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Abstract

We present a lower bound for the static cryptographic data structure problem of single-server private
information retrieval (PIR). PIR considers the setting where a server holds a database of n entries and
a client wishes to privately retrieve the i-th entry without revealing the index i to the server. In our
work, we focus on PIR with preprocessing where an r-bit hint may be computed in a preprocessing stage
and stored by the server to be used to perform private queries in expected time t. We consider the
public preprocessing setting of Beimel et al. [JoC, 2004] where the hint is publicly available to everyone
including the adversary.

We prove that for any single-server computationally secure PIR with preprocessing it must be that
tr = Ω(n logn) when r = Ω(logn). If r = O(logn), we show that t = Ω(n). Our lower bound holds even
when the scheme errs with probability 1/n2 and the adversary’s distinguishing advantage is 1/n. Our
work improves upon the tr = Ω(n) lower bound of Beimel et al. [JoC, 2004].

We prove our lower bound in a variant of the cell probe model where only accesses to the memory
are charged cost and computation and accesses to the hint are free. Our main technical contribution
is a novel use of the cell sampling technique (also known as the incompressibility technique) used to
obtain lower bounds on data structures. In previous works, this technique only leveraged the correctness
guarantees to prove lower bounds even when used for cryptographic primitives. Our work combines the
cell sampling technique with the privacy guarantees of PIR to construct a powerful, polynomial-time
adversary that is critical to proving our higher lower bounds.

1 Introduction

Private information retrieval (PIR) is a static cryptographic data structure problem that considers the setting
where one or more servers hold a database of n entries. Each of the n entries is uniquely indexed by an
integer from {1, 2, . . . , n}. A client wishes to retrieve the i-th entry from the database without revealing
query index i to the subset of servers that may be corrupted by an adversary. The notion of PIR was first
introduced in [17] for the setting of multiple servers with information-theoretic security. For multiple servers,
it is naturally assumed that the adversary only corrupts a strict subset of the servers. See [3, 16, 5, 64, 28, 27]
and references therein as examples of follow-up works. Kushilevitz and Ostrovsky [41] were the first to study
the problem of PIR in the single-server setting with computational security where the server is compromised
by the adversary with many follow-up works such as [13, 6, 24, 42, 33, 50].

One drawback of PIR is that the required computational cost per query is large thus prohibiting the
usage of PIR in many large-scale applications. Intuitively, the server must operate on each of the n entries
in a single-server PIR protocol. Otherwise, the server learns that the untouched entries were not queried by
the user. Beimel, Ishai and Malkin [7] formalized this intuition and showed that linear server computation
is required.

To overcome linear server computation, Beimel, Ishai and Malkin [7] presented the notion of a PIR with
preprocessing where the server may compute a r-bit hint in a preprocessing stage and store the hint in
addition to the original database. During query time, the hint may be used by the server to answer queries
with, hopefully, sub-linear server computation t. For PIR with preprocessing, Beimel et al. [7] present a
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lower bound of tr = Ω(n) where t is the server computation time during queries and r is the size of the
preprocessed hint. For the case of k servers, Beimel et al. [7] manage to obtain sublinear query times of
O(n/(ε log n)2k−2) by storing hints of size O(n1+ε). Clearly, there is a very wide gap between upper and
lower bound and no progress has been made in the past two decades.

1.1 Our Contribution

This paper presents a higher lower bound for PIR with preprocessing in the single-server setting. To prove
our lower bound, we utilize a very weak cost model where only memory accesses to the database are charged
cost. All other operations may be performed free of charge, including computation, randomness generation,
etc. Of particular note, memory accesses to the computed hint may be performed free of charge. Our model
is a variant of the standard PIR model [7] and cell probe model [63]. Furthermore, our lower bounds hold
for PIR schemes that may be adaptive and access data entries sequentially. For more on the lower bound
model, we refer readers to Section 1.3. Specifically, we prove the following.

Theorem 1 (Informal). Consider any single-server, computationally-secure PIR with preprocessing scheme
that errs with probability at most 1/n2 and the adversary’s distinguishing advantage is at most 1/n for a
database consisting of n entries. If the hint is at most r bits and queries probe at most t entries in expectation,
it must be that tr = Ω(n log n), when 3 log n ≤ r ≤ n. If r < 3 log n, it must be that t = Ω(n).

The above theorem states that for any hope to obtain sub-linear server computation, the hint must
have size ω(log n) bits. For any scheme with O(log n) bits, it must be that the server computation time
remains linear and the standard single-server PIR algorithms remain optimal. Furthermore, we note that
our tr = Ω(n log n) is higher than the prior tr = Ω(n) lower bound [7] and matches the highest lower
bounds known for non-cryptographic data structures in similar cost models (see Section 1.3 for more details).
However, the gap between lower and upper bound for single-server PIR with preprocessing remains quite
wide even after our work.

Unfortunately, we note that there are fundamental barriers to improving our lower bound. Prior works [7,
10] have discussed the connection between PIR with preprocessing with adaptive queries (as in our paper) and
branching programs. Significantly improving our lower bound would directly imply stronger lower bounds
for branching programs, which has been a long-standing open problem in the theoretical computer science
community.

Our lower bound also separates PIR with preprocessing from other PIR models that also aim to obtain
sub-linear server computation. For example, the above tr = Ω(n log n) lower bound shows that the PIR with
preprocessing model is harder than the offline-online PIR model where tr = O(n) computationally-secure
constructions are known [20]. Furthermore, our lower bounds also apply to public-key doubly efficient PIR.
See Section 1.2 for discussions on related PIR models.

1.2 Related Works

The PIR with preprocessing model introduced by Beimel, Ishai and Malkin [7] is only one of several PIR
models that have been studied to try and obtain sub-linear server computation. In this section, we outline
other similar PIR models. Finally, we also overview prior works that proved lower bounds for cryptographic
data structures.

