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Abstract. Multi-Client Functional Encryption (MCFE) has been considered as an important primitive
for making functional encryption useful in practice. It covers the ability to compute joint function
over data from multiple parties similar to Multi-Input Functional Encryption (MIFE) but it handles
information leakage better than MIFE. Both the MCFE and MIFE primitives are aimed at applications in
multi-user settings where decryption can be correctly output for legitimate users only. In such a setting,
the problem of dealing with access control in a fine-grained manner is particularly relevant. In this
paper, we introduce a framework for MCFE with fine-grained access control and propose constructions
for both single-client and multi-client settings, with selective and adaptive security. The only known
work that combines functional encryption in multi-user setting with access control was proposed by
Abdalla et al. (Asiacrypt ’20), which relies on a generic transformation from the single-client schemes
to obtain MIFE schemes that suffer a quadratic factor of n (where n denotes the number of clients)
in the ciphertext size. We present a duplicate-and-compress technique to transform the single-client
scheme and obtain a MCFE with fine-grained access control scheme with only a linear factor of n in
the ciphertext size. Our final scheme thus outperforms the Abdalla et al.’s scheme by a factor n, while
MCFE is more difficult to achieve than MIFE (one can obtain MIFE from MCFE by making all the labels
in MCFE a fixed public constant).

Keywords: Multi-client functional encryption, access control, adaptive security.

1 Introduction

1.1 Functional Encryption

Encryption enables people to securely communicate and share sensitive data in an all-or-nothing
fashion: once the recipients have the secret key then they will recover the original data, otherwise the
recipients have no information about the plaintext data. Functional Encryption (FE) [SW05, BSW11],
introduced by Boneh, Sahai and Waters, overcomes this all-or-nothing limitation of PKE by allowing
recipients to recover encrypted data in a more fine-grained manner: instead of revealing the whole
original encrypted data, recipients can get the result of evaluation of some function on the data,
according to the function associated to the decryption key, called functional decryption key. By
allowing computation of partial data, one can aim at getting, both, the utility of analysis on large
data while preserving personal information private.

FE received large interest from the cryptographic community, first as a generalization of Identity-
Based Encryption (IBE) and Attribute-Based Encryption (ABE), which are unfortunately only
access control, with all-or-nothing decryption as a result. Abdalla et al. [ABDP15] proposed the first
construction for evaluating a concrete function: the inner product between a vector in the ciphertext
and a vector in the functional decryption key. The interest in FE then increased, especially in the
multi-user setting in which the inputs come from different users, possibly in competition, and the
output characterizes a joint function on the inputs [CDG+18a]. Applications are then numerous,
and the encryptors can even be the final recipients of aggregated results. Then, this might look
similar to multi-party computation (MPC), where several players privately provide their inputs to
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allow computations on them. But the main difference is that functional encryption is expected as a
non-interactive process, and thus quite more interesting in practice.

While FE with a single encryptor might be of theoretical interest, in real-life, the number of
really useful functions may be limited. When this number of functions is small, any PKE can be
converted into FE by additionally encrypting the evaluations by the various functions under specific
keys. This approach is impossible for multiple users, even when a unique fixed function is considered.

Goldwasser et al. [GGG+14, GKL+13] introduced the notion of Multi-Input Functional En-
cryption (MIFE) and Multi-Client Functional Encryption (MCFE) where the single input x to the
encryption procedure is broken down into an input vector (x1, . . . , xn) where the components are
independent. An index i for each client and, in the case of MCFE, a (typically time-based) label ` are
used for every encryption: (c1 = Enc(1, x1, `), . . . , cn = Enc(n, xn, `)). Anyone owning a functional
decryption key dkf , for an n-ary function f and multiple ciphertexts (for the same label `, in
the case of MCFE) can compute f(x1, . . . , xn) but nothing else about the individual xi’s. The
difference between MIFE and MCFE seems minor (MCFE is essentially MIFE with labels, that limit
combinations into vectors) but we will see that this leads to very different constructions, as clients
have to be able to implicitly coordinate together on the label, and different usability in practice.
In particular, in MCFE, the combination of ciphertexts generated for different labels does not give
a valid global ciphertext and the adversary learns nothing from it. However, in both situations,
encryption must require a private key, otherwise anybody could complete the vector initiated by a
user in many ways, and then obtain many various evaluations from a unique functional decryption
key. But then, since encryption needs a private key per user, for each component ci, some of theses
keys might get corrupted. And one has to deal with corruptions of encryption keys in multi-user
settings.

Another classical issue with encryption is the decryption key, even if legitimately obtained:
once delivered, it can be used forever. One may expect revocation, or access control with more
fine-grained authentication. This has been extensively studied with broadcast encryption, revocation
systems and more generally, with attribute-based encryption (ABE). Finally, as already explained,
FE is a generalization of IBE and ABE, and after having been illustrated with IBE and ABE, linear
and quadratic evaluations have been proposed. However, there are still very few works that combine
function evaluation and access control with concrete schemes. This could provide FE, with concrete
function evaluation for some target users, or revocation (of users or functions).

1.2 Related Work

Abdalla et al. [ACGU20] have been the first (and this is the unique paper) to address this problem,
for FE and MIFE. In addition, they informally argue that from an ABE for MIFE one can lift it for free
to get MCFE, thus solving both problems at the same time. Precisely, they mentioned “by resorting
for instance, to the notion of multi-client IPFE, where ciphertexts are associated with time-stamps,
and only ciphertext with matching time-stamps can be combined (e.g. [CDG+18a]) we believe that
our proposed primitive provides a more general and versatile solution to the problem”. Their idea can
be interpreted as: labels can be used as specific attributes, and labels can be embedded in policies to
automatically obtain multi-client settings. While this appears to be natural at first glance, we do not
see how to implement it efficiently because a label value is generated during the encryption process:
if we embed a label as an attribute in the ciphertext, we must generate a key for each label value
for each user, which becomes infeasible. It thus remains a challenging open problem to construct an
efficient MCFE supporting access-control structure. In this paper, we take a completely different
approach than in [ACGU20] to answer this question. Interestingly, our schemes are more efficient
than theirs: we build MCFE for Inner-Product, with any LSSS access-structure and adaptive-security
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in the random-oracle model, that is more efficient than their MIFE. In addition, removing labels
leads to an MIFE scheme for Inner-Product, with any LSSS access-structure, adaptively-secure in
the standard model, still more efficient than their scheme.

1.3 Contributions

Single-client setting. We propose new schemes in which the selectively-secure version is almost
as efficient as the selectively-secure version in [ACGU20] and the adaptively-secure version is nearly
three times as efficient as the adaptively-secure version in [ACGU20]. More importantly, our schemes
can be extended to multi-client settings. Our constructions exploit the Dual Pairing Vector Spaces
proposed by Okamoto-Takashima [OT10, OT12b].

Multi-client setting. Our main contribution is thus this extension from single-client to multi-
client without linearly increasing the complexity in the number n of clients. The generic transforma-
tion proposed by Abdalla et al. [ACGU20, Theorem 6.3] results in a degradation of factor n in both
construction and security reduction. As previously stated, Abdalla et al.’s generic transformation
can only help to achieve a multi-input scheme and is unlikely to be generalized to a multi-client
scheme without further seriously degrading efficiency. On the other hand, because MIFE can be
defined as MCFE with a fixed public constant label, our construction yields a much more efficient
MIFE with access control than the Abdalla et al.’s scheme (in fact, n times more efficient). More
concretely, the total communication among n clients in our MCFE construction is of order O(nd),
where d is the number of attributes specified during encryption, and does not suffer a quadratic
blow-up of n2 group elements.

Comparisons and discussions. We now focus on the FE schemes for Inner-Product, with
fine-grained access control, in the pairing-based setting, with comparisons with the schemes
from [ACGU20] in Table 1. There are other schemes for single-client IPFE with fine-grained
access control based on other assumptions such as LWE, e.g. [LLW21, PD21], but because they were
not generalized to the multi-input or multi-client settings, which are our main objectives, we do not
consider them.

1.4 Technical Overview

As shown in Table 1, our selectively-secure construction (in Section 4.1) suffers a slight deterioration
in efficiency and security because the ciphertexts are larger and the model is indistinguishability-
based rather than simulation-based as considered in [ACGU20, Section 3.1]. Despite slightly larger
ciphertexts, we are able to lift our selectively-secure construction to an adaptively-secure construc-
tion in Section 4.2 whose ciphertexts are smaller than the ones in [ACGU20, Section 3.2], while
achieving the same level of security. Moreover, the adaptively-secure construction is a straightforward
generalization of the selectively-secure one, as the computation stays the same in both (see Figure 3).
The adaptively-secure construction in [ACGU20, Section 3.2] uses function encodings to handle the
access control, and instantiations of function encodings are provided in [ACGU20, Appendix B],
for various predicate classes, among which the read-once monotone span programs are the most
expressive ones. On the other hand, we can also express the predicate class in our adaptively-secure
construction using LSSS-realizable access structures, which is equivalent to MSP.

Another approach to achieve single-client adaptive security. One of our main ideas to
construct a functional encryption scheme with fine-grained access control is to use a secret sharing
scheme for creating shares of a secret value a0

$← Zq, which acts as a mask for the IPFE-related
ciphertext of Agrawal et al.’s type [ALS16], following a linear secret sharing scheme implementing a
monotone access structure A over a set Att of attributes. The shares will then be embedded in the
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Scheme P |ct| Security Type

[ACGU20, Sect. 3.1] MSP n+ 2d+ 2 sel-sim

Single-client[ACGU20, Sect. 3.2] roMSP 3nd+ 3d+ 2 ad-ind

Sect. 4.1 LSSS n+ 8d+ 4 sel-ind

Sect. 4.2 LSSS nd+ 2n+ 7d+ 3 ad-ind

[ACGU20, Sect. 6.2]
MSP n2 + 2nd+ 2n ad-ind

MIFE, generic
applied to [ACGU20, Sect. 3.1] transformation

Sect. 5.2 LSSS 8nd+ 5n ad-ind MCFE

Table 1: We compare our constructions with existing works, in terms of the number of group
elements in the ciphertext (column |ct|), the most expressive predicate class that can be handled
(column P), the achieved level of security (column Security), and whether we are in the single-client
or multi-client/multi-input setting (column Type). We denote by n the dimension of vectors to
compute inner-products and by d the number of attributes used in the key’s policy. The abbreviations
MSP, roMSP and LSSS stands for monotone span programs, read-once monotone span programs
and linear secret sharing schemes, respectively. The abbreviations {sel, ad, ind, sim} denote selective
security, adaptive security, indistinguishability-based, and simulation-based, respectively. All schemes
require the inner-products to be polynomially small and their security relies on SXDH.

functional secret key components (kj)j∈List-Att(A) where List-Att(A) is the list of attributes appearing
in the access structure A. When all the components corresponding to an authorized set in A are
present, the shares can be combined to reconstruct the secret value a0, which is now embedded
in a key component kroot, and allow functional decryption. The key components are constructed
as vectors in a Dual Pairing Vector Space (DPVS). Roughly speaking, a DPVS is a (prime-order)
bilinear group setting (G1,G2,Gt, e) that we enhance with the notion of vector addition, scalar
multiplication, and dual orthogonal bases. We also define the product of two vectors over G1 and
G2 in DPVS, which uses the pairing e and results in an element in Gt whose exponent in gt is
the inner-product of the vectors of exponents from the two initial vectors. The access control is
now handled by these vectors in DPVS, where the access structure A is expressed in the key using
vectors {(kj)j∈List-Att(A),kroot} over G2 and a set R of attributes are embedded in the ciphertext
using vectors {(cj)j∈R, croot} over G1. We use the techniques for adaptively-secure ABE introduced
in the original work of Okamoto and Takashima [OT10, OT12a, OT12b] to argue the security of this
KP-ABE part in our scheme. Interestingly, there is a twist stemming from the security model when
integrating ABE into FE: during the security game, an adversary can additionally query for keys
that work with the challenge ciphertext, i.e. the key’s policy is satisfied. In vein of the dual-system
methodology to achieve adaptive security, we have to be much more careful about which key to turn
semi-functional, because the keys whose policies are satisfied should be capable of decrypting the
(semi-functional) challenge ciphertext. To circumvent this obstacle, we resort to a slight variant
of the technique in [OT10, OT12a, OT12b] (see Section 3), while accepting an anathema to use
DPVSes of dimensions linear in the dimension n of vectors for inner-products. Our single-client
constructions are presented in Section 4.

The “duplicate-and-compress” technique. We give a glimpse of our main technical method
to obtain a multi-client construction from our single-client construction, while maintaining the
total ciphertext’s size of order linear in n. In the multi-client setting, each client must use different
DPVSes for the KP-ABE part. To recall, from the single-client construction, the DPVSes are already
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of dimension linear in the number of clients to achieve adaptive security and a naive duplication
would add a quadratic factor in the communication. In general, we want to avoid using n different
pairs of bases for the ciphertext components {(ci,j)j∈R, ci,root}, for each i ∈ [n], where each basis is
of dimension n resulting from the adaptively secure single-client construction. Since we are in the
pairing-based setting and using DPVS, it is equivalently effective to concentrate on compressing
the dual bases used for key components. The intriguing point we observe is as long as each client
uses an independent DPVS, the technique we use to take care of those vectors in the single-client
case can be carried out in a parallel manner, to some extent. Therefore, in the security proof, we
can distribute and accumulate in parallel the necessary information in all key components so as
to answer the adversary’s adaptive key queries, rather than centralizing such information in few
vectors of big dimension.

This idea might seem counter-intuitive, especially when we ponder the original techniques
introduced by Okamoto and Takashima [OT10, OT12a, OT12b] trying at all cost to escape duplicating
the bases. Technically, they used a hidden part of the dual bases in DPVS, which is never used
in real life and can be enlarged conveniently, to amplify randomness in multiple vectors of the
functional key that are indexed by attributes of the policy. This quantity of amplified randomness
will be later used to turn the keys semi-functional. At first glance, it seems obligatory to duplicate
the bases for each i ∈ [n] to express the KP-ABE related key components {(ki,j)j∈List-Att(A),ki,root}
in order to control the decryption over all n clients’ ciphertexts, while keeping the dimension linear
in n for adaptive security. It is true that the vectors (ki,root)i must be put in n independent bases
for n clients. Surprisingly, our main insight is that the other key components (ki,j)j∈List-Att(A) that
are indexed by attributes and serve the randomness amplification can be put in the same basis for
all clients i ∈ [n]. Indeed, the argument by Okamoto and Takashima depends crucially but only
on the attributes j ∈ List-Att(A). Moreover, the process of making ki,root semi-functional using
(ki,j)j∈List-Att(A) afterwards employs the access structure specified in the key and the attributes in the
ciphertext but not depending on i. Hence, if we have n collections of vectors ((ki,j)j∈List-Att(A),ki,root)i
the whole process can be applied in parallel for those n collections. We emphasize that this parallel
process is feasible thanks to an indispensable smooth control, as low as the level of the vectors’
coordinates, in DPVS. This potential of parallelization helps us spread the necessary information for
answering adaptive key queries, which accounts for the linearly large dimension, into n collections
{(ki,j)j∈List-Att(A),ki,root}i∈[n]. In the end, instead of using n bases of dimension n, we can use n bases
of constant dimension for (ki,root)i along with one constant-dimension basis for all {(ki,j)j∈List-Att(A)}i,
saving a factor n in the ciphertext’s size.

From single-client to multi-client. In Section 5, we explain in details how we obtain an
adaptively-secure multi-client version without tremendous modifications in the single-client adaptively
secure construction’s mechanism. The IPFE-related part of Agrawal et al.’s type [ALS16] can be
dealt with in a similar manner Chotard et al. [CDG+18a] did. We use the “duplicate-and-compress”
technique to leverage the KP-ABE part from single-client to multi-client setting. We have to duplicate
the DPVSes for all clients, but at the same time this duplication helps us save a linear factor in
the dimension, leading to ciphertext’s size being roughly the same as the one in the single-client
adaptively-secure scheme. Our MCFE scheme needs a random oracle (RO) and in Section 5.4 we
discuss equally how one can obtain an MIFE in the standard model from our scheme. Putting the
main ideas forward, the removal of the RO from MCFE to achieve MIFE is not trivial due to the
delicacies of access control for combining ciphertexts and decrypting them with functional keys,
besides the labels used when encrypting. Our solution to obtain an MCFE in ROM that leads to an
MIFE scheme without RO exploits another layer of secret sharing in the keys, with minimal changes
to the MCFE scheme from Section 5.2.
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2 Preliminaries

We write [n] to denote the set {1, 2, . . . , n} for an integer n. For any q ≥ 2, we let Zq denote the
ring of integers with addition and multiplication modulo q. We write vectors as row-vectors, unless
stated otherwise. For a vector x of dimension n, the notation x[i] indicates the i-th coordinate of x,
for i ∈ [n]. We will follow the implicit notation in [EHK+13] and use JaK to denote ga in a cyclic
group G of prime order q generated by g, given a ∈ Zq. This implicit notation extends to matrices
and vectors having entries in Zq. We use the shorthand ppt for “probabilistic polynomial time”. In
the security proofs, whenever we use an ordered sequence of games (G0,G1, . . . ,Gi, . . . ,GL), which
is indexed by i ∈ {0, 1, . . . , L}, we refer to the predecessor of Gj by Gj−1, for j ∈ [L].

2.1 Hardness Assumptions

We state the assumptions needed for our construction.

Definition 1. In a cyclic group G of prime order q, the Decisional Diffie-Hellman (DDH)
problem is to distinguish the distributions

D0 = {(J1K , JaK , JbK , JabK)} D1 = {(J1K , JaK , JbK , JcK)}.

for a, b, c
$← Zq. The DDH assumption in G assumes that no ppt adversary can solve the DDH

problem with non-negligible probability.

Definition 2. In a cyclic group G of prime order q, the Decisional Separation Diffie-Hellman
(DSDH) problem is to distinguish the distributions

D0 = {(x, y, J1K , JaK , JbK , Jab+ xK)} D1 = {x, y, (J1K , JaK , JbK , Jab+ yK)}

for any x, y ∈ Zq, and a, b
$← Zq. The DSDH assumption in G assumes that no ppt adversary can

solve the DSDH problem with non-negligible probability.

Definition 3. In the bilinear setting (G1,G2,Gt, g1, g2, gt, e, q), the Symmetric eXternal Diffie-
Hellman (SXDH) assumption makes the DDH assumption in both G1 and G2.

2.2 Dual Pairing Vector Spaces

Our constructions rely on the Dual Pairing Vector Spaces (DPVS) framework in prime-order
bilinear group setting (G1,G2,Gt, g1, g2, gt, e, q) and G1,G2,Gt are all written additively. The DPVS
technique dates back to the seminal work by Okamoto-Takashima [OT10, OT12a, OT12b] aiming
at adaptive security for ABE as well as IBE, together with the dual system methodology introduced
by Waters [Wat09]. In [LW10], the setting for dual systems is composite-order bilinear groups.
Continuing on this line of works, Chen et al. [CLL+13] used prime-order bilinear groups under the
SXDH assumption. We recall below the necessary definitions and techniques used in DPVS.

We use G1 as a running example for the definitions. Let us fix N ∈ N and consider GN
1 having

N copies of G1 in the following manner:

– Any x = J(x1, . . . , xN )K1 ∈ GN
1 is identified as the vector (x1, . . . , xN ) ∈ ZNq . There is no

ambiguity because G1 is a cyclic group of order q prime. The 0-vector is 0 = J(0, . . . , 0)K1.
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– The addition of two vectors in GN
1 is defined by coordinate-wise addition. The scalar multiplication

of a vector is defined by t · x := Jt · (x1, . . . , xN )K1, where t ∈ Zq and x = J(x1, . . . , xN )K1. The
additive inverse of x ∈ GN

1 is defined to be −x := J(−x1, . . . ,−xN )K1, which is well-defined as
G1 is a group written additively. We note that GN

1 equipped with these addition and scalar
multiplications satisfies the axioms of a vector space.

– Viewing ZNq as a vector space of dimension N over Zq with the notions of bases, we can obtain

naturally a similar notion of bases for GN
1 . More specifically, any invertible matrix B ∈ ZN×Nq iden-

tifies a basis B of GN
1 , whose i-th row bi is

q
B(i)

y
1
, where B(i) is the i-th row of B. The canonical

basis A of GN
1 consists of a1 := J(1, 0 . . . , 0)K1 ,a2 := J(0, 1, 0 . . . , 0)K1 , . . . ,aN := J(0, . . . , 0, 1)K1.

It is straightforward that we can write B = B ·A for any basis B of GN
1 corresponding to an

invertible matrix B. We write x = (x1, . . . , xN )B to indicate the representation of x in the basis
B, i.e. x =

∑N
i=1 xi ·bi. By convention the writing x = (x1, . . . , xN ) concerns the canonical basis

A.

Treating GN
2 similarly, we can furthermore define a product of two vectors x = J(x1, . . . , xN )K1 ∈

GN
1 ,y = J(y1, . . . , yN )K2 ∈ GN

2 by:

x× y :=
N∏
i=1

e(x[i],y[i]) =

t
N∑
i=1

xiyi

|

t

= J〈(x1, . . . , xN ), (y1, . . . , yN )〉Kt .

Given a basis B = (bi)i∈[N ] of GN
1 , we define B∗ to be a basis of GN

2 by first defining B′ := (B-1)>

and the i-th row b∗i of B∗ is
q
B′(i)

y
2
. It holds that B · (B′)> = IN the identity matrix and for every

i, j ∈ [N ]:

bi × b∗j =
r
〈B(i), B′(j)〉

z

t
= Jδi,jKt

where δi,j = 1 if and only if i = j. We call the pair (B,B∗) a pair of dual (orthogonal) bases of

(GN
1 ,GN

2 ). If B is constructed by a random invertible matrix B
$← ZN×Nq , we call the resulting

(B,B∗) a pair of random dual bases. A DPVS is a bilinear group setting (G1,G2,Gt, g1, g2, gt, e, q,N)
with dual (orthogonal) bases. In this work, we also use extensively basis changes over dual orthogonal
bases of a DPVS to argue the security of our constructions. The details of such basis changes can
be found in Appendix A.1.

2.3 Access Structure and Linear Secret Sharing Schemes

We recall below the vocabularies of access structures and linear secret sharing schemes that will be
used in this work.

Definition 4 (Access Structure). Let Att = {att1, att2, . . . , attm} be a finite set of attributes. An
access structure over Att is a family A ⊆ 2Att \ {∅}. A set in A is said to be authorized; otherwise
it is unauthorized.

Given a set of attributes R ⊆ Att, we write A(R) = 1 if and only if there exists A ⊆ R such that A is
authorized.

Definition 5 (Secret Sharing Scheme). A secret sharing scheme for an access structure A over
the attributes Att = {att1, att2, . . . , attm} allows sharing a secret s among the m attributes attj for
1 ≤ j ≤ m, such that:

– Any authorized set in A can be used to reconstruct s from the shares of its elements.
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– Given any unauthorized set and its shares, the secret s is statistically identical to a uniform
random value.

We will use linear secret sharing schemes (LSSS), which is recalled below:

Definition 6 (LSSS [Bei96]). Let K be a field and Att = {att1, att2, . . . , attd} be a set of attributes.
A Linear Secret Sharing Scheme LSSS over K for an access structure A over Att is specified by
a share-generating matrix A ∈ Kd×f such that for any I ⊂ [d], there exists a vector c ∈ Kd with
support I and c ·A = (1, 0, . . . , 0) if and only if {atti | i ∈ I} ∈ A.

In order to share s using an LSSS over K, one first picks uniformly random values v2, v3, . . . , vf
$← K

and the share for an attribute atti is the i-th coordinate s[i] of the share vector s := (s, v2, v3, . . . , vf )·
A>. Then, only an authorized set {atti | i ∈ I} ∈ A for some I ⊆ [d] can recover c to reconstruct s
from the shares by:

c · s> = c · (A · (s, v2, v3, . . . , vf )>) = s .

Some canonical examples of LSSS include Shamir’s secret sharing scheme for any f -out-of-d threshold
gate [Sha79] or Benaloh and Leichter’s scheme for any monotone formula [BL90]. An access structure
A is said to be LSSS-realizable if there exists a linear secret sharing scheme implementing A.

In this work, we consider mainly the fine-grained access control given by a monotone access
structure A over a set of attributes Att, which satisfies: if R1 ⊆ R2 ⊆ Att and R1 ∈ A, then R2 ∈ A.
Both access structures described by f -out-of-d threshold gates and monotone formulae are monotone.

Let y ∈ Zq where q is prime and for the sake of simplicity, let Att ⊂ Zq be a set of attributes.
Let A be a monotone access structure over Att realizable by an LSSS over Zq. A random labeling
procedure Λy(A) is a secret sharing of y using LSSS:

Λy(A) := (y, v2, v3, . . . , vf ) ·A> ∈ Zdq (1)

where A ∈ Zd×fq is the share-generating matrix and v2, v3, . . . , vf
$← Zq.

2.4 Functional Encryption with Fine-Grained Access Control

We first present the syntax of functional encryption with a fine-grained access control using policy
over attributes following the works in [ACGU20, LLW21, PD21]. We consider the key-policy setting
where policies are embedded into the functional decryption key, and attributes are embedded in
ciphertexts. The function class F := {Fλ : Dλ → Rλ}λ is a family of functions indexed by security
parameters λ ∈ N. The class of predicates P := {P : Att → {0, 1}} expresses the attribute-based
control over the usage of functional decryption keys. When Fλ,Dλ, and Rλ are clear from context,
we drop the subscript λ and use the shorthands F,D, and R respectively. A plaintext consists of
(att, x) ∈ Att×Dλ, whose corresponding ciphertext can be decrypted to Fλ(x) using the functional
key skP,Fλ iff P(att) = 1. In a straightforward manner, we extend the syntax to multi-ary predicates
and thus a plaintext can contain multiple attributes. The syntax of such functional encryption
schemes is given below:

Definition 7 (Functional encryption with fine-grained access control). A functional en-
cryption scheme with fine-grained access control consists of the four algorithms (Setup,Extract,Enc,Dec):

Setup(1λ): Given as input a security parameter λ, output a pair (pk,msk).
Extract(msk,P, Fλ): Given a predicate P, a function description Fλ ∈ F , and the master secret key

msk, output a secret key skP,Fλ.
Enc(pk, x,R): Given as inputs the public key pk, a message x ∈ Dλ, and a set R of attributes, output

a ciphertext ct.
Dec(skFλ,P, ct): Given the functional secret key skP,Fλ, and a ciphertext ct, output an element in
Rλ or an invalid symbol ⊥.
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Initialise(1λ)

Initialise(1λ, x∗0, x
∗
1)

b
$← {0, 1}

(pk,msk)←Setup(1λ); Q := ∅
Return pk

LoR(R, x∗0, x
∗
1)

LoR(R)

ctb←Enc(pk, x∗b ,R)
Return ctb

Extract(P, F )

Q := Q∪ {(P, F )}
skP,F←Extract(P,msk, F )
Return skP,F

Finalise(b′)

If ∃ (P, F )∈Q such that
P(R) = 1 and F (x∗0) 6= F (x∗1)

Then return 0
Else return

(
b′

?
= b
)

Fig. 1: The security games Exprind-cpaE,F ,A (1λ) and Exprsel-ind-cpaE,F ,A (1λ) for Definition 8

Correctness. For sufficiently large λ ∈ N, for all (Fλ,P) ∈ F×P, (msk, pk)←Setup(1λ), and skP,Fλ←
Extract(msk,P, Fλ), for all R satisfying P(R) = 1, it holds with overwhelming probability that

Dec(skP,Fλ ,Enc(pk, x,R)) = Fλ(x) whenever Fλ(x) 6= ⊥4 ,

where the probability is taken over the random coins of the algorithms.

Security. Definition 8 considers the notion of indistinguishability-based security against chosen-
plaintext attacks (IND-CPA) in the same manner as in [ABDP15], taking into account the attribute-
based control using policies.

Definition 8 (IND-CPA security). An IPFE scheme with fine-grained access control E =
(Setup,Extract,Enc,Dec) for the function class F is secure against chosen-plaintext attacks if for
all ppt adversaries A, and for all sufficiently large λ ∈ N, the following probability is negligible

Advind-cpaE,F ,A (1λ) :=

∣∣∣∣Pr[Exprind-cpaE,F ,A (1λ) = 1]− 1

2

∣∣∣∣ .
In a more relaxed notion, the scheme E is selectively secure against chosen-plaintext attacks if the
following probability is negligible

Advsel-ind-cpaE,F ,A (1λ) :=

∣∣∣∣Pr[Exprsel-ind-cpaE,F ,A (1λ) = 1]− 1

2

∣∣∣∣ .
For b ∈ {0, 1}, the games Exprind-cpaE,F ,A (1λ) and Exprsel-ind-cpaE,F ,A (1λ) are depicted in Figure 1. The proba-
bility is taken over the random coins of A and the algorithms.

There are other approaches to formulate the security notion, notably in [ACGU20] the authors
considered a simulation-based notion in a selective setting. For completeness, we give the definition
for this notion in Appendix A.2.

