,YSL+20,YEL+21].

Park and Sealfon [PS19] proposed the related notions of (un)Claimable and (un)Repudiable
Ring Signatures. Claimability states that one can always claim a signature after she signed it,
while Repudiability states the opposite, that one can always repudiate a signature she did not sign.
Claimability is a notion relevant to user-controlled linkability, although it is weaker: a signer can
claim a signature by linking it to a signature of a dummy message on-the-fly. The inverse, achieving
user-controlled linkability from claimability, does not apply.

The idea of linking anonymous signatures of a user by using a Pseudorandom Function (PRF)
has been used in the past. A user can additionally sign a random value together with its PRF output,
where the seed is kept by the signer. Then, a NIZK proving knowledge of the (same) seed can be
used to link signatures. However, this linking mechanism provides no succinctness: the linking proof
typically grows with the number of linked signatures. AKRS generalizes this linking mechanism
and guarantees succinctness; we note that an AKRS may also be instantiated with a PRF and a
(succinct) NIZK.

2 Standard ring signatures

We now provide definitions for standard ring signatures following notation from [PS19].

Definition 2.1 (Ring signature). A ring signature scheme is a triple of PPT algorithms (KGen,Sig,Vf),
satisfying correctness (Def. 2.2), anonymity (Def. 2.3) and unforgeability (Def. 2.4); and with the
following syntax:

KGen(1λ) on input a security parameter 1λ outputs a signing key sk and a verification key vk.
Sig(sk, R,m) on input a signing key sk, a message m, and a set of verification keys (called the ring)

R = {vk1, . . . , vkn}, the signing algorithm outputs a signature σ.
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Vf(σ,R,m) on input a signature σ, a set of verification keys R = {vk1, . . . , vkn}, and a message m,
the verification algorithm returns 1 if σ is a valid signature on m w.r.t. R, and 0 otherwise.

Definition 2.2 (Correctness). A ring signature scheme satisfies correctness if for any n =
poly(λ), any {(vki, ski)}i∈[n] ← KGen(1λ), any i ∈ [n], and any message m, there exists a negligible
function ϵ such that:

Pr[Vf(Sig(ski, R,m), R,m) = 1] = 1− ϵ(λ),
where R = {vk1, . . . , vkn}. If ϵ = 0 then perfect correctness is satisfied.

2.1 Security notions for ring signatures

Before providing formal definitions for anonymity and unforgeability, we introduce a number of
oracles that will be used in the security experiments.

Oracles. All oracles are parametrised by a list of keys pairs {(vki, ski)}i∈[n], where n = poly(λ).
Corruption oracle Corr: Parametrised by the list I of corrupted indices (queried to Corr). The

corruption oracle Corr takes input an index i ∈ [n], adds i to the list of corrupted indices
I ← I ∪ {i}, and outputs the randomness wi used to compute key pair (ski, vki).

Signing oracle OSign: Parametrised by the lists SIG[i] for i ∈ [n] of signature tuples produced by
OSign for user index i. The oracle OSign on input a set R, an index i ∈ [n] and a message m
computes σ ← Sig(ski, R ∪ vki,m), adds (σ,m,R) to the list of signatures signed by user index
i: SIG[i]← SIG[i] ∪ {(σ,m,R)}, and returns σ.

Challenge oracle Ch− Signb: The oracle Ch− Signb on input challenge identities {i0, i1}, a set R
and a message m computes σ ← Sig(skib , R ∪ {vki0 , vki1},m) and outputs σ.

Anonymity There are a series of notions of anonymity defined for ring signatures, of varying
strength. The natural adaptive anonymity against adversarially chosen keys, defined by [BKM09],
requires that an adversary who controls up to all but two parties in a ring, and who may produce
its’ own malformed key pairs as well as corrupt honest parties’ keys, cannot do significantly better
than randomly guess which of the honest parties produced a given signature. The stronger notion
of anonymity against full key exposure requires that even if an adversary compromises every single
party in a ring, the adversary cannot identify the signers of past signatures. We hence use the
modular definition of (O, α)-anonymity adopted in [PS19], which allows to capture these varying
degrees of anonymity.

The security notions are captured in Figure 1.

Definition 2.3 ((O, α)-anonymity). Let α ∈ {0, 1, 2}, and let O be a set of oracles. A ring
signature scheme satisfies (O, α)-anonymity if for any PPT adversary A, and any n = poly(λ), the
following is negligible in λ:
|Pr[Exp(O,α)−anon-1

RS,A (1λ, n) = 1]− Pr[Exp
(O,α)−anon-0
RS,A (1λ, n) = 1]|.

Experiment :Exp
(O,α)−anon-b
RS,A (1λ, n)

1 : for i = 1, . . . , n do

2 : (ski, vki)← KGen(1λ) // using random coins wi

3 : d← AO,Corr(vk1, . . . , vkn)

4 : if |{i0, i1} ∩ I| ≤ α then return d // where I is the set of queries to Corr

5 : else return ⊥
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Security notion Definition Remarks

Adaptive anonymity
against adversarially

chosen keys
({OSign,Ch− Signb}, 0)-anonymous

Strongest notion
compatible with

user-controlled linkability.

Anonymity against
full key exposure

({OSign,Ch− Signb}, 2)-anonymous
Incompatible with

user-controlled linkability.
Equivalent to

unrepudiability [PS19].

Fig. 1. Anonymity notions for ring signatures

Unforgeability We now present the unforgeability definition for ring signatures, also referred to
as unforgeability w.r.t. insider corruption in [BKM09].

Definition 2.4 (unforgeability). A ring signature scheme is unforgeable if for any PPT adver-
sary A, and any n = poly(λ), the following is negligible in λ: Pr[Expuf

RS,A(1
λ, n) = 1].

Experiment :Expuf
RS,A(1

λ, n)

1 : for i = 1, . . . , n do

2 : (ski, vki)← KGen(1λ) // using random coins wi

3 : (σ∗,m∗, R∗)← AOSign,Corr(vk1, . . . , vkn)

4 : if Vf(σ∗, R∗,m∗) = 0 then return 0

5 : if R∗ ⊆ {vki}i∈[n]\I // none of the keys in R∗ were corrupted

6 : then if ∀i ∈ [n], (∗,m∗, R∗) /∈ SIG[i] // no signature on m∗ for ring R∗ has been queried

7 : then return 1

8 : else return 0

3 Ring signatures with user-controlled linkability

3.1 Standard linkability
As in [DL21], we consider two types of linkability:

Implicit linkability: Signatures are accompanied by a pseudonym, generated by the user for a
particular scope. Re-using the same scope leads to the same pseudonym, making all signatures
with the same scope linkable. Signatures with different scopes cannot be linked, except via
explicit link proofs.

Explicit linkability: A user can prove that she created a set of previously generated signatures,
i.e. link the signatures in the set.

Definition 3.1 (RS-UCL). A ring signature scheme with user controlled linkability (RS-UCL) is
a tuple of PPT algorithms (KGen, Sig,Vf, Link,VerifyLink), satisfying correctness(Defs. 3.3 and 3.4),
anonymity (Def. 3.5), unforgeability (Defs. 3.6 and 3.8) and non-frameability (Defs. 3.9 and 3.10);
and with the following syntax:

KGen(1λ) on input a security parameter, outputs a signing key sk and a verification key vk.
Sig(sk, R,m, scp) signs a message m w.r.t. scope scp via secret signing key sk for set of verification

keys (called the ring) R = {vk1, . . . , vkn}. The output is a pseudonym nym and a ring signature
σ.
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Vf(Σ) on input a signature tuple Σ = (m, scp, R, σ, nym) for ring R = {vk1, . . . , vkn}, returns 1 if
σ and nym are valid for message m and scope scp w.r.t. R, and 0 otherwise.

Link(sk, lm,Σ) on input a set of signature tuples Σ = {Σi}i∈[n], a user secret key sk, and a linking
message lm (can be used to ensure freshness of the proof), outputs a proof πl that these signatures
are linked, or the error symbol ⊥.

VerifyLink(lm,Σ, πl) returns 1 if πl is a valid proof that Σ = {Σi}i∈[n] were produced by the same
signer for link message lm, and 0 otherwise.

3.2 Autonomous linking
We also introduce the notion of ring signatures with user controlled, and autonomous linking (RS-
UCAL). This variant allows users to chose the linking secret independently of the signing key. It
hence gives users the liberty of choosing which of their signatures should be linkable in the future.
We express this feature via an additional algorithm GenLinkSec which outputs a linking secret ls.
Now both the signing algorithm and the linking algorithm should input both the signing secret sk
and the linking secret ls.
Definition 3.2. A ring signature scheme with user controlled autonomous linking (RS-UCAL) is
a tuple of PPT algorithms (KGen,GenLinkSec, Sig,Vf, Link,VerifyLink), where KGen,Vf,VerifyLink
have the same syntax as an RS-UCL, and:
GenLinkSec(1λ) takes input a security parameter, and outputs a linking secret ls.
Sig(sk, ls, R,m, scp) as in a RS-UCL scheme, only with additional input a linking secret ls.
Link(ls, lm,Σ) as in an RS-UCL scheme, only with input a linking secret ls instead of the secret key.

An RS-UCAL scheme satisfies correctness(Defs. 3.3 and 3.4), anonymity (Def. 3.5), unforgeability
(Defs. 3.7 and 3.8) and non-frameability (Defs. 3.9 and 3.10).
Text which is highlighted in blue only occurs for a RS-UCAL scheme. Text which is highlighted in
green only occurs for a RS-UCL scheme.

3.3 Correctness

An RS-UC(A)L scheme should satisfy both verification correctness, which is equivalent to cor-
rectness for standard ring signatures, and linking correctness which ensures the correctness of the
explicit linking algorithm Link. We give the full definitions below.

Definition 3.3 (Verification correctness). An RS-UCAL scheme satisfies verification correct-
ness if for any n = poly(λ), any {(vki, ski)}i∈[n] ← KGen(1λ), any i ∈ [n], any ls← GenLinkSec(1λ),
and any message m and scope scp, there exists a negligible function ϵ such that:

Pr[Vf((m, scp, R = {vk1, . . . , vkn},Sig(ski, ls, R,m, scp))) = 1] = 1− ϵ(λ).

If ϵ = 0 then perfect verification correctness is satisfied.

Definition 3.4 (Linking correctness). An RS-UCAL scheme satisfies linking correctness if
for any n = poly(λ), any messages m1, . . . ,mn, any scopes scp1, . . . , scpn, any {(vki, ski)}i∈[n] ←
KGen(1λ), any rings R1, . . . , Rn ⊂ {vk1, . . . , vkn}, any i ∈ [n] and any ls← GenLinkSec(1λ), there
exists a negligible function ϵ such that, denoting Σ := {(mj , scpj , Rj , Sig(ski,ls, Rj ,mj))}j∈[n], it
holds that, for any linking message lm:

Pr[VerifyLink(lm, Σ, Link(ski, ls, lm, Σ)) = 1] = 1− ϵ(λ).

If ϵ = 0 then perfect linking correctness is satisfied.
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3.4 Security model

For privacy, signatures must not reveal anything about the signer’s identity beyond what was in-
tended by her (anonymity). Security is expressed through both unforgeability, which ensures
that an adversary cannot forge a signature on behalf of a ring they are not a member of or forge a
link proof for signatures they did not generate, and non-frameability, which states that an honest
user cannot be framed by the adversary, so that signatures of an honest user are (implicitly or
explicitly) linkable to signatures that she has not generated.

Oracles and state All oracles are parametrised by a list of keys pairs
{(vki, ski)}i∈[n] and linking secrets {lsi}i∈[n], where n = poly(λ), k = poly(λ). In Figure 2 we describe
the global state variables that all oracles can access.

Corruption oracle Corr takes as input an index i ∈ [n], adds i to the list of corrupted indices
I ← I ∪ {i}, and outputs the randomness wi used to compute key pair (vki, ski).

Linking secret oracle OLS takes as input an index i ∈ [k], adds i to the list of corrupted indices
J ← J ∪ {i}, and outputs the randomness w′

i used to compute linking secret lsi.
Signing oracle OSignucl-r: takes as input a set R, an index i ∈ [N ], an index j ∈ [k], a message m

and a scope scp computes (nym, σ)← Sig(ski, lsj , R∪vki,m, scp), addsΣ := (m, scp, R, σ, nym) to
the list of signatures signed by user index i with linking secret index j: SIG[i, j]← SIG[i, j]∪{Σ},
and returns (nym, σ).

Linking oracle OLink: Allows the adversary to obtain link proofs for signatures of its choice. On
input an index i ∈ [n], an index i ∈ [k], a linking message lm and a set of tuples Σ = {Σ =
(m, scp, R, σ, nym)}, this oracle adds (lm,Σ) to the list of link proofs produced for index i:
LNK[i]← LNK[i] ∪ {(lm,Σ)}, and returns πl ← Link(ski, lsi, lm,Σ).

Challenge signing oracle Ch− Signb: Allows A to get signatures for challenge user index ib with
linking secret index jb. On input a ring R, a message m, and a scope scp, Ch− Signb computes
(nym, σ) ← Sig(skib , lsjb , R ∪ {vki0 , vki1},m, scp), sets Σ := (m, scp, R, σ, nym), adds Σ to the
list of queried challenge signatures CSIG← CSIG ∪ {Σ}, and returns (nym, σ).

Challenge linking oracle Ch− Linkb: Allows A to get link proofs for a challenge index ib/ jb.
Precisely, on input a linking message lm and a set of tuples Σ = {Σ = (m, scp, R, σ, nym)},
it adds (lm,Σ) to the list of challenge link proofs CLNK ← CLNK ∪ {(lm,Σ)}, and returns
πl ← Link(skib , lsjb , lm,Σ).

