
Cache-22: A Highly Deployable End-To-End Encrypted Cache

System with Post-Quantum Security∗

Keita Emura§, Shiho Moriai§, Takuma Nakajima¶, and Masato Yoshimi¶

§National Institute of Information and Communications Technology (NICT), Japan.
¶TIS Inc., Japan.

February 22, 2022

Abstract

Cache systems are crucial for reducing communication overhead on the Internet. The
importance of communication privacy is being increasingly and widely recognized; therefore,
we anticipate that nearly all end-to-end communication will be encrypted via secure sockets
layer/transport layer security (SSL/TLS) in the near future. Herein we consider a catch-22
situation, wherein the cache server checks whether content has been cached or not, i.e., the
cache server needs to observe it, thereby violating end-to-end encryption. We avoid this catch-
22 situation by proposing an encrypted cache system which we call Cache-22. To maximize
its deployability, we avoid heavy, advanced cryptographic tools, and instead base our Cache-
22 system purely on traditional SSL/TLS communication. It employs tags for searching, and
its design concept enables the service provider to decide, e.g., via an authentication process,
whether or not a particular user should be allowed to access particular content. We provide
a prototype implementation of the proposed system using the color-based cooperative cache
proposed by Nakajima et al. (IEICE Trans. 2017) under several ciphersuites containing post-
quantum key exchanges in addition to ECDHE (Elliptic Curve-based). We consider NIST
Post-Quantum Cryptography round 3 finalists and alternate candidates: lattice-based (Kyber,
SABER, NTRU), code-based (BIKE), and isogeny-based (SIKE). Compared to direct HTTPS
communication between a service provider and a user, employing our Cache-22 system has a
merit to drastically reduce communications between a cache server and the service provider
(approximately 95%) which is effective in a hierarchical network with a cost disparity.

1 Introduction

1.1 Difficulty in Deploying Services over Encrypted Communication

The importance of communication privacy is being increasingly and widely recognized. For example,
NSS labs reported that the amount of secure sockets layer/transport layer security (SSL/TLS)
encrypted Internet traffic grew by 90% between July 2015 and July 2016, and predicted that 75%
of all the web traffic will be encrypted by 2019 [47]. Actually, Fahmida reported that “At the start
of 2019, 87 percent of Web traffic was encrypted, compared to just 53 percent in 2016.” [51]. We
anticipate that, in the near future, almost all communications will be encrypted. However, although
SSL/TLS provides end-to-end encryption, this prevents many useful services from working well.

∗An extended abstract appeared at ISITA 2020 [30]. This is the full version.

1

One such example is virus detection. If a traffic is not encrypted and middlebox can observe the
plaintext data, then it has a way to detect whether or not viruses are present. On the contrary, if
traffic is encrypted, then inspection becomes much more difficult [20,34,37,56]. Current deep-packet
inspection (DPI) [37] solutions involve middleboxes taking a man-in-the-middle (MITM) attack-
like approach, i.e., decrypting all traffic, inspecting the plaintext data, and then reencrypting the
data. Since this compromises communications privacy, end-to-end encryption cannot meaningfully
preserve privacy anymore. Constantin has reported that Kaspersky also employs such MITM-style
inspections [24].

1.2 Our Target: A Secure and Highly Deployable End-To-End Encrypted Cache
System

Our main aim is to propose a cache system that operates over encrypted communication channels.
Cache systems are clearly vital for reducing communication overheads on the Internet, but they
raise a dilemma: if they can observe the data, then they compromise privacy. On the other hand,
if the data is encrypted, it is non-trivial for the cache server to check whether or not it holds a copy
of particular encrypted content. When Moldovan et al. [45] investigated the effectiveness of a web
cache in a field study, they noted that traditional caching might become unfeasible over hypertext
transfer protocol secure (HTTPS).

In order to establish a secure encrypted cache system, we need to consider how users will decrypt
ciphertexts: when the cache server stores ciphertexts that are encrypted by a certain way, it cannot
know in advance who will later request them. At first glance, the most reasonable approach is to
encrypt the content with user-independent keys, but that means users who request a particular piece
of content and receive the corresponding ciphertext from the server will not know the associated
decryption key. However, if we attempt to deal with this by encrypting each item with a user-
dependent key, then the ciphertext size depends on the number of users who will access that item,
leading to problematically large storage-space requirements in practice. One naive solution is,
again, to use a MITM-based design. Here, the cache server establishes separate secure channels
between (1) itself and the service provider and (2) itself and the end user. It then decrypts the
encrypted content (e.g., movies) sent by the provider so it can check whether it has a copy of the
content requested by the user. Although both communication channels are encrypted, meaning no
third party can observe the content, the server itself is aware of the content it stores and, more
seriously, it violates user privacy (e.g., by knowing what movies particular users want to watch).

A promising way to avoid the need for such MITM methods is to employ a cryptographic
approach, such as searchable encryption [28] (which allows servers to search encrypted data with-
out decryption), secure data deduplication [57] (which allows servers to check whether pieces of
encrypted content are the same), or proxy re-encryption (PRE) [17]. In the latter case, service
providers encrypt content using their own public keys, and these ciphertexts are stored on the
server. When a user needs to access a piece of encrypted content, the server re-encrypts the ci-
phertext for the user without having to decrypt it first. Xiong et al. [68] have already proposed a
PRE-based system called CloudSeal that provides cache functionality. Wood and Uzun [67] also
have proposed a similar PRE-based system in the Content-centric networking (CCN) context. How-
ever, under their schemes, the cache server has to manage re-encryption keys whose size depends
on the number of users, meaning the system is not scalable in that sense. Attribute-based encryp-
tion (ABE) can be employed to solve the storage-space explosion problem above, for example via
ABE with constant ciphertext size [13]. Moreover, Lai et al. [39] proposed a bandwidth-efficient
encrypted pattern matching protocol for secure middleboxes by employing a variant of symmetric
hidden vector encryption. However, the setup costs again raise a significant barrier to deploying

2

such systems on the Internet. In summary, although employing advanced cryptographic techniques
is a promising approach, the associated deployability issues mean it is still better to limit their use
as far as possible.

Leguay et al. [40] proposed an elegant approach that they call CryptoCache. With their system,
each piece of content is encrypted with a user-independent key kc to generate the ciphertext C,
via C ← Enckc(content), and the key is also encrypted with a user-dependent key ki, via Ck,i ←
Encki(kc). Then, the cache server sends both the ciphertext C and the encrypted decryption key
Ck,i to the user. Given these, the user can obtain the encryption key kc, via kc ← Decki(Ck,i),
and hence the content, via content ← Deckc(C). The Enc and Dec steps utilize a symmetric key
encryption (SKE) scheme, such as AES. One key element of Leguay et al.’s system is that they
introduce what they call a pseudo-identifier pid, which we call a tag in our system. Specifically,
a tag tag is assigned to each piece of content, chosen independently of it, and the (tag, C) pair is
cached. One drawback of CryptoCache is linkability since the same tag is always used for the same
content and a pair (tag, C) is sent via a public channel. Leguay et al. also proposed an extension
that provides unlinkability, where requests for the same content cannot be detected (except by the
(edge) cache server), by additionally employing a public key encryption (PKE) scheme to encrypt
the tag together with a temporal key. Since PKE is much less efficient than SKE, in practice it
is typically only employed for limited purposes, such as the initial key exchange. Thus, it would
be better to avoid using such a scheme where possible, for efficiency reasons. We remark that the
PKE part can be removed by employing a secure channel (as in our system) although Leguay et
al. did not mention it. However, since C and Ck,i are simultaneously sent to the user, unnecessary
information is still leaked where Ck,i is a ciphertext of a key that can decrypt C. Although we
are not sure such additional information leakage detracts the security or not, it would be better
to avoid to leak information as much as possible. Moreover, although they discussed the possible
implementation of their system over HTTP, they did not provide any concrete implementation
result, and thus it is not clear whether their system is feasible in practice or not.

1.3 Our Contribution

In this paper, we propose an encrypted cache system called Cache-22 that does not employ any
additional tools beyond SSL/TLS, which yields a highly deployable system. More precisely, we only
require an (initial) key exchange protocol, a SKE scheme, and a hash function, all of which have
been implemented in SSL/TLS. In Cache-22, we tweak the following procedure. In CryptoCache,
a user receives a pair of the encrypted content and the encrypted decryption key (C,Ck,i) from the
cache server. In Cache-22, first, users receive the encrypted content C from the cache server, and
later receive the encrypted decryption keys Ck,i from the service provider. This design enables the
service provider to decide (via an authentication process, for example) whether or not a particular
user should be allowed to access particular content. It also allows service providers to control which
content users can access. For example, if a user has downloaded several pieces of encrypted content
(e.g., several episodes of a drama), the service provider can make some of that content (e.g., the
first episode) available for free but require a fee for the rest. Alternatively, the cache server can
send the encrypted decryption keys to users alongside the content, and we can select between these
options without impacting deployability.

