
Do Not Trust in Numbers:
Practical Distributed Cryptography With General Trust

Orestis Alpos
University of Bern

orestis.alpos@unibe.ch

Christian Cachin
University of Bern

christian.cachin@unibe.ch

Abstract

In distributed cryptography independent parties jointly perform some cryptographic task. In the last
decade distributed cryptography has been receiving more attention than ever. Distributed systems
power almost all applications, blockchains are becoming prominent, and, consequently, numerous
practical and efficient distributed cryptographic primitives are being deployed.

The failure models of current distributed cryptographic systems, however, lack expressibility. As-
sumptions are only stated through numbers of parties, thus reducing this to threshold cryptography,
where all parties are treated as identical and correlations cannot be described. Distributed cryptogra-
phy does not have to be threshold-based. With general distributed cryptography the authorized sets,
the sets of parties that are sufficient to perform some task, can be arbitrary, and are usually modeled
by the abstract notion of a general access structure.

Although the necessity for general distributed cryptography has been recognized long ago and
many schemes have been explored in theory, relevant practical aspects remain opaque. It is unclear
how the user specifies a trust structure efficiently or how this is encoded within a scheme, for example.
More importantly, implementations and benchmarks do not exist, hence the efficiency of the schemes
is not known.

Our work fills this gap. We show how an administrator can intuitively describe the access struc-
ture as a Boolean formula. This is then converted into encodings suitable for cryptographic primi-
tives, specifically, into a tree data structure and a monotone span program. We focus on three general
distributed cryptographic schemes: verifiable secret sharing, common coin, and distributed signa-
tures. For each one we give the appropriate formalization and security definition in the general-trust
setting. We implement the schemes and assess their efficiency against their threshold counterparts.
Our results suggest that the general distributed schemes offer richer expressibility at no or insignifi-
cant extra cost. Thus, they are appropriate and ready for practical deployment.

1 Introduction

1.1 Motivation

Throughout the last decade, largely due to the advent of blockchains, there has been an ever-increasing
interest in distributed systems and practical cryptographic primitives. Naturally, the type of cryptography
most suitable for distributed systems is distributed cryptography: independent parties jointly perform
some cryptographic task.

There exist many examples of distributed cryptography used in practice. Threshold signature schemes
[10, 9, 55] distribute the signing power among a set of parties. They have been used in state-machine
replication (SMR) protocols, where they serve as unique and constant-size vote certificates [62, 43].
Furthermore, random-beacon and common-coin schemes [25, 19, 58, 13] provide a source of reliable
and distributed randomness. In SMR protocols they facilitate, among others, leader election [14, 21, 49]
and sharding [63, 36]. As a third example, multiparty computation (MPC) is a cryptographic tool that
enables a group of parties to compute a function of their private inputs. It finds applications in protecting

1

orestis.alpos@unibe.ch
christian.cachin@unibe.ch

digital assets1, private keys2, or cryptocurrency wallets3, often worth millions of dollars. Applications
also include highly sensitive and private data4, related, for example, to DNA5 or efforts against human
trafficking [20]. Security is, hence, of paramount importance. MPC has been combined with blockchains
to enable private computations [8] and fairness [39, 3].

One can thus say that we are in the era of distributed cryptography. However, all currently deployed
distributed-cryptographic schemes express their trust assumptions through a number, with a threshold,
hence reducing to the setting of threshold cryptography, where all parties may misbehave with the same
probability. In other words, parties are considered identical, leading to a monoculture-type view of the
system. On the other hand, distributed cryptography does not have to be threshold-based. In general
distributed cryptography the authorized sets, the sets of parties that are sufficient to perform the task,
can be arbitrary, and are specified through a general, non-threshold access structure (AS). Our position
is that general distributed cryptography is essential for distributed systems.

Increasing systems resilience and security. First, general distributed cryptography has the capacity
to increase the resilience of a system, as failures are, in practice, always correlated [60]. Cyberattacks,
exploitation of specific implementation vulnerabilities, zero-day attacks, and so on very seldom affect
all parties in an identical way — they often target a specific operating systems or flavor of it, a specific
hardware vendor, or a specific software version. Similarly, attackers may compromise specific parties
more easily, due to different administrator policies or different levels of cyber and physical security.
In another example, blockchain nodes are typically hosted by cloud providers or mining farms, hence
failures are correlated there as well. All these failure correlations are known and observed, and can be
expressed in a system that supports general trust, thereby significantly increasing resilience and security.

Let us now see a concrete example of how such correlations can be captured. Cachin [12] describes
an AS where parties are differentiated in two dimensions, based on their location and operating system
(OS). In an instantiation with 16, possibly Byzantine, parties, organized in four locations and four OS,
the AS tolerates the simultaneous failure of all parties in one location and all parties with a specific OS.
Hence, it encodes specific knowledge and correlation patterns, and can even tolerate executions with up
to seven failed parties, something not possible in the threshold setting, where only five out of the 16 may
fail. Once general distributed cryptography is deployed, this example can be generalized to any number
of parties and dimensions.

Facilitating personal assumptions and Sybil resistance. Some works in the area of distributed sys-
tems generalize trust assumptions in yet another dimension: they allow each party to specify its own. The
consensus protocol of Stellar [38], implemented in the Stellar blockchain6, allows each party to specify
the access structure of its choice, which can consist of arbitrary sets and nested thresholds. Similarly,
the consensus protocol implemented by Ripple [52] in the XRP ledger7 also allows each party to choose
who it trusts and communicates with. In both networks, the resulting representation of trust in the sys-
tem, obtained when the trust assumptions of all parties are considered together, cannot be expressed as a
simple threshold but as a generalized structure. Hence, current threshold-cryptographic schemes cannot
be integrated or used on top of these networks. For example, a common coin scheme — necessary for
achieving consensus in asynchronous networks — would need to support general trust. In addition to
that, practical and easy to deploy general distributed cryptographic schemes can function as a catalyst
for more applications built on top of these blockchains.

Another feature of both Stellar and Ripple is that they achieve open membership without employing a
proof-of-work or proof-of-stake mechanism. That is, they achieve Sybil resistance by allowing a party to
selectively trust or ignore other parties. This approach can lead to more efficient, less energy consuming,
and arguably more open and inclusive blockchains [61]. As described earlier, however, this results in
1 Fireblocks: https://www.fireblocks.com, Sepior: https://sepior.com 2 Key-
less: https://keyless.io. 3 Zengo: https://zengo.com, Unbound security:
https://github.com/unboundsecurity 4 Sharemind: https://sharemind.cyber.ee, Par-
tisia: https://partisia.com 5 https://partisia.com/better-data-solutions/surveys
6 https://www.stellar.org/ 7 https://ripple.com/

2

https://www.fireblocks.com
https://sepior.com
https://keyless.io
https://zengo.com
https://github.com/unboundsecurity
https://sharemind.cyber.ee
https://partisia.com
https://partisia.com/better-data-solutions/surveys
https://www.stellar.org/
https://ripple.com/

trust assumptions where parties are not treated as identical. Departing from a threshold mindset towards
general access structures is, thus, a prerequisite for wider adoption.

1.2 State of the art

In this work we focus on the three most important distributed-cryptographic primitives for distributed
protocols.

Common coin. A common coin [51, 13] scheme allows a set of parties to calculate a pseudorandom
function U , mapping coin names C to uniformly random bits U(C), in a distributed way. The same idea
is also used in random beacons [25, 19, 58] and distributed pseudorandom functions (DPRF) [44].

Distributed signatures. A distributed signature [24, 13, 55] scheme allows a set of parties to collec-
tively sign a message. The parties hold key shares of an unknown private key and create signature
shares on individual messages. Once sufficient signature shares are available, they are combined into a
unique distributed signature, which can be verified with the standard algorithm of the underlying signa-
ture scheme.

Verifiable secret sharing. Secret sharing [53] allows a dealer to share a secret in a way that only autho-
rized sets can later reconstruct it. Verifiable Secret Sharing (VSS) [31, 48] additionally allows the parties
to verify their shares against a malicious dealer.

Despite the merit of general distributed cryptography, and even though some general schemes have been
described in theory, no deployments exists yet. In our point of view, the reasons for this are the following.

• Many questions related to the usability of general schemes have never been answered in a real
system. How can the trust assumptions, initially only in the mind of an administrator, or only
described in a natural language, be encoded in a cryptographic scheme? How does the system
administrator efficiently do this? Usability is a necessary ingredient for the adoption of a new
technological setting, and usability in turn leads to increased security.

• Benchmarks do not exist and the efficiency of the schemes is not known. How much efficiency
needs to be “sacrificed” in order to support general trust?

• Can we have a simple and unified model, in which all schemes of interest can be described, under-
stood, and proven? Unified models facilitate understanding and adoption of new technologies and
pave the way for easier standardization and implementation.

1.3 Contributions

The goal of this work is to bridge the gap between theory and practice by answering the aforementioned
questions, so as to pave the way for the adoption of general distributed cryptography.

• We describe intuitive ways for an administrator to specify the trust assumption, starting from a
collection of sets or as a Boolean formula described in a JSON file. This is then converted into
two different encodings, a tree data structure and a Monotone Span Program (MSP) [11, 35]. An
algorithm is shown for building the MSP from the user input. The tree encoding is used for check-
ing whether a set of parties is authorized and the MSP for algebraic operations. We benchmark the
size and efficiency of both encodings. Finally, the practicality of these encodings is then validated
through examples, among which an access structure used in the live Stellar blockchain.

• We describe and implement the aforementioned schemes, both threshold and general versions.
Specifically, we first recall a general VSS scheme. We then extend the common-coin construction
of Cachin, Kursawe, and Shoup [13] into the general-trust model. To our knowledge, we are the
first to describe and implement a common-coin scheme over arbitrary access structures. Moreover,
we show a general distributed-signature scheme based on BLS signatures [10], which extends the
threshold scheme of Boldyreva [9]. For all three schemes, we benchmark the general algorithms

3

and assess their efficiency. We show that the generalized schemes are actually as efficient as their
threshold counterparts, and thus suitable for practical deployment.

• Last but not least, we provide a unified model and encoding of trust for the MSP. The generalization
of threshold-cryptographic schemes, such as VSS, to any linear access structure using the MSP
has been already extensively described in theory [17, 46, 42, 29], to an extent that it might be
considered a “folklore” construction. However, many schemes, such as distributed signatures and
common coins, have, to the best of our knowledge, not been explicitly described in the general-trust
form, let alone in a unified model. In this work we provide descriptions using the MSP, security
definitions that are appropriate for the general-trust setting, and proofs for the aforementioned
schemes.