Variable Content
I List of corrupted indices (queried to Corr)
J List of corrupted indices (queried to OLS)
ib Challenge user index in anon-b. Ignored in the other games
jb Challenge linking secret index in anon-b. Ignored in the other games
SIG[i] Signature tuples produced by OSign for user index i
CSIG Signature tuples produced by Ch− Signb for challenge user index ib
LNK[i] Link queries sent to OLink for user index i
CLNK Link queries made to Ch− Linkb

Fig. 2. Global state variables and their contents.
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Helper Algorithm As in [DL21], we introduce the helper algorithm Identify. In this case we do not
need to require the existence of Identify, because there is no trusted issuer in the ring signature
setting. Therefore, user secret keys do not need to be extracted from join protocols as in the group
signature setting. Identify here is just defined for notational simplicity, and can be achieved from
the user controlled linkability functionality.

Identify(sk, vk, ls, Σ = (m, scp, R, σ, nym))

(sk, vk)← KGen(1λ), (nym′, σ′)← Sig(sk, ls, {vk},m, scp)

if nym′ = nym return 1 else return 0

Anonymity Anonymity ensures that an adversary cannot figure out which of two (honest) challenge
users generated a given signature. In formalizing this notion, one must be careful to exclude trivial
wins leveraging user-controlled linkability (see the comments in the security experiment).

Definition 3.5 (Anonymity). An RS-UCAL scheme satisfies adaptive anonymity against adver-
sarially chosen keys if, for any PPT adversary A = (A1,A2), and any n = poly(λ), k = poly(λ), it
holds that |Pr[Expanon-1

UCL,A(1
λ, n, k) = 1]− Pr[Expanon-0

UCL,A(1
λ, n, k) = 1]| is negligible in λ.

Experiment :Expanon-b
UCL,A(1

λ, n, k)
1 : for i = 1, . . . , n (ski, vki)← KGen(1λ)

2 : for i = 1, . . . , k lsi ← GenLinkSec(1λ)

3 : (i0, i1, j0, j1,, state)← AOSignucl-r,OLink,Corr,OLS
1 (choose, vk1, . . . , vkn)

4 : d← AOSignucl-r,OLink,Ch−Signb,Ch−Linkb,Corr,OLS
2 (guess, state)

5 : // Exclude trivial wins via implicit linking: a signature for scope scp was queried to Ch− Signb and to OSign for index i0 or i1

6 : if ∃scp s.t. (∗, scp, ∗, ∗, ∗) ∈ CSIG ∧ (∗, scp, ∗, ∗, ∗) ∈ SIG[i0, j0] ∪ SIG[i1, j1]

7 : then return ⊥
8 : // Exclude trivial wins via explicit linking: both challenge and non challenge signatures were queried to Ch− Linkb or to OLink

9 : if ∃Σ s.t. (Σ ∩ CSIG ̸= ∅ ∧ (∗,Σ) ∈ LNK[∗])
10 : ∨

(
Σ ∩ (SIG[i0, j0] ∪ SIG[i1, j1]) ̸= ∅ ∧ (∗,Σ) ∈ CLNK

)
then return ⊥

11 : if {i0, i1} ∩ I ̸= ∅ then return ⊥
12 : if {j0, j1} ∩ J ̸= ∅ then return ⊥
13 : else return d

Unforgeability For both RS-UCL and RS-UCAL we must ensure that only ring members can sign.
However, for RS-UCL, we must also prevent signers from outputting multiple unlinkable signatures
on the same scope. For RS-UCL one captures both by defining an attack as the generation of more
signatures with different pseudonyms than corrupted users in the ring, using the same scope. This
is meaningless for RS-UCAL where a single corrupted user can generate many linking secrets.

Definition 3.6 (Signature unforgeability). An RS-UCL scheme satisfies signature unforge-
ability if for any PPT adversary A, and any n = poly(λ), it holds that Pr[Expsig-uf

UCL,A(1
λ, n) = 1] is

negligible in λ.
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Experiment :Expsig-uf
UCL,A(1

λ, n)

1 : for i = 1, . . . , n (ski, vki)← KGen(1λ)

2 : ({Σ∗
1 , · · · , Σ∗

m}, R∗)← AOSignucl-r,OLink,Corr(vk1, . . . , vkn)

3 : Parse Σ∗
j = (m∗

j , scp
∗
j , Rj , σ

∗
j , nym

∗
j ) for j ∈ [m]

4 : if ∃j ∈ [m] s.t. Rj ̸= R∗ return 0

5 : m∗ ← |R∗\{vki}i∈[n]\I |
6 : if the following conditions all hold
7 : 1.m > m∗ // more signatures are output than the corrupted users in the ring

8 : 2.∀j1, j2 ∈ [m] scp∗j1 = scp∗j2 and nym∗
j1
̸= nym∗

j2
// all signatures are unlinked

9 : 3.∀j ∈ [m] Vf(Σ∗
j ) = 1

10 : 4.∀i ∈ [n], j ∈ [m] (m∗
j , scp

∗
j , R

∗, ∗, ∗) /∈ SIG[i]

11 : then return 1

12 : else return 0

As mentioned earlier, Definition 3.6 is too strong for RS-UCAL. Indeed, the autonomous linking
property allows parties to change the linking secret as frequently as desired. Hence an adversary
which wants to output many unlinkable secrets could simply keep changing the linking secret.
For such schemes we adopt a similar notion of (signature) unforgeability as that of standard ring
signatures, with the difference that the adversary also has access to a linking oracle. We give the
full experiment below.

Experiment :Expsig-uf-al
UCAL,A(1

λ, n, k)

1 : for i = 1, . . . , n

2 : (ski, vki)← KGen(1λ)

3 : for i = 1, . . . , k lsi ← GenLinkSec(1λ)

4 : Σ∗ := (m∗, scp∗, R, σ∗, nym∗)← AOSignucl-r,OLink,Corr,OLS(vk1, . . . , vkn)

5 : if Vf(Σ∗) = 0 then return 0

6 : if R∗ ⊆ {vki}i∈[n]\I // none of the keys in R∗ were corrupted

7 : then if ∀i ∈ [n], (m∗, scp∗, R∗, ∗, ∗) /∈ SIG[i, ·]
8 : then return 1

9 : else return 0

Definition 3.7 (Signature unforgeability with autonomous linking). An RS-UCAL scheme
satisfies signature unforgeability if, for any PPT adversary A, and any n = poly(λ), k = poly(λ), it
holds that Pr[Expsig-uf-al

UCAL,A(1
λ, n, k) = 1] is negligible in λ.

We additionally define link unforgeability for both the RS-UCL and RS-UCAL schemes, which
ensures that the linking proof is unforgeable.

Definition 3.8 (Link unforgeability). An RS-UCAL scheme satisfies link unforgeability if,
for any PPT adversary A, and any n = poly(λ), k = poly(λ), the following is negligible in λ:
Pr[Explink-uf

UCL,A(1
λ, n, k) = 1].

Experiment :Explink-uf
UCL,A(1

λ, n, k)

1 : for i = 1, . . . , n (ski, vki)← KGen(1λ)

2 : for i = 1, . . . , k lsi ← GenLinkSec(1λ)

3 : (lm,Σ, πl)← AOSignucl-r,OLink,Corr,OLS(vk1, . . . , vkn)

4 : VerifyLink(lm,Σ, πl) = 0 or ∃i ∈ [n][k] : (lm,Σ) ∈ LNK[i] return 0

5 : if ∃i ∈ [n] : ∀Σ ∈ Σ : Σ ∈ SIG[i] and i /∈ I return 1

6 : if ∃i ∈ [k] : ∀Σ ∈ Σ : Σ ∈ SIG[·, i] and i /∈ J return 1

7 : else return 0
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Non-frameability Non-frameability guarantees that an honest user cannot be framed by the ad-
versary, such that signatures of an honest user are linkable to signatures that she has not generated.
We capture this in the implicit/ explicit setting with signature/ link non-frameability respectively.
Roughly, signature non–frameability ensures that an adversary cannot output a valid signature
that links to another signature generated by an uncorrupted user via the signing oracle. Link non-
frameability ensures that an adversary cannot explicitly link two signatures that were either from
different users or such that one of the two signatures is not from a user in the experiment.

Definition 3.9 (Signature non-frameability). An RS-UCAL scheme satisfies signature non-
frameability if, for any PPT adversary A, and any n = poly(λ), k = poly(λ), the following is negli-
gible in λ: Pr[Expsign-frame

UCL,A (1λ, n, k) = 1].

Definition 3.10 (Link non-frameability). An RS-UCAL scheme satisfies link non-frameability
if, for any PPT adversary A, and any n = poly(λ), k = poly(λ), the following is negligible in λ:
Pr[Explink-frame

UCL,A (1λ, n, k) = 1].

Experiment :Expsign-frame
UCL,A (1λ, n, k)

1 : for i = 1, . . . , n (ski, vki)← KGen(1λ)

2 : for i = 1, . . . , k lsi ← GenLinkSec(1λ)

3 : Σ := (m, scp, R, σ, nym)← AOSignucl-r,OLink,Corr,OLS(vk1, . . . , vkn)

4 : return 1 if :

5 : Vf(Σ) = 1 and
6 : ∃i ∈ [n] : (m, scp, R, nym, ·) /∈ SIG[i] ∧ i /∈ I ∧ (·, scp, ·, ·, nym) ∈ SIG[i]

7 : ∃i ∈ [k] : Σ /∈ SIG[·, i] ∧ i /∈ J ∧ (·, scp, ·, ·, nym) ∈ SIG[·, i]
8 : else return 0

Experiment :Explink-frame
UCL,A (1λ, n, k)

1 : for i = 1, . . . , n (ski, vki)← KGen(1λ)

2 : for i = 1, . . . , k lsi ← GenLinkSec(1λ)

3 : (lm,Σ, πl)← AOSignucl-r,OLink,Corr,OLS(vk1, . . . , vkN )

4 : if VerifyLink(lm,Σ, πl) = 0 return 0

5 : Parse Σ = {Σ1, · · ·Σm}
6 : ∀j ∈ [m]

7 : if ∃i ∈ [n] : Σj ∈ SIG[i] then ij ← i

8 : if ∃i ∈ [k] : Σj ∈ SIG[·, i] then ij ← i

9 : elseif ∃i ∈ [n] : Identify(ski, vki, Σj) = 1 then ij ← i

10 : elseif ∃i ∈ [k] : Identify(lsi, Σj) = 1 then ij ← i

11 : else ij ← n+ 1

12 : if ∃j1, j2 ∈ [m] ij1 ̸= ij2 return 1

13 : else return 0

4 Anonymous Key Randomisable Signatures

We will now give the syntax and security requirements for a new primitive we call Anonymous Key
Randomisable Signatures (AKRS), which is closely related to Signatures with Flexible Public Key
(SFPK) [BHKS18].
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Intuition An SFPK scheme is a standard signature scheme that allows for public and secret keys to
be re-randomised. These re-randomised keys are considered to be in the same equivalence class as
the original key pair. Such re-randomised public keys, and signatures which verify for them, should
not be linkable to the original key pair of their equivalence class. This is formalised by a class hiding
requirement. Furthermore, during key generation, a trapdoor can be generated allowing to efficiently
decide if public keys are in the same equivalence class.

At first sight, an SFPK scheme seems to allow transforming ring signatures into ring signatures
with user controlled and autonomous linking. A user’s key pair would be that of a standard ring sig-
nature, while their linking secret key would be an SFPK key pair, with the corresponding trapdoor.
During signing, the user’s pseudonym could be a re-randomisation of the SFPK public key with the
randomness set to be the scope, so that the resulting public key is within the same equivalence class
as the original keypair in their linking key. The signature should include a standard ring signature
to ensure that the signature was output by a ring member and a SFPK signature valid under the
public key in the pseudonym to prevent framing attacks.

However, in the SFPK class hiding requirement, which is necessary to ensure anonymity of the
ring signature, the adversary does not get to see the randomness used to re-randomise the public
key. In their game, the knowledge of this randomness allows to trivially win, as an adversary can
re-run the randomisation algorithm itself. For the application to ring signatures described in the
previous paragraph, this will not do, since the randomness is a public value: the scope. On the
other hand, in this application, the SFPK’s secret key remains hidden: it is part of the linking
secret, which is unknown to the anonymity adversary. Therefore, we modify SFPK to ensure that
the secret key is necessary to generate public keys in the same equivalence class, thereby avoiding
the aforementioned trivial attack, while allowing for the adversary to know the randomness.

A second issue in the above construction, is that signatures can only be explicitly linked by
revealing the trapdoor, which would allow all signatures under the same linking key to be linked.
One way around this is to add an additional functionality, proving, in zero-knowledge, that the
pseudonyms in signatures are in the same equivalence class, using the trapdoor in the linking secret
key. For efficiency, however, we chose a different approach: we allow for several key pairs in the
same equivalence class to be accumulated into one key pair. Then the accumulated secret key could
be used to sign a signature valid under the accumulated public key. A verifier can check that this
signature is valid under an accumulated public key, resulting from the pseudonyms of all signatures
being linked. This means the linking proof is only the size of an SFPK signature. However, explicitly
linking signatures requires keeping track of each re-randomised secret key used in the linking key. We
overcome this by re-randomising only public keys, but not secret keys, i.e., the secret key remains the
same for all public keys in a given equivalence class. An accumulated public key will then correspond
to the same secret key as the public keys it was built from, as long as the latter lie in the same
equivalence class. Finally, observe that the secret key essentially fulfils the role of the trapdoor, as
it allows to link public keys in the same equivalence class. We thus remove the trapdoor from our
primitive’s syntax.

We now formally define Anonymous Key Randomisable Signatures. The security properties
required are given in Sections 4.1 to 4.3.