With our Cache-22 system, the cache server manages the encrypted content (ciphertexts) and
corresponding tags. Since the tags are chosen independently of the content, the cache server
cannot use them to obtain any information about the content.1 In our implementation, we generate

1Andreoletti et al. [9] studied the trade-off between caching and privacy by considering different metrics, such as
the hit-rate and retrieval latency. We may employ their results when deciding how to assign tags.

3

the tags using hash-based message authentication code (HMAC), because it is a pseudorandom
function [15]. Our Cache-22 system also provides unlinkability, as only the cache server can detect
requests for the same content. Although the CryptoCache extension discussed above also achieves
this by employing a PKE scheme, our Cache-22 system does not require any PKE scheme.

We also give a formal security model in a cryptographic manner unlike CryptoCache. Although
giving such a model is somewhat overlooked, this provable-security analysis attempt is quite effective
to understand what secure means here and what conditions are assumed for achieving the security.2

Due to our motivation of this paper, we require the cache server, which is modeled as an honest-
but-curious adversary (i.e., it always follows the protocol procedure but may try to extract some
information) in our security definition, cannot obtain information of contents. Here, we note that
the cache server is allowed to know the cache hit ratios (i.e., the popularity of particular content),
as this is important for deciding what content to cache.3 We also give a formal definition for
unlinkability which is informally defined in the CryptoCache paper.

We also give a prototype implementation of our Cache-22 system, and show that employing our
Cache-22 system has a merit to drastically reduce communications between a cache server and a
service provider which is effective in a hierarchical network with a cost disparity. For SSL/TLS part,
we first employ two ciphersuites that have been widely used, respectively, for efficiency comparison.

1. TLS ECDHE ECDSA WITH AES 128 GCM SHA256

2. TLS ECDHE RSA WITH AES 128 GCM SHA256

As a result, the ciphersuite with ECDSA is more efficient than RSA. We remark that any cipher-
suite can be employed since our system is purely generic. Recently, post-quantum ciphersuites
have been launched [3], and for post-quantum era it is quite important whether these ciphersuites
achieves a similar efficiency compared to those of when we employ classical ciphersuites. Thus, our
implementation contains post-quantum key exchanges following (precisely, these are key encapsu-
lation mechanisms (KEMs)). We considered NIST Post-Quantum Cryptography (PQC) round 3
finalists and alternate candidates [6].

3. Lattice-based (MLWE): Kyber512 [18]

4. Lattice-based (MLWR): LightSABER [27]

5. Lattice-based (NTRU): NTRU-HPS-2048-509 [22]

6. Code-based: BIKE1-L1-FO [11]

7. Isogeny-based: SIKE-p434 [1]

where MLWE stands for the module learning with errors problem and MLWR stands for the module
learning with rounding problem. NTRU is the name of the cryptosystem and is categorised as a
lattice based one in the NIST PQC Standardization document. We choice parameters that are

2For example, Cohn-Gordon et al. [23] gave a formal security model of the Signal protocol which has been adopted
by WhatsApp, Facebook Messenger, and so on. Aviram et al. [14] also gave a formal security model of forward
security for TLS 0-RTT (zero round-trip time).

3We may have to consider website fingerprinting attacks [19, 26, 33, 48] where an attacker identifies a user’s web
browsing information from the metadata information such as packet size, the timing information between packets, and
the direction of the packet, without breaking the underlying encryption. If we need to hide the content popularity data
to protect user preferences, we could employ Oblivious RAM (ORAM) [58] although this would sacrifice deployability
and efficiency. Another approach was investigated by Cui et al. [25] that involves hiding the content popularity data
by combining searchable encryption with a multi-CDN strategy, although this requires a performance trade-off.

4

insisted to have post-quantum security level similar to AES-128. As the concrete ciphersuite, we
employed these 5 post-quantum KEMs instead of employing ECDHE above, and other parts are
the same as those of TLS ECDHE ECDSA WITH AES 128 GCM SHA256. We compare these 7 ciphersuites
in total. For implementing PQC ciphersuites, we employed Go library for TLS key exchange [4]
and goliboqs [5] which is a Go wrapper around liboqs (C library for quantum-safe cryptography)
provided in [3]. We do not employ Classic-McEliece [16] in this paper, although it is one of the NIST
PQC round 3 finalists. The reason is that goliboqs, which is employed in our implementation, does
not support Classic-McEliece owing to its large public key size. Thus in this paper we employed
BIKE, which is a code-based one as in Classic-McEliece and is one of the NIST PQC round 3
alternate candidates. As a remark, we did not consider post-quantum authentication. The reason
is, as mentioned by Alkim et al. [8], “the protection of stored transcripts against future decryption
using quantum computers is much more urgent than post-quantum authentication. Authenticity
will most likely be achievable in the foreseeable future using proven pre-quantum signatures and
attacks on the signature will not compromise previous communication”. Thus, we mainly focus on
post-quantum key exchange in this paper.

Together with SSL/TLS, we employed a color-based cooperative cache system [46] as the under-
lying cache system. This associates servers and caches via color tags using its color tag management
algorithm. In addition to being efficient, this system is a good match for Cache-22 as the color
tag management algorithm is based purely on the content popularity. In addition, we also have
the alternative of assigning colors to tags irrespective of the content popularity. For example, if we
have reason to believe a particular piece of content (e.g., a movie or drama) will be popular even
before it becomes available, it can be cached in advance. We can also control how likely particular
content is to be cached by assigning multiple colors to the tags. Due to these features, we chose to
employ a color-based cache system, but other systems could also be used.

1.4 Differences from Proceedings Version

An extended abstract appeared at ISITA 2020 [30]. In this full version, we give a formal syntax
and security model (in a cryptographic manner) that we omitted in [30] (Section 2). We also add
security analysis section (Section 4). Moreover, we re-consider our implementation environment
and ciphersuites (Section 5). Briefly, in [30], we set up six virtual machines (VMs) for the allocated
role, on a public cloud provided by GMO [2]. In this version, we prepare on-premises environment,
and set up six physical hosts instead to VMs. Moreover, our implementation contains post-quantum
ciphersuites that were not contained in [30].

1.5 Related Work

The IBM Mobile First Platform [50] has launched a service called Encrypted Cache which is a
mechanism for storing sensitive data on the client side. In other words, the client downloads
data and caches it in local encrypted storage. However, since our goal is to provide a cache
system for encrypted communications, their system has totally different aims. Varnish Software [65]
offers their Varnish Total Encryption service, which prevents accidental cache leaks caused by
vulnerabilities such as Heartbleed [60] and Meltdown [42]. However, this is not meant to replace
SSL/TLS transport encryption as it encrypts and decrypts the data at rest, meaning that the
cache server can observe the data even though it effectively prevents cache leakage. Ericsson [31]
has developed an encrypted cache system called Blind cache which takes a somewhat different
approach than Cache-22 does. Here, the user (client/browser) obtains the decryption keys first and
only later obtains the encrypted content. Consequently, decryption keys, which should generally