Offline-Online PIR. Another model studied is the offline-online PIR model. During the offline phase, the
client has access to the n entries and is allowed to privately construct a hint to be used for the upcoming
future queries. The hint is computed without knowledge of the queries that will be arriving during the online
phase and it is stored by the client privately from the adversary’s view. In this setting, we may assume that
the hint is no larger than the database without loss of generality (as a trivial solution is for the client to
store the whole database as the private hint). When the client receives the query during the online phase,
the client attempts to leverage the hint obtained during the offline phase to efficiently retrieve the desired
entry. Several works have studied the offline-online PIR model such as [23, 7, 8, 52].
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Corrigan-Gibbs and Kogan [20] were the first to present to present offline-online PIR schemes that had
sub-linear server computation during query time. In particular, they present several tr = O(n) constructions1

in both the information-theoretic, two-server setting and computational, single-server setting. Furthermore,
the authors present a lower bound of tr = Ω(n) showing that their above constructions were optimal.

The main difference between the offline-online PIR model and the PIR with preprocessing model is
the hint. In offline-online PIR, the hint is computed by the client. Therefore, the hint is not a part of
the adversary’s view and cannot be used to construct attacks. For PIR with preprocessing, the hint is
computed by the server, and, thus, may be used by the adversary when mounting attacks. In other words,
the offline-online PIR model can be seen as PIR with private preprocessing.

Clearly, it seems that constructing PIR with preprocessing schemes should be significantly harder than
devising offline-online PIR schemes as the adversary views the hint in one model, but not in the other. Our
work is the first to formalize this separation by presenting higher lower bounds for PIR with preprocessing
thus formally showing that it is a harder model than offline-online PIR.

Doubly-Efficient PIR. In another model, the notion of doubly-efficient PIR was considered that lies
between the PIR with preprocessing and offline-online PIR models. As a reminder, PIR with preprocessing
assumes the entire hint is seen by the adversary while offline-online PIR assumes the entire hint is not viewed
by the adversary. For doubly-efficient PIR, the preprocessed hint is broken into two parts: the portion hidden
from the adversary and the portion that is viewed by the adversary. The works of Boyle, Ishai, Pass and
Wootters [10] and Canetti, Holmgren and Richelson [14] construct doubly-efficient PIR schemes where clients
maintain a long-term private key and the server stores an encoding of the database that is generated using
the private key. These constructions are able to obtain sub-linear server times in the single-server setting
at the cost of nO(1) database encodings that are polynomial in the original database size. By using a new
assumption based on permuted puzzles of Boyle, Holmgren and Weiss [9], both constructions may be shown
to be secure for an unbounded number of queries.

Using obfuscation, Boyle, Ishai, Pass and Wootters [10] also present constructions that forego the need
for the client private key and enable the hint to be entirely public. They denoted this primitive as public-
key doubly-efficient PIR. We note that the main difference between public-key doubly-efficient PIR and
PIR with preprocessing is that public-key doubly-efficient PIR enables randomization in the hint generation
and restricts the querier to be non-adaptive. All the lower bounds in our paper also apply to public-key
doubly-efficient PIR as we also consider randomized hint generation and general adaptive query algorithms.

Hamlin, Ostrovsky, Weiss and Wichs [36] present an extension of doubly-efficient PIRs, denoted private
anonymous data access (PANDA), where the client holds a private key and the server holds an encoding
of the database based on the private key. The key difference is that PANDA requires the server to change
the database’s encoding after queries. The constructions of PANDA are able to achieve sub-linear (or even
poly-logarithmic) server times during queries but still require O(n1+ε) server storage. Furthermore, both
the server storage and time grow in the number of malicious clients (unlike the prior models).

Lower Bounds for Cryptographic Data Structures. The first cell probe lower bound for cryptographic
data structures was presented by Larsen and Nielsen [46] that presented a tight lower bound for oblivious
RAMs (ORAMs). This paper led to a line of works proving lower bounds for a variety of different settings
and primitives including other oblivious data structures [39], differential private guarantees [56], weaker
adversaries that do not see query boundaries [38], non-colluding multiple-server settings [47], oblivious near-
neighbor search [45], encrypted search [54] and smaller block sizes [40]. We note that all these lower bounds
are for dynamic data structures and utilize either the information transfer [55] or chronogram techniques [29].
None of the lower bound techniques that are used in our paper resemble the ones used in these prior papers.

Several works have also shown the difficulty of proving lower bounds for cryptographic data structures.
Boyle and Naor [11] showed that lower bounds for offline ORAMs would imply non-trivial circuit lower
bounds. Weiss and Wichs [62] proved that lower bounds for online, read-only ORAMs would result in

1We note that the constructions in [20] were not tight with respect to hint size and server time as the authors focused on
reducing communication in some settings. We note it is straightforward to construct tight constructions using their techniques.
We sketch these constructions in Appendix A.
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proving either proving non-trivial circuit or locally decodable code lower bound. Both of these are long-
standing problems in theoretical computer science.

We note that other works have considered more restrictive models such as the “balls-and-bins“ model. In
this model, there have been lower bounds for oblivious RAMs [34] as well as one-round oblivious RAMs [15].

1.3 The Lower Bound Model

The cell probe model [63] is a standard, strong model for proving data structure lower bounds. In this
model, all computation is free. The only charged costs are the size of the data structure and the number
of memory cells that are accessed during queries. As the model is weak, cell probe lower bounds apply to
almost any imaginable computational model including the standard RAM model. Furthermore, the lower
bound is independent of other variables such as CPU power. Unfortunately, proving cell probe lower bounds
ends up being difficult due to the weak cost model.

PIR is typically studied as a static data structure that only supports read queries and no write queries.
The static nature of the data structure adds to the technical difficulty of our results. The current highest
lower bounds in the cell probe model for static data structures are Ω̃(log n) [44, 35] for databases of size n.
Furthermore, there is evidence that proving higher static lower bounds will be difficult [26, 61]. Even for
dynamic data structures, the best lower bounds are only logarithmically higher at Ω̃(log2 n) [43] that also
match the highest known lower bounds for cryptographic data structures [45]. Therefore, cell probe lower
bound techniques for unrestricted data structures seem very far from proving meaningful PIR lower bounds.

