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Abstract. We propose (honest verifier) zero-knowledge arguments for the modular subset sum problem.
Given a set of integers, this problem asks whether a subset adds up to a given integer t modulo a
given integer q. This NP-complete problem is considered since the 1980s as an interesting alternative in
cryptography to hardness assumptions based on number theory and it is in particular believed to provide
post-quantum security. Previous combinatorial approaches, notably one due to Shamir, yield arguments
with cubic communication complexity (in the security parameter). More recent methods, based on the
MPC-in-the-head technique, also produce arguments with cubic communication complexity and only
for prime modulus q.
We improve this approach by using a secret-sharing over small integers (rather than modulo q) to
reduce the size of the arguments and remove the prime modulus restriction. Since this sharing may
reveal information on the secret subset, we introduce the idea of rejection to the MPC-in-the-head
paradigm. Special care has to be taken to balance completeness and soundness and preserve zero-
knowledge of our arguments. We combine this idea with two techniques to prove that the secret vector
(which selects the subset) is well made of binary coordinates. Our new techniques have the significant
advantage to result in arguments of size independent of the modulus q.
Our new protocols for the subset sum problem achieve an asymptotic improvement by producing argu-
ments of quadratic size (against cubic size for previous proposals). This improvement is also practical:
for a 256-bit modulus q, the best variant of our protocols yields 13KB arguments while previous propos-
als gave 1180KB arguments, for the best general protocol, and 122KB, for the best protocol restricted
to prime modulus. Our techniques can also be applied to vectorial variants of the subset sum prob-
lem and in particular the inhomogeneous short integer solution (ISIS) problem for which they provide
competitive alternatives to state-of-the-art protocols. We also show the application of our protocol to
build efficient zero-knowledge arguments of plaintext and/or key knowledge in the context of fully-
homomorphic encryption. When applied to the TFHE scheme, the obtained arguments are more than
20 times smaller than those obtained with previous protocols.

1 Introduction

The (modular) subset sum problem is to find, given integers w1, . . . , wn, t and q, a subset of the wi’s that
sum to t modulo q, i.e. to find bits x1, . . . , xn ∈ {0, 1} such that

n∑
i=1

xiwi = t mod q. (1)

It was shown to be NP-complete (in its natural decision variant) in 1972 by Karp [Kar72] and was considered
in cryptography as an interesting alternative to hardness assumptions based on number-theory. Due to its
simplicity, it was notably used in the 1980s, following [MH78], for the construction of several public-key
encryption schemes.

Most of these proposals (if not all) were swiftly broken using lattice-based techniques (see [Odl90]), but
the problem itself remains intractable for appropriate parameters and is even believed to be so for quantum



computers. For instance, when the so-called density d = n/ log2(q) of the subset sum instance is close to 1
(i.e. q ' 2n), the fastest known (classical and quantum) algorithms have complexity 2O(n) (see [BBSS20] and
references therein) and one can reach an alleged security level of λ bits with n = Θ(λ). Many cryptographic
constructions were proposed whose security relies on the hardness of the subset sum problem: pseudo-random
generators [IN96], bit commitments [IN96], public-key encryption [AD97,LPS10], . . .

The concept of zero-knowledge proofs and arguments introduced in [GMR89] has become a fundamental
tool in cryptography. It enables a prover to convince a verifier that some mathematical statement is true
without revealing any additional information. Zero-knowledge proofs or arguments of knowledge, in which
a prover demonstrates that they knows a “witness” of the validity of the statement, have found numerous
applications in cryptography (notably for privacy-preserving constructions or to enforce honest behaviour of
parties in complex protocols). The main goal of the present paper is to present new efficient zero-knowledge
arguments of knowledge for the subset sum problem.

1.1 Prior Work

Given integers w1, . . . , wn, t and q, an elegant zero-knowledge proof system due to Shamir [Sha86] (see also
[BGKW90,Sim91,Blo09]) allows a prover to convince a verifier that they knows x1, . . . , xn ∈ {0, 1} such
that the relation (1) holds. The proof system is combinatorial in nature and it requires Ω(λ) rounds of
communication to achieve soundness error 2−λ where each round requires Ω(n2) bits of communication. For
an alleged security level of λ bits, the overall communication complexity of Shamir’s proof system is thus
of O(λ3). In [LNSW13], Ling, Nguyen, Stehlé, and Wang proposed a proof of knowledge of a solution for
the infinity norm inhomogeneous small integer solution (ISIS) problem which is a vectorial variant of the
subset sum problem. It is based on Stern’s zero-knowledge proof of knowledge for the syndrome decoding
problem [Ste94] and is also combinatorial. It thus requires a large number of rounds of communication and
when specialized to the subset sum problem it also yields proofs with Θ(λ3)-bit communication complexity
for an alleged security level of λ bits.

A secure multi-party computation (MPC) protocol allows a set of mutually distrusting parties to jointly
evaluate a function f over their inputs while keeping those inputs private. An elegant approach to constructing
zero-knowledge protocols has gained particular attention over the last years: the MPC-in-the-head paradigm
of Ishai, Kushilevitz, Ostrovsky and Sahai [IKOS07,IKOS09] in which a prover secretly shares their secret
input, simulates the execution of an MPC protocol on these shares (in “their head”), commits to this
execution and partially reveals it to the verifier on some challenge subset of parties. The verifier can then
check that the partial execution is consistent and accepts or rejects accordingly. This approach was at
first stood in the realm of theoretical cryptography (with a focus on the asymptotic performance for any
problem in NP), but it was subsequently demonstrated to be also of practical relevance [GMO16,KKW18].
In [BD10], Bendlin and Ivan Damg̊ard were the first to use the MPC-in-the-head paradigm in lattice-based
cryptography. They proposed a zero-knowledge proof of knowledge of the plaintext contained in a given
ciphertext from Regev’s cryptosystem [Reg05] (and a variant they proposed). More recently, Baum and
Nof [BN20] proposed an efficient zero-knowledge argument of knowledge of the short integer solution (SIS)
problem (incorporating the sacrificing principle in the MPC-in-the-head paradigm). Beullens also recently
proposed such arguments obtained from sigma protocols with helper [Beu20]. When applied to the subset
sum problem itself, all (variants of) these protocols yield proofs with Θ(λ3)-bit communication complexity
for an alleged security level of λ bits.

There exist numerous other protocols for (vectorial variants of) the subset sum problem from lattice-based
cryptography. Until recently, they all introduce some slack in the proof, i.e. there is a difference between
the language used for completeness and the language that the soundness guarantees (see, e.g. [BDLN16] for
a generic argument of knowledge of a pre-image for homomorphic one-way functions over integer vectors).
In particular, the witness that can be extracted from a proof is larger than the one that an honest prover
uses (and in the subset sum problem, the extractor will not output a binary vector). This slack forces to use
larger parameters for the underlying cryptosystem and induces some loss in efficiency. Conversely, we shall
only consider exact arguments in the present paper. Finally, new exact arguments were proposed recently
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[BLS19,ENS20,LNS21] but they require to use a modulus q of a special form (namely a prime number as in
[BN20,Beu20] but with additional arithmetic constraints to make it “NTT-friendly”).

1.2 Contributions

In the MPC-in-the-head paradigm, the prover wants to convince a verifier that they know a (secret) pre-
image x of y = f(x) for some one-way function f where the function f is represented as an arithmetic
circuit. For the subset sum problem, the function f is defined via (1) and it is thus natural to consider
the simple inner-product arithmetic circuit defined over Zq. The prover’s secret input is the binary vector
x = (x1, . . . , xn) ∈ {0, 1}n and they have to perform some secret-sharing of x in Zq in such a way that the
shares of any unauthorized set of parties should reveal no information about the secret. This approach has
two major disadvantages of different nature: (1) sharing a single bit requires several elements of Zq each of
size Θ(λ) bits and (2) this paradigm requires evaluating the arithmetic circuit in a field and thus q to be
prime.

We adapt this paradigm using a secret sharing scheme done directly over the integers. This approach was
already used in cryptography (e.g. for multi-party computation modulo a shared secret modulus [CGH00]).
To additively share a secret t in a given interval [−T, T ] for T ∈ N, among n ≥ 2 parties, a dealer may pick
uniformly at random t1, . . . , tn ∈ [−T2ρ, T2ρ] under the constraint that t = t1 + · · ·+ tn (over the integers),
for some parameter ρ. However, given (n− 1) shares, t2, . . . , tn for instance, the value t1 = t− (t2 + · · · tn) is
not randomly distributed in [−T2ρ, T2ρ] and this may reveal information on the secret t. It is thus necessary
to sample the shares in an interval sufficiently large in such a way that their distributions for distinct secrets
are statistically indistinguishable. For a security level λ, this requires ρ = Ω(λ) and thus the additive sharing
of bits involves shares of size Ω(λ). To overcome this limitation and use additive secret sharing over small
integers, we will rely on rejection. The computation being actually simulated by the prover, they can abort
the protocol whenever the sharing leaks information on the secret vector x = (x1, . . . , xn) ∈ {0, 1}n. In some
cases, the prover cannot respond to the challenge from the verifier and must abort the protocol. A similar
idea was used for lattice-based signatures by Lyubashevsky [Lyu08,Lyu09] but using different methods.

Our technique also allows overcoming the second disadvantage of the previous tentatives to use the MPC-
in-the-head paradigm for lattice-based problems. Indeed, using our additive secret sharing over the integers,
we can prove the knowledge of some integer vector x = (x1, . . . , xn) satisfying relation (1) (for any q) and
further prove that xi ∈ {0, 1} for i ∈ {1, . . . , n}. This is achieved by simulating a (single) non-linear operation
modulo some arbitrary prime number q′ (independent from q and much smaller than q). We also introduce
another technique to prove that the solution x = (x1, . . . , xn) indeed lies in {0, 1}n using some masking
and a cut-and-choose strategy. Both methods yield zero-knowledge proofs with Θ(λ2)-bit communication
complexity for an alleged security level of λ bits. This improvement is not only of theoretical interest since
for q ' 2256, our protocol can produce proof of size 14KB where Shamir’s protocol [Sha86] (updated with
modern tips) produces proof of size 1186KB and [LNSW13] produces proofs of size 2350KB.

Our protocols are particularly efficient for the subset sum problem where the modulus q is large. However,
we show that our method has applications in other contexts in cryptography. We show that it can be used
for the (binary) ISIS problem in lattice-based cryptography and that the resulting protocols are competi-
tive with state-of-the-art protocols for this problem. We also present applications of our techniques to the
context of fully-homomorphic encryption (FHE). Specifically, adaptations of our protocols provide efficient
zero-knowledge arguments of plaintext and/or key knowledge for the so-called Torus Fully Homomorphic
Encryption (TFHE) scheme from [CGGI20].

2 Preliminaries

2.1 Zero-Knowledge Proofs

A zero-knowledge (ZK) protocol for some polynomial-time decidable binary relation R (i.e., a relation that
defines a language in NP) is defined by two probabilistic polynomial time (PPT) interactive algorithms, a
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prover P and a verifier V: both V and P are given a common input x and P is given in addition a witness
w such that (x,w) ∈ R. Then, P and V exchange a sequence of messages alternatively until V outputs a bit
b (with b = 1 indicating that V accepts P’s claim and b = 0 indicating that V rejects the claim). The entire
sequence of messages exchanged by P and V, along with the answer b, is called a transcript.

A zero-knowledge argument for R with soundness error ε, completeness error α and (t, ζ)-zero-knowledge
satisfies the following properties:

1. Completeness: if (x,w) ∈ R, and P knows a witness w for x, they will succeed in convincing V (except
with probability α), i.e.,

Pr[(P(x,w),V(x)) = 1] ≥ 1− α.

2. Soundness: if there exists a PPT algorithm P̃ such that

ε̃ := Pr [(P̃(x),V(x)) = 1] > ε,

then there exists an extractor E which, given rewindable black-box access to P̃ outputs a witness w′ for
x in time in time poly(λ, (ε̃− ε)−1) with probability at least 1/2.