5

be securely maintained, may be given to users unnecessarily. By contrast, our Cache-22 system
only gives decryption keys to users when necessary. In addition, as mentioned before, Cache-22
can easily be extended to enable service providers to decide whether or not to send decryption
keys to users. Sevilla et al. proposed a system called GroupSec [55], driven by the same concern
that motivated us, namely the fact that HTTPS, although it ensures complete security for clients
and servers, also interferes with transparent content caching by middleboxes. In addition, they
pointed out that previous attempts [43, 44, 49, 52, 61, 62] had modeled middleboxes as trustworthy
entities that can and should be authorized to read and write content. To remedy this, GroupSec
defines content groups, where members of a group are authorized to view particular content objects.
Briefly, each piece of content is encrypted with the service provider’s public key, the corresponding
decryption key is distributed via HTTPS, and transmission requests and responses are sent via
HTTP (not HTTPS). This, as they noted, has the drawback of significantly reducing privacy
when compared with HTTPS: users can see whether or not other users in the same group have
requested particular content, and can also identify members of groups they do not themselves
belong to. In addition, content is encrypted via PKE, and 2048-bit RSA is recommended.4 By
contrast, our Cache-22 system does not define such groups and all communications are separately
encrypted via SSL/TLS. Moreover, we only employ public key cryptosystem during the initial
key exchange phase (to establish a secure channel). All content is encrypted via SKE, namely
AES128, which significantly reduces the computational overhead compared with employing PKE to
encrypt/decrypt content. Araldo et al. [12] an architecture that they call Stochastic Dynamic Cache
Partitioning, where the Internet service provider partitions the cache space into slices, assigns each
slice to a different content provider, and then allows them to manage their slices remotely. This
architecture enables the transparent caching of encrypted content. Andreoletti et al. [10] proposed a
secret sharing-based cache system that allows the Internet service provider to calculate the amount
of cache storage each content provider is entitled to receive while guaranteeing network neutrality
and resource efficiency. Usman [64] also proposed an encrypted cache system by employing the
convergent encryption [29], where a content is hashed and it is used as encryption key such as
Enck(content) and k = Hash(content), and the key k is also encrypted by the public keys of all
authorized readers of the file. Jensen [38] proposed a cache system CryptoCache as independent
to the Leguay et al. work [40]. In the system, a mobile device (client) is required to have sufficient
capacity to store file encryption keys, e.g., 256 RSA key pairs are recommended in the paper, and
each file is encrypted by a PKE scheme. Again, we do not employ any public key cryptosystem for
encryption.

Providing post-quantum security is now drawing attention, and many implementation results
with post-quantum security have been shown so far. For example, TLS with post-quantum secu-
rity [54], end-to-end post quantum encryption [63], and an initial secret key sharing protocol for
Signal [32] and so on.

2 Syntax and Security Model

In this section, we define the syntax of Cache-22, and give a formal security definition. In our
system, there are three entities, a service provider (SP), a cache server (CS), and a user. Our
solution is simple-but-effective. The design concept is that we pay attention to the size of contents

4As another problem, MD5 hash function is recommended in [55] although it has been broken [66]. It should
be replaced to other hash functions. Since several attacks for SHA-1 also have been reported [41, 59], selecting
SHA-2 or SHA-3 are adequate options. We employ SHA-256 (which is a SHA-2 family with 256-bit output) in our
implementation.

6

(e.g., movies) are much bigger than that of keys for encryption/decryption. Thus, we consider
to minimize the number of communications for encrypted contents. Although we require some
interactions for sending keys, we can employ TLS session resumption [53], and no further key
exchange protocol is required except the initial handshake phase.

2.1 Syntax of Encrypted Cache System

Our system consists of three algorithms and three interactive sub-protocols. For interactive ones,
we denote

(out1, out2)← Protocol(Entity1(input1),Entity2(input2))

where Protocol is run between Entity1 (which takes as input input1) and Entity2 (which takes as
input input2), and Protocol is initially run by Entity1. Finally, Entity1 (resp. Entity2) obtains out1
(resp. out2) as the output of Protocol. We remark that the output may be ϵ when an entity obtains
nothing. For the sake of simplicity, basically we use the two-entity notation but sometimes a third
entity appears in the protocol, e.g., the SendContent protocol is run by a user and CS but CS sends
some values to SP as an internal process of the protocol. We assume that there are n contents.
But without loss of generality, SP always extends the number of contents by running the GenTable
algorithm again. We also assume that there is a SKE scheme (Enc,Dec) where for a key k ∈ K
and a message M ∈ M, Deck(C) = M holds where C ← Enck(M), K is a key space, and M is
a message space. We also assume that a user knows a content name c name, and SP can decide
the corresponding content contenti ∈ M from c name. Let CacheTbl be the cache table managed
by CS which has the structure CacheTbl = {(tagi, Ci)}, and is initiated as ∅. Although we simply
denote CacheTbl = {(tagi, Ci)} here, we can employ any cache systems.

Definition 2.1 (Syntax of Cache-22). An encrypted cache system Cache-22 consists of the following
three PPT (probabilistic polynomial-time) algorithms and three interactive protocols:

• GenTable(1κ, 1λ, SetOfContents): The table generation algorithm run by SP takes as input
security parameters κ, λ ∈ N and a set of contents SetOfContents = {contenti}ni=1. K :=
{0, 1}λ, andM is implicitly defined by λ. For each contenti ∈M, randomly choose kc,i ← K
and tagi ← T AG where T AG := {0, 1}κ is a tag space, and encrypt contenti such that
Ci ← Enckc,i(contenti). Output a content table CTbl = {(contenti, tagi, Ci, kc,i)}.

• ContentRequest(User(c name, ID), SP(ConTbl)): The ContentRequest protocol between a user
and SP takes as input a content name c name and the user identity ID from the user,5

and takes as input ConTbl from SP. The protocol is run as follows. (1) The user sends
(c name, ID) to SP. (2) SP decides contenti from c name, and retrieves the corresponding
(contenti, tagi, Ci, kc,i) from ConTbl. SP sends tagi to the user.

• SendContent(User(tagi, ID),CS(CacheTbl)): The content sending protocol between a user and
CS takes as input (tagi, ID) from the user, and takes as input CacheTbl from CS. The protocol
is run as follows. (1) The user sends a request (tagi, ID) to CS. (2) CS checks whether tagi
is preserved on CacheTbl. If yes, CS retrieves (tagi, Ci) from CacheTbl by using tagi, sends
Ci to the user, and sends (tagi, ID) to SP. If no, CS runs the CacheRequest protocol with
SP (which is defined later), obtains Ci, preserves (tagi, Ci) to CacheTbl, and sends Ci to the
user.

5Alternatively, SP can choose a temporal identity and give it to the user.

7

• CacheRequest(CS(tagi, ID), SP(ConTbl)): The cache request protocol between CS and SP takes
as input (tagi, ID) from CS, and takes as input ConTbl from SP. The protocol is run as
follows. (1) CS sends (tagi, ID) to SP. (2) SP retrieves (contenti, tagi, Ci, kc,i) from ConTbl
by using tagi, and sends Ci to CS.

• SendKey(ID, kc,i): The key sending algorithm run by SP takes as input (ID, kc,i). Send kc,i
to the user whose identity is ID.

• ObtainContent(tagi, Ci, kc,i)): The content obtaining algorithm run by a user takes as input
(tagi, Ci, kc,i). Output contenti ← Deckc,i(Ci).

The correctness is defined as follows. It guarantees that if all algorithms are honestly run, then
a user always can obtain the content that the user requests. For all ConTbl ← GenTable(1κ, 1λ,
SetOfContents), all contenti ∈ M, kc,i ← K, and tagi ← T AG, for Ci ← Enckc,i(contenti), where
ConTbl = {(contenti, tagi, Ci, kc,i)}, and for (tagj , Cj) ∈ CacheTbl, Pr[contenti ← Deckc,i(Ci)] = 1
holds, and if tagi = tagj then Ci = Cj holds. We remark that the syntax and the correctness do
not say anything about communication privacy, and it is defined in the next subsection.

The actual flow of our system is described as follows. Here, we assume that SP has run
ConTbl← GenTable(1κ, 1λ, SetOfContents) in the initial phase.

1. A user and SP run (tagi, ϵ)← ContentRequest(User(c name, ID), SP(ConTbl)).

2. The user and CS run (Ci, ϵ) ← SendContent(User(tagi, ID),CS(CacheTbl)). We remark that
CS may run (Ci, ϵ) ← CacheRequest(CS(tagi, ID), SP(ConTbl)) with SP internally if tagi is
not cached.

3. SP runs SendKey(ID, kc,i) and the user obtains kc,i.

4. The user runs contenti ← ObtainContent(tagi, Ci, kc,i)).

2.2 Security Model

Next, we define the security of the encrypted cache system. Due to our motivation of this paper,
we require that no CS can obtain information of contents. Thus, CS is modeled as an honest-
but-curious adversary (i.e., it always follows the protocol procedure but may try to extract some
information) in our security definition.

The formal model is defined as follows. An adversary A is modeled as CS. If A colludes with SP,
then A can obtain all contents, all encryption/decryption keys kc,i, and all secret values maintained
by SP (that include all SSL/TLS session keys shared between SP and users). Thus, as a realistic
restriction, we assume that A does not collude with SP. Instead, A is allowed to corrupt some users,
and then A can obtains all values that these users have. Intuitively, the following security model
guarantees that no A can obtain information of content from tag and ciphertext pair (tag∗, C∗) if
corrupted users do not obtain k∗c that can decrypt C∗. In other words, A cannot obtain information
of content from requests sent from honest users. We adopt the standard indistinguishability-based
notion which guarantees that A cannot distinguish whether (tag∗, C∗) is an encryption of content∗0
or content∗1 even A can select contents.