4 See [BO13, ABN10] for discussions about this condition.
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3 The Masking Lemma

We state an important lemma that will be used throughout the proofs of our constructions. The
techniques were introduced in [OT10, OT12a, OT12b] and very recently used in [DGP21]. The
context is that we are considering an LSSS-realizable access structure A and perform a random
labeling of a0

$← Zq for A. The labels of this labeling are embedded in the vectors (kj)j and a0
is embedded in kroot. We are given additionally some vectors {(cj)j , croot} derived from some set
R of attributes. Our goal is to mask the value a0 in kroot by introducing a non-zero value in the
coordinate of hidden basis vectors, while the facing coordinate in croot is also made non-zero to
mask τ . Consequently, this will mask τa0 when performing the products in DPVS. When using
in a security proof of an IPFE scheme with fine-grained access control, the vectors {(kj)j ,kroot}
constitute the functional key for the access structure A, where A is contained in the key query of the
adversary. At the same time, the vectors {(cj)j , croot} make up the ciphertext under some challenge
attributes, also defined by the adversary. Hence, after applying the lemma, the key as well as the
challenge ciphertext will become readily semi-functional for later steps in the proof.

The idea of introducing a mask in auxiliary coordinates of a vector (or a dual vector) in DPVS
is not new and was used to great success in [OT10, OT12a, OT12b] as well as their follow-up
works for proving the notoriously hard notion of adaptive security w.r.t ABE schemes. However, the
constraints that present during the masking step are largely different between our upcoming proofs
and the previous setting employed in the works of Okamoto and Takashima. More specifically, in
their adaptive proofs for ABE schemes, the simulation masks the key and turns it semi-functional
where all keys responded to the adversary cannot decrypt the challenge ciphertext, as usually
modeled in the security notion of ABE. Because the functional keys are already useless for the
decrypting purpose, we have more freedom to make them semi-functional without worrying that
the simulation might fail. In other words, the masks in the key can be made totally random and
independent of the vectors.

On the other hand, as it is showed from our security model in Definition 8, the simulation now
has to deal with both types of functional keys: those whose access structure is not satisfied, and
the others that allow decrypting the challenge ciphertext. If we are working towards the goal of
adaptive security, where both the challenge messages and challenge attributes are chosen adaptively,
the simulator must be much more careful about what key to switch to semi-functional (after the
challenge ciphertext is made semi-functional). Our lemma does not go as far as the technique
by Okamoto and Takashima to introduce a totally random mask, but we rather introduce new
masks τxzj in all cj vectors and τx in the croot vector, where x ∈ Zq is some known constant and

zj
$← Zq. At the same time, we also add the masks a′jy/zj in all kj vectors as well as a′0y in kroot,

where (a′j)j←Λa′0(A) is a new random labeling for a′0
$← Zq and y ∈ Zq is a known constant. This

will induce a value τa′0xy masking ψa0z when performing the product croot × kroot. In the end, if
A(R) = 1, from cj and kj it is possible to resconstruct τa′0xy and recover ψa0z. If A(R) = 0, the fact
that our labeling is derived from an LSSS helps us argue the statistical indistinguishability between
ψa0z and a totally random value. Finally, in our main security proofs of the specific schemes of
(MC)FE for inner products, we will set the constants x, y appropriately when invoking the lemma
for an automatic removal of the new labeling if A(R) = 1, which then enables adaptive security.

Lemma 1. Let A be an LSSS-realizable over a set of attributes Att ⊆ Zq. We denote by List-Att(A)
the list of attributes appearing in A and by P the cardinality of List-Att(A). Let R ⊆ Att be a set of
attributes. Let (H,H∗) and (F,F∗) be two random dual bases of (G2

1,G2
2) and (G8

1,G8
2), respectively.

The vectors (h1, f1, f2, f3) are public, while all other vectors are secret. Suppose we have two random

labelings (aj)j∈List-Att(A) ← Λa0(A) and (a′j)j ← Λa′0(A) for a0, a
′
0

$← Zq. Then, under the SXDH
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assumption in (G1,G2), the following two distributions are computationally indistinguishable:

D1 :=


x, y
∀ j ∈ R : cj = (σj · (1,−j), ψ, 0, 0, 0, 0, 0)F
∀ j ∈ List-Att(A) : k∗j = (πj · (j, 1), aj · z, 0, 0, 0, 0, 0)F∗

croot = (ψ, 0)H
k∗root = (a0 · z, 0)H∗


and

D2 :=


x, y
∀ j ∈ R : cj = (σj · (1,−j), ψ, 0, 0, τzj · x, 0, 0)F
∀ j ∈ List-Att(A) : k∗j = (πj · (j, 1), aj · z, 0, 0, a′j · y/zj , 0, 0)F∗

croot = (ψ, τ · x)H
k∗root = (a0 · z, a′0 · y)H∗


where for any x, y ∈ Zq and zj , σj , πj , ψ, τ, z, r

′
0

$← Zq.

We restate as well the weaker version, where we know in advance A(R) = 0, in Lemma 2 in
Appendix B.1. The main sequence of games for proving Lemma 1, with two additional games for
Lemma 2, is depicted in Figure 2. The detailed proof can be found in Appendix B.1.

4 Single-Client Functional Encryption For Inner-product with Fine-Grained
Access Control via LSSS

We present constructions of FE for the inner-product functionality with attribute-based control
expressed using linear secret sharing schemes, starting with the simpler single-client setting. The
function class of interests is F IP = {Fy} and Fy :

(
Z∗q
)n → Zq is defined as Fy(x) := 〈x,y〉. We

consider the access control provided by LSSS-realizable monotone access structures. We are in
the bilinear group setting (G1,G2,Gt, g1, g2, gt, e, q) and G1,G2,Gt are written additively. In order
to facilitate the understanding and the motivation of our construction following Definition 8, we
present both selectively-secure and adaptively-secure constructions in Figure 3. We leverage the
selectively-secure scheme to obtain the adaptively-secure one by replacing certain elements in the
former by the corresponding boxed components for the latter.

4.1 Selective Security

The correctness is ensured by construction:

JoutKt =
∑
j∈A

cj × (cj · k∗j ) +
n∑
i=1

(e(ti,m
∗
i ))−

(
cipfe × k∗ipfe

)
= Jψa0zKt +

n∑
i=1

(J(ω · (si + µui) + x[i]) y[i]Kt) + J−ω · 〈s + µu,y〉 − ψa0zKt

= Jψa0z + ω〈s + µu,y〉+ 〈x,y〉Kt + J−ψa0z − ω〈s + µu,y〉Kt
= J〈x,y〉Kt .

We now turn our attention to the selective security property. The full proof can be found in
Appendix B.2.
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Game G0 :

cj ( σj · (1,−j) ψ 0 0 0 0 0 )F
k∗j ( πj · (j, 1) aj · z 0 0 0 0 0 )F∗

croot ( ψ 0 )H
k∗root ( a0z 0 )H∗

Game G1 : τ
$← Zq

cj ( σj · (1,−j) ψ τ · x 0 0 0 0 )F
k∗j ( πj · (j, 1) aj · z 0 0 0 0 0 )F∗

croot ( ψ τ · x )H
k∗root ( a0z 0 )H∗

Game G2 : τ, zj
$← Zq

cj ( σj · (1,−j) ψ τx 0 τzj · x 0 0 )F

k∗j ( πj · (j, 1) aj · z 0 0 0 0 0 )F∗

croot ( ψ τ · x )H
k∗root ( a0z 0 )H∗

Game G3 : τ, zj
$← Zq, a′0

$← Zq, (a′j)j∈J←Λa′0(A)

cj ( σj · (1,−j) ψ τ · x 0 τzj · x 0 0 )F

k∗j ( πj · (j, 1) aj · z a′j · y 0 0 0 0 )F∗

croot ( ψ τ · x )H

k∗root ( a0z a′0 · y )H∗

Game G4 : τ, zj
$← Zq, a′0

$← Zq, (a′j)j∈J←Λa′0(A)

cj ( σj · (1,−j) ψ τ · x 0 τzj · x 0 0 )F

k∗j ( πj · (j, 1) aj · z 0 0 a′j · y/zj 0 0 )F∗

croot ( ψ τ · x )H
k∗root ( a0z a′0 · y )H∗

Two additional games for Lemma 2, if we know in advance A(R) = 0:

Game G5 : τ, zj
$← Zq, a′0

$← Zq, (a′j)j∈J←Λa′0(A)

cj ( σj · (1,−j) ψ τ · x 0 τzj · x 0 0 )F
k∗j ( πj · (j, 1) aj · z 0 0 a′j · y/zj 0 0 )F∗

croot ( ψ τ · x )H

k∗root ( a0z r′0 · y )H∗

Game G6 : τ, zj
$← Zq, a′0

$← Zq, (a′j)j∈J←Λa′0(A)

cj ( σj · (1,−j) ψ 0 0 0 0 0 )F
k∗j ( πj · (j, 1) aj · z 0 0 0 0 0 )F∗

croot ( ψ τ · x )H
k∗root ( a0z r′0 · y )H∗

Fig. 2: Games G1,G2,G3,G4 for the proof of Lemma 1. The index j runs over the list List-Att(A) for
the k-vectors and runs over the attributes in R for the c-vectors. Games G5,G6 demonstrate a few
extra steps to be done if more conveniently we know in advance A(R) = 0, and thus we regain the
totally random masking from the works of Okamoto-Takashima (see Lemma 2 in Appendix B.1).
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Setup(1λ): Choose three pairs of dual orthogonal bases (F,F∗) and (H,H∗) where (H,H∗) is a pair of bases of the

dual pairing vector spaces (G4
1 ,G4

2), and (F,F∗) are dual bases of (G8
1 ,G8

2). We write

H = (h1,h2,h3,h4) H∗ = (h∗1,h
∗
2,h
∗
3,h
∗
4)

H = (h1,h2,h3,h4, . . . ,hn+3) H∗ = (h∗1,h
∗
2,h
∗
3,h
∗
4, . . . ,h

∗
n+3)

F = (f1, f2, f3, f4, f5, f6, f7, f8) F∗ = (f∗1 , f
∗
2 , f
∗
3 , f
∗
4 , f
∗
5 , f
∗
6 , f
∗
7 , f
∗
8 )

F = (f1, f2, f3, f4, . . . , fn+5, fn+6, fn+7) F∗ = (f∗1 , f
∗
2 , f
∗
3 , f
∗
4 , . . . , f

∗
n+5, f

∗
n+6, f

∗
n+7)

and sample µ, z
$← Z∗q , s,u

$← (Z∗q)n and write s = (s1, . . . , sn), u = (u1, . . . , un). Output the public key and the
master secret key as {

pk :=
(
h1 + µh2, h3, (fi)i∈[3], (Jsi + µ · uiK1)i∈[n]

)
msk := (z, s, u, (f∗i )i∈[3], (h∗i )i∈[3]) .

Extract(msk,A,y ∈ Znq ): Let A be an LSSS-realizable monotone access structure over a set of attributes Att ⊆ Zq.

First, sample a0
$← Zq and run the labeling algorithm Λa0(A) (see Definition 1) to obtain the labels (aj)j where j

runs over the attributes in Att. In the end, it holds that a0 =
∑
j∈A cj · aj where j runs over an authorized set

A ∈ A and cA = (cj)j∈A is the reconstruction vector from LSSS w.r.t A. We denote by List-Att(A) the list of
attributes appearing in A, with possible repetitions. Parse msk = (z, s, u, (f∗i )i∈[3], (h∗i )i∈[3]). Compute:

k∗j := (πj · (j, 1), aj · z, 0, 0, 0, 0, 0)F∗ for j ∈ List-Att(A)

k∗j := (πj · (j, 1), aj · z,
n times︷ ︸︸ ︷

0, . . . , 0, 0, 0, 0, 0)F∗ for j ∈ List-Att(A)

m∗i := Jy[i]K2 for i ∈ [n]

k∗ipfe := (〈s,y〉, 〈u,y〉, a0 · z, 0)H∗ k∗ipfe := (〈s,y〉, 〈u,y〉, a0 · z,
n times︷ ︸︸ ︷

0, . . . , 0 )H∗

where πj
$← Zq. Output skA,y :=

((
k∗j
)
j
, (m∗i )i∈[n] ,k

∗
ipfe

)
.

Enc(pk,x,R): Parse the public key pk =
(
h1 + µh2, h3, (fi)i∈[3], (Jsi + µ · uiK1)i∈[n]

)
and R ⊆ Att ⊆ Zq as the set

of attributes, then sample ω, ψ
$← Zq. Compute

cj = σj · f1 − j · σj · f2 + ψ · f3 = (σj · (1,−j), ψ, 0, 0, 0, 0, 0)F for each j ∈ R

cj = (σj · (1,−j), ψ,
n times︷ ︸︸ ︷

0, . . . , 0, 0, 0, 0, 0)F for each j ∈ R

where σj
$← Zq. Finally, compute

ti = ω · Jsi + µ · uiK1 + Jx[i]K1 = Jω · (si + µui) + x[i]K1 for i ∈ [n]

cipfe = ω · (h1 + µh2) + ψ · h3 = (ω, µω, ψ, 0)H cipfe = (ω, µω, ψ,

n times︷ ︸︸ ︷
0, . . . , 0 )H

where σi
$← Zq for every i ∈ [n] and output ct :=

(
(cj)j∈R , (ti)i∈[n], cipfe

)
.

Dec(skA,y, ct): Parse ct =
(
cR := (cj)j∈R , (ti)i∈[n], cipfe

)
and skA,y :=

((
k∗j
)
j∈List-Att(A) , (m∗i )i∈[n] , k∗ipfe

)
. If there

exists A ⊆ R and A ∈ A, then compute the reconstruction vector c = (cj)j of the LSSS for A and

JoutKt =
∑
j∈A

cj × (cj · k∗j ) +

n∑
i=1

(e(ti,m
∗
i ))−

(
cipfe × k∗ipfe

)
Finally, compute the discrete logarithm and output out ∈ Zq. Else, output ⊥.

Fig. 3: The selectively-secure and adaptively-secure constructions for IPFE with fine-grained access
control via LSSS. The proofs for selective security and adaptive security can be found in Section 4.1
and Section 4.2, respectively.
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Theorem 1. Let E = (Setup,Extract,Enc,Dec) be an inner-product functional encryption scheme
with fine-grained access control via LSSS presented in Figure 3 in a bilinear group setting (G1,G2,Gt,
g1, g2, gt, e, q). Then, E is secure against chosen-plaintext attacks, selectively in the challenge messages
and adaptively in the attributes, if the SXDH assumption holds for G1 and G2. More precisely, let
K denote the number of functional key queries and P denote the maximum number of attributes in
the access structure A queried for functional keys. We have the following bound:

Advsel-ind-cpaE,F ,A (1λ) ≤ (2KP · (6P + 3) + 2K + 9) · AdvSXDH
G1,G2

(1λ) .

Proof (Main ideas). We proceed by a sequence of games, starting from the selective chosen-plaintext
security game described in Figure 1. We will make use of the dual-system methodology introduced
by Waters [Wat09] to prove the security for our scheme, following the similar ideas successfully
employed in revocation systems and ABE schemes, e.g. those in [AL10, OT12a, OT12b, DGP21].
Intuitively, the simulator, which generates by itself all the secret information, should be able to
respond to the functional secret key query (A, F ) by the adversary. This is required to be the case
even before the adversary declares the set of attributes for which it gets the challenge ciphertext.
Our idea is to switch gradually the ciphertexts to semi-functional, then the keys corresponding to
the policies that are not satisfied by the adversary’s attributes to semi-functional, while keeping
in mind that we cannot know those non-satisfied policies until the adversary declares the set R.
Moreover, the key for a satisfied policy should be still usable to decrypt the challenge ciphertext.

We deal with this problem of two types of keys by temporarily considering the weaker notion of
security where the challenge message is declared upfront, and the attribute set R is still adaptively
chosen. Then, given the challenge messages at hand, the simulator will try to decide which key to
be switched to semi-functional depending on the key query (A,y). As it turns out, for the declared
challenge messages (x∗0,x

∗
1), whenever 〈y,x∗0〉 6= 〈y,x∗1〉, the functional key linked to (A,y) will be

switched to semi-functional. Intuitively, in a valid attack, the aforementioned inequality implies that
the policy in skA,y is not satisfied by R and generally the associated functional key can be turned
semi-functional without affecting its useless nature (for decrypting challenge ciphertexts under R).
The remaining key queries, where the two inner-products are equal, will be kept normal. Because
we are in the selective setting and can decide which key cannot decrypt the challenge ciphertext, to
turn the keys semi-functional, we apply the extended version of Lemma 1 (i.e. going until G6 in
Figure 2) to introduce a totally random r′`,0〈∆x,y`〉 in the `-th functional key having 〈∆x,y`〉 6= 0.
The need of 〈∆x,y`〉 when masking the key requires selective challenge messages (x∗0,x

∗
1).

The last step is to modify the master secret key (s,u) so that the challenge ciphertext is now
encrypting x∗0[i] and is no longer depending on b. The new (s′,u′) will respect the relation dictated
in pk, which is known by the adversary. For any functional key corresponding to y` such that
〈∆x,y`〉 = 0, simulating the key using (s,u) is identical to doing so using (s′,u′). On the other
hand, in the case where 〈∆x,y`〉 6= 0, simulating the functional key for y` using (s,u) introduces
errors when we update (s,u) to (s′,u′). These errors can be corrected using the random mask from
previous steps, under the SXDH assumption, to make the keys be in the correct form w.r.t (s′,u′).
Finally, because the challenge ciphertext no longer depends on b, the advantage becomes 0 and we
conclude. ut

4.2 Adaptive Security

The main difference between the adaptive version and the selectively-secure version in Section 4.1 is
the increase in the dimension of dual bases, from constant dimensions to dimensions linear in n. The
details can be found in Figure 3. The computation for encrypting and decrypting stays essentially



15

the same. In the proof of security, we will explain why using bigger DPVSes allows us to achieve the
stronger adaptive notion.

The correctness follows the correctness of the selectively-secure construction. The following
theorem proves the adaptive security as defined in Definition 8. Figure 13 in Appendix B.3 describes
the main ideas including the sequence of games employed in the proof. Full details can also be found
in Appendix B.3.

Theorem 2. Let E = (Setup,Extract,Enc,Dec) be an IPFE scheme with fine-grained access control
via LSSS presented in Figure 3 in a bilinear group setting (G1,G2,Gt, g1, g2, gt, e, q). Then, E is
secure against chosen-plaintext attacks, adaptively in the attributes and the challenge messages,
if the SXDH assumption holds for G1 and G2. More precisely, let n be the dimension of vectors
for inner-product computation, K denote the number of functional key queries, and P denote the
maximum number of attributes in the access structure A queried for functional keys. We have the
following bound:

Advind-cpaE,F ,A (1λ) ≤ (2nK · (P · (6P + 3) + 2) + 5) · AdvSXDH
G1,G2

(1λ) .

Proof (Main ideas). We first recall the main reason why we need the challenge messages (x∗0,x
∗
1) to

be sent in advance in the proof of Theorem 1. Using the dual-system methodology, we first change
the challenge ciphertext into semi-functional and then we want to change the functional keys into
semi-functional as well. This can be done only for the keys corresponding to (A,y) such that

〈x∗0,y〉 6= 〈x∗1,y〉 . (2)

According to the model of security, condition (2) implies that the access structure A is not satisfied
by the attributes R in the challenge ciphertext. Hence, changing the foregoing key into semi-
functional does not affect the fact that the ciphertext, which is already semi-functional, cannot be
decrypted using this key. On the other hand, for the functional secret key associated to (A′,y′)
where 〈∆x,y′〉 = 0 and ∆x := x∗b − x∗0, it must remain normal. These keys include those whose
policy is satisfied by the attributes in the challenge ciphertext and the decryption will return
〈x∗0,y′〉 = 〈x∗1,y′〉 as expected.

To prove the adaptive version, we need a strategy to change the challenge ciphertext and the
keys into semi-functional such that the masks in the vectors exist only when condition (2) holds.
Moreover, because the functional keys might be queried before the challenge messages are declared
(we are in the adaptive setting), the keys should still allow correct decryption of normal ciphertexts,
which the adversary can compute using pk as well as the later challenge ciphertext if the policy in
the key is satisfied. Using the terminology from [OT12b], our main idea is using auxiliary hidden
vectors (f4, . . . , fn+7) over F and (h4, . . . ,hn+3) over H, as well as their dual counterparts in F∗,H∗.
These hidden subspace vectors will accommodate τ∆x[i] in the (i+ 3)-th coordinate of the challenge
ciphertext cipfe, and r0y[i] in the (i+ 3)-th coordinate of functional key kipfe corresponding to y,

for each i ∈ [n] and the random masks τ, r0
$← Zq. Then, when taking the products of vectors in

DPVS, there will be a term τr0
∑

i∈[n]∆x[i]y[i] = τr0〈∆x,y〉 and it will act as a mask only when
〈∆x,y〉 6= 0. The masking is done by each index i ∈ [n], applying Lemma 1. Similar to what we
have done in the selective proof, for each i ∈ [n], so as to introduce r0 · y[i] in kipfe we will have

to use 5 auxiliary hidden vectors in cj for (τ∆x[i], 0, τzj ·∆x[i], 0, 0)F for all j ∈ R and zj
$← Zq.

This explains why we need n more basis vectors over (F,F∗) for τzj · ∆x[i], where i ∈ [n], and
4 more auxiliary hidden vectors, besides the 3 vectors used in real life. The same goes for the
need of n+ 3 basis vectors in (H,H∗). We remark that Lemma 1 only helps us mask the `-th key

components k∗`,ipfe by another random labeling based on a′`,0
$← Zq. However, after all the masks
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(a′`,0 · y[i])i∈[n] are in the vector k∗`,ipfe, thanks to the fact that the product in DPVS will give us
τa′`,0〈∆x,y〉, we can change (a′`,0 · y[i])i∈[n] to (r′`,0 · y[i])i∈[n] all at once. If the access structure
in the key is not satisfied by the challenge attributes, there does not exist any authorized set in
R. In other words, we cannot find a reconstruction vector (cj)j from LSSS so as to recover a′`,0.
Thanks to the property of LSSS and the fact that we are using random labelings, a′`,0 is statistically
indistinguishable from a totally random value. Otherwise, if A(R) = 1, the security model enforces
that 〈∆x,y〉 = 0 and the result does not depend on a′`,0 anymore. In either case, changing from
(a′`,0 · y[i])i∈[n] to (r′`,0 · y[i])i∈[n] can be justified.

After successfully masking the keys, we use a similar argument as in the selective proof of
Theorem 1 to make the challenge ciphertext not depend on b anymore. We recall that for the
functional key queries where 〈∆x,y〉 = 0, simulating them using (s,u) stays identical when we
update (s,u) to (s′,u′) in the challenge ciphertext. Otherwise, under the SXDH assumption, we
can correct the keys where 〈∆x,y〉 6= 0 to the correct form w.r.t (s′,u′) using the randomness r′`,0
introduced from previous steps. ut

5 Multi-Client Functional Encryption for Inner-Product with Fine-Grained
Access Control via LSSS

In this section, we present our main contribution by extending our FE scheme in Section 4 from
the single-client setting to the multi-client setting in Section 5.2, while treating the tags separately
from the predicates. Furthermore, the security of the transformation by Abdalla et al. [ACGU20,
Theorem 6.3] necessitates a multiplicative degradation of factor n in the security reduction for
multi-input constructions. The security of our MCFE construction, on the other hand, does not
depend on the number of clients n, see Theorem 3. Finally, in Section 5.4 we discuss further our
construction and revisit the MIFE regime for comparison with [ACGU20].

First of all, we define and give the model of security for multi-client functional encryption
for inner-products with fine-grained access control in Section 5.1. The adaptive proof is given
in Theorem 3. The function class of interests is F IP = {Fy} and Fy :

(
Z∗q
)n → Zq is defined

as Fy(x) := 〈x,y〉. We consider the access control provided by LSSS-realizable monotone access
structures. We are in the bilinear group setting (G1,G2,Gt, g1, g2, gt, e, q) and G1,G2,Gt are written
additively. The Tag space contains the tags, which are also referred to as “labels” interchangeably
in Section 1, that accompany plaintext components at the time of encryption.

5.1 Definitions

We extend the notion of functional encryption with fine-grained access control to the multi-client
setting. The syntax is given below.

Definition 9 (Multi-client functional encryption with fine-grained access control). A
multi-client functional encryption (MCFE) scheme with fine-grained access control consists of the
four algorithms (Setup,Extract,Enc,Dec):

Setup(1λ): Given as input a security parameter λ, output a master secret key msk and n = n(λ)
encryption keys (eki)i∈[n] where n : N→ N is a function.

Extract(msk,P, Fλ): Given a predicate P, a function description Fλ ∈ F , and the master secret key
msk, output a decryption key dkP,Fλ.

Enc(eki, xi, tag,R): Given as inputs an encryption key eki, a message xi ∈ Dλ, a tag tag, and a set
R of attributes, output a ciphertext cttag,i.

Dec(dkP,Fλ , tag, c): Given the decryption key dkP,Fλ, a tag tag, and a vector of ciphertexts c :=
(cttag,i)i of length n, output an element in Rλ or an invalid symbol ⊥.
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Correctness. For sufficiently large λ ∈ N, for all (msk, (eki)i∈[n])← Setup(1λ), (Fλ,P) ∈ F ×
P and dkP,Fλ←Extract(P,msk, Fλ), for all tag and R satisfying P(R) = 1, for all (xi)i∈[n] ∈ Dnλ , the
following holds with overwhelming probability:

Dec
(
dkP,Fλ , tag, (Enc(eki, xi, tag,R))i∈[n]

)
= Fλ(x1, . . . , xn) if Fλ(x1, . . . , xn) 6= ⊥

where Fλ : Dnλ → Rλ and the probability is taken over the coins of algorithm.

Security. We define an indistinguishability-based security notion taking into account the attribute-
based access control as well as the possibility of collusion among multiple clients. Below we define the
admissibility of an adversary A in the security game against E = (Setup,Extract,Enc,Dec). Intuitively,
we consider only admissible adversaries who do not win our security game in a trivial manner as
well as other meaningful restrictions in the multi-client setting. The admissibility additionally takes
into account the satisfiability of the key’s policy, which also complicates the way we model the
security notion. In the plain setting without attribute-based control, interested readers can refer
to [CDG+18a] or [LT19] for more details.

Definition 10 (Admissible adversaries). Let A be a ppt adversary and let E = (Setup,Extract,
Enc,Dec) be an MCFE scheme with fine-grained access control. In the security game given in Figure 4
for A considering E, let the sets (C,Q,H) be the sets of corrupted clients, functional key queries,
and honest clients, in that order. We say that A is NOT admissible w.r.t (C,Q,H) if any of the
following conditions holds:

– There exists i ∈ C such that (i, x
(0)
i , x

(1)
i , tag,R) is queried to LoR and x

(0)
i 6= x

(1)
i .

– There exist a tag tag and i, j ∈ H such that i 6= j, there exists a query (i, x
(0)
i , x

(1)
i , tag,R) to

LoR but there exist no query (j, x
(0)
j , x

(1)
j , tag,R) to LoR.

– There exist a tag tag, a set R of attributes, a function F ∈ F , a predicate P ∈ P, and there exist

two input vectors (x
(0)
1 , . . . , x

(0)
n ) and (x

(1)
1 , . . . , x

(1)
n ) such that

• The attributes in R satisfy the predicate P and (P, F ) ∈ Q.

• F
(
x
(0)
1 , . . . , x

(0)
n

)
6= F

(
x
(1)
1 , . . . , x

(1)
n

)
.

• For all i ∈ H, there exist ciphertexts w.r.t (tag,R) for (x
(0)
i , x

(1)
i ) received from LoR.

• For all i ∈ C, it holds that x
(0)
i = x

(1)
i .

Otherwise, we say that A is admissible w.r.t (C,Q,H).

Remark 1. Our syntax and model of MCFE with fine-grained access control require that in
order to combine the ciphertext components, they must be encrypted under the same tag and the
same set of attributes. One can aim for a more flexible notion in which each client i can encrypt
their ciphertext component under a different (tag,Ri). However, this creates a much more intricate
situation and we have to take into account non-trivial attacks where two different functional keys,
whose policies are satisfied by different subsets of clients, may be combined to evaluate the underlying
plaintext components of the union of the foregoing subsets. In Section 5.2, our concrete constructions
enforce the same tag and same attributes in the ciphertext components by hashing them during
encryption. In Section 5.4, we discuss how to relax the constraint and achieve the flexible notion
where each client i can use a different (tag,Ri) and hash only tag. As a result, this more flexible
MCFE scheme in the RO model can be morphed into an MIFE scheme in the standard model by
fixing a public tag and publishing its hash.
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Remark 2. As in the plain MCFE with no attribute-based access control in [CDG+18a, LT19],
we will consider security with no repetitions, i.e. the adversary cannot query Enc nor LoR for
multiple ciphertexts under the same (i, tag,R). Moreover, the adversary is not allowed to query the
encryption oracle Enc for ciphertexts under the challenge tag∗ that was previously queried to LoR.
The intuition of this restriction is to prevent trivial attacks where, by querying for ciphertexts under
tag∗, the adversary can combine them with the challenge ciphertext under the same tag∗ to learn
much more information about the challenge bit b and win the game. Finally, the oracle LoR might
be queried for only honest clients i, because the adversary can already use eki of any corrupted client
i for encryption. In addition, for every honest clients i, there must be a ciphertext query to LoR
under the challenge (tag,R). That is, we do not take into account the scenario where only partial
(in terms of honest clients) challenge ciphertext is queried to LoR. We can relax this condition
and allow partial challenge ciphertexts by adding a layer of All-or-Nothing Encapsulation (AoNE).
The AoNE encapsulates the partial components from clients and guarantees that all encapsulated
components can be decapsulated if and only if all components are gathered, otherwise the original
information remain hidden. The work by Chotard et al. [CDSG+20] presents constructions for AoNE
in the prime-order (asymmetric) bilinear groups compatible with our current setting. In the MIFE
realm, the work of [ACGU20] considers the similar restriction and expects all honest slot i ∈ [n] are
queried to LoR.