Proving lower bounds for read-only data structures has also proven difficult. Consider oblivious RAMs
(ORAMs). For dynamic ORAMs with write operations, tight Ω(log n) lower bounds [46] are known. For
read-only ORAMs, a recent work by Weiss and Wichs [62] shows that proving non-trivial lower bounds would
imply new lower bounds for either sorting circuits or locally decodable codes (both are long-standing open
problems).

Due to this difficulty, prior works in cryptography have proved lower bounds in models that are more
restrictive than the cell probe model. Some examples include the “balls-and-bins” model [34, 11] with a non-
coding assumption for various cryptographic data structures [1, 53, 15]. Similar restricted models have been
used outside of cryptography such as proving lower bounds for non-adaptive data structures [12, 59, 35, 57].
In our work, we will also consider a slightly more restrictive model to prove our higher lower bounds.

Standard PIR with Preprocessing Model. We will prove our lower bounds in a variant of the standard
PIR model as defined by Beimel et al. [7] where the server only stores a copy of the database. Most prior
PIR schemes such as [17, 41] are either designed in the standard PIR model, or may be converted to the
standard PIR model with no additional asymptotic overhead.

We adapt the standard PIR model slightly for preprocessing where the hint is stored by the server in
addition to the original database. We denote this as the standard PIR with preprocessing model. The standard
PIR model ends up being a very good model as almost all prior constructions of PIR with preprocessing
may be constructed in the standard PIR model with no additional asymptotic costs. To our knowledge,
all known PIR with preprocessing schemes [7] as well as similar models [10, 14, 52, 36, 20, 60] were either
constructed directly in the standard PIR model or may be converted to the standard PIR model without
any additional asymptotic overhead.

The usage of the standard PIR with preprocessing model is not new for lower bounds for PIR. The prior
tr = Ω(n) lower bounds for PIR with preprocessing [7] and offline-online PIR [20] were both proven in a
similar model.

Relation to Succinct Cell Probe Model. We discuss interesting relationships between the standard PIR
with preprocessing model and other lower bound models. First, we will show that the standard PIR with
preprocessing model is essentially equivalent to systematic succinct cell probe model. Systematic succinct
data structures force the designer to store the database in read-only memory without encoding. Additionally,
the data structure is given a small portion of r-bit memory that may be modified. We note that there is a
direct equivalence to the standard PIR with preprocessing model where the database must be stored without
encoding and the designer is given an r-bit preprocessed hint that may be modified over time. Several prior
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works have proven lower bounds for systematic succinct data structures such as [22, 30, 37] with the highest
lower bounds peaking at tr = Ω(n log n). We note that our lower bound for computationally-secure PIR
with preprocessing matches the highest lower bounds known in the systematic succinct cell probe model.

Relation to Oracle Models. In a line of work closer to cryptography, we note that the standard PIR
with preprocessing model is similar to many oracle models that have been considered in the past. At a high
level, there is some task that must be accomplished by the algorithm designer that only has access to some
oracle f that when given x returns f(x). Additionally, the algorithm is able to preprocess some r-bit hint
about the oracle f before receiving the task. When attempting to finish the task, the goal of the algorithm
is to reduce the number of queries sent to the oracle. Once again, this is highly similar to the standard PIR
model. We can view the database as an oracle f that returns the i-th database entry when given input i.
In both models, the algorithm designer is able to preprocess some r-bit hint that may be used during online
queries. Many prior works (such as [32, 31, 4, 21, 2, 25, 18, 19] and references therein) have proven lower
bounds in these oracle models for many tasks such as function inversion and subverting random oracles.

2 Technical Overview

In this section, we present a technical overview for our main result: the tr = Ω(n log n) lower bound for
computationally-secure PIR with preprocessing schemes. At a high level, our proof may be broken down
into four main parts:

1. Constructing the hard distribution.

2. Upper bounding the number of probed non-zero entries in the database.

3. Using privacy guarantees to construct a powerful, PPT adversary.

4. Completing the proof using a final impossible encoding.

We outline each of the four parts below.

Hard Distribution. The main inspiration of our lower bound comes from the following observation.
Consider any PIR with preprocessing scheme that uses r-bit hints. Suppose the database of n entries was
partitioned into r parts each of n/r entries. Within each part, we embed a non-zero entry at a uniformly
random location amongst the n/r possible entries. Without any preprocessing or hints available, a PIR
scheme would be expected to access Ω(n/r) entries within the part to find the location of the non-zero entry.
Let us consider how an r-bit hint may be useful to speed up the algorithm to find the non-zero entry within
each part. The simplest way is to encode the location of the non-zero entry in each part using log(n/r) bits.
Unfortunately, there is not enough space in the r-bit hint. In particular, the r-bit hint may encode one bit
of information on average for each of the r parts. With only one bit for each part, one may only reduce
the possible search space within each part to n/(2r) possible locations for the non-zero entry still requiring
accessing Ω(n/r) entries on average to find the non-zero entry within each part. Even with an r-bit hint,
it seems that the problem of finding all non-zero entry locations in each of the r parts is almost as hard
as the original problem without the r-bit hint. With the above intuition, we construct our hard database
distribution D as embedding a random non-zero entry at a random location within each of the r parts.

Bounding Number of Probed Non-Zero Entries. To formalize the above hardness, we start by proving
a result about the number of non-zero entries that may be probed during queries. For a contradiction,
suppose that there exists a PIR with preprocessing scheme with r-bit hints and tr = o(n log n). This means
t = o(n log n/r). Since finding a non-zero entry within any part seems to take Ω(n/r) probes, the scheme
should be able to only find o(log n) non-zero entries per query. Unfortunately, this is not entirely correct as
we assume that exactly one bit of information is encoded for each of the r parts. A scheme could instead
encode the exact location of the non-zero entry for a small number of parts. A single non-zero location may
be encoded using log(n/r) bits. As a result, one query could discover r/ log(n/r) non-zero entries using the
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hint. Over multiple queries, the hint will only aid queries to discover the same non-zero entries repeatedly.
Therefore, it should be true that each query cannot discover more than o(log n) new non-zero entries on
average over a large number of queries.