1.4 Related work

Secret sharing over arbitrary access structures has been extensively studied in theory. The first scheme is
presented by Benaloh and Leichter [7]. They use monotone Boolean formulas with and, or, and threshold
operators to express the access structure and introduce a recursive secret-sharing construction. Gennaro
presents a general VSS scheme [29], where trust can be specified as Boolean formulas in disjunctive
normal form. As a result, a party receives as many shares as the number of conjunctions it appears in.

Later, the Monotone Span Program (MSP) is introduced [11, 35] as a linear-algebraic model of
computation. Since then, VSS schemes with general access structures have been formulated in terms
of an MSP, but result in rather complicated constructions. In the information-theoretic setting, Cramer,
Damgård, and Maurer [17] construct a VSS scheme for any monotone access structure. Nikov et al. [46]
extend this work to add proactive resharing. A general VSS scheme is also presented by Mashhadi,
Dehkordi, and Kiamari [42], which requires multiparty computation for share verification.

A different line of work encodes the access structure using a vector-space secret-sharing scheme [11],
which can be seen a special case of an MSP.8 Specifically, Herranz and Sáez [33] construct a VSS
scheme based on Pedersen’s VSS [48]. Herranz, Padró, and Sáez [32] construct general distributed RSA
signatures based on the threshold RSA scheme of Shoup [55]. Distributed key generation schemes have
also been described based on vector-space secret sharing [22, 23].

Attribute-based signature (ABS) schemes [40] are related to distributed signatures. In ABS a signer
possesses a number of attributes and can only produce a valid signature if they satisfy a certain predi-
cate on the set of all attributes. ABS schemes are similar to distributed signatures in that they usually
encode the attribute predicate as an MSP, but differ from distributed signatures in terms of security re-
quirements (they have to consider attribute privacy and adaptive attribute selection), and hence result in
more complicated schemes [47, 37].

2 Background and model

Notation. A bold symbol a denotes a vector of some dimension in N+. However, we avoid distinguish-
ing between a and aᵀ, that is, a denotes both a row and a column vector. Moreover, for vectors a ∈ K|a|

and b ∈ K|b|, where K is a field, a‖b ∈ K|a|+|b| denotes their concatenation. The notation x $← S means
that x is chosen uniformly at random from set S. The set of all parties is denoted P = {p1, . . . , pn}.

Adversary structures [34] and access structures [7]. An adversary structure F is a collection of all
unauthorized subsets of P , and an access structure (AS) A is a collection of all authorized subsets of P .
Both are monotone. Any subset of an unauthorized set is unauthorized, i.e., if F ∈ F and B ⊂ F , then
B ∈ F , and any superset of an authorized set is authorized, i.e., if A ∈ A and C ⊃ A, then C ∈ A. As
in the most general case [34] we assume that any set not in the access structure can be corrupted by the
adversary, that is, the adversary structure and the access structure are the complement of each other. We
8 A vector-space secret-sharing scheme can be seen as an MSP where each party owns exactly one row. The MSP is, hence, a
stronger model as it can encode any access structure [35, 6].

4

say that F is a Q2 adversary structure if no two sets in F cover the whole P . Finally, an unauthorized
set F is called maximally unauthorized if adding any single party to F makes it authorized.

Corruption model. In all schemes we assume that the adversary structure F , implied by the access
structureA, is a Q2 adversary structure. The adversary is Byzantine and static, and corrupts a set F ∈ F
which is, w.l.o.g, maximally unauthorized.

Monotone span programs [35]. Monotone span programs (MSP) have been introduced as a linear-
algebraic model of computation. Given a finite field K and a set of parties P , an MSP is a tuple (M,ρ),
where M is an m× d matrix over K and ρ is a surjective function {1, . . . ,m} → P that labels each row
of M with a party. We say that party pi owns row j ∈ {1, . . . ,m} if ρ(j) = pi. The size of the MSP is
m, the number of its rows. Finally, the fixed vector e1 = [1, 0, . . . , 0] ∈ Kd is called the target vector.

For any set A ⊆ P we define MA to be the mA × d matrix obtained from M by keeping only the
rows j with ρ(j) ∈ A, that is, only the rows owned by parties in A. Let Mᵀ

A denote the transpose of MA

and Im(Mᵀ
A) the span of the rows of MA. We say that the MSP accepts A if the rows of MA span e1,

i.e., e1 ∈ Im(Mᵀ
A). Equivalently, there is a recombination vector λA such that λAMA = e1. Otherwise,

we say that the MSP rejects A. The sets that are accepted by the MSP form the access structure of the
MSP, and the rejected sets form the adversary structure of the MSP.

For any access structure A, we say that an MSP accepts A if it accepts exactly the authorized sets
A ∈ A. It has been proven that each MSP accepts exactly one monotone access structure and each
monotone access structure can be expressed in terms of an MSP [6, 35]. Hence, an MSP uniquely
defines an access structure, which in turn implies an adversary structure.

It is known that MSPs are more powerful than Boolean formulas and circuits. Babai, Gál, and
Wigderson [4, Theorem 1.1] prove the existence of monotone Boolean functions that can be computed
by a linear-size MSP but only by exponential-size monotone Boolean formulas.

Algorithm 1 (Linear secret-sharing scheme). A linear secret-sharing scheme (LSSS) over a finite field
K shares a secret x ∈ K using a random vector r, in such a way that every share is a linear combination of
x and the entries of r. Linear secret-sharing schemes are equivalent to monotone span programs [6, 35].
We formalize an LSSS as two algorithms, Share() and Reconstruct().

1. Share(x) . Choose uniformly at random d−1 elements r2, . . . , rd fromK and define the coefficient
vector r = (x, r2, . . . , rd). Calculate the secret shares x = (x1, . . . , xm) = Mr. Each xj , with
j ∈ [1,m], belongs to party pi = ρ(j). Hence, pi receives in total mj shares, where mj is the
number of MSP rows owned by pi.

2. Reconstruct(A,xA) . To reconstruct the secret given an authorized set A and the shares xA of
parties in A, find the recombination vector λA and compute the secret as λAxA.

A secret-sharing schemes satisfies two properties. The first is correctness, which demands that any
authorized set A ∈ A can reconstruct the secret. It is satisfied by construction of the MSP, which accepts
the access structureA. The second is privacy, stating any unauthorized set F ∈ F obtains no information
about the secret. This is formalized by the following lemma.

Lemma 1 (Privacy of MSP-based secret sharing [35]). LetM = (M,ρ) be an MSP over finite fieldK,
which accepts the access structure A, and F an unauthorized set, i.e. F 6∈ A, with shares xF = MFr.
Then, for every secret x̃ ∈ K there exists a coefficient vector r̃ which shares the secret x̃, i.e., r̃1 = x̃,
and satisfies xF = MF r̃.

Computational assumptions. Let G = 〈g〉 be a group of prime order q and x0
$← {0, . . . , q−1}. The

Discrete Logarithm (DL) assumption is that no efficient probabilistic algorithm, given g0 = gx0 ∈ G, can
compute x0, except with negligible probability. The Computational Diffie-Hellman (CDH) assumption

is that no efficient probabilistic algorithm, given g, ĝ, g0 ∈ G, where ĝ $← G and g0 = gx0 , can compute
ĝ0 = ĝx0 , except with negligible probability.

5

Definition 1 (Gap Diffie-Hellman group [10]). Let G1 = 〈g1〉 and G2 = 〈g2〉 be two groups of prime

order q, and h $← G1. Let α, β $← {0, . . . , q − 1}.
• The computational co-Diffie-Hellman (co-CDH) problem on (G1, G2) asks, on input g2, g

α
2 ∈ G2

and h ∈ G1, to compute hα ∈ G1.

• The decisional co-Diffie-Hellman (co-DDH) problem on (G1, G2) asks, on input g2, g
α
2 ∈ G2

and h, hβ ∈ G1, to output TRUE if α = β and FALSE otherwise. In the first case we say that
(g2, g

α
2 , h, h

α) is a co-Diffie-Hellman tuple.

• We say that (G1, G2) is a Gap co-Diffie-Hellman (co-GDH) group pair if co-DDH is easy but
co-CDH is hard to solve on (G1, G2). For a more formal definition we refer the reader to [10].

3 Specifying and encoding the trust assumptions

An important aspect concerning the implementation and deployment of general distributed cryptography
is specifying the Access Structure (AS).9 We require a solution that is intuitive, so that users or admin-
istrators can easily specify it, that facilitates the necessary algebraic operations, such as computing and
recombining secret shares, and in the same time offers an efficient way to check whether a given set is
authorized.

The administrator first specifies the access structure as a monotone Boolean formula, which consists
of and, or, and threshold operators. A threshold operator ΘK

k (q1, . . . , qK) specifies that any subset of
{q1, . . . , qK} with cardinality at least k is authorized, where each qi can be a party identifier or a nested
operator. Observe that the and and or operators are special cases of this, but we allow them as well for
better usability. We remark that the representation as a monotone Boolean formula also includes the case
where the access structure is initially given as a collection of sets. That is, if A1, A2, . . . , Am are the
authorized sets, and Ai = {pi1 , pi2 , . . . , pimi}, then this can be seen as Boolean formula in disjunctive
normal form, f = A1 ∨A2 ∨ . . .∨Am, where Ai = {pi1 ∧ pi2 ∧ . . .∧ pimi}. Hence, we assume the AS
can be described as a monotone Boolean formula. This is an intuitive format and can be easily specified
in JSON format, as shown in the examples that follow.

The next step is to internally encode the access structure within a scheme. For this we use two differ-
ent encodings. First, the Boolean formula is encoded as a tree, where a node represents an operator and
its children are the operands. The size of the tree is linear in the size of the Boolean formula. Checking
whether a set is authorized consists in a depth-first traversal of the tree, and hence takes time linear in
the size of the tree. This data structure allows for efficient evaluation of the Boolean formula, The sec-
ond is Monotone Span Program (MSP), which is the basis for all our general distributed cryptographic
primitives. The MSP is directly constructed from the JSON-encoded Boolean formula. Both are made
available to all parties.

Building the MSP from a monotone Boolean formula [45, 2]. We now describe how an MSP can
be constructed given a monotone Boolean formula. The details of the algorithm can be found in Ap-
pendix A. We use a recursive insertion-based algorithm. The main observation is that the t-of-n thresh-
old access structure is encoded by an MSP M = (M,ρ) over finite field K, with M being the n × t
Vandermonde matrix

V (n, t) =


1 x1 x2

1 · · · xt−1
1

1 x2 x2
2 · · · xt−1

2
...

...
...

. . .
...

1 xn x2
n · · · xt−1

n

 ,

9 As the focus of this work is on practical aspects, we assume that the administrator can, in the first place, efficiently describe
the authorized sets, either as a collection of sets or as a Boolean formula. Arguably, AS of practical interest fall in this category.
Nonetheless, if the AS cannot be efficiently described by a monotone formula but there exists an MSP that efficiently computes
it (such a family of functions exists [4]), then the MSP can be directly plugged into a generalized scheme.