3. Zero-knowledge: if for every PPT algorithm Ṽ, there exists a PPT simulator S which, given the
input statement x and rewindable black-box access to Ṽ, outputs a simulated transcript which is (t, ζ)-
indistinguishable from View(P(x,w), Ṽ(x)) (see Appendix B for a formal definition).

Remark 1. The soundness property ensures that a PPT algorithm P̃ without knowledge of the witness cannot
convince V with probability greater than ε assuming that the underlying problem is hard. Otherwise, the
existence of E implies that P̃ can be used to compute a valid witness w′ for x. If the zero-knowledge property
holds only for the genuine verifier V, then the protocol is deemed honest-verifier zero-knowledge.

2.2 MPC-in-the-Head and Batch Product Verification

The MPC-in-the-Head (MPCitH) paradigm [IKOS09] constructs ZK proofs from MPC protocols. Efficient
instances of this paradigm have been published for the first time these last years starting with a protocol
called ZKBoo [GMO16] and has found numerous applications (e.g. [GMO16,KKW18,BN20]).

We consider a prover P and a verifier V engaging a two-party interactive protocol for some public circuit
C over a finite field F and some value t ∈ F such that P wants to convince V that they knows an x ∈ F
satisfying C(x) = t.

In the MPCitH paradigm, the prover P usually decomposes their secret x into N shares JxK1, ..., JxKN
using some additive secret sharing over F. Then, P simulates an N -party MPC protocol for evaluating C. At
the end of the MPC protocol, using a commitment scheme (see Appendix B), P commits to the N views of
the parties resulting from the MPC protocol simulation. V then challenges P to open a subset of the views.
P answers by opening these views and V checks that these views are consistent with the MPC process as
well as valid openings of the commitments. In the basic setting where N − 1 out of N parties are opened,
the resulting zero-knowledge protocol achieves a soundness error of 1/N .

Batch Product Verification. Using the MPCitH approach the linear operations over F (i.e. addition in
F and multiplication by constants in F) can be handled easily and are almost free in terms of computation
and communication. The most cumbersome part of the MPCitH method is to handle non-linear operations
and in particular multiplications in F. The authors of [LN17,BN20] propose an MPC protocol to verify the
correctness of a product in F by “sacrificing” another one. This construction enables to check that a triple of
sharings (JxK, JyK, JzK) is such that x ·y = z, by using a second random triple (JaK, JbK, JcK) satisfying a ·b = c.
The second triple can be used a single time (to preserve the zero-knowledge property), hence the “sacrifice”.

Recently [KZ21] has adapted and optimized this method to build an efficient MPC protocol which check
simultaneously many products by sacrificing a dot-product. Specifically, given n triples (JxjK, JyjK, JzjK) and
a tuple ((JajK)j∈[n], JcK), their protocol verifies that 〈a, y〉 = −c and zj = xj · yj for all j ∈ [N ], without
revealing any information on (x, y, z). The protocol runs as follows:
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1. The parties get a random ε ∈ Fn from the verifier;

2. Each party i locally sets JαjKi = ε · JxjKi + JajKi for all j ∈ [n];

3. The parties open α by broadcasting their shares;

4. Each party i locally sets JvKi = 〈ε, JzKi〉 − 〈α, JyK〉 − JcKi;
5. The parties open v by broadcasting their shares;

6. The parties accept iff v = 0.

If (JxjK, JyjK, JzjK)j∈[n] contains an incorrect multiplication triple (i.e. there exists a j0 such that xj0 ·yj0 6= zj0)
or if ((JajK)j∈[n], JcK) does not satisfy the relation 〈a, y〉 = −c, then [KZ21] shows the parties accept with a

probability at most |F|−1. We will make use of this optimization in one of our protocol.

Additive Sharing. In most recent MPCitH schemes, in order to decrease the communication costs, when
the prover shares their secret x into N shares JxK1, ..., JxKN , the first N − 1 shares are generated using a
pseudo-random generator and only the N -th share JxKN is computed in such a way that x = JxK1+ · · ·+JxKN
in F. In this paper, since our sharings will not be defined over some additive group, we will generate the N
shares JxK1, ..., JxKN from N seeds using a pseudo-random generator and we will introduce an auxiliary value
∆x (not distributed over the same set) such that x = JxK1 + · · ·+ JxKN +∆x over the integers.

3 General Idea

Consider an instance (w, t) ∈ Znq × Zq of the subset sum problem (SSP) and let us denote x a solution of
this instance. We have x ∈ {0, 1}n and

∑n
j=1 xj · wj = t mod q.

We want to use the MPC-in-the-Head paradigm to build a zero-knowledge protocol that proves the
knowledge of a solution for the instance (w, t). To proceed, we need to build an MPC protocol with honest-
but-curious parties taking as inputs shares of the secret x, and possibly shares of other data, and which
computation can only succeed if x is a valid solution of the SSP instance. As a first ingredient, we need a
method to share the secret x between the different parties.

3.1 The Naive Approach

The SSP instance is defined on Zq, so the natural sharing of x would be defined as{
JxKi

$←− (Zq)n for all i ∈ [N ],

∆x← x−
∑N
i=1JxKi mod q

.

In the MPC-in-the-Head paradigm, the communication cost of a sharing is the cost to send the auxiliary
values, i.e. the vector ∆x. Here, the natural sharing of x costs

n · log2(q) bits.

If we take n = 256 and q = 2256, the cost is about 216 bits = 8 KB. To achieve a soundness error of 2−128

with N = 256, we need to repeat the protocol at least 16 times, so the communication cost of the protocol
would be already more than 128 KB for the sole sharing of x (some communication being further required
for the MPC-in-the-Head protocol). Asymptotically, the parameters for the subset sum problem are chosen
such that n = Θ(λ) and log2 q = Θ(λ), the communication cost of this sharing is thus about Θ(λ2) bytes
per protocol repetition. Since we need to repeat the protocol about Θ(λ) times to achieve a 2−λ soundness
error the global communication cost is then of at least Θ(λ3) (for the sharing only).

We present hereafter an alternative strategy for the sharing of x, which achieves better practical and
asymptotic communication costs.
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3.2 Sharing on the Integers and Opening with Abort

We propose another way to share the secret x to achieve lower communication. We know that x is a binary
vector (i.e. x ∈ {0, 1}n), so instead of the natural sharing, we suggest to use a sharing defined on the integers,
that is {

JxKi
$←− {0, . . . , A− 1}n for all i ∈ [N ],

∆x← x−
∑N
i=1JxKi.

However, this sharing leaks information about the secret x. The distribution ∆xj is not the same de-
pending on whether xj = 0 or xj = 1 as illustrated on Figure 1. To solve this issue, the prover must abort
the protocol in some cases.

Fig. 1: Probability mass function of ∆xj when xj = 0 and when xj = 1, for N = 3 and A = 9.

To see how this leakage can be effectively exploited to (partly) recover x, let us recall that at the end of
the protocol, the verifier shall ask the prover to open the views of all parties except one. Let us denote i∗

the index of the unopened party. It means the verifier will have access to

{JxKi}i 6=i∗ and ∆x .

For the sake of simplicity, let us first consider the case n = 1, i.e. x ∈ {0, 1} and JxK is the sharing of a single
integer. With the opened values, the verifier can compute

x− JxKi∗ as ∆x+
∑
i 6=i∗

JxKi .

Now let us denote Y = x− JxKi∗ the underlying random variable over the uniform random sampling of JxKi∗ .
We have

Pr(Y = −A+ 1) =

{
1
A if x = 0

0 if x = 1
and Pr(Y = 1) =

{
0 if x = 0
1
A if x = 1

while

Pr(Y = y) =
1

A
for every y ∈ {−A+ 2, . . . , 0} .
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So by observing x− JxKi∗ = −A+ 1 one learns (x, JxKi∗) = (0,−A+ 1). Similarly, by observing x− JxKi∗ = 1
one learns (x, JxKi∗) = (1, 0). To avoid this flaw, the the prover must abort the protocol before revealing
{JxKi}i 6=i∗ and ∆x whenever one of these two cases occurs. This notably implies that ∆x must not be revealed
before receiving the challenge i∗, but it should still be committed beforehand in order to ensure the soundness
of the protocol. By proceeding like this, we modify the distribution of the revealed auxiliary value which
does not leak any information about x anymore as illustrated in Figure 2, and the probability to abort does
not leak information about x since it is 1/A in the both cases (x = 0 and x = 1).

Fig. 2: Probability mass function of ∆xj with abort, for N = 3 and A = 9.

Let us now come back to the general case of n ≥ 1. The prover applies the above abortion strategy for
all the coordinates of x, namely

– if there exists j ∈ [n] such that xj = 0 and JxjKi∗ = A− 1, the prover aborts;
– if there exists j ∈ [n] such that xj = 1 and JxjKi∗ = 0, the prover aborts;
– otherwise the prover proceeds.

The probability to abort, which we call rejection rate, is

1−
(

1− 1

A

)n
≤ n

A
.

We note that the rejection rate can be tightly approximated by the n/A upper bound when A is sufficiently
large. In order to achieve a small (constant) rejection rate, we should hence choose A greater than n.
Asymptotically, we then have A = Θ(n) = Θ(λ), which represents an exponential improvement compared to
q = 2Θ(λ).

Let us now analyze the computation cost of our strategy for sharing x. Since ∆xj belongs to {−N · (A−
1) + 1, . . . , 0}, sending the auxiliary value ∆x would cost n · log2(N · (A− 1)) bits. However, the prover can
save communication by sending x−JxKi∗ instead, which is strictly equivalent in terms of revealed information
by the relation x− JxKi∗ = ∆x+

∑
i 6=i∗JxKi. Since each coordinate of x− JxKi∗ is uniformly distributed over

{−A+ 2, . . . , 0}, sending it only costs

n · log2(A− 1) bits.
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With x − JxKi∗ , the verifier can recover ∆x by computing ∆x = (x − JxKi∗) −
∑
i 6=i∗JxKi. The cost of this

sharing has the advantage of being independent of the modulus q on which the SSP instance is defined. The
value of A will be chosen according to the desired trade-off between communication cost and rejection rate.
If n = 256 and A = 216, we have a cost of 0.5 KB for a rejection rate of 0.0038, which is much better than
the 8 KB of the naive approach.

Now that we have defined the sharing of x, we need to demonstrate two properties of the shared SSP
instance through multi-party computation. The first one is the SSP relation which in the shared setting
translates to

n∑
j=1

JxjK · wj = JtK mod q

for a sharing JtK of t. The linearity of this relation makes it easy to deal with: the share JtKi can simply
be computed as JtKi :=

∑n
j=1JxjKi · wj mod q and committed to the verifier by each party. The verifier

can then checked that the open parties have correctly computed their JtKi shares and that the relation∑N
i=1JtKi = JtK mod q well holds. The second property which must be demonstrated through multi-party

computation is that the solution x corresponding to the sharing JxK is a binary vector. This is not a priori
guaranteed to the verifier since the shares of the coordinate of x are defined over {0, . . . , A − 1} and the
correctness of the linear relation does not imply that x is indeed binary. We present two different solutions
to this issue in the following.

3.3 Binarity Proof from MPC-in-the-Head Product Verification

Our first solution relies on standard MPC-in-the-Head techniques to prove the relation

x ◦ (x− 1) = 0

where ◦ denotes the coordinate-wise product, 0 and 1 are to be interpreted as the all-0 and all-1 vectors.
To this aim, we can use the MPC-in-the-Head batch product verification suggested in [LN17,BN20] and
recently improved in [KZ21] (see Section 2.2). However, we can do better than a straight application of those
techniques.