Formally, we present the notion of maximally discovering query sequences where each query has high
probability to discover at least 1/16 · log n new non-zero entries that were not probed by prior queries.
Furthermore, all queries performed after a maximally discovering query sequence will probe less than 1/16 ·
log n new non-zero entries with high probability. In other words, the sequence is maximal as one cannot
append any more queries that discover a large number of non-zero entries. For most databases in the hard
distribution, we show that any maximally discovering query sequence for the database must contain at most
r/ log n queries. Additionally, we show that the total number of non-zero entries probed by all r/ log n
queries in any maximally discovering query sequence cannot be more than r/128 with high probability.
To prove this, we show that if either (or both) of the two statements are false, there exists an impossible
one-way encoding of the database that contradicts Shannon’s source coding theorem. At a high level, the
encoder (Alice) may compress the non-zero entry locations beyond the information-theoretic lower bound
by instructing the decoder (Bob) to observe the probed entries for a maximally discovering query sequence
of at least r/ log n queries while encoding only the subset of probed non-zero entries.

Using Privacy Guarantees. Our next technique is inspired by the incompressibility technique [32, 31,
21, 35] in cryptography and the cell sampling technique [51, 44] in data structures. At a high level, prior
works took an impossibly efficient data structure and showed that a small subset of cells may be sampled
that may be used to retrieve the answers for many queries. This is used to derive a contradiction that the
subset cannot contain enough information to answer the queries. Instead, we utilize this idea to construct
a PPT adversary that enforces very strict requirements about any scheme beating our lower bound. To
our knowledge, this is the first time that the cell sampling (and the incompressibility technique) has been
directly combined with privacy to construct a strong adversary to prove lower bounds.

Consider any PIR with preprocessing scheme with tr = o(n log n) that beats our lower bound. Suppose
we execute any maximally discovering query sequence and record all probed non-zero entries. Any later query
will probe at most log n/16 non-zero entries with high probability. Consider the experiment where a subset T
of non-zero entries is sampled such that each non-zero entry of the database appears in T with some constant
independent probability such as 1/10. For any query that probes at most log n/16 new non-zero entries,
the probability that all the probed non-zero entries were also sampled in T is (1/10)logn/16 = 1/poly(n).
When this is true, we denote that the query is resolved by the subset T. The key takeaway is that for any
query q that probes at most log n/16 new non-zero entries with high probability, it is possible for a PPT
adversary to find a small subset T containing only (1/10)-fraction of all non-zero entries such that the query
q is resolved by T with 1/poly(n) probability. This immediately implies that for any other query q′ 6= q,
a similar statement should hold as, otherwise, the PPT adversary may compromise privacy by observing
whether the challenge query is resolved by T or not. In other words, the same subset T must also resolve any
other query q′ 6= q with probability not too much smaller than the probability that T resolves q to ensure
that a PPT adversary cannot distinguish between queries to the q-th and q′-th entry.

Final Impossible Encoding. In the final step, we utilize the strong property derived using the privacy
guarantees of PIR to present an impossible final encoding to complete the proof. At first, this could seem
similar to the final step of prior works using the cell sampling/incompressibility technique [32, 31, 51, 21,
44, 35] where the small subset T is too small to store all the information contained in the query’s outputs.
Unfortunately, there is a subtle but significant difficulty since we only sample amongst non-zero entries. It is
not sufficient for a decoder (Bob) to only know the contents and locations of the subset T. In particular, Bob
cannot distinguish between zero entries and non-zero entries that were not sampled into T. As a result, Bob
cannot determine whether a query is resolved. A similar problem appears when proving super-logarithmic
dynamic data structure lower bounds (see [43, 44, 48, 45] as some examples).

To get around this problem, we show that it suffices for the encoder (Alice) to also send the locations, but
not the contents, of all non-zero entries that are not sampled into T. In more detail, Alice will send Bob the
subset of T of non-zero entries (both locations and contents) that resolve all queries q ∈ [n] with non-zero
probability as well as the locations of non-zero entry locations that do not appear in T. To decode, Bob
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will execute all queries q ∈ [n] with all possible random strings until finding a random string that ensures
q is resolved by the encoded subset T. We emphasize that Bob needs to know the location of all non-zero
entry locations to determine whether a query q is resolved by T or not. Consider an execution of q with a
random string that probes an entry outside of T. If Bob did not know the location of all non-zero locations,
then Bob will be unable to determine whether any probed entry not in T is actually a zero entry (for which
Bob knows the contents) or a non-zero entry outside of T (for which Bob does know the contents). By
finding a random string such that the execution of q is resolved by T, Bob will successfully execute the
query q correctly and produce the q-th entry. After executing all queries q ∈ [n], Bob successfully decodes
the database. This contradicts Shannon’s source coding theorem as Alice only encodes the contents of r/10
non-zero entries while Bob retrieves the contents of all r non-zero entries.

The above description only considers the setting where the PIR with preprocessing scheme always pro-
duces the correct answer. In our proof, we prove a lower bound for schemes that err with probability at most
1/n2. To incorporate error, we prove that strictly more than half the random strings that result in a query
q being resolved by subset T will also produce the correct answer. Therefore, the above decoding algorithm
may be modified such that Bob executes q with all possible random strings. For all random strings that
result in q being resolved by T, Bob takes the majority answer that will be guaranteed to be the correct
contents of the q-th entry.

3 Definitions

3.1 PIR with Preprocessing

We start by defining the notion of a PIR with preprocessing and then define the notions of error and security
for which we are going to prove out lower bound.

Definition 1 (PIR with Preprocessing). A PIR with preprocessing scheme is a pair of randomized, efficient
algorithms Π = (Preprocess,Query) such that

1. H ← Preprocess(D,RH): The preprocess algorithm takes the database D and a random string RH to
compute the preprocessed r-bit hint H.

2. res ← Query(q,H,R;D): The query algorithm is jointly executed by the client and server. The client
receives as input the query index q ∈ [n], the hint H and coin tosses R while the server receives as input
the database D of length n. Once the query algorithm is completed the client receives res, algorithm’s
attempted response to query q. The algorithm may be adaptive and use multiple rounds between the
client and server.