6

for xi ∈ K pairwise different. The algorithm parses the Boolean formula as a sequence of nested
threshold operators (and and or are special cases of threshold). Starting from the outermost operator, it
constructs the Vandermonde matrix that implements it and then recursively performs insertions for the
nested threshold operators. In a high level, an insertion replaces a row of M with a second MSP M ′

(which encodes the nested operator) and pads with 0 the initial matrix M , in case M ′ is wider than M .
If the Boolean formula includes in total c operators in the form Θmi

di
, then the final matrix M of the

MSP that encodes it has m =
∑c

1mi − c+ 1 rows and d =
∑c

1 di − c+ 1 columns, hence size linear in
the size of the formula.

Example 1. Recent work [27] presents the example of an unbalanced-AS, where n parties in P are
distributed into two organizations P1 and P2, and the adversary is expected to be within one of the
organizations, making it easier to corrupt parties from that organization. They specify this with two
thresholds, t and k, and allow the adversary to corrupt at most t parties from P and in the same time at
most k parties from P1 or P2. We set t = bn/2c, so that we have aQ2 adversary structure. The threshold
k can be arbitrary, but we choose k = bt/2c − 1 for the extra restriction to make sense. For example,
let n = 9, P1 = {p1, . . . , p5}, P2 = {p6, . . . , p9}, t = 4, and k = 1. The access structure (taken as the
complement of the adversary structure) isA = {A ⊂ P : |A| > 4∨ (|A∩P1| > 1∧ |A∩P2| > 1)}. In
terms of a monotone Boolean formula, this can be written as FA = Θ9

5(P) ∨
(
Θ5

2(P1) ∧Θ4
2(P2)

)
. The

MSP constructed with the given algorithm has m = 2n rows and d = t+ 2k + 2 = n− 1 columns.

Example 2. Another classical general AS from the field of distributed systems is the M-Grid [41]. Here
n = k2 parties are arranged in a k × k grid and up to b = k − 1 Byzantine parties are tolerated. An
authorized set consists of any t rows and t columns, where t = d

√
b/2 + 1e.10 Let us set n = 16 and,

hence, k = 4, b = 2, and t = 2. This means two Byzantine parties are tolerated and any two rows and
two columns (twelve parties in total) make an authorized set. The Boolean formula that describes this
AS is FA = Θ4

2

(
Θ4

4(R1),Θ4
4(R2),Θ4

4(R3),Θ4
4(R4)

)
∧Θ4

2

(
Θ4

4(C1),Θ4
4(C2),Θ4

4(C3),Θ4
4(C4)

)
, where

R` and C` denote the sets of parties at row and column `, respectively. We call this access structure the
grid-AS.

Example 3. The Stellar blockchain supports general trust assumptions for consensus [38]. Each party
(or validator, in the terminology of Stellar) can specify its own access structure, which is composed of
nested threshold operators. We extract11 the AS of one Stellar validator, named SDF1, and show in
Figure 1 a JSON file that can be used to specify this AS in a generalized cryptographic scheme (we
use the validator names specified by Stellar as party identifiers). The techniques presented on this paper
enable general distributed cryptography in or on top of the blockchain of Stellar. The MSP constructed
with the presented algorithm has m = 25 rows and d = 15 columns.

Figure 1. A JSON file that specifies the access structure of a validator in the live Stellar blockchain. It
can be directly translated into an MSP and used for general distributed cryptographic schemes.

10 The conditions on b and t of an M-Grid for the so-called dissemination Byzantine quorum systems have been stated by Alpos
and Cachin [2]. 11 https://www.stellarbeat.io/, https://api.stellarbeat.io/docs/

7

https://www.stellarbeat.io/
https://api.stellarbeat.io/docs/

4 Verifiable secret sharing

In this section we recall a general Verifiable Secret Sharing (VSS) scheme, which we refer to as general
VSS. It generalizes Pedersen’s VSS [31, 48] to the general setting; verifiability of the secret shares is
achieved using Pedersen commitments. The scheme is similar to previous constructions in the litera-
ture [17, 46, 42], in that they use a Monotone Span Program (MSP) to encode general trust. It works

with a group G = 〈g〉 of large prime order q and uses an h $← G.

Security. The security of a general VSS scheme is formalized by the following properties (in analogy
with the threshold setting [31, 48]).

1. Completeness. If the dealer is not disqualified, then all honest parties complete the sharing phase
and can then reconstruct the secret.

2. Correctness. For any authorized sets A1 and A2 that have accepted their sharings and reconstruct
secrets z1 and z2, respectively, with overwhelming probability it holds that z1 = z2. Moreover, if
the dealer is honest, then z1 = z2 = s.

3. Privacy. Any maximally unauthorized set F has no information about the secret.

The scheme. The scheme is synchronous and uses the same communication pattern as the standard
VSS protocols [31, 48]. Hence complaints are delivered by all honest parties within a known time
bound, and we assume a broadcast channel, to which all parties have access.

1. Share(x) . The dealer uses Algorithm 1 to compute the secret-shares x = (x1, . . . , xm) =
LSSS.Share(x) . The dealer also chooses a random value x′ ∈ Zq and computes the random-
shares x′ = (x′1, . . . , x

′
m) = LSSS.Share(x′). Let r = (x, r2, . . . , rd) and r′ = (x′, r′2, . . . , r

′
d)

be the corresponding coefficient vectors. The dealer computes commitments to the coefficients
C1 = gxhx

′ ∈ G and C` = gr`hr
′
` ∈ G, for ` = 2, . . . d, and broadcasts them. The indexed share

(j, xj , x
′
j) is given to party pi = ρ(j). Index j is included because each pi may receive more than

one such tuples, if it owns more than one rows in the MSP. We call a sharing the set of all indexed
shares Xi = {(j, xj , x′j) | ρ(j) = pi} received by party pi.

2. Verify(j, xj , x′j) . For each indexed share (j, xj , x
′
j) ∈ Xi, party pi verifies that

gxjhx
′
j =

d∏
`=1

C
Mj`

` , (1)

whereMj is the j-th row-vector of M and Mj`, for ` ∈ {1, . . . d}, are its entries.

3. Complain() . Complaints are handled exactly as in the standard version [31]. Party pi broadcasts
a complaint against the dealer for every invalid share. The dealer is disqualified if a complaint is
delivered, for which the dealer fails to reveal valid shares.

4. Reconstruct(A,XA) . Given the sharings XA = {(j, xj , x′j) | ρ(j) ∈ A} of an authorized set
A, a combiner party first verifies the correctness of each share. If a share is found to be invalid,
reconstruction is aborted. The combiner constructs the vector xA = [xj1 , . . . , xjmA], consisting of
the mA secret-shares of parties in A, and, using Algorithm 1, returns LSSS.Reconstruct(A,xA) .

Theorem 2. Under the discrete logarithm assumption for group G, the above general VSS scheme is
secure (satisfies completeness, correctness, and privacy).

A proof can be found in Appendix C. Completeness holds by construction of the scheme, while
correctness reduces to the discrete-log assumption. For the privacy property, we pick arbitrary secrets x
and x̃ and show that the adversary cannot distinguish between two executions with secret x and x̃.

8

5 Common coin

In this section we present a Diffie-Hellman-based common-coin scheme, which we refer to as general
common coin. The scheme extends the threshold coin scheme of Cachin, Kursawe, and Shoup [13]
to accept any general access structure.12 It works on a group G = 〈g〉 of prime order q and uses the
following cryptographic hash functions: H : {0, 1}∗ → G, H ′ : G6 → Zq, and H ′′ : G → {0, 1}. The
first two, H and H ′, are modeled as random oracles.

The idea is that a secret value x ∈ Zq uniquely defines the value U(C) of a coin C as follows: hash
C to get an element g̃ = H(C) ∈ G, let g̃0 = g̃x ∈ G, and define U(C) = H ′′(g̃0). The value x is
secret-shared among P and unknown to any party. Hence, a party can only create coin shares using its
shares of x. Any party that receives enough coin shares can then obtain g̃0, by doing an interpolation of
x in the exponent.

Security. The security of a general common-coin scheme is captured by the following properties (anal-
ogous to threshold common coins [15, 13]).

1. Robustness. Except with negligible probability, the adversary cannot produce a coin name C and
valid coin shares, such that their owners form an authorized set and their combination outputs a
value different than U(C).

2. Unpredictability. Unpredictability is defined through the following game. The adversary corrupts,
without loss of generality, a maximally unauthorized set F . It interacts with honest parties accord-
ing to the scheme and in the end outputs a coin name C, which was not submitted for coin-share
generation to any honest party, as well as a coin-value prediction b ∈ {0, 1}. Then, the probability
that U(C) = b should not be significantly different from 1/2.

The scheme. It consists of the following algorithms.

1. KeyGen() . A dealer chooses uniformly an x ∈ Zq and shares it among P using the MSP-based
LSSS from Algorithm 1, i.e., x = (x1, . . . , xm) = LSSS.Share(x) . The secret key x is destroyed
after it is shared. We call a sharing the set of all key shares Xi = {(j, xj) | ρ(j) = pi} received
by party pi. The verification keys g0 = gx and gj = gxj , for 1 ≤ j ≤ m, are made public.

2. CoinShareGenerate(C) . For coin C, party pi calculates g̃ = H(C) and generates a coin share
g̃j = g̃xj for each key share (j, xj) ∈ Xi. Party pi also generates a proof of correctness for each
coin share, i.e., a proof that logg̃ g̃j = logg gj . This is the Chaum-Perdersen proof of equality of
discrete logarithms [16] collapsed into a non-interactive proof using the Fiat-Shamir heuristic [28].
For every coin share g̃j a valid proof is a pair (cj , zj) ∈ Zq × Zq, such that

cj = H ′(g, gj , hj , g̃, g̃j , h̃j), where hj = gzj/g
cj
j and h̃j = g̃zj/g̃

cj
j . (2)

Party pi computes such a proof for coin share g̃j by choosing sj at random, computing hj =
gsj , h̃j = g̃sj , obtaining cj as in (2), and setting zj = sj + xjcj .

3. CoinShareVerify(C, g̃j , (cj , zj)) . Verify the proof above.

4. CoinShareCombine() . Each party sends its coin sharing {(j, g̃j , cj , zj) | ρ(j) = pi} to a desig-
nated combiner. Once valid coin shares from an authorized set A have been received, find the
recombination vector λA for set A and calculate g̃0 = g̃x as

g̃0 =
∏

j|ρ(j)∈A

g̃
λA[j]
j , (3)

where the set {j | ρ(j) ∈ A} denotes the MSP indexes owned by parties in A. The combiner
outputs H ′′(g̃0).