The relation x ◦ (x − 1) = 0 is defined in Zq and the above techniques imply to send at least one field
element per product, that is n elements from Zq. To save communication and since the sharing JxK is defined
on the integers, we can work on a smaller field. We previously explained that the verifier receives

{JxKi}i 6=i∗ and ∆x

from the prover, so they can check that, for all j ∈ [n],

−A+ 2 ≤ xj − JxjKi∗ ≤ 0

and they trusts JxjKi∗ ∈ {0, . . . , A − 1} (which can be verified for the open parties). Thus the verifier can
deduce that, for all j ∈ [n],

−A+ 2 ≤ xj ≤ A− 1 . (2)

Let q′ be a prime such that q′ ≥ A. If the prover convinces the verifier that xj(xj − 1) = 0 mod q′, then the
latter deduces that xj ∈ {0, 1} because

q′|xj(xj − 1) ⇒ (q′|xj) or (q′|xj − 1)

⇒ (xj = 0) or (xj = 1) by (2)

The prover hence just needs to prove x ◦ (x − 1) = 0 mod q′ for some prime q′ such that q′ ≥ A. To this
purpose, we apply the batch product verification of [KZ21] as follows.

The prover first samples a ∈ (Zq′)n with its sharing

JaKi
$←− (Zq′)n for i ∈ [N ] .
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The value a is hence defined as a uniform random element of (Zq′)n and no auxiliary value ∆a is necessary.
The prover then computes c = 〈a, x〉 and its sharing as{

JcKi
$←− Zq′ for all i ∈ [N ],

∆c
$←− c−

∑N
i=1JcKi mod q′

.

The prover gives the shares of x, a and c as inputs to the parties and runs the following MPC protocol:

1. the parties get a random challenge ε ∈ (Zq′)n from the verifier;
2. the parties locally set JαK = ε ◦ (1− JxK) + JaK;
3. the parties open JαK to get α;
4. the parties locally set JvK = 〈α, JxK〉 − JcK;
5. the parties open JvK to get v;
6. the parties accept iff v = 0.

Besides the input shares and commitments, the prover-to-verifier communication cost of the corresponding
MPCitH zero-knowledge protocol only results from the size of JαKi∗ (the broadcasted vector of the unopened
party i∗), which is of

n · log2(q′) bits.

We stress that the prover does not need to send JvKi∗ because the verifier knows that v must be zero and
will deduce JvKi∗ = −∆v −

∑
i6=i∗JvKi

As described in Section 2.2, the above batch product MPC verification produces false positives with
probability 1/q′. Thus the soundness error of the obtained zero-knowledge protocol is

1−
(

1− 1

N

)(
1− 1

q′

)
<

1

N
+

1

q′
.

On the other hand, the protocol has a rejection rate of 1− (1− 1
A )n and a prover-to-verifier communication

cost (in bits) of
2 · (2λ) + n · log2(A− 1)︸ ︷︷ ︸

x−JxKi∗

+n · log2(q′)︸ ︷︷ ︸
∆α

+ log2(q′)︸ ︷︷ ︸
∆c

+λ log2N + 2λ .

3.4 Binarity Proof from Masking and Cut-and-Choose Strategy

Our second solution to prove that JxK encodes a binary vector relies on a masking of x and a cut-and-choose
strategy. The idea is to generate a random vector r from {0, 1}n and to apply the sharing described in
Section 3.2 to r. In addition, the prover computes (and commits) x̃ := x ⊕ r ∈ {0, 1}n where ⊕ represents
the XOR operation. Instead of giving the shares JxK of x as inputs of the MPC protocol, the idea is now to
send the shares JrK of r. Then using x̃, the parties can locally deduce a sharing of x as

JxK = (1− x̃) ◦ JrK + x̃ ◦ (1− JrK)

which is a linear relation in JrK, and the verifier can further deduce the auxiliary value ∆x from ∆r as

∆x = (1− x̃) ◦∆r + x̃ ◦ (1−∆r) .

By replacing JxK with JrK the parties’ input is made independent of the secret. The interest of doing so
is to enable a cut-and-choose strategy to prove that JrK encodes a binary vector, which in turns implies that
x = x̃ ⊕ r is a binary vector. More precisely, at the beginning of the zero-knowledge protocol, the prover
produces M binary vectors r[`] and their corresponding shares Jr[`]K (in practice these vectors and their
sharings are pseudo-randomly derived from some seeds). Then the prover commits those sharings Jr[`]K as
well as the corresponding masked vectors x̃[`] := x ⊕ r[`]. Then the verifier asks to open all the sharings
r[`] except one and checks that they correspond to binary vectors. The verifier will hence trust that the
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unopened sharing encodes also a binary vector with a soundness error of 1/M . We stress that all the values
x̃[`] for which r[`] is opened must remain hidden (otherwise x could be readily recovered). The obtained
zero-knowledge protocol has a soundness error of

max

{
1

M
,

1

N

}
,

a rejection rate of 1− (1− 1
A )n and a prover-to-verifier communication cost (in bits) of

2 · (2λ) + λ log2M︸ ︷︷ ︸
Cost of C&C

+n · log2(A− 1)︸ ︷︷ ︸
r−JrKi∗

+ n︸︷︷︸
x̃

+λ log2N + 2λ .

3.5 Asymptotic Analysis

We analyze hereafter the asymptotic complexity of the two variants of our protocol. We show that for a
security parameter λ both variants have an asymptotic communication cost of Θ(λ2) and an asymptotic
computation time of Θ(λ4).

For the binarity proof based on masking and cut-and-choose, we assume M = N (which is optimal for
the communication cost given the soundness error). For the other parameters, let us recall that

– for a security parameter λ, one must take n ≈ log2 q = Θ(λ),
– the prime q′ can be chosen as the smallest prime greater than A, which implies q′ ≈ A.

For both variants, the asymptotic communication cost for one repetition of the protocol is then of

Θ(λ log2A+ λ log2N) .

Since each repetition has a soundness error of Θ(1/N), the protocol must be repeated τ = Θ(λ/log2N) times
to reach a global soundness error of 2−λ. The probability that any of these τ repetitions aborts is given by

1−
(

1− 1

A

)n·τ
≈ n · τ

A

where the approximation is tight when A is sufficiently large. Thus for a small constant rejection probability,
one must take A = Θ(n · τ) = Θ(λ2/ log2N). We have a communication cost for the τ iterations in

Θ

(
λ2

log2A

log2N
+ λ2

)
= Θ

(
λ2

log2N
log2

( λ2

log2N

)
+ λ2

)
and we hence obtain a minimal asymptotic communication cost of Θ(λ2) by taking N = Θ(λ).

The asymptotic computation time for one repetition of the protocol is of Θ(Nn(log2 q)(log2A)), where
the term (log2 q)(log2A) arises from the complexity of the multiplication between an element of Zq and a
value smaller than A. We hence get a computation time of Θ(λ3 log2 λ) per repetition which makes Θ(λ4)
for τ repetitions.

4 Protocols and Security Proofs

In the previous section, we presented a new sharing for small-coefficient vectors of Zq which achieves low
communication when the modulus q is high. Then we proposed two ways to prove that a vector represented
by this sharing is binary, either with a batch product verification or with a cut-and-choose strategy, while
proving the linear constraint is easy in the MPCitH paradigm. In this section, we describe formally both
protocols, their corresponding security proofs, and how to decrease the rejection rate.
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4.1 Protocol with Batch Product Verification

Protocol description. In Section 3.3, we proposed an MPC protocol that proves that the sharing JxK encodes a
binary vector. We then add the checking of the linear relation as described in Section 3.2 and we transform the
multi-party computation into a zero-knowledge protocol which proves the knowledge of a solution of an SSP
instance. We give the formal description of our protocol in Protocol 1. The protocol makes use of a pseudo-
random generator PRG, a tree-based pseudo-random generator TreePRG (see definition in [KKW18]), two
collision-resistant hash functions Hashi for i ∈ {1, 2} and a commitment scheme (Com,Verif) as defined in
Appendix B. In this description, the procedure Check returns 0 if the evaluated condition is false (i.e. the
equality does not hold) and the execution continues otherwise.

Security proofs. The following theorems state the completeness, zero-knowledge and soundness of Protocol 1.
The proofs of Theorems 1, 2 and 3 are provided in appendix.

Theorem 1 (Completeness). A prover P who knows a solution x to the subset sum instance (w, t) ∈
Znq × Zq and who follows the steps of Protocol 1 convinces the verifier V with probability(

1− 1

A

)n
.

Theorem 2 (Zero-Knowledge). Let the PRG used in Protocol 1 be (t, εPRG)-secure and the commitment
scheme Com be (t, εCom)-hiding. There exists an efficient simulator S which outputs a transcript which is
(t, εPRG + εCom)-indistingui-shable from a real transcript of Protocol 1.

Theorem 3 (Soundness). Suppose that there is an efficient prover P̃ that, on input (H, y), convinces the
honest verifier V on input H, y to accept with probability

ε̃ := Pr[〈P̃,V〉(H, y)→ 1] > ε

for a soundness error ε equal to
1

q′
+

1

N
− 1

q′
· 1

N
.

Then, there exists an efficient probabilistic extraction algorithm E that, given rewindable black-box access to
P̃, produces either a witness x such that t = 〈w, x〉 and x ∈ {0, 1}n, or a commitment collision, by making
an average number of calls to P̃ which is upper bounded by

4

ε̃− ε
·
(

1 + ε̃ · 2 · ln(2)

ε̃− ε

)
.

Proof size. To achieve a targeted soundness error 2−λ, we can perform τ parallel executions of the protocol
such that ετ ≤ 2−λ. Such parallel repetition does not preserve (general) zero-knowledge and the resulting
scheme achieves honest verifier zero knowledge. And instead of sending τ values for h and h′, the prover
can merge them together to send a single h and a single h′. Moreover, instead to sending the N − 1 seeds
and commitment randomness of (seedi, ρi)i 6=i∗ for each execution, we can instead send the sibling path from
(seedi∗ , ρi∗) to the tree root, it costs at most λ · log2(N) bits (we need to reveal log2(N) nodes of the tree)
by execution. The communication cost (in bits) of the protocol with τ repetitions is

Size = 4λ + τ · [n · (log2(A− 1) + log2(q′)) + log2(q′) + λ log2N + 2λ]

while the soundness error and rejection rate scale as(
1

q′
+

1

N
− 1

q′
· 1

N

)τ
and 1−

(
1− 1

A

)τ ·n
respectively. Let us stress that the obtained size is independent of the modulus q (and of the size of the
integers {wj}, t).
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Prover P Verifier V
x ∈ {0, 1}n
w ∈ Znq , t = 〈w, x〉 w, t

mseed
$←− {0, 1}λ

Compute parties’ seeds
(seed1, ρ1), . . . , (seedN , ρN )
with TreePRG(mseed)

For each party i ∈ {1, . . . , N}:
JaKi, JxKi, JcKi ← PRG(seedi) . a ∈ Znq′ , c ∈ Zq′ , JxKi ∈ {0, . . . , A− 1}n
comi = Com(seedi; ρi)

∆x = x−
∑
iJxKi

∆c = 〈a, x〉 −
∑
iJcKi

h = Hash1(∆x,∆c, com1, . . . , comN )
h−−−−−−−−−−−−−−−−−−→

ε
$←− Znq′

ε←−−−−−−−−−−−−−−−−−−
The parties locally set

- JtK = 〈w, JxK〉 . t ∈ Zq
- JαK = ε ◦ (1− JxK) + JaK . α ∈ Znq′ (computation in Zq′)

The parties open JαK to get α.
The parties locally set

JvK = 〈α, JxK〉 − JcK . v ∈ Zq′ (computation in Zq′)

h′ = Hash2(JtK, JαK, JvK)
h′−−−−−−−−−−−−−−−−−−→

i∗
$←− {1, . . . , N}

i∗←−−−−−−−−−−−−−−−−−−
If there exists j ∈ [n] such that:

- either JxjKi∗ = 0 with xj = 1
- or JxjKi∗ = A− 1 with xj = 0,

then abort.
y = x− JxKi∗

(seedi, ρi)i6=i∗ , comi∗ ,
y, ∆c, JαKi∗

−−−−−−−−−−−−−−−−−−→
For all i 6= i∗,

JaKi, JxKi, JcKi ← PRG(seedi)
∆x = y −

∑
i6=i∗JxKi

∆α = ε · (1−∆x)
For all i 6= i∗,

Rerun the party i as the prover
and compute the commitment comi.