We are now ready to give the definition for the indistinguishability-based security.

Definition 11 (IND-security for MCFE with fine-grained access control). An MCFE
scheme with fine-grained access control E = (Setup,Extract,Enc,Dec) for the function class F =
{Fλ}λ∈N is IND-secure if for all ppt adversaries A, and for all sufficiently large λ ∈ N, the following
probability is negligible

Advmc-ind-cpa
E,F ,A (1λ) :=

∣∣∣∣Pr[Exprmc-ind-cpa
E,F ,A (1λ) = 1]− 1

2

∣∣∣∣ .
The game Exprmc-ind-cpa

E,F ,A (1λ) is depicted in Figure 4. The probability is taken over the random coins
of A and the algorithms.

In a more relaxed notion, the scheme E is selectively secure against chosen-plaintext attacks if
the following probability is negligible

Advmc-sel-ind-cpa
E,F ,A (1λ) :=

∣∣∣∣Pr[Exprmc-sel-ind-cpa
E,F ,A (1λ) = 1]− 1

2

∣∣∣∣ .

5.2 Construction

This section presents a multi-client FE scheme with fine-grained access control, as defined in
Section 5.1, for the function class F IP of inner-products. The access control is expressed via LSSS-
realizable monotone access structures. We also need a full domain hash function H : Tag×2Att → G2

1,
where Tag denotes the set of tags and 2Att contains the subsets of attributes of Att. The details of
our construction is given in Figure 5. We note that the duplicate-and-compress technique is used
by putting the vectors {(ci,j ,ki,j)j} in the same pair of dual bases (F,F∗) for all client i ∈ [n],
meanwhile each pair of vectors (ci,ipfe,ki,ipfe) is put in bases (Hi,H

∗
i ) for each client i ∈ [n]. In

the proof of Theorem 3 we detail how the basis changes in Lemma 1 can be done in parallel for
(Hi,H

∗
i ), (F,F

∗) for all i ∈ [n].
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Initialise(1λ) Initialise(1λ, (x
(0)
i , x

(1)
i )i∈[n])

b
$← {0, 1}

(msk, (eki)i∈[n])←Setup(1λ)
Q := ∅, C := ∅, H := [n]
Return pk

LoR(i, x
(0)
i , x

(1)
i , tag∗,R∗) LoR(i, tag∗,R∗)

If (i, tag∗,R∗) appears previously
or a different (i, tag′,R′) was queried:

Ignore
Else: ct

(b)
tag∗,i←Enc(eki, x

(b)
i , tag∗,R∗)

Return ct
(b)
tag∗,i

Enc(i, xi, tag,R)

If (i, tag,R) appears previously
or tag = tag∗:

Ignore
Else: return Enc(eki, xi, tag,R)

Corrupt(i)

C := C ∪ {i}
H := H \ {i}
Return eki

Finalise(b′)

If A is NOT admissible w.r.t (C,Q,H)
or there exists i ∈ C among the queries to LoR:

return 0
Else return

(
b′

?
= b
)

Extract(P, F )

Q := Q∪ {(P, F )}
dkP,F←Extract(msk,P, F )
Return dkP,F

Fig. 4: The security game Exprmc-ind-cpa
E,F ,A (1λ) and Exprmc-sel-ind-cpa

E,F ,A (1λ) for Definition 11

The correctness of the scheme is verified by:

JoutKt =
n∑
i=1

∑
j∈A

ci,j × (cj · ki,j)

− (ci,ipfe × ki,ipfe) + e(ti,mi)


=

n∑
i=1

(
Jψiai,0zKt −

q
ωpi · 〈s,y〉+ ω′pi · 〈u,y〉+ ψiai,0z

y
t
+

q
(ωsi + ω′ui + xi)yi

y
t

)
= J〈x,y〉Kt .

5.3 Adaptive Security

We now present the main ideas of the adaptive proof for the multi-client construction described in
Section 5.2, the detailed proof is presented in Appendix B.4. The sequence of games can be found
in Figures 6 and 7.

Theorem 3. Let E = (Setup,Extract,Enc,Dec) be a multi-client IPFE scheme with fine-grained ac-
cess control via LSSS, constructed in Section 5.2 in a bilinear group setting (G1,G2,Gt, g1, g2, gt, e, q).
Then, E is secure against chosen-plaintext attacks if the SXDH assumption holds for G1 and G2.
More specifically, let K denote the number of functional key queries, P denote the maximum number
of attributes in the access structure A queried for functional keys, and Q denote the number of
random oracle (RO) queries. We have the following bound:

Advmc-ind-cpa
E,F ,A (1λ) ≤ (2KP · (6P + 3) + 2K + 2Q+ 5) · AdvSXDH

G1,G2
(1λ)

and in the reduction there is an additive loss O(Q · tG1) in time, where tG1 is the cost for one addition
in G1.
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Setup(1λ): Choose n+ 1 pairs of dual orthogonal bases (Hi,H
∗
i ) for i ∈ [n] and (F,F∗)where (Hi,H

∗
i ) is a pair of

dual bases for (G4
1 ,G4

2) and (F,F∗) is a pair of dual bases for (G8
1 ,G8

2). We denote the basis changing matrices for
(F,F∗), (H,H∗i ) as (F, F ′), (Hi, H

′
i) respectively (see Appendix A.1 for basis changes in DPVS):

(Hi = Hi ·T; H∗i = H ′i ·T∗)i∈[n] (F = F ·W; F∗ = F ′ ·W∗)

where Hi, H
′
i ∈ Z4×4

q , F, F ′ ∈ Z8×8
q and (T = JI4K1 ,T

∗ = JI4K2), (W = JI8K1 ,W
∗ = JI8K2) are canonical bases

of (G4
1 ,G4

2), (G8
1 ,G8

2) respectively, for identity matrices I4 and I8. We recall that in the multi-client setting the
scheme must be a private key encryption scheme. For each i ∈ [n], we write

Hi = (hi,1,hi,2,hi,3,hi,4) H∗i = (h∗i,1,h
∗
i,2,h

∗
i,3,h

∗
i,4)

F = (f1, f2, f3, f4, f5, f6, f7, f8) F∗ = (f∗1 , f
∗
2 , f
∗
3 , f
∗
4 , f
∗
5 , f
∗
6 , f
∗
7 , f
∗
8 )

and sample µ
$← Z∗q , s,u

$← (Z∗q)n and write s = (s1, . . . , sn), u = (u1, . . . , un). Perform an n-out-of-n secret
sharing on 1, that is, choose pi ∈ Zq such that 1 = p1 + · · ·+ pn. Output the master secret key and the encryption
keys as {

msk := (s, u, f∗1 , f∗2 , f∗3 , (h∗i,1,h
∗
i,2,h

∗
i,3)i∈[n])

eki := (si, ui, pi ·H(1)
i , pi ·H(2)

i , hi,3, f1, f2, f3) for i ∈ [n]

where H
(k)
i denotes the k-th row of Hi.

Extract(msk,A,y ∈ Znq ): Let A be an LSSS-realizable monotone access structure over a set of attributes Att ⊆ Zq.

First, sample a0
$← Zq and run the labeling algorithm Λa0(A) (see Definition 1) to obtain the labels (aj)j where

j runs over the attributes in Att. In the end, it holds that a0 =
∑
j∈A cj · aj where j runs over an authorized

set A ∈ A and c = (cj)j is the reconstruction vector from LSSS w.r.t A. We denote by List-Att(A) the list of
attributes appearing in A, with possible repetitions. Parse msk = (s, u, f∗1 , f∗2 , f∗3 , (h∗i,1,h

∗
i,2,h

∗
i,3)i∈[n]) and

write y = (y1, . . . , yn). For each i ∈ [n], compute mi := JyiK2 and

ki,j = (πi,j · (j, 1), ai,j · z, 0, 0, 0, 0, 0)F∗ for j ∈ List-Att(A)

ki,ipfe := (〈s,y〉, 〈u,y〉, ai,0 · z, 0)H∗i

where z, πi,j
$← Zq. Output dkA,y :=

(
(ki,j)i,j , (mi,ki,ipfe)i∈[n]

)
.

Enc(eki, xi, tag,R): Parse eki := (si, ui, pi ·H(1)
i , pi ·H(2)

i , hi,3, f1, f2, f3) and R ⊆ Att ⊆ Zq as the set of attributes,

compute H(tag,R)→ (JωK1 , Jω′K1) ∈ G2
1 and sample ψi

$← Zq. Use piH
(1)
i and piH

(2)
i to compute

piH
(1)
i · JωK1 + piH

(2)
i ·

q
ω′

y
1

= pi ·
(
ωH

(1)
i · g1 + ω′H

(2)
i · g1

)
= pi · (ωhi,1 + ω′hi,2) .

For each j ∈ R, compute

ci,j = σi,j · f1 − j · σi,j · f2 + ψi · f3 = (σi,j · (1,−j), ψi, 0, 0, 0, 0, 0)F

where σi,j
$← Zq. Finally, compute

ti = si · JωK1 + ui ·
q
ω′

y
1

+ JxiK1 =
q
ω · si + ω′ · ui + xi

y
1

ci,ipfe = pi · (ω · hi,1 + ω′ · hi,2) + ψi · hi,3 = (ωpi, ω
′pi, ψi, 0)Hi

and output cttag,i :=
(

(ci,j)j , ti, ci,ipfe
)

.

Dec(dkA,y, tag, c := (cttag,i)): Parse cttag,i = ((ci,j)j∈R, ti, ci,ipfe) and dkA,y := ((ki,j)i∈[n],j∈List-Att(A), (mi,ki,ipfe)i∈[n]).
If there exists A ⊆ R and A ∈ A, then compute the reconstruction vector c = (cj)j of the LSSS for A and

JoutKt =

n∑
i=1

((∑
j∈A

ci,j × (cj · ki,j)

)
− (ci,ipfe × ki,ipfe) + e(ti,mi)

)

Finally, compute the discrete logarithm and output the small value out.

Fig. 5: The construction for multi-client IPFE with fine-grained access control via LSSS from
Section 5.2.
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Proof (Main ideas). Recall that in the selective single-client proof of Theorem 1, we switch the `-th
functional key to semi-functional if 〈∆x,y(̀ )〉 6= 0. On the other hand, in the single-client adaptive
proof of Theorem 2, to get rid of the constant 〈∆x,y(̀ )〉 in the semi-functional key, we augment
the dimension of the dual bases so that the challenge ciphertext is masked by τ∆x[i], facing the

mask r(̀ )

0 y(̀ )[i] in the corresponding coordinate of the `-th key and τ, r(̀ )

0
$← Zq. Afterwards, when

doing the product of vectors in the dual bases, there will exist the quantity
∑n

i=1 τr
(̀ )

0 ∆x[i]y(̀ )[i] =
τr(̀ )

0 〈∆x,y(̀ )〉, which is non-zero when 〈∆x,y(̀ )〉 6= 0. The dual bases now must have dimension at
least n in order to accommodate all the n terms.

However, in the multi-client setting, we are already using n different dual basis pairs (Hi,H
∗
i ) for

n clients and the correctness of the construction in Section 5.2 makes sure that only when gathering
all n ciphertext parts can we decrypt to obtain the inner product. Therefore, it suffices to introduce
only τi∆x[i] in the ciphertext returned from LoR of client i and only r(̀ )

i,0y
(̀ )[i] in the corresponding

key component. Indeed, this is also the best we can do because a client i is not supposed to know
other inputs x∗b [j] of other clients j. There are some further technical tweaks to be done. First
of all, we need the factors τi, r

(̀ )

i,0 to be the same, for the grouping later when doing products of
vectors in DPVS. This can be done by using the same τi = τ for all i and during the basis change
to mask the ciphertext component there will be a factor ∆x[i]. Our argument to introduce r(̀ )

i,0

in fact does not depend on i and therefore we can use the same r(̀ )

i,0 = r(̀ )

0 for all i as well. One
might wonder if the dependence of the masks still relies on 〈∆x,y(̀ )〉 because the adversary is not
supposed to query LoR for corrupted clients and we can only introduce the masks in the vector
components of honest i. As a result, the product of vectors in the dual bases in the end will have∑

i∈H τr
(̀ )

0 ∆x[i]y(̀ )[i]. However, the security model imposes that for all corrupted i, the challenge
message satisfies x∗1[i] = x∗0[i] and consequently, 〈∆x,y(̀ )〉 = 0 if and only if

∑
i∈H∆x[i]y(̀ )[i] = 0.

This implies that the mask τr(̀ )

0

∑
i∈H∆x[i]y(̀ )[i] persists only when 〈∆x,y(̀ )〉 6= 0, which is our

goal. The masking of ciphertext and key components results from the application of Lemma 1 as
we are in the adaptive setting and not knowing what policy will the ciphertext’s attributes satisfy.
The lemma will mask all vectors k(̀ )

i,ipfe with a′(̀ )

0
$← Zq, using which we perform a random labeling,

and under the constraint that all clients i use the same R, the mask a′(̀ )

0 will either appear for all i
or neither. This enables us to replace it with r(̀ )

0 , similarly to the all-at-once-changing step in the
adaptive single-client proof. We recall that currently the constraint on using the same R for all i
is guaranteed by hashing (tag,R) together. The more complicated and flexible case with possibly
different Ri for each i is discussed in Section 5.4. The application of Lemma 1 needs some auxiliary
vectors in the dual bases (F,F∗), which are not needed in the real usage of the scheme. Following
the terminology of Okamoto-Takashima [OT12b], those auxiliary vectors form a hidden part of the
bases.

The final steps are to change (si, ui) in the challenge ciphertext to (s′i, u
′
i) so that the ciphertext

from LoR is encryption x∗0 instead of x∗b . However, the situation is more complicated than the
single-client construction because the oracle Enc is using (si, ui) as well. Therefore, in order to be
able to perform the correction step on the functional key, we have to program the full-domain hash
function such that for all queries (tag′,R′) different from the challenge (tag,R), the value H(tag′,R′)

belongs to span(J(1, µ)K1) ⊆ G2
1, for µ

$← Zq. For the challenge (tag,R), the value H(tag,R) remains
a pair of random group elements. The main reason behind this is that our correction step requires
H(tag′,R′) belongs to span(J(1, µ)K1) so that it will not affect the normal ciphertext returned from
Enc. This implies a linear relation between ∆s := s′ − s and ∆u := u′ − u. However, if we put
H(tag,R) on the line span(J(1, µ)K1) as well, then the intention to switch from x∗0 to x∗b in the
ciphertext from LoR will create another linear relation, which reduces significantly the degree of
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freedom to choose (∆s, ∆u) in order to make the simulation successful. In the end, the challenge
ciphertext no longer depends on b and the advantage becomes 0, concluding the proof. ut

5.4 Revisiting MIFE in the Standard Model

We recall that currently our MCFE scheme from Section 5.2 enforces the same (tag,R) when
encrypting for all client i ∈ [n], by hashing them using the full-domain hash function. In practice,
this could render a significant cost for synchronisation among clients so as to agree on the tag and
the attributes at the time of encryption. In addition, by fixing one public tag, one can only obtain
an MIFE scheme on the ROM because we still need the random oracle to process R.

If we allow different (tag,Ri) for each client i and during encryption the input for hashing
depends only on tag, i.e.

q
(ωtag, ω

′
tag)

y
1
←H(tag), there is a mix-and-match attack among functional

keys that has to be considered. More precisely, suppose for two clients i1 6= i2 encrypting x = (x1, x2)
under different sets (R1,R2) of attributes, the `-th and `′-th key queries have access structures
A and A′ where A(R1) = A′(R2) = 1 and A′(R1) = A(R2) = 0, for the same inner-product with
y = y′ = (y1, y2). Neither of these keys should decrypt x1y1 + x2y2 for the sake of security.
However, an adversary can use the vectors {(c1,j)j , (k1,j)j , c1,ipfe,k1,ipfe} to recover p1ωtag〈s,y〉+
p1ω

′
tag〈u,y〉. Similar computation allows the same adversary to obtain p2ωtag〈s,y〉+ p2ω

′
tag〈u,y〉

using {(c2,j)j , (k2,j)j , c2,ipfe,k2,ipfe}. Finally, observing that p1 + p2 = 1, exploiting the linear
combination y1 ·

q
ωtags1 + ω′tagu1 + x1

y
1

+ y2 ·
q
ωtags2 + ω′tagu2 + x2

y
1

permits finding 〈x,y〉. This
demonstrates the main reason why we put R as part of the input to the hash function H in our
current scheme.

The core of the above problem is the fact that the construction from Section 5.2 does not
prohibit combining different “root” vectors k1,ipfe and k2,ipfe w.r.t different ` 6= `′ associated by
different access structure A and A′. In this section we present a solution, with minimal modifications
to the scheme, to overcome the need for hashing R. Suppose now we are in the more flexible
setting where

q
(ωtag, ω

′
tag)

y
1
←H(tag) during encryption. During setup phase, the pair (Hi,H

∗
i )

is a pair of dual bases for (G5
1,G5

2), with one more dimension compared to our less flexible con-
struction. The master secret key msk stays the same, while the encryption key eki now contains
furthermore θhi,5 for some θ

$← Zq. Given an LSSS-realizable monotone access structure A, the
key extraction Extract(msk,A,y ∈ Znq ) returns dkA,y := ((ki,j)i,j , (mi,ki,ipfe)i∈[n]). The encryption
Enc(eki, xi, tag,Ri) returns cttag,i := ((ci,j)j , ti, ci,ipfe) for each i ∈ [n]. There is a new element dA,i
appearing in the extra coordinate in ki,ipfe for every i ∈ [n], where (dA,i)i is a random n-out-of-n
secret sharing of 0, independent among functional keys. The vectors are essentially the same as in
Figure 5, except ci,ipfe,ki,ipfe for each i as follows:

eki := (si, ui, pi ·H(1)
i , pi ·H(2)

i , hi,3, θhi,5, f1, f2, f3)

ci,ipfe := (ωtagpi, ω
′
tagpi, ψi, 0, θ)Hi

ki,ipfe := (〈s,y〉, 〈u,y〉, ai,0 · z, 0, dA,i)H∗i

The decryption calculation stays invariant because
∑n

i=1 dA,i = 0. In retrospection, the mix-and-
match attack we gave at the beginning of this section no longer works, because A 6= A′ and
dA,1 + dA′,2 = 0 only with negligible probability. More formally, the security proof for this modified
scheme can be obtained with recourse to the proof of Theorem 3. We sketch the proof and highlight
the main differences compared to the less flexible scheme in Appendix B.5.

Remark 3. Adding this new layer of masking increases the ciphertext’s size by only a factor
linear in n. Moreover, given this new construction where the set of attributes does not involve in



23

Game G0 : H(tag,R) → (Jωtag,RK1 ,
q
ω′tag,R

y
1
), H(tag′,R′) → (Jχtag′,R′K1 ,

q
χ′tag′,R′

y
1
), a(`)

i,0

$← Zq, (a(`)

i,j)j∈List-Att(A) ←
Λ
a
(`)
i,0

(A)

∀ i ∈ C ∪H eki (si, ui, pi ·H(1)
i , pi ·H(2)

i , hi,3, f1, f2, f3)

LoR(i ∈ H,x∗0[i],x∗1[i], tag,R) ci,j ( σi,j · (1,−j) ψi 0 0 0 0 0 )F
Enc(i ∈ C ∪H, tag′ 6= tag,R′) ci,j ( σ′i,j · (1,−j) ψ′i 0 0 0 0 0 )F
∀ i ∈ C ∪H k(`)

i,j ( π(`)

i,j · (j, 1) a(`)

i,j · z` 0 0 0 0 0 )F∗

LoR(i ∈ H,x∗0[i],x∗1[i], tag,R) ti
q
ωtag,R · si + ω′tag,R · ui + x∗b [i]

y
1

Enc(i ∈ C ∪H, xi, tag′ 6= tag,R′) ti
q
χtag′,R′ · si + χ′tag′,R′ · ui + xi

y
1

∀ i ∈ C ∪H m(`)

i

q
y(`)[i]

y
2

LoR(i ∈ H,x∗0[i],x∗1[i], tag,R) ci,ipfe ( piωtag,R piω
′
tag,R ψi 0 )Hi

Enc(i ∈ C ∪H, xi, tag′ 6= tag,R′) ci,ipfe ( piχtag′,R′ piχ
′
tag′,R′ ψ′i 0 )Hi

∀ i ∈ C ∪H k(`)

i,ipfe ( 〈s,y(`)〉 〈u,y(`)〉 a(`)

i,0z` 0 )H∗i

Game G1 : H(tag,R) → (Jωtag,RK1 ,
q
ω′tag,R

y
1
), H(tag′,R′) → (Jχtag′,R′K1 ,

q
χ′tag′,R′

y
1
), a(`)

i,0

$← Zq, (a(`)

i,j)j∈List-Att(A) ←
Λ
a
(`)
i,0

(A)

LoR(i ∈ H,x∗0[i],x∗1[i], tag,R) ci,j ( σi,j · (1,−j) ψi τ∆x[i] 0 τ∆x[i]zj 0 0 )F
Enc(i ∈ C ∪H, tag′ 6= tag,R′) ci,j ( σ′i,j · (1,−j) ψ′i 0 0 0 0 0 )F
∀ i ∈ C ∪H k(`)

i,j ( π(`)

i,j · (j, 1) a(`)

i,j · z` 0 0 0 0 0 )F∗

LoR(i ∈ H,x∗0[i],x∗1[i], tag,R) ci,ipfe ( piωtag,R piω
′
tag,R ψi τ∆x[i] )Hi

Enc(i ∈ C ∪H, xi, tag′ 6= tag,R′) ci,ipfe ( piχtag′,R′ piχ
′
tag′,R′ ψ′i 0 )Hi

∀ i ∈ C ∪H k(`)

i,ipfe ( 〈s,y(`)〉 〈u,y(`)〉 a(`)

i,0z` 0 )H∗i

Game G2 : H(tag,R)→ (Jωtag,RK1 ,
q
ω′tag,R

y
1
), H(tag′,R′)→ (Jχtag′,R′K1 ,

q
χ′tag′,R′

y
1
), a′(`)i,0

$← Zq, (a′(`)i,j )j←Λ
a
′(`)
i,0

(A)

LoR(i ∈ H,x∗0[i],x∗1[i], tag,R) ci,j ( σi,j · (1,−j) ψi 0 0 0 0 0 )F
Enc(i ∈ C ∪H, tag′ 6= tag,R′) ci,j ( σ′i,j · (1,−j) ψ′i 0 0 0 0 0 )F
∀ i ∈ C ∪H k(`)

i,j ( π(`)

i,j · (j, 1) a(`)

i,j · z` 0 0 0 0 0 )F∗

LoR(i ∈ H,x∗0[i],x∗1[i], tag,R) ci,ipfe ( piωtag,R piω
′
tag,R ψi τ∆x[i] )Hi

Enc(i ∈ C ∪H, xi, tag′ 6= tag,R′) ci,ipfe ( piχtag′,R′ piχ
′
tag′,R′ ψ′i 0 )Hi

∀ i ∈ C ∪H k(`)

i,ipfe ( 〈s,y(`)〉 〈u,y(`)〉 a(`)

i,0z` r(`)0 · y(`)[i] )H∗i

Game G3 : H(tag,R) =
r
RF(tag,R)

z

1
:= (Jωtag,RK1 ,

q
ω′tag,R

y
1
), JH(tag′,R′)K1 =

r
RF(tag′,R′)

z

1
:=

(Jχtag′,R′K1 ,
q
χ′tag′,R′

y
1
)

Fig. 6: Games G0,G1,G2,G3 for Theorem 3. The transition from G1 to G2 is given in Figure 15 in
Appendix B.4. The sets H and C contain honest and corrupted i ∈ [n], respectively. The index j
runs in List-Att(A) for key components and in R for ciphertext components. The index ` runs in
{1, . . . ,K} for the functional key queries. The function H is modeled as a random oracle. In G3 we
use a random function RF : Tag × 2Att → (Z∗q)2.
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Game G4 : µ
$← Zq,H(tag,R) := JRF(tag,R)K1 := (Jωtag,RK1 ,

q
ω′tag,R

y
1
), H(tag′,R′) := JRF′(tag′) · (1, µ)K1 =

(Jχtag′,R′K1 , Jµχtag′,R′K1)

∀ i ∈ C ∪H eki (si, ui, pi ·H(1)
i , pi ·H(2)

i , hi,3, f1, f2, f3)

LoR(i ∈ H,x∗0[i],x∗1[i], tag,R) ti
q
ωtag,R · si + ω′tag,R · ui + x∗b [i]

y
1

Enc(i ∈ C ∪H, xi, tag′ 6= tag,R′) ti
r
χtag′,R′ · si + µχtag′,R′ · ui + xi

z

1

∀ i ∈ C ∪H m(`)

i

q
y(`)[i]

y
2

LoR(i ∈ H,x∗0[i],x∗1[i], tag,R) ci,ipfe ( piωtag,R piω
′
tag,R ψi τ∆x[i] )Hi

Enc(i ∈ C ∪H, xi, tag′ 6= tag,R′) ci,ipfe ( piχtag′,R′ piµχtag′,R′ ψ′i 0 )Hi

∀ i ∈ C ∪H k(`)

i,ipfe ( 〈s,y(`)〉 〈u,y(`)〉 a(`)

i,0z` r(`)0 y(`)[i] )H∗i

Game G5 : µ
$← Zq,H(tag,R) := (Jωtag,RK1 ,

q
ω′tag,R

y
1
), H(tag′,R′) := (Jχtag′,R′K1 , Jµχtag′,R′K1), ri

$← Z4
q

∀ i ∈ C ∪H eki (si, ui, pi · (H
(1)
i + µH

(2)
i − µri) , pi · ri , hi,3, f1, f2, f3)

Game G6 : ri
$← Z4

q, µ, v
(`)

i,0

$← Zq,H(tag,R) := (Jωtag,RK1 ,
q
ω′tag,R

y
1
), H(tag′,R′) := (Jχtag′,R′K1 , Jµχtag′,R′K1). We also

define s′ = s +∆s,u′ = u +∆u, where ∆s,∆u ∈ Znq s.t. ∆s + µ∆u = 0 and ωtag,R ·∆s + ω′tag,R ·∆u = ∆x

i ∈ C ∪H eki ( s′i , u′i , pi · (H(1)
i + µH

(2)
i − µri), pi · ri, hi,3, f1, f2, f3)

LoR(i ∈ H,x∗0[i],x∗1[i], tag,R) ti
r
ωtag,R · s′i + ω′tag,R · u′i + x∗0[i]

z

1

Enc(i ∈ C ∪H, xi, tag′ 6= tag,R′) ti
r
χtag′,R′ · s′i + µχtag′,R′ · u′i + xi

z

1

∀ i m(`)

i

q
y(`)[i]

y
2

LoR(i ∈ H,x∗0[i],x∗1[i], tag,R) ci,ipfe ( piωtag,R piω
′
tag,R ψi τ ′∆x[i] )Hi

Enc(i ∈ C ∪H, xi, tag′ 6= tag,R′) ci,ipfe ( piχtag′,R′ piµχtag′,R′ ψ′i 0 )Hi

∀ i ∈ C ∪H k(`)

i,ipfe ( 〈 s′ ,y(`)〉 〈 u′ ,y(`)〉 a(`)

i,0z` r(`)0 y(`)[i] )H∗i

Fig. 7: Games G4,G5,G6 for Theorem 3. The sets H and C contain honest and corrupted i ∈ [n],
respectively. The index j runs in List-Att(A) for key components and in R for ciphertext components.
The index ` runs in {1, . . . ,K} for the functional key queries. In G4 we use a random function
RF′ : Tag × 2Att → Z∗q .

the computation of the full-domain hashing anymore, we can obtain an MIFE in the standard model
by fixing one tag for every ciphertext. The random oracle can be removed by publishing a random
fixed value corresponding to H(tag) for encryption. In the end, we obtain an attribute-based MIFE
for inner-products with adaptive security in the standard model, where the adversary can make
the challenge query to LoR at most once for each slot i ∈ [n]. To achieve security w.r.t multiple
queries for same slot, we can apply the technique in [CDG+18b] to enhance our construction with
repetitions.
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A Additional Definitions

A.1 Dual Pairing Vector Spaces

Basis changes. In this work, we use extensively basis changes over dual orthogonal bases of
a DPVS. We again use GN

1 as a running example. Let (A,A∗) be the dual canonical bases of
(GN

1 ,GN
2 ). Let (U = (ui)i,U

∗ = (u∗i )i) be a pair of dual bases of (GN
1 ,GN

2 ), corresponding to an
invertible matrix U ∈ ZN×Nq . Given an invertible matrix B ∈ ZN×Nq , the basis change from U w.r.t
B is defined to be B := B ·U, which means:

(x1, . . . , xN )B =

N∑
i=1

xibi = (x1, . . . , xN ) ·B = (x1, . . . , xN ) ·B ·U

= (y1, . . . , yN )U where (y1, . . . , yN ) := (x1, . . . , xN ) ·B .