12 The same threshold common-coin construction appears in DiSE [1, Figure 6], where it is modeled as a DPRF [44]. We
model our general scheme as a common coin and hence prove the unpredictability property, but pseudorandomness [1] holds
as well. In both cases, the scheme outputs an unbiased value.

9

Theorem 3. In the random oracle model, the above general common coin scheme is secure (robust and
unpredictable) under the assumption that CDH is hard in G.

The proof is presented in Appendix D. In a high level, we assume an adversary that can predict the
value of a coin with non-negligible probability and show how to use this adversary to solve the CDH
problem in G. The simulation works because the simulator can interpolate coin shares for honest parties
(we describe the details for this in Appendix B). The simulator, which is given g, the public key g0 = gx,
and some ĝ as a CDH instance, programs the random oracle H to output ĝ for some hash query Ĉ of
the adversary. If the adversary succeeds in predicting the value of Ĉ, then the simulator can extract
ĝ0 = ĝx, the solution to its CDH input, from the hash query H ′′(ĝ0) made by the adversary. The proof
has to handle specific issues that arise from the general access structures. Specifically, the simulator,
given valid shares of an authorized set, has to create valid shares (sometimes ‘hidden’ in the exponent)
for other parties. As opposed to the threshold case, it can be the case that the shares of the authorized set
do not fully determine all other shares. When this is the case, the simulator must choose specific shares
and assign them values with appropriate distribution.

6 Distributed signatures

In a distributed signature scheme parties hold key shares of an unknown private key, created with a
KeyGen() algorithm, run either by a trusted party or in a distributed manner. Using these, they cre-
ate signature shares on individual messages, using algorithm Sign() . Once sufficient signature shares
are available, they can be combined into a unique distributed signature, using algorithm SigShareCom-
bine() . Both signature shares and the distributed signature can be verified as a standard signature of the
underlying signature scheme, using SigShareVerify() and Verify() , respectively.

We now show a general distributed-signature scheme based on the BLS signature scheme [10], which
extends the threshold scheme of Boldyreva [9] in the general-trust setting. It works with a co-GDH group
pair G1, G2 = 〈g2〉 with |G1| = |G2| = q, for q prime.

Security. In accordance with threshold distributed signatures [55], we demand two basic requirements
from general distributed signatures, robustness and unforgeability.

1. Robustness. We say that the scheme is robust if the adversary cannot prevent the successful termi-
nation (creation of a valid general distributed signature).

2. Unforgeability. It is defined through the following game. The adversary corrupts an adversary set
F ∈ F of its choice. We assume, without loss of generality, that F is maximally unauthorized.
In the dealing phase the adversary receives all the private-key shares owned by parties in F , as
well as the public key and all verification keys. After the dealing phase the adversary submits
signing requests for messages of its choice to the honest parties. We say that the adversary forges a
signature if at the end of the game it outputs a valid signature on a message that was not submitted
as a signing request to any honest party (together with F this would have given the adversary
enough signature shares to reconstruct the distributed signature). The scheme is unforgeable if it
is infeasible for the adversary to forge a signature.

The scheme. It consists of the following algorithms.

1. KeyGen() . A trusted dealer chooses random x ∈ Zq as the global and unknown to all parties
private key and shares it among P using the MSP-based LSSS from Algorithm 1, i.e., x =
(x1, . . . , xm) = LSSS.Share(x) . The public key is v = gx2 ∈ G2 and the verification keys are
vj = g

xj
2 ∈ G2, for 1 ≤ j ≤ m, and they are published. The sharing Xi = {(j, xj) | ρ(j) = pi}

is given to pi.

2. Sign(µ,Xj) . For each indexed share (j, xj) ∈ Xi, the owner party pi calculates an indexed share
of the signature (j, σj), where σj = H(µ)xj ∈ G1.

10

3. SigShareVerify(µ, σj , v, vj) . Verify that (g2, vj , H(µ), σj) is a co-Diffie-Hellman tuple.

4. SigShareCombine((j1, σj1), . . . , (jmA , σjmA)) . Once the indexed signature shares σj1 , . . . , σjmA
from an authorized groupA have been received, recover the distributed signature as σ =

∏
j∈A σ

λA[j]
j ,

where λA[j] are the entries of the recombination vector that corresponds to A.

5. Verify(µ, σ, v) . Verify that (g2, v,H(µ), σ) is a co-Diffie-Hellman tuple.

Theorem 4. Assuming that standard BLS signatures are secure, the above general distributed signature
scheme is secure (robust and unforgeable).

The proof is presented in Appendix E. We show that the general distributed signature scheme is sim-
ulatable. This, together with the unforgeability of the standard BLS scheme, implies the unforgeability
property [30, Definition 3].

7 Evaluation

In this section we evaluate the encoding of general Access Structures (AS) as Monotone Span Programs
(MSP) and the efficiency of the presented general schemes. We answer the questions of how efficient
the MSP encoding is, how much is sacrificed for more complex AS, and how the general schemes scale
with the number of parties. We benchmark four configurations, resulting from different combinations
of a cryptographic scheme and an AS, as seen in Table 1. Notice that the first two describe the same
AS, encoded once as a t-out-of-n threshold and once as an MSP. With the first two configurations we
investigate the practical difference between Shamir-based and MSP-based encoding of the same access
structure. The last three configurations measure the efficiency we sacrifice for more powerful and ex-
pressive access structures.

Table 1. Evaluated configurations and corresponding MSP dimensions.

MSP dimensions
Configuration Scheme Access Structure m d

Threshold (n+ 1)/2 threshold dn+1
2 e-of-n - -

General (n+ 1)/2 general dn+1
2 e-of-n n dn+1

2 e
General Unbalanced general unbalanced-AS, Example 1 2n n− 1

General Grid general grid-AS, Example 2 2n 2(n+ t− k) ≈ 2n

For each of the presented cryptographic schemes we implement both our general and the original
threshold schemes in C++. Our benchmarks only consider CPU complexity, by individually measuring
the time it takes a party to execute each of the schemes’ algorithms, Network latency is not reflected in our
measurements. Further orthogonal optimizations, such as parallel share verification or communication-
level optimizations, are also not considered, since they can be independently applied to both the general
and the threshold schemes. All benchmarks are made on a virtual machine running Ubuntu 22.04, with 16
GB memory and 8 dedicated CPUs of an AMD EPYC-Rome Processor at 2.3GHz and 4500 bogomips.
The number of parties n is always a square, for the grid-AS to be well-defined, and at each point we
report mean value and standard deviation of 100 runs with different inputs.

7.1 Space taken by the MSP and running time to check for authorized sets

In this section we microbenchmark the MSPs that encode our general access structures. We measure
basic properties, which will be helpful later to explain the benchmarks on general schemes.

We first measure the space (size in KB) needed to store the MSP that describes each general AS.
The MSP needs to be stored by every party, as it used to compute the recombination vector. We remark
that, by construction of Algorithm 3, an AS described with a large number of nested operators results in

11

an MSP matrix that is sparse – most of its entries are 0 – and its non-zero entries have relatively small
absolute values. The result for different values of n is shown in Figure 2a.

We next measure the size (as number of parties) of authorized sets for each AS. In our benchmarks
authorized sets are obtained in the following way. Starting from an empty set, we add a party chosen
uniformly at random from the set of all parties, until the set becomes authorized. This simulates an
execution of the scheme where parties send their shares to a designated combiner and they arrive in a
random order. This procedure may result in authorized sets that are not minimal for the general trust, in
the sense that they are supersets of smaller authorized sets and contain redundant parties. We repeat this
experiment 1000 times and report the average size. The result can be seen in Figure 2b. The dn+1

2 e-of-n
threshold AS, of course, always results in authorized sets of size dn+1

2 e. The unbalanced-AS results
in authorized sets slightly smaller than in the threshold case. Finally, authorized sets in grid-AS are
significantly bigger, as they must contain full rows and columns of the grid.

We next measure the bit length of the recombination vector. This is relevant because general-
cryptographic schemes involve interpolation in the exponent, exponentiation is an expensive operation,
and a shorter (in terms of non-zero entries) recombination vector results in fewer exponentiations. We
report this in Figure 2c. We observe that the complexity of the AS (in terms of the size of the Boolean
formula or the JSON file that describes it) does not necessarily affect the bit length of the recombination
vector. This implies that the number of required exponentiations (for example in Reconstruct() or Coin-
ShareCombine()) does not grow with the complexity of the AS. There are two important observations to
explain Figure 2c. First, each entry of the recombination vector that corresponds to a redundant party is
0, as the share of that party does not contribute to reconstruction. Second, we have observed through our
benchmarks that, when the MSP is sparse and has entries with short bit length, then the non-zero entries
of the recombination vector are also small, in terms of their bit length.

Finally, in Figure 2d we report the time it takes to check whether a given set is authorized. This
set is chosen uniformly at random among all subsets of P and an average is taken over 1000 sets. As
explained in Section 3, the algorithm that checks for authorized sets uses the monotone Boolean formula
(MBF) representation of the AS, which is encoded as a tree. This is more efficient than using the MSP.
The running time of the algorithm grows with more complicated AS and with the number of parties,
because the MBF representation and the tree grow as well. In all cases, the runnin time is in the order of
microseconds.

7.2 Running time of verifiable secret sharing

We implement and compare the MSP-based scheme of Section 4 with Pedersen’s VSS [48], which we
refer to as general VSS and threshold VSS, respectively. For the Share() algorithm we report the time it
takes a dealer to share a random secret s ∈ Zq, for Verify() the average time it takes a party to verify
one of its shares (notice that in the general scheme a party may receive more than one shares), and for
Reconstruct() the time it takes a party to reconstruct the secret from an authorized group. For the latter,
the group is assumed authorized, i.e., we do not include the time to check whether it is authorized. The
results are shown in Figure 3.

The first conclusion (comparing the first two configurations in Figures 3a and 3b) is that the MSP-
based and Shamir-based operations are equally efficient, when instantiated with the same access struc-
ture. The only exception is the Reconstruct() algorithm, as shown in Figure 3c, where general VSS is
up to two times slower (for 100 parties). This is because computing the recombination vector employs
Gaussian elimination, which has cubic time complexity. Nevertheless, the reconstruction of the secret
only involves operations in field K, which is relatively fast — Reconstruct() is an order of magnitude
faster than Verify() for these two configurations.