∆t = 〈w,∆x〉
∆v = 〈α,∆x〉 −∆c
JtKi∗ = t−∆t−

∑
i 6=i∗JtKi

JvKi∗ = −∆v −
∑
i6=i∗JvKi

Check h = Hash1(∆x,∆c, com1, . . . , comN )
Check h′ = Hash2(JtK, JαK, JvK)
Return 1

Protocol 1: Zero-knowledge proof for Subset Sum Problem via MPC-in-the-head with rejection, using batch
product verification to prove binarity.

4.2 Protocol with Cut-and-Choose Strategy

Protocol description. As described in Section 3.4, we can also use a cut-and-choose strategy to prove that the
vector JxK is binary. It is possible since we can remplace the input JxK of the multi-party computation by a
sharing JrK independent of the secret, where r is a mask uniformly sampled in {0, 1}n. To achieve a targeted
soundness error 2−λ, we can perform τ parallel executions of the protocol such that ετ ≤ 2−λ. Like [KKW18],
instead of performing τ independent cut-and-choose phases each resulting in trusting one sharing JrK among
M , we can perform a global cut-and-choose phase resulting in τ trusted sharings JrK among a larger M (see
[KKW18] for more details). We give the formal description of this zero-knowledge protocol in Protocol 2. The
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protocol makes use of a pseudo-random generator PRG, a tree-based pseudo-random generator TreePRG (see
definition in [KKW18]), four collision-resistant hash functions Hashi for i ∈ {1, 2, 3, 4} and a commitment
scheme (Com,Verif) as defined in Appendix B. In this description, the procedure Check returns 0 if the
evaluated condition is false (i.e. the equality does not hold) and the execution continues otherwise.

Prover P Verifier V
x ∈ {0, 1}n
w ∈ Znq , t = 〈w, x〉 w, t

mseed[0]
$←− {0, 1}λ

(mseed[e])e∈[M ] ← TreePRG(mseed[0])
For each e ∈ {1, . . . ,M}:

r[e] ← PRG(mseed[e]) . r[e] ∈ {0, 1}n

(seed
[e]
i , ρ

[e]
i )i∈[N ] ← TreePRG(mseed[e])

For each i ∈ {1, . . . , N}:
Jr[e]Ki ← PRG(seed

[e]
i ) . Jr[e]Ki ∈ {0, . . . , A− 1}n

com
[e]
i = Com(seed

[e]
i ; ρ

[e]
i )

∆r[e] = r[e] −
∑
iJr

[e]Ki
he = Hash1(∆r[e], com

[e]
1 , . . . , com

[e]
n )

h = Hash2(h1, . . . , hM )
h−−−−−−−−−−−−−−−−−−→

J
$←− {J ⊂ [M ] ; |J | = τ}

J←−−−−−−−−−−−−−−−−−−

For each e ∈ J :

x̃[e] = x⊕ r[e] . ⊕ is the XOR operation (x̃ ∈ {0, 1}n)
The parties locally set

Jx[e]K = (1− x̃[e]) ◦ Jr[e]K
+x̃[e] ◦ (1− Jr[e]K)

and they set Jt[e]K = 〈w, Jx[e]K〉.
h′e = Hash3(x̃[e], Jt[e]K)

h′ = Hash4((h′e)e∈J)
h′, (mseed[e])e∈[M]\J−−−−−−−−−−−−−−−−−−→

L = {`e}e∈J
$←− {1, . . . , N}τ

L←−−−−−−−−−−−−−−−−−−
If there exists (e, j) ∈ J × [n] such that:

- either Jr[e]j K`e = 0 with r
[e]
j = 1

- or Jr[e]j K`e = A− 1 with r
[e]
j = 0,

then abort.

y = r[e] − Jr[e]K`e  (seed
[e]
i , ρ

[e]
i )i 6=`e

y, x̃[e], com
[e]
`e


e∈J−−−−−−−−−−−−−−−−−−→

For each e 6∈ J :

Compute he using mseed[e]

For each e ∈ J :
For all i 6= `e

com
[e]
i = Com(seed

[e]
i ; ρ

[e]
i )

Rerun the party i

as the prover to get Jt[e]Ki
∆r[e] = y −

∑
i 6=`eJr[e]K

he = Hash1(∆r[e], com
[e]
1 , . . . , com

[e]
n )

From ∆r[e], deduce ∆t[e].

Jt[e]K = t−∆t[e] −
∑
i6=`eJt[e]Ki

h′e = Hash3(x̃[e], Jt[e]K)
Check h = Hash2(h1, . . . , hM )
Check h′ = Hash4((h′e)e∈J)
Return 1

Protocol 2: Zero-knowledge proof for Subset Sum Problem via MPC-in-the-head with rejection, using cut-
and-choose strategy to prove binarity.
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Security proofs. The following theorems state the completeness, zero-knowledge and soundness of Protocol 2.
The proofs of Theorems 4, 5 and 6 are provided in appendix.

Theorem 4 (Completeness). A prover P who knows a solution x to the subset sum instance (w, t) ∈
Znq × Zq and who follows the steps of Protocol 2 convinces the verifier V with probability(

1− 1

A

)τ ·n
.

Theorem 5 (Honest-Verifier Zero-Knowledge). Let the PRG used in Protocol 2 be (t, εPRG)-secure
and the commitment scheme Com be (t, εCom)-hiding. There exists an efficient simulator S which, given
random challenges J and L outputs a transcript which is (t, τ · εPRG + τ · εCom)-indistinguishable from a real
transcript of Protocol 2.

Theorem 6 (Soundness). Suppose that there is an efficient prover P̃ that, on input (H, y), convinces the
honest verifier V on input H, y to accept with probability

ε̃ := Pr[〈P̃,V〉(H, y)→ 1] > ε

for a soundness error ε equal to

max
M−τ≤k≤M

{ (
k

M−τ
)(

M
M−τ

)
·Nk−M+τ

}
.

Then, there exists an efficient probabilistic extraction algorithm E that, given rewindable black-box access to
P̃, produces either a witness x such that t = 〈w, x〉 and x ∈ {0, 1}n, or a commitment collision, by making
an average number of calls to P̃ which is upper bounded by

4

ε̃− ε
·
(

1 + ε̃ · 8 ·M
ε̃− ε

)
.

Proof size. Let us recall that the couples (seedi, ρi) are sampled using a tree PRG, sending (seed
[e]
i , ρ

[e]
i )i 6=`e

costs at most λ · log2(N) bits by iteration. The communication cost (in bits) of the protocol is then

Size = 4λ+ λ · τ · log2

M

τ
+ τ · [n · log2(A− 1) + n+ λ log2N + 2λ] .

Here again, the obtained size is independent of the modulus q (and of the size of the integers {wj}, t).

4.3 Decreasing the Rejection Rate

The two above protocols have a rejection rate around τn/A which implies that we must take A = Θ(τn) to
obtain a constant (small) rejection rate. In practice, this results in a significant increase in the communication
cost. Let us for instance consider Protocol 1 with (τ,N,A) = (16, 280, 213). For this setting, the proof size
is about 15.6 KB for a rejection rate of 0.394. If we increase the value of A to have a rejection rate below
0.003, we should take A = 221 and the proof size would be 23.6 KB.

A better strategy consists in allowing the prover to abort a few of the τ iterations. Let us assume that the
verifier accepts the proof if the prover can answer to τ − η challenges among the τ iterations. This slightly
increases the soundness error, but it can also significantly decrease the global rejection rate. If we denote
prej the probability that an iteration aborts, then the global rejection rate of this strategy is given by

1−
η∑
i=0

(
τ

i

)
· (1− prej)τ−i · pirej. (3)
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At the same time, the soundness error for Protocol 1 becomes

η∑
i=0

(
τ

i

)
· (1− ε)i · ετ−i

where ε = 1
N + 1

q′ −
1
q′ ·

1
N is the soundness error of a single iteration. Using this strategy with τ = 20 and

η = 3, the proof size is of 16.7 KB for a rejection rate of 0.003 (instead of 23.6 KB with the naive strategy).
The same strategy also applies to Protocol 2. The rejection rate is also given by Equation (3) while the

soundness error becomes

max
M−τ≤k≤M

{(
k

M−τ
)(

M
M−τ

) · η∑
i=0

[(
k −M + τ

i

)(
1− 1

N

)i(
1

N

)k−M+τ−i
]}

.

In any case, the prover always answers to at most τ − η challenges of the verifier (even if the prover
aborts less than η among the τ iterations) so that the communication cost is roughly that of τ −η iterations.
Additionally, for each unanswered challenge, the prover must further send two hash digests to enable the
verifier to recompute and check h and h′. Thus the new proof size (in bits) for Protocol 1 is

Sizeη = 4λ+ η · 4λ
+ (τ − η) · [n · (log2(A− 1) + log2(q′)) + log2(q′) + λ log2N + 2λ] ,

while the new proof size (in bits) for Protocol 2 is

Sizeη = 4λ+ η · 4λ+ λ · τ · log2

M

τ
+ (τ − η) · [n · log2(A− 1) + n+ λ log2N + 2λ] .

We note that in practice, given a target security level and a target rejection probability, one needs to use a
slightly increased τ (or N) to compensate for the loss in terms of soundness. While this shall slightly increase
the proof size, the above approach (with η > 0) still provides better trade-offs than the original approach
(η = 0).

5 Instantiations and Performances

5.1 Subset Sum Instances

We recall in this section known techniques to solve the modular subset sum problem (SSP) defined by (1). It
is well-known that the hardness of an SSP instance depends greatly on its density defined as d = n/ log2 q.
If the SSP instance is too sparse (e.g. d < 1/n) or too dense (e.g. d > n/ log2 n) then the problem can be
solved in polynomial time (see e.g. [LO83,CJL+92,Sha08] and references therein). We shall therefore only
consider SSP instances with density d ' 1 (i.e. q ' 2n) which are arguably the hardest ones [IN96].

In this case, simple algorithms exist based on brute force enumeration at O(2n) time and constant space,
or time-space tradeoff [HS74] with O(2n/2) time and space complexities. The first non-trivial algorithm was
published by Schroeppel and Shamir [SS81] with time complexity O(2n/2) and space complexity O(2n/4).
Later, faster algorithms were proposed with similar time and space complexities: Õ(20.337n) by Howgrave-
Graham and Joux [HJ10], Õ(20.291n) by Becker, Coron and Joux [BCJ11] and Õ(20.283n) by Bonnetain,
Bricout, Schrottenloher and Shen [BBSS20]. The latter algorithms neglect the cost to access an exponential
memory but even with this optimistic assumption, for n = 256, all known algorithms require at least a
time complexity lower-bounded by 2128 operations or memory of size at least 272 bits. There also exists a
vast literature on quantum algorithms for solving the SSP (see [BBSS20] and references therein). The best
(heuristic) quantum complexity from [BBSS20] has time complexity Õ(20.216n) and thus requires about 264

quantum operations and quantum memory for n = 256. In the following, we, therefore, consider the efficiency
of our protocols for n = 256.
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5.2 Zero Knowledge Protocols

Let us consider the subset sum problem with n = 256. We propose in Table 1 several sets of parameters
for our two protocols which target a security of 128 bits. We provide two kinds of instantiations to give the
reader an idea of the obtained performance while changing the number of parties. The first ones correspond
to instantiations with fast computation. The second ones correspond to instantiations that achieve smaller
communication costs but slower computation. For each setting, we suggest two parameter sets: one achieving
a rejection rate around 0.4 and the other one achieving a rejection rate between 0.001 and 0.004.