Under a basis change B = B ·U, we have

(x1, . . . , xN )B = ((x1, . . . , xN ) ·B)U ; (y1, . . . , yN )U =
(

(y1, . . . , yN ) ·B-1
)
B

.

The computation is extended to the dual basis change B∗ = B′ ·U∗, where B′ =
(
B-1
)>

:

(x1, . . . , xN )B∗ =
(
(x1, . . . , xN ) ·B′

)
U∗

; (y1, . . . , yN )U∗ =
(

(y1, . . . , yN ) ·B>
)
B∗

.

In can be checked that (B,B∗) remains a pair of dual orthogonal bases. When we consider a basis
change B = B ·U, if B = (bi,j)i,j affects only a subset J ⊆ [N ] of indices in the representation w.r.t
basis U, we will write B as the square block containing (bi,j)i,j for i, j ∈ J and implicitly the entries
of B outside this block is taken from IN .

A.2 Selective Simulation-based Security for IPFE with Fine-Grained Access Control

Regarding this notion, an IPFE scheme with fine-grained access control is selectively simulation-based
secure if there exists a ppt simulator that can setup the public information, derive functional keys,
and encrypt a selective challenge message in a way that is indistinguishable from an execution of
the real scheme.
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Realsel-simE,F,A(1λ) :

x∗←A(1λ)
(pk,msk)←Setup(1λ)
R←AExtract(msk,·,·)(1λ, pk)
ct∗←Enc(pk, x∗,R)
b←AExtract(msk,·,·)(pk, ct∗)
Return b

Simsel-sim
E,F,A(1λ) :

x∗←A(1λ)
(pk,msk)←Sim.Setup(1λ)
R←ASim.Extract(msk,·,·)(1λ, pk)
ct∗←Sim.Enc(pk, x∗,R)
b←ASim.Extract(msk,·,·)(pk, ct∗)
Return b

Fig. 8: The security games Realsel-simE,F ,A(1λ) and Simsel-sim
E,F ,A(1λ) for Definition 12

Definition 12 (SEL-SIM security). An IPFE scheme with fine-grained access control E =
(Setup,Extract,Enc,Dec) for the function class F is selectively simulation-based secure if for
all ppt adversaries A, and for all sufficiently large λ ∈ N, there exists a ppt simulator Sim =
(Sim.Setup,Sim.Extract,Sim.Enc) such that the following probability is negligible:

Advsel-simE,F ,A(1λ) :=:=
∣∣∣Pr[Realsel-simE,F ,A(1λ) = 1]− Pr[Simsel-sim

E,F ,A(1λ) = 1]
∣∣∣ .

The experiments Realsel-simE,F ,A(1λ) and Simsel-sim
E,F ,A(1λ) are described in Figure 8. The probability is taken

over the random coins of A and the algorithms.

B Proofs of the Main Body

B.1 Proof of Lemma 2

Lemma 2. Let A be an LSSS-realizable over a set of attributes Att ⊆ Zq. We denote by List-Att(A)
the list of attributes appearing in A and by P the cardinality of List-Att(A). Let R ⊆ Att such that
A(R) = 0, i.e. R does not contain any authorized set. Let (H,H∗) and (F,F∗) be two random dual
bases of (G2

1,G2
2) and (G8

1,G8
2), respectively. The vectors (h1, f1, f2, f3) are public, while all other

vectors are secret. Suppose we have a random labeling (aj)j∈List-Att(A)←Λa0(A) for some a0
$← Zq.

Then, under the SXDH assumption in (G1,G2), the following two distributions are computationally
indistinguishable:

D1 :=


x, y
∀ j ∈ R : cj = (σj · (1,−j), ψ, 0, 0, 0, 0, 0)F
∀ j ∈ List-Att(A) : k∗j = (πj · (j, 1), aj · z, 0, 0, 0, 0, 0)F∗

croot = (ψ, 0)H
k∗root = (a0 · z, 0)H∗


and

D2 :=


x, y
∀ j ∈ R : cj = (σj · (1,−j), ψ, 0, 0, 0, 0, 0)F
∀ j ∈ List-Att(A) : k∗j = (πj · (j, 1), aj · z, 0, 0, 0, 0, 0)F∗

croot = (ψ, τ · x)H
k∗root = (a0 · z, r′0 · y)H∗


where σj , πj , ψ, τ, z, r

′
0

$← Zq and x, y are constants.
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Remark 4. The proof of Lemma 1 is a direct subsequence of the games we use to prove Lemma 2,
i.e. from G0 to G4 in Figure 2, with an additional cleaning at coordinate 3 (based on the subspace
indistinguishability) of the vectors cj at the end. It is important to note that the foregoing
subsequence of games does not make use of the hypothesis A(R) = 0, which is used only for going
from G4 to G5 and from G5 to G6 in Figure 2.

Proof (Of Lemma 2). The proof is done through a sequence of games, starting from G0 where the
adversary receives D1 and ending in G6 where the adversary receives D2. The games are depicted in
Figure 2.

The changes that make the transitions between games are highlighted in gray . The advantage
of an adversary A in a game Gi is denoted by

Adv(Gi) := Pr[Gi = 1] .

Game G0: The vectors cj , croot and k∗j ,k
∗
root are taken from D1:

∀ j ∈ R : cj = (σj · (1,−j), ψ, 0, 0, 0, 0, 0)F

∀ j ∈ List-Att(A) : k∗j = (πj · (j, 1), aj · z, 0, 0, 0, 0, 0)F∗

croot = (ψ, 0)H

k∗root = (a0 · z, 0)H∗

Game G1: We introduce a mask τ
$← Zq in the vectors cj and croot

∀ j ∈ R : cj = (σj · (1,−j), ψ, τ · x , 0, 0, 0, 0)F

∀ j ∈ List-Att(A) : k∗j = (πj · (j, 1), aj · z, 0, 0, 0, 0, 0)F∗

croot = (ψ, τ · x )H

k∗root = (a0 · z, 0)H∗

Initially, let (T,T∗), (W,W∗) be pairs of random dual bases. In the reduction from a DDH

instance (JaK1 , JbK1 , JcK1) where c = ab+ τ with τ = 0 or τ
$← Zq, the bases will be changed as

follows:

F :=

[
1 a
0 1

]
3,4

F ′ :=
(
F -1
)>

=

[
1 0
−a 1

]
3,4

F = F ·W; F∗ = F ′ ·W∗

H :=

[
1 a
0 1

]
1,2

H ′ :=
(
H -1

)>
=

[
1 0
−a 1

]
1,2

H = H ·T; H∗ = H ′ ·T∗

Note that we can compute all the basis vectors except h∗2 and f∗4 but currently they are not
needed because their coordinates are 0 in all the keys. The simulator can virtually set

croot = (b · x, c · x)T

= (b · x, τ · x)H

cj = (σj · (1,−j), b · x, c · x, 0, 0)W for j ∈ R

= (σj · (1,−j), b · x, τ · x, 0, 0)F for j ∈ R

and ψ = b · x. If τ = 0 then above vectors are computed as in G0, otherwise we are in G1.
Therefore the difference in advantage is |Adv(G1)− Adv(G0)| ≤ AdvDDH

G1
(1λ), where AdvDDH

G1
(1λ)

denotes the advantage against the DDH problem in G1 set up with parameter λ.
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Game G2: In this game we introduce further a mask τzj where zj
$← Zq into each vector cj :

∀ j ∈ R : cj = (σj · (1,−j), ψ, τ · x, 0, τzj · x , 0, 0)F

∀ j ∈ List-Att(A) : k∗j = (πj · (j, 1), aj · z, 0, 0, 0, 0, 0)F∗

croot = (ψ, τ · x)H

k∗root = (a0 · z, 0)H∗

Initially, let (T,T∗), (V,V∗), (W,W∗) be pairs of random dual bases. Given a DDH instance

(JaK1 , JbK1 , JcK1) where c = ab+ ζ with ζ = 0 or ζ
$← Zq, the bases will be changed as follows:

H = T; H∗ = T∗

F :=

1 0 a
0 1 −a
0 0 1


1,2,6

F ′ :=
(
F -1
)>

=

 1 0 0
0 1 0
−a a 1


1,2,6

F = F ·W; F∗ = F ′ ·W∗

Under this basis change, we can compute all basis vectors except f∗6 , which is not a problem
because the coordinate of f∗6 in the keys are 0 (and thus their representations do not alter under
this basis change).

For j ∈ R, the simulator can sample αj , βj
$← Zq, compute (in the exponent) bj = αj · b + βj

and cj = αj · c+ βj · a, then virtually set

cj = (bj · x · (1,−j), ψ, τ, 0, cj · (1 + j) · x, 0, 0)W

= (bjx · (1,−j), ψ, τ, 0, (cj · (1 + j)− a · bj − a · bj · j) · x, 0, 0)F

= (bjx · (1,−j), ψ, τ, 0, (cj − a · bj) · (1 + j) · x, 0, 0)F

= (bjx · (1,−j), ψ, τ, 0, (αj · c− αj · ab) · (1 + j) · x, 0, 0)F

= (bjx · (1,−j), ψ, τ, 0, τzj · x, 0, 0)F

where zj = αj(1 + j)ζ/τ . If ζ = 0 then cj is computed as in G1, else we are in the current
game. We remark that we use the random self-reducibility of DDH in this transition to avoid a
linear blow-up. Consequently, the difference in advantages of an adversary against G0 and G1 is
bounded by

|Adv(G2)− Adv(G1)| ≤ AdvDDH
G1

(1λ) .

Game G3: In this game, we start to change the vectors k∗j and k∗root. We sample a′0
$← Zq and

perform a random labeling of a′0 to obtain (a′j)j←Λa′0(A). The vectors are masked as follows:

∀ j ∈ R : cj = (σj · (1,−j), ψ, τ · x, 0, τzj · x, 0, 0)F

∀ j ∈ List-Att(A) : k∗j = (πj · (j, 1), aj · z, a′j · y , 0, 0, 0, 0)F∗

croot = (ψ, τ · x)H

k∗root = (a0 · z, a′0 · y )H∗
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Initially, let (T,T∗), (W,W∗) be pairs of random dual bases. Given a DDH instance (JaK2 , JbK2 , JcK2)

where c = ab+ ρ with ρ = 0 or ρ
$← Zq, the bases will be changed as follows:

F :=

[
1 0
−a 1

]
3,4

F ′ :=
(
F -1
)>

=

[
1 a
0 1

]
3,4

F = F ·W; F∗ = F ′ ·W∗

H :=

[
1 0
−a 1

]
1,2

H ′ :=
(
H -1

)>
=

[
1 a
0 1

]
1,2

H = H ·T; H∗ = H ′ ·T∗

From the basis changes w.r.t F and H, we can compute all vectors in those two bases except
h2 and f3, but we can express those ciphertext components in T and W. More precisely, the
simulator can virtually set:

croot = (ψ, τ · x)T

= (ψ + aτ · x, τ · x)H

cj = (σj · (1,−j), ψ, τ · x, 0, τzj · x, 0, 0)W for j ∈ R

= (σj · (1,−j), ψ + aτ · x, τ · x, 0, τzj · x, 0, 0)F for j ∈ R .

Let (d′j)j∈List-Att(A) be a random labeling obtained from Λ1(A), i.e. we perform a secret sharing
of 1 using the LSSS induced by A. The simulator can virtually set:

k∗root = (a0z, 0)H∗ + (b · y, c · y)T∗

= (a`,0z + b · y, ρ · y)H∗

k∗j = (πj · (j, 1), aj · z, 0, 0, 0, 0, 0)F∗

+ (0, 0, bd′j · y, cd′j · y, 0, 0, 0, 0)W∗

= (πj · (j, 1), a`,j · z + b · y · d′j , ρ · d′j · y, 0, 0, 0, 0)F∗ for j ∈ Jpolicy .

When ρ = 0 we are in the previous game, where ψ + aτ · y is used instead of ψ and the labeling
is updated to:

a0 + b · y/z
For each j ∈ List-Att(A) aj + b · y · d′j/z .

Otherwise, we are in the current game having additionally

a′0 = ρ

that corresponds to the labels a′j = ρ · d′j for j ∈ List-Att(A). The difference in advantages is

|Adv(G3)− Adv(G2)| ≤ AdvDDH
G2

(1λ).
Game G4: In this game, we swap a′j · y from the 4-th coordinate to the 6-th coordinate, while

multiplying it with 1/zj :

∀ j ∈ R : cj = (σj · (1,−j), ψ, τ · x, 0, τzj · x, 0, 0)F

∀ j ∈ List-Att(A) : k∗j = (πj · (j, 1), aj · z, 0 , 0, a′j · y/zj , 0, 0)F∗

croot = (ψ, τ · x)H

k∗root = (a0 · z, a′0 · y)H∗
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This transition is discussed separately in Lemma 3. In the end, the difference in advantages is

Adv(G4)− Adv(G3) ≤ P · (6P + 3) · AdvSXDH
G1,G2

(1λ) .

Game G5: In this game, we replace a′0 in the vector kroot with a totally random value r′0
$← Zq:

∀ j ∈ R : cj = (σj · (1,−j), ψ, τ · x, 0, τzj · x, 0, 0)F

∀ j ∈ List-Att(A) : k∗j = (πj · (j, 1), aj · z, 0, 0, a′j · y/zj , 0, 0)F∗

croot = (ψ, τ · x)H

k∗root = (a0 · z, r′0 · y )H∗

We first observe that the attributes in (cj)j∈R do not satisfy the access structure A embedded in
(kj)j∈J . Therefore, there are not enough a′j/zj from kj to recover τa′0 · xy, i.e. we cannot find
an authorized set A ⊆ R having a reconstruction vector c = (cj) such that

∑
j∈A

τxzj ·
cja
′
jy

zj
= τa′0

∑
j∈A

cja
′
j = τa′0 · xy .

Moreover, because (a′j)j←Λa′0(A) is a secret sharing of a′0 using the LSSS of A, it holds that

a′0 will be perfectly indistinguishable from a random value r′0
$← Zq, which is not depending on

(a′j)j whatsoever, even under the view of an unbounnded adversary. The advantage stays the
same Adv(G5) = Adv(G4).

Game G6: In this game, we clean the masks in the vector components cj ,kj :

∀ j ∈ R : cj = (σj · (1,−j), ψ, 0 , 0, 0 , 0, 0)F

∀ j ∈ J : k∗j = (πj · (j, 1), aj · z, 0, 0, 0 , 0, 0)F∗

croot = (ψ, τ · x)H

k∗root = (a0 · z, r′0 · y)H∗

The transition is done by first applying the transition from G3 to G4 in reverse order (only the
basis changes concerning (F,F∗)) to clear the masks in kj , then the transitions from G0 to G3

in reverse order to clear the masks in cj . Note that we are using the condition P(R) = 0 while
cleaning the a′j , without paying attention to a′0 that is already replaced by r′0, because there are
not enough a′j/zj in the k-vectors to recover a′0 anyway.

The difference in advantages is

|Adv(G6)− Adv(G0)| ≤
6∑
i=1

|Adv(Gi)− Adv(Gi−1)|

≤ 2 · AdvDDH
G1

(1λ) + AdvDDH
G2

(1λ) + 2P (6P + 3) · AdvSXDH
G1,G2

(1λ)

+ 2 · AdvDDH
G1

(1λ) + AdvDDH
G2

(1λ)

≤ (2P · (6P + 3) + 6) · AdvSXDH
G1,G2

(1λ)

and the proof is concluded. ut

Lemma 3. Assuming the SXDH assumption for G1 and G2, the difference between advantages
|Adv(G4)− Adv(G3)| in the proof of Lemma 2 is negligible.
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Proof. The idea is that we consider the swapping of a′jy to a′jy/zj by each component in the list
List-Att(A) of the attributes in A and analyse a sequence of games indexed by those attributes.
More precisely, the game G3.m is indexed by m ∈ {0, . . . , P}, where P is the number of attributes
in List-Att(A), leading to G3.0 = G3 and G3.P = G4. The current form of other vectors is:

∀ j ∈ R : cj = (σj · (1,−j), ψ, τ · x, 0, τzj · x, 0, 0)F

∀ j ∈ List-Att(A) : k∗j = (πj · (j, 1), aj · z, a′j · y, 0, 0, 0, 0)F∗

croot = (ψ, τ · x)H

k∗root = (a0 · z, a′0 · y)H∗

where τ, zj
$← Zq are chosen uniformly at random. The labels a0, a

′
0, (aj)j∈List-Att(A) and (a′j)j∈List-Att(A)

satisfy (aj)j←Λa0(A) and (a′j)j←Λa′0(A).
We first observe that the family of labelings, when viewed as a vector space over Zq, is closed

under linear operations. In other words, a linear combination of vectors of labels gives a vector
of labels. Hence, following the idea from [DGP21], we can “factor out” the current labels in
k-vectors and manipulate the appropriate random linear factor for obtaining the desired new
labels. This requires some rewriting. For two labelings ã := (ã0, (ãj)j∈List-Att(A))← Λã0(A) and

(a′′0, (a
′′
j )j∈List-Att(A))←Λa′′0 (A), together with uniformly random scalars ρ, δ

$← Z∗q we rewrite the
vectors as follows

k∗root = (ã0z, 0)H∗ + a′′0 · (δ · z, ρy)H∗

k∗j = (Πj · (j, 1), ãj · z, 0, 0, 0, 0, 0)F∗

+ a′′j · (π̃j · (j, 1), δ · z, ρy, 0, 0, 0, 0)F∗ for j ∈ List-Att(A)

and thus we have

a′0 = ρy · a′′0; a0 = ã0 + δ · a′′0
a′j = ρy · a′′j ; aj = ãj + δ · a′′j
πj = Πj + a′′j · π̃j . (3)

We can concentrate solely on the changes of the vectors k∗j . We can define

h∗j := (π̃j · (j, 1), δ · z, ρy, 0, 0, 0, 0)F∗ for j ∈ List-Att(A)

and as a result we concentrate on the changes of the vectors h∗j . We note that changing multiplicatively
the vectors h∗j means changing multiplicatively the factor ρ. Thanks to the relations in (3), this
means we are changing multiplicatively a′0 and (a′j)j∈List-Att(A) as required for introducing 1/zj in a′j .

First, we fix an ordering of the attributes in the list List-Att(A), which is of size P . Given
m ∈ {1, . . . , P}, we write j = m if h∗j is the m-th vector component among h∗j and the notation
extends to j < m and j > m. We now give a sequence of games for the transition from G3.m−1 to
G3.m. This sequence of games can be found in Figure 9.

We start from G3.m−1.0 = G3.m−1:

Game G3.m−1.0: The vectors are specified as follows:

cj = (σj · (1,−j), ψ, τx, 0, τzjx, 0, 0)F

h∗j =

{
(π̃j · (j, 1), δ · z, 0, 0, ρy/zj , 0, 0)F∗ if j < m

(π̃j · (j, 1), δ · z, ρy, 0, 0, 0, 0)F∗ if j ≥ m
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Game G3.m−1.0 : zj
$← Zq

cj ( σj · (1,−j) ψ τx 0 τzjx 0 0 )F
h∗j ( π̃j · (j, 1) δ · z 0 0 ρy/zj 0 0 )F∗ if j < m
h∗j ( π̃j · (j, 1) δ · z ρy 0 0 0 0 )F∗ if j ≥ m

Game G3.m−1.1 : zj
$← Zq

cj ( σj · (1,−j) ψ τx τx τzjx 0 0 )F
h∗j ( π̃j · (j, 1) δ · z 0 0 ρy/zj 0 0 )F∗ if j < m
h∗j ( π̃j · (j, 1) δ · z ρy 0 0 0 0 )F∗ if j = m
h∗j ( π̃j · (j, 1) δ · z ρy 0 0 0 0 )F∗ if j ≥ m

Game G3.m−1.2 : zj
$← Zq

cj ( σj · (1,−j) ψ τx τx τzjx 0 0 )F
h∗j ( π̃j · (j, 1) δ · z 0 0 ρy/zj 0 0 )F∗ if j < m
h∗j ( π̃j · (j, 1) δ · z 0 ρy 0 0 0 )F∗ if j = m

h∗j ( π̃j · (j, 1) δ · z ρy 0 0 0 0 )F∗ if j ≥ m

Game G3.m−1.3 : zj
$← Zq

cj ( σj · (1,−j) ψ τx τxzj/zm τzjx 0 0 )F

h∗j ( π̃j · (j, 1) δ · z 0 0 ρy/zj 0 0 )F∗ if j < m
h∗j ( π̃j · (j, 1) δ · z 0 ρy 0 0 0 )F∗ if j = m
h∗j ( π̃j · (j, 1) δ · z ρy 0 0 0 0 )F∗ if j ≥ m

Game G3.m−1.4 : zj
$← Zq

cj ( σj · (1,−j) ψ τx 0 τzjx 0 0 )F
h∗j ( π̃j · (j, 1) δ · z 0 0 ρy/zj 0 0 )F∗ if j < m

h∗j ( π̃j · (j, 1) δ · z 0 αy ρy/zm 0 0 )F∗ if j = m

h∗j ( π̃j · (j, 1) δ · z ρy 0 0 0 0 )F∗ if j ≥ m

Game G3.m−1.5 : zj
$← Zq

cj ( σj · (1,−j) ψ τx 0 τzjx 0 0 )F
h∗j ( π̃j · (j, 1) δ · z 0 0 ρy/zj 0 0 )F∗ if j < m
h∗j ( π̃j · (j, 1) δ · z 0 0 ρy/zm 0 0 )F∗ if j = m
h∗j ( π̃j · (j, 1) δ · z ρy 0 0 0 0 )F∗ if j ≥ m

Fig. 9: Games for Lemma 3. The changes are made for the m-th key component h∗m (with an ordering
on j ∈ List-Att(A)). See (3) for the rewriting of k∗j into h∗j . The hybrids to go from G3.m−1.2 to
G3.m−1.3 can be found in Figure 10.
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Game G3.m−1.1: In this game we do a formal basis change to duplicate the 5-th component into
the 6-th one of the c-vectors:

cj = (σj · (1,−j), ψ, τx, τx , τxzj , 0, 0)F

The basis change is done following these matrices:

F :=

[
1 −1
0 1

]
4,5

F ′ :=
(
F -1
)>

=

[
1 0
1 1

]
4,5

F = F ·W; F∗ = F ′ ·W∗

and the simulator can set

cj = (σj · (1,−j), ψ, τx, 0, τxzj , 0, 0)W

= (σj · (1,−j), ψ, τx, τx, τxzj , 0, 0)F .

This changes the vectors f4 and f∗5 but since they are all hidden from the adversary and
the facing coordinates in k-vectors are 0, the transition is perfectly indistinguishable and
Adv(G3.m−1.1) = Adv(G3.m−1.0).

Game G3.m−1.2: We do a swap between 4-th and 5-th components w.r.t the m-th attribute-wise
key components:

h∗j =


(π̃j · (j, 1), δ · z, 0, 0, ρy/zj , 0, 0)F∗ if j < m

(π̃j · (j, 1), δ · z, 0 , ρy , 0, 0, 0)F∗ if j = m

(π̃j · (j, 1), δ · z, ρy, 0, 0, 0, 0)F∗ if j > m

Given a DSDH instance (JaK2 , JbK2 , JcK2), where c = ab+ θ for θ = 0 or θ = ρ, the basis change
is performed following the matrices:

F :=

 1 0 0
a 1 0
−a 0 1


2,4,5

F ′ :=
(
F -1
)>

=

1 −a a
0 1 0
0 0 1


2,4,5

F = F ·W; F∗ = F ′ ·W∗

The ciphertext can be expressed in the bases (W,W∗):

cj = (σj · (1,−j), ψ, τx, τx, τxzj , 0, 0)W

= (σj ,−j · σj − axτ + axτ, ψ, τx, τx, τxzj , 0, 0)F

= (σj ,−j · σj , ψ, τx, τx, τxzj , 0, 0)F .

On the other hand, the simulator can set the keys as below: if i = m

h∗j = (π̃′j · (j, 1), δ · z, ρy, 0, 0, 0, 0)F∗

+ (by · (j, 1), 0, −cy, cy, 0)W∗

= (π̃′j · (j, 1), δ · z, ρy, 0, 0, 0, 0)F∗

+ (by · (j, 1), 0, −(c− ab)y, (c− ab)y, 0)F∗

= ((π̃′j + by) · (j, 1), δ · z, ρy − θy, θy, 0, 0, 0)F∗ .

The other vector components stay as in the previous game. When θ = 0, we are in G3.m−1.1,
otherwise we are in the current game and the difference between advantages is |Adv(G3.m−1.2)−
Adv(G3.m−1.1)| ≤ 2 · AdvDDH

G2
(1λ).
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Game G3.m−1.3: We now change the c-vector component such that for every j 6= m, the 5-th
coordinate, which is τx from the duplication in G3.m−1.1, will be changed to τxzj/zm:

cj =

{
(σj · (1,−j), ψ, τx, τxzj/zm , τxzj , 0, 0)F if j 6= m

(σj · (1,−j), ψ, τx, τx, τxzj , 0, 0)F if j = m

We apply Lemma 4 to consider the transition from G3.m−1.2 to G3.m−1.3. We do a sequence of
hybrids indexed by m′ ∈ List-Att(A) \ {m}. The coordinates affected are (1, 2, 4, 7, 8) of (F,F∗).
We note that during each application of the lemma for an index m′, only the vectors cm′ and
k∗`,m are taken into account and affected by the basis changes. For other vectors, the concerning
coordinates can be written directly in the target bases because they are all 0. We proceed by a
sequence of games depicted in Figure 10. The changes that make the transitions between games
are highlighted in gray . The difference in advantages is

|Adv(G3.m−1.3)− Adv(G3.m−1.2)| ≤ P · (4 · AdvDDH
G1

(1λ) + 2 · AdvDDH
G2

(1λ)) .

Game G3.m−1.4: The goal of this game is to introduce ρ/zm in the 6-th coordinate of the m-th
h-vector component, and at the same time to clean the τ in the 6-th coordinate of the c-vector
components. After G3.m−1.3, the vectors are of the form:

cj =

{
(σj · (1,−j), ψ, τx, τzjx/zm, τxzj , 0, 0)F if j 6= m

(σj · (1,−j), ψ, τx, τx, τxzj , 0, 0)F if j = m

h∗j =


(π̃j · (j, 1), δ · z, 0, 0, ρy/zj , 0, 0)F∗ if j < m

(π̃j · (j, 1), δ · z, 0, ρy, 0, 0, 0)F∗ if j = m

(π̃j · (j, 1), δ · z, ρy, 0, 0, 0, 0)F∗ if j > m

We now change the basis w.r.t (F,F∗) using the following matrices:

F :=

[
α/ρ 0
1/zm 1

]
5,6

F ′ :=
(
F -1
)>

=

[
ρ/α −ρ/(zmα)

0 1

]
5,6

F = F ·W; F∗ = F ′ ·W∗ .

Note that this basis change will affect only the h-vector of attribute m ∈ List-Att(A), because by
construction the other components have coordinate 0 for f∗5 and have the same writing before
and after the basis change. Moreover, the basis change can be applied at the Setup phase, where
a ppt simulator can first sample a value z

$← Zq and use z in the basis change. Afterwards, when
all attributes are declared (in an adaptive functional key query), z would be the mask at the
attribute m corresponding to the current hybrid.
We have

cj =

{
(σj · (1,−j), ψ, τx, τzjx/zm, τxzj , 0, 0)W if j 6= m

(σj · (1,−j), ψ, τx, τx, τxzj , 0, 0)W if j = m

= (σj · (1,−j), ψ, τx, 0, τxzj , 0, 0)F for all j

h∗j = (π̃j · (j, 1), δ · z, 0, ρy, 0, 0, 0)W∗ if j = m

= (π̃j · (j, 1), δ · z, 0, αy, ρy/zm, 0, 0)F∗

and because f5, f6, f
∗
5 , f
∗
6 are hidden from the adversary, this change is a formal basis change.