Definition 2.2 (Secure Encrypted Cache System).

Setup. At the outset of the game, the challenger runs ConTbl ← GenTable(1κ, 1λ, SetOfContents),
and initializes lists HU := {ID1, . . . , IDm} where m ∈ N is the number of users, CU := ∅, and

8

CR := ∅ which stands for honest users list, corrupted users list, and content request list, respectively.
The challenger initializes ind = 0. The challenger further picks a random bit b← {0, 1} and keeps
it secret.
Queries. A can adaptively make the following five types of queries to the challenger in arbitrary
order: Corruption, ContentRequest, SendContent, SendKey, and Challenge queries A can query the
first four arbitrarily polynomially many times and the fifth only once.

• Corruption Query: If A submits ID ∈ HU to the challenger, then the challenger updates
HU← HU \ {ID} and CU← CU ∪ {ID}.

• ContentRequest Query: If A submits ID to the challenger, then the challenger chooses c name,
and runs ContentRequest(User(c name, ID), SP(ConTbl)). We remark that if ID ∈ CU, then
A can observe all communications between SP and the user ID in a plaintext manner (in
this case, A can know c name and the corresponding tag tag). Finally, the challenger updates
CR ← CR ∪ {(tag, C, ID, ind, kc)} where ind ∈ N indicates the number of ContentRequest
queries and kc is the encryption key used in the encryption of the content, and updates ind←
ind+ 1.

• SendContent Query: If A submits (ID, ind) to the challenger, then the challenger returns
⊥ if (tag, ·, ID, ind, ·) is not contained in CR. Otherwise, the challenger retrieves the entry
(tag, C, ID, ind, kc), and runs SendContent(User(tag, ID),CS(CacheTbl)). Then, A behaves
as CS. We remark that A can observe tag regardless of ID ∈ CU or ID ∈ HU since the
challenger sends tag to A.

• SendKey Query: If A submits (ID, ind) to the challenger, then the challenger returns ⊥ if (·, ·,
ID, ind, ·) is not contained in CR. Otherwise, the challenger retrieves the entry (tag, C, ID,
ind, kc), and runs SendKey(ID, kc). Again, if ID ∈ CU, then A can observe all communica-
tions between SP and the user ID in a plaintext manner (in this case, A can know kc).

• Challenge Query: If A submits ID∗ and two content names c name∗0 and c name∗1 to the
challenger, where the size of content∗0 and that of content∗1 is the same, if ID∗ ∈ CU, then
the challenger returns ⊥, outputs a random bit, and aborts. Otherwise (i.e., ID∗ ∈ HU),
the challenger retrieves (content∗b , tag

∗, C∗, k∗c) from ConTbl by using c name∗b . If A has
obtain k∗c , then the challenger returns ⊥, outputs a random bit, and aborts. Otherwise,
the challenger runs (tag∗, ϵ) ← ContentRequest(User(c name∗b, ID

∗), SP(ConTbl)), and runs
SendContent(User(tag∗, ID∗),CS(CacheTbl)) with A as CS. If (tag∗, C∗) is not cached, then
A runs CacheRequest(CS(tag∗, ID∗), SP(ConTbl)) with the challenger as SP. Finally, A ob-
tains (tag∗, C∗). Hereafter, A is not allowed to obtain k∗c via SendKey queries, and is not
allowed to corrupt ID∗.

Guess. A outputs a guess b′ ∈ {0, 1} for b. We say that Cache-22 is secure if the advantage

AdvsecureCache-22,A(κ, λ) = |Pr[b = b′]− 1/2|

is negligible for any PPT adversary A.

We remark that A (i.e., CS) can know cache hit ratios by observing which tags are requested by
users. This information shows popularity of contents, and we can use it for deciding what contents
should be cached, as in [55]. Thus, we accept that A knows cache hit ratios.

9

Next, we define unlinkability in a formal way. Leguay et al. [40] informally defined unlinkability
as: requests for the same content cannot be detected except by the cache server. That is, the adver-
sary A is modeled as outsider or users. More precisely, A is allowed to observe all communications
(transcripts of the protocols) among users, CS, and SP. Moreover, A is allowed to corrupt users,
and then A can observe all communications between the users and either CS or SP in a plaintext
manner, and can obtain all values that they have. Intuitively, the following security model guaran-
tees that no A can distinguish whether a content has been requested before or not if the user that
requests the content is not corrupted. In other words, even if A has observed protocol transcripts
for (c name∗0, ID) where ID ∈ HU, A cannot decide whether or not protocols for (c name∗0, ID

∗)
are run in the challenge phase.

Definition 2.3 (Unlinkability).

Setup. At the outset of the game, the challenger runs ConTbl ← GenTable(1κ, 1λ, SetOfContents),
and initializes lists HU := {ID1, . . . , IDm} where m ∈ N is the number of users, CU := ∅, and
CR := ∅ which stands for honest users list, corrupted users list, and content request list, respectively.
The challenger initializes ind = 0. The challenger further picks a random bit b← {0, 1} and keeps
it secret.
Queries. A can adaptively make the following five types of queries to the challenger in arbitrary
order: Corruption, ContentRequest, SendContent, SendKey, and Challenge queries A can query the
first four arbitrarily polynomially many times and the fifth only once.

• Corruption Query: If A submits ID ∈ HU to the challenger, then the challenger updates
HU← HU \ {ID} and CU← CU ∪ {ID}.

• ContentRequest Query: If A submits (c name, ID) to the challenger, then the challenger runs
ContentRequest(User(c name, ID), SP(ConTbl)). A is allowed to observe the protocol tran-
script. We remark that if ID ∈ CU, then A can observe all communications between SP
and the user ID in a plaintext manner (in this case, A can know the corresponding tag tag).
Finally, the challenger updates CR← CR ∪ {(tag, C, ID, ind, kc)} where ind ∈ N indicates the
number of ContentRequest queries and kc is the encryption key used in the encryption of the
content, and updates ind← ind+ 1.

• SendContent Query: If A submits (ID, ind) to the challenger, then the challenger returns
⊥ if (tag, ·, ID, ind, ·) is not contained in CR. Otherwise, the challenger retrieves the entry
(tag, C, ID, ind, kc), and runs SendContent(User(tag, ID),CS(CacheTbl)). We remark that if
ID ∈ CU, then A can observe all communications between CS and the user ID in a plaintext
manner (in this case, A can obtain (tag, C)).

• SendKey Query: If A submits (ID, ind) to the challenger, then the challenger returns ⊥ if (·,
·, ID, ind, ·) is not contained in CR. Otherwise, the challenger retrieves the entry (tag, C, ID,
ind, kc), and runs SendKey(ID, kc). Again, if ID ∈ CU, then A can observe all communica-
tions between SP and the user ID in a plaintext manner (in this case, A can know kc).

• Challenge Query: Let A submit ID∗ and a content name c name∗0. If A has sent (c name∗0, ID)
and ID ∈ CU, then the challenger returns ⊥, outputs a random bit, and aborts. If ID∗ ∈ CU,
then the challenger returns ⊥, outputs a random bit, and aborts. Otherwise (i.e., ID∗ ∈ HU),
the challenger chooses c name∗1 that has not been sent as a ContentRequest query, and the
size of content∗0 and that of content∗1 is the same, and retrieves (content∗, tag∗, C∗, k∗c) from
ConTbl by c name∗b . Otherwise, the challenger runs (tag∗, ϵ)← ContentRequest(User(c name∗b,

10

ID∗), SP(ConTbl)), and runs SendContent(User(tag∗, ID∗),CS(CacheTbl)). If (tag∗, C∗) is
not cached, then A runs CacheRequest(CS(tag∗, ID∗), SP(ConTbl)). Hereafter, A is not al-
lowed to send ContentRequest queries (c name∗0, ID) for any ID ∈ CU. Moreover, A is not
allowed to corrupt ID ∈ HU if (c name∗0, ID) has been sent as a ContentRequest query.

Guess. A outputs a guess b′ ∈ {0, 1} for b. We say that Cache-22 is unlinkable if the advantage

AdvunlinkCache-22,A(κ, λ) = |Pr[b = b′]− 1/2|

is negligible for any PPT adversary A.