Protocol
Parameters

Proof size Rej. rate Soundness err.
τ η N A M

Shamir [Sha86] 219 - - - - 1186 KB - 128 bits

[LNSW13] 219 - - - - 2350 KB - 128 bits

Beullen [Beu20] 14 - 1024 - 4040 122 KB - 128 bits

Protocol 1 (batching) 26 0 32 214 - 25.7 KB 0.334 130 bits

Protocol 1 (batching) 31 3 32 214 - 27.9 KB 0.001 128 bits

Protocol 2 (C&C) 27 0 32 214 462 17.4 KB 0.344 128 bits

Protocol 2 (C&C) 33 3 32 214 470 19.6 KB 0.002 128 bits

Protocol 1 (batching) 17 0 256 213 - 16.6 KB 0.412 135 bits

Protocol 1 (batching) 21 3 256 213 - 17.7 KB 0.004 133 bits

Protocol 2 (C&C) 19 0 256 213 954 13.0 KB 0.448 128 bits

Protocol 2 (C&C) 24 3 256 214 952 15.4 KB 0.001 128 bits

Table 1: Comparison of state-of-the-art zero-knowledge protocols for proving the knowledge of an SSP in-
stance (with n = 256 and q ≈ 2256).

We provide in Table 1 the performance of the other zero-knoweledge protocols proving the knowledge
of an SSP solution. The only other protocol designed for the subset sum problem is Shamir’s one [Sha86].
We can also compare these protocols with [LNSW13] which is an adaptation of Stern’s protocol to the ISIS
(inhomogeneous short integer solution) problem. The remaining articles in the literature about proofs for
the ISIS problem are restricted to the case where the modulus q is prime. We add Beullen’s protocol [Beu20]
for ISIS with prime q to the comparison.

5.3 Signature Schemes

The Fiat-Shamir heuristic [FS87] is a method to convert Σ-protocols (a specific class of ZK proofs) into non-
interactive ZK proofs and hence can be used to build signature. Using this heuristic we can transform our
two protocols into signature schemes. For each of them, we explain how to apply the Fiat-Shamir transform
and how to evaluate the obtained security.

Signature from Protocol 1. We compute the challenges {ε[e]}e∈[τ ] and {i∗[e]}e∈[τ ] for τ executions as:

{ε[e]}e∈[τ ] := Hash′1(m,h)

and

{i∗[e]}e∈[τ ] := Hash′2(m,h, h′)

where m is the input message, Hash′1 and Hash′2 are some hash functions, and h (resp. h′) is the hash value
corresponding to the merged inputs of Hash1 (resp. Hash2) from the τ executions.
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Since the protocol has 5 rounds, we must take into account the forgery attack described in [KZ20] to
estimate the security of the resulting signature. When we adapt the attack for Protocol 1, its cost is given
by

costforge = min
τ1,τ2:τ1+τ2=τ

{
1∑τ

i=τ1
PMF(i, τ, 1

q′ )
+

1∑η
i=0 PMF(i, τ2, 1− 1

N )

}
,

with PMF(i, τ, p) :=
(
τ
i

)
pi(1− p)τ−i. When selecting the signature parameters, we must choose τ such that

costforge ≥ 2λ.

Signature from Protocol 2. The challenges J and L are computed as

J := Hash′1(m,h)

and

L := Hash′2(m,h, h′, (mseed[j])j∈[M ]\J)

where m is the input message and where Hash′1 and Hash′2 are some hash functions.

Since the protocol has 5 rounds, the security of the resulting signature scheme is given by the attack
of [KZ20] which has, in the context of the Protocol 2, a forgery cost of

costforge = min
M−τ≤k≤M

{(
M

M−τ
)(

k
M−τ

) +
1∑η

i=0 PMF(i, k −M + τ, 1− 1
N )

}
.

Another approach consists in turning the 5-round protocol into a 3-round protocol (before applying
the Fiat-Shamir). We refer to [KKW18,FJR21] for the details of such an approach. We provide a formal
description of the 3-round variant of the protocol in Appendix C. The soundness error of this variant is
the same as for the original protocol (see Theorem 6). When we apply the Fiat-Shamir to this variant, the
security of the obtained signature scheme is equal to the soundness error of the protocol (since the protocol
has now only 3 rounds) and its size (in bits) is

Sizeη = 4λ+ η · 4λ+ 3λ · τ · log2

M

τ
+ (τ − η) · [n · log2(A− 1) + n+ λ log2N + 2λ] .

Performances. We selected some parameter sets to instantiate the resulting signature schemes while targeting
a security of 128 bits and a rejection rate of 0.01. We obtained the performances of Table 2.

Signature
Parameters

Proof size Rej. rate Security
τ η N A M

Protocol 1 (batching) 29 2 256 214 - 28.1 KB 0.010 129 bits

Protocol 1 (batching) 42 3 32 214 - 38.7 KB 0.004 128 bits

Protocol 2 (C&C), 5 rounds 46 3 256 214 993 30.3 KB 0.006 128 bits

Protocol 2 (C&C), 5 rounds 71 3 32 214 452 42.5 KB 0.025 128 bits

Protocol 2 (C&C), 3 rounds 28 2 64 214 514 21.1 KB 0.009 128 bits

Protocol 2 (C&C), 3 rounds 53 3 8 214 253 33.2 KB 0.009 128 bits

Table 2: Performance of the obtained signatures
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6 Further Applications

As illustrated on the subset sum problem, our technique of sharing over the integers with rejection is –more
generally– instrumental to a context of a secret vector sinZnq with small coefficients. Since the communication
cost of our protocols is independent of the size q of the ring Zq, the gain in communication is higher when
the modulus q is high. But it does not need to have a modulus as high as in the subset sum problem to be
interesting. In the two subsections, we present the performance of our schemes with the sharing over the
integers on two other applications with moderate-size modulus:

– to prove the knowledge of a solution of an ISIS problem instance,
– to prove the knowledge of a secret key and plaintext(s) matching a (set of) FHE ciphertext(s).

Another advantage of the sharing on the integers is that we can perform any operation on it with any
modulus. We used this property in one of our protocols to check multiplication triples in a smaller field. This
property can be also useful when we want to prove that the same secret vector verifies many relations using
distinct modulus. For example, correlated-input secure functions can involve such relations.

6.1 Short Integer Solution Problem

Given a matrix A ∈ Zm×n and a vector u ∈ Zm, the inhomogenous short integer solution (ISIS) problem
consists in finding a vector s ∈ Zn with small coefficients such that

As = u mod q.

The Ling-Nguyen-Stehlé-Wang protocol [LNSW13], which is an adaptation of Stern’s protocol, has been
for a long time the only zero-knowledge exact protocol which proves the knowledge of a solution of an ISIS
instance. Other protocols existed but they were only relaxed proofs, i.e. they prove the knowledge of an s′

and c satisfying As′ = cu mod q. These protocols can be useful in some contexts, but they are not suited to
prove the exact statement.

Recently, new exact proofs [BLS19,ENS20,LNS21,BN20,Beu20] have been published. However, all these
new protocols require an assumption on the modulus q to work: some of them only require that q is a prime
number when the others require that q is an NTT-friendly prime number. In the state of the art, the only
protocol which works for any q (even when q is not a prime) is [LNSW13].

We can adapt our protocols of Section 4 to the case of the ISIS problem. The linear constraint “As = u”
is free in communication as it was the case for “t = 〈w, x〉” for the subset sum problem (see Section 3.2).
The hard part is to prove that the secret s satisfies ‖s‖∞ ≤ β for some bound β. To proceed, we decompose
s as k := dlog2(2β + 1)e vectors (s0, . . . , sk−1) of {0, 1}n such that

s =

k−2∑
i=0

2isi + (2β − 2k−1 + 1)sk−1 − β . (4)

If all vectors si belong to {0, 1}, the above relation gives that ‖s‖∞ ≤ β. So we just need to give the sharing
{JsiK}i∈{0,...,k−1} to the MPC protocol instead of JsK. The latter can then check that {JsiK}i∈{0,...,k−1} are
binary vectors and that AJsK corresponds to u modulo q where JsK is recovered by linearity of Equation (4).
The proof sizes of the resulting protocols are given by the formulae as before, we just need to consider that
the length of the secret is n · k (instead of n).

We compare our protocols with the state of the art in Table 3 on the two following ISIS problems:

1. ‖s‖∞ ≤ 1, m = 1024, n = 2048, q ≈ 232

2. Binary s, m = 512, n = 4096, q ≈ 261

For both instances, we have k · n = 4096. For our protocols, we choose the following parameters:
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– Protocol 1 (batch product verification):

A = 216, N = 128, q′ ≈ A, τ = 23, η = 3.

– Protocol 2 (cut-and-choose strategy):

A = 216, N = 256, q′ ≈ A, M = 952, τ = 24, η = 3.

We can remark that our protocols have the same communication cost for both instances. It comes from
the fact that their proof size is independent of the modulus q. Even when q is prime (and larger than 232),
our Protocol 2 (with the cut-and-choose phase) has smaller communication cost than Beullen’s protocol and
this while taking less aggressive parameters towards size against speed (the parameters used in [Beu20] are
(τ,M,N) = (14, 4040, 210)). We also observe that our protocols achieve proof sizes which are more than 10
times smaller than those of [LNSW13], the only previous protocol supporting any modulus q.

Protocol Year Any q
Instance 1 Instance 2

Proof Size Rej. Rate Proof Size Rej. Rate

[LNSW13] 2013 3 3600 KB - 8988 KB -

[BN20] 2020 q prime - - 4077 KB -

[Beu20] 2020 q prime 233 KB - 444 KB -

Our Protocol 1 2022 3 291 KB 0.04 291 KB 0.04

Our Protocol 2 2022 3 184 KB 0.05 184 KB 0.05

[BLS19] 2019 q prime + NTT 384 KB 0.92
[ENS20] 2020 q prime + NTT 47 KB 0.95
[LNS21] 2021 q prime + NTT 33.3 KB 0.85

Aurora [BCR+19] 2019 q prime + NTT 71 KB -
Ligero [AHIV17] 2017 q prime + NTT 157 KB -

Table 3: Comparison with the existing exact protocols which prove the knowledge of the solution of a ISIS
instance.

6.2 Fully Homomorphic Encryption

Our zero-knowledge protocols also find application to fully homomorphic encryption (FHE). We can indeed
adapt our protocols to prove the knowledge of a secret key matching a (set of) FHE-encrypted plaintext(s).
We elaborate on this application hereafter for the particular case of TFHE (Torus FHE) [CGGI20] which is
currently one of the FHE schemes with the best performances in practice.

For some q ∈ N, let Tq = q−1Z/Z be the discretized torus with q elements, i.e. the submodule of the real
torus with representative {i/q ; i ∈ Zq} [Joy21]. In practice, q is often chosen to be 232 or 264 in order to
match the word-size and arithmetic operations of common CPUs. For this reason, we shall consider that q is
a power of 2 in the following (although the described application can be easily generalized to any q). TFHE
relies on so called TLWE (Torus Learning With Error) encryption. Let p | q and δ = q/p. The plaintext space
is defined as Zp while the key space is defined as {0, 1}n ⊂ Zn. Let s = (s1, . . . , sn) ∈ {0, 1}n be a secret key.
The TLWE encryption of a plaintext µ ∈ Zp under the secret key s and with error e ∈ Z is defined as

c = (a1, . . . , an, b) ∈ Tn+1
q where

{
µ∗ = δµ+e mod q

q ∈ Tq
b =

∑n
j=1 sj · aj + µ∗

The ai’s are random elements of Tq which are sampled at encryption time or which arise from the homo-
morphic operations between other ciphertexts. The value e ∈ Z is the error which must satisfies e < δ to
ensure the correctness of the decryption.
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Proving the knowledge of a key s and plaintext µ for which c = (a1, . . . , an, b) is a correct TLWE
encryption of µ under s can be achieved by proving the knowledge of a binary vector

x = (s1, . . . , sn) | (µ1, . . . , µ`p) | (e1, . . . , e`e)

where `p = log2 p and `e is such that e < 2`e , and which satisfies

n∑
i=1

āisi +

`p∑
i=1

(2i−1δ)µi +

`e∑
i=1

(2i−1)ei = b̄ (mod q)

where āi ∈ Z (resp. b̄ ∈ Z) is the integer such that ai = āi/q ∈ Tq (resp. b = b̄/q ∈ Tq). The application of
our protocols to this context is immediate. We note that the secret binary vector is of size n′ = n+ `p + `e
when the underlying plaintext must remain secret while it is of size n′ = n + `e if the plaintext is public.
In the latter case, the value of the sum is t = b̄ − µ. We can also use our protocols to prove the knowledge
of a secret key and a set of plaintexts matching a set of ciphertexts. For m ciphertexts, we obtain m linear
relations with a binary vector of size n′ = n+m · (`p+ `e) (or n′ = n+m · `e in the public plaintext setting).