Therefore the transition is perfectly indistinguishable. In the end, the difference in advantage is
Adv(G3.m−1.3) = Adv(G3.m−1.4).
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Game G3.m−1.2.m′−1.0 : zj
$← Zq

cj ( σj · (1,−j) ψ τx τxzj/zm τzjx 0 0 )F if m 6= j < m′

cj ( σj · (1,−j) ψ τx τx τzjx 0 0 )F if m 6= j ≥ m′
h∗j ( π̃j · (j, 1) δ · z 0 0 ρy/zj 0 0 )F∗ if j < m
h∗j ( π̃j · (j, 1) δ · z 0 ρy 0 0 0 )F∗ if j = m
h∗j ( π̃j · (j, 1) δ · z ρy 0 0 0 0 )F∗ if j ≥ m

Game G3.m−1.2.m′−1.1 : zj
$← Zq

cj ( σj · (1,−j) ψ τx τxzj/zm τzjx 0 0 )F if m 6= j < m′

cj ( σj · (1,−j) ψ τx τx τzjx 0 0 )F if m 6= j ≥ m′
h∗j ( π̃j · (j, 1) δ · z 0 0 ρy/zj 0 0 )F∗ if j < m

h∗j ( π̃j · (j, 1) δ · z 0 ρy 0 jθj θj )F∗ if j = m

h∗j ( π̃j · (j, 1) δ · z ρy 0 0 0 0 )F∗ if j ≥ m

Game G3.m−1.2.m′−1.2 : zj
$← Zq

cj ( σj · (1,−j) ψ τx τxzj/zm τzjx 0 0 )F if m 6= j < m′

cj ( σj · (1,−j) ψ τx τx τzjx µj −jµj )F if m 6= j = m′

cj ( σj · (1,−j) ψ τx 0 τzjx 0 0 )F if m 6= j > m′

h∗j ( π̃j · (j, 1) δ · z 0 0 ρy/zj 0 0 )F∗ if j < m
h∗j ( π̃j · (j, 1) δ · z 0 ρy 0 jθj θj )F∗ if j = m
h∗j ( π̃j · (j, 1) δ · z ρy 0 0 0 0 )F∗ if j ≥ m

Game G3.m−1.2.m′−1.3 : zj
$← Zq

cj ( σj · (1,−j) ψ τx τxzj/zm τzjx 0 0 )F if m 6= j < m′

cj ( σj · (1,−j) ψ τx τx τzjx µ1 µ2 )F if m 6= j = m′

cj ( σj · (1,−j) ψ τx 0 τzjx 0 0 )F if m 6= j > m′

h∗j ( π̃j · (j, 1) δ · z 0 0 ρy/zj 0 0 )F∗ if j < m

h∗j ( π̃j · (j, 1) δ · z 0 ρy 0 θ1 θ2 )F∗ if j = m

h∗j ( π̃j · (j, 1) δ · z ρy 0 0 0 0 )F∗ if j ≥ m

Game G3.m−1.2.m′−1.4 : zj
$← Zq

cj ( σj · (1,−j) ψ τx τxzj/zm τzjx 0 0 )F if m 6= j < m′

cj ( σj · (1,−j) ψ τx τxzj/zm τzjx µ1 µ2 )F if m 6= j = m′

cj ( σj · (1,−j) ψ τx 0 τzjx 0 0 )F if m 6= j > m′

h∗j ( π̃j · (j, 1) δ · z 0 0 ρy/zj 0 0 )F∗ if j < m
h∗j ( π̃j · (j, 1) δ · z 0 ρy 0 θ1 θ2 )F∗ if j = m
h∗j ( π̃j · (j, 1) δ · z ρy 0 0 0 0 )F∗ if j ≥ m

Game G3.m−1.2.m′−1.5 = G3.m−1.2.m′ : zj
$← Zq

cj ( σj · (1,−j) ψ τx τxzj/zm τzjx 0 0 )F if m 6= j ≤ m′
cj ( σj · (1,−j) ψ τx 0 τzjx 0 0 )F if m 6= j > m′

h∗j ( π̃j · (j, 1) δ · z 0 0 ρy/zj 0 0 )F∗ if j < m
h∗j ( π̃j · (j, 1) δ · z 0 ρy 0 0 0 )F∗ if j = m
h∗j ( π̃j · (j, 1) δ · z ρy 0 0 0 0 )F∗ if j ≥ m

Fig. 10: The hybrids to go from G3.m−1.2 to G3.m−1.3, by applying Lemma 4. The changes are made
for the m-th key component h∗m (with an ordering on j ∈ List-Att(A)). See (3) for the rewriting of
k∗j into h∗j .
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Game G3.m−1.5: The goal of this game is to put the m-th attribute-wise h-vector component in
to the form required by G3.m, i.e. remove the random value αy in the 5-th coordinate. After
G3.m−1.4, the vectors are of the form:

cj = (σj · (1,−j), ψ, τx, 0, τxzj , 0, 0)F for all j

h∗j =


(π̃j · (j, 1), δ · z, 0, 0, ρy/zj , 0, 0)F∗ if j < m

(π̃j · (j, 1), δ · z, 0, αy, ρy/zj , 0, 0)F∗ if j = m

(π̃j · (j, 1), δ · z, ρy, 0, 0, 0, 0)F∗ if j > m

where α
$← Zq. Given an instance (JaK1 , JbK1 , JcK1) where c = ab+α and either α = 0 or α

$← Zq,
the simulator performs a basis change following the matrices:

F :=

[
1 0
−a 1

]
2,5

F ′ :=
(
F -1
)>

=

[
1 a
0 1

]
2,5

F = F ·W; F∗ = F ′ ·W∗ .

We cannot compute f5 but this is not problematic because all the 5-th coordinates of the c-vector
components are 0. In addition, the vectors h∗j for j 6= m can be written directly in (F,F∗) thanks
to the fact that their coordinates in f∗5 are 0. The simulator can then virtually set for j = m,

h∗j = (by · (j, 1), δ · z, 0, cy, ρy/zm, 0, 0)W∗

= (by · (j, 1), δ · z, 0, αy, ρy/zm, 0, 0)F∗

and when α
$← Zq, we are in the previous game, otherwise we are in the current game that is

identical to Adv(G3.m). The difference in advantages is

|Adv(G3.m)− Adv(G3.m−1.4)| = |Adv(G3.m−1.5)− Adv(G3.m−1.4)|
≤ AdvDDH

G1
(1λ) .

The difference in advantages from G3.m−1 = G3.m−1.0 to G3.m = G3.m−1.5 is

|Adv(G3.m)− Adv(G3.m−1)| ≤
5∑
i=1

|Adv(G3.m−1.i)− Adv(G3.m−1.i−1)|

≤ P · (4 · AdvDDH
G1

(1λ) + 2 · AdvDDH
G2

(1λ))

+ 2 · AdvDDH
G2

(1λ) + AdvDDH
G1

(1λ)

≤ (6P + 3) · AdvSXDH
G1,G2

(1λ) .

After changing all P components kj , for j ∈ List-Att(A), we arrive at G3.K = G4 and the total
difference in advantages is:

|Adv(G4)− Adv(G3)| ≤ P · (6P + 3) · AdvSXDH
G1,G2

(1λ) .

The proof is concluded. ut

Lemma 4. Let (F,F∗) be the dual bases of G5
1 and G5

2 respectively. Suppose that the vectors (f1, f2, f3)
are public, while all others are kept secret. Let j 6= m and β, α, γ ∈ Zq are chosen constants. Then,
under the SXDH assumption, the following two distributions are computationally indistinguishable:

D1 :=

{
c = (σ · (1,−j), γ, 0, 0)F
k∗ = (π · (m, 1), β, 0, 0)F∗

}
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and

D2 :=

{
c = (σ · (1,−j), α, 0, 0)F
k∗ = (π · (m, 1), β, 0, 0)F∗

}
where σ, π

$← Zq are unknown and random.

Proof. The advantage of an adversary A in a game Gi is denoted by

Adv(Gi) := Pr[Gi = 1]

where the probability is taken over the random choices of A and coins of Gi.

Game G0: In this game, the adversary receives from the distribution D1:

c = (σ · (1,−j), γ, 0, 0)F

k∗ = (π · (m, 1), β, 0, 0)F∗ .

Game G1: In this game, we duplicate the first two coordinates of k∗ into the 4-th and 5-th
coordinates:

c = (σ · (1,−j), γ, 0, 0)F

k∗ = (π · (m, 1), β, ρm , ρ )F∗ .

Let (W,W∗) be the canonical bases of G5
1 and G5

2. Given a DDH instance (JaK2 , JbK2 , JcK2)
where ρ := c− ab is either 0 or uniformly random, we use the following basis changing matrices
(F, F ′):

F :=


1 0 0 0
0 1 0 0
−a 0 1 0
0 −a 0 1


1,2,4,5

F ′ :=
(
F -1
)>

=


1 0 a 0
0 1 0 a
0 0 1 0
0 0 0 1


1,2,4,5

F = F ·W; F∗ = F ′ ·W∗

We cannot compute the basis vectors f4 and f5 but they are not used in c. The vector k∗ can be
simulated as follows:

k∗ = (b · (m, 1), β, c ·m, c)W∗

= (b · (m, 1), β, c ·m− ab ·m, c− ab)F∗
= (b · (m, 1), β, ρ ·m, ρ)F∗

If ρ = 0 we are in G0, otherwise we are in G1. The difference in advantages is |Adv(G1)−Adv(G0)| ≤
AdvDDH

G2
(1λ).

Game G2:In this game, we duplicate the first two coordinates of c into the 4-th and 5-th coordinates:

c = (σ · (1,−j), γ, τ , −jτ )F

k∗ = (π · (m, 1), β, ρm, ρ)F∗ .
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Let (W,W∗) be the canonical bases of G5
1 and G5

2. Given a DDH instance (JaK1 , JbK1 , JcK1)
where τ := c− ab is either 0 or uniformly random, we use the following basis changing matrices
(F, F ′):

F :=


1 0 a 0
0 1 0 a
0 0 1 0
0 0 0 1


1,2,4,5

F ′ :=
(
F -1
)>

=


1 0 0 0
0 1 0 0
−a 0 1 0
0 −a 0 1


1,2,4,5

F = F ·W; F∗ = F ′ ·W∗

The vector c can be simulated as follows:

c = (b · (1,−j), γ, c,−j · c)W
= (b · (1,−j), γ, c− ab,−j · c− j · ab)F
= (b · (1,−j), γ, τ,−jτ)F .

We cannot compute the basis F∗ but the vector k∗ can be written in W∗ and then we observe
how it is affected under this basis change:

k∗ = (π · (m, 1), β, ρ ·m, ρ)W∗

= ((π + aρ) · (m, 1), β, ρ ·m, ρ)F∗

and π is updated to π + aρ.

If ρ = 0 we are in G1, otherwise we are in G2. The difference in advantages is |Adv(G2)−Adv(G1)| ≤
AdvDDH

G1
(1λ).

Game G3: We randomise the last two coordinates in c and k∗, which were changed from the
previous games:

c = (σ · (1,−j), γ, µ1 , µ2 )F

k∗ = (π · (m, 1), β, θ1 , θ2 )F∗

where θ1, θ2
$← Zq are chosen uniformly at random.

We consider the basis changing matrices (F, F ′):

F :=

[
z1 z2
z3 z4

]
4,5

F ′ :=
(
F -1
)>

=

[
z4 −z3
−z2 z1

]
4,5

F = F ·W; F∗ = F ′ ·W∗

where z1, z2, z3, z4 ∈ Zq are chosen such that z1z4−z2z3 = 1. The basis change affects the hidden
vectors (f4, f5, f

∗
4 , f
∗
5 ).

The two vectors c and k∗ can be written directly in W and W∗ respectively:

c = (σ · (1,−j), γ, τ,−jτ)W

= (σ · (1,−j), γ, τz4 + τjz3,−τz2 − τjz1)F
k∗ = (π · (m, 1), β, ρm, ρ)W∗

= (π · (m, 1), β, ρmz1 + z2ρ, ρmz3 + z4ρ)F∗ .
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Let µ1, µ2, θ1, θ2
$← Zq and we consider the following system to solve for (z1, z2, z3, z4):
τ(z4 + jz3) = µ1

−τ(z2 + jz1) = µ2

ρ(mz1 + z2) = θ1

ρ(mz3 + z4) = θ2

⇔


z4 + jz3 = µ1/τ

mz3 + z4 = θ2/ρ

z2 + jz1 = −µ2/τ
mz1 + z2 = θ1/ρ

⇔


(j −m)z3 = µ1/τ − θ2/ρ
mz3 + z4 = θ2/ρ

(j −m)z1 = −µ2/τ − θ1/ρ
mz1 + z2 = θ1/ρ

.

The system has a solution if and only if j 6= m, which is already our hypothesis. We note that
since µ1, µ2, θ1, θ2 are uniformly random chosen values and fixed to determine (z1, z2, z3, z4),
we can always perform normalization using µ1, µ2, θ1, θ2 to ensure z1z4 − z2z3 = 1 for the
basis change. The basis change defined by (z1, z2, z3, z4) is totally formal and the difference in
advantages is Adv(G3) = Adv(G2).

Game G4: In this game, we change the constant γ in c to another constant α:

c = (σ · (1,−j), α , µ1, µ2)F

k∗ = (π · (m, 1), β, θ1, θ2)F∗ .

Let (W,W∗) be the canonical bases of G5
1 and G5

2. Given a DSDH instance (JaK1 , JbK1 , JcK1)
where ρ := c − ab is either γ or the constant α, we use the following basis changing matrices
(F, F ′):

F :=

[
1 0
a 1

]
3,4

F ′ :=
(
F -1
)>

=

[
1 −a
0 1

]
3,4

F = F ·W; F∗ = F ′ ·W∗ .

This basis change affects the vector f4 and f∗3 , which are both kept secret from the adversary.
The vector c can be simulated as follows:

c = (σ · (1,−j), c, b, µ2)W
= (σ · (1,−j), ρ, b, µ2)F .

Even though we cannot compute the basis vector f∗3 , the vector k∗ can be written directly in
W∗ to see how it will change:

k∗ = (π · (m, 1), β, θ1, θ2)W∗

= (π · (m, 1), β, θ1 + aβ, θ2)F∗

and θ1 is updated to θ1 + aβ. If ρ = γ we are in the previous game, otherwise we are in the
current game. The difference in advantages is |Adv(G4)− Adv(G3)| ≤ 2 · AdvDDH

G1
(1λ).

Game G5: In this game we clean the masks µ1, µ2, θ1, θ2 by doing the reverse transition from G3

back to G0. The total difference in advantages is |Adv(G5)−Adv(G4)| ≤ AdvDDH
G1

(1λ)+AdvDDH
G2

(1λ).
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In G5, the adversary receives from the distribution D2 and we have

|Adv(G5)− Adv(G0)| ≤
5∑
i=1

|Adv(Gi)− Adv(Gi−1)|

≤ 4 · AdvDDH
G1

(1λ) + 2 · AdvDDH
G2

(1λ) .

The proof of the lemma is concluded. ut

B.2 Proof of Theorem 1

Proof (Of Theorem 1). The security games and their transitions are given in Figure 11. The
transition from G4 to G5 is given in Figure 12.

The changes that make the transitions between games are highlighted in gray . The advantage
of an adversary A in a game Gi is denoted by

Adv(Gi) := |Pr[Gi = 1]− 1/2|

where the probability is taken over the random choices of A and coins of Gi. We let K denote the
number of functional key queries (P,y) and index the functional key by ` ∈ {1, . . . ,K}.
Game G0: This is the selective security game as given in Figure 1. The adversary first declares its

challenge messages x∗0 and x∗1. The simulator generates all private information, including the
three dual basis pairs

H = (h1,h2,h3,h4) H∗ = (h∗1,h
∗
2,h
∗
3,h
∗
4)

F = (f1, f2, f3, f4, f5, f6, f7, f8) F∗ = (f∗1 , f
∗
2 , f
∗
3 , f
∗
4 , f
∗
5 , f
∗
6 , f
∗
7 , f
∗
8 )

as well as µ, z
$← Z∗q , s,u

$← (Z∗q)n. It sets

msk := (z, s, u, (f∗i )i∈[3], (h∗i )i∈[3])

and sends pk =
(
(h1 + µh2), h3, (fi)i∈[3], (Jsi + µ · uiK1)i∈[n]

)
to the adversary.

Extract(A,y) : For the `-th functional key query w.r.t an LSSS-realizable monotone access
structure A and a vector y` ∈ Znq that denotes the inner product function Fy, the simulator

samples a`,0
$← Zq, run the labeling algorithm Λa`,0(A) (see Definition 1) to obtain the labels

(a`,j)`,j where j runs over the attributes in Att, possibly with repetitions. It then returns

k∗`,j := (π`,j · (j, 1), a`,j · z, 0, 0, 0, 0, 0)F∗ for j ∈ Jpolicy
m∗`,i := Jy`[i]K2 for i ∈ [n]

k∗`,ipfe := (〈s,y`〉, 〈u,y`〉, a`,0 · z, 0)H∗

where π`,j
$← Zq.

LoR(R) : Upon receiving a set R of attributes, the simulator samples ω, ψ
$← Zq, flips a coin

b
$← {0, 1}, and computes

ti := Jω · (si + µui) + x∗b [i]K1 for i ∈ [n]

cipfe := (ω, µω, ψ, 0)H

where for each j ∈ R
cj := (σj · (1,−j), ψ, 0, 0, 0, 0, 0)F

and σi
$← Zq for every i ∈ [n].
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Game G0 : a`,0
$← Zq, (a`,j)j∈List-Att(A)←Λa`,0(A), pk :=

(
h1 + µh2, h3, (fi)i∈[3], (Jsi + µ · uiK1)i

)
cj ( σj · (1,−j) ψ 0 0 0 0 0 )F
k∗`,j ( π`,j · (j, 1) a`,j · z 0 0 0 0 0 )F∗

ti Jω · (si + µui) + x∗b [i]K1
m∗`,i Jy`[i]K2

cipfe ( ω µω ψ 0 )H
k∗`,ipfe ( 〈s,y`〉 〈u,y`〉 a`,0z 0 )H∗

Game G1 : τ
$← Zq, pk :=

(
h1 + µh2, h3, (fi)i∈[3], (Jsi + µ · uiK1)i

)
cj ( σj · (1,−j) ψ τ 0 0 0 0 )F
k∗`,j ( π`,j · (j, 1) a`,j · z 0 0 0 0 0 )F∗

cipfe ( ω µω ψ τ )H
k∗`,ipfe ( 〈s,y`〉 〈u,y`〉 a`,0 · z 0 )H∗

Game G2 : zj
$← Zq, pk :=

(
h1 + µh2, h3, (fi)i∈[3], (Jsi + µ · uiK1)i

)
cj ( σj · (1,−j) ψ τ 0 τzj 0 0 )F

k∗`,j ( π`,j · (j, 1) a`,j · z 0 0 0 0 0 )F∗

Game G3 : r′`,0
$← Zq, ∆x := x∗b − x∗0, pk :=

(
h1 + µh2, h3, (fi)i∈[3], (Jsi + µ · uiK1)i

)
cj ( σj · (1,−j) ψ 0 0 0 0 0 )F
k∗`,j ( π`,j · (j, 1) a`,j · z 0 0 0 0 0 )F∗

cipfe ( ω µω ψ τ )H

k∗`,ipfe ( 〈s,y`〉 〈u,y`〉 a`,0z r′`,0〈∆x,y`〉 )H∗

Game G4 : ω′, r′′`,0
$← Zq, pk :=

(
h1 + µh2, h3, (fi)i∈[3], (Jsi + µ · uiK1)i

)
ti

r
ωsi + ω′ui + x∗b [i]

z

1

m∗`,i Jy`[i]K2

cipfe ( ω ω′ ψ τ )H
k∗`,ipfe ( 〈s,y`〉 〈u,y`〉 a`,0z r′`,0〈∆x,y`〉 )H∗

Game G5 : ω′, r′′`,0
$← Zq, s′ = s+∆s,u′ = u+∆u, where ∆s,∆u ∈ Znq s.t. ω·∆s+ω′ ·∆u = xb−x0 and ∆s+µ·∆u =

0, pk =
(
h1 + µh2, h3, (fi)i∈[3], (Jsi + µ · uiK1)i

)
ti Jωs′i + ω′u′i + x∗0[i]K1
m∗`,i Jy`[i]K2

cipfe ( ω ω′ ψ τ )H

k∗`,ipfe ( 〈 s′ ,y`〉 〈 u′ ,y`〉 a`,0z r′′`,0〈∆x,y`〉 )H∗

Fig. 11: Games for Theorem 1. The index i runs in {1, . . . , n}. The index j runs in List-Att(A) for key
components and in R for ciphertext components. The index ` runs in {1, . . . ,K} for the functional
key queries. The hybrids for G4 to G5 are given in Figure 12 in Appendix B.2.
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Game G4 :

cj ( σj · (1,−j) ψ 0 0 0 0 0 )F
k∗`,j ( π`,j · (j, 1) a`,j · z 0 0 0 0 0 )F∗

ti Jωsi + ω′ui + x∗b [i]K1
m∗`,i Jy`[i]K2

cipfe ( ω ω′ ψ τ )H
k∗`,ipfe ( 〈s,y`〉 〈u,y`〉 a`,0z r′`,0〈∆x,y`〉 )H∗

Game G4.1 : r′′`,0, ω
′ $← Zq, s′ = s +∆s,u′ = u +∆u, where ∆s, ∆u ∈ Znq s.t. ω ·∆s + ω′ ·∆u = xb − x0 and ∆s +

µ ·∆u = 0

cj ( σj · (1,−j) ψ 0 0 0 0 0 )F
k∗`,j ( π`,j · (j, 1) a`,j · z 0 0 0 0 0 )F∗

ti Jωs′i + µωu′i + x∗0[i]K1
m∗`,i Jy`[i]K2

cipfe ( ω µω ψ τ )H

k∗`,ipfe ( 〈s′,y`〉 〈u′,y`〉 a`,0z r′′`,0 〈∆x,y`〉 )H∗

Game G4.2 = G5 :

cj ( σj · (1,−j) ψ 0 0 0 0 0 )F
k∗`,j ( π`,j · (j, 1) a`,j · z 0 0 0 0 0 )F∗

ti
r
ωs′i + ω′ u′i + x∗0[i]

z

1

m∗`,i Jy`[i]K2

cipfe ( ω ω′ ψ τ )H
k∗`,ipfe ( 〈s′,y`〉 〈u′,y`〉 a`,0z r′′`,0〈∆x,y`〉 )H∗

Fig. 12: Games G4.1,G4.2 for the transition G4 to G5 in the proof of Theorem 1. We are in the case
〈∆x,y`〉 6= 0. The changes are made for the `-th functional key query. The index i runs in {1, . . . , n}.
The index j runs in List-Att(A) for key components and in R for ciphertext components.

Eventually the adversary outputs a bit b′. The simulator then runs and outputs Finalise(b′).

We have Advsel-ind-cpaE,F ,A = Adv(G0).

Game G1: In this game, we change the normal ciphertexts to semi-functional ciphertexts. In
particular, the challenge ciphertext will change in the following components:

cipfe := (ω, µω, ψ, τ )H

cj := (σj · (1,−j), ψ, τ , 0, 0, 0, 0)F for j ∈ R

for a uniformly random value τ
$← Zq.

Initially, let (T,T∗), (W,W∗) be pairs of random dual bases. In the reduction from a DDH

instance (JaK1 , JbK1 , JcK1) where c = ab+ τ with τ = 0 or τ
$← Zq, the bases will be changed as
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follows:

F :=

[
1 a
0 1

]
3,4

F ′ :=
(
F -1
)>

=

[
1 0
−a 1

]
3,4

F = F ·W; F∗ = F ′ ·W∗

H :=

[
1 a
0 1

]
3,4

H ′ :=
(
H -1

)>
=

[
1 0
−a 1

]
3,4

H = H ·T; H∗ = H ′ ·T∗

Note that we can compute all the basis vectors except h∗2 and f∗5 but currently they are not
needed because their coordinates are 0 in all the keys. The simulator can virtually set

cipfe = (ω, µω, b, c)T

= (ω, µω, b, τ)H

cj = (σj · (1,−j), b, c, 0, 0, 0, 0)W for j ∈ R

= (σj · (1,−j), b, τ, 0, 0, 0, 0)F for j ∈ R

and ψ = b. If τ = 0 then above vectors are computed as in G0, otherwise we are in G1. Therefore
the difference in advantage is |Adv(G1)− Adv(G0)| ≤ AdvDDH

G1
(1λ), where AdvDDH

G1
(1λ) denotes

the advantage against the DDH problem in G1 set up with parameter λ.

Game G2: In this game, we introduce another mask in the ciphertext, namely:

cj := (σj · (1,−j), ψ, τ, 0, τzj , 0, 0)F for j ∈ R

for uniformly random values zj
$← Zq.

Initially, let (T,T∗), (V,V∗), (W,W∗) be pairs of random dual bases. Given a DDH instance

(JaK1 , JbK1 , JcK1) where c = ab+ ζ with ζ = 0 or ζ
$← Zq, the bases will be changed as follows:

H = T; H∗ = T∗

F :=

1 0 a
0 1 −a
0 0 1


1,2,6

F ′ :=
(
F -1
)>

=

 1 0 0
0 1 0
−a a 1


1,2,6

F = F ·W; F∗ = F ′ ·W∗

Under this basis change, we can compute all basis vectors except f∗6 , which is not a problem
because the coordinate of f∗6 in the keys are 0 (and thus their representations do not alter under
this basis change).

For j ∈ R, the simulator can sample αj , βj
$← Zq, compute (in the exponent) bj = αj · b + βj

and cj = αj · c+ βj · a, then virtually set

cj = (bj · (1,−j), ψ, τ, 0, cj · (1 + j), 0, 0)W

= (bj · (1,−j), ψ, τ, 0, cj · (1 + j)− a · bj − a · bj · j, 0, 0)F

= (bj · (1,−j), ψ, τ, 0, (cj − a · bj) · (1 + j), 0, 0)F

= (bj · (1,−j), ψ, τ, 0, (αj · c− αj · ab) · (1 + j), 0, 0)F

= (bj · (1,−j), ψ, τ, 0, τ · zj , 0, 0)F
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where zj = αj(1 + j)ζ/τ . If ζ = 0 then cj is computed as in G1, else we are in the current
game. We remark that we use the random self-reducibility of DDH in this transition to avoid a
linear blow-up. Consequently, the difference in advantages of an adversary against G0 and G1 is
bounded by

|Adv(G2)− Adv(G1)| ≤ AdvDDH
G1

(1λ) .

Game G3: In this game, if the `-th key query (A,y`) satisfies that 〈y`,x∗0〉 6= 〈y`,x∗1〉 we switch
this `-th functional secret key to semi-functional. In the spirit of the dual system method, they
will not be useful in the decrypting the (already) semi-functional challenge ciphertexts. On
the contrary, if 〈y`,x∗0〉 = 〈y`,x∗1〉 we respond the `-th key query with a normal functional key.
Indeed, the above condition helps us preserve the functionality of such keys, because the set of all
queried access structure A whose y` satisfies 〈y`,x∗0〉 = 〈y`,x∗1〉 will contain all identities whose
policy is satisfied by the attributes of the challenge ciphertext. When given the `-th key query
(A,y`) the simulator samples r′`,0

$← Zq, and the functional key will change in the following
components:

k∗`,j = (π`,j · (j, 1), a`,j · z, 0, 0, 0, 0, 0)F∗ for j ∈ List-Att(A)

k∗`,ipfe = (〈s,y`〉, 〈u,y`〉, a`,0z, r′`,0 · 〈∆x,y`〉 )H∗

and πj
$← Zq. If 〈∆x,y`〉 = 0, then this does not change the functional key. We also clean the τ

and τzj masks in cj at the end of this game:

cj := (σj · (1,−j), ψ, 0 , 0, 0 , 0, 0)F for j ∈ R .

If 〈x∗0 − x∗1,y`〉 6= 0, then the 3-rd component of k∗`,ipfe is a random value, otherwise it stays 0 as
in G2. The transition from G2 to G3 is discussed in Lemma 5 and the difference in advantages is

|Adv(G3)− Adv(G2)| ≤ (2K · (P (6P + 3) + 2) + 2) · AdvSXDH
G1,G2

(1λ) .

Game G4: The key and ciphertext components are changed to

cipfe := (ω, ω′ , ψ, τ)H

ti :=
r
ω · si + ω′ · ui + x∗b [i]

z

1
for i ∈ [n]

m∗`,i := Jy`[i]K2
k∗`,ipfe := (〈s,y`〉, 〈u,y`〉, a`,0z, r′`,0 · 〈∆x,y`〉)H∗ ,

where ω′
$← Zq is chosen uniformly at random.

Given a DDH instance (JµK1 , JωK1 , Jω
′K1) where either ω′ − µω = 0 or ω′ − µω is a uniformly

random value in Zq, the simulator can simulate the ciphertext components ti and cipfe as follows:

ti =
q
ω · si + ω′ · ui + x∗b [i]

y
1

for i ∈ [n]

cipfe = (ω, ω′, ψ, τ)H

which is possible using gω
′

1 together with the master secret vectors s,u as well as the basis
changing matrices (H,H∗). If ω′ − µω = 0 we are in G3, otherwise we are in the current game.
Hence, the difference in advantages is |Adv(G4)− Adv(G3)| ≤ AdvDDH

G1
(1λ).
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Game G5: In this game we rewrite the master secret vectors s,u:

s′ := s +∆s

u′ := u +∆u

where (∆s, ∆u) satisfies:

∆s + µ∆u = 0 (4)

ω ·∆s + ω′ ·∆u = xb − x0 . (5)

The key and ciphertext components ti and k∗ipfe will be changed to:

ti = Jωs′i + ω′u′i + x∗0[i]K 1

k∗`,ipfe = (〈 s′ ,y`〉, 〈 u′ ,y`〉, a`,0z, r′′`,0〈∆x,y`〉 )H∗

We have to make sure that the variable change does not affect the public key output to the
adversary, i.e. it should hold that s + µ · u = s′ + µu′ and hence (∆s[i], ∆u[i]) must satisfy
the equation (4). Moreover, since we are rewriting variables and replacing x∗b [i] by x∗0[i] in
the ciphertext, s′[i] and u′[i] must also satisfy ωs′[i] + ω′u′[i] + x∗0[i] = ωs[i] + ω′u[i] + x∗b [i],
or equivalently the equation (5). Because ω, ω′, µ are uniformly random and independent, the
system has a solution (∆s[i], ∆u[i]) and the simulation will succeed when ω′ − µω 6= 0, which
happens with overwhelming probability.