3 Proposed System

In this section, we give our Cache-22 system. In our system, there are three entities, a service
provider (SP), a cache server (CS), and a user. The design concept is that we pay attention to
the size of contents (e.g., movies) are much bigger than that of keys for encryption/decryption.
Thus, we consider to minimize the number of communications for encrypted contents. Although
we require some interactions for sending keys, we can employ TLS session resumption [53], and no
further key exchange protocol is required except the initial handshake phase.

We assume that all communications among a user, CS, and SP are encrypted via SSL/TLS.
We explicitly denote the session key as kuser↔CS, kCS↔SP, and kuser↔SP, respectively. This setting
is natural since we expect that almost all communications will be encrypted in the near future. We
employ HMAC for generating tags, and thus SP has a secret key for HMAC denoted by khmac (which
is assumed to be generated in advance). Since HMAC is known as a pseudorandom function [15],
we assume that tag collision happens with negligible probability, i.e., for (tagi, Ci), (tagj , Cj), and
Ci ̸= Cj , tagi ̸= tagj holds with overwhelming probability. Moreover, we use the upper-order
128 bits of tag as the initial vector (IV) for AES-GCM [35]. Then, IV is not re-used for other
encryption since tag is pseudorandom. Let (Enc,Dec) be a IND-CPA secure SKE scheme where
for a key k ∈ K and a message M ∈ M, Deck(C) = M holds where C ← Enck(M), K is a key
space, and M is a message space. We explicitly indicate IV such that Ci ← Enckc,i(IV, contenti)
and contenti ← Deckc,i(IV,Ci).

The concrete system is described as follows. Figure 1 shows a flow of Cache-22 system. We
assume that there are n contents. But without loss of generality, SP always extends the number
of contents. We also assume that a user knows a content name c name, and SP can decide the
corresponding content contenti ∈M from c name. Let CacheTbl be the cache table managed by CS
which has the structure CacheTbl = {(tagi, Ci)}, and is initiated as ∅. Although we simply denote
CacheTbl = {(tagi, Ci)} here, we can employ any cache systems.

• GenTable(1κ, 1λ, SetOfContents): The table generation algorithm run by SP takes as input
security parameters κ, λ ∈ N and a set of contents SetOfContents = {contenti}ni=1. K :=
{0, 1}λ, andM is implicitly defined by λ. For each contenti ∈M, randomly choose kc,i ← K
and tagi ← HMACkhmac

(contenti), retrieve IV from tagi, and encrypt contenti such that Ci ←
Enckc,i(IV, contenti). Output a table ConTbl = {(contenti, tagi, Ci, kc,i)}.

• ContentRequest(User(c name, ID), SP(ConTbl)): The ContentRequest protocol between a user
and SP takes as input a content name c name and the user identity ID from the user, and
takes as input ConTbl from SP. The protocol is run as follows. (1) The user sends (c name,
ID) to SP via the secure channel generated by kuser↔SP. (2) SP decides contenti from c name,

11

User CS SP

Cache Hit

Cache Miss

Figure 1: Flow of Our Cache-22 System

and retrieves the corresponding (contenti, tagi, Ci, kc,i) from ConTbl. SP sends tagi to the user
via the secure channel.

• SendContent(User(tagi, ID),CS(CacheTbl)): The content sending protocol between a user and
CS takes as input (tagi, ID) from the user, and takes as input CacheTbl from CS. The protocol
is run as follows. (1)

• The user sends a request (tagi, ID) to CS via the secure channel generated by kuser↔CS. (2)
CS checks whether tagi is preserved on CacheTbl. If yes, CS retrieves (tagi, Ci) from CacheTbl
by using tagi, sends Ci to the user via the secure channel, and sends (tagi, ID) to SP via
the secure channel generated by kCS↔SP. If no, CS runs the CacheRequest protocol with SP
(which is defined later), obtains Ci, preserves (tagi, Ci) to CacheTbl, and sends Ci to the user
via the secure channel.

• CacheRequest(CS(tagi, ID), SP(ConTbl)): The cache request protocol between CS and SP
takes as input (tagi, ID) from CS, and takes as input ConTbl from SP. The protocol is run
as follows. (1)

• CS sends (tagi, ID) to SP via the secure channel generated by kCS↔SP. (2) SP retrieves
(contenti, tagi, Ci, kc,i) from ConTbl by using tagi, and sends Ci to CS via the secure channel.

12

• SendKey(ID, kc,i): The key sending algorithm run by SP takes as input (ID, kc,i). Send kc,i
to the user whose identity is ID via the secure channel generated by kuser↔SP.

• ObtainContent(tagi, Ci, kc,i)): The content obtaining algorithm run by a user takes as input
(tagi, Ci, kc,i). Retrieve IV from tagi. Output contenti ← Deckc,i(IV,Ci).

4 Security

Obviously, Cache-22 is correct if tag collision does not happen and IV is not re-used for other
encryption. More concretely, we need to assume that the underlying SKE scheme is also correct,
i.e., for all M ∈M, k ∈ K, and initial vector IV , Pr[M ← Deck(IV,Enck(IV,M))] = 1. Moreover,
Cache-22 is secure in the sense of Definition 2.2. That is, due to the pseudorandomness of HMAC,
tags are independently chosen from contents. Thus, thanks to the IND-CPA security of the SKE
scheme, information of b is not revealed from C∗. In other words, if A breaks the security, we
can construct an algorithm that breaks the IND-CPA security of the SKE scheme. Moreover,
Cache-22 is unlinkable in the sense of Definition 2.3. If A sends ContentRequest queries (c name∗0,
ID∗), then ID∗ is not corrucpted due to the rule of the security game. Thus, A cannot obtain
the pair of the corresponding tag and ciphertext since it is sent via the secure channel and A
does not have the corresponding shared key. Then, thanks to the IND-CPA security of the SKE
scheme, information of b is not revealed from C∗. As a possible case, even though A does not
know c name∗1, A may send (c name∗1, ID) as a ContentRequest query where ID ∈ CU after the
challenge phase. Then, A can break unlinkability as follows: Let assume that A does not send a
ContentRequest query (c name∗0, ID

∗). Then, A is allowed to corrupt ID∗. Then, A can obtain
(tag∗, C∗) in the challenge phase. By comparing tags, A can decide whether C∗ is a ciphertext of
content∗0 or content∗1. Thus, we need to assume that the name space of contents is sufficiently big,
and assume that the probability of sending the query is negligible. In other words, if A breaks the
unlinkability under the assumption, then we can construct an algorithm that breaks the IND-CPA
security of the SKE scheme.

5 Prototype Implementation

In this section, we give our implementation results. In our implementation, we set κ = 256 and λ =
128 which ensure that tag collision happens with negligible probability 2−128, and the underlying
SKE scheme is 128-bit secure. Concretely, we employ AES-GCM as the underlying SKE scheme.
For SSL/TLS part, we first employ two ciphersuites that have been widely used, respectively, for
efficiency comparison. As a result, we can say that our systems efficient when ECDSA is employed
compared to the case that RSA is employed.

1. TLS ECDHE ECDSA WITH AES 128 GCM SHA256

2. TLS ECDHE RSA WITH AES 128 GCM SHA256

Next, we compare post-quantum ciphersuites. We employed these 5 post-quantum KEMs (Ky-
ber512, LightSABER, NTRU-HPS-2048-509, BIKE1-L1-FO, SIKE-p434) instead of employing ECDHE
above, and other parts are the same as those of TLS ECDHE ECDSA WITH AES 128 GCM SHA256.

13

Global Cloud

Contents

Original Store

Local Cloud

Region

Regional

DataCenter

Users

CS

(Cache Servers)

SP

(Service Provider)

High-Cost Network

Low-Cost Network

with Color-based

Cooporative Cache

Figure 2: Hierarchical Network: An Use Case of the Color-based Cooperative Cache System with
Cache-22

5.1 Color-Based Cooperative Cache System

In addition to SSL/TLS, we employ the color-based cooperative cache system [46] as the underlying
cache system, which associates servers and caches through a color tag. The cache system considers
both cooperative and duplicative caches. In the former system, each server caches different contents
for increasing storage capacity. In the latter system, each server caches the same contents according
to its popularity for increasing its hit ratio. Each cache server has a tag with a single color, and
it stores contents when the server’s color matches any of the contents’ colors. Multiple color tags
are associated to popular contents, and these contents are cached by plural servers. They propose
a color tags management algorithm that updates contents’ tags periodically according to their
popularity ranks. As an advantage of the color-based cache system, Nakajima et al. proposed a
light-weight color tags management algorithm. If we employ heuristics approach such as Genetic
Algorithm (GA) for solving an optimization problem which minimizes the traffic size while satisfying
several constraints such as throughput, latency, and power consumption, then they often require
hours of calculation overhead. On the other hands, the overhead of the color tags management
algorithm is a few minutes.