The second conclusion (comparing the last three configurations, i.e., the ones that use general trust)
is that general VSS is moderately affected by the complexity of the AS. For Share() , shown in Figure 3a,
more complex AS incur a slowdown because a larger number of shares and commitments have to be
created. Reconstruct() , in Figure 3c, is also slower with more complex AS, because it performs Gaussian
elimination on a larger matrix. We conclude this is the only part of our general VSS that cannot be

12

(a) Size (in KB) of the MSP (b) Size (number of parties) of authorized set

(c) Bit length of recombination vector (d) Time to check for authorized set

Figure 2. Size of the MSP, authorized sets, and recombination vectors, and time to check whether a
given set of parties is authorized, for different access structures and for a varying number of parties. In
Figure 2d, the set is chosen uniformly at random among all subsets of P .

made as efficient as in threshold VSS. On the other hand, Verify() , in Figure 3b, exhibits an interesting
behavior: the more complex the AS, the faster it is on average to verify one share. This might seem
counter-intuitive, but can be explained from the observations of Section 7.1; more complex AS result in
an MSP with many 0-entries, hence the exponentiations of (1) are faster.

An observation that might be useful for future optimizations is that almost the entire time of Share()
is spent computing commitments; the dealer computes d commitments, which require 2d exponentia-
tions. As shown in Figure 3d, the computation of shares is orders of magnitude faster. Another possible
optimization is to parallelize algorithm Share() , since the computation of shares and commitments is
independent of each other.

7.3 Running time of common coin

We implement the scheme of Section 5, which we refer to as general coin, and the coin scheme from [13],
which refer to as threshold coin. For both schemes G is instantiated as an order-q subgroup of Zp, where
p = qm + 1, for q a 256-bit prime, p a 3072-bit prime, and m ∈ N. These lengths offer 128-bit
security and are chosen according to current recommendations for discrete logarithm prime fields [26,

13

(a) Time taken for Share() (b) Time taken for Verify()

(c) Time taken for Reconstruct() (d) Time taken by Share() calculating shares and commitments

Figure 3. Time taken by each algorithm in the threshold and general VSS for a varying number of
parties. Figure 3a measures the time for a dealer to share a secret, 3b the time for a party to verify
one of its shares, and 3c the time for a party to reconstruct the secret. Figure 3d compares the time (in
logarithmic scale) needed by Share() to compute the shares against the time to compute commitments to
the shares.

Chapter 4.5.2] 13. The arithmetic is done with NTL [57]. The hash functionsH,H ′, H ′′ use the openSSL
implementation of SHA-512 (so that it’s not required to expand the digest before reducing modulo the
256-bit q [56, Section 9.2]).

The results are shown in Figure 4. We only show the benchmark of CoinShareCombine() , because
KeyGen() behaves very similar to Share() in the VSS, and CoinShareGenerate() and CoinShareVerify()
are identical in the general and threshold coin (the average time to create and verify, respectively, one
coin share was always approximately 4.5ms).

When we benchmarked the VSS scheme in Section 7.2 we observed that Reconstruct() was slower
for the general scheme. This was because Reconstruct() involved no exponentiations and the cost of
matrix manipulations dominated the running time. Here, however, CoinShareCombine() runs similarly
in all cases, as the exponentiations in (3) now dominate the calculation of the recombination vector. As
a matter of fact, the general coin scheme is often faster than the threshold coin. This is because complex
AS often result in recombination vectors with shorter bit length, as shown in Section 7.1, hence the
13 Summary of recommendations from multiple organizations: https://www.keylength.com/en/3

14

https://www.keylength.com/en/3

Figure 4. Time taken by CoinShareCombine() in the threshold and general coin for a varying number
of parties.

exponentiations are faster. We conclude that the coin scheme does not sacrifice efficiency for supporting
general access structures.

7.4 Running time of distributed signatures

We have implemented the general distributed signature scheme from Section 6. Our extension for gener-
alized operations are made on the bls library, which in turn uses mcl14 for pairing operations. The security
of these libraries has been reviewed [50] on behalf of the Ethereum Foundation. The benchmarks are
done over BLS12-381[5], a widely used pairing-friendly curve offering 128 bits of security [18, Section
4.1].

In this section we show the results. The observations are similar to those for the previous schemes.
Creating and verifying a single signature share, as shown in Figure 5a, does not depend on the scheme or
the complexity of the AS, hence the corresponding algorithms run in constant time. On the other hand,
SigShareCombine() , as shown in Figure 5b, is moderately affected by the complexity of the AS: sim-
ilar to Reconstruct() in the VSS and different from CoinShareGenerate() in the common-coin scheme,
SigShareCombine() does not involve exponentiations, but only calculation of the recombination vector
and multiplication of elliptic curve points by constants. For this reason the computation of the recombi-
nation vector dominates running time, and SigShareCombine() becomes slower on more complex AS.

We finally remark that the general distributed signature scheme is considerably more efficient than
the state-of-the-art solution: assuming we have m signatures from an authorized set, the state-of-the-
art would require each party to verify all of them. When a scheme with general trust is available, the
signatures can first be combined. The cost of combining them remains in all cases much lower than the
cost of verifying each one individually.

8 Discussion

Conclusion. In this work we provide the first practical assessment of distributed cryptographic primi-
tives with general trust. We show how the access structure can be intuitively specified and efficiently en-
coded. We then describe, implement, and benchmark the cryptographic schemes. Specifically, we work
with a verifiable secret-sharing scheme, a common-coin scheme, and a distributed signature scheme (as
a generalization of threshold signatures), all supporting general trust assumptions.

Our results suggest that richer trust assumptions can be used in practice with no significant efficiency
loss. It can even be the case (VSS share verification, Figure 3b) that operations are on average faster with
14 https://github.com/herumi/bls, commit 64d13b9, https://github.com/herumi/mcl, version 1.40.

15

https://github.com/herumi/bls
https://github.com/herumi/mcl

(a) Time taken for Sign() and Verify() (b) Time taken for SigShareCombine()

Figure 5. Time taken by each algorithm in the threshold and general distributed signature scheme for
a varying number of parties. Figure 5a measures the time for a party to create and verify one signature
share and 5b the time to combine an authorized set of signature shares.

complex trust structures encoded as Monotone Span Programs (MSP). We nevertheless expect future
optimizations, orthogonal to our work, to make MSP operations even faster. For example, the secret-
share generation algorithm (cf. Section 4 and Figure 3a) can be parallelized, and the calculation of the
recombination vector (cf. Section 2 and Figure 3c) can be optimized. Similar optimizations have already
been discovered for polynomial evaluation and interpolation [59].

We expect that our work will improve the understanding and facilitate the wider adoption of general
distributed cryptography.

Future work. Distributed key generation (DKG) is a significant component in distributed crypto-
graphic schemes. It eliminates the strong assumption of a trusted dealer by distributing this task among
the parties. The basic idea is that each party runs an instance of VSS in parallel, sharing a random secret,
and then locally adds the shares of the instances that successfully terminated (i.e., their dealer did not
get disqualified). The shared secret, which never becomes known to any party, is uniquely determined
as the sum of the random secrets of the instances that terminated. This technique can be used in MSP-
based DKG protocols, as well, although we leave the formal description of an MSP-based DKG scheme
as future work. This boils down to the linearity of MSPs: adding two share vectors z1 = Mr1 and
z2 = Mr2, where r1[1] = x1 and r2[1] = x2, and then interpolating from some authorized set A will
always result in the sum of the two shared secrets, i.e., λA(z1 + z2) = λAM(r1 + r2) = x1 + x2.

Acknowledgments

This work has been funded by the Swiss National Science Foundation (SNSF) under grant agreement
Nr. 200021 188443 (Advanced Consensus Protocols).

References

[1] S. Agrawal, P. Mohassel, P. Mukherjee, and P. Rindal, “Dise: Distributed symmetric-key encryp-
tion,” in CCS, pp. 1993–2010, ACM, 2018.

[2] O. Alpos and C. Cachin, “Consensus beyond thresholds: Generalized byzantine quorums made
live,” in SRDS, pp. 21–30, IEEE, 2020.

16

[3] M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek, “Secure multiparty compu-
tations on bitcoin,” Commun. ACM, vol. 59, no. 4, pp. 76–84, 2016.

[4] L. Babai, A. Gál, and A. Wigderson, “Superpolynomial lower bounds for monotone span pro-
grams,” Comb., vol. 19, no. 3, pp. 301–319, 1999.

[5] P. S. L. M. Barreto, B. Lynn, and M. Scott, “Constructing elliptic curves with prescribed embedding
degrees,” in SCN, vol. 2576 of Lecture Notes in Computer Science, pp. 257–267, Springer, 2002.

[6] A. Beimel, Secure Schemes for Secret Sharing and Key Distribution. PhD thesis, Technion, 1996.

[7] J. C. Benaloh and J. Leichter, “Generalized secret sharing and monotone functions,” in CRYPTO,
vol. 403 of Lecture Notes in Computer Science, pp. 27–35, Springer, 1988.

[8] F. Benhamouda, C. Gentry, S. Gorbunov, S. Halevi, H. Krawczyk, C. Lin, T. Rabin, and L. Reyzin,
“Can a public blockchain keep a secret?,” in TCC (1), vol. 12550 of Lecture Notes in Computer
Science, pp. 260–290, Springer, 2020.

[9] A. Boldyreva, “Threshold signatures, multisignatures and blind signatures based on the gap-diffie-
hellman-group signature scheme,” in Public Key Cryptography, vol. 2567 of Lecture Notes in Com-
puter Science, pp. 31–46, Springer, 2003.

[10] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the weil pairing,” J. Cryptol., vol. 17,
no. 4, pp. 297–319, 2004.

[11] E. F. Brickell, “Some ideal secret sharing schemes,” in EUROCRYPT, vol. 434 of Lecture Notes in
Computer Science, pp. 468–475, Springer, 1989.

[12] C. Cachin, “Distributing trust on the internet,” in DSN, pp. 183–192, IEEE Computer Society, 2001.

[13] C. Cachin, K. Kursawe, and V. Shoup, “Random oracles in constantinople: Practical asynchronous
byzantine agreement using cryptography,” J. Cryptol., vol. 18, no. 3, pp. 219–246, 2005.

[14] J. Camenisch, M. Drijvers, T. Hanke, Y. Pignolet, V. Shoup, and D. Williams, “Internet computer
consensus,” IACR Cryptol. ePrint Arch., p. 632, 2021.

[15] R. Canetti and T. Rabin, “Fast asynchronous byzantine agreement with optimal resilience,” in
STOC, pp. 42–51, ACM, 1993.

[16] D. Chaum and T. P. Pedersen, “Wallet databases with observers,” in CRYPTO, vol. 740 of Lecture
Notes in Computer Science, pp. 89–105, Springer, 1992.

[17] R. Cramer, I. Damgård, and U. M. Maurer, “General secure multi-party computation from any
linear secret-sharing scheme,” in EUROCRYPT, vol. 1807 of Lecture Notes in Computer Science,
pp. 316–334, Springer, 2000.

[18] Crypto Forum Research Group (CFRG), Internet Research Task Force
(IRTF), “Pairing-Friendly Curves.” https://www.ietf.org/archive/id/
draft-irtf-cfrg-pairing-friendly-curves-10.html, 2021.