In the original PIR with preprocessing definition [7], the hint generation was assumed to be deterministic.
However, the definition of public-key doubly-efficient PIR [10] extended the notion to enable randomized
hint generation. In our definition, we enable random hint generation to prove lower bounds in both models.
Additionally, we enable the query algorithm to be adaptive. As a result, our lower bounds apply to both
adaptive (as defined for PIR with preprocessing) and non-adaptive query algorithms (as defined for public-key
doubly-efficient PIR).

We next define the error probability for a PIR with preprocessing.

Definition 2 (Correctness). We say that PIR with preprocessing Π errs with probability at most ε if, for
every database D and every query q, it holds that

Pr
RH ,R

[Q(D, q) 6= Dq] ≤ ε

where

Q(D, q) :=

{
res :

H ← Preprocess(D,RH);
res← Query(q,H,R;D)

}
.
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To formally define our security notion we consider, for η = 0, 1, the following game IndGameηA between a
challenger C and a PPT adversary A.

IndGameηA(D):

1. The challenger C runs H ← Preprocess(D,RH) on randomly chosen coin tosses RH .

2. The adversary A(D,H) on input D and H outputs two queries q0 and q1.

3. The challenger C executes query qη using the hint H and randomly chosen coin tosses R. The challenger
records the transcript T of the probes to D performed by the Query algorithm.

4. The challenger returns the transcript T to A.

5. A(T ) outputs a bit b.

We let pηA(D) denote the probability that A outputs 1 in game IndGameηA(D). The probability is taken over
the randomness of the adversary A and of the challenger C.

Definition 3 (Security). A PIR with preprocessing is computationally δ-secure if for all probabilistically
polynomial time (PPT) adversaries A and all sufficiently large databases D, the following holds:∣∣p0

A(D)− p1
A(D)

∣∣ ≤ δ(|D|).
We note the above may be modified for information-theoretically secure PIR with preprocessing schemes

by considering all adversaries A without any bounds on computation time.

Definition 4 ((ε, δ)-Secure). We define a PIR with preprocessing Π to be (ε, δ)-secure if it has error proba-
bility at most ε and is δ-secure.

Definition 5 ((r, t)-Efficient). We define a PIR with preprocessing Π to be (r, t)-efficient if the following
holds:

1. For all possible databases D and all possible coin tosses RH , the hint H has length at most r.

2. For all possible databases D and all queries q, the expected number of entries of D probed when executing
query q on database D is at most t over the random choices of RH and R.

3.2 Lower Bounds in the Standard PIR with Preprocessing Model

We formalize the model that we will use to prove our lower bounds. The cell probe model was introduced
by Yao [63] to prove data structure lower bounds. Larsen and Nielsen [46] (see also [39]) adopted the notion
for cryptographic data structures by introducing the oblivious cell probe model. In this model, there exist
two parties: a client and a server. The server’s memory consists of w-bit cells where each cell has a unique
integer address. Finally, there exists a long, uniformly random binary string R. The string R is able to be
utilized as the random coin tosses for randomized algorithms and it is drawn uniformly at random before
any operations of the data structure are performed. Note that R may be used as a random oracle. We will
assume that the random string R may be arbitrarily long, but finite. At first, this assumption may seem to
rule out using algorithms that may use infinitely long randomness with error probabilities decreasing with
the randomness length and/or running time. Instead, we can consider a variant of the algorithm that uses
arbitrary long, but finite, randomness but provides an answer once the error probability is small enough. As
we prove lower bounds for algorithms that potentially err, our results also hold for such algorithms.

In our model, a probe refers to either reading or writing to a single server memory cell. The running
time of a data structure is the number of cell probes that are performed when performing a query. Note,
this is the only cost incurred by the data structure. The data structure is able to access the random string
R and hint free of charge. Furthermore, the data structure is able to perform arbitrarily long computation
without any cost.
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Throughout our paper, we will adapt the oblivious cell probe model to be compatible with the standard
PIR model that also enables preprocessing. In the standard PIR model, the database D consisting of n
entries each of b bits is stored in plaintext. With respect to the cell probe model, we will assume that D
is stored on the server using n cells each consisting of w = b bits. Therefore, the total time for any data
structure t will correspond to the expected number of entries of D that are accessed during a query. For our
model, we will assume accessing the hint is free of charge. The only cost during query time is the number of
entries probed in D.

Finally, we note that there is an additional preprocessing algorithm utilized by to construct the hint H.
In our model, we will not charge any cost to the preprocessing model in terms of computation even if it
requires probing entries in D. The only limitation is that the hint must be at most r bits in length.

As a remark, we note that our lower bound model is very weak. For example, we do not change any
cost to computation, randomness generation, preprocessing to create the hint H, etc. By proving a lower
bound in a weaker model, our results are stronger as they also apply for any reasonable model where all of
the above are charged reasonably.

4 A Lower Bound for Computational PIR with Preprocessing

In this section, we will prove the following lower bound on PIR with preprocessing schemes that are secure
against computationally-bounded adversaries.

Theorem 2. Let Π = (Preprocess,Query) an (ε, δ)-secure, (r, t)-efficient PIR with preprocessing scheme
with ε ≤ 1/n2 and δ ≤ 1/n. For a database with n entries, then tr = Ω(n log n) for 3 log n ≤ r ≤ n/4. If
r < 3 log n, then t = Ω(n).

We prove that above for database with n b-bit entries and b ≥ 4. This suffices also for single-bit (b = 1)
entries, as any PIR with preprocessing scheme for a 1-bit entry database may be used to construct a scheme
for a 4-bit entry database by repeating the algorithm four times. Furthermore, this reduction incurs no
additional asymptotic overhead.

Our choices of ε ≤ 1/n2 and δ ≤ 1/n are for convenience. By carefully choosing constants in our proof,
one can redo the proof for ε = 1/nc1 and δ = 1/nc2 for constants 0 < c1 < 2 and 0 < c2 < 1. We note our
lower bound immediately holds for typical negligible distinguishing advantages δ = negl(n).