Figure 2 shows an use case of the color-based cooperative cache system which installed our
Cache-22. Each entity in Figure 1 is allocated to computing node in a network hierarchy shown
in Figure 2. Users can enjoy multimedia contents, such as movie, audio or rich contents for 3-D
models used in XR applications distributed from storage at the global cloud. Typically, a relatively
high cost is required to transfer multimedia contents directly between a cloud and users due to a
volume charging pricing structure by the number of users. On the other hands, as an intranet and
a local network, a traffic cost closer to users is generally low. A cache system is effective for such
a hierarchical network with a cost disparity owing to a downstream suppression in a higher layer
network. Introducing a color-based grouping by a content tag in a cache system makes both traffic
load distributions and expanding cache capacity.

14

5.2 Experimental Environment

To verify the availability of Cache-22 with various ciphersuites, we implemented three types of
software modules behaving as endpoints of entities, namely SP, CS, and User which has function
shown in Figure 1. All modules are written in the Go language to adopt portability to various
architectures and operating systems in computing nodes in the network. The implementation uses
various existing libraries; however, Table 1 lists a few of the major ones needed to realize functions
in the above entities.

Table 1: Libraries
Version Remarks

go 1.16.5 Programming Language

crypt/tls Standard TLS1.2/1.3 implementation

crypt/aes Standard AES-GCM encryption

labstack/echo 4.1.15 Web Framework

syndtr/goleveldb 1.0.0 Non-volatile key-value store

We employed post-quantum KEMs given in liboqs (version 0.6.0) [3]. Concretely, we employed Go
library for TLS key exchange [4] that supports to change the TLS key exchange part to be with
post-quantum security by indicating post-quantum KEMs, and employed goliboqs [5] which is a
Go wrapper around liboqs. We set up an experimental environment to evaluate the performance
of Cache-22. In our implementation, we fixed the maximum content length to 128 KB to realize
parallel and pipeline operation for the Cache-22 system. For larger content sizes or nonaligned
content, User divides the HTTPS requests by content name into multiple chunked range requests.

5.3 Evaluation: Performance Impact Caused by Employing Cache-22

As shown in Figure 3, six physical hosts were set up for the allocated role. Each host has a uniform
configuration, as shown in Table 2. We supposed a cooperative cache system with four color tags
by setting up four hosts to run CS module. A hosts runs User module to emulates behavior of
users which issues requests to get contents. Another host is installed SP module to take a role of
a contents provider.

Table 2: Host Configuration

CPU Intel Core i7 7700 4 Core 8 Threads, 3.60GHz

Memory 32 GB

Network (among Hosts) 1 Gbps

Storage SSD TOSHIBA THNSNH06 60 GB

OS Ubuntu 18.04.4 4.15.0-88-generic.x86 64

We evaluated two aspects of the performance, i.e., the throughput of User and turnaround time
for which User obtains a content chunk of 128 KB. We assumed that, if a user requests a content
for the first time, the content is not cached. If a cache is hit, CS returns the encrypted content;
otherwise, it forwards the request to SP and receives an encrypted content to store in the cache. In
our implementation, CS only forwards a request to SP because there is no duplication of the colors
allocated to CS.

The experimental conditions were as follows.

15

User
Emulate users by
issuing many requests
to get contents.

CS
Cache contents and
handle color-tags and
(,).

SP
Provide encrypted
contents and handle
 ().

HTTPS w/o Cache-22

HTTPS
with Cache-22 HTTPS

with Cache-22

Figure 3: An Experimental Environment

• 1 GB content comprised 8,192 content chunks of 128 KB prepared by randomized data. Each
tag is assigned to each content chunk.

• 120 GB content requests were generated using a gamma distribution (with a bias parameter
of k = 0.2).

• User requested a content chunk to CS correspond to the color, that was provided by SP with
tagi.

We first evaluated five sets of performance in Figure 4 for non-post quantum ciphersuites.
Communications among User, CS, and SP are encrypted by the ciphersuite indicated. We show
the performance when our Cache-22 system is (resp. is not) employed in the with Cache-22 column
(resp. the w/o Cache-22 column). We remark that the w/o Cache-22 case employs the MITM
method, i.e., CS can observe the content and runs the color-based cache system, although all
communications are encrypted. We also consider the case of HTTPS, i.e., no cache system is
employed, and a user directly obtains a content from SP via HTTPS. Each row is explained as
follows. Here, a user obtains (tagi, Ci) from CS, and kc,i from SP.

• Decrypt: This row indicates the decryption cost of Ci using kc,i (this is zero in the “w/o
Cache-22” and “HTTPS” columns).

• Key: This row indicates the cost of receiving kc,i from SP via the secure channel (this is zero
in the “w/o Cache-22” and “HTTPS” columns).

16

Miss Hit Miss Hit Miss Hit Miss Hit Miss Hit
with Cache-22 w/o Cache-22

(MITM) HTTPS with Cache-22 w/o Cache-22
(MITM) HTTPS

HTTP
(No Security)

TLS_ECDHE_RSA_
WITH_AES_128_

GCM_SHA256

TLS_ECDHE_ECDSA_
WITH_AES_128_

GCM_SHA256
Total 5.66 2.41 32.67 31.22 15.77 13.57 13.96 32.62 31.16 15.69 13.55 13.95
HTTP Client
Open/Close 0.07 0.03 0.23 0.23 0.12 0.12 0.12 0.23 0.23 0.13 0.13 0.12
Decrypt 0.00 0.00 0.28 0.28 0.00 0.00 0 0.28 0.28 0.00 0.00 0
Key 0.00 0.00 1.16 1.16 0.00 0.00 0 1.16 1.15 0.00 0.00 0
Data 5.59 2.38 17.44 15.97 15.65 13.45 13.84 17.42 15.96 15.56 13.42 13.83
Tag 0.00 0.00 13.56 13.58 0.00 0.00 0 13.53 13.54 0.00 0.00 0

0

5

10

15

20

25

30

35
La

te
nc

y
[m

s]

Figure 4: Evaluation of the Turnaround Time to Obtain 128 KB Chunk of Data

• Data: This row indicates the cost of receiving Ci via the secure channel in the “with Cache-
22” column, and indicates the cost of receiving contenti via the secure channel in the “w/o
Cache-22” and “HTTPS” columns.

• Tag: This row indicates the cost of receiving tagi from SP via the secure channel (this is zero
in the “w/o Cache-22” and “HTTPS” columns).

We also evaluated performance of post-quantum ciphersuites in Figure 5. The setting is the same
as that of Figure 4.

5.3.1 Differences among Ciphersuites

In the case of non-post quantum ciphersuites, the difference between ciphersuites is comparatively
small; however, the data transmission time using RSA is approximately 5%-10% longer compared
to that of ECDSA due to the difference in the computational procedure of the cryptographic com-
munication. In the case of post quantum ciphersuites, compared to ECDHE, two lattice-based
ones, Kyber512 and LightSABER, achieve comparable efficiency, and others, especially SIKE-p434,
are inefficient. Thus, from the viewpoint of efficiency, Kyber512 and LightSABER are effective.