The ciphertext components ti become:

ti =
q
ωs′i + ω′u′i + x∗0[i]

y
1

and the key component k`,ipfe becomes

k`,ipfe = (〈s′ −∆s,y`〉, 〈u′ −∆u,y`〉, a`,0z, r′`,0〈∆x,y`〉)H∗ .

Thanks to the systems equations (4) and (5), it holds that if 〈∆x,y`〉 = 0 then 〈∆s,y`〉 =
〈∆u,y`〉 = 0. Therefore, in that case the key component k`,ipfe has the desired form of G5

k`,ipfe = (〈s′,y`〉, 〈u′,y`〉, a`,0z, r′′`,0〈∆x,y`〉)H∗ ,

and r′′`,0 := r′`,0.

It remains to consider the case when 〈∆x,y`〉 6= 0. It is then obligatory we remove the additive
terms 〈∆s,y`〉 and 〈∆u,y`〉 from the first 2 coordinates of k`,ipfe. The main reason is that
the adversary might test this `-th key for decrypting a normal ciphertext, whose attributes
satisfy the key’s policy. We note that concerning the challenge ciphertext, 〈∆x,y`〉 6= 0 already
implies that the key’s policy is not satisfied by the challenge attributes R and thus it is not
decryptable using this `-th key. We describe a sequence of hybrids to go from G4 to G5 in the
case 〈∆x,y`〉 6= 0 in Figure 12.

Game G4.1: First, we change ω′ back to µω in both ti and cipfe:

ti =
r
ωs′i + µωu′i + x∗0[i]

z

1
for i ∈ [n]

cipfe = (ω, µω , ψ, τ)H .
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This change is negligible under the adversary’s view under the DDH assumption in G1, in
the same manner as we have done to go from G3 to G4.

At the same time, we move µ〈∆u,y`〉 from the second component to the first component of
kipfe. That is, the key and ciphertext components will become:

cipfe = (ω, µω, ψ, τ)H

k`,ipfe = ( 〈s′,y`〉 , 〈u′,y`〉 , a`,0z, r′′`,0 〈∆x,y`〉)H∗ .

We stress that the swap is done using a different DSDH instance as below, independent of the
DDH we use to switch ω′ to µω above. It is important to note that we are currently in the
case 〈∆x,y`〉 6= 0, which implies the policy in the `-th key is not satisfied by the ciphertext’s
attributes and the decryption of the challenge ciphertext does not play an important role. In
contrast, the functional key should still be able to decrypt normal ciphertexts, which can be
computed by the adversary using pk. This is why we are considering the swap in order to
“correct” the key and get rid of the noises introduced by ∆s and ∆u.

Given a DSDH instance (JaK2 , JbK2 , JcK2) where c− ab = ρ for either ρ = 〈∆u,y`〉 or ρ = 0,
the simulator perform the following basis change using:

H :=

1 0 aµ
0 1 −a
0 0 1


1,2,4

H ′ :=
(
H -1

)>
=

 1 0 0
0 1 0
−aµ a 1


1,2,4

H = H ·T; H∗ = H ′ ·T∗ .

This basis change affects h1 and h2, but it is perfectly indistinguishable because the adversary
knows only h1 + µh2, where µ is a uniformly random value and h1,h2 are two random basis
vectors. Note that this basis change does not affect the public information h1 + µh2 known
by the adversary. The vector h∗4 will be changed as well but it is already hidden from the
adversary. We cannot compute h1 and h2 because we do not have JaK1 but the ciphertext
component can be written directly in T:

cipfe = (ω, µω, ψ, τ)T

= (ω, µω, ψ, τ − aµτ + aµτ)H

= (ω, µω, ψ, τ)H .

The key component can be virtually set:

k`,ipfe = (〈s′ −∆s,y`〉, 〈u′ −∆u,y`〉, a`,0z, r′`,0〈∆x,y`〉)H∗
+ (−cµ, c, 0, b)T∗

= (〈s′ −∆s,y`〉, 〈u′ −∆u,y`〉, a`,0z, r′`,0〈∆x,y`〉)H∗
+ (−µρ, ρ, 0, b)T∗

= (〈s′ −∆s,y`〉 − µρ, 〈u′ −∆u,y`〉+ ρ,

a`,0z, (r′`,0 + b/〈∆x,y`〉)〈∆x,y`〉)H∗ ,

where 〈∆x,y`〉 6= 0 in the current case and r′`,0 is updated to r′′`,0 := r′`,0 + b/〈∆x,y`〉. If
ρ = 〈∆u,y`〉 then we are swapping, otherwise we are not. After the swap, the key and
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ciphertext components are as follows:

cipfe = (ω, µω, ψ, τ)H

k`,ipfe = (〈s′ − (∆s + µ∆u),y`〉, 〈u′,y`〉, a`,0z, r′′`,0〈∆x,y`〉)H∗
(∗)
= (〈s′,y`〉, 〈u′,y`〉, a`,0z, r′′`,0〈∆x,y`〉)H∗ ,

where (∗) comes from the fact that ∆s[i] + µ∆u[i] = 0 for all i ∈ [n].
Totally, the difference of advantages is

|Adv(G4.1)− Adv(G4)| ≤ AdvDDH
G1

(1λ) + 2 · AdvDDH
G2

(1λ) .

Game G4.2: We use DDH to switch µω to a uniformly random value ω′, as from G3 to G4:

ti =
r
ωs′i + ω′u′i + x∗0[i]

z

1
for i ∈ [n]

cipfe = (ω, ω′ , ψ, τ)H

k`,ipfe = (〈s′,y`〉, 〈u′,y`〉, a`,0z, r′′`,0〈∆x,y`〉)H∗ .

The difference in advantages is |Adv(G4.2)− Adv(G4.1)| ≤ AdvDDH
G1

(1λ).

In the end, we have G4.2 being identical to G5.

In G5, the challenge bit b is not involved in the computation anymore. Hence, the advantage becomes
Adv(G5) = 0 and we obtain:

Advsel-ind-cpaE,F ,A (1λ) = Adv(G0)

= |Adv(G0)− Adv(G5)|

≤
5∑
i=1

|Adv(Gi)− Adv(Gi−1)|

≤ 2 · AdvDDH
G1

(1λ) + (K · (2P · (6P + 3) + 2) + 2) · AdvSXDH
G1,G2

(1λ)

+ AdvDDH
G1

(1λ) + 2 · AdvDDH
G1

(1λ) + 2 · AdvDDH
G2

(1λ)

≤ (2KP · (6P + 3) + 2K + 9) · AdvSXDH
G1,G2

(1λ) .

and the proof is concluded. ut

Lemma 5. Assuming the SXDH assumption for G1 and G2, the difference between advantages
|Adv(G3)− Adv(G2)| in Theorem 1 is negligible.

Proof. If 〈∆x,y`〉 = 0, then the `-th functional key is identical in both games. Otherwise, it is a
direct application of the masking lemma in Section 3, because the security model ensures that if
〈∆x,y`〉 6= 0, the policy in the `-th functional key is not satisfied by the attributes in the challenge
ciphertext. We note that games G0,G1 of Theorem 1 already introduces the masks in (cj)j , cipfe, we
only need to apply the Lemma 2 to perform the masking of (k`,j)j ,k`,ipfe, for each `-th functional
key. The effected coordinates are (3, 4) of (H,H∗) and all coordinates of (F,F∗). In the matrices,
only the relating indices in (H,H ′) are used, the others are kept as in the identity matrix I4 ∈ Z4×4

q .
The two constants to be used in the lemma are 1 and 〈∆x,y`〉. One important remark here is the
obligation to apply the lemma key by key, not simultaneously. The reason is that for two different
functional keys queried by the adversary, the two policies in question might depend on the same
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attribute in the challenge ciphertext, and thus the KP-ABE part of the keys might reveal information
mutually. In the end, after all the functional keys are masked, there can be at most K keys being
changed, we clean the masks in (cj)j , cipfe. The difference in advantages is

|Adv(G3)− Adv(G2)| ≤ (K · (2P (6P + 3) + 2) + 2) · AdvSXDH
G1,G2

(1λ)

and the proof is completed. ut

B.3 Proof of Theorem 2

Proof (Of Theorem 2). We give the sequence of games in Figure 13. The changes that make the
transitions between games are highlighted in gray . The advantage of an adversary A in a game Gi
is denoted by

Adv(Gi) := |Pr[Gi = 1]− 1/2|

where the probability is taken over the random choices of A and coins of Gi.

Game G0: This is the adaptive security game as given in Figure 1. We have Advind-cpaE,F ,A = Adv(G0).
Game G1: In this game we introduce the masks in the key components k`,ipfe:

cj = (σj · (1,−j), ψ, 0, · · · , 0, 0, 0, 0, 0)F

k∗`,j = (π`,j · (j, 1), a`,j · z, 0, · · · , 0, 0, 0, 0, 0)F∗

cipfe = (ω, µω, ψ, τ∆x[1], . . . , τ∆x[n])H

k∗`,ipfe = (〈s,y`〉, 〈u,y`〉, a`,0 · z, r′`,0y`[1] , . . . , r′`,0y`[n])H∗

The transition from G0 to G1 is discussed separately in Lemma 6. The difference in advantages is

|Adv(G1)− Adv(G0)| ≤ 2nK · (P (6P + 3) + 2) · AdvSXDH
G1,G2

(1λ) .

Game G2: In this game we replace the exponent µω in the challenge ciphertext by a uniformly
random ω′

ti =
r
ω · si + ω′ · ui + x∗b [i]

z

1

cipfe = (ω, ω′ , ψ, τ∆x[1], · · · , τ∆x[n])H

We note that if the attributes in the ciphertext satisfy some `-th key’s policy, it is still decryptable
using this key. The change is indistinguishable under the adversary’s view by a reduction to
DDH in G1:

|Adv(G2)− Adv(G1)| ≤ AdvDDH
G1

(1λ) .

Game G3: We are now ready to replace x∗b [i] in the challenge ciphertext by x∗0[i] making it not
depend on b any more. The idea is similar to that of the proof for selective security. For all
functional key queries, the simulator responds using the msk vectors (s,u), i.e. the component
k`,ipfe is:

k∗`,ipfe = (〈s,y`〉, 〈u,y`〉, a`,0 · z, r′`,0y`[1], · · · , r′`,0y`[n])H∗ .

Last but not least, we can require the adversary to query all functional keys conforming to the
coondition that y`[1] 6= 0. This does not reduce the power of the adversary because the entries
of y` that are 0 will not play any role in the final inner-product value.
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Game G0 : a`,0
$← Zq, (a`,j)j∈List-Att(A) ← Λa`,0(A), pk :=

(
h1 + µh2, h3, (fi)i∈[3], (Jsi + µ · uiK1)i

)
, F ∈

G(n+7)×(n+7)
1 , H ∈ G(n+3)×(n+3)

1

cj ( σj · (1,−j) ψ 0 · · · 0 0 0 0 0 )F
k∗`,j ( π`,j · (j, 1) a`,j · z 0 · · · 0 0 0 0 0 )F∗

ti Jω · (si + µui) + x∗b [i]K1
m∗`,i Jy`[i]K2

cipfe ( ω µω ψ 0 · · · 0 )H
k∗`,ipfe ( 〈s,y`〉 〈u,y`〉 a`,0z 0 · · · 0 )H∗

Game G1 : r′`,0
$← Zq, ∆x := x∗b − x∗1, pk :=

(
h1 + µh2, h3, (fi)i∈[3], (Jsi + µ · uiK1)i

)
cj ( σj · (1,−j) ψ 0 · · · 0 0 0 0 0 )F
k∗`,j ( π`,j · (j, 1) a`,j · z 0 · · · 0 0 0 0 0 )F∗

cipfe ( ω µω ψ τ∆x[1] · · · τ∆x[n] )H
k∗`,ipfe ( 〈s,y`〉 〈u,y`〉 a`,0 · z r′`,0y`[1] · · · r′`,0y`[n] )H∗

Game G2 : ω′
$← Zq, pk :=

(
h1 + µh2, h3, (fi)i∈[3], (Jsi + µ · uiK1)i

)
ti

r
ω · si + ω′ · ui + x∗b [i]

z

1

m∗`,i Jy`[i]K2

cipfe ( ω ω′ ψ τ∆x[1] · · · τ∆x[n] )H
k∗`,ipfe ( 〈s,y`〉 〈u,y`〉 a`,0 · z r′`,0y`[1] · · · r′`,0y`[n] )H∗

Game G3 : ω′, r′′`,0
$← Zq, s′ = s+∆s,u′ = u+∆u, where ∆s,∆u ∈ Znq s.t. ω·∆s+ω′ ·∆u = xb−x0 and ∆s+µ·∆u =

0, pk =
(
h1 + µh2, h3, (fi)i∈[3], (Jsi + µ · uiK1)i

)
ti Jωs′i + ω′u′i + x∗0[i]K1
m∗`,i Jy`[i]K2

cipfe ( ω ω′ ψ τ∆x[1] · · · τ∆x[n] )H

k∗`,ipfe ( 〈 s′ ,y`〉 〈 u′ ,y`〉 a`,0 · z r′′`,0y`[1] · · · r′′`,0y`[n] )H∗

Fig. 13: Games for Theorem 2. The index i runs in {1, . . . , n}. The index j runs in List-Att(A) for key
components and in R for ciphertext components. The index ` runs in {1, . . . ,K} for the functional
key queries. The transition from G0 to G1 can be found in Lemma 6 in Appendix B.3, which will
make use of the auxiliary vectors in (F,F∗) and (H,H∗).

When the adversary declares the challenge messages (x∗0,x
∗
1), the simulator updates the master

secret vectors s,u to:

s′ := s +∆s

u′ := u +∆u

where (∆s, ∆u) satisfies:

∆s + µ∆u = 0 (6)

ω ·∆s + ω′ ·∆u = xb − x0 .

It is straightforward to see that this change does not affect the public information pk that the
adversary possesses, because s + µu = s′ + µu′. The challenge ciphertext is now encrypting x∗0
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under (s′,u′), i.e.

ti =
q
ωs′i + ω′u′i + x∗0[i]

y
1

=
q
ωsi + ω′ui + x∗b [i]

y
1
.

Under this modification, the functional key component k∗`,ipfe becomes:

k∗`,ipfe = (〈s′,y`〉 − 〈∆s,y`〉, 〈u′,y`〉 − 〈∆u,y`〉, a`,0 · z, r′`,0y`[1], . . . , r′`,0y`[n])H∗ .

We have to consider two cases:
– In the case 〈∆x,y`〉 = 0, there is no further changes to do because s′ = s and u′ = u. The
`-th functional key still decrypts the challenge ciphertext to 〈x∗b ,y`〉 = 〈x∗0,y`〉 if the policy
is satisfied by the ciphertext’s attributes.

– In the case 〈∆x,y`〉 6= 0, we need to remove the noises 〈∆s,y`〉 and 〈∆u,y`〉 so that the
functional keys have the correct form w.r.t the new master secret vectors (s′,u′) and work as
expected for normal ciphertexts that can be generated by the adversary using pk, including
the group elements Js′i + µu′iK1. We note that the decryption of the challenge ciphertext is
not taken into account anymore because the security model prohibits the access structure
from being satisfied by the challenge attributes in the current case.

We use the same approach as in the proof of Theorem 1, where first we switch ω′ back to µω.
This change is indistinguishable under DDH:

ti =
r
ω · si + µω · ui + x∗b [i]

z

1

cipfe = (ω, µω , ψ, τ∆x[1], · · · , τ∆x[n])H

Then, given a DSDH instance (JaK2 , JbK2 , JcK2) where c−ab = ρ for either ρ = 〈∆u,y`〉 or ρ = 0,
we perform a basis change on (H,H∗) using:

H :=

1 0 aµ
0 1 −a
0 0 1


1,2,4

H ′ :=
(
H -1

)>
=

 1 0 0
0 1 0
−aµ a 1


1,2,4

H = H ·T; H∗ = H ′ ·T∗ .

This changes h1,h2 and we do not have JaK1 to compute the full basis H but all the adversary
sees from pk is h1 + µh2, which stays invariant. The vector h∗4 is also affected but it is already
hidden from the adversary. The ciphertext component can be written directly in T:

cipfe = (ω, µω, ψ, τ∆x[1], · · · , τ∆x[n])T

= (ω, µω, ψ, τ∆x[1]− aµω + aµω, τ∆x[2], · · · , τ∆x[n])H

= (ω, µω, ψ, τ∆x[1], τ∆x[2], · · · , τ∆x[n])H

and indeed cipfe can still be simulated correctly. The key component k∗`,ipfe can be written:

k∗`,ipfe = (〈s′,y`〉 − 〈∆s,y`〉, 〈u′,y`〉 − 〈∆u,y`〉, a`,0 · z, r′`,0y`[1], . . . , r′`,0y`[n])H∗

+

(
−µc, c, 0, b, b · y`[2]

y`[1]
. . . , b · y`[n]

y`[1]

)
T∗

= (〈s′,y`〉 − 〈∆s,y`〉, 〈u′,y`〉 − 〈∆u,y`〉, a`,0 · z, r′`,0y`[1], . . . , r′`,0y`[n])H∗

+

(
−µρ, ρ, 0, b, b · y`[2]

y`[1]
. . . , b · y`[n]

y`[1]

)
H∗

= (〈s′,y`〉 − 〈∆s,y`〉 − µρ, 〈u′,y`〉 − 〈∆u,y`〉+ ρ, a`,0 · z,(
r′`,0 +

b

y`[1]

)
y`[1], . . . ,

(
r′`,0 +

b

y`[1]

)
y`[n])H∗ .
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The randomness r′`,0 is updated to r′`,0 + b/y`[1]. If ρ = 〈∆u,y`〉 we are cleaning the noises
using the relation (6), otherwise we are not. Finally, we switch back ω′ to µω in the challenge
ciphertext to arrive at G3. The difference in advantages is |Adv(G3)−Adv(G2)| ≤ 2 ·AdvDDH

G1
(1λ)+

2 · AdvDDH
G2

(1λ).

The challenge ciphertext in G3 does not depend on b anymore and as a result Adv(G3) = 0. We have

Advind-cpaE,F ,A (1λ) = Adv(G0)

= |Adv(G0)− Adv(G3)|

≤
3∑
i=1

|Adv(Gi)− Adv(Gi−1)|

≤ 2nK · (P (6P + 3) + 2) · AdvSXDH
G1,G2

(1λ)

+ AdvDDH
G1

(1λ) + 2 · AdvDDH
G1

(1λ) + 2 · AdvDDH
G2

(1λ)

≤ (2nK · (P · (6P + 3) + 2) + 5) · AdvSXDH
G1,G2

(1λ) .

The proof is concluded. ut

Lemma 6. Assuming the SXDH assumption for G1 and G2, the difference between advantages
|Adv(G1)− Adv(G0)| in Theorem 2 is negligible.

Proof. We recall the form of ciphertext and functional key components:

cj = (σj · (1,−j), ψ, 0, · · · , 0, 0, 0, 0, 0)F

k∗`,j = (π`,j · (j, 1), a`,j · z, 0, · · · , 0, 0, 0, 0, 0)F∗

cipfe = (ω, µω, ψ, 0, . . . , 0)H

k∗`,ipfe = (〈s,y`〉, 〈u,y`〉, a`,0 · z, 0, . . . , 0)H∗

We use a sequence of games indexed by ` ∈ {0, . . . ,K} corresponding to the ordered list of
K functional key queries. In G0.`, the first ` key queries are responded with the semi-functional
form of G1 and it holds that G0.0 = G0 while G0.K = G1. Consequently, for ` ∈ [K] and without
any confusion, the game G0.`−1 is understood as the predecessor of G0.` in the sequence of hybrids
(G0.0,G0.1, . . . ,G0.K). The sequence of games from G0.`−1 to G0.` is depicted in Figure 14. The details
are given below:

Game G0.`−1.0: This is the game G0.`−1.
Game G0.`−1.1: We first apply Lemma 1 for i ∈ [n], where at each step, we introduce τzj∆x[i]

in the coordinate (i + 3) of cipfe as well as a′0y`[i] and a′jy`[i]/zj in the coordinate (i + 3) of

k`,ipfe and k`,j , respectively. The values zj
$← Zq are sampled uniformly at random and indexed

by attributes j. The application of the lemma makes use of the (n+ 4, n+ 5, n+ 6, n+ 7)-th
hidden vectors in the bases (F,F∗). More precisely, we use a sequence of hybrids G0.`−1.0.i where
i runs over {0, . . . , n}. In the end G0.`−1.0.0 = G0.`−1.0 and G0.`−1.0.n = G0.`−1.1. The ciphertext
and functional key components in G0.`−1.0.i, where i ∈ [n], are:

cj = (σj · (1,−j), ψ, τzj∆x[1], . . . , τzj∆x[i],

n−i coord.’s︷ ︸︸ ︷
0, . . . , 0 , 0, 0, 0, 0)F

k∗`,j = (π`,j · (j, 1), a`,j · z, a′jy`[1]/zj , . . . , a
′
jy`[i]/zj , 0, . . . , 0, 0, 0, 0, 0)F∗

cipfe = (ω, µω, ψ, τ∆x[1], . . . , τ∆x[i],

n−i coord.’s︷ ︸︸ ︷
0, . . . , 0 )H

k∗`,ipfe = (〈s,y`〉, 〈u,y`〉, a`,0 · z, a′0y`[1], . . . , a′0y`[i], 0, . . . , 0)H∗ .
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Game G0.`−1.0 : a`,0
$← Zq, (a`,j)j∈Jpolicy ← Λa`,0(Tpolicy), pk :=

(
h1 + µh2, h3, (fi)i∈[3], (Jsi + µ · uiK1)i

)
, F ∈

G(n+7)×(n+7)
1 , H ∈ G(n+3)×(n+3)

1

cj ( σj · (1,−j) ψ 0 · · · 0 0 0 0 0 )F
k∗`,j ( π`,j · (j, 1) a`,j · z 0 · · · 0 0 0 0 0 )F∗

ti Jω · (si + µui) + x∗b [i]K1
m∗`,i Jy`[i]K2

cipfe ( ω µω ψ 0 · · · 0 )H
k∗`,ipfe ( 〈s,y`〉 〈u,y`〉 a`,0z 0 · · · 0 )H∗

The hybrids G0.`−1.0.i indexed by i ∈ [n] to go from G0.`−1.0 to G0.`−1.1

cj ( · · · ψ τ∆x[1]zj · · · τ∆x[i]zj 0 · · · 0 0 0 0 0 )F
k∗`,j ( · · · a`,j · z a′`,jy`[1]/zj · · · a′`,jy`[i]/zj 0 · · · 0 0 0 0 0 )F∗

cipfe ( ω µω ψ τ∆x[1] · · · τ∆x[i] 0 · · · 0 )H
k∗`,ipfe ( 〈s,y`〉 〈u,y`〉 a`,0 · z a′`,0y`[1] · · · a′`,0y`[i] 0 · · · 0 )H∗

Game G0.`−1.1 :

cj ( σj · (1,−j) ψ τ∆x[1]zj · · · τ∆x[n]zj 0 0 0 0 )F
k∗`,j ( π`,j · (j, 1) a`,j · z a′`,jy`[1]/zj · · · a′`,jy`[n]/zj 0 0 0 0 )F∗

cipfe ( ω µω ψ τ∆x[1] · · · τ∆x[n] )H
k∗`,ipfe ( 〈s,y`〉 〈u,y`〉 a`,0 · z a′`,0y`[1] · · · a′`,0y`[n] )H∗

Game G0.`−1.2 : r′`,0
$← Zq

cj ( σj · (1,−j) ψ τ∆x[1]zj · · · τ∆x[n]zj 0 0 0 0 )F
k∗`,j ( π`,j · (j, 1) a`,j · z a′`,jy`[1]/zj · · · a′`,jy`[n]/zj 0 0 0 0 )F∗

cipfe ( ω µω ψ τ∆x[1] · · · τ∆x[n] )H
k∗`,ipfe ( 〈s,y`〉 〈u,y`〉 a`,0 · z (a′`,0 + r′`,0)y`[1] · · · (a′`,0 + r′`,0)y`[n] )H∗

The hybrids G0.`−1.2.i indexed by i ∈ [n] to go from G0.`−1.2 to G0.`−1.3

cj ( ... ψ 0 ... 0 τ∆x[i+ 1]zj ... τ∆x[n]zj 0 0 0 0 )F
k∗`,j ( ... a`,jz 0 ... 0 a′`,jy`[i+ 1]/zj ... a′`,jy`[n]/zj 0 0 0 0 )F∗

cipfe ( ... ψ τ∆x[1] ... τ∆x[i] τ∆x[i+ 1] ... τ∆x[n] )H
k∗`,ipfe ( ... a`,0z r′`,0y`[1] ... r′`,0y`[i] (a′`,0 + r′`,0)y`[i+ 1] ... (a′`,0 + r′`,0)y`[n] )H∗

Game G0.`−1.3 : r′`,0
$← Zq

cj ( σj · (1,−j) ψ 0 · · · 0 0 0 0 0 )F
k∗`,j ( π`,j · (j, 1) a`,j · z 0 · · · 0 0 0 0 0 )F∗

cipfe ( ω µω ψ τ∆x[1] · · · τ∆x[n] )H
k∗`,ipfe ( 〈s,y`〉 〈u,y`〉 a`,0 · z r′`,0y`[1] · · · r′`,0y`[n] )H∗

Fig. 14: Games for Lemma 6. The index i runs in {1, . . . , n}. The index j runs in List-Att(A) for key
components and in R for ciphertext components. The index ` runs in {1, . . . ,K} for the functional
key queries.
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For each i ∈ [n], in order to go from G0.`−1.0.i−1 to G0.`−1.0.i, Lemma 1 is applied on coordinates
(1, 2, n+ 4, n+ 5, i+ 3, n+ 6, n+ 7) of (F,F∗) together with coordinates (3, i+ 3) of (H,H∗).
We remark that throughout the hybrids, the functional key is still capable of decrypting the
challenge ciphertext if the key’s policy is satisfied, thanks to the fact that the masks (a′j)j is a
random labeling of a′0. For each i ∈ [n], we have

|Adv(G0.`−1.0.i)− Adv(G0.`−1.0.i−1)| ≤ (P · (6P + 3) + 2) · AdvSXDH
G1,G2

(1λ)

and hence

|Adv(G0.`−1.1)− Adv(G0.`−1.0)| ≤ n · (P · (6P + 3) + 2) · AdvSXDH
G1,G2

(1λ) .

Game G0.`−1.2: After masking all the key components and ciphertext components with another
random labeling, the vectors become:

cj = (σj · (1,−j), ψ, τzj∆x[1], . . . , τzj∆x[n], 0, 0, 0, 0)F

k∗`,j = (π`,j · (j, 1), a`,j · z, a′jy`[1]/zj , . . . , a
′
jy`[n]/zj , 0, 0, 0, 0)F∗

cipfe = (ω, µω, ψ, τ∆x[1], . . . , τ∆x[n])H

k∗`,ipfe = (〈s,y`〉, 〈u,y`〉, a`,0 · z, a′0y`[1], . . . , a′0y`[n])H∗

In this game we randomise a′`,0 in k∗`,ipfe by a uniform mask r`,0
$← Zq:

k∗`,ipfe = (〈s,y`〉, 〈u,y`〉, a`,0 · z, (a′0 + r′`,0) · y`[1], . . . , (a′0 + r′`,0) · y`[n])H∗ .

This change is done for every functional key responded to the adversary. We consider two cases:

– If 〈∆x,y`〉 6= 0, the security model implies that A(R) = 0 where A is the access structure
embedded in the key and R contains the attributes in the challenge ciphertext. Hence, for all
i ∈ [n], there is no way to find a reconstruction vector (cj)j for an authorized set A ⊆ R, i.e.
there are not enough a′`,j · y`[i]/zj from the `-th functional key to recover

∑
j∈A

cja
′
`,j · y`[i]
zj

· τzj∆x[i] = τa′`,0y`[i]∆x[i] .

Furthermore, because (a′`,j)j is a random labeling of a′`,0 using the LSSS of A and τ, zj
$← Zq,

it holds that in this case, masking a′0 by r′0 is perfectly indistinguishable under the adversary’s
view, even an unbounded one.