Remark 2. Proving the knowledge of a single key-plaintext pair matching a given ciphertext might not
be relevant on its own. Indeed, for the typical parameters given above, the obtained SSP instance might
not be hard (i.e. finding a solution is not hard while finding the original key-plaintext pair is still hard).
However, such proof is still useful whenever proving further properties involving the underlying secret key
and/or plaintext. In such contexts, finding a solution to the SSP instance which does not match the original
key-plaintext pair is useless.

According to [Joy21], typical parameters for a TLWE encryption are q = 232 or q = 264 and n = 630.
Depending on the exact message space and error space, we have n′ ∈ (n, n+log2 q]. Table 4 gives the obtained
communication cost for proving the knowledge of the key (and plaintexts) corresponding to 1, 64 and 1024
TLWE ciphertexts using our protocols (assuming q = 264 and `e + `p = 64). For the sake of comparison,
we also give the communication obtained with Shamir’s protocol [Sha86]. We note that the latter and the
LNSW protocol [LNSW13] are the only previous protocols which can work with such values of q and the
LNSW protocol is always heavier than Shamir’s in this context. We observe that our protocols always gain
more than a factor 10 (for Protocol 1) and 20 (for Protocol 2) for the obtained communication cost compared
to Shamir’s protocol.

Protocol
Parameters

Proof size Rej. rate Soundness err.
τ η N A M

1 ciphertext

Shamir [Sha86] 219 - - - - 845 KB - 128 bits

Protocol 1 (batching) 19 2 256 215 - 46.1 KB 0.007 128 bits

Protocol 2 (C&C) 24 3 256 215 952 34.0 KB 0.002 128 bits

64 ciphertexts

Shamir [Sha86] 219 - - - - 8.48 MB - 128 bits

Protocol 1 (batching) 19 2 256 218 - 356 KB 0.005 129 bits

Protocol 2 (C&C) 24 3 256 218 952 236 KB 0.001 128 bits

1024 ciphertexts

Shamir [Sha86] 219 - - - - 77.9 MB - 128 bits

Protocol 1 (batching) 19 2 256 222 - 5.90 MB 0.003 129 bits

Protocol 2 (C&C) 24 3 256 221 952 3.65 MB 0.006 128 bits

Table 4: Comparison of ZK protocols for TFHE decryption.

Besides TFHE, our proof techniques are also well suited to prove the correctness of a ciphertext produced
by a public-key FHE encryption using the Rothblum transform [Rot11]. The latter can transform any secret-
key FHE scheme into a public-key FHE scheme. The public key is built as a set of ciphertexts c1, . . . , cn each
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encrypting 0. Then to encrypt a plaintext µ, one draws a random secret vector (x1, . . . , xn) ∈ {0, 1}n and
computes the encryption of µ as µ+

∑n
i=1 ci. (Here we implicitly assume that the ciphertexts are malleable

as Enc(0) + µ = Enc(µ) but the Rothblum transform can also work more generally without this property.)
In other words, this generic public-key FHE encryption process consists in building an SSP instance and our
proof techniques directly apply to this context.

We stress that the performances reported in Table 4 are in the context of a relatively small q (64 bits).
Although the results are already promising compared to the previous schemes, we expect this comparison to
be much more in favor of our protocols in contexts where q is larger since the size of our proofs is independent
of q. In particular, it may be interesting to apply our techniques to the SPDZ framework [DPSZ12] which is
the state-of-the-art protocol for dishonest-majority MPC (with computational security). In the offline phase
of SPDZ, parties have to jointly produce a zero-knowledge argument of plaintext knowledge for the Brak-
erski, Gentry, and Vaikuntanathan [BGV14] or the Brakerski/Fan-Vercauteren [Bra12,FV12] homomorphic
encryption schemes. Recent works [KPR18,CKR+20] were devoted to providing communication-efficient such
arguments (with slack) and since the modulus bit-lengths are within the range [250, 700], our techniques look
promising to provide short exact arguments in these contexts.

Acknowledgements. The authors are supported in part by the French ANR SANGRIA project (ANR-
21-CE39-0006). The authors would like to thank Charles Bouillaguet for suggesting investigation of zero-
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A Shamir’s Proof for Subset Sum Problem

The Shamir’s Protocol produces proofs of mean size (in bits) of

Size = 2λ+ 2λ+
1

3
·
(

2n log2(q) + 2 · log2

(
2n

n

)
+ 2λ

)
.

The soundness error of this protocol is 2/3, meaning that a malicious prover (which does not the secret)
can convince the verifier with probability 2/3. To achieve a targeted security of λ bits, we shall repeat the
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Prover P Verifier V
x ∈ {0, 1}n
w ∈ Znq , t = 〈w, x〉 w, t

Build ŵ by padding w Build ŵ by padding w
with n zeros. with n zeros.

Build x̂ by padding x
with n zeros or ones
such that wt(x̂) = n.

seed1
$←− {0, 1}λ

seed2, σ ← PRG(seed1) . σ is a permutation of {1, . . . , 2n}
r ← PRG(seed2) . r ∈ Z2n

q

v = σ(x̂)
u = σ(ŵ) + r mod q
z = 〈v, r〉 mod q

Sample randomness
ρ1, ρ2 and ρ3.

c1 = Com(r; ρ1)
c2 = Com(u; ρ2)
c3 = Com(z, v; ρ3)

h = Hash(c1, c2, c3)
h−−−−−−−−−−−−−−−−−−→ b

$←− {0, 1, 2}
b←−−−−−−−−−−−−−−−−−−

If b is equal to 0,
seed1,c3,ρ1,ρ2−−−−−−−−−−−−−−−−−−→ seed2, σ ← PRG(seed1)

r ← PRG(seed2)
c1 = Com(r; ρ1)
c2 = Com(σ(ŵ) + r; ρ1)

Check h
?
= Hash(c1, c2, c3)

If b is equal to 1,
seed2,v,c2,ρ1,ρ3−−−−−−−−−−−−−−−−−−→ r ← PRG(seed2)

z = 〈v, r〉 mod q
c1 = Com(r; ρ1)
c3 = Com(z, v; ρ1)
Check wt(v) = n

Check h
?
= Hash(c1, c2, c3)

If b is equal to 2,
u,v,c1,ρ2,ρ3−−−−−−−−−−−−−−−−−−→ z = 〈v, u〉 − t mod q

c2 = Com(u; ρ2)
c3 = Com(z, v; ρ1)
Check wt(v) = n

Check h
?
= Hash(c1, c2, c3)

Protocol 3: Shamir’s Protocol to prove the knowledge of the solution of a Subset Sum Problem. When σ is
a permutation of {1, . . . ,m} and y is a vector of length m, σ(y) is defined as (yσ−1(j))j∈[m].

protocol

τ :=
λ

log2

(
3
2

)
times. If one merges the hash digests h of all the repetitions, the proof size (in bits) with τ repetitions is

Sizeτ = 2λ+ τ ·
[
2λ+

1

3
·
(

2n log2(q) + 2 · log2

(
2n

n

)
+ 2λ

)]
.
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B General definitions

This section introduces the notation used throughout the paper and recalls standard definitions of pseudo-
random generators, collision-resistant hash function families and commitment schemes.

All logarithms are in base 2. We denote the security parameter by λ which is given to all algorithms in
the unary form 1λ. Algorithms are randomized unless otherwise stated, and PPT stands for “probabilistic
polynomial-time”, in the security parameter. We denote random sampling from a finite set X according to the

uniform distribution with x
$←− X. We also use the symbol

$←− for assignments from randomized algorithms,
while we denote assignment from deterministic algorithms and calculations with the symbol ←.

A function ν : N → R is said negligible (negl) if, ν(n) = n−ω(1) for all n ∈ N from a certain rank. Two
distributions {Dλ}λ and {D̃λ}λ are (t, ε)-indistinguishable if, for any algorithm A running in time at most
t, we have

|Pr[A(x) = 1 | x $←− Dλ]− Pr[A(x) = 1 | x $←− D̃λ]| ≤ ε.

Definition 1. (Pseudo-Random Generator (PRG)). Let G be a deterministic polynomial-time algorithm and
let ` : N → N be some polynomial with `(λ) > λ for all λ ∈ N, satisfying G(x) ∈ {0, 1}`(λ), ∀x ∈ {0, 1}λ.
Then G is a (t, ε)-secure pseudo-random generator if the two following distributions

{G(x) | x $←− {0, 1}λ} and {r | r $←− {0, 1}`(λ)}

are (t, ε)-indistinguishable.

In our protocols, we will use PRG to construct Merkle tree of depth dlog2Ne in a standard way to expand
a seed mseed (the root of the tree) into N subseeds (seedi) (for each party). By using Merkle tree to commit
to all values at once, this reduces proofs that are O(log2N) in size and verification time.

Definition 2. (Collision-Resistant Hash Functions). A function family set H = {Hn : {0, 1}m(n) → {0, 1}n}n∈N
with m(n) < n is said to be a collision-resistant hash function family if for any PPT algorithm A there exists
a negligible function ν such that for all n ∈ N, it holds that

Pr[x1 6= x2, h(x1) = h(x2) | h $←− H, (x1, x2)
$←− A(h)] < ν(n).

Definition 3. (Commitment Scheme). A commitment scheme is a pair of algorithms (Com,Verif) where:

– Com is a PPT taking as input a message m that computes a commitment C of m and returns C and an
opening or decommitment information ρ.

– Verif is a deterministic polynomial-time algorithm taking as input a message m, a commitment C and
the decommitment information ρ, and returns a bit.

such that for all message m we have: ∀(C, ρ)
$←− Com(m),Verif(m,C, ρ) = 1.

Note that opening or decommitment information ρ is usually the randomness used by the Com algorithm
and the Verif algorithm consists simply in running Com on PP, m and ρ. In this paper, we consider only
such commitments.

A commitment scheme is said (t, ε)-computationally (hiding if, for any two messages m1,m2, the distri-

butions {c | c $←− Com(m1)} and {c | c $←− Com(m2)} are (t, ε) indistinguishable. It is said perfectly hiding if
it is (t, 0)-computationally hiding for all t : N→ N.