17

Miss Hit Miss Hit Miss Hit Miss Hit Miss Hit Miss Hit Miss Hit

TLS_ECDHE_
RSA_WITH_
AES_128_

GCM_SHA256

TLS_ECDHE_
ECDSA_WITH_

AES_128_
GCM_SHA256

TLS_
Kyber512_

ECDSA_WITH_
AES_128_

GCM_SHA256

TLS_
LightSAVER_
RSA_WITH_
AES_128_

GCM_SHA256

TLS_
NTRU-HPS-
2048-509_

ECDSA_WITH_
AES_128_

GCM_SHA256

TLS_
BIKE1-L1-FO_

ECDSA_WITH_
AES_128_

GCM_SHA256

TLS_
SIKE-p434_

ECDSA_WITH_
AES_128_

GCM_SHA256
Total 32.67 31.22 32.62 31.16 36.53 35.07 36.44 35.12 36.92 35.52 46.41 44.45 87.23 84.74
HTTP Client
Open/Close 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.16 0.15 0.15 0.15
Decrypt 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.19 0.18 0.20 0.20
Key 1.16 1.16 1.16 1.15 1.16 1.16 1.16 1.16 1.16 1.16 1.08 1.06 1.10 1.08
Data 17.44 15.97 17.42 15.96 19.40 17.95 19.29 17.95 19.57 18.17 24.08 22.53 44.61 42.79
Tag 13.56 13.58 13.53 13.54 15.46 15.45 15.48 15.50 15.68 15.68 20.90 20.53 41.17 40.52

0

25

50

75

100
La

te
nc

y
[m

s]

Figure 5: Evaluation of Post-quantum Ciphersuites

However, since researches of post-quantum cryptography are still very active, we should consider
cryptographic tools which are secure under several mathematical problems and its maturity. For
example, in the NIST PQC document [7], it says that NTRU: Not quite as efficient, but older and
Classic McEliece: Oldest submission, large public keys but small ciphertexts, that is, NTRU and
Classic McEliece are good options from the viewpoint of maturity. As mentioned before, we em-
ployed BIKE and did not employ Classic McEliece as a code-based KEM owing to its large public
key size. It says that BIKE: Good performance, CCA security?, more time to be stable. It says that
SIKE: Newer security problem, an order slower, that is isogeny-based cryptography is a relatively
new topic [21, 36] compared to other complexity problems. So, although these lack maturity, the
security depends on different mathematical structures. Thus, these schemes should be considered
as alternative candidates.

5.3.2 Traffic Improvement

At the first sight in Figure 4, HTTPS is the most efficient in terms of latency, and one may think
that there is no merit to employ our Cache-22 system. Nevertheless, employing our Cache-22
system has a merit to drastically reduce communications between CS and SP which is effective
in a hierarchical network with a cost disparity owing to a downstream suppression in a higher

18

TLS_ECDHE_
RSA_

WITH_AES_12
8_

GCM_SHA256

TLS_ECDHE_
ECDSA_

WITH_AES_12
8_

GCM_SHA256

TLS_
Kyber512_

ECDSA_WITH_
AES_128_

GCM_SHA256

TLS_
LightSAVER_
RSA_WITH_
AES_128_

GCM_SHA256

TLS_
NTRU-HPS-
2048-509_

ECDSA_WITH_
AES_128_

GCM_SHA256

TLS_
SIKE-p434_

ECDSA_WITH_
AES_128_

GCM_SHA256

TLS_
BIKE1-
L1-FO_

ECDSA_WITH_
AES_128_

GCM_SHA256

TLS_
ECDHE_

RSA_WITH_
AES_128_

GCM_SHA256

TLS_
ECDHE_

ECSA_WITH_
AES_128_

GCM_SHA256
with Cache-22 HTTPS (w/o Cache-22)

SP TX 0.881 0.911 1.261 0.518 0.527 0.393 0.636 39.618 39.972
User RX 32.314 33.352 26.794 17.830 17.974 6.510 14.918 39.618 39.972
TX/RX Ratio 0.027 0.027 0.047 0.029 0.029 0.060 0.043 1.000 1.000

0.0

0.2

0.4

0.6

0.8

1.0

0

5

10

15

20

25

30

35

40

TX
/R

X
R

at
io

Av
er

ag
e

Tr
af

fic
 [M

B/
s]

Figure 6: Evaluation of the Traffic Efficiency

layer network (as mentioned in Figure 2). Figure 6 shows the efficiency of traffic reduction by
our Cahse-22 system when we increase the number of parallel requests issued by User from one to
sixteen for each experiment. Two types of bar chart indicate an average traffic transferred from
SP (TX) and an average traffic received by User (RX), respectively. The ratio of TX and RX with
the Cache-22 system is specified as traffic reduction rate by providing content chunks stored in CS.
In the experimental conditions mentioned above, the result observed 94%-97% of cache hit ratio
which means that it can save outbound data transfer prices of a high cost network in the case of
Figure 2.

6 Conclusion

In this paper, we propose an encrypted cache system called Cache-22 that does not employ any
additional tools beyond SSL/TLS, which yields a highly deployable system. We give not only a
formal security definition but also a prototype implementation with post-quantum ciphersuites.
Our implementation result shows that, compared to a direct HTTPS communication between SP
and User, employing our Cache-22 system has a merit to drastically (approximately 95%) reduce
communications between CS and SP which is effective in a hierarchical network with a cost disparity.

Acknowledgment: This work was supported by JSPS KAKENHI Grant Number JP21K11897.

References

[1] SIKE. Supersingular isogeny key encapsulation. https://sike.org.

19

[2] Conoha by GMO. https://www.conoha.jp/, 2019.

[3] Open Quantum Safe: Software for prototyping quantum-resistant cryptography.
https://openquantumsafe.org/, June 8, 2021.

[4] Open source from Thales eSecurity: go-tls-key-exchange.
https://github.com/thales-e-security/go-tls-key-exchange, May 24, 2019.

[5] Open source from Thales eSecurity: goliboqs. https://github.com/thales-e-security/goliboqs,
May 24, 2019.

[6] NIST Post-Quantum Cryptography: Round 3 Submissions.
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions,
October 02, 2020.

[7] NIST PQC Standardization Update-Round 2 and Beyond.
https://csrc.nist.gov/CSRC/media/Presentations/pqc-update-round-2-and-beyond

/images-media/pqcrypto-sept2020-moody.pdf, September 23, 2020.

[8] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe. Post-quantum key exchange - A new
hope. In USENIX Security, pages 327–343, 2016.

[9] D. Andreoletti, O. Ayoub, S. Giordano, G. Verticale, and M. Tornatore. Privacy-preserving
caching in ISP networks. In IEEE HPSR, pages 1–6, 2019.

[10] D. Andreoletti, C. Rottondi, S. Giordano, G. Verticale, and M. Tornatore. An open privacy-
preserving and scalable protocol for a network-neutrality compliant caching. In IEEE ICC,
pages 1–6, 2019.

[11] N. Aragon, P. S. L. M. Barreto, S. Bettaieb, L. Bidoux, O. Blazy, J.-C. Deneuville,
P. Gaborit, S. Gueron, T. Güneysu, C. A. Melchor, R. Misoczki, E. Persichetti,
N. Sendrier, J.-P. Tillich, and G. Zémor. BIKE: Bit flipping key encapsulation.
https://bikesuite.org/files/BIKE.pdf, 2018.

[12] A. Araldo, G. Dán, and D. Rossi. Caching encrypted content via stochastic cache partitioning.
IEEE/ACM Trans. Netw., 26(1):548–561, 2018.

[13] N. Attrapadung. Dual system encryption framework in prime-order groups via computational
pair encodings. In ASIACRYPT, pages 591–623, 2016.

[14] N. Aviram, K. Gellert, and T. Jager. Session resumption protocols and efficient forward
security for TLS 1.3 0-RTT. In EUROCRYPT, pages 117–150, 2019.

[15] M. Bellare. New proofs for NMAC and HMAC: security without collision resistance. J.
Cryptology, 28(4):844–878, 2015.

[16] D. J. Bernstein, T. Chou, T. Lange, I. von Maurich, R. Misoczki, R. Niederha-
gen, E. Persichetti, C. Peters, P. Schwabe, N. Sendrier, J. Szefer, W. Wang, M. Al-
brecht, C. Cid, K. G. Paterson, C. J. Tjhai, and M. Tomlinson. Classic McEliece.
https://classic.mceliece.org/nist.html.

[17] M. Blaze, G. Bleumer, and M. Strauss. Divertible protocols and atomic proxy cryptography.
In EUROCRYPT, pages 127–144, 1998.

20

[18] J. W. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck, P. Schwabe,
G. Seiler, and D. Stehlé. CRYSTALS - kyber: A CCA-secure module-lattice-based KEM. In
IEEE EuroS&P, pages 353–367. IEEE, 2018.

[19] X. Cai, R. Nithyanand, T. Wang, R. Johnson, and I. Goldberg. A systematic approach to
developing and evaluating website fingerprinting defenses. In ACM CCS, pages 227–238, 2014.

[20] S. Canard, A. Diop, N. Kheir, M. Paindavoine, and M. Sabt. BlindIDS: Market-compliant and
privacy-friendly intrusion detection system over encrypted traffic. In ACM AsiaCCS, pages
561–574, 2017.

[21] W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes. CSIDH: an efficient post-
quantum commutative group action. In ASIACRYPT, pages 395–427, 2018.