[19] S. Das, V. Krishnan, I. M. Isaac, and L. Ren, “Spurt: Scalable distributed randomness beacon with
transparent setup,” in IEEE Symposium on Security and Privacy, pp. 2502–2517, IEEE, 2022.

[20] Data Sharing Coalition, “Developing a safe and trusted collaboration environment to monitor
and combat human trafficking,” 2021. https://datasharingcoalition.eu/2021/
developing-a-safe-and-trusted-collaboration-environment-to-monitor-and-combat-human-trafficking.

17

https://www.ietf.org/archive/id/draft-irtf-cfrg-pairing-friendly-curves-10.html
https://www.ietf.org/archive/id/draft-irtf-cfrg-pairing-friendly-curves-10.html
https://datasharingcoalition.eu/2021/developing-a-safe-and-trusted-collaboration-environment-to-monitor-and-combat-human-trafficking
https://datasharingcoalition.eu/2021/developing-a-safe-and-trusted-collaboration-environment-to-monitor-and-combat-human-trafficking

[21] B. David, P. Gazi, A. Kiayias, and A. Russell, “Ouroboros praos: An adaptively-secure, semi-
synchronous proof-of-stake blockchain,” in EUROCRYPT (2), vol. 10821 of Lecture Notes in Com-
puter Science, pp. 66–98, Springer, 2018.

[22] V. Daza, J. Herranz, and G. Sáez, “Constructing general dynamic group key distribution schemes
with decentralized user join,” in ACISP, vol. 2727 of Lecture Notes in Computer Science, pp. 464–
475, Springer, 2003.

[23] V. Daza, J. Herranz, and G. Sáez, “On the computational security of a distributed key distribution
scheme,” IEEE Trans. Computers, vol. 57, no. 8, pp. 1087–1097, 2008.

[24] Y. Desmedt, “Society and group oriented cryptography: A new concept,” in CRYPTO, vol. 293 of
Lecture Notes in Computer Science, pp. 120–127, Springer, 1987.

[25] Drand, “A distributed randomness beacon daemon,” 2022. https://drand.love.

[26] ECRYPT-CSA, “Algorithms, key size and protocols report,” H2020-ICT-2014 –
Project 645421, 2018. https://www.ecrypt.eu.org/csa/documents/D5.
4-FinalAlgKeySizeProt.pdf.

[27] R. Eriguchi and K. Nuida, “Homomorphic secret sharing for multipartite and general adver-
sary structures supporting parallel evaluation of low-degree polynomials,” in ASIACRYPT (2),
vol. 13091 of Lecture Notes in Computer Science, pp. 191–221, Springer, 2021.

[28] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to identification and signature
problems,” in CRYPTO, vol. 263 of Lecture Notes in Computer Science, pp. 186–194, Springer,
1986.

[29] R. Gennaro, Theory and practice of verifiable secret sharing. PhD thesis, Massachusetts Institute
of Technology, Cambridge, MA, USA, 1996.

[30] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Robust threshold DSS signatures,” in EURO-
CRYPT, vol. 1070 of Lecture Notes in Computer Science, pp. 354–371, Springer, 1996.

[31] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Secure distributed key generation for discrete-
log based cryptosystems,” J. Cryptol., vol. 20, no. 1, pp. 51–83, 2007.

[32] J. Herranz, C. Padró, and G. Sáez, “Distributed RSA signature schemes for general access struc-
tures,” in ISC, vol. 2851 of Lecture Notes in Computer Science, pp. 122–136, Springer, 2003.

[33] J. Herranz and G. Sáez, “Verifiable secret sharing for general access structures, with application
to fully distributed proxy signatures,” in Financial Cryptography, vol. 2742 of Lecture Notes in
Computer Science, pp. 286–302, Springer, 2003.

[34] M. Hirt and U. M. Maurer, “Complete characterization of adversaries tolerable in secure multi-party
computation (extended abstract),” in PODC, pp. 25–34, ACM, 1997.

[35] M. Karchmer and A. Wigderson, “On span programs,” in Computational Complexity Conference,
pp. 102–111, IEEE Computer Society, 1993.

[36] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and B. Ford, “Omniledger: A
secure, scale-out, decentralized ledger via sharding,” in IEEE Symposium on Security and Privacy,
pp. 583–598, IEEE Computer Society, 2018.

[37] J. Li, M. H. Au, W. Susilo, D. Xie, and K. Ren, “Attribute-based signature and its applications,” in
AsiaCCS, pp. 60–69, ACM, 2010.

18

https://drand.love
https://www.ecrypt.eu.org/csa/documents/D5.4-FinalAlgKeySizeProt.pdf
https://www.ecrypt.eu.org/csa/documents/D5.4-FinalAlgKeySizeProt.pdf

[38] M. Lokhava, G. Losa, D. Mazières, G. Hoare, N. Barry, E. Gafni, J. Jove, R. Malinowsky, and
J. McCaleb, “Fast and secure global payments with stellar,” in SOSP, pp. 80–96, ACM, 2019.

[39] D. Lu, T. Yurek, S. Kulshreshtha, R. Govind, A. Kate, and A. K. Miller, “Honeybadgermpc and
asynchromix: Practical asynchronous MPC and its application to anonymous communication,” in
CCS, pp. 887–903, ACM, 2019.

[40] H. K. Maji, M. Prabhakaran, and M. Rosulek, “Attribute-based signatures,” in CT-RSA, vol. 6558
of Lecture Notes in Computer Science, pp. 376–392, Springer, 2011.

[41] D. Malkhi, M. K. Reiter, and A. Wool, “The load and availability of byzantine quorum systems,”
SIAM J. Comput., vol. 29, no. 6, pp. 1889–1906, 2000.

[42] S. Mashhadi, M. H. Dehkordi, and N. Kiamari, “Provably secure verifiable multi-stage secret shar-
ing scheme based on monotone span program,” IET Inf. Secur., vol. 11, no. 6, pp. 326–331, 2017.

[43] A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song, “The honey badger of BFT protocols,” in CCS,
pp. 31–42, ACM, 2016.

[44] M. Naor, B. Pinkas, and O. Reingold, “Distributed pseudo-random functions and kdcs,” in EURO-
CRYPT, vol. 1592 of Lecture Notes in Computer Science, pp. 327–346, Springer, 1999.

[45] V. Nikov and S. Nikova, “New monotone span programs from old,” IACR Cryptol. ePrint Arch.,
p. 282, 2004.

[46] V. Nikov, S. Nikova, B. Preneel, and J. Vandewalle, “On distributed key distribution centers and un-
conditionally secure proactive verifiable secret sharing schemes based on general access structure,”
in INDOCRYPT, vol. 2551 of Lecture Notes in Computer Science, pp. 422–436, Springer, 2002.

[47] T. Okamoto and K. Takashima, “Decentralized attribute-based encryption and signatures,” IEICE
Trans. Fundam. Electron. Commun. Comput. Sci., vol. 103-A, no. 1, pp. 41–73, 2020.

[48] T. P. Pedersen, “Non-interactive and information-theoretic secure verifiable secret sharing,” in
CRYPTO, vol. 576 of Lecture Notes in Computer Science, pp. 129–140, Springer, 1991.

[49] Protocol Labs, “Filecoin: A decentralized storage network.” https://filecoin.io/
filecoin.pdf, 2017.

[50] Quarkslab SAS, “Technical assessment of herumi libraries.” https://blog.quarkslab.
com/resources/2020-12-17-technical-assessment-of-herumi-libraries/
20-07-732-REP.pdf, 2020.

[51] M. O. Rabin, “Randomized byzantine generals,” in FOCS, pp. 403–409, IEEE Computer Society,
1983.

[52] D. Schwartz, N. Youngs, and A. Britto, “The Ripple protocol consensus algorithm.” Ripple Labs,
available online, https://ripple.com/files/ripple_consensus_whitepaper.
pdf, 2014.

[53] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11, pp. 612–613, 1979.

[54] V. Shoup, “Lower bounds for discrete logarithms and related problems,” in EUROCRYPT, vol. 1233
of Lecture Notes in Computer Science, pp. 256–266, Springer, 1997.

[55] V. Shoup, “Practical threshold signatures,” in EUROCRYPT, vol. 1807 of Lecture Notes in Com-
puter Science, pp. 207–220, Springer, 2000.

19

https://filecoin.io/filecoin.pdf
https://filecoin.io/filecoin.pdf
https://blog.quarkslab.com/resources/2020-12-17-technical-assessment-of-herumi-libraries/20-07-732-REP.pdf
https://blog.quarkslab.com/resources/2020-12-17-technical-assessment-of-herumi-libraries/20-07-732-REP.pdf
https://blog.quarkslab.com/resources/2020-12-17-technical-assessment-of-herumi-libraries/20-07-732-REP.pdf
https://ripple.com/files/ripple_consensus_whitepaper.pdf
https://ripple.com/files/ripple_consensus_whitepaper.pdf

[56] V. Shoup, A Computational Introduction to Number Theory and Algebra Version 2. Cambridge
University Press, 2009.

[57] V. Shoup, “Number Theory Library for C++ version 11.5.1,” 2020. https://shoup.net/ntl.

[58] E. Syta, P. Jovanovic, E. Kokoris-Kogias, N. Gailly, L. Gasser, I. Khoffi, M. J. Fischer, and B. Ford,
“Scalable bias-resistant distributed randomness,” in IEEE Symposium on Security and Privacy,
pp. 444–460, IEEE Computer Society, 2017.

[59] A. Tomescu, R. Chen, Y. Zheng, I. Abraham, B. Pinkas, G. Golan-Gueta, and S. Devadas, “To-
wards scalable threshold cryptosystems,” in IEEE Symposium on Security and Privacy, pp. 877–
893, IEEE, 2020.

[60] W. Vogels, “Life is not a State-Machine.” https://www.allthingsdistributed.com/
2006/08/life_is_not_a_statemachine.html, 2006.

[61] M. Vukolic, “On the future of decentralized computing,” Bull. EATCS, vol. 135, 2021.

[62] M. Yin, D. Malkhi, M. K. Reiter, G. Golan-Gueta, and I. Abraham, “Hotstuff: BFT consensus with
linearity and responsiveness,” in PODC, pp. 347–356, ACM, 2019.

[63] M. Zamani, M. Movahedi, and M. Raykova, “Rapidchain: Scaling blockchain via full sharding,” in
CCS, pp. 931–948, ACM, 2018.

A Building the MSP from a monotone Boolean formula

In this section we present the algorithm used in our model to construct the monotone span program
(MSP)M = (M,ρ) for a given monotone Boolean formula (MBF) F . The algorithm is also used in the
works of Nikov and Nikova [45], and Alpos and Cachin [2].

The algorithm parses F as a sequence of nested threshold operators (and and or are special cases of
threshold). Starting from the outermost operator, it constructs the Vandermonde matrix that implements
it and then recursively performs insertions for the nested threshold operators.