– If 〈∆x,y`〉 = 0, changing a′`,0 to a′0 + r′`,0 does not affect the view of the adversary. The case
of functional keys that are not satisfied by the challenge attributes is argued as above. We
now concentrate on the keys that can decrypt correctly the challenge ciphertext. Firstly, the
vectors of the dual bases are all hidden from the adversary. Even when multiplying the key
with the ciphertext vectors, the best an (even unbounded) adversary can learn is:

loggt(k
∗
`,ipfe × cipfe)

= ω〈s,y`〉+ µω〈u,y`〉+ ψa`,0z +
∑n

i=1 τ(a′`,0 + r′`,0)y`[i]∆x[i]

= ω〈s,y`〉+ µω〈u,y`〉+ ψa`,0z + τ(a′`,0 + r′`,0)〈∆x,y`〉
= ω〈s,y`〉+ µω〈u,y`〉+ ψa`,0z

loggt

(∑
j∈A(cj · k∗`,j)× cj

)
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=
∑

j∈A ψcja`,jz +
∑n

i=1

(∑
j∈A

cja
′
`,j ·y`[i]
zj

· τzj∆x[i]
)

= ψa`,0z + a′`,0τ〈∆x,y`〉
= ψa`,0z

where A ⊆ R is an authorized set and (cj)j is its reconstruction vector obtained from LSSS.
The result does not depend on a′`,0 anymore.

In total, changing (a′`,0y`[i])i∈[n] to ((a′`,0 + r′`,0)y`[i])i∈[n], for all i at once, is perfectly indistin-
guishable under the adversary’s view, even an unbounded one. Thus, we have Adv(G0.`−1.2) =
Adv(G0.`−1.1).

Game G0.`−1.3: In this game we clean the masks in the vectors cj and k`,j . This process of cleaning
is done via basis changes on (F,F∗) similar to what is done from G0.`−1.0 to G0.`−1.1 but in
reverse order:

cj = (σj · (1,−j), ψ, 0 , . . . , 0 , 0, 0, 0, 0)F

k∗`,j = (π`,j · (j, 1), a`,j · z, 0 , . . . , 0 , 0, 0, 0, 0)F∗

cipfe = (ω, µω, ψ, τ∆x[1], . . . , τ∆x[n])H

k∗`,ipfe = (〈s,y`〉, 〈u,y`〉, a`,0 · z, r′`,0 · y`[1], . . . , r′`,0 · y`[n])H∗ .

Similar to what we do to go from G0.`−1.0 to G0.`−1.1, we proceed by a sequence of hybrids,
indexed by i ∈ {0, 1, . . . , n}. We recall the reason for this sequence of n hybrids is the fact that
there are only 4 hidden vectors in the basis that we can use, so we cannot apply Lemma 1 for 2
indices i ∈ [n] at the same time over the same bases (H,H∗), (F,F∗).
Game G0.`−1.2.i: the ciphertext and key components has the form:

cj = (σj · (1,−j), ψ,

i coordinates︷ ︸︸ ︷
0 , . . . , 0 ,

τzj∆x[i+ 1], . . . , τzj∆x[n], 0, 0, 0, 0)F

k∗`,j = (π`,j · (j, 1), a`,j · z,

i coordinates︷ ︸︸ ︷
0 , . . . , 0 ,

a′jy`[i+ 1]/zj , . . . , a
′
jy`[n]/zj , 0, 0, 0, 0)F∗

cipfe = (ω, µω, ψ, τ∆x[1], . . . , τ∆x[i], τ∆x[i+ 1], . . . , τ∆x[n])H

k∗`,ipfe = (〈s,y`〉, 〈u,y`〉, a`,0 · z,
i coordinates︷ ︸︸ ︷

r′`,0 · y`[1], . . . , r′`,0 · y`[i],

(a′0 + r′`,0)y`[i+ 1], . . . , (a′`,0 + r′`,0)y`[n])H∗ .

We note that the decryption using the `-th functional key still works if the attributes of the
challenge ciphertext satisfy the key’s policy because: let A ⊆ R be an authorized set and
(cj)j be its reconstruction vector from LSSS
loggt(k

∗
`,ipfe × cipfe)

= ω〈s,y`〉+ µω〈u,y`〉+ ψa`,0z +
∑i

k=1 τr
′
`,0y`[k]∆x[k]

+
∑n

k=i+1 τ(a′`,0 + r′`,0)y`[k]∆x[k]

= ω〈s,y`〉+ µω〈u,y`〉+ ψa`,0z + τr′`,0〈∆x,y`〉+
∑n

k=i+1 τa
′
`,0y`[k]∆x[k]

= ω〈s,y`〉+ µω〈u,y`〉+ ψa`,0z +
∑n

k=i+1 τa
′
`,0y`[k]∆x[k]

loggt

(∑
j∈A(cj · k∗`,j)× cj

)
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=
∑

j∈A ψcja`,jz +
∑n

k=i+1

(∑
j∈A

cja
′
`,j ·y`[k]
zj

· τzj∆x[k]
)

= ψa`,0z +
∑n

k=i+1 τa
′
`,0y`[k]∆x[k]

and the security model requires that 〈∆x,y`〉 = 0 in this case.
For each i ∈ [n], in order to go from the hybrid G0.`−1.2.i−1 to G0.`−1.2.i, we apply Lemma 1
for the coordinates (1, 2, 3, n+ 4, n+ 5, i+ 3, n+ 6, n+ 7) of (F,F∗) together with coordinates
(3, i+ 3) of (H,H∗). Finally, the difference in advantages is

|Adv(G0.`−1.3)− Adv(G0.`−1.2)| ≤ n · (P · (6P + 3) + 2) · AdvSXDH
G1,G2

(1λ) .

We perform the above sequence of games for each `-th functional key and in the end we arrive at
G0.K = G1. The difference in advantages is

|Adv(G1)− Adv(G0)| ≤ 2nK · (P (6P + 3) + 2) · AdvSXDH
G1,G2

(1λ)

and the proof is completed. ut

B.4 Proof of Theorem 3

Proof (Of Theorem 3). The sequence of games can be found in Figure 6 and 7. The full-domain
hash function H : Tag × 2Att → G2

1 is modeled as a random oracle and we denote by Q the number
of random oracle queries by the adversary. The changes that make the transitions between games
are highlighted in gray . The advantage of an adversary A in a game Gi is denoted by

Adv(Gi) := |Pr[Gi = 1]− 1/2|

where the probability is taken over the random choices of A and coins of Gi.
The details of the games are given below. We start from the adaptive security game. In the

subsequent games, we give details of the basis change and explain how they can be done in parallel,
in the spirit of our duplicate-and-compress technique.

Game G0: This is the adaptive security game. The simulator generates all dual basis pairs

Hi = (hi,1,hi,2,hi,3,hi,4) H∗i = (h∗i,1,h
∗
i,2,h

∗
i,3,h

∗
i,4)

F = (f1, f2, f3, f4, f5, f6, f7, f8) F∗ = (f∗1 , f
∗
2 , f
∗
3 , f
∗
4 , f
∗
5 , f
∗
6 , f
∗
7 , f
∗
8 )

and sets {
msk := (s, u, f∗1 , f∗2 , f∗3 , (h∗i,1,h

∗
i,2,h

∗
i,3)i∈[n])

eki := (si, ui, pi ·H(1)
i , pi ·H(2)

i , hi,3, f1, f2, f3) for i ∈ [n]

where H
(k)
i denotes the k-th row of Hi.

Extract(A,y(̀ )) : For the `-th functional key query w.r.t an access structure A and a vector
y(̀ ) ∈ Znq that specifies the inner product function Fy(̀ ) , for each i ∈ [n] the simulator samples

a(̀ )

i,0
$← Zq, constructs the associated LSSS and runs the labeling algorithm to obtain the labels

(a(̀ )

i,j)j∈List-Att(A)←Λ
a
(̀ )
i,0

(A). It then returns

k(̀ )

i,j := (π(̀ )

i,j · (j, 1), a(̀ )

i,j · z, 0, 0, 0, 0, 0)F∗ for j ∈ List-Att(A)

m(̀ )

i :=
q
y(̀ )[i]

y
2

for i ∈ [n]

k(̀ )

i,ipfe := (〈s,y(̀ )〉, 〈u,y(̀ )〉, a(̀ )

i,0 · z, 0)H∗

where π(̀ )

i,j
$← Zq.
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LoR(i, tag,R) : As described in Figure 4, the (tag,R) of the first LoR query will determine the
only challenge tag from then on. Upon receiving a set R ⊆ Att ⊆ Zq of attributes, the simulator

samples ψi
$← Zq, flips a coin b

$← {0, 1}, compute H(tag,R)→ (Jωtag,RK1 ,
r
ω′tag,R

z

1
) ∈ G2

1 and

ti :=
q
ωtag,R · si + ω′tag,Rui + x∗b [i]

y
1

ci,ipfe := (ωtag,R, ω
′
tag,R, ψi, 0)Hi

where for each j ∈ R
ci,j := (σi,j · (1,−j), ψi, 0, 0, 0, 0, 0)F

and σi,j
$← Zq for j ∈ R′ and H(tag,R)→ (JωK1 , Jω′K1) is modeled as a random oracle (RO).

Enc(i, xi, tag
′,R′) : As dictated by the security model in Figure 4, the adversary can only query

for encryptions of messages under tag′ different from the challenge tag. The ciphertext is
returned:

ci,j := (σi,j · (1,−j), ψ′i, 0, 0, 0, 0, 0)F for j ∈ R′

ti :=
q
χtag′,R′si + χ′tag′,R′ui + xi

y
1

ci,ipfe := (χtag′,R′ , χ
′
tag′,R′ , ψ

′
i, 0)Hi

where σi,j , ψ
′
i

$← Zq for j ∈ R′ and H(tag′,R′)→ (
q
χtag′,R′

y
1
,
r
χ′tag′,R′

z

1
) is modeled as a

random oracle (RO).

Corrupt(i) : Return eki = (si, ui, pi ·H(1)
i , pi ·H(2)

i , hi,3, f1, f2, f3).
Eventually the adversary outputs a bit b′. The simulator then runs and outputs Finalise(b′).

We have Advmc-ind-cpa
E,F ,A (1λ) = Adv(G0).

Game G1: We first introduce the masks in the challenge ciphertext components. The basis changes
are done in a manner similar to the proof of Lemma 1. The ciphertext components are computed
as below:

LoR(i ∈ C ∪ H, tag,R) : ci,j = (σi,j · (1,−j), ψi, τ∆x[i], 0, τ∆x[i]zj , 0, 0)F

LoR(i ∈ C ∪ H, tag,R) : ci,ipfe = (ωtag,Rpi, ω
′
tag,Rpi, ψi, τ∆x[i])Hi .

The basis changes of (Hi,H
∗
i ) can be done in parallel, while the change for (F,F∗) does not

depend on i and we will write the vectors (ci,j , ci,ipfe) with appropriate coordinates for each i
under the basis change’s effect. The difference in advantages is bounded by 2 · AdvDDH

G1
(1λ).

Game G2: To reach this game we proceed key by key, indexed by ` ∈ {0, . . . ,K}, from G1.0 = G1 to
G1.K = G2. The game G1.` has the first ` functional keys switched to semi-functional as described
in G2.
In order to go from G1.`−1 to G1.`, we employ the following sequence of games, which is depicted
in Figure 15.
Game G1.`−1.0: This is G1.`−1.
Game G1.`−1.1: We apply Lemma 1 for each i ∈ [n] to mask the vectors

{(ci,j)j∈R, ci,ipfe} and {(k(̀ )

i,j)j∈List-Att(A), k(̀ )

i,ipfe}

with another random labeling (a′(̀ )

j )j←Λ
a
′(̀ )
0

(A) where a′(̀ )

i,0
$← Zq and the ciphertext components

are those returned from LoR. For all i ∈ [n], Lemma 1 is applied in parallel using the same
random labeling for random labeling (a′(̀ )

j )j←Λ
a
′(̀ )
0

(A). The affected coordinates are (3, 4) of
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Game G1.`−1.0 = G1.`−1

Game G1.`−1.1 : H(tag,R) → (Jωtag,RK1 ,
q
ω′tag,R

y
1
), H(tag′,R′) → (Jχtag′,R′K1 ,

q
χ′tag′,R′

y
1
), a′(`)0

$← Zq, (a′(`)j )j ←
Λ
a
′(`)
0

(A), ∆x := x∗b [i]− x∗0[i]

LoR(i ∈ H,x∗0[i],x∗1[i], tag,R) ci,j ( σi,j · (1,−j) ψi τ∆x[i] 0 τ∆x[i]zj 0 0 )F
Enc(i ∈ C ∪H, xi, tag′ 6= tag,R′) ci,j ( σ′i,j · (1,−j) ψ′i 0 0 0 0 0 )F

∀ i ∈ C ∪H, `′ 6= ` k(`′)
i,j ( π(`′)

i,j · (j, 1) a(`′)
i,j · z` 0 0 0 0 0 )F∗

∀ i ∈ C ∪H k(`)

i,j ( π(`)

i,j · (j, 1) a(`)

i,j · z` 0 0 a′(`)j y(`)[i]/zj 0 0 )F∗

LoR(i ∈ H,x∗0[i],x∗1[i], tag,R) ci,ipfe ( ωtag,Rpi ω′tag,Rpi ψi τ∆x[i] )Hi

Enc(i ∈ C ∪H, xi, tag′ 6= tag,R′) ci,ipfe ( χtag′,R′pi χ′tag′,R′pi ψ′i 0 )Hi

∀ i ∈ C ∪H, `′ < ` k(`′)
i,ipfe ( 〈s,y(`′)〉 〈u,y(`′)〉 a(`′)

i,0 z` r(`
′)

0 · y(`)[i] )H∗i
∀ i ∈ C ∪H k(`)

i,ipfe ( 〈s,y(`)〉 〈u,y(`)〉 a(`)

i,0z` a′(`)0 · y(`)[i] )H∗i
∀ i ∈ C ∪H, `′ > ` k(`′)

i,ipfe ( 〈s,y(`′)〉 〈u,y(`′)〉 a(`′)
i,0 z` 0 )H∗i

Game G1.`−1.2 : H(tag,R)→ (Jωtag,RK1 ,
q
ω′tag,R

y
1
), H(tag′,R′)→ (Jχtag′,R′K1 ,

q
χ′tag′,R′

y
1
)

LoR(i ∈ H,x∗0[i],x∗1[i], tag,R) ci,j ( σi,j · (1,−j) ψi τ∆x[i] 0 τ∆x[i]zj 0 0 )F
Enc(i ∈ C ∪H, tag′ 6= tag,R′) ci,j ( σ′i,j · (1,−j) ψ′i 0 0 0 0 0 )F

∀ i ∈ C ∪H, `′ 6= ` k(`′)
i,j ( π(`′)

i,j · (j, 1) a(`′)
i,j · z` 0 0 0 0 0 )F∗

∀ i ∈ C ∪H k(`)

i,j ( π(`)

i,j · (j, 1) a(`)

i,j · z` 0 0 a′(`)j y(`)[i]/zj 0 0 )F∗

LoR(i ∈ H,x∗0[i],x∗1[i], tag,R) ci,ipfe ( ωtag,Rpi ω′tag,Rpi ψi τ∆x[i] )Hi

Enc(i ∈ C ∪H, xi, tag′ 6= tag,R′) ci,ipfe ( χtag′,R′pi χ′tag′,R′pi ψ′i 0 )Hi

∀ i ∈ C ∪H, `′ < ` k(`′)
i,ipfe ( 〈s,y(`′)〉 〈u,y(`′)〉 a(`′)

i,0 z` r(`
′)

0 · y(`)[i] )H∗i
∀ i ∈ C ∪H k(`)

i,ipfe ( 〈s,y(`)〉 〈u,y(`)〉 a(`)

i,0z` r(`)0 · y(`)[i] )H∗i
∀ i ∈ C ∪H, `′ > ` k(`′)

i,ipfe ( 〈s,y(`′)〉 〈u,y(`′)〉 a(`′)
i,0 z` 0 )H∗i

Game G1.`−1.3 = G1.` : H(tag,R)→ (Jωtag,RK1 ,
q
ω′tag,R

y
1
), H(tag′,R′)→ (Jχtag′,R′K1 ,

q
χ′tag′,R′

y
1
)

LoR(i ∈ H,x∗0[i],x∗1[i], tag,R) ci,j ( σi,j · (1,−j) ψi τ∆x[i] 0 τ∆x[i]zj 0 0 )F
Enc(i ∈ C ∪H, tag′ 6= tag,R′) ci,j ( σ′i,j · (1,−j) ψ′i 0 0 0 0 0 )F
∀ i ∈ C ∪H k(`)

i,j ( π(`)

i,j · (j, 1) a(`)

i,j · z` 0 0 0 0 0 )F∗

LoR(i ∈ C ∪H, tag,R) ci,ipfe ( ωtag,Rpi ω′tag,Rpi ψi τ∆x[i] )Hi

Enc(i ∈ C ∪H, xi, tag′ 6= tag,R′) ci,ipfe ( χtag′,R′pi χ′tag′,R′pi ψ′i 0 )Hi

∀ i ∈ C ∪H k(`)

i,ipfe ( 〈s,y(`)〉 〈u,y(`)〉 a(`)

i,0z` r(`)0 · y(`)[i] )H∗i

Fig. 15: The sequence of hybrids to go from G1.`−1 to G1.`, where ` ∈ [K]. We have G1.0 = G1 and
G1.K = G2 in the proof of Theorem 3. The sets H and C contain honest and corrupted i ∈ [n],
respectively. The index j runs in List-Att(A) for key components and in R for ciphertext components.
The index ` runs in {1, . . . ,K} for the functional key queries. The function H is modeled as a
random oracle.
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(Hi,H
∗
i ) and all coordinates of (F,F∗). The constants are x := ∆x[i] and y := y(̀ )[i]. More

precisely, the challenge ciphertext and the `-th functional key components will be:

LoR(i ∈ C ∪ H, tag,R) : ci,j = (σi,j · (1,−j), ψi, τ∆x[i], 0, τ∆x[i]zj , 0, 0)F

∀ i ∈ C ∪ H : k(̀ )

i,j = (π(̀ )

i,j · (j, 1), a(̀ )

i,j · z, 0, 0, a
′(̀ )

j y(̀ )[i]/zj , 0, 0)F∗

LoR(i ∈ C ∪ H, tag,R) : ci,ipfe = (ωtag,Rpi, ω
′
tag,Rpi, ψi, τ∆x[i])Hi

∀ i ∈ C ∪ H : k(̀ )

i,ipfe = (〈s,y(̀ )〉, 〈u,y(̀ )〉, a(̀ )

i,0z, a
′(̀ )

0 · y
(̀ )[i])H∗i .

By Lemma 1, the difference in advantages is:

|Adv(G0.`−1.1)− Adv(G0.`−1.0)| ≤ (P · (6P + 3) + 1) · AdvSXDH
G1,G2

(1λ) .

If the attributes of the challenge ciphertext satisfy the `-th key’s policy, the n ciphertext
components can still be combined and decrypted to obtain 〈x∗b ,y(̀ )〉 using dkA,y(̀ ) . The reasons
why we can apply the lemma in parallel can be summarized below:

– We note that the basis changes of (F,F∗) does not depend on i but only on the attributes
j. The computation over c-vectors in Lemma 1 can be done for the vectors (ci,j)j and
(k(̀ )

i,j)j at the same time for all i ∈ [n], by setting the appropriate coordinates in (W,W∗)
and seeing how they are affected under these basis changes to produce the final vectors in
(F,F∗).

– When we perform a sequence of hybrids indexed by an attribute m, e.g. to introduce the
factor 1/zj , only the vectors k(̀ )

i,m have non-zero coordinate at f∗5 and ci,m have non-zero

coordinate at f5. Hence, the relating basis changes will affect only those k(̀ )

i,m, ci,m for all
i ∈ [n] at once.

– Each client i has the vectors ci,ipfe and k(̀ )

i,ipfe lying in separate dual bases (Hi,H
∗
i ) so the

basis changing matrices can be written independently for each client.

We remark that it is this possibility to parallelize the basis changes and the application that
makes our duplicate-and-compress technique work.

Game G1.`−1.2: We now change all the masks a′(̀ )

0 to r(̀ )

0 in the vectors k(̀ )

i,ipfe, for all i ∈ [n]:

∀ i ∈ C ∪ H : k(̀ )

i,ipfe = (〈s,y(̀ )〉, 〈u,y(̀ )〉, a(̀ )

i,0z, r
′(̀ )

0 · y(̀ )[i])H∗i .

We recall that the model of security impedes the use of different sets of attributes among
clients i ∈ [n]. That is, the encryption receives the same set R for all challenge ciphertext
components, for all i ∈ [n]. We have to consider two cases:

– If 〈∆x,y(̀ )〉 6= 0, the security model implies that A(R) = 0 where A is the access structure
embedded in the key and R contains the attributes in the challenge ciphertext. Hence, for
all i ∈ [n], there exists no authorized set A ⊆ R for which we can find the reconstruction
vector (cj)j from the LSSS. That is, for all i ∈ [n], there are not enough a′(̀ )

j ·y(̀ )[i]/zj from
the components (ki,j)j of `-th functional key to combine with (ci,j)j and recover

∑
j∈A

cja
′(̀ )

j · y(̀ )[i]

zj
· τzj∆x[i] = τa′(̀ )

0 y`[i]∆x[i] .

Furthermore, because (a′(̀ )

j )j is a random labeling of a′(̀ )

0 using the underlying LSSS and

τ, zj
$← Zq, it holds that in this case, a′(̀ )

0 is perfectly indistinguishable from a uniformly
random value under the adversary’s view.
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– If 〈∆x,y(̀ )〉 = 0, the sum over i, j during decryption makes sure that the `-th key is still
capable of decrypting the challenge ciphertext from LoR if the policy is satisfied. More
specifically, let A ⊆ R be an authorized set for which we can find the reconstruction vector
(cj)j from the LSSS. Then, for all i ∈ [n], (cj)j can be used with (ki,j)j of `-th functional
key as well as the ciphertext components (ci,j)j to recover a(̀ )

0 . The calculation leads to:

n∑
i=1

∑
j∈A

ci,j × (cj · k(̀ )

i,j)

 =
∑
j∈A

(
n∑
i=1

ci,j × (cj · k(̀ )

i,j)

)

=
∑
j∈A

(
n∑
i=1

ψicja
(̀ )

i,jz + τcj · a′(̀ )

j ∆x[i]y(̀ )[i]

)

=

n∑
i=1

ψi

∑
j∈A

cja
(̀ )

i,jz


=

n∑
i=1

ψia
(̀ )

i,0z

n∑
i=1

(
ci,ipfe × k(̀ )

i,ipfe

)
=

n∑
i=1

(
ψia

(̀ )

i,0z + τa′(̀ )

0 y`[i]∆x[i]
)

=
n∑
i=1

ψia
(̀ )

i,0z

and it does not depend on a′(̀ )

0 anymore. This is also the only relation w.r.t a′(̀ )

0 that an
(even unbounded) adversary can deduce.

Totally, the change from a′(̀ )

0 to r(̀ )

0 is perfectly indistinguishable and Adv(G1.`−1.1) = Adv(G1.`−1.2).
Game G1.`−1.3: In this game, we apply Lemma 1 for each i ∈ [n] to the families

{(ci,j)j , ci,ipfe} and {(k(̀ )

i,j)j , k(̀ )

i,ipfe}

so as to clean the vectors {(ci,j)j}. All the family of vectors for i ∈ [n] are treated in parallel,
thanks to the same reasons when we go from G1.`−1.0 to G1.`−1.1. We remark that the basis
changes are done for (F,F∗) and for each i ∈ [n] the vectors (ci,j)j ,k

(̀ )

i,j are written with
appropriate coordinates.
There is a difference in comparison to the adaptive single-client proof. Because we are changing
all i ∈ [n] at the same time, if 〈∆x,y(̀ )〉 = 0 and the policy is satisfied having a reconstruction
vector (cj)j , the summation

n∑
i=1

∑
j

ci,j × (cj · k(̀ )

i,j)


always has the term

∑
j

cj ·

(
n∑
i=1

τa′(̀ )

j y`[i]∆x[i]

)
=
∑
j

τcja
′(̀ )

j 〈∆x,y(̀ )〉 .

Hence, the masks a′(̀ )

j does not affect the decryption. Otherwise, if 〈∆x,y(̀ )〉 6= 0 then the

policy is not satisfied and lacking a′(̀ )

0 in ki,ipfe does not affect the incapability of the key. We
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recall that in the adaptive single-client proof, we can only clean the mask a′(̀ )

j y(̀ )[i]/zj one
by one and that prevents us from completing the value 〈∆x,y(̀ )〉. Following Lemma 1, the
difference in advantages is:

|Adv(G0.`−1.3)− Adv(G0.`−1.2)| ≤ (P · (6P + 3) + 1) · AdvSXDH
G1,G2

(1λ) .

The game G1.`−1.3 is identical to G1.`.

We perform the transition from G1 = G1.0 to G1.K , whose total difference in advantages is:

|Adv(G1.K)− Adv(G1)| ≤ K · (2P · (6P + 3) + 2) · AdvSXDH
G1,G2

(1λ) .

We then use the subspace indistinguishability to clean the coordinate (3, 6) of ci,j and finally
arrive at G2. We have

|Adv(G2)− Adv(G1)| ≤ K(2P · (6P + 3) + 2) · AdvSXDH
G1,G2

(1λ) + 2 · AdvDDH
G1

(1λ) .

Game G3: We simulate any new random oracle query H(tag,R) by a random pair of elements in
G1. The distribution is identical and thus Adv(G3) = Adv(G2).

Game G4: In this game, the simulator first guesses the challenged tag among the Q queries to
the random oracle, which should be fixed for all queries to LoR. If the guess is not correct,
the simulator aborts and outputs 0. Then, for any new random oracle query H(tag′,R′) where

tag′ 6= tag, we respond by a random vector lying in span((1, µ)) ⊆ Z2
q , for µ

$← Zq. On the other

hand, the RO query H(tag,R) is still responded by
r

(ωtag,R, ω
′
tag,R)

z

1
where (ωtag,R, ω

′
tag,R) is a

pair of independent random elements in Zq. If the challenged tag is not guessed correctly, among
the Q RO queries, the simulation is aborted and outputs 0.

We use the random self-reducibility of DDH, where the running time of the simulator increases
by an additive factor O(Q · tG1) with tG1 being the time for one addition in G1 and Q being the
number of random oracle queries. We define Event(tag) to denote the event where the challenged
tag is guessed correctly, with probability 1/Q. We have

|Pr[G3 = 1 | Event(tag)]− Pr[G4 = 1 | Event(tag)]| ≤ AdvDDH
G1

(1λ) .

Notice that Pr[G4 = 1 | ¬Event(tag)] = 0 and the output of G3 is independent of Event(tag).
Therefore, we have

Adv(G4) =
1

Q
· Pr[G4 = 1 | Event(tag)]

+ Pr[¬Event(tag)] Pr[G4 = 1 | ¬Event(tag)]− 1

2

≥ 1

Q
·
(
Adv(G3)− AdvDDH

G1
(1λ)

)
and thus the difference in advantages is

Adv(G3) ≤ AdvDDH
G1

(1λ) +Q · Adv(G4) .

Game G5: In this game, we change the way the encryption keys eki are generated: for ri
$← Z4

q

eki = (si, ui, pi · (H(1)
i + µH

(2)
i − µri) , pi · ri , hi,3, f1, f2, f3) .



62

Similar to the selective proof, we use a basis change. From the beginning, the dual bases (Hi,H
∗
i )

are specified by Hi
$← Z4×4

q as part of msk and all Hi are kept hidden from the adversary:

Hi = Hi ·T; H∗i = H ′i ·T∗

where H ′i :=
(
H -1
i

)>
.

Then, before answering any query, the simulator perform a basis change on (Hi, H
′
i) to obtain:

Ki :=


1 µ 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ·Hi +


−µ · ri

µ · ri −H(2)
i

0

0

 =


H

(1)
i + µH

(2)
i − µri

µri

H
(3)
i

H
(4)
i

 .

With overwhelming probability, Ki will be invertible and is indeed a basis changing matrix. For
each corruption query Corrupt(i), the simulator returns:

eki = (si, ui, pi ·K(1)
i , pi ·K(2)

i , hi,3, f1, f2, f3)

and the ciphertext vectors are still written in (Hi,H
∗
i ):

LoR(i ∈ H,x∗0[i],x∗1[i], tag,R) ci,ipfe = (ωtag,Rpi, ω
′
tag,Rpi, ψi, τ∆x[i])Hi

Enc(i ∈ C ∪ H, xi, tag′ 6= tag,R′) ci,ipfe = (χtag′,R′pi, µχtag′,R′pi, ψ
′
i, 0)Hi .

We briefly recall the argument that was used in the selective scenario and is still applicable here.
This basis change from (Hi, H

′
i) to (Ki,K

′
i) is indistinguishable for the corrupted i because the

distribution of eki stays the same and even though eki behaves inconsistently w.r.t H(tag,R), i.e.

piK
(1)
i · JωtagK1 + piK

(2)
i ·

q
ω′tag

y
1
6= ωtagpi · hi,1 + ω′tagpi · hi,2

the security model requires that a corrupted i will not be queried to the challenge oracle LoR.
This means that the inconsistency is unknown to the adversary. Moreover, all ciphertexts from
Enc, which must be under tag′ 6= tag and are thus consistent with the new eki, will behave as
usual if one tries to decrypt them later.