In our proof, we will assume that r ≥ 3 log n. For the case, when r < 3 log n, we will arbitrarily pad the
hint until it contains at least 3 log n bits. Even with this padding, note that a lower bound of tr = Ω(n log n)
implies that t = Ω(n) when r < 3 log n. The upper bound of r enforces that the hint can store at most
1/4-fraction of the database as b ≥ 4. In other words, our lower bound holds even when the hint is large
enough to store a constant fraction of the database. Note, there are trivial algorithms in our model when
the hint is very large that rule out higher lower bounds. For example, if r = b · (n− 1), the hint can contain
n− 1 database entries and queries would only need to probe one database entry as accessing the hint is free.

4.1 Hard Distribution

To prove our theorem, we start by defining the hard distribution D over databases of n b-bit entries, with
b ≥ 4. We consider the n entries as partitioned into exactly r parts where each part consists of exactly n/r
consecutive entries, where r is the size of the hints in bits. To sample a database D according to D, we
choose, for each of the r parts, exactly one entry uniformly at random amongst all n/r possible locations to
be a non-zero string. The contents of the non-zero entry is chosen uniformly chosen from among all b-bit
string that start with a 1-bit. All the other n/r− 1 entries of the part are set equal to 0b (that is, to a string
of b 0’s). The next lemma gives the entropy of the hard distribution D.

Lemma 1. H(D) = r
(
log(n/r) + (b− 1)

)
.

Proof. D is the product of r identical independent distributions and thus we can simply focus on each smaller
distribution that picks a single non-zero entry from n/r possible locations. The location has log(n/r) bits
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of entropy. The non-zero entry is uniformly selected from a set of 2b−1 strings resulting in (b − 1) bits of
entropy. Therefore, each distribution has log(n/r) + (b− 1) bits of entropy.

4.2 Bounding Number of Probed Non-Zero Entries

The first part of our proof looks at the non-zero entries of the databases of the hard distribution that are
probed by queries. We start by proving that the number of probed non-zero entries cannot be too large for
any PIR with private preprocessing Π = (Preprocess,Query) for which tr = o(n log n).

Formally, we show that sequences of not “too many” queries cannot discover “too many” non-zero entries
of D. We will introduce notation to make precise statements.

Notation. For a sequence S = (s1, . . . , sl) we denote by S<i the sequence (s1, . . . , si−1) of the first i − 1
components of S and by S≤i the sequence (s1, . . . , si) of the first i components of S. For a database D, we
denote nz(D) as the set nz(D) = {i ∈ [n] | Di 6= 0b} of the indices of the non-zero entries of database D.

For any query q ∈ [n], we denote nzP(q,D,H,R) ⊆ nz(D) as the set of the indices of non-zero entries of
D probed by algorithm Query(q,H,R;D) run for query q, using hint H and coin tosses R on database D.
We extend this notation to a sequence Q = (q1, . . . , qk) of queries and we denote by nzP(Q,D,H,R) as the
set of indices of non-zero entries of D probed by executing of the queries in Q using H as the hint for all
queries. That is,

nzP(Q,D,H,R) := nzP(q1, D,H,R1) ∪ . . . ∪ nzP(qk, D,H,Rk).

For every query q, sequence Q of k queries, database D, hint H, and coin tosses R = (R1, . . . , Rk, Rk+1), we
define the contribution contrib(q,Q,D,H,R) of query q w.r.t. Q as

contrib(q,Q,D,H,R) := nzP(q,D,H,Rk+1) \ nzP(Q,D,H,R≤k).

In other words, the contribution of query q for sequence Q is the set of non-zero cells that are probed if q is
executed after Q is completed and are not probed during the execution of the first k queries.

When we consider random hints H, we will also consider the randomness RH that is the randomness
used by the Preprocess algorithm to generate the random hint. Typically, we use H as shorthand for
Preprocess(D,RH).

Next, we define the notion of a maximally discovering query sequence. These sequences ensure that each
query in the sequence has large contribution (in terms of the number of probed non-zero indices that were
previously undiscovered). Furthermore, they are maximal in the sense that it is not possible to append any
query with large contribution.

Definition 6. For any database D and query sequence Q, we say that Q is maximally discovering for
database D if the following properties hold:

1. For every query qi in Q = (q1, . . . , qk), it holds that

Pr
RH ,R

[∣∣contrib(qi, Q<i, D,H,R)
∣∣ ≥ log n

16

]
≥ 1

4
.

2. For every i = 1, . . . , n, it holds that

Pr
RH ,R

[
|contrib(i, Q,D,H,R)| < log n

16

]
>

3

4
.

At a high level, every query in a maximally discovering sequence has contribution at least log n/16.
Furthermore, there is no query that may be appended to the sequence that has contribution log n/16 with
probability at least 1/4.

We are now ready to define the notion of a typical database.

Definition 7. We say that a database D of size n is typical in symbols ED(D) = 1, if for any maximally
discovering query sequence Q, the following properties hold:

10



1. |Q| ≤ r/ log n.

2. PrRH ,R

[∣∣nzP(Q,D,H,R)
∣∣ < r

128

]
≥ 31

32 .

Otherwise, we say that D is non-typical and write ED(D) = 0.

In other words, if a database D is typical, then we expect that all maximally discovering query sequences
for D are not too long. Furthermore, we expect these maximally discovering sequences to be unable to find
too many unique non-zero entries (less than r/128) most of the time.

If a database D is non-typical, then there exists a maximally discovering query sequence Q that may
be used to compress D very well. In more detail, the maximally discovering query sequence reveals many
non-zero entries of D. We should not expect most databases in the support of the hard distribution D to be
non-typical. Otherwise, we will be able to impossibly compress databases drawn from D using fewer than
H(D) bits in expectation as we show later.

Before making the above statement formal, we first formalize the argument that non-typical databases
D enable discovery of many non-zero entries. We prove the following technical lemma that says that if a
database is not typical, i.e., ED(D) = 0, then there exists a maximally discovering sequence Q which allows
the discovery of a large number of non-zero entries of D with some constant probability. We will then use
this fact to succinctly encode D.

Lemma 2. If ED(D) = 0, then there exists a maximally discovering query sequence Q such that

Pr
RH ,R

[∣∣nzP(Q,D,H,R)
∣∣ ≥ r

128

]
≥ 1

32
.

Furthermore, if |Q| > r/ log n, then

Pr
RH ,R

[∣∣nzP(Q≤r/ logn, D,H,R)
∣∣ ≥ r

128

]
≥ 1

32
.