Definition 4.1 (Anonymous Key Randomisable Signature (AKRS)). An anonymous key
randomisable signature scheme is a tuple of PPT algorithms (KGen,ChgPK,Sig,Vf,Accum), satis-
fying correctness (Def. 4.2), class hiding (Def. 4.3), existential unforgeability under chosen message
attacks (Def. 4.4) and accumulation soundness (Def. 4.5); and with the following syntax:
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KGen(1λ) on input a security parameter 1λ, outputs a signing key sk and a public key pk.
ChgPK(sk, t) on input a secret key sk and a tag t, outputs a new public key pk′ in the same equiva-

lence class.
Sig(sk, pk,m) on input a signing key sk, a public key pk and a message m, outputs a signature σ.
Vf(pk,m, σ) on input a public key pk, a message m and a signature σ, the verification algorithm

returns 1 if σ is a valid signature on m w.r.t. pk, and 0 otherwise.
Accum((t1, pk1), · · · , (tk, pkk)) on input k public keys pk1, · · · , pkk with respect to tags t1, · · · , tk,

outputs an accumulated public key p̃k.

Definition 4.2 (Correctness). Consider any positive integer k; any tags
t1, · · · , tk ∈ {0, 1}∗; let (sk, pk) ← KGen(1λ), for all i ∈ [k] pk′i ← ChgPK(sk, ti), and p̃k ←
Accum((t1, pk

′
1), · · · (tk, pk′k)). An AKRS scheme is correct if for any message m, there exists a

negligible function ϵ such that:

Pr

 Vf(pk,m, σ) = 1
∧∀i ∈ [k], Vf(pk′i,m, σi) = 1

∧Vf(p̃k,m, σ̃) = 1

σ ← Sig(sk, pk,m),
∀i ∈ [k], σi ← Sig(sk, pk′i,m),

σ̃ ← Sig(sk, p̃k,m)

 = 1− ϵ(λ).

If ϵ = 0 then perfect correctness is satisfied.

4.1 Class Hiding

We ensure that an adversary cannot guess which of two public keys are re-randomised with a tag
chosen by the adversary (through oracle OChgPK), even while they can obtain signatures on these
public keys and the re-randomised keys (via the OSign oracle).

Definition 4.3 (Class Hiding). An anonymous key randomisable signature scheme satisfies class
hiding if for any PPT adversary A = (A1,A2), Pr[Exp

class-hiding
AKRS,A (1λ) = 1] is negligible in λ:

Experiment :Expclass-hiding
AKRS,A (1λ)

b∗ ←$ {0, 1}

for b ∈ {0, 1} (skb, pkb)← KGen(1λ)

sk2 ← skb∗ , L1 := {}, L2 := {}

d← AOChgPKL1,L2
,OSignL1,L2 (choose, pk0, pk1)

return ((d = b∗) ∧ (L1 ∩ L2 = ∅))

OChgPKL1,L2
(a, t)

1 : if ska =⊥ then return ⊥
2 : if a ∈ {0, 1} then L1 ← L1 ∪ {t}
3 : if a = 2 then L2 ← L2 ∪ {t}
4 : pk′ ← ChgPK(ska, t)

5 : return pk′

OSignL1,L2
(a,m, pk′, {t1, · · · , tm})

1 : if ska =⊥ then return ⊥
2 : if {t1, · · · , tm} ̸= ∗ then
3 : if a ∈ {0, 1} then L1 ← L1 ∪ {t1, · · · , tm}
4 : if a = 2 then L2 ← L2 ∪ {t1, · · · , tm}
5 : if pk′ ̸= Accum((t1,ChgPK(ska, t1)), · · · , (tm,ChgPK(ska, tm))) then return ⊥
6 : σ ← Sig(ska, pk

′,m)

7 : if t = ∗ then if a = 2 then return ⊥
8 : else σ ← Sig(ska, pka,m)

9 : return σ
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4.2 Existential Unforgeability under Chosen Message Attacks
We ensure that signatures cannot be forged for a public key in the equivalence class of an honest
user, even when they can obtain multiple public keys in that equivalence class on tags of their
choice. Below we provide the full experiment for our AKRS existential unforgeability under chosen
message attacks requirement.

Experiment :Expeuf−cma
AKRS,A (1λ)

1 : Q← {}, (sk, pk)← KGen(1λ)

2 : (pk′, {t1, · · · , tm},m, σ)← AOChgPK,OSign(pk)

3 : if Vf(pk′,m, σ) = 1 ∧ (m, {t1, · · · , tm}, ) /∈ Q

4 : ∧ pk′ = Accum((t1,ChgPK(sk, t1)), · · · , (tm,ChgPK(sk, tm)))

5 : then return 1

6 : else return 0

OChgPK(t)

1 : pk′ ← ChgPK(sk, t)

2 : return pk′

OSignQ(m, pk
′, {t1, · · · , tm})

1 : if t ̸= ∗ then
2 : if pk′ ̸= Accum((t1,ChgPK(sk, t1)), · · · , (tm,ChgPK(sk, tm)))

3 : then return ⊥
4 : σ ← Sig(sk, pk′,m)

5 : if t = ∗ then σ ← Sig(sk, pk,m)

6 : Q← Q ∪ {(m, t)}
7 : return σ

Definition 4.4 (Existential Unforgeability under Chosen Message Attacks). An anony-
mous key randomisable signature scheme satisfies existential unforgeability under chosen message
attacks if for any PPT adversary A, Pr[Expeuf−cma

AKRS,A (1λ) = 1] is negligible in λ.

4.3 Accumulation Soundness

This is a new requirement necessary due to the accumulation functionality. It must not be possible
to produce a signature which verifies for an accumulated public key, if the public keys input to the
accumulation algorithm do not belong to the same equivalence class.

Definition 4.5 (Accumulation Soundness). An anonymous key randomisable signature scheme
satisfies accumulation soundness if for any PPT adversary A, Pr[Expacc−sound

AKRS,A (1λ) = 1] is negligible
in λ.

Experiment :Expacc−sound
AKRS,A (1λ)

1 : for i ∈ [k] (ski, pki)← KGen(1λ)

2 : ({(t̂i, ˆpki, m̂i, σ̂i)}i∈[k+1,k+l], I, {ti}i∈I ,m, σ)← A((sk1, pk1), · · · , (skk, pkk))
3 : if ∃(i, j) ∈ I ∪ [k + 1, k + l] such that i ̸= j and ti = tj return 0

4 : if I = ∅ return 0

5 : if ∃i ∈ [k + 1, k + l] s.t Vf( ˆpki, m̂i, σ̂i) = 0 return 0

6 : for i ∈ I pk′i ← ChgPK(ski, ti)

7 : p̃k← Accum({(ti, pk′i)}i∈I , {(t̂i, p̂ki)}i∈[k+1,k+l])

8 : if Vf(p̃k,m, σ) = 0 return 0

9 : if ∃(i, j) ∈ I s.t. ski ̸= skj ∨ ∃i ∈ [k + 1, k + l] s.t. ∀j ∈ I,ChgPK(skj , t̂i) ̸= ˆpki

10 : then return 1

11 : else return 0
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KGen(1λ)

1 : (sk, vk)← RS.KGen(1λ)

2 : return (sk, vk)

GenLinkSec(1λ)

1 : (ls, ·)← AKRS.KGen(1λ) return ls

Sig(sk, ls, R,m, scp)

1 : Parse (vk1, . . . , vkn)← R

2 : nym← AKRS.ChgPK(ls, scp)

3 : Ω ← RS.Sig(sk, R,m||scp||nym)

4 : Ψ ← AKRS.Sig(ls, nym,m||scp||R||Ω)

5 : σ ← (Ω,Ψ)

6 : return (nym, σ)

Vf(m, scp, R, (Ω,Ψ), nym)

1 : Parse (vk1, . . . , vkn)← R

2 : if RS.Vf(Ω,R,m||scp||nym) = 0

3 : then return 0

4 : if AKRS.Vf(nym,m||scp||R||Ω,Ψ) = 0

5 : then return 0

6 : return 1

Link(ls, lm,Σ)

1 : if Parse {(mi, scpi, Ri, σi, nymi)}i∈[k] ← Σ

2 : if ∃i, j ∈ [k], (i ̸= j) ∧ (scpi = scpj)

3 : then return ⊥
4 : if ∃i ∈ [k], nymi ̸= AKRS.ChgPK(ls, scpi)

5 : then return ⊥
6 : if ∃i ∈ [k],Vf(mi, scpi, Ri, σi, nymi) = 0

7 : then return ⊥
8 : ˜nym← Accum(nym1, . . . , nymk)

9 : πl ← AKRS.Sig(ls, ˜nym, lm||Σ)

10 : return πl

VerifyLink(lm,Σ, πl)

1 : Parse {(mi, scpi, Ri, σi, nymi)}i∈[k] ← Σ

2 : if ∃i, j ∈ [k], (i ̸= j) ∧ (scpi = scpj)

3 : then return 0

4 : if ∃i ∈ [k],Vf(mi, scpi, Ri, σi, nymi) = 0

5 : then return 0

6 : ˜nym← Accum(nym1, . . . , nymk)

7 : return AKRS.Vf( ˜nym, lm||Σ, πl)

Fig. 3. RS-UCAL from standard ring signatures and AKRS.

5 Constructions for RS-UCL and RS-UCAL

5.1 A RS-UCAL Construction

We provide a generic construction, upgrading a standard ring signature scheme to a scheme with user
controlled autonomous linking. We build upon a standard ring signature scheme RS := (KGen, Sig,Vf)
as described formally in Appendix 2 and an AKRS AKRS = (KGen,ChgPK, Sig,Vf,Accum), as de-
fined in Section 4.

Our RS-UCAL scheme UCAL, given in Figure 3, works as follows. Key generation is simply the
key generation for a standard ring signature, whereas the linking secret is the secret key for an AKRS.
When signing, the pseudonym is the public key corresponding to the linking secret, randomised with
respect to the scope, a one way function of the linking secret and scope as desired. We then included a
standard ring signature to ensure that a non-member cannot sign on behalf of the ring, i.e. signature
unforgeability. In order to prevent a signature non-frameability attack, where an adversary uses the
pseudonym of an honest user’s signature in their own signature, we also include an AKRS signature
with respect to the pseudonym as the public key. In order to explicitly link signatures we make
use of the accumulation functionality from AKRS. A set of signatures that were all generated with
the same linking secret contain pseudonyms that can be accumulated. This accumulated public key
can be used to sign an AKRS signature, which will be the link proof. Due to the accumulation
soundness property and unforgeability of AKRS, link non-frameability and link unforgeability are
ensured, respectively. Anonymity follows from the anonymity of standard ring signatures, and the
class hiding property of the AKRS which ensures AKRS public keys and signatures cannot be linked
based on equivalence class, and so UCAL signatures cannot be linked based on the linking secret.
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Theorem 5.1. If AKRS is an anonymous key re-randomisable signature scheme and RS is a (stan-
dard) ring signature scheme, then UCAL is a ring signature scheme with user controlled autonomous
linking.

Proof

Verification correctness: Follows from the correctness of AKRS, and the correctness of RS.

Linking correctness: Follows from the correctness of AKRS.

Anonymity: We show that if AKRS is class hiding and unforgeable, and RS satisfies adaptive
anonymity against adversarially chosen keys, then so does UCAL.

We proceed through a game hop that we show is indistinguishable to the adversary assuming that
the RS satisfies adaptive anonymity against adversarially chosen keys. In the final game, assuming
there exists an algorithm A that wins with probability ϵAKRS, we show how to construct an algorithm
BAKRS, breaking the class hiding property of AKRS.

We define Game 0 as the experiment Expanon-b
UCL,A(1

λ, n). Let Si be the event that adversary A wins
in this experiment.

Game 1 is identical to Game 0, except that in the Ch− Signb oracle ski0 is always used to sign
Ω instead of skib .

We show that Game 0 and Game 1 are indistinguishable assuming the RS satisfies adaptive
anonymity against adversarially chosen keys. We give a distinguishing algorithm BRS below that
aims to break the anonymity of the RS.

Algorithm BRS gets as input a set of public verification keys vk1, . . . , vkn. It samples (·, lsi) ←
AKRS.KGen(1λ) for i ∈ [k], and initialises empty lists LNK and CLNK. It calls uponA1(choose, vk1, . . . , vkn),
and answers A1’s oracle queries as follows. BRS knows all the linking secrets so can perform OLink
and OLS as normal.

OSignucl-r(i, R,m, scp): BRS parses (vk1, . . . , vkn)← R, and computes nym← AKRS.ChgPK(lsi, scp).
It then calls upon its own signing oracle, with input (i, R,m||nym), which returns Ω. Finally, it
computes Ψ ← AKRS.Sig(lsi, nym,m||scp||R||Ω) and sends (nym, (Ω,Ψ)) to A1.

Corr(i): BRS queries i to its own corruption oracle, which returns ski, and sends (ski, lsi) to A1.

After a polynomial number of queries, A1 outputs (i0, i1), (j0, j1), state. B samples a random bit β.
Algorithm BRS now calls upon A2(guess, state), and answers A2’s oracle queries as follows.

OSignucl-r,OLink,Corr,OLS: BRS behaves as it did with A1.
Ch− Signb(R,m, scp): BRS first computes nym ← AKRS.ChgPK(lsjβ , scp). It then calls upon its

own challenge signing oracle, with input ({iβ, i0}, R,m||nym), which returns Ω. Finally, BRS
computes Ψ ← AKRS.Sig(lsjβ , nym,m||scp||R||Ω) and sends (nym, (Ω,Ψ)) to A2.

Ch− Linkb(lm,Σ): BRS performs the operations of Link with linking secret lsjβ to obtain πl – note
that it needn’t know skiβ for this. Then BRS adds (lm,Σ) to CLNK: CLNK← CLNK∪{(lm,Σ)}.
Finally it sends πl to A2.

After a polynomial number of queries, A2 outputs a bit d. BRS returns 1 to its own challenger if
d = β, and 0 otherwise.
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Analysis: Let the bit chosen by the challenger in the game for BRS be β̃. If β̃ = 0, then inputs to A
are identically distributed to in Game 0, and if β̃ = 1, then inputs to A are identically distributed
to in Game 1.