For an honest i, the encryption key eki is never revealed and even if queried to Enc for a
ciphertext at index i, it must be under the a different tag′ 6= tag. Consequently, even an
unbounded adversary will only obtain

piK
(1)
i ·

q
χtag′,R′

y
1

+ piK
(2)
i ·

q
µχtag′,R′

y
1

= χtag′,R′pi · hi,1 + µχtag′,R′pi · hi,2 ,

where hi,1,hi,2 are totally hidden. This means that the (even unbounded) adversary’s view stays
the same for this honest client i. Finally, we have Adv(G5) = Adv(G4).

Game G6: In this game, we change the challenge ciphertext from using (si, ui) to encrypt x∗b [i] to
using (s′i, u

′
i) to encrypt x∗0[i] for i ∈ [n]. The new vectors s′ = s +∆s and u′ = u +∆u satisfy

s′ := s +∆s

u′ := u +∆u



63

where (∆s, ∆u) satisfies {
∆s + µ ·∆u = 0

ωtag,R ·∆s + ω′tag,R ·∆u = ∆x .

The challenge ciphertext does not change and so do the encryption keys for corrupted i, due to
the constraint ∆x[i] = 0. Moreover, we observe that if 〈∆x,y(̀ )〉 = 0, then ∆s = ∆u = 0.
The functional key that are using (s,u) will be changed to:

k(̀ )

i,ipfe = (〈s′,y(̀ )〉 − 〈∆s,y(̀ )〉, 〈u′,y(̀ )〉 − 〈∆u,y(̀ )〉, a(̀ )

i,0z, r
(̀ )

0 y(̀ )[i])H∗i .

We use a basis change to “correct” the extra terms 〈∆s,y〉 and 〈∆u,y〉. Given a DSDH instance
(JaK2 , JbK2 , JcK2) where ρ := c− ab is either 0 or 〈∆u,y(̀ )〉, the matrices (Hi, H

′
i) are defined as

below:

Hi :=

1 0 −µa
0 1 a
0 0 1


1,2,4

H ′i :=
(
H -1
i

)>
=

 1 0 0
0 1 0
µa −a 1


1,2,4

Hi = Hi ·T; H∗i = H ′i ·T∗

This will change hi,1,hi,2 and h∗i,4. However, even for a corrupted i, all the adversary knows
from eki is

pi · (H(1)
i + µH

(2)
i − µri), pi · ri

where ri
$← Z4

q . Hence, the changes remain indistinguishable from the adversary’s view. In
addition, we do not have JaK1 to compute each new vector hi,1,hi,2 but the simulation of the
encryption oracles concerns solely the combination hi,1 + µhi,2 which indeed does not involve
JaK1. Therefore the simulation can still be performed.
The ciphertexts component from LoR, which are queried only for honest i ∈ H, can be written
in T to see how they will be affected:

ci,ipfe

= (ωtag,R · pi∆x[i]/ε, ω′tag,R · pi∆x[i]/ε, ψi, τ∆x[i])T

=
(
ωtag,R · pi∆x[i]/ε, ω′tag,R · pi∆x[i]/ε, ψi, τ∆x[i] +

(ω′tag,R−µωtag,R)api∆x[i]

ε

)
Hi

=
(
ωtag,R · pi∆x[i]/ε, µωtag,R · pi∆x[i]/ε, ψi,

(
τ +

a(ω′tag,R−µωtag,R)

nε

)
∆x[i]

)
Hi

where the simulator can set pi := 1/n at the Setup phase for all i ∈ C ∪ H and define

ε := 〈∆x,1〉 =
∑
i∈H

∆x[i] .

We note that ε can be known at the time the adversary send the challenge ciphertexts and
(pi ·∆x[i]/ε)i∈H together with (pi)i∈C still satisfy∑

i∈H
pi ·

∆x[i]

ε
+
∑
i∈C

pi = 1

which is required for decryption. The change from pi to pi∆x[i]/ε for all ciphertext returned
from LoR is indistinguishable under the adversary’s view because the encryption key eki is not
revealed to the adversary. Under this basis change, the scalar τ is updated to

τ ′ := τ +
a(ω′tag,R − µωtag,R)

nε



64

and stays the same for all challenge ciphertext components ci,ipfe as desired because it does not
depend on i. On the other hand, the ciphertexts component from Enc can be written in T:

ci,ipfe = (χtag′,R′ · pi, µχtag′,R′ · pi, ψ′i, 0)T

= (χtag′,R′ · pi, µχtag′,R′ · pi, ψ′i, 0− µaχtag′,R′pi + µaχtag′,R′pi)Hi

= (χtag′,R′ · pi, µχtag′,R′ · pi, ψ′i, 0)Hi ,

which retains their normal form required for the Enc oracle. We now consider the correction of
the key components:

k(̀ )

i,ipfe = (〈s′,y(̀ )〉 − 〈∆s,y〉, 〈u′,y(̀ )〉 − 〈∆u,y(̀ )〉, a(̀ )

i,0z, r
(̀ )

0 · y
(̀ )[i]− b)H∗i

+ (−µc, c, 0, b)T∗

= (〈s′,y(̀ )〉 − 〈∆s,y(̀ )〉, 〈u′,y(̀ )〉 − 〈∆u,y(̀ )〉, a(̀ )

i,0z, r
(̀ )

0 · y
(̀ )[i]− b)H∗i

+ (−µρ, ρ, 0, b)H∗i

= (〈s′,y(̀ )〉 − 〈∆s,y(̀ )〉 − µρ, 〈u′,y(̀ )〉 − 〈∆u,y(̀ )〉+ ρ, a(̀ )

i,0z, r
(̀ )

0 y(̀ )[i])H∗i .

Notice that (−b) · h∗i,4 can be computed using JbK2 and H
(4)
i . If ρ = 0 then we are not correcting

the key components. Otherwise, if ρ = 〈∆u,y(̀ )〉, using the property ∆s + µ∆u = 0, the
vectors k(̀ )

i,ipfe are corrected to the form they have in G5. The difference in advantages is

|Adv(G6)− Adv(G5)| ≤ 2 · AdvDDH
G2

(1λ).

The challenge ciphertext in G6 does not depend on b anymore and thus Adv(G6) = 0. We have
the bound:

Advmc-ind-cpa
E,F ,A (1λ) ≤ (2KP · (6P + 3) + 2K + 2Q+ 5) · AdvSXDH

G1,G2
(1λ)

and the proof is concluded. ut

B.5 Security Theorem for Section 5.4

Theorem 4. Let E = (Setup,Extract,Enc,Dec) be a multi-client IPFE scheme with fine-grained ac-
cess control via LSSS, resulted from Section 5.4 in a bilinear group setting (G1,G2,Gt, g1, g2, gt, e, q).
Then, E is secure against chosen-plaintext attacks if the SXDH assumption holds for G1 and G2.
More specifically, let K denote the number of functional key queries, P denote the maximum number
of attributes in the access structure A queried for functional keys, and Q denote the number of
random oracle (RO) queries. We have the following bound:

Advmc-ind-cpa
E,F ,A (1λ) ≤ (2KP · (6P + 3) + 3K + 2Q+ 5) · AdvSXDH

G1,G2
(1λ)

and in the reduction there is an additive loss O(Q · tG1) in time, where tG1 is the cost for one addition
in G1.

Proof (Sketch). The main sequence of games is similar to that used in the proof of Theorem 3. The
main difference is depicted in Figure 16 and Figure 17. The transition from G0 to G1 is similar to
what we have done in the proof of Theorem 3. The sequence of games to go from G1 to G2 is given
in Figure 18. Proceeding key by key, we again rely on Lemma 1 to mask the key components by
another random labeling (a′(̀ )

i,j )j←Λ
a
′(̀ )
i,0

(A), indexed by i ∈ [n]. There is a difference comparing

with the proof of Theorem 3: we use different a new random labeling (a′(̀ )

i,j )j←Λ
a
′(̀ )
i,0

(A) for each i,
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meanwhile in the less flexible construction’s proof, we can use the same new labeling during the
parallel application of Lemma 1 for all i.

In contrast to the less flexible scheme in Section 5.2, the step to replace a′(̀ )

i,0 is more delicate.
The fact that we have to use an independent new labeling for each client i comes from the current
situation where each client can have a ciphertext component encrypted under different (tag,Ri).
As a result, for different i 6= i′, we cannot treat all (a′(̀ )

i,0 , a
′(̀ )

i′,0) in a unified manner because if
A(Ri) 6= A(Ri′), during decryption one can be removed by the KP-ABE part but the other cannot.
We emphasize that even though in this case the functional key under A is not allowed to decrypt
the challenge ciphertext, the adversary’s view over (a′(̀ )

i,0 , a
′(̀ )

i′,0) is already different.
To go from G1 to G2, we use a sequence of hybrids indexed by ` ∈ [K] for the `-th functional

key. The transition from G1.`−1.0 to G1.`−1.1 is the parallel applications of Lemma 1. We recall the
points that allow us to apply the lemma in parallel, similarly as in the proof of Theorem 3:

– We note that the basis changes of (F,F∗) does not depend on i but only on the attributes j.
The computation over c-vectors in Lemma 1 can be done for the vectors (ci,j)j and (k(̀ )

i,j)j at
the same time for all i ∈ [n], by setting the appropriate coordinates in (W,W∗) and seeing how
they are affected under these basis changes to produce the final vectors in (F,F∗).

– When we perform a sequence of hybrids indexed by an attribute m, e.g. to introduce the factor
1/zj , only the vectors k(̀ )

i,m have non-zero coordinate at f∗5 and ci,m have non-zero coordinate at

f5. Hence, the relating basis changes will affect only those k(̀ )

i,m, ci,m for all i ∈ [n] at once.

– Each client i has the vectors ci,ipfe and k(̀ )

i,ipfe lying in separate dual bases (Hi,H
∗
i ) so the basis

changing matrices can be written independently for each client.

In the proof of Theorem 3, the transition from G1.`−1.1 to G1.`−1.2 is a statistical transition
because the same R is used for all ciphertext components of client i, which means for all i ∈ [n]
either the new labels added from Lemma 1 cannot be removed using LSSS, thus indistinguishable
from a totally random value, or they regroups together to obtain the shared secret multiplied by
〈∆x,y(̀ )〉 = 0 due to the security model. In this new, more flexible construction, because of the
potential different view w.r.t (a′(̀ )

i,0 , a
′(̀ )

i′,0) we explained above, the transition is not statistical anymore.
Given a DDH instance (JaK2 , JbK2 , JcK2) where ρ := c− ab is either 0 or a uniformly random value,
we use the basis changes for (Hi,H

∗
i ), in parallel for all i ∈ [n], to mask a′(̀ )

i,0 with a random value

r(̀ )

0 . The working matrices are:

H :=

[
1 −a
0 1

]
4,5

H ′ :=
(
H -1

)>
=

[
1 0
a 1

]
4,5

Hi = Hi ·T; H∗i = H ′i ·T∗ .

The affected vectors are hi,4,h
∗
i,5 but they are hidden from the adversary. For all i, the key components

can be written as follows:

k(̀ )

i,ipfe = (〈s,y(̀ )〉, 〈u,y(̀ )〉, a(̀ )

i,0z`, a
(̀ )

i,0 · y
(̀ )[i], d(̀ )

A,i − b · y
(̀ )[i])H∗i + (0, 0, 0, c · y(̀ )[i], b · y(̀ )[i])T∗

= (〈s,y(̀ )〉, 〈u,y(̀ )〉, a(̀ )

i,0z`, (a
(̀ )

i,0 + ρ) · y(̀ )[i], d(̀ )

A,i)H∗i .

At the same time, despite the fact that we cannot compute hi,4, the ciphertext components can be
written directly in T to observe the impact of this basis change:

ci,ipfe = (ωtagpi, ω
′
tagpi, ψi, τ∆x[i], θ∆x[i])T

= (ωtagpi, ω
′
tagpi, ψi, τ∆x[i], (θ + aτ)∆x[i])Hi .
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The change in the 5-th component of ci,ipfe returned from LoR, which is needed to preserve their
“decryptability” in case the key’s policy is satisfied, is unrecognizable because θhi,5 is not revealed to
the adversary, for all honest i queried to LoR. The value θ∆x[i] is updated to θ′i := (θ + aτ)∆x[i].
Now, there is a subtle point that we need to preserve the correction of the key so that it can decrypt
the challenge ciphertext if all A(Ri) = 1. In other words, the sharing (d(̀ )

A,i)i∈[n] should still work
with the new values (θi)i in the challenge ciphertext from LoR. Actually the 5-th coordinate in
ci,ipfe is different among different i from LoR, but if the correction is preserved w.r.t LoR then the
simulation still succeeds as the ciphertexts from Enc are always kept normal. Moreover, to avoid
the mix-and-match attack mentioned in Section 5.4, the sharing (d(̀ )

A,i)i∈[n] should be randomised for

each `. To resolve this, we can sample α
$← Zq and then define for i ∈ [n]:

d(̀ )

A,i := αy(̀ )[i] .

It can be verified that the new (θi · d(̀ )

A,i)i∈[n] is still a randomized n-out-of-n sharing of 0 if
〈∆x,y(̀ )〉 = 0. When performing the product in DPVS, we have

ci,ipfe × k(̀ )

i,ipfe = 〈s,y(̀ )〉ωtagpi + 〈u,y(̀ )〉ω′tagpi + a(̀ )

i,0z`ψi + (a(̀ )

i,0 + ρ)τ∆x[i]y(̀ )[i] + (θ + aτ)∆x[i] · d(̀ )

A,i

and summing over i ∈ [n] will leads to the correct result for decryption, when A(Ri) = 1 for all i
(which implies 〈∆x,y(̀ )〉 = 0).

If ρ = 0 we are in the previous hybrid G1.`−1.1, else we are in G1.`−1.2. A final remark is that we
use the same ρ for all i, so as to have the same random mask and later it can be factored out to
ensure decryption’s correctness. The transition from G1.`−1.2 to G1.`−1.3 = G1.` is another parallel
application of Lemma 1 in order to “redo” the new labeling of a′(̀ )

i,0 for all i. In the end, after maksing
all K functional key queries having an extra basis change that depends on DDH in G2, an additional
K · AdvDDH

G2
(1λ) in the security reduction will ensue.

After all K functional keys are turned semi-functional, we note that a similar argument as in
Theorem 3, using G3 in Figure 16 and the games in Figure 17, will work idem because we do not
need further intervention from the 5-th coordinates of (Hi,H

∗
i ). ut
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Game G0 : H(tag) → (JωtagK1 ,
q
ω′tag

y
1
), H(tag′) → (Jχtag′K1 ,

q
χ′tag′

y
1
), a(`)

i,0

$← Zq, (a(`)

i,j)j∈List-Att(A) ←
Λ
a
(`)
i,0

(A),
∑n
i=1 d

(`)

A,i = 0, θ
$← Zq

∀ i ∈ C ∪H eki (si, ui, pi ·H(1)
i , pi ·H(2)

i , hi,3, θhi,5, f1, f2, f3)

LoR(i ∈ H,x∗0[i],x∗1[i], tag,R) ci,j ( σi,j · (1,−j) ψi 0 0 0 0 0 )F
Enc(i ∈ C ∪H, tag′ 6= tag,R′) ci,j ( σ′i,j · (1,−j) ψ′i 0 0 0 0 0 )F
∀ i ∈ C ∪H k(`)

i,j ( π(`)

i,j · (j, 1) a(`)

i,j · z` 0 0 0 0 0 )F∗

LoR(i ∈ H,x∗0[i],x∗1[i], tag,R) ti
q
ωtag · si + ω′tag · ui + x∗b [i]

y
1

Enc(i ∈ C ∪H, xi, tag′ 6= tag,R′) ti
q
χtag′ · si + χ′tag′ · ui + xi

y
1

∀ i ∈ C ∪H m(`)

i

q
y(`)[i]

y
2

LoR(i ∈ H,x∗0[i],x∗1[i], tag,R) ci,ipfe ( piωtag piω
′
tag ψi 0 θ )Hi

Enc(i ∈ C ∪H, xi, tag′ 6= tag,R′) ci,ipfe ( piχtag′ piχ
′
tag′ ψ′i 0 θ )Hi

∀ i ∈ C ∪H k(`)

i,ipfe ( 〈s,y(`)〉 〈u,y(`)〉 a(`)

i,0z` 0 d(`)

A,i )H∗i

Game G1 : H(tag) → (JωtagK1 ,
q
ω′tag

y
1
), H(tag′) → (Jχtag′K1 ,

q
χ′tag′

y
1
), a(`)

i,0

$← Zq, (a(`)

i,j)j∈List-Att(A) ←
Λ
a
(`)
i,0

(A),
∑n
i=1 d

(`)

A,i = 0, θ
$← Zq

LoR(i ∈ H,x∗0[i],x∗1[i], tag,R) ci,j ( σi,j · (1,−j) ψi τ∆x[i] 0 τ∆x[i]zj 0 0 )F
Enc(i ∈ C ∪H, tag′ 6= tag,R′) ci,j ( σ′i,j · (1,−j) ψ′i 0 0 0 0 0 )F
∀ i ∈ C ∪H k(`)

i,j ( π(`)

i,j · (j, 1) a(`)

i,j · z` 0 0 0 0 0 )F∗

LoR(i ∈ H,x∗0[i],x∗1[i], tag,R) ci,ipfe ( piωtag piω
′
tag ψi τ∆x[i] θ )Hi

Enc(i ∈ C ∪H, xi, tag′ 6= tag,R′) ci,ipfe ( piχtag′ piχ
′
tag′ ψ′i 0 θ )Hi

∀ i ∈ C ∪H k(`)

i,ipfe ( 〈s,y(`)〉 〈u,y(`)〉 a(`)

i,0z` 0 d(`)

A,i )H∗i

Game G2 : H(tag)→ (JωtagK1 ,
q
ω′tag

y
1
), H(tag′)→ (Jχtag′K1 ,

q
χ′tag′

y
1
), a′(`)i,0

$← Zq, (a′(`)i,j )j ← Λ
a
′(`)
i,0

(A),
∑n
i=1 d

(`)

A,i =

0, θ
$← Zq

LoR(i ∈ H,x∗0[i],x∗1[i], tag,R) ci,j ( σi,j · (1,−j) ψi 0 0 0 )F
Enc(i ∈ C ∪H, tag′ 6= tag,R′) ci,j ( σ′i,j · (1,−j) ψ′i 0 0 0 )F
∀ i ∈ C ∪H k(`)

i,j ( π(`)

i,j · (j, 1) a(`)

i,j · z` 0 0 0 )F∗

LoR(i ∈ H,x∗0[i],x∗1[i], tag,R) ci,ipfe ( piωtag piω
′
tag ψi τ∆x[i] θ )Hi

Enc(i ∈ C ∪H, xi, tag′ 6= tag,R′) ci,ipfe ( piχtag′ piχ
′
tag′ ψ′i 0 θ )Hi

∀ i ∈ C ∪H k(`)

i,ipfe ( 〈s,y(`)〉 〈u,y(`)〉 a(`)

i,0z` r(`)0 · y(`)[i] d(`)

A,i )H∗i

Game G3 : H(tag) =
r
RF(tag)

z

1
:= (JωtagK1 ,

q
ω′tag

y
1
), JH(tag′)K1 =

r
RF(tag′)

z

1
:= (Jχtag′K1 ,

q
χ′tag′

y
1
)

Fig. 16: Games G0,G1,G2,G3 for Theorem 4. The sets H and C contain honest and corrupted i ∈ [n],
respectively. The index j runs in List-Att(A) for key components and in R for ciphertext components.
The index ` runs in {1, . . . ,K} for the functional key queries. The function H is modeled as a
random oracle. In G3 we use a random function RF : Tag→ (Z∗q)2.
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Game G4 : µ
$← Zq,H(tag) := JRF(tag)K1 := (JωtagK1 ,

q
ω′tag

y
1
), H(tag′) := JRF′(tag′) · (1, µ)K1 = (Jχtag′K1 , Jµχtag′K1)

∀ i ∈ C ∪H eki (si, ui, pi ·H(1)
i , pi ·H(2)

i , hi,3, θhi,5, f1, f2, f3)

LoR(i ∈ H,x∗0[i],x∗1[i], tag,R) ti
q
ωtag · si + ω′tag · ui + x∗b [i]

y
1

Enc(i ∈ C ∪H, xi, tag′ 6= tag,R′) ti
r
χtag′ · si + µχtag′ · ui + xi

z

1

∀ i ∈ C ∪H m(`)

i

q
y(`)[i]

y
2

LoR(i ∈ H,x∗0[i],x∗1[i], tag,R) ci,ipfe ( piωtag piω
′
tag ψi τ∆x[i] θ )Hi

Enc(i ∈ C ∪H, xi, tag′ 6= tag,R′) ci,ipfe ( piχtag′ piµχtag′ ψ′i 0 θ )Hi

∀ i ∈ C ∪H k(`)

i,ipfe ( 〈s,y(`)〉 〈u,y(`)〉 a(`)

i,0z` r(`)0 y(`)[i] d(`)

A,i )H∗i

Game G5 : µ
$← Zq,H(tag,R) := (JωtagK1 ,

q
ω′tag

y
1
), H(tag′,R′) := (Jχtag′K1 , Jµχtag′K1), ri

$← Z4
q

∀ i ∈ C ∪H eki (si, ui, pi · (H
(1)
i + µH

(2)
i − µri) , pi · ri , hi,3, θhi,5 f1, f2, f3)

Game G6 : ri
$← Z4

q, µ, v
(`)

i,0

$← Zq,H(tag) := (JωtagK1 ,
q
ω′tag

y
1
), H(tag′) := (Jχtag′K1 , Jµχtag′K1). We also define

s′ = s +∆s,u′ = u +∆u, where ∆s,∆u ∈ Znq s.t. ∆s + µ∆u = 0 and ωtag ·∆s + ω′tag ·∆u = ∆x

i ∈ C ∪H eki ( s′i , u′i , pi · (H(1)
i + µH

(2)
i − µri), pi · ri, hi,3, hi,5, f1, f2, f3)

LoR(i ∈ H,x∗0[i],x∗1[i], tag,R) ti
r
ωtag · s′i + ω′tag · u′i + x∗0[i]

z

1

Enc(i ∈ C ∪H, xi, tag′ 6= tag,R′) ti
r
χtag′ · s′i + µχtag′ · u′i + xi

z

1

∀ i m(`)

i

q
y(`)[i]

y
2

LoR(i ∈ H,x∗0[i],x∗1[i], tag,R) ci,ipfe ( piωtag piω
′
tag ψi τ ′∆x[i] θ )Hi

Enc(i ∈ C ∪H, xi, tag′ 6= tag,R′) ci,ipfe ( piχtag′ piµχtag′ ψ′i 0 θ )Hi

∀ i ∈ C ∪H k(`)

i,ipfe ( 〈 s′ ,y(`)〉 〈 u′ ,y(`)〉 a(`)

i,0z` r(`)0 y(`)[i] d(`)

A,i )H∗i

Fig. 17: Games G4,G5,G6 for Theorem 4. The sets H and C contain honest and corrupted i ∈ [n],
respectively. The index j runs in List-Att(A) for key components and in R for ciphertext components.
The index ` runs in {1, . . . ,K} for the functional key queries. In G4 we use a random function
RF′ : Tag→ Z∗q .
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Game G1.`−1.0 = G1.`−1

Game G1.`−1.1 : H(tag)→ (JωtagK1 ,
q
ω′tag

y
1
), H(tag′)→ (Jχtag′K1 ,

q
χ′tag′

y
1
), a′(`)i,0

$← Zq, (a′(`)i,j )j ← Λ
a
′(`)
i,0

(A), ∆x :=

x∗b [i]− x∗0[i]

LoR(i ∈ H,x∗0[i],x∗1[i], tag,R) ci,j ( σi,j · (1,−j) ψi τ∆x[i] 0 τ∆x[i]zj 0 0 )F
Enc ci,j ( σ′i,j · (1,−j) ψ′i 0 0 0 0 0 )F

∀ i ∈ C ∪H, `′ 6= ` k(`′)
i,j ( π(`′)

i,j · (j, 1) a(`′)
i,j · z` 0 0 0 0 0 )F∗

∀ i ∈ C ∪H k(`)

i,j ( π(`)

i,j · (j, 1) a(`)

i,j · z` 0 0 a′(`)i,j y
(`)[i]/zj 0 0 )F∗

LoR(i ∈ H,x∗0[i],x∗1[i], tag,R) ci,ipfe ( ωtagpi ω′tagpi ψi τ∆x[i] θ )Hi

(i ∈ C ∪H, xi, tag′ 6= tag,R′) ci,ipfe ( χtag′pi χ′tag′pi ψ′i 0 θ )Hi

∀ i ∈ C ∪H, `′ < ` k(`′)
i,ipfe ( 〈s,y(`′)〉 〈u,y(`′)〉 a(`′)

i,0 z` r(`
′)

0 · y(`)[i] d(`′)
i )H∗i

∀ i ∈ C ∪H k(`)

i,ipfe ( 〈s,y(`)〉 〈u,y(`)〉 a(`)

i,0z` a′(`)i,0 · y
(`)[i] d(`)

A,i )H∗i
∀ i ∈ C ∪H, `′ > ` k(`′)

i,ipfe ( 〈s,y(`′)〉 〈u,y(`′)〉 a(`′)
i,0 z` 0 d(`′)

i )H∗i

Game G1.`−1.2 : H(tag)→ (JωtagK1 ,
q
ω′tag

y
1
), H(tag′)→ (Jχtag′K1 ,

q
χ′tag′

y
1
)

LoR(i ∈ H,x∗0[i],x∗1[i], tag,R) ci,j ( σi,j · (1,−j) ψi τ∆x[i] 0 τ∆x[i]zj 0 0 )F
Enc(i ∈ C ∪H, tag′ 6= tag,R′) ci,j ( σ′i,j · (1,−j) ψ′i 0 0 0 0 0 )F

∀ i ∈ C ∪H, `′ 6= ` k(`′)
i,j ( π(`′)

i,j · (j, 1) a(`′)
i,j · z` 0 0 0 0 0 )F∗

∀ i ∈ C ∪H k(`)

i,j ( π(`)

i,j · (j, 1) a(`)

i,j · z` 0 0 a′(`)j y(`)[i]/zj 0 0 )F∗

LoR(i ∈ H,x∗0[i],x∗1[i], tag,R) ci,ipfe ( ωtagpi ω′tagpi ψi τ∆x[i] θ′i )Hi

Enc(i ∈ C ∪H, xi, tag′ 6= tag,R′) ci,ipfe ( χtag′pi χ′tag′pi ψ′i 0 θ )Hi

∀ i ∈ C ∪H, `′ < ` k(`′)
i,ipfe ( 〈s,y(`′)〉 〈u,y(`′)〉 a(`′)

i,0 z` r(`
′)

0 · y(`)[i] d(`′)
i )H∗i

∀ i ∈ C ∪H k(`)

i,ipfe ( 〈s,y(`)〉 〈u,y(`)〉 a(`)

i,0z` (a′(`)i,0 + r(`)0 ) · y(`)[i] d(`)

A,i )H∗i
∀ i ∈ C ∪H, `′ > ` k(`′)

i,ipfe ( 〈s,y(`′)〉 〈u,y(`′)〉 a(`′)
i,0 z` 0 d(`′)

i )H∗i

Game G1.`−1.3 = G1.` : H(tag)→ (JωtagK1 ,
q
ω′tag

y
1
), H(tag′)→ (Jχtag′K1 ,

q
χ′tag′

y
1
)

LoR(i ∈ H,x∗0[i],x∗1[i], tag,R) ci,j ( σi,j · (1,−j) ψi τ∆x[i] 0 τ∆x[i]zj 0 0 )F
Enc(i ∈ C ∪H, tag′ 6= tag,R′) ci,j ( σ′i,j · (1,−j) ψ′i 0 0 0 0 0 )F
∀ i ∈ C ∪H k(`)

i,j ( π(`)

i,j · (j, 1) a(`)

i,j · z` 0 0 0 0 0 )F∗

LoR(i ∈ C ∪H, tag,R) ci,ipfe ( ωtagpi ω′tagpi ψi τ∆x[i] θ )Hi

Enc(i ∈ C ∪H, xi, tag′ 6= tag,R′) ci,ipfe ( χtag′pi χ′tag′pi ψ′i 0 θ )Hi

∀ i ∈ C ∪H k(`)

i,ipfe ( 〈s,y(`)〉 〈u,y(`)〉 a(`)

i,0z` r(`)0 · y(`)[i] d(`)

A,i )H∗i

Fig. 18: The sequence of hybrids to go from G1.`−1 to G1.`, where ` ∈ [K]. We have G1.0 = G1 and
G1.K = G2 in the proof of Theorem 4. The sets H and C contain honest and corrupted i ∈ [n],
respectively. The index j runs in List-Att(A) for key components and in R for ciphertext components.
The index ` runs in {1, . . . ,K} for the functional key queries. The function H is modeled as a
random oracle.
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