Proof. If D violates the second condition of the Definition 7, then the lemma follows directly. Suppose D
only violates the first condition and |Q| = k > r/ log n. By Definition 6, we know that for each query qi of
a maximally discovering sequence,

Pr
RH ,R

[∣∣contrib(qi, Q<i, D,H,R)
∣∣ < log n

16

]
≤ 1

4
.

Consider the random variable X of the number of indices i where
∣∣contrib(qi, Q<i, D,H,R≤i)

∣∣ < log n/16
in the first k = r/ log n queries of Q. The random variable X is taken over the random variables (RH ,R≤i)
of the coin tosses used to generate the hint and perform the Query algorithm for the first i queries of Q.
Then E[X] ≤ 3k/4 and thus, by Markov inequality, Pr[X ≥ 7k/8] ≤ 6/7. This implies that with probability
at least 1/7 ≥ 1/32, there are at least k/8 indices each contributing at least log n/16 new non-zero cells.
This means the total contribution is at least (log n/16) · k > r/128 completing the proof.

We are now ready to show that if the scheme Π beats our lower bound then the hard distribution does
not contain many non-typical databases.

Theorem 3. Let Π = (Preprocess,Query) be a (r, t)-efficient PIR with preprocessing such that tr ≤ cn log n,
for some sufficiently small constant c > 0. Then,

Pr
D

[ED(D) = 1] ≥ 1/2

where D is the hard distribution.
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Proof. For the sake of contradiction, suppose that

Pr
D

[ED(D) = 0] > 1/2.

Consider the following one-way encoding problem in which Alice and Bob receive a sequence R? =
(R?1, . . . , R

?
k) of k random and independently distributed strings as input. In addition, Alice gets database

D as input and her task is to produce an encoding of D so that Bob can recovery D from the encoding
and the sequence R?. Note that both Alice and Bob are computationally unbounded but communication
is one-way from Alice to Bob. We will describe an encoding scheme that ensures that, when D is drawn
according to the hard distribution D, Alice’s expected message size is smaller than the entropy of D given
R?, thus obtaining a contradiction with Shannon’s source coding theorem.

Alice’s Encoding. Alice receives as input the databaseD and uniformly random stringsR? = (R?H , R
?
1, . . . , R

?
k)

where k = r/ log n.

1. Alice checks whether ED(D) = 1 or ED(D) = 0. To do so, Alice iterates through all possible coin tosses
for the Preprocess and Query algorithm.

2. If ED(D) = 0,

(a) Alice finds a query sequence Q that is a counterexample to ED(D) = 1. If |Q| ≥ k = r/ log n, then
set Q := Q≤k.

(b) Alice executes query sequence Q using R? and counts the total number ` of different entries of
D probed and the total number `nz = nzP(Q,D,H,R?) of different non-zero entries of D probed
while executing the queries.

3. If ED(D) = 1 or ` > 128tk or `nz < r/128, then Alice will encode D trivially as follows:

(a) Alice starts the encoding with a 1-bit.

(b) For each of the r non-zero entries of D, Alice uses log(n/r) bits to encode the index within the
part and (b− 1) bits to encode the content.

4. If ED(D) = 0 and ` ≤ 128tk and `nz ≥ r/128, then Alice encodes as follows:

(a) Alice starts the encoding with a 0-bit.

(b) Alice encodes the hint H = Preprocess(D,R∗H) using r bits.

(c) Afterwards, Alice encodes ` using log n bits. As ` denotes the number of unique entries accessed
in D, we know that 0 ≤ ` ≤ n and thus log n bits suffice for encoding `.

(d) Alice constructs the sequence S = (S1, . . . , S`) of the ` entries in D in the order they were first
probed. Thus, Si is the i-th unique entry probed when performing the queries in sequence Q. T
is the subset T ⊆ [`] such that T := {i ∈ [`] | DSi

6= 0b}. Note that |T | = `nz ≥ r/128.

(e) Alice encodes the content of the first r/128 entries in T by using at most log
(

`
r/128

)
bits for the

indices in D and r/128 · (b− 1) bits for the contents.

(f) Finally, Alice encodes the remaining 127/128 · r non-zero entries of D. To do this, Alice iterates
through the r parts of D in some fixed order. For each part whose non-zero entry has not been
encoded in the previous step, Alice encodes the non-zero entry using log(n/r) bits for the location
and (b− 1) bits for the contents.

Bob’s Decoding. Bob receives as input the encoding from Alice. Additionally, Bob receives the same
uniformly random strings R?1, . . . , R

?
k as Alice.

1. If Alice’s encoding starts with a 1, then Bob decodes the location and contents of each non-zero entry
using log(n/r) + b− 1 bits. In this case, Bob successfully decodes D.
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2. We now consider the case where Alice’s encoding starts with a 0.

(a) Bob decodes the hint H.

(b) Bob decodes `, the number of unique entries that will be probed when executing the queries in Q.

(c) Bob also decodes the r/128 indices in the subset T ⊆ [`]. Recall that if i ∈ T , then DS[i] 6= 0b

where S is the sequence of entries of D in the order that they are first probed.

(d) Bob executes the query sequence Q using R?1, . . . , R
?
k as random coin tosses. As Bob simulates

all these queries, Bob records entries of D in the order they are probed to compute S. Suppose
Bob encounters a new entry of D that was previously unprobed and this is the i-th probed entry.
Then, Bob checks whether i appears in T or not. If i ∈ T , then Bob uses the next b − 1 bits to
decode the contents of the non-zero entry. Otherwise, if i /∈ T , then Bob knows that the entry of
D contains 0b. As a result, Bob may execute Q to find r/128 unique non-zero entries of D.

(e) Finally, Bob iterates through all parts for which the non-zero entry has not yet been discovered
in the same order as Alice. For each part, Bob decodes the non-zero entry in the part using the
next log(n/r) bits for its location and b − 1 bits for its contents. So, Bob is able to successfully
decode all r non-zero entries in D.