Therefore |Pr[S1]− Pr[S0]| ≤ ϵRS, where ϵRS is the advantage in the anonymity game for RS.
Precisely, assuming there exists an algorithm A which wins in Game 1, we show how to construct

an algorithm BAKRS, breaking the class hiding requirement of AKRS.
Algorithm BAKRS gets as input AKRS public keys pk0, pk1. It randomly samples j∗0 and j∗1

from [n] (such that j∗0 ̸= j∗1). It samples (·, lsj) ← AKRS.KGen(1λ) for j ∈ [k]\{j∗0 , j∗1}. For i ∈
[n], it samples (ski, vki) ← RS.KGen(1λ), and initialises empty lists LNK and CLNK. It calls upon
A1(choose, vk1, . . . , vkn), and answers A1’s oracle queries as follows. BAKRS knows all the secret keys
so can perform Corr as normal.

OSignucl-r(i, j, R,m, scp): If j = j∗b then BAKRS queries their oracle OChgPK(b, scp) to obtain nym.
They computeΩ ← RS.Sig(ski, R,m||scp||nym). They query their oracle OSign(b,m||scp||R||Ω, nym, scp)
to obtain Ψ . They update the lists as normal and return (nym, σ = (Ω,Ψ)). Otherwise, B per-
forms the oracle as in the original experiment.

OLink(j, lm,Σ): Parse Σ as {(mi, scpi, Ri, σi, nymi)}i∈[m]. If j = j∗b then BAKRS first checks if
∃(i′0, i′1) ∈ [m] such that scpi′0 = scpi′1 and i′0 ̸= i′1 and if so returns ⊥. Then for i′ ∈ [m]
BAKRS checks that the output of its oracle OChgPK(b, scpi′) is the same as nymi′ , returning
⊥ otherwise. BAKRS then computes ˜nym ← Accum(nym1, . . . , nymk). Finally, BAKRS queries its
oracle OSign(b, (lm,Σ), ˜nym, {scp1, · · · , scpm}) to obtain πl. If j /∈ {j∗0 , j∗1}, then BAKRS com-
putes πl ← Link(lsj , lm,Σ) to obtain πl. B adds (lm,Σ) to LNK for user index j: LNK[j] ←
LNK[j] ∪ {(lm,Σ)}. It sends πl to A1.

OLS(j): If j /∈ {j∗0 , j∗1} then return lsj . Otherwise BAKRS aborts.

After a polynomial number of queries, A1 outputs (i0, i1), (j0, j1), state. If j0 ̸= j∗0 or j1 ̸= j∗1 then
BAKRS aborts.

Algorithm BAKRS now calls upon A2(guess, state), and answers A2’s oracle queries as follows.

OSignucl-r,OLink,OLS,Corr: B behaves as it did with A1.
Ch− Signb(R,m, scp): BAKRS queries their oracle OChgPK(2, scp) to obtain nym. They compute

Ω ← RS.Sig(ski0 , R,m||scp||nym). They query their oracle OSign(2,m||scp||R||Ω, nym, scp) to
obtain Ψ . They update the lists as normal and return (nym, σ = (Ω,Ψ)).

Ch− Linkb(lm,Σ): Parse Σ as {(mi, scpi, Ri, σi, nymi)}i∈[m]. BAKRS first checks if ∃(i′0, i′1) ∈ [m] such
that scpi′0 = scpi′1 and i′0 ̸= i′1 and if so returns ⊥. Then for i′ ∈ [m] BAKRS checks that the output
of its oracle OChgPK(2, scpi′) is the same as nymi′ , returning ⊥ otherwise. BAKRS then computes
˜nym← Accum(nym1, . . . , nymk). Finally, BAKRS queries its oracle OSign(2, (lm,Σ), ˜nym,
{scp1, · · · , scpk}) to obtain πl. BAKRS adds (lm,Σ) to CLNK: CLNK ← CLNK ∪ {(lm,Σ)}. It
sends πl to A1.

After a polynomial number of queries, A2 outputs a bit d. Let us denote β̃ the random bit chosen
by BAKRS’s challenger. We then check the lists CLNK, LNK[j∗0 ] and LNK[j∗1 ], for any signatures that
were not output by one of the signing oracles. If there exists (m, scp, R, σ, nym) ∈ Σ, b′ ∈ {0, 1}
such that Σ ∈ LNK[j∗b′ ] ∪ CLNK, and (m, scp, R, σ, nym) /∈ CSIG ∪ SIG[·, j∗b′ ], then BAKRS aborts.
Otherwise, BAKRS forwards d to its own challenger, as the answer to its’ own challenge.

Analysis: We now consider the probability that BAKRS aborts early returning 0. A chooses (j0, j1) ̸=
(j∗0 , j

∗
1) with probability 1 − 2

n(n−1) . Assuming that A is successful, then A will not query j∗0 or j∗1
to the Corr oracle.
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If BAKRS aborts because there is a signature submitted to the challenge linking oracle or the
linking oracle for j∗0 or j∗1 , that does not originate from the challenge signature oracle or the signing
oracle for j∗0 or j∗1 , then this would clearly break the unforgeability of the AKRS.

Assuming that BAKRS never aborts early, we now show that they win, provided that A is suc-
cessful. It is easy to see that B perfectly simulates Game 1 for b = β̃, where b is the bit chosen in
Game 1. Therefore, if A guesses b correctly, then B guesses β̃ correctly. To win in the class hiding
experiment we also need that scopes queried to the OChgPK and OSign oracles for a ∈ {0, 1} were
not also queried to those oracles for a = 2. For this we need that scopes that were queried by A
to the oracles OSignucl-r or OLink for j∗0 , j∗1 were not queried to Ch− Signb or Ch− Linkb. Due to
line 9 of the Anonymity requirement, clearly the same scopes were not queried to both OSignucl-r

for j∗0 , j∗1 and Ch− Signb. As BAKRS has not aborted, all signatures in CLNK must originate from
CSIG ∪ SIG[·, j∗b′ ] for b′ ∈ {0, 1}. Therefore, all signatures input to CLNK with scopes that have
been input to OSignucl-r, must have originally come from OSignucl-r. However, due to line 13 in
the anonymity experiment, signatures output by OSignucl-r cannot be input to CLNK. Therefore,
no scopes were input to both OSignucl-r and CLNK. As BAKRS has not aborted, all signatures in
LNK[j∗0 ] or LNK[j∗1 ] must originate from CSIG ∪ SIG[j∗b′ ] for b′ ∈ {0, 1}. Therefore, all signatures
input to OLink with scopes that have been input to Ch− Signb, must have originally come from
Ch− Signb. However, due to line 13 in the anonymity experiment, signatures output by Ch− Signb
cannot be input to OLink. Therefore, no scopes were input to both Ch− Signb and OLink. Finally,
we consider scopes input to both OLink for j∗0 , j∗1 and Ch− Linkb. As discussed, all scopes input
to Ch− Linkb must originate from Ch− Signb and all scopes input to OLink must originate from
OSignucl-r. Therefore, again due to line 9, no scope will be input to both oracles.

We therefore have that provided A is successful, the probability of BAKRS aborting early without
winning is negligible, and otherwise they will be successful. Therefore, our construction satisfies
anonymity.

Signature unforgeability: We show that if RS is unforgeable, then UCAL satisfies signature unforge-
ability.

Precisely, assuming there exists an algorithm A which breaks the signature unforgeability of
UCAL with probability ϵ, we show how to construct an algorithm B, breaking the unforgeability of
RS.

Algorithm B gets as input public ring signature keys vk1, . . . , vkn from its challenger for RS. For
i ∈ [k], it sets lsi ← UCAL.GenLinkSec(λ). Finally, B forwards vk1, . . . , vkn to A, and answers the
latter’s oracle queries as follows. B knows all the linking secrets so can perform OLink and OLS as
normal.

OSignucl-r(i, j, R,m, scp): B computes nym ← ChgPK(lsj , scp). Next, B calls upon oracle OSign
for RS, with input (i, R,m||scp||nym), from which it gets output Ω, and finally it computes
Ψ ← AKRS.Sig(lsj , nym,m||scp||R||Ω). B then sends (nym, (Ω,Ψ)) to A.

Corr(i): B queries i to its own corruption oracle for RS, and forwards the received ski to A.

Now with probability ϵ, A outputs a forged signature Σ∗ := (m∗, scp∗, R∗, (Ω∗, Ψ∗), nym∗), and B
forwards (Ω∗, R∗,m∗||scp∗||R∗||nym∗) as its forgery for RS.

Analysis: For A’s output to be a forgery, the following must hold.

1. None of the keys in R∗ were corrupted.

17



2. Vf(Σ∗) = 1, and hence RS.Vf(Ω∗, R∗,m∗||scp∗||nym∗) = 1.
3. ∀i ∈ [n], no signature on m∗ for scope scp∗, ring R∗, and user i has been queried to B.

Now observe that, from item 3, it holds that B has not queried any instance of oracle OSign for
RS with input (i, R∗,m∗||scp∗||nym∗). Combined with items 1 and 2, it is clear that A’s forgery for
UCAL is successful, then B ’s forgery for RS is also successful.

Link unforgeability We show that if the AKRS is unforgeable, then UCAL satisfies link unforgeability.
Precisely, assuming there exists an algorithm A which breaks the link unforgeability of UCAL

with probability ϵUCAL, we show how to construct an algorithm B, breaking the unforgeability of
AKRS.

Algorithm B gets as input an AKRS public key pk from its challenger for AKRS. B randomly
chooses i∗ ←$ [k] and sets vki∗ ← pk. For i ∈ [n], it sets (ski, vki)← UCAL.KGen(λ). For i ∈ [k]\{i∗},
it sets lsi ← UCAL.GenLinkSec(λ). Finally, B forwards vk1, . . . , vkn to A, and answers the latter’s
oracle queries as follows. B knows all the secret keys so can perform Corr as normal.

OSignucl-r(i, j, R,m, scp): If j ̸= i∗ proceed as normal. Otherwise, B calls upon oracle ChgPK for
AKRS, with input scp, from which it gets output nym. Next, B computesΩ ← RS.Sig(ski, R,m||scp||nym).
Finally B calls upon oracle OSign for AKRS, with input (m||scp||R||Ω, nym, scp), from which it
gets output Ψ . B then sends (nym, (Ω,Ψ)) to A.

OLink(i, lm,Σ): If i ̸= i∗ proceed as normal. Otherwise, letting Σ = {(mi, scpi, Ri, σi, nymi)}i∈[m],
B computes ˜nym ← Accum(nym1, . . . , nymm). B calls upon oracle OSign for AKRS, with input
lm||Σ, ˜nym, {scpi}i∈[m], from which it gets output πl, and adds (lm,Σ) to LNK for user index i:
LNK[i]← LNK[i] ∪ {(lm,Σ)}. It sends πl to A.

OLS(i): If i ̸= i∗ proceed as normal. Otherwise, B aborts.

Now with probability ϵUCAL,A outputs a forged link proof (lm,Σ, πl), let Σ = {(mi, scpi, Ri, σi, nymi)}i∈[m].
B computes ˜nym ← Accum(nym1, . . . , nymm). B forwards ( ˜nym, {scp1, · · · , scpm}, lm||Σ, πl) as its
forgery for AKRS.

Analysis: For A’s output to be a forgery, the following must hold.

1. lm,Σ were not queried to OLink.
2. Vf(lm,Σ, πl) = 1, and hence AKRS.Vf( ˜nym, lm||Σ, πl) = 1.
3. ∃ĩ ∈ [k] such that ĩ /∈ J and for all j ∈ [m] Σj ∈ SIG[̃i].

Assume that i∗ = ĩ, which occurs with probability 1/k. In this case B will not abort because i∗

was not queried to the OLS oracle. We also have that for all j ∈ [m], nymj is a correctly formed
public key for the scope scpj because this was honestly generated in the OSign oracle. This means
that ˜nym = Accum(ChgPK(sk, scp1), · · · ,ChgPK(sk, scpm)) where sk is the secret key corresponding
to pk (unknown to B). Now observe that, from item 1, it holds that the signature output is a valid
AKRS signature. B has not queried any instance of oracle OSign for AKRS with input (lm||Σ, ·).
It is clear that if A’s forgery for UCAL is successful, then B ’s forgery for AKRS is also successful.
Therefore, B wins with probability ϵUCAL/k

Signature non-frameability We show that if the AKRS is unforgeable, then UCAL satisfies signature
non-frameability.
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Precisely, assuming there exists an algorithm A which breaks the signature non-frameability of
UCAL with probability ϵUCAL, we show how to construct an algorithm B, breaking the unforgeability
of AKRS.

Algorithm B gets as input an AKRS public key pk from its challenger for AKRS. B randomly
chooses i∗ ←$ [k]. For i ∈ [n], it sets (ski, vki) ← UCAL.KGen(λ). For i ∈ [k]\{i∗}, it sets lsi ←
UCAL.GenLinkSec(λ). Finally, B forwards vk1, . . . , vkn to A, and answers the latter’s oracle queries
as follows. B knows all the secret keys so can perform Corr as normal.

OSignucl-r(i, j, R,m, scp): If j ̸= i∗ proceed as normal. Otherwise, B calls upon oracle ChgPK for
AKRS, with input scp, from which it gets output nym. Next, B computesΩ ← RS.Sig(ski, R,m||scp||nym).
Finally B calls upon oracle OSign for AKRS, with input (m||scp||R||Ω, nym, scp), from which it
gets output Ψ . B then sends (nym, (Ω,Ψ)) to A.

OLink(i, lm,Σ): If i ̸= i∗ proceed as normal. Otherwise, letting Σ = {(mi, scpi, Ri, σi, nymi)}i∈[m],
B computes ˜nym ← Accum(nym1, . . . , nymm). B calls upon oracle OSign for AKRS, with input
lm||Σ, ˜nym, {scpi}i∈[m], from which it gets output πl, and adds (lm,Σ) to LNK for user index i:
LNK[i]← LNK[i] ∪ {(lm,Σ)}. It sends πl to A.