A commitment scheme is computationally binding if there exists a negligible function ν such that, for
every PPT algorithm A, the probability that the event{

m1 6= m2 ∧
Verif(m1, C, ρ1) = Verif(m2, C, ρ2) = 1

∣∣∣ (m1,m2, ρ1, ρ2, C)
$←− A(1λ)

}
occurs is upper-bounded by ν(λ). If we remove the assumption that A is PPT, then the scheme is perfectly
binding.
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Prover P Verifier V
x ∈ {0, 1}n
w ∈ Znq , t = 〈a, x〉 w, t

mseed[0]
$←− {0, 1}λ

(mseed[e])j∈[M ] ← PRG(mseed[0])
For each e ∈ {1, . . . ,M}:

r[e],← PRG(mseed[e]) . r[e] ∈ {0, 1}n

(seed
[e]
i , ρ

[e]
i )i∈[N ] ← PRG(mseed[e])

For each i ∈ {1, . . . , N}:
Jr[e]Ki ← PRG(seed

[e]
i ) . Jr[e]Ki ∈ {0, . . . , A− 1}n

com
[e]
i = Com(seed

[e]
i ; ρ

[e]
i )

∆r[e] = r[e] −
∑
iJr

[e]Ki
hj = Hash1(∆r[e], com

[e]
1 , . . . , com

[e]
n )

x̃[e] = x⊕ r[e] . ⊕ is the XOR operation (x̃ ∈ {0, 1}n)
The parties locally set

Jx[e]K = (1− x̃[e]) ◦ Jr[e]K
+x̃[e] ◦ (1− Jr[e]K)

and they set Jt[e]K = 〈w, Jx[e]K〉.
h′e = Hash3(x̃[e], Jt[e]K)

h′ = Merkle(h′1, . . . , h
′
M )

h = Hash2(h1, . . . , hM , h
′)

h−−−−−−−−−−−−−−−−−−→ J
$←− {J ⊂ [M ] ; |J | = τ}

L←−−−−−−−−−−−−−−−−−− L = {`e}e∈J
$←− {1, . . . , N}τ

If there exists (e, j) ∈ J × [n] such that:

- either Jr[e]j K`e = 0 with rj = 1

- or Jr[e]j K`e = A− 1 with rj = 0,

then abort.

authMerkle := auth((h′1, . . . , h
′
M ), J)

σ = authMerkle | (mseed[e])j∈[M ]\J

σ = σ |

 (seed
[e]
i , ρ

[e]
i )i 6=`e

r[e] − Jr[e]K`e
x̃[e], com`e


e∈J

σ−−−−−−−−−−−−−−−−−−→

For each e 6∈ J :

Compute he using mseed[e]

For each e ∈ J :
For all i 6= `e

com
[e]
i = Com(seed

[e]
i ; ρ

[e]
i )

Rerun the party i

as the prover to get Jt[e]Ki
∆r[e] = (r[e] − Jr[e]K`e)−

∑
i 6=`j Jr

[e]K
he = Hash1(∆r[e], com

[e]
1 , . . . , com

[e]
n )

Jt[e]K = t−∆t[e] −
∑
i 6=`j Jt

[e]Ki
h′e = Hash3(x̃[e], Jt[e]K)

Using authMerkle, check that {h′e}e∈J
are consistent and deduce the
Merkle root h′.

Check h = Hash2(h1, . . . , hM , h
′)

Return 1

Protocol 4: Zero-knowledge proof (3-round variant) for Subset Sum Problem via MPC-in-the-head paradigm
with rejection, using cut-and-choose strategy to prove binarity. q′ is the lowest prime number greater than
A.

C The 3-round Variant of Protocol 2

D Splitting Lemma

In our proofs, we shall make use of the following lemma from [PS00]:

Lemma 1 (Splitting Lemma). Let X and Y be two finite sets, and let A ⊆ X × Y such that

Pr
[
(x, y) ∈ A | (x, y)

$←− X × Y
]
≥ ε .
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For any α ∈ [0, 1), let

B =
{

(x, y) ∈ X × Y
∣∣∣ Pr

[
(x, y′) ∈ A | y′ $←− Y

]
≥ (1− α) · ε

}
.

We have:

1. Pr
[
(x, y) ∈ B | (x, y)

$←− X × Y
]
≥ α · ε

2. Pr
[
(x, y) ∈ B | (x, y)

$←− A
]
≥ α .

E Security Proofs for Protocol 1

E.1 Abort Events

In what follows, the complementary of an event E is denoted ¬E . For all the proofs in this section, we
introduce the following events: for all j ∈ [n],

– A0
j := {xj = 0, JxjKi∗ = A− 1} which is the first case of abortion,

– A1
j := {xj = 1, JxjKi∗ = 0} which is the second case of abortion,

– Aj := A0
j ∪ A1

j .

Now let us denote abort the event when Protocol 1 aborts. By construction of the protocol, we have

Pr[abort] := Pr[

n⋃
j=1

Aj ].

Let X be a random variable modeling the secret vector x. For any x ∈ {0, 1}n, we have

Pr[abort | X = x] = Pr[

n⋃
j=1

Aj | X = x]

= 1− Pr[

n⋂
j=1

(¬A0
j ∩ ¬A1

j ) | X = x]

= 1− Pr[

n⋂
j=1

¬Axj

j | X = x] (5)

= 1− Pr[

n⋂
j=1

JxjKi∗ 6= (1− xj) · (A− 1)]

= 1−
n∏
j=1

Pr[JxjKi∗ 6= (1− xj) · (A− 1)] (6)

= 1−
(

1− 1

A

)n
.

The equality (5) comes from the fact that ¬A1−xj

j is true when Xj = xj , and the equality (6) comes from
the independency between the coordinates of the share JxKi∗ . We get that the probability of the event abort
is independent of X and satisfies:

Pr[abort] = 1−
(

1− 1

A

)n
. (7)
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E.2 Completeness

Proof. For any sampling of the random coins of P and V, if the computation described in the protocol is
honestly performed and if there is no abort, all the checks of V pass. The completeness probability is hence
of 1− Pr[abort], which from (7) implies the theorem statement. �

E.3 Zero-Knowledge

Proof. Before building the desired simulator (i.e. an algorithm that outputs transcripts that are indistin-
guishable from real transcripts without knowing the secret), let us first show the independence between the
secret x and some events and values that can be observed from the transcript.

– The abortion event abort must be independent of the secret x, i.e.

Pr[abort|x] = Pr[abort],

it ensures that the fact to abort does not leak any information. This independence is demonstrated in
Appendix E.1.

– When there is no abort, the transcript includes some values computed from the secret. While one can
directly remark that the values of some elements are independent of the secret since they are masked by
the uniform values of JcKi∗ and JaKi∗ , it is less clear for y := x− JxKi∗ . So let us explicit the probability
distribution of y given that the protocol did not abort and given the shares {JxKi}i 6=i∗ . Let X and Y
be random variables respectively modeling x and y = x − JxKi∗ . For any y ∈ {−A + 2, . . . , 0}n and
x ∈ {0, 1}n, we have

Pr[Y = y |X = x, {JxKi}i 6=i∗ ,¬abort]

= Pr[JxKi∗ = y + x |
n⋂
j=1

(¬Axj

j )]

= Pr
[
JxKi∗ = y + x

∣∣ n⋂
j=1

(JxjKi∗ 6= (1− xj) · (A− 1))
]

=

n∏
j=1

Pr
[
JxjKi∗ = yj + xj

∣∣ JxjKi∗ 6= (1− xj) · (A− 1)
]

=

(
1

A− 1

)n
We deduce that the coordinates of x − JxKi∗ follow the uniform distribution in {−A + 2, . . . , 0} and
that y = x− JxKi∗ (together with the occurrence of ¬abort and the shares {JxKi}i 6=i∗) does not leak any
information about the secret x.

Let us now describe the simulator S who has oracle access to some probabilistic-polynomial time Ṽ, and
works as follows (we keep the notation from Protocol 1):

1. Sample a challenge i∗
$←− [N ].

2. Sample mseed
$←− {0, 1}λ.

3. Compute parties’ seeds (seed1, ρ1), . . . , (seedN , ρN ) with TreePRG(mseed).
4. For each party i ∈ [N ]\{i∗},

– JaKi, JxKi, JcKi ← PRG(seedi).
– comi = Com(seedi; ρi)

5. Sample
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– y
$←− {−A+ 2, . . . , 0}n.

– ∆x = y −
∑
i 6=i∗JxKi

– ∆c
$←− Zq′ .

6. Sample a random commitment comi∗ .
7. Call Ṽ with the hash digest h of ∆x,∆c (and of the commitments of the seed and associated randomness

of each party) and gets a challenge ε.

8. Sample α
$←− Znq′ .

9. Simulate the computation of all the parties i 6= i∗ to get {JtKi, JαKi, JvKi}i 6=i∗ and (∆t,∆α,∆v).
10. Adapt the messages from and the outputs of the party i∗:

– JαKi∗ = α−∆α−
∑
i 6=i∗JαKi (modq′)

– JtKi∗ = t−∆t−
∑
i 6=i∗JtKi (modq)

– JvKi∗ = 0−∆v −
∑
i 6=i∗JtKi (modq′)

11. Call Ṽ with the hash digest h′ of JtK, JαK, JvK and gets a challenge ĩ∗. If ĩ∗ 6= i∗, then S restarts the
simulation from scratch.

12. Abort with probability

1−
(

1− 1

A

)n
.

13. Outputs the transcript (
h, h′, (seedi, ρi)i 6=i∗ , comi∗ , y,∆c, JαKi∗

)
.

When no abortion occurs, the output transcript is identically distributed to the genuine transcript except
for the commitment of the party i∗. Distinguishing them means breaking the commitment hiding property
or the PRG security.

The above simulator S is a probabilistic polynomial-time algorithm since the challenge set [N ] (from
which i∗ is sampled) has a size that is polynomial in the security level.

�

E.4 Soundness

Proof. For the sake of simplicity, we assume that the commitment scheme is perfectly binding. (If the
commitment scheme was computationally binding we would have to deal with additional cases where the
extractor would produce a commitment collision.)

For any set of successful transcripts corresponding to the same commitment, with at least two challenges
for unopened party (i∗),

– either the revealed shares of JxK are not consistent, and then we find a hash collision (if the committed
values are not the same, then the commitments cannot be the same since the commitment scheme is
perfectly binding),

– or the openings are unique and hence the underlying witness JxK is uniquely defined.

the openings are unique and hence the underlying witness JxK is uniquely defined. This witness can be
recovered from any two successful transcripts T1 and T2 corresponding to the same commitment and for
which i∗T1

6= i∗T2
. Let us call a witness JxK a good witness whenever

〈w, x〉 = t and x · (x− 1) = 0

where x :=
∑
iJxKi. Such a witness enables us to build a solution for the subset sum instance.

In what follows, we consider that the extractor only gets transcripts with consistent shares since otherwise,
the extractor would find a hash collision.

We shall further denote by Rh the randomness of P̃ which is used to generate the initial commitment
Com = h, and we denote rh a possible realization of Rh. Let us now describe the extractor procedure:
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Extractor E :

1. Repeat +∞ times:

2. Run P̃ with honest V to get transcript T1
3. If T1 is not a successful transcript, go to the next iteration
4. Do N1 times:

5. Run P̃ with honest V and same rh as T1 to get transcript T2
6. If T2 is a successful transcript, i∗T1

6= i∗T2
and (T1, T2) reveals a good witness,

7. Return (T1, T2)

In what follows, we estimate the extraction complexity, i.e. how many time in average the extractor calls
P̃. Throughout the proof, we denote succP̃ the event that P̃ succeeds in convincing V. By hypothesis, we
have Pr[succP̃ ] = ε̃.

Let us fix an arbitrary value α ∈ (0, 1) such that (1− α)ε̃ > ε, it exists since ε̃ > ε. Let rh be a possible
realization of Rh. We will say that rh is good if it is such that

Pr[succP̃ | Rh = rh] ≥ (1− α) · ε̃ . (8)

By the Splitting Lemma 1 (see Appendix D) we have

Pr[Rh good | succP̃ ] ≥ α . (9)

Let assume we sample a successful transcript T1 as in the Step 2 of the extractor E and let rh be the
underlying realization of Rh. Assume rh is good. By definition, we have

Pr[succP̃ | Rh = rh] ≥ (1− α) · ε̃ > ε >
1

N

implying that there must exist a successful transcript T2 with i∗T2
6= i∗T1

. As explained above, this implies
that there exists a unique and well-defined witness JxK corresponding to these transcripts (and to all the
transcripts with same rh).