[22] C. Chen, O. Danba, J. Hoffstein, A. Hulsing, J. Rijneveld, J. M. Schanck, P. Schwabe,
W. Whyte, Z. Zhang, T. Saito, T. Yamakawa, and K. Xagawa. NTRU. https://ntru.org/.

[23] K. Cohn-Gordon, C. J. F. Cremers, B. Dowling, L. Garratt, and D. Stebila. A formal security
analysis of the signal messaging protocol. In IEEE EuroS&P, pages 451–466. IEEE, 2017.

[24] L. Constantin. HTTPS scanning in Kaspersky antivirus exposed users to MITM attacks.
https://www.pcworld.com/article/3154608/security/, 2017.

[25] S. Cui, M. R. Asghar, and G. Russello. Multi-CDN: Towards privacy in content delivery
networks. IEEE Transactions on Dependable and Secure Computing, 17(5):984–999, 2020.

[26] W. Cui, T. Chen, C. Fields, J. Chen, A. Sierra, and E. Chan-Tin. Revisiting assumptions for
website fingerprinting attacks. In ACMAsiaCCS, pages 328–339, 2019.

[27] J.-P. D’Anvers, A. Karmakar, S. S. Roy, and F. Vercauteren. SABER.
https://www.esat.kuleuven.be/cosic/pqcrypto/saber/.

[28] N. Desmoulins, P. Fouque, C. Onete, and O. Sanders. Pattern matching on encrypted streams.
In ASIACRYPT, pages 121–148, 2018.

[29] J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and M. Theimer. Reclaiming space from
duplicate files in a serverless distributed file system. In ICDCS, pages 617–624, 2002.

[30] K. Emura, S. Moriai, T. Nakajima, and M. Yoshimi. Cache-22: A highly deployable encrypted
cache system. In ISITA, pages 465–469. IEEE, 2020.

[31] G. A. Eriksson, J. Mattsson, N. Mitra, and Z. Sarker. Blind cache: a solution to content
delivery challenges in an all-encrypted web. ericsson white paper, 2016.

[32] K. Hashimoto, S. Katsumata, K. Kwiatkowski, and T. Prest. An efficient and generic con-
struction for signal’s handshake (X3DH): Post-quantum, state leakage secure, and deniable.
In Public-Key Cryptography, pages 3–33, 2021.

[33] A. Hintz. Fingerprinting websites using traffic analysis. In Privacy Enhancing Technologies,
pages 171–178, 2002.

[34] L. Huang, A. Rice, E. Ellingsen, and C. Jackson. Analyzing forged SSL certificates in the wild.
In 2014 IEEE S&P, pages 83–97, 2014.

21

[35] T. Iwata and Y. Seurin. Reconsidering the security bound of AES-GCM-SIV. IACR Trans.
Symmetric Cryptol., 2017(4):240–267, 2017.

[36] D. Jao and L. D. Feo. Towards quantum-resistant cryptosystems from supersingular elliptic
curve isogenies. In Post-Quantum Cryptography, pages 19–34, 2011.

[37] J. Jarmoc. SSL/TLS interception proxies and transitive trust. In Blackhat Europe, 2012.

[38] C. D. Jensen. CryptoCache: a secure sharable file cache for roaming users. In ACM SIGOPS,
pages 73–78, 2000.

[39] S. Lai, X. Yuan, S. Sun, J. K. Liu, R. Steinfeld, A. Sakzad, and D. Liu. Towards practical
encrypted network traffic pattern matching for secure middleboxes. CoRR, abs/2001.01848,
2020.

[40] J. Leguay, G. S. Paschos, E. A. Quaglia, and B. Smyth. CryptoCache: Network caching with
confidentiality. In IEEE ICC, pages 1–6, 2017.

[41] G. Leurent and T. Peyrin. From collisions to chosen-prefix collisions application to full SHA-1.
In EUROCRYPT, pages 527–555, 2019.

[42] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn, S. Mangard,
P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg. Meltdown: Reading kernel memory
from user space. In USENIX Security, pages 973–990, 2018.

[43] S. Loreto, J. Mattsson, R. Skog, H. Spaak, G. Gus, D. Druta, and M. Hafeez. Explicit trusted
proxy in HTTP/2.0. In IETF Standards-Track Internet-Draft, 2014.

[44] D. McGrew, D. Wing, Y. Nir, and P. Gladstone. TLS proxy server extension. In IETF
Standards-Track Internet-Draft, 2012.

[45] C. Moldovan, F. Metzger, S. Surminski, T. Hoßfeld, and V. Burger. Viability of Wi-Fi caches
in an era of HTTPS prevalence. In IEEE ICC, pages 1370–1375, 2017.

[46] T. Nakajima, M. Yoshimi, C. Wu, and T. Yoshinaga. Color-based cooperative cache and its
routing scheme for telco-CDNs. IEICE Transactions, 100-D(12):2847–2856, 2017.

[47] NSS Labs. NSS Labs Predicts 75% of Web Traffic Will Be Encrypted by 2019.
https://www.nsslabs.com/, 2016.

[48] A. Panchenko, F. Lanze, J. Pennekamp, T. Engel, A. Zinnen, M. Henze, and K. Wehrle.
Website fingerprinting at internet scale. In NDSS, 2016.

[49] R. Peon. Explicit proxies for HTTP/2.0. In IETF Standards-Track Internet-Draft, 2012.

[50] I. M. Platform. Storing sensitive data in encrypted cache.
https://mobilefirstplatform.ibmcloud.com/, 2016.

[51] F. Y. Rashid. Encryption, Privacy in the Internet Trends Report (June 12, 2019).
https://duo.com/decipher/encryption-privacy-in-the-internet-trends-report,
2019.

[52] J. Reschke and S. Loreto. ‘Out-Of-Band’ content coding for HTTP. In IETF Standards-Track
Internet-Draft, 2017.

22

[53] E. Rescorla. The transport layer security (tls) protocol version 1.3. rfc 8446.
https://rfc-editor.org/rfc/rfc8446.txt, 2018.

[54] P. Schwabe, D. Stebila, and T. Wiggers. Post-quantum TLS without handshake signatures.
In ACM CCS, pages 1461–1480. ACM, 2020.

[55] S. Sevilla, J. J. Garcia-Luna-Aceves, and H. R. Sadjadpour. GroupSec: A new security model
for the web. In IEEE ICC, pages 1–6, 2017.

[56] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy. BlindBox: Deep packet inspection over
encrypted traffic. In ACM SIGCOMM, pages 213–226, 2015.

[57] Y. Shin, D. Koo, and J. Hur. A survey of secure data deduplication schemes for cloud storage
systems. ACM Comput. Surv., 49(4):74:1–74:38, 2017.

[58] E. Stefanov, M. van Dijk, E. Shi, T. H. Chan, C. W. Fletcher, L. Ren, X. Yu, and S. Devadas.
Path ORAM: an extremely simple oblivious RAM protocol. J. ACM, 65(4):18:1–18:26, 2018.

[59] M. Stevens, E. Bursztein, P. Karpman, A. Albertini, and Y. Markov. The first collision for
full SHA-1. In CRYPTO, pages 570–596, 2017.

[60] Synopsys Inc. The Heartbleed Bug. http://heartbleed.com/, 2014.

[61] M. Thomson, G. Eriksson, and C. Holmberg. An architecture for secure content delegation
using HTTP. In IETF Standards-Track Internet-Draft, 2016.

[62] M. Thomson, G. Eriksson, and C. Holmberg. Caching secure HTTP content using blind caches.
In IETF Standards-Track Internet-Draft, 2016.

[63] A. Tutoveanu. Active implementation of End-to-End post-quantum encryption. IACR Cryp-
tology ePrint Archive, 2021:356, 2021.

[64] M. Usman, M. R. Asghar, I. S. Ansari, F. Granelli, Q. H. Abbasi, and K. A. Qaraqe. A
marketplace for efficient and secure caching for IoT applications in 5G networks. In 2018
IEEE WCNC, pages 1–6, 2018.

[65] Varnish Software. Introducing varnish total encryption.
https://www.varnish-software.com/varnish-total-encryption/, 2018.

[66] X. Wang and H. Yu. How to break MD5 and other hash functions. In EUROCRYPT, pages
19–35, 2005.

[67] C. A. Wood and E. Uzun. Flexible end-to-end content security in CCN. In IEEE CCNC,
pages 858–865, 2014.

[68] H. Xiong, X. Zhang, D. Yao, X. Wu, and Y. Wen. Towards end-to-end secure content storage
and delivery with public cloud. In ACM CODASPY, pages 257–266, 2012.

23