OLS(i): If i ̸= i∗ proceed as normal. Otherwise, B aborts.

Now with probability ϵUCAL,A outputs a forged signatureΣ = (m, scp, R, σ, nym), where σ = (Ω,Ψ).
B forwards (nym, {scp},m||scp||R||Ω,Ψ) as its forgery for AKRS.

Analysis: For A’s output to be a forgery, there must exists ĩ ∈ [k] such that the following holds.

1. (m, scp, R, nym, ·) /∈ SIG[̃i].
2. Vf(Σ) = 1, and hence AKRS.Vf(nym,m||scp||R||Ω,ψ) = 1.
3. ĩ /∈ J .
4. (·, scp, ·, ·, nym) ∈ SIG[·, ĩ].

Assume that i∗ = ĩ, which occurs with probability 1/k. In this case B will not abort because
i∗ was not queried to the OLS oracle. We also have that (·, scp, ·, ·, nym) ∈ SIG[·, i∗], and so nym =
ChgPK(sk, scp) where sk is the secret key corresponding to pk (unknown to B), because this was
honestly generated in the OSign oracle. Now observe that, from item 2, it holds that the signature
output is a valid AKRS signature. B has not queried any instance of oracle OSign for AKRS with
input (m||scp||R||Ω, scp). It is clear that if A’s forgery for UCAL is successful, then B ’s forgery for
AKRS is also successful. Therefore, B wins with probability ϵUCAL/k

Link non-frameability We show that if the AKRS is accumulation sound, then UCAL satisfies link
non-frameability.

Precisely, assuming there exists an algorithm A which breaks the link non-frameability of UCAL
with probability ϵUCAL, we show how to construct an algorithm B, breaking the accumulation sound-
ness of AKRS.

Algorithm B gets as input AKRS key pairs ((ls1, pk1), · · · , (lsk, pkk)) from its challenger for
AKRS. For i ∈ [n], it samples (ski, vki) ← UCAL.KGen(λ). Finally, B forwards vk1, . . . , vkn to A,
and answers the latter’s oracle queries as normal, which is possible because B knows all the secret
keys and linking secrets.

Now with probability ϵUCAL,A outputs a forged link proof (lm,Σ, πl), where Σ = {(mi, scpi, Ri, σi =
(Ωi, Ψi), nymi)}i∈[m].
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Let A,B = ∅. For all j ∈ [m], if ∃i ∈ [k] : Σj ∈ SIG[·, i] or Identify(lsi, Σj) = 1 let ij = i and
I ← I ∪ [i], A← A ∪ scpj . Otherwise ij = k + 1, B ← B ∪ (scpj , nymj ,mj ||scpj ||Rj ||Ωj , Ψj , ).
B computes ˜nym ← Accum(nym1, . . . , nymm). B forwards (B, I, A, lm||Σ, πl) as its forgery for

AKRS.

Analysis: For A’s output to be a forged link proof, it must satisfy
VerifyLink(lm,Σ, πl) = 1; and the signatures in Σ were not all signed for (or identified as signed
for) the same linking secret ls, i.e ∃(j1, j2) ∈ [m] such that ij1 ̸= ij2 .

For B to be successful in the accumulation soundness game, we need 4 conditions to be satisfied.
Firstly, we need that I ̸= ∅. If I = ∅, for all j ∈ [m], ij = k + 1, in which case A would not be

successful in the link non-frameability game.
We also need that signatures in the set B are valid. For VerifyLink( ˜nym, lm||Σ, πl) = 1, we must

have that each signature in Σ is a valid ring signature. This ensures that for all j ∈ [m], Ψj is a
valid AKRS signature.

We additionally need that πl is a valid AKRS signature on message lm||Σ and public key ˜nym.
This is again satisfied because VerifyLink( ˜nym, lm||Σ, πl) = 1.

Finally we need that either ∃(i, j) ∈ I s.t. lsi ̸= lsj or ∃(scp∗, nym∗,m∗||scp∗||R∗||Ω∗, Ψ∗) ∈ B
such that ∀j ∈ I,ChgPK(lsj , scp∗) ̸= nym∗. Say this does not hold, then for all (j1, j2) ∈ I, ij1 = ij2
and B is the emptyset. Therefore, A would not be successful in the link non–frameability game.

We therefore have the output of B is a successful forgery in the accumulation soundness game.

5.2 Construction for Ring Signatures with User Controlled Linkability

We provide a generic construction for a ring signature scheme with user controlled linking. We
build upon a NIZK for the language L = {(nym, scp, (vki)i∈[n]; sk) : nym = AKRS.ChgPK(sk, scp) ∧∨

i∈[n](vki, sk) = AKRS.KGen(1λ)} and an AKRS AKRS = (KGen,ChgPK,Sig,Vf,Accum), as defined
in Section 4.

Our RS-UCL scheme UCL, given in Figure 4, works as follows. Key generation (instead of
the linking secret generation) is now identical to key generation for an AKRS. When signing, the
pseudonym, similarly to the UCAL construction, is the AKRS public key randomised with the scope
and now with the ring signature secret key corresponding to the AKRS secret key. For the RS-UCL
model, we additionally need to prove that the pseudonym was generated with a secret key corre-
sponding to one of the public keys in the ring to ensure signature unforgeability. This ensures that if
an adversary holds n keys in the ring, they can only generate n different pseudonyms and so output
n unlinked signatures. We therefore attach a non-interactive zero-knowledge proof of knowledge that
attests to this, which also fulfills the role of the ring signature in the UCAL construction. The AKRS
signature from the UCAL construction is now also not needed to ensure signature non-frameability,
because it is necessary to know the secret key corresponding to a pseudonym in order to generate
the NIZK. Explicit linking can be done in exactly the same way as the UCAL construction with
link non-frameability and link unforgeability satisfied in the same way. Anonymity similarly follows
from the class hiding property of the AKRS, and now also from the zero knowledge property of the
NIZK.

Theorem 5.2. If AKRS is an anonymous key re-randomisable signature scheme and NIZK is a
non-interactive zero knowledge proof of knowledge satisfying simulation sound extractability, then
UCL is a UCL ring signature.
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KGen(1λ)

1 : (sk, vk)← AKRS.KGen(1λ)

2 : return (sk, vk)

Sig(sk, R,m, scp)

1 : Parse (vk1, . . . , vkn)← R

2 : nym← AKRS.ChgPK(sk, scp)

3 : σ ← NIZK{sk : nym = AKRS.ChgPK(sk, scp)

4 : ∧
∨

i∈[n]

(vki, sk) ∈ AKRS.KGen(1λ)}(m)

5 : return (nym, σ)

Vf(m, scp, R, σ, nym)

1 : Parse (vk1, . . . , vkn)← R

2 : Verify NIZK σ wrt statement (nym, scp,m,

3 : (vk1, . . . , vkn))

4 : // Note m was auxilary input to the NIZK σ

Link(sk, lm,Σ)

1 : Parse {(mi, scpi, Ri, σi, nymi)}i∈[k] ← Σ

2 : if ∃i, j ∈ [k], (i ̸= j) ∧ (scpi = scpj)

3 : then return ⊥
4 : if ∃i ∈ [k], nymi ̸= AKRS.ChgPK(sk, scpi)

5 : then return ⊥
6 : if ∃i ∈ [k],Vf(mi, scpi, Ri, σi, nymi) = 0

7 : then return ⊥
8 : ˜nym← Accum(nym1, . . . , nymk)

9 : πl ← AKRS.Sig(sk, ˜nym, lm||Σ)

10 : return πl

VerifyLink(lm,Σ, πl)

1 : Parse {(mi, scpi, Ri, σi, nymi)}i∈[k] ← Σ

2 : if ∃i, j ∈ [k], (i ̸= j) ∧ (scpi = scpj)

3 : then return 0

4 : if ∃i ∈ [k],Vf(mi, scpi, Ri, σi, nymi) = 0

5 : then return 0

6 : ˜nym← Accum(nym1, . . . , nymk)

7 : return AKRS.Vf( ˜nym, lm||Σ, πl)

Fig. 4. RS-UCL from AKRS and non-interactive zero knowledge proofs of knowledge.

Proof

Verification correctness: Follows from the correctness of AKRS, and the correctness of NIZK.

Linking correctness: Follows from the correctness of AKRS.

Anonymity: We show that if AKRS is class hiding and accumulation sound and the NIZK is zero
knowledge, then UCL satisfies adaptive anonymity against adversarially chosen keys.

Precisely, assuming there exists an algorithm A which breaks the anonymity of UCL with prob-
ability ϵ, we show how to construct an algorithm B, breaking the class hiding requirement of AKRS
with probability ϵ+ negl(λ).

Algorithm B gets as input AKRS public keys pk0, pk1. It randomly samples i∗0 and i∗1 from [n]
(such that i∗0 ̸= i∗1) and sets vki∗0 ← pk0 and vki∗1 ← pk1. For i ∈ [n]\{i∗0, i∗1}, it samples (ski, vki)←
AKRS.KGen(1λ), and initialises empty lists LNK and CLNK. It calls upon A1(choose, vk1, . . . , vkn),
and answers A1’s oracle queries as follows.

OSignucl-r(i, R,m, scp): If i = i∗b then B queries their oracle OChgPK(b, scp) to obtain nym. They
then simulate σ making use of the zero knowledge property of the NIZK. They update the lists
as normal and return (nym, σ). Otherwise, B performs the oracle as in the original experiment.

OLink(i, lm,Σ): Parse Σ as {(mi, scpi, Ri, σi, nymi)}i∈[k]. If i = i∗b then B first checks if ∃(i′0, i′1) ∈ [k]
such that scpi′0 = scpi′1 and i′0 ̸= i′1 and if so returns ⊥. Then for i′ ∈ [k] B checks that the output
of its oracle OChgPK(b, scpi′) is the same as nymi′ , returning ⊥ otherwise. B then computes
˜nym← Accum(nym1, . . . , nymk). Finally, B queries its oracle OSign(b, (lm,Σ), ˜nym,
{scp1, · · · , scpk}) to obtain πl. If i /∈ {i∗0, i∗1}, then B computes πl ← Link(ski, lm,Σ) to obtain
πl. B adds (lm,Σ) to LNK for user index i: LNK[i]← LNK[i] ∪ {(lm,Σ)}. It sends πl to A1.

Corr(i): If i /∈ {i∗0, i∗1} then return ski. Otherwise B aborts.
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After a polynomial number of queries, A1 outputs i0, i1, state. If i0 ̸= i∗0 or i1 ̸= i∗1 then B aborts.
Algorithm B now calls upon A2(guess, state), and answers A2’s oracle queries as follows.

OSignucl-r,OLink,Corr: B behaves as it did with A1.
Ch− Signb(R,m, scp): B queries their oracle OChgPK(2, scp) to obtain nym. They then simulate σ

making use of the zero knowledge property of the NIZK. They update the lists as normal and
return (nym, σ).

Ch− Linkb(lm,Σ): Parse Σ as {(mi, scpi, Ri, σi, nymi)}i∈[k]. B first checks if ∃(i′0, i′1) ∈ [k] such that
scpi′0 = scpi′1 and i′0 ̸= i′1 and if so returns ⊥. Then for i′ ∈ [k] B checks that the output
of its oracle OChgPK(2, scpi′) is the same as nymi′ , returning ⊥ otherwise. B then computes
˜nym← Accum(nym1, . . . , nymk). Finally, B queries its oracle OSign(2, (lm,Σ), ˜nym,
{scp1, · · · , scpk}) to obtain πl. B adds (lm,Σ) to CLNK: CLNK← CLNK∪{(lm,Σ)}. It sends πl
to A1.

After a polynomial number of queries, A2 outputs a bit d. Let us denote β̃ the random bit chosen
by B’s challenger. We then check the lists CLNK, LNK[i∗0] and LNK[i∗1], for any signatures that
were not output by one of the signing oracles. For (m, scp, R, σ, nym) ∈ Σ, b′ ∈ {0, 1} such that
Σ ∈ LNK[i∗b′ ]∪CLNK, and (m, scp, R, σ, nym) /∈ CSIG∪SIG[i∗b′ ], we make use of the simulation sound
extractability of the NIZK to extract from σ a secret key sk such that nym = AKRS.ChgPK(sk, scp).
If sk was not the secret key corresponding to pkb′ if Σ ∈ LNK[i∗b′ ] or pkβ̃ if Σ ∈ CLNK , then the
signing oracle would have failed, due to the accumulation soundness of AKRS. Otherwise clearly B
can win in the class hiding game, and so aborts.

Otherwise, B forwards d to its own challenger, as the answer to its’ own challenge.

Analysis: We now consider the probability that B aborts early returning 0. A chooses (i0, i1) ̸=
(i∗0, i

∗
1) with probability 1− 2

n(n−1) . Assuming that A is successful, then A will not query i∗0 or i∗1 to
the Corr oracle.