Definition 2 (The MSP for a threshold access structure [6]). The n × t Vandermonde matrix is the
matrix

V (n, t) =


1 x1 x2

1 · · · xt−1
1

1 x2 x2
2 · · · xt−1

2
...

...
...

. . .
...

1 xn x2
n · · · xt−1

n

 ,

for xi ∈ K pairwise different. An MSPM = (M,ρ), with M = V (n, t) and ρ a function that maps
each row ri of M to party pi ∈ P encodes the t-of-n threshold access structure over the set of parties P .

Definition 3 (Insertion). Let M(k) = (M (k), ρ(k)), for k ∈ {1, 2, 3}, be MSPs over a finite field K,
where M (k) has dimensions mk × dk. Denote by r(k)

i the rows of each M (k) , for 1 ≤ i ≤ mk, by r[j]
the jth column of a row r, by r[j1 : j2] a range of columns j1 to j2, by 0` a row with ` zero elements,
and by r‖r′ the concatenation of two rows r and r′. Let rz be the unique w.l.o.g. row of M (1) owned
by pz ∈ P(1). The insertion of M (2) in row rz of M (1), written as M(1)(rz → M(2)), is an MSP
M(3), which has rows identical to M (1), except for rz , which is repeated m2 times in M (3), each time
multiplied by the first column of M (2), and with the rest of the columns 2 to d2 of M (2) appended in the
end. The function ρ(3) labels the rows of M (3) with the same owners as ρ(1), except for rz , as the newly
inserted rows are labeled according to ρ(2).

20

https://shoup.net/ntl
https://www.allthingsdistributed.com/2006/08/life_is_not_a_statemachine.html
https://www.allthingsdistributed.com/2006/08/life_is_not_a_statemachine.html

Formally, M (3) is an (m1 +m2 − 1)× (d1 + d2 − 1) matrix with rows

r
(3)
i =


r

(1)
i || 0d2−1 1 ≤ i ≤ z − 1

rz ∗ r(2)
i−z+1[1] || r(2)

i−z+1[2 : d2] z ≤ i ≤ z +m2 − 1

r
(1)
i−m2+1 || 0d2−1 z +m2 ≤ i ≤ m1 +m2 − 1

(4)

and ρ(3) is a surjective function {1, . . . ,m1 +m2 − 1} → (P(1) \ {pz}) ∪ P(2) defined as

ρ(3)(i) =


ρ(1)(i) 1 ≤ i ≤ z − 1

ρ(2)(i− z + 1) z ≤ i ≤ z +m2 − 1

ρ(1)(i−m2 + 1) z +m2 ≤ i ≤ m1 +m2 − 1

The pseudocode is shown in Algorithm 1. If F = Θm
d (F1, . . . , Fm) is an MBF, where each Fi can

be a party or a nested threshold operator, the algorithm first extracts the values m, d and F1, . . . , Fm
from F (line 2) and creates the MSP for F (lines 1–13). For each Fi, if it is a nested operator, a fresh
virtual party vi is created and associated with Fi (the map Vmap is used to keep track of this association).
A virtual party is treated exactly as an actual party, except it is used only during this construction. The
MSP for F is a Vandermonde matrix (line 13), created using both actual and virtual parties as the set P .
In the second part of the algorithm (lines 14–17) the MSPs for the nested operators (virtual parties vi)
are recursively created (line 15) and inserted inM, according to Definition 3. The mapping ρ−1, that
maps a party to the rows they own inM, is used to get the row ri of M that was labeled with vi. Notice
that in line 10, a fresh variable is created for each nested operator, so vi owns a single row.

If F includes in total c threshold operators in the form Θmi
di

, the resulting matrix M has m =∑c
1mi − c+ 1 rows and d =

∑c
1 di − c+ 1 columns.

Algorithm 1 Construction of an MSP from a monotone Boolean formula F .
1: buildMSP(F)
2: let Θm

d (F1, . . . , Fm) be the formula F
3: R← ∅
4: V ← ∅
5: Vmap ← ∅
6: for each Fi do
7: if Fi is a literal p then
8: R← R ∪ {p}
9: else
10: declare vi a new virtual party
11: V ← V ∪ {vi}
12: Vmap ← Vmap ∪ {(vi, Fi)}
13: M← Vandermonde-MSP(m, d,R ∪ V)
14: for each vi ∈ V do
15: M2 ← buildMSP(Vmap(vi))
16: ri ← ρ−1(vi)
17: M←M(ri →M2)
18: returnM

B Interpolation on general access structures

LetM = (M,ρ) be an MSP over K, with M an m× d matrix. We have seen in the definition of LSSS
that an authorized set A can reconstruct the secret through the equation λAsA = x. Besides that, in
the following sections we will sometimes have to perform a different kind of interpolation: given secret
shares of a maximally unauthorized set F and the secret x, we want to compute a valid secret share xj

21

for party pj 6∈ F , where valid means that the reconstruction of the secret from any authorized set will
result in the same value. In this section we explain why this interpolation is not trivial and present an
algorithm that achieves it.

In threshold secret sharing this is done using polynomial (Lagrange) interpolation: the secret shares
of F and the secret x uniquely determine every other share. In general secret sharing it can be the case
that F , even though maximally unauthorized, and the secret x do not uniquely determine the secret shares
for the rest of the parties. This is because a party pi 6∈ F can now own more than one secret shares, in
a way that adding all the shares of pi to F makes it authorized, while adding some shares of pi to F
keeps in unauthorized. More specifically, if the degree of MF is d− 1 then all secret shares are uniquely
defined. If the degree of MF is d−1−k, for k ∈ N, then there exist k secret shares (each corresponding
to an MSP row), that do not belong to parties in F and are linearly independent from the shares of parties
in F . The values of these secret shares can be chosen arbitrarily from K in the interpolation we wish to
perform. These extra rows are given to our interpolation algorithm in the form of a set R ⊂ {1, . . . ,m}.

Formally, the algorithm has the following inputs and outputs.
• Inputs: (1) A maximally unauthorized set of parties F ⊂ P and their secret shares sF ∈ KmF ,

(where mF is the number of MSP rows owned by parties in F , and might be greater than |F |).
(2) A set of extra MSP-row indexes R ⊂ {1, . . . ,m}, with ρ(j) 6∈ F , for all j ∈ R, and the
corresponding secret shares sR ∈ KmR (where mR = |R|). The sets F and R are such that
the degree of the matrix

(
MF
MR

)
, that consists of the MSP rows either owned by parties in F or

corresponding to indexes in R, is d− 1. Notice that the rows indexed by R can all be chosen to be
linearly independent from each other and from the rows owned by parties in F , hence the shares
sR can be chosen uniformly from the underlying field. (3) The secret x that corresponds to the
secret shares sF and sR. (4) An index j ∈ [1, . . .m].

• Output: Coefficients Λ
(1)
j ∈ K and Λ

(2)
j ∈ KmF+mR , such that the secret share xj can be cal-

culated as a linear combination of these coefficients and the input values, that is, xj = Λ
(1)
j x +

Λ
(2)
j (xF ‖xR).

The algorithm works as follows. The given secret shares xF ‖xR have been computed as(
xF
xR

)
=

(
MF

MR

)
r (5)

where r = (x, r2, . . . , rd) is unknown, except for the secret x. Since we know x, we can rewrite the
previous equation as  x

xF
xR

 =

 e1

MF

MR

 r.
We define

M =

 e1

MF

MR

 .

Observe that the MSP rows determined by F andR together are still unauthorized, and thus e1 is linearly
independent from the rows in

(
MF
MR

)
. Moreover, by construction of F andR, the degree of

(
MF
MR

)
is d−1.

From these facts we get that M has full rank d. Moreover, let m be the number of rows in M .
We now make use of d recombination vectors λ`, for ` ∈ [1, . . . d]. Each recombination vector λ` is

defined as an m-vector such that λ`M = e`, where e` is the `-th unit vector (i.e., consists of 0s, except
for a 1 in position `) of dimension d. In other words, λ` expresses a linear combination of rows of M
that gives the vector e`. Since the rank of M is d, all these recombination vectors exist. Additionally,

22

define Λ as the (d,m) matrix with the d recombination vectors as rows, i.e.,

Λ =


λ1

λ2

. . .
λd

 .

Notice that
Λ ·M = Id,

where Id is the (d, d) identity matrix, and, by multiplying both members with r,

Λ ·

 x
xF
xR

 = r.

By defining as Λ(1) the first column of Λ and as Λ(2) the last m − 1 columns, the last equation can be
rewritten as (

Λ(1)Λ(2)
)
·

 x
xF
xR

 = r,

or
Λ(1)x+ Λ(2)(xF ‖xR) = r.

From the last equation we get

xj = M jr = M jΛ
(1)x+M jΛ

(2)(xF ‖xR),

or, by setting Λ
(1)
j = M jΛ

(1) and Λ
(2)
j = M jΛ

(2),

xj = Λ
(1)
j x+ Λ

(2)
j (xF ‖xR).

C Proof of Theorem 2 for the VSS scheme

We first repeat from [35] the related proof of Lemma 1.

Proof. Let the dimensions of M be m × d, and let the secret shared by r be x, i.e., r1 = x. By
definition of an unauthorized set, the rows of MF do not span e1. That means, rank(MF) < rank(MF

e1
)

and, from linear algebra, we know that |kernel(MF)| > |kernel(MF

e1
)|. This implies the existence of a

vector w ∈ Kd, w 6= 0, such that MFw = 0 (i.e., w ∈ kernel(MF)), and w1 = 1 (i.e., w 6∈
kernel(MF

e1
)). Define r̃ = r + (x̃ − x)w. Notice that r̃1 = x̃, so r̃ shares the secret x̃. Moreover,

MF r̃ = MFr + (x̃− x)MFw = MF r̃.

We now prove Theorem 2.

Completeness. By inspection of the scheme, honest parties accept their shares. Equation (1) will hold
because

d∏
`=1

C
Mj`

` = g
∑d
`=1 r`Mj`h

∑d
`=1 r

′
`Mj` = gMjrhMjr

′
= gxjhx

′
j

Furthermore, by definition of aQ2 adversary structure, an authorized setAmade of honest parties always
exists, and, by definition of the MSP, the recombination vector λA of A always exists. Thus, a party can
always reconstruct the secret from the shares of A.

23

Correctness. For the first part assume, towards a contradiction, that z1 6= z2. Also, let z′1 and z′2 be the
reconstruction from the random-shares of the two sets. Since the shares are correct, it must hold that
gz1hz

′
1 = C1 = gz2hz

′
2 . Here we show that gz1hz

′
1 = C1. For k = 1, 2 the secret shares and random

shares of parties in the two sets are

xAk = {x(k)
j | ρ(j) ∈ Ak} , x′Ak = {x′(k)

j | ρ(j) ∈ Ak}.