We will show that if this witness is a bad witness (i.e. is not a good witness) then we have Pr[succP̃ |
Rh = rh] ≤ ε meaning that rh is not good. By contraposition, we get that if rh is good, then the witness JxK
is a good witness. So let us assume that the witness JxK in T1 is a bad witness. This means that

〈w, x〉 6= t or x · (x− 1) 6= 0

where x :=
∑
iJxKi. Let us denote FP the event that a geniune execution of the batch product checking

outputs a false positive, i.e. outputs a zero vector v. We have

Pr[FP] ≤ 1

q′

according to Section 2.2.
Let us upper bound the probability that the inner loop finds a successful transcript:

Pr[succP̃ | Rh = rh] = Pr[succP̃ ,FP | Rh = rh] + Pr[succP̃ ,¬FP | Rh = rh]

≤ 1

q′
+ (1− 1

q′
) · Pr[succP̃ | Rh = rh,¬FP]

Having a successful transcript means that the sharings JvK and JtK in the first response of the prover
must encode respectively a zero vector and t. But the event ¬FP when we have x · (x− 1) 6= 0 implies that a
geniune execution outputs a non-zero vector v, and if x · (x− 1) = 0, it implies that JtK does not correspond
to the vector t (since the witness is bad). So to have a successful transcript, the prover must cheat for the
simulation of at least one party. If the prover cheats for several parties, there is no way it can produce a
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successful transcript, while if the prover cheats for exactly one party (among the N parties), the probability
to be successful is at most 1/N . Thus, Pr[succP̃ | Rh = rh,¬FP] ≤ 1/N and we have

Pr[succP̃ | Rh = rh] ≤ p+ (1− p) · 1

N
= ε,

meaning that rh is not good. By contraposition, we get that if rh is good, then sharex is a good witness.
Now, let us lower bound the probability that the ith iteration of the inner loop finds a successful transcript

T2 such that i∗T1
6= i∗T2

in the presence of a good Rh. We have

Pr[succT2

P̃ ∩ (i∗T1
6= i∗T2

) | Rh good]

= Pr[succT2

P̃ | Rh good]− Pr[succT2

P̃ ∩ (i∗T1
= i∗T2

) | Rh good]

≥ (1− α)ε̃− Pr[i∗T1
= i∗T2

| Rh good]

= (1− α)ε̃− Pr[i∗T1
= i∗T2

]

= (1− α)ε̃− 1/N

≥ (1− α)ε̃− ε

Let define p0 := (1− α) · ε̃− ε. By running P̃ with the same rh as for the good transcript N1 times, we
hence obtain a second non-colliding transcript T2 with probability at least 1/2 when

N1 ≈
ln(2)

ln
(

1
1−p0

) ≤ ln(2)

p0
. (10)

Let C denotes the number of calls to P̃ made by the extractor before finishing. While entering a new
iteration:

– the extractor makes one call to P̃ to obtain T1,

– if T1 is not successful, which occurs with probability (1− Pr[succP̃ ]),

◦ the extractor continues to the next iteration and makes an average of E[C] calls to P̃,

– if T1 is successful, which occurs with probability Pr[succP̃ ],

◦ if rh is good which occurs with probability α, the extractor makes at most N1 calls to P̃ in the inner
loop of E and output a pair (T1, T2) with probability 1/2,

◦ otherwise the extractor makes N1 calls to P̃ in the inner loop of E without stopping, with probability
at most (1− α

2 ).

The mean number of calls to P̃ hence satisfies the following inequality:

E[C] ≤ 1 + (1− Pr[succP̃ ]) · E[C]︸ ︷︷ ︸
T1 unsuccessful

+ Pr[succP̃ ] ·
(
N1 +

(
1− α

2

)
· E[C]︸ ︷︷ ︸

T1 successful

)

which gives

E[C] ≤ 1 + (1− ε̃) · E[C] + ε̃ ·
(
N1 +

(
1− α

2

)
· E[C]

)
≤ 1 + ε̃ ·N1 + E[C] ·

(
1− ε̃ · α

2

)
≤ 2

α · ε̃
· (1 + ε̃ ·N1)

≤ 2

α · ε̃
·
(

1 + ε̃ · ln(2)

(1− α) · ε̃− ε

)
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To obtain an α-free formula, let us take α such that (1 − α) · ε̃ = 1
2 (ε̃ + ε). We have α = 1

2

(
1− ε

ε̃

)
and

the average number of calls to P̃ is upper bounded by

4

ε̃− ε
·
(

1 + ε̃ · 2 · ln(2)

ε̃− ε

)
which concludes the proof.

�

F Security Proofs for Protocol 2

F.1 Abort Events

Let us denote abort the event when Protocol 2 aborts. By exactly the same reasoning than in Appendix E.1
(but here the protocol aborts if any of the τ iterations aborts), we have

Pr[abort | X = x] = 1−
(

1− 1

A

)n·τ
and

Pr[abort] = 1−
(

1− 1

A

)n·τ
. (11)

F.2 Completeness

Proof. For any sampling of the random coins of P and V, if the computation described in the protocol is
honestly performed and if there is no abort, all the checks of V pass. The completeness probability is hence
of 1− Pr[abort], which from (11) implies the theorem statement. �

F.3 Honest-Verifier Zero-Knowledge

Proof. Before building the desired simulator (i.e. an algorithm that outputs transcripts that are indistin-
guishable from real transcripts without knowing the secret), let us first show the independence between the
secret x and some events and values that can be observed from the transcript.

– The abortion event abort must be independent of the secret x, i.e.

Pr[abort|x] = Pr[abort],

it ensures that the fact to abort does not leak any information. This independence is demonstrated in
Appendix F.1.

– When there is no abort, the transcript includes some values computed from the secret. By the same rea-
soning than in Appendix E.3, we get that the coordinates of r[e]− Jr[e]Ki∗ follow the uniform distribution
in {−A+ 2, . . . , 0} and that y[e] = r[e] − Jr[e]Ki∗ (together with the occurrence of ¬abort and the shares
{Jr[e]Ki}i 6=i∗) does not leak any information about the vector r[e]. Thus since r[e] is uniformly sampled
in {0, 1}n, the value of x̃[e] is independent of the secret x.

Let us now describe the simulator S who has oracle access to some probabilistic-polynomial time Ṽ, and
works as follows (we keep the notation from Protocol 2):

1. Sample

◦ J $←− {J ⊂ [M ]; |J | = τ}
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◦ L = {`e}e∈J
$←− {1, . . . , N}τ

uniformly at random (as an honest verifier).

2. Sample mseed[0]
$←− {0, 1}λ

3. (mseed[e])e∈[M ] ← TreePRG(mseed[0])
4. For e ∈ [M ]\J ,

– Follow honestly the protocol since it does not need to know the secret and deduce he.
5. For e ∈ J ,

– Compute (seed
[e]
1 , ρ

[e]
1 ), . . . , (seed

[e]
N , ρ

[e]
N ) with TreePRG(mseed[e]).

– For each party i ∈ [N ]\{`e},
• Jr[e]Ki ← PRG(seed

[e]
i ).

• com
[e]
i = Com(seed

[e]
i ; ρ

[e]
i )

– Sample

• x̃[e] $←− {0, 1}n.

• y[e] $←− {−A+ 2, . . . , 0}n.
• ∆r[e] = y[e] −

∑
i 6=`eJr

[e]Ki
– Sample a random commitment com

[e]
`e

.

– Simulate the computation of all the parties i 6= `e to get {Jt[e]Ki}i 6=`e and ∆t[e].
– Adapt the outputs of the party `e:
• Jt[e]K`e = t[e] −∆t[e] −

∑
i 6=`eJt

[e]Ki (mod q)
– Compute
• he = Hash1(∆r[e], com

[e]
1 , . . . , com

[e]
n )

• h′e = Hash3(x̃[e], Jt[e]K)
6. Compute
◦ h = Hash2(h1, . . . , hM )
◦ h′ = Hash4((h′e)e∈J)

7. Abort with probability

1−
(

1− 1

A

)n·τ
.

8. Outputs the transcript(
h, h′, (mseed[e])e∈[M ]\J , ((seed

[e]
i , ρ

[e]
i )i 6=`e , com

[e]
`e
, y[e], x̃[e])e∈J

)
.

When no abortion occurs, the output transcript is identically distributed to the genuine transcript except
for commitment of the party `e in each execution e ∈ J . Distinguishing them means breaking the commitment
hiding property or the PRG security.

F.4 Soundness

Proof. Let us first how to extract the subset sum solution x from a few transcripts satisfying specific condi-
tions. We will then show how to get such transcripts from rewindable black-box access to P̃.

Transcripts used for extraction. We assume that we can extract three transcripts

Ti = (Com(i),Ch
(i)
1 ,Rsp

(i)
1 ,Ch

(i)
2 ,Rsp

(i)
2 ) for i ∈ {1, 2, 3} , (12)

from P̃, with Ch
(i)
1 := J (i), Ch

(i)
2 := {`(i)j }j∈J(i) , which satisfy:

1. Com(1) = Com(2) = Com(3) = h,

2. there exists j0 ∈ (J (1) ∩ J (2)) \ J (3) s.t. `
(1)
j0
6= `

(2)
j0

3. T1 and T2 are success transcripts (i.e. which pass all the tests of V),

4. seed[j0] from Rsp
(3)
1 is consistent with the (σ

[j0]
i , s

[j0]
i ) from T1 and T2.

Using these three transcripts, we next show that it is possible to extract a solution of the subset sum
instance defined by w and t. We can assume that all the revealed shares are mutually consistent between the
three transcripts because else we find a hash collision. So, we know all the shares for the iteration j0 from
T1 and T2.
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Extraction of x from T1, T2 and T3. For this part, we will only consider the variables of the form (∗)[j0], so
we will omit the superscript for the sake of clarity. In the following, we will denote VTi the set of checked
equations at the end of the transcript with Ti for i ∈ {1, 2, 3}.

Let us define x′ := ∆x +
∑N
i=1JxKi. We simply return x′ as a candidate solution for x. Thanks to the

multi-party computation, we know

– The sharing JtK encodes t: t = ∆t+
∑N
i=1JtKi.

– We have JtK =
∑n
j=1 wj · JxjK, i.e. {

∀i ∈ [N ], JtKi =
∑n
j=1 wj · JxjKi,

∆t =
∑n
j=1 wj ·∆xj .

– We have JxK = (1− x̃) ◦ JrK + x̃ ◦ (1− JrK):{
∀i ∈ [N ], JxKi = (1− x̃) ◦ JrKi + x̃ ◦ (−JrKi),
∆x = (1− x̃) ◦∆r + x̃ ◦ (1−∆r).

So we deduce that

n∑
j=1

wj · x′j =

n∑
j=1

wj · (∆xj +

N∑
i=1

JxjKi)

=

n∑
j=1

wj ·∆xj +

N∑
i=1

n∑
j=1

wj · JxjKi

= ∆t+

N∑
i=1

JtKi = t

and

x′ = ∆x+

N∑
i=1

JxKi

= ((1− x̃) ◦∆r + x̃ ◦ (1−∆r)) +

N∑
i=1

((1− x̃) ◦ JrKi + x̃ ◦ (−JrKi))

= (1− x̃) ◦ (∆r +

N∑
i=1

JrKi) + x̃ ◦ (1−∆r −
N∑
i=1

JrKi)

= (1− x̃) ◦ r + x̃ ◦ (1− r)

where r := ∆r +
∑N
i=1.

From VT3
, we get that r is a binary vector. Since x̃ is binary by definition, thanks to the above relation,

we deduce that the vector x′ is a binary vector.
Since x′ verifies t =

∑n
j=1 wj ·x′j and is a binary vector, it is a solution of the subset sum instance (w, t).

Extraction of T1, T2 and T3 from P̃. We can use exactly the same extractor E as defined in the appendix E
of [FJR21]. It defines an extractor which produces the wanted transcripts by making in average at most

4

ε̃− ε
·
(

1 + ε̃ · 8 ·M
ε̃− ε

)
calls to P̃, which concludes the proof.

�
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