Assuming that B never aborts early, we now show that they win, provided that A is successful.
It is easy to see that B perfectly simulates A’s challenger for b = β̃, where b is the bit chosen by the
challenger for A. Therefore, if A guesses b correctly, then B guesses β̃ correctly. To win in the class
hiding experiment we also need that scopes queried to the OChgPK and OSign oracles for a ∈ {0, 1}
were not also queried to those oracles for a = 2. For this we need that scopes that were queried by A
to the oracles OSignucl-r or OLink for i∗0, i∗1 were not queried to Ch− Signb or Ch− Linkb. Due to line 9
of the Anonymity requirement, clearly the same scopes were not queried to both OSignucl-r for i∗0, i∗1
and Ch− Signb. As B has not aborted, all signatures in CLNK must originate from CSIG∪SIG[i∗b′ ] for
b′ ∈ {0, 1}. Therefore, all signatures input to CLNK with scopes that have been input to OSignucl-r,
must have originally come from OSignucl-r. However, due to line 13 in the anonymity experiment,
signatures output by OSignucl-r cannot be input to CLNK. Therefore, no scopes were input to both
OSignucl-r and CLNK. As B has not aborted, all signatures in LNK[i∗0] or LNK[i∗1] must originate
from CSIG ∪ SIG[i∗b′ ] for b′ ∈ {0, 1}. Therefore, all signatures input to OLink with scopes that have
been input to Ch− Signb, must have originally come from Ch− Signb. However, due to line 13 in
the anonymity experiment, signatures output by Ch− Signb cannot be input to OLink. Therefore,
no scopes were input to both Ch− Signb and OLink. Finally, we consider scopes input to both OLink
for i∗0, i∗1 and Ch− Linkb. As discussed, all scopes input to Ch− Linkb must originate from Ch− Signb
and all scopes input to OLink must originate from OSignucl-r. Therefore, again due to line 9, no scope
will be input to both oracles.
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We therefore have that provided A is successful, the probability of B aborting early without
winning is negligible, and otherwise they will be successful. Therefore, our construction satisfies
anonymity.

Signature unforgeability: We show that if the AKRS is class hiding and the NIZK is simulation sound
extractable, then UCL satisfies signature unforgeability.

Precisely, assuming there exists an algorithm A which breaks the signature unforgeability of UCL
with probability ϵ, we show how to construct an algorithm B, breaking the class hiding requirement
of AKRS.

Algorithm B gets as input AKRS public keys pk0, pk1. It randomly samples i∗ from [n] and
sets vki∗ ← pk0. For i ∈ [n]\{i∗}, it samples (ski, vki) ← AKRS.KGen(1λ). Finally, B forwards
vk1, . . . , vkn to A, and answers the latter’s oracle queries as follows.

OSignucl-r(i, R,m, scp): If i = i∗ then B queries their oracle OChgPK(0, scp) to obtain nym. They
then simulate σ making use of the zero knowledge property of the NIZK. They update the lists
as normal and return (nym, σ). Otherwise, B performs the oracle as in the original experiment.

OLink(i, lm,Σ): Parse Σ as {(mi, scpi, Ri, σi, nymi)}i∈[k]. If i = i∗ then B first checks if ∃(i′0, i′1) ∈ [k]
such that scpi′0 = scpi′1 and i′0 ̸= i′1 and if so returns ⊥. Then for i′ ∈ [k] B checks that the output
of its oracle OChgPK(0, scpi′) is the same as nymi′ , returning ⊥ otherwise. B then computes
˜nym← Accum(nym1, . . . , nymk). Finally, B queries its oracle OSign(0, (lm,Σ), ˜nym,
{scp1, · · · , scpk}) to obtain πl. If i ̸= i∗, then B computes πl ← Link(ski, lm,Σ) to obtain πl. B
adds (lm,Σ) to LNK for user index i: LNK[i]← LNK[i] ∪ {(lm,Σ)}. It sends πl to A1.

Corr(i): If i ̸= i∗ then return ski. Otherwise B aborts.

Now with probability ϵ,A outputs ({Σ∗
1 , · · · , Σ∗

m}, R∗). For i ∈ [m] parseΣ∗
i = (m∗

i , scp
∗
i , R

∗, σ∗i , nym
∗
i ).

For all i ∈ [m], B extracts a secret key sk∗i from the NIZK which is possible due to the simulation
sound extractability. B checks if any of these secret keys correspond to the public key pk0. If so,
they can easily use this to win in the class hiding experiment. Otherwise they abort.

Analysis: Assume that A is successful. Firstly, consider that A has used the corruption oracle for
all i ∈ R∗. In that case to win A must output n+1 signatures. As all pseudonyms are different and
all scopes must be the same this means that all secret keys extracted must be different. Each secret
key must also correspond to a public key in R∗. This is clearly a contradiction.

Therefore, the adversary must not output at least one user in R∗ that has not been corrupted.
Let the number of honest users in R∗ be γ. Assume with probability at most γ/n that one of these
users was i∗. Then A must output at least n − γ + 1 signatures. Again, as all pseudonyms are
different and all scopes must be the same this means that all n− γ + 1 secret keys extracted must
be different. Each secret key must also correspond to a public key in R∗. Therefore, a secret key
corresponding to one of the uncorrupted users must be extracted. Assume with probability 1/γ that
this user was i∗. Then B does not abort and successfully wins in the class hiding experiment with
probability 1/n.

Link unforgeability We show that if the AKRS is unforgeable, then UCL satisfies link unforgeability.
Precisely, assuming there exists an algorithm A which breaks the link unforgeability of UCL with

probability ϵUCL, we show how to construct an algorithm B, breaking the unforgeability of AKRS.
Algorithm B gets as input an AKRS public key pk from its challenger for AKRS. B randomly

chooses i∗ ←$ [k] and sets vki∗ ← pk.. For i ∈ [n], it sets (ski, vki) ← AKRS.KGen(λ). Finally, B
forwards vk1, . . . , vkn to A, and answers the latter’s oracle queries as follows.
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OSignucl-r(i, R,m, scp): If i ̸= i∗ proceed as normal. Otherwise, B calls upon oracle ChgPK for AKRS,
with input scp, from which it gets output nym. They then simulate σ making use of the zero
knowledge property of the NIZK. B then sends (nym, σ) to A.

OLink(i, lm,Σ): If i ̸= i∗ proceed as normal. Otherwise, letting Σ = {(mi, scpi, Ri, σi, nymi)}i∈[m],
then B first checks if ∃(i′0, i′1) ∈ [m] such that scpi′0 = scpi′1 and i′0 ̸= i′1 and if so returns ⊥. Then
for i′ ∈ [k] B checks that the output of its oracle OChgPK(scpi′) is the same as nymi′ , returning
⊥ otherwise. B then computes ˜nym ← Accum(nym1, . . . , nymk). B calls upon oracle OSign for
AKRS, with input lm||Σ, ˜nym, {scpi}i∈[m], from which it gets output πl, and adds (lm,Σ) to
LNK for user index i: LNK[i]← LNK[i] ∪ {(lm,Σ)}. It sends πl to A.

Corr(i): If i ̸= i∗ proceed as normal. Otherwise, B aborts.

Now with probability ϵUCL,A outputs a forged link proof (lm,Σ, πl), let Σ = {(mi, scpi, Ri, σi, nymi)}i∈[m].
B computes ˜nym ← Accum(nym1, . . . , nymm). B forwards ( ˜nym, {scp1, · · · , scpm}, lm||Σ, πl) as its
forgery for AKRS.

Analysis: For A’s output to be a forgery, the following must hold.

1. lm,Σ were not queried to OLink.
2. VerifyLink(lm,Σ, πl) = 1, and hence AKRS.Vf( ˜nym, lm||Σ, πl) = 1.
3. ∃ĩ ∈ [n] such that ĩ /∈ I and for all j ∈ [m] Σj ∈ SIG[̃i].

Assume that i∗ = ĩ, which occurs with probability 1/n. In this case B will not abort because
i∗ was not queried to the Corr oracle. We also have that for all j ∈ [m], nymj is a correctly formed
public key for the scope scpj because this was honestly generated in the OSign oracle. This means
that ˜nym = Accum(ChgPK(sk, scp1), · · · ,ChgPK(sk, scpm)) where sk is the secret key corresponding
to pk (unknown to B). Now observe that, from item 1, it holds that the signature output is a valid
AKRS signature. B has not queried any instance of oracle OSign for AKRS with input (lm||Σ, ·).
It is clear that if A’s forgery for UCL is successful, then B ’s forgery for AKRS is also successful.
Therefore, B wins with probability ϵUCL/n.

Signature non-frameability We show that if the AKRS is unforgeable and the NIZK is simulation
sound extractable, then UCL satisfies signature non-frameability.

Precisely, assuming there exists an algorithm A which breaks the signature non-frameability of
UCL with probability ϵUCL, we show how to construct an algorithm B, breaking the unforgeability
of AKRS.

Algorithm B gets as input an AKRS public key pk from its challenger for AKRS. It randomly
samples i∗ from [n] and sets vki∗ ← pk. For i ∈ [n]\{i∗}, it samples (ski, vki) ← AKRS.KGen(1λ).
Finally, B forwards vk1, . . . , vkn to A, and answers the latter’s oracle queries as follows.

OSignucl-r(i, R,m, scp): If i = i∗ then B queries their oracle OChgPK(scp) to obtain nym. They then
simulate σ making use of the zero knowledge property of the NIZK. They update the lists as
normal and return (nym, σ). Otherwise, B performs the oracle as in the original experiment.

OLink(i, lm,Σ): Parse Σ as {(mi, scpi, Ri, σi, nymi)}i∈[k]. If i = i∗ then B first checks if ∃(i′0, i′1) ∈ [k]
such that scpi′0 = scpi′1 and i′0 ̸= i′1 and if so returns ⊥. Then for i′ ∈ [k] B checks that
the output of its oracle OChgPK(scpi′) is the same as nymi′ , returning ⊥ otherwise. B then
computes ˜nym← Accum(nym1, . . . , nymk). Finally, B queries its oracle OSign((lm,Σ), ˜nym,
{scp1, · · · , scpk}) to obtain πl. If i ̸= i∗, then B computes πl ← Link(ski, lm,Σ) to obtain πl. B
adds (lm,Σ) to LNK for user index i: LNK[i]← LNK[i] ∪ {(lm,Σ)}. It sends πl to A1.
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Corr(i): If i ̸= i∗ proceed as normal. Otherwise, B aborts.

Now with probability ϵUCL, A outputs a forged signature Σ = (m, scp, R, σ, nym). B extracts a secret
key sk∗ from the NIZK, σ, which is possible due to the simulation sound extractability. B chooses
any m∗ that hasn’t ever been queried to OSign and computes σ∗ ← AKRS.Sig(sk∗, nym,m∗). B
forwards (nym, scp,m∗, σ∗) as its forgery for AKRS.

Analysis: For A’s output to be a forgery, there must exists ĩ ∈ [k] such that the following holds.

1. (m, scp, R, nym, ·) /∈ SIG[̃i].
2. Vf(Σ) = 1, and hence nym = AKRS.ChgPK(sk∗, scp) (if extraction successful).
3. ĩ /∈ I.
4. (·, scp, ·, ·, nym) ∈ SIG[̃i].

Assume that i∗ = ĩ, which occurs with probability 1/n. In this case B will not abort because
i∗ was not queried to the Corr oracle. Now observe that, from items 1 and item 2, it holds that
the signature output is a valid AKRS signature that has not originated from the signing oracle for
i∗, therefore extraction will be successful. We therefore have that nym = ChgPK(sk∗, scp) and sk∗

corresponds to a public key in R. Therefore, clearly σ∗ is a valid signature due to correctness. As
(·, scp, ·, ·, nym) ∈ SIG[̃i] then nym was output previously on input OChgPK(scp). Therefore, letting
sk be the key corresponding to pk, nym = ChgPK(sk, scp). B therefore wins the unforgeability game
with probability ϵUCL/n

Link non-frameability We show that if the AKRS is accumulation sound, then UCL satisfies link
non-frameability.

Precisely, assuming there exists an algorithm A which breaks the link non-frameability of UCL
with probability ϵUCL, we show how to construct an algorithm B, breaking the accumulation sound-
ness of AKRS.

Algorithm B gets as input AKRS key pairs ((sk1, vk1), · · · , (skn, vkn)) from its challenger for
AKRS. Finally, B forwards vk1, . . . , vkn to A, and answers the latter’s oracle queries as normal,
which is possible because B knows all the secret keys.

Now with probability ϵUCL,A outputs a forged link proof (lm,Σ, πl), where Σ = {(mi, scpi, Ri, σi, nymi)}i∈[m].
B computes ˜nym← Accum(nym1, . . . , nymm).

Let A,B = ∅. For all j ∈ [m], if ∃i ∈ [n] : Σj ∈ SIG[i] or Identify(ski, Σj) = 1 let ij = i and I ←
I ∪ [i], A← A∪ scpj . Otherwise ij = n+1, and we can extract sk′j from σj due to the extractability
of the NIZK. We can then compute Ψ ← AKRS(sk′j , nymj , 0) and B ← B ∪ (scpj , nymj , 0, Ψj , ).
B forwards (B, I, A, lm||Σ, πl) as its forgery for AKRS.

Analysis: For A’s output to be a forged link proof, it must satisfy
VerifyLink(lm,Σ, πl) = 1; and the signatures in Σ were not all signed for (or identified as signed
for) the same secret key sk, i.e ∃(j1, j2) ∈ [m] such that ij1 ̸= ij2 .

For B to be successful in the accumulation soundness game, we need 4 conditions to be satisfied.
Firstly, we need that I ≠ ∅. If I = ∅, for all j ∈ [m], ij = n+ 1, in which case A would not be

successful in the link non-frameability game.
We also need that signatures in the set B are valid. For VerifyLink( ˜nym, lm||Σ, πl) = 1, we must

have that each signature in Σ is a valid ring signature. Due to the extractability, we have that,
for all j ∈ [m] such that ij = n + 1, nymj = AKRS.ChgPK(sk′j , scpj) and that sk′j corresponds to
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KGen(1λ)
• sk := x←$ Zq

• vk← (g, gx)
• Output (sk, vk)

ChgPK(sk, t)
• g̃ ← H1(t);
• h̃← g̃x

• Output (g̃, h̃)

Sig(sk, (g̃, h̃),m)
• k ←$ Zq, r ← g̃k

• e← H2(g̃||h̃||r||m)
• s← k − xe mod q
• Output (s, e)

Vf((g̃, h̃),m, (s, e))
• if g̃ = 1 reject
• rv ← g̃sh̃e

• ev ← H2(g̃||h̃||rv||m)
• If e = ev then accept,

else reject

Accum((t1, (g̃1, h̃1)), . . . , (tn, (g̃n, h̃n)))
• if ∃i ∈ [n] s.t. g̃i ̸= H1(ti)

then return ⊥
• g̃ ←

∏
g̃i

• h̃←
∏

h̃i

• Output pk := (g̃, h̃)

Fig. 5. Schnorr AKRS

a public key in the ring Rj . Therefore, due to the correctness of the AKRS each Ψj ∈ B is a valid
signature.