Moreover, z1, z
′
1, z2, z

′
2 are calculated by honest parties as

zk = λAkxAk , z′k = λAkx
′
Ak

(6)

Written as vectors, where mk is the number of shares in Ak, for k = 1, 2, we have

xAk = (xj1 , . . . , xjmk)

x′
Ak = (x′j1 , . . . , x

′
jmk

)

λAk = (λj1 , . . . , λjmk).

(7)

We have that

gz1hz
′
1

(6)
= gλA1

xA1h
λA1

x′
A1

(7)
= g

∑
j:ρ(j)∈A1

λjx
(1)
j h

∑
j:ρ(j)∈A1

λjx
′(1)
j

=
∏

j:ρ(j)∈A1

(
gx

(1)
j hx

′(1)
j
)λj

(1)
=

∏
j:ρ(j)∈A1

(d∏
`=1

C
Mj`

`

)λj
=

d∏
`=1

∏
j:ρ(j)∈A1

C
Mj`λj
`

=
d∏
`=1

C

∑
j:ρ(j)∈A1

Mj`λj

`

=
d∏
`=1

CλAMA`
` , whereMA` is the `-th column of MA

λAMA=e1=
d∏
`=1

Ce1`` , where e1` is the `-th entry of e1

e1=[1,0,...,0]
= C1

In the same way we get that gz2hz
′
2 = C1.

Now, since z1 6= z2, it is also the case that z′1 6= z′2. But from this one can extract the logarithm of h
with base g as logg h = (z1 − z2)/(z′2 − z′1), which is, by assumption, not known.

The second part follows immediately from the fact that the dealer is honest and by simple observation
that the output of Reconstruct() is λAxA = λAMAr = e1r = x, for any authorized set A.

Privacy. Fix wlog a maximally unauthorized set F consisting of parties controlled by the adversary and
let mF the number of shares owned by parties in F . Assume the dealer has shared a secret x using
coefficient vectors r = (x, r2, . . . , rd) and r′ = (x′, r′2, . . . , r

′
d). The view of the adversary consists of

the shares xF = (xj1 , . . . , xjmF) and x′F = (xj1 , . . . , xjmF), where ρ(jk) ∈ F , for k ∈ {1, . . . ,mF },
and the commitments C1 = gxhx

′
and C` = gr`hr

′
` , for ` ∈ {2, . . . , d}, created by the dealer. We then

24

choose arbitrary x̃ 6= x ∈ K. We want to show that the view of the adversary is consistent with an
execution of the VSS where x̃ is the secret shared by the dealer.

Observe that x̃ uniquely defines an x̃′ such that C1 = gx̃hx̃
′
. From Lemma 1, we know there exist

coefficient vectors r̃ = r + (x̃− x)w and r̃′ = r′ + (x̃′ − x′)w, with w ∈ Kd, that share the secrets x̃
and x̃′, respectively, while the resulting shares x̃F and x̃′F satisfy x̃F = xF and x̃′F = x′F . Notice that
the w in the proof of Lemma 1 depends on MF and not on the coefficient vector, thus it is the same in
the equations for r̃ and r̃′.

It remains to show that the commitments C̃` = gr̃`hr̃
′
` , for ` ∈ {2, . . . , d}, also satisfy C̃` = C`.

Let b be the discrete logarithm of h with basis g, i.e., h = gb. Recall that C1 = gxhx
′

= gx+bx′ and
C1 = gx̃hx̃

′
= gx̃+bx̃′ . These two equations give

x+ bx′ = x̃+ bx̃′. (8)

We now define the vectors c = r + br′ and c̃ = r̃ + br̃′ and observe that C` = gc` and C̃` = gc̃` , where
c` and c̃` are the entries of c and c̃, respectively. It is thus enough to show that c = c̃. We have that

c = c̃⇔ r + br′ = r + (x̃− x)w + br′ + b(x̃′ − x′)w
⇔ (x̃− x)w + b(x̃′ − x′)w = 0

w 6=0⇔ x̃− x+ b(x̃′ − x′) = 0,

which holds from (8).

D Proof of Theorem 3 for the common-coin scheme

The proof for the general coin construction follows the lines of the threshold coin scheme [13], but use
our method from Section B to handle the interpolation with general access structures.

Proof. Robustness follows from the soundness of the interactive proof of equality of the discrete loga-
rithms. Moreover, the underlying access structure is Q2, hence there will be enough honest parties to
combine the shares and interpolate the coin value.

The rest of this proof concerns unpredictability. We assume an adversary that can predict the value of
a coin with non-negligible probability and show how to use this adversary to solve CDH. To successfully

attack CDH, it is enough to construct an algorithm that, on input elements g, ĝ, g0 ∈ G, where ĝ $← G
and g0 = gx0 , outputs a list that contains ĝ0 = ĝx0 with non-negligible probability [54]. The adversary
makes a series of queries for coins C1, . . . , Ct for a polynomially large t, and tries to predict the value of
the target coin Ĉ. We assume that Ĉ = Cs, for a random s ∈ {1, . . . , t}, which decreases our advantage
by a factor of t. For the target coin, let ĝ = H(Ĉ) and ĝj = ĝxj

The algorithm simulates the view for the adversary as follows. For party pi in F we choose its key
shares xj , where ρ(j) = pi, uniformly from Zq. The verification keys can then be computed as gj = gxj .
For the rest of the verification keys the idea is to use the verification keys we just calculated and g0, and
perform an ‘interpolation in the exponent’. However, as explained in Section B, for these to be uniquely
determined, the shares of a maximally unauthorized set F (called F in Section B) and of some extra
indexes R are required. The set of row indexes R is chosen arbitrarily, under the conditions described
in Section B. The shares xj , where j ∈ R, are also chosen uniformly at random, and the corresponding
verification keys are again vj = gxj , where j ∈ R.

We can now use the algorithm described in Section B, with input sets F and R, and with shares xF
and xR and the secret x raised to g2, thus actually doing an ‘interpolation in the exponent’:

vj = vΛ
(1)
j ·

∏
` such that

ρ(`)∈F∨`∈R

v
Λ
(2)
j`

` . (9)

25

After the verification keys are chosen, we simulate the interaction with the adversary as follows. In
the random oracle model, the adversary queriesH to obtain g̃ or ĝ and the simulator can respond to these
queries as it wishes. For coins C 6= Ĉ, the simulator chooses r ∈ Zq at random and sets g̃ = gr as
the value of H at point C. The coin shares for all honest parties can be calculated as g̃j = grj , where
ρ(j) 6∈ F .

The proof of correctness for each coin share can be simulated by invoking the random oracle model
for H ′. When an honest party is supposed to create a coin share g̃j , the simulator chooses cj , zj ∈
Zq at random, and sets the output of H ′ at point (g, gj , g

zjg
−cj
j , g̃, g̃j , g̃

zj g̃
−cj
j) to be c. Except with

negligible probability, the simulator has not already defined the output of H ′ at this point, so this part of
the simulation succeeds.

For the target coin Ĉ we set H(Ĉ) = ĝ. Since F is maximally unauthorized, the adversary is not
allowed to ask honest parties for coin shares, thus the simulator never has to produce any valid shares.
Observe that the adversary, in order to make the prediction b ∈ {0, 1} for Ĉ, must query H ′′ at point
ĝ0. Hence, when it terminates we output the list of all these queries — by assumption it will contain
the solution to CDH with a non-negligible probability. The simulation is perfect, since all the shares
and verification keys have the same distribution as in an actual execution of the protocol, except for a
negligible probability that our zero-knowledge simulations fail.

E Proof of Theorem 4 for the general distributed signatures

Robustness. Because A is Q2, there exists an authorized set A that consists entirely of honest parties.
Moreover, only valid signatures, made with a party’s private key share, can pass the verification of
algorithm SigShareVerify() . Thus, a combiner can verify and use the signature shares of A in algorithm
SigShareCombine() to create a valid distributed BLS signature.

Unforgeability. We show that our general distributed signature scheme is simulatable. Simulatability,
together with the unforgeability of the standard BLS scheme, imply unforgeability for our general dis-
tributed signature scheme [30, Definition 3]. Simulatability means that a simulator, on input the public
key v, a message µ with signature σ, and the key shares xj of parties in F , i.e., ρ(j) ∈ F , can simulate
the view for the adversary that is polynomially indistinguishable from an execution of the real protocol
that outputs σ as the signature of µ, and where the adversary has key shares xj , where ρ(j) ∈ F . Intu-
itively, this shows that an adversary who sees all the private information of parties in F and the signature
on a message µ could generate by itself all the public information of the protocol.

The simulator works as follows. First, it has to provide valid verification keys for all parties and all
their shares. For parties in F , the simulator can use the given shares xj , where ρ(j) ∈ F , to compute the
verification keys. The rest of the shares are interpolated from the shares xj . However, as explained in
Section B, for these to be uniquely determined, some extra indexesR are required. The set of row indexes
R is chosen arbitrarily, under the conditions described in Section B, and the shares that correspond to the
indexes in R are chosen uniformly at random. For sets F and R, the simulator computes the verification
keys as vj = g

xj
2 , where ρ(j) ∈ F or j ∈ R. For any other pj the simulator uses the interpolation

algorithm described in Section B, with input sets F and R, and with shares xF and xR and the secret x
raised to g2, calculating vj exactly as in (9).

Second, the simulator also has to respond to the adversary’s signature queries. Following exactly the
same techniques, the simulator can generate all the signature shares given the standard BLS signature σ
of message m.

Finally, for any row j ∈ {1, . . . ,m} of the MSP, the verification key vj = g
xj
2 and the signature share

σj = H(µ)x
′
j will satisfy xj = x′j . For j such that ρ(j) ∈ F or j ∈ R this holds because the simulator

used a known xj to calculate these values, while for any other j this holds from the MSP interpolation.
Hence, (g2, vi, H(m), σi) is a valid co-Diffie-Hellman tuple and the signature shares will be verified.
Moreover, the interpolated key shares have the same distribution as if produced by the real dealer. The
view of the adversary is thus statistically indistinguishable from an execution of the real protocol.

26

	Introduction
	Motivation
	State of the art
	Contributions
	Related work

	Background and model
	Specifying and encoding the trust assumptions
	Verifiable secret sharing
	Common coin
	Distributed signatures
	Evaluation
	Space taken by the MSP and running time to check for authorized sets
	Running time of verifiable secret sharing
	Running time of common coin
	Running time of distributed signatures

	Discussion
	Building the MSP from a monotone Boolean formula
	Interpolation on general access structures
	Proof of Theorem 2 for the VSS scheme
	Proof of Theorem 3 for the common-coin scheme
	Proof of Theorem 4 for the general distributed signatures