We additionally need that πl is a valid AKRS signature on message lm||Σ and public key ˜nym.
This is again satisfied because VerifyLink( ˜nym, lm||Σ, πl) = 1.

Finally we need that either ∃(i, j) ∈ I s.t. ski ̸= skj or ∃(scp∗, nym∗, 0, Ψ∗) ∈ B such that
∀j ∈ I,ChgPK(skj , scp∗) ̸= nym∗. Say this does not hold, then for all (j1, j2) ∈ I, ij1 = ij2 and B
is the emptyset. Therefore, A would not be successful in the link non–frameability game.

We therefore have the output of B is a successful forgery in the accumulation soundness game.

6 AKRS instantiations
6.1 Construction from Schnorr signatures
Consider a group G, of prime order q, generated by g; and hash functions H1 : {0, 1}∗ → G, and
H2 : {0, 1}∗ → Zq. In figure 5, we recall the standard algorithms of the standard Schnorr signature
scheme. We also introduce new algorithms ChgPK and Accum which augment the scheme to an
AKRS.
Security argument. We now provide some intuition as to why the augmented Schnorr signature
given in Figure 5 satisfies our requirements for an AKRS. Unforgeability is, modulo minor technical
details, inherent from the unforgeability property of Schnorr Signatures. Class hiding follows from
the fact that two public keys in the same equivalence class are of the form (H1(t),H1(t)

x) and
(H1(t

′),H1(t
′)x), which is a DDH tuple. Therefore, linking public keys by equivalence class can be

reduced to distinguishing DDH tuples. In the proof, signatures can be simulated without the secret
key, assuming that H2 is a random oracle. Accumulation soundness is the property that involves
more novel techniques, in the design of our construction and its security analysis. The accumulation
algorithm can be seen as a way to batch ℓ Schnorr statements with the same witness into a succinct
proof that, to the best of our knowledge, is new. Roughly, accumulation soundness follows from
the fact that signing with respect to an accumulated public key (

∏
g̃i,

∏
h̃i) requires knowledge of

the discrete logarithm of
∏
h̃i base

∏
g̃i. Letting

∏
g̃i =

∏
H1(ti) = g

∑
t̃i , where H1(ti) = gt̃i the

adversary must know
∑

ski t̃i∑
t̃i

, which entails knowledge of the t̃i, i.e. breaking the discrete logarithm.
We prove this formally below.

Correctness w.r.t. standard public keys: Consider a security parameter λ ∈ N, and (x, (g, gx)) ←
KGen(1λ). Let h = gx. Then for any (s, e) ← Sig(x, (g, h),m), there exists k ∈ Zq such that s ≡
k − xe mod q and e = H2(g||gx||gk||m). Hence, gshe = g(s+xe) = gk, and so e = H2(g||h||gshe||m).
This allows us to conclude that Vf((g, h),m, (s, e)) = 1.
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Correctness w.r.t. randomised public keys: Consider a security parameter λ ∈ N, and (x, gx) ←
KGen(1λ). For any t ∈ {0, 1}∗, let (g̃ = H1(t), h̃ = H1(t)

x) ← ChgPK(x, t), then for any (s, e) ←
Sig(x, (g̃, h̃),m), there exists k ∈ Zq such that s ≡ k − xe mod q and e = H2(g̃||h̃||g̃k||m). Hence
g̃sh̃e = g̃(s+xe) = g̃k, and so e = H2(g̃||h̃||g̃sh̃e||m). This allows us to conclude that Vf((g̃, h̃),m, (s, e)) =
1.

Correctness w.r.t. accumulated public keys: Consider a security parameter λ ∈ N, and (sk, vk) ←
KGen(1λ). For i ∈ [n], consider any ti ∈ {0, 1}∗ and let (g̃i, h̃i)← ChgPK(sk, ti). Then Accum

(
(g̃1, h̃1)

, . . . , (g̃n, h̃n)
)
→ (g̃, h̃), where g̃ =

∏
g̃i and h̃ =

∏
h̃i =

∏
g̃ski = g̃sk. Therefore, for any

(s, e)← Sig(sk, (g̃, h̃),m), we also have that Vf((g̃, h̃),m, (s, e)) = 1.

Class Hiding: Let A be an adversary in the class hiding experiment for the Schnorr AKRS, such
that H1 : {0, 1}∗ → G,H2 : {0, 1}∗ → Z∗

q are modelled as random oracles, that makes at most r
queries of t to either H1, OChgPK, or OSign. More specifically the adversary A is provided with the
H1 and H2 oracles which keep track of lists RO1 and RO2 respectively. If A queries t ∈ Zq to H1

then the oracle checks if there exist t, g̃ such that (t, g̃) ∈ RO1. If so, it returns g̃. Else, it samples
g̃ ←$ G uniformly at random, adds (t, g̃) to RO1, and outputs g̃. If A queries α ∈ {0, 1}∗ to H2,
then the oracle checks if there exist β such that (α, β) ∈ RO2. If so, it returns β. Else, it samples
β ←$ Zq uniformly at random, adds (α, β) to RO2, and returns β to A.

We proceed through a series of game hops that we show are indistinguishable to the adversary.
In the final game, the view of the adversary will be identical for b∗ = 0 and b∗ = 1 and the adversary
will have a negligible chance of guessing b∗. We define Game 0 as the experiment Expclass-hiding

AKRS,A (1λ).
Let Si be the event that adversary A wins in the class hiding experiment. We model H1, H2 as
random oracles.

Game 1 is identical to Game 0, except that in the OSign oracle, instead of generating the
signatures output via σ ← Sig(ska, pk

′,m), we instead sample e, s ←$ Zq uniformly at random.
Letting pk′ = (g̃, h̃), if (g̃||h̃||g̃sh̃e||m, ·) ∈ RO2 then Game 1 aborts (as e, s were chosen randomly
this occurs with negligible probability), otherwise ((g̃||h̃||g̃sh̃e||m, e) is added to RO2. The OSign
oracle outputs (s, e). As (s, e) satisfies H2((g̃||h̃||g̃sh̃e||m) = e, this does not affect the distribution
of inputs to the adversary. Therefore, Pr[S0] = Pr[S1].

Game 2, is identical to Game 1, except for a change to the OChgPK and OSign oracles when
a = 2 is input. Instead of using skb∗ to generate pk′ via ChgPK in both oracles, we will instead
obtain g̃ = H1(t) as usual, but randomly sample h̃ ←$ G. We give the OChgPK and OSign oracles
used in Game 2 in Figure 6.

This game hop will make use of a hybrid argument. We split the reduction into r steps. We
define Game 1.i to behave as in Game 2 only for the first i distinct queries submitted to the H1

oracle (including via the OChgPK and OSign oracles) and otherwise behave as in Game 1. Clearly,
Game 1.r will be identical to Game 2 and Game 1.0 will be identical to Game 1.

We show that Game 1.i and Game 1.(i + 1) are indistinguishable assuming the DDH problem
is hard. We give a distinguishing algorithm D1 in Figure 7. D1 is input (y1, y2, y3, y4) and aims to
distinguish if this is a DDH tuple or (y1, y2, y3, y4) were chosen randomly and independently.

We show that, when a DDH tuple is input, inputs to A are identical to Game 1.i and otherwise,
inputs to A are identical to Game 1.(i + 1). Note that sk1−b∗ , pk1−b∗ are generated identically to
in both games 1.i and 1.(i + 1). Furthermore, g, pkb∗ are identically distributed to both games 1.i
and 1.(i+ 1). The H1 oracle is distributed identically to both games 1.i and 1.(i+ 1), because t̃ is
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OChgPKL1,L2
(a, t)

.if ska =⊥ then return ⊥
if a ∈ {0, 1} then L1 ← L1 ∪ {t}
if a = 2 then L2 ← L2 ∪ {t}

if a = 2 then g̃ ← H1(t), h̃←$ G, pk′ ← (g̃, h̃)

else pk′ ← ChgPK(ska, t)

return pk′

OSignL1,L2
(a,m, pk′, {t1, · · · , tm})

if ska =⊥ then return ⊥
if {t1, · · · , tm} ̸= ∗ then

if a ∈ {0, 1} then L1 ← L1 ∪ {t1, · · · , tm}
if a = 2 then L2 ← L2 ∪ {t1, · · · , tm}
if pk′ ̸= Accum((t1,OChgPK(a, t1)), · · · , (tm,OChgPK(a, tm))) then return ⊥

Let pk′ = (g̃, h̃), e, s←$ Zq, add ((g̃||h̃||g̃sh̃e||m, e) to RO2

if t = ∗ then if a = 2 then return ⊥
else Let pka = (g, ha), e, s←$ Zq, add ((g||ha||gshe

a||m, e) to RO2

return (s, e)

Fig. 6. OChgPK and OSign oracles in Game 2.

chosen randomly and so a random group element is output. The H2 oracle is unchanged. For the
first distinct i values of t both the OSign and OChgPK oracles are identical to both games 1.i and
1.(i+ 1), except for when a = b∗. In this case, h̃ is distributed identically because letting y2 = yx1

1

then yt̃2 = g̃x1 . For the i + 1st query, A can only query either a ∈ {0, 1} or a = 2. If they query
a ∈ {0, 1}, then D will abort with probability 1/2 if b̃ = 0. If they do not abort, then g̃ = yt̃1 and so,
when a = b∗, h̃ = yt̃2 is correctly distributed. If they query a = 2, then D will abort with probability
1/2 if b̃ = 1. If they do not abort, then g̃ = yt̃3 and so, h̃ = yt̃4 is correctly distributed. For the final
queries, both the OSign and OChgPK oracles are identical to both games 1.i and 1.(i+1), except for
when a ∈ {b∗, 2}. In this case, h̃ is distributed identically because yt̃2 = g̃x1 . The signatures output
by OSign are generated the same way as in both games.

Therefore |Pr[S1.i]−Pr[S1.(i+1)]| ≤ 2ϵDDH, where ϵDDH is the advantage in distinguishing DDH
tuples. By a standard argument, |Pr[S1]− Pr[S2]| ≤ 2rϵDDH.

In Game 2, all inputs to the adversary are now independent of b∗ and so Pr[S2] = 1/2.
We now have that

|Pr[S0]− 1/2| ≤ 2rϵDDH

and conclude that the advantage of the adversary in Game 0 is negligible as required.

Unforgeability: Assume H1 : {0, 1}∗ → G and H2 : {0, 1}∗ → Z∗
q are modelled as random oracles, and

there exists a PPT algorithm A that has non-negligible advantage in outputting valid forgeries for
the Schnorr AKRS. We here show how to build a PPT algorithm B, which, using A as a subroutine
breaks the discrete logarithm assumption. Hence proving that in the random oracle model, and
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H1RO1
(t)

if ∃(t, t̃, g̃, r′) ∈ RO1

return g̃

else r̃ ← r̃ + 1

if r̃ = i+ 1 and b̃ = 0 then t̃←$ Zq, g̃ := yt̃
3

else t̃←$ Zq, g̃ := gt̃

add (t, t̃, g̃, r̃) to RO1

return g̃

H2RO2
(α)

if ∃(α, β) ∈ RO1 return β

else β ←$ Zq

add (α, β) to RO2

return β

OChgPKL1,L2
(a, t)

.if a /∈ {0, 1, 2, } then return ⊥
if a ∈ {0, 1} then L1 ← L1 ∪ {t}
if a = 2 then L2 ← L2 ∪ {t}
if (t, ·, ·, ·) /∈ RO1 then r̃ ← r̃ + 1

if r̃ = i+ 1 and b̃ = 0 t̃←$ Zq, g̃ := yt̃
3

else t̃←$ Zq, g̃ := gt̃

add (t, t̃, g̃, r̃) to RO1

For (t, t̃, g̃, r′) ∈ RO1

if r′ > i+ 1

if a ∈ {b∗, 2} then h̃ := yt̃
2, pk

′ ← (g̃, h̃)

else pk′ ← ChgPK(ska, t)

if r′ = i+ 1

if a ∈ {0, 1} then if b̃ = 0 then D1 aborts

else if a = b∗ then h̃ := yt̃
2, pk

′ ← (g̃, h̃)

else pk′ ← ChgPK(ska, t)

if a = 2 then if b̃ = 1 then D1 aborts

else h̃ := yt̃
4, pk

′ ← (g̃, h̃)

if r′ ≤ i

if a = 2 then h̃←$ G, pk′ ← (g̃, h̃)

if a = b∗ then h̃ := yt̃
2, pk

′ ← (g̃, h̃)

else pk′ ← ChgPK(ska, t)

return pk′

OSignL1,L2
(a,m, pk′, {t1, · · · , tm})

if a /∈ {0, 1, 2} then return ⊥
if t ̸= ∗ then

if pk′ ̸= Accum((t1,OChgPK(a, t1)), · · · , (tm,OChgPK(a, tm)))

then return ⊥

Let pk′ = (g̃, h̃), e, s←$ Zq

add (g̃||h̃||g̃sh̃e||m, e) to RO2

if t = ∗ then if a = 2 then return ⊥
else Let pka = (g, ha), e, s←$ Zq

add (g||ha||gshe
a||m, e) to RO2

return (s, e)

D1(y1, y2, y3, y4)

r̃ ← 0, b̃←$ {0, 1},RO1,RO2 ← ∅
b∗ ←$ {0, 1}, L1 := {}, L2 := {}

g ← y1, pkb∗ ← (g, y2), (sk1−b∗ , pk1−b∗)← KGen(1λ)

d← AOChgPKL1,L2
,OSignL1,L2 (choose, g, pk0, pk1)

return ((d = b∗) ∧ (L1 ∩ L2 = ∅))

Fig. 7. D1 that distinguishes between Game 1.i and Game 1.i+1.
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under the assumption computing discrete logarithms is hard, the AKRS of Figure 5 is unforgeable.
The reduction is described hereafter.

Algorithm B receives y from the discrete logarithm challenger, sets the verification key vk = y,
and initializes empty lists RO1,RO2. Let x be the discrete logarithm of y = gx. This value is unknown
to B, and is to the secret key corresponding to vk. Then B sends vk to A, and simulates the random
oracles H1, H2 as well as oracles OChgPK and OSig as follows:

– If A queries t ∈ Zq to H1, then B checks if there exist t̃, g̃, h̃ and type ∈ {ro, key} such that
(t, t̃, g̃, h̃, type) ∈ RO1. If so, it returns g̃. Else, it samples t̃ ←$ Zq uniformly at random, sets
g̃ := gt̃, h̃ := vkt̃, adds (t, t̃, g̃, h̃, ro) to RO1, and returns g̃ to A.

– If A queries α ∈ {0, 1}∗ to H2, then B checks if there exist β such that (α, β) ∈ RO2. If so, it
returns β. Else, it samples β ←$ Zq uniformly at random, adds (α, β) to RO2, and returns β to
A.

– If A queries t ∈ Zq to OChgPK, then B checks if there exist t̃, g̃, h̃ and type ∈ {ro, key} such that
(t, t̃, g̃, h̃, type) ∈ RO1. If so, it returns (g̃, h̃), and overwrites type to be key. Else, it samples
t̃ ←$ Zq uniformly at random, sets g̃ := gt̃, h̃ := vkt̃, adds (t, t̃, g̃, h̃, key) to RO1, and returns
(g̃, h̃) to A.

– If A queries a signature for m w.r.t. pk′ = (g̃, h̃) and set {t1, · · · , tm} to OSig then for i ∈ [m] B
proceeds as in OChgPK with input ti to obtain pki. They then check if pk′ = Accum(pk1, · · · , pkm).
• If not, then B ignores the query.
• If so, B samples e, s ←$ Zq uniformly at random. If (g̃||h̃||g̃sh̃e||m, ·) ∈ RO2 then B aborts

(as e, s were chosen randomly this occurs with negligible probability), otherwise B adds
(g̃||h̃||g̃sh̃e||m, e) to RO2. It sends (s, e) to A.
Note that (s, e) satisfies H2(g̃||h̃||g̃sh̃e||m) = e.

Now A outputs ((g̃, h̃),{t1, · · · , tm}, m∗, (s∗, e∗)). With significant probability ϵ, A’s output is a
successful forgery, i.e., denoting r∗ := g̃s

∗
h̃e

∗ , it holds that (g̃||h̃||r∗||m∗, e∗) ∈ RO2, for all i ∈
[m] there exists (ti, t̃i, g̃i, h̃i, ·) ∈ RO1, and letting t̃ =

∑
i∈[m] t̃i, then g̃ = gt̃, h̃ = vkt̃. Via the

forking lemma we can rewind to the point that A queried (g̃||h̃||r∗||m∗) to the H2 random oracle
(if (g̃||h̃||r∗||m∗, e∗) was added to RO2 by the signature oracle, this would not be a forgery), and
sample a different value ẽ, continuing as normal. Then, with non negligible probability A outputs
(g̃, h̃), {t′1, · · · , t′m}, m∗, (s′, e′) which also satisfy g̃s′ h̃e′ = r∗. This implies s∗ + xe∗ = s′ + xe′, and
so x can be recovered breaking the discrete logarithm problem.

Accumulation. Assume H1 : {0, 1}∗ → G,H2 : {0, 1}∗ → Z∗
q are modelled as random oracles.

Consider any PT adversary A for the accumulation security of the Schnorr AKRS with s = poly(λ)
queries to the random oracle for H1. We show that either A’s success probability is upper bounded
by 1/q, or there exists a PT adversary B which can use A to break the discrete logarithm problem.

The reduction works as follows:
Algorithm B receives Y from its challenger, where x such that Y = gx is unknown to B. Next B
initializes empty lists RO1,RO2; samples sk1, · · · skn ←$ Zq; samples a∗ ←$ [s]; sends sk1, · · · , skn to
A; and simulates the random oracles H1, H2 as follows:

– If A queries t ∈ Zq to H1, then B checks if there exist t̃, g̃ such that (t, t̃, g̃) ∈ RO1. If so, it
returns g̃. Else, if this is the a∗th distinct query to this oracle, then B sets g̃ := Y , adds (t, ·, g̃)
to RO1, and returns g̃ to A. Otherwise, it samples t̃ ←$ Zq uniformly at random, sets g̃ := gt̃,
adds (t, t̃, g̃) to RO1, and returns g̃ to A.
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– If A queries α ∈ {0, 1}∗ to H2, then B checks if there exist β such that (α, β) ∈ RO2. If so, it
returns β. Else, it samples β ←$ Zq uniformly at random, adds (α, β) to RO2, and returns β to
A.

NowA outputs ({(ti, pki, m̂i, σ̂i)}i∈[k+1,k+l], (t1, · · · , tk), (id1, · · · , idk),m∗, (s∗, e∗). For all i ∈ [1, k+

l], let pki = (H1(ti), h
′
i) (for i ∈ [k] we have that h′i = H1(ti)

skidi ). Let g̃ = Πi∈[k+l]H1(ti) and
h̃ = Πi∈[1,k+l]h

′
i. Let sk∗ be the discrete logarithm of h̃ with respect to g̃. With probability ϵA,

A’s output is a valid Schnorr AKRS, i.e. it holds that (g̃||h̃||R∗||m∗, e∗) ∈ RO2, g̃s
∗
h̃e

∗
= R∗. Via

the generalized forking lemma given in [BCJ08], we can rewind to the point that B was input
((g̃||h̃||R∗||m) to the H2 random oracle, and sample a different value ẽ, continuing as normal. Then,
A outputs (·, ·, ·, m∗, (s̃, ẽ)) such that g̃s̃h̃ẽ = R∗. This implies s̃+ ẽ · sk∗ = s∗ + e∗ · sk∗ and so sk∗

can be recovered.
With probability ϵA, for all i ∈ [k + 1, k + l] the σ̂i = (ŝi, êi) output by A are each a valid

Schnorr AKRS, i.e. it holds that (H1(ti)||h′i|R̂i||m̂i) ∈ RO2, H1(ti)
ŝih′i

êi = R̂i. Then for all i ∈
[k+1, k+l], letting σ̂i = (ŝi, êi), we can then rewind to the point that B was input (H1(ti)||h′i|R̂i||m̂i)
to the H2 random oracle, and sample a different value e′i, continuing as normal. Then, A outputs
({· · · , (ti, pki, m̂i, (s

′
i, e

′
i)), · · · }, ·, ·, ·, ·) such that H1(ti)

s′ih′i
e′i = R̂i. Letting h′i = H1(ti)

skidi for i ∈
[k + 1, k + l], this implies ŝi + êi · skidi = s′i + e′i · skidi . Therefore, for all i ∈ [k + 1, k + l] skidi can
be recovered.

If for all i ∈ [k + l], skidi = sk∗ then for all i, j ∈ [k], idi = idj and ∀i ∈ [k + 1, k + l] there
exists j ∈ [k] such that ChgPK(skidj , ti) = pki, so A is not successful. Therefore, ∃i∗ ∈ [k + l] such
that skidi∗ ̸= sk∗. If H1(ti∗) ̸= Y then B aborts, which occurs with probability (a − 1)/a. For all
i ∈ [k + l]\{i∗}, let (ti, t̃i, ·) ∈ RO1. Then,

sk∗ =
Σi∈[k+l]\{i∗}skidi · t̃i + x · skidi∗

Σi∈[k+l]\{i∗}t̃i + x

(as g̃ ̸= 1, Σi∈[k+l]\{i∗}t̃i + x ̸= 0). B outputs

Σi∈[k+l]\{i∗}(skidi − sk∗) · t̃i
sk∗ − skidi∗

.

Therefore, the probability of success for B is ϵA/a, which is non-negligible.
This concludes the proof that, if the discrete logarithm problem is hard, then no PT algorithm

A can break accumulation soundness with significant probability.

Compiling to UCAL and UCL Combined with any Ring Signature scheme the above AKRS
gives a UCAL-Ring Signature with a very small overhead: for the signature size it is 1 additional
Schnorr Signature, while all the extra computational costs are insignificant. Then, linking ℓ signa-
tures requires a group multiplication of ℓ elements and a Schnorr Signature. Verifying the linking of
ℓ signatures requires ℓ group multiplications and a Schnorr-Signature verification. For UCL the main
efficiency overhead comes from the NIZK. Our Schnorr-based AKRS allows for the k-out-of-n NIZK
by Attema et. al. [ACF21] to be used (setting k = 1), which gives similar asymptotic performance
to the state-of-the-art on Ring Signatures [GK15,BCC+15,LPQ18,LRR+19,YSL+20,YEL+21].

6.2 Lattice Construction

Our Lattice-based AKRS is based on the Fiat-Shamir signature scheme by Lyubashevsky [Lyu12],
which can be seen as the Lattice analogue of Schnorr signatures. We show how to bootstrap this
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KGen(1λ)
• S ←$ [−d, d]µ×k

sk := S
• A←$ Zn×µ

q , T = AS
vk := (A,T )

• Output (sk, vk)

ChgPK(sk, t)
• Ã← H1(t);
• T̃ ← ÃS
• Output (Ã, T̃ )

Sig(sk, (Ã, T̃ ),m)
• k←$ Dµ

σ , r ← Ãk
• e← H2(Ã||T̃ ||r||m)
• s← Se+ k
• Output (s, e) with probability Pr =

min

{
Dµ

σ(z)

MD
µ
Se,σ

(s)
, 1

}
• Otherwise repeat.

Vf((Ã, T̃ ),m, (s, e))
• Accept if:

1. e = H2(Ã||T̃ ||Ãs− T̃ e||m)
2. ∥s∥ ≤ ησ

√
µ

• else reject

Accum(
(
ti, (Ãi, T̃i)

)ℓ

i=1
)

• if Ãi ̸= H1(ti)
then return ⊥

• Ã←
∑

i Ãi

• T̃ ←
∏

i T̃i

• Output pk := (Ã, T̃ )

Fig. 8. Lattice-based AKRS

signature scheme to an AKRS. For the sake of simplicity we describe the scheme w.r.t. integer lattices
(based on SIS). However, it extends normally to ideal lattices (based on ring-SIS). The construction
is in fig. 8. where in the above Dµ

v,σ(·) is the discrete normal distribution over Zµ centered around
v ∈ Zµ (Dµ

σ(·) centered around v = 0 resp.) with standard deviation σ and n, µ, k, σ,M, η, d are
parameters. We refer to [Lyu12] for details.

Security and parameters For Class hiding to hold it is sufficient to show that (Ã1, Ã1S) ≈
(Ã2, Ã2S) ≈ . . . ≈ (Ãℓ, ÃℓS), where Ãi ←$ Zn×µ

q ,S ←$ [−d, d]µ×k. If we apply the Leftover hash
lemma [HILL99] to the hash function:

f(S) =


Ã1 0 . . . 0

0 Ã2 . . . 0
...

...
. . .

...
0 0 . . . Ãℓ

 ·

S
S
...
S

 =


Ã1S

Ã2S
...

ÃℓS


then the statistical distance of f(S) from the uniform over Zn×k

q is negligible (2−λ) if µ log(2d+1) ≥
kℓn+ 2λ. So if we set ℓmax to be the maximum number of re-randomizations of the public key and
µ ≥ (kℓmaxn+ 2λ)/ log(2d+ 1) then we get class-hiding. The rest of the lattice parameters are set
according to [Lyu12].

Unforgeability then comes directly from the unforgeability of [Lyu12] signatures and Accumu-
lation Soundness is analogous to the Schnorr Signatures AKRS construction.

Compiling to UCL and UCAL As in the Schnorr signatures case, the overhead of bootstrapping
a ring signature scheme to a UCAL one with the above AKRS is minimal. We further note that
concrete costs of our AKRS (and thus the compilation to UCAL) can be optimized using follow-up
optimizations on the Lyubashevsky signatures [DDLL13]. For UCL any general purpose NIZK for
lattice relations can be used; our AKRS language is a basic lattice one.

7 Conclusions

In this paper, we have introduced Ring Signatures (RS) with User-Controlled Linkability (UCL) and
User-Controlled Autonomous Linkability (UCAL). RS-UCL allows for both implicit and explicit
linkability of signatures. Thus, signers can decide to make their signatures linkable either when
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issuing the signatures (by using the same scope in all signatures to be linked) or at a later time (by
providing an explicit linking proof). We note that UCL was recently defined for group signatures.
However, we argue that ring signatures are better suited for distributed applications, as no group
manager is necessary. As such RS-UCL finds direct applicability in smart metering or smart mobility
applications as argued in section 1. Also, RS-UCL may be used in e-voting protocols where each
election could use a different scope so that (i) double-voting in the same election round would be
detected by implicit linkability, and (ii) voters can use the same (registered) key across election
rounds.

RS-UCAL gives even more power to signers as they now can ensure unlinkability of their signa-
tures, even if signatures use the same scope. Still, at a later time signers can prove linkability with
an explicit linking proof.

We show how to upgrade any RS to RS-UCAL by means of a new cryptographic primitive
that we have introduced in this paper and that we have labelled Anonymous Key Randomisable
Signatures (AKRS). We have also shown how AKRS can be used to instantiate RS-UCL. We note
that AKRS may be of independent interest and we have introduced two AKRS instantiations, one
in prime-order groups and one based on lattices.
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