Expected length of the encoding. First, we apply Shannon’s source coding theorem, which states that
Alice’s encoding length must be at least the entropy of D conditioned on Bob’s input R?. Note, that the
distribution R? of the strings received in input by Alice and Bob is independent from D and thus

H(D | R?) = H(D) = r
(

log
n

r
+ (b− 1)

)
.

Therefore, Alice’s encoding length must be at least r(log(n/r)+(b−1)) bits in expectation over D. We next
prove that the above encoding by Alice is actually smaller providing the desired contradiction.

Note that Alice’s encoding length when the message starts with a 1-bit is always 1+r(log(n/r)+(b−1)) =
1+H(D) bits. Note that the encoding starts with a 1 if ED(D) = 1 or if ED(D) = 0 and we have that ` > 128tk
or `nz < r/128. So, the probability that Alice outputs an encoding that starts with 1 is at most

Pr[ED(D) = 1] + Pr[` > 128tk and ED(D) = 0] + Pr[`nz < r/128 and ED(D) = 0].

We observe that Pr[` > 128tk and ED(D) = 0] ≤ Pr[` > 128tk] ≤ 1/128, where the last inequality follows by
Markov’s inequality as E[`] = tk. Moreover, we have that

Pr[`nz < r/128 and ED(D) = 0] ≤ 31

32
· (1− Pr[ED(D) = 1]),

where we have used that, by Lemma 2, Pr[`nz < r/128 | ED(D) = 0] ≤ 31/32. The probability that Alice
outputs an encoding that starts with 1 is at most

Pr[ED(D) = 1] +
1

128
+

31

32
· (1− Pr[ED(D) = 1]) =

1

128
+

31

32
+

1

32
· Pr[ED(D) = 1] ≤ 127

128
,

where in the last equality we used our assumption that Pr[ED(D) = 1] ≤ 1/2. Thus we can conclude that
the probability α that the encoding starts with 1 is upper bound by a constant smaller than 1. That is,
α ≤ 127/128.

Next, we analyze Alice’s encoding when starting with a 0-bit. The hint requires r bits. As D contains
at most n entries, ` can be encoded using log n bits. The encoding of the subset T requires log

(
`

r/128

)
bits. Observe that ` ≤ 128tk = 128tr/ log n ≤ 128cn for any constant c > 0. Moreover, by Stirling’s
approximation, we know that log

(
a
b

)
≤ b log(e · a/b) and thus T requires at most

r

128
· log

(
128 · e · `

r

)
≤ r

128
· log

(
1282 · e · c · n

r

)
=

r

128
·
(

log
n

r
−∆

)
13



where ∆ := − log(1282 · e · c) is a positive number that can be made arbitrarily large by picking c > 0
sufficiently small. Altogether, Alice’s encoding starting with a 0-bit has length at most

1 + r + log n+
r

128
·
(

log
n

r
+ (b− 1)−∆

)
+

127

128
· r
(

log
n

r
+ (b− 1)

)
= H(D) + (1 + log n+ r)− r

128
∆.

Now, since r ≥ 3 log n and since by picking c sufficiently small we can make ∆ > 0 made arbitrarily large,
we can say that, for any Γ > 0 and for sufficiently large n, we can pick c sufficiently small so that Alice’s
encoding starting with a 0-bit has length at most H(D)− Γ.

Combining the two cases, we obtain that the expected length of Alice’s encoding is, for sufficiently large
n, at most

α(1 +H(D)) + (1− α)(H(D)− Γ) < H(D) = H(D | R)

by choosing Γ > α/(1− α).
Therefore, Alice’s encoding contradicts Shannon’s source coding theorem to complete the proof.

4.3 Using Privacy Guarantees

By Theorem 3, for at least half of the databases D in the support of the hard distribution D, we have
ED(D) = 1. We remind the reader that if ED(D) = 1, then for every maximally discovering query sequence
Q, the total number of probed non-zero entries will be less than r/128 with probability at least 31/32.

In this section, we will construct a PPT adversary that is able to utilize the fact that ED(D) = 1 for half
the databases in the hard distribution D to break the privacy guarantees of any PIR with preprocessing
scheme Π that supposedly beats our lower bound of tr = Ω(n log n).

First, we present an algorithm GenQueries(D) that enables a PPT adversary to find a maximally
discovering query sequence Q for any database D except with negligible probability.

GenQueries(D):

1. Set Q as an empty query sequence.

2. Repeat until the loop breaks:

• For q = 1, . . . , n:

– Compute H = Preprocess(D,RH) using random coin tosses RH .

– Randomly and independently execute the sequence of queries (Q, q) n times and count the
number of executions cntq for which

∣∣contrib(q,Q,D,H,R)
∣∣ ≥ log n

16

where R are random coin tosses for |Q|+ 1 queries.

– If cntq ≥ n/2, set Q := (Q, q). Go back and repeat Step 2.

• Return Q if none of the n indices satisfy the above requirement.

Lemma 3. For any database D such that ED(D) = 1, the algorithm GenQueries(D) outputs a query
sequence Q that is maximally discoverable except with negligible in n probability over the internal randomness
of the algorithm.

Proof. We break the proof down into steps: one for each requirement of being maximally discoverable. We
refer readers to Definition 6 for a reminder about maximally discovering query sequences.

Consider the i-th execution of the loop starting at Step 2. Suppose there exists any query q ∈ {1, . . . , n}
such that

Pr
RH ,R

[∣∣contrib(q,Q,D,H,R)
∣∣ ≥ log n

16

]
<

1

4
.
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By Chernoff Bounds, Pr[cntq ≥ n/2] ≤ e−Θ(n) as E[cntq] < n/4 and each of the n runs are independent. In
other words, q being added to Q occurs with negligible in n probability. As ED(D) = 1, we know that any
maximally discoverable query sequence has length at most r/ log n. By a Union Bound over at most r/ log n
iterations, the probability that any bad query that does not discover enough non-zero entries is added to Q
is negligible in n.
Let Q be the output of GenQueries(D). Consider any q ∈ [n]. Suppose that

Pr
RH ,R

[
|contrib(q,Q,D,H,R)| ≥ log n

16

]
≥ 3

4
.

Consider the last iteration of GenQueries(D) that did not append q to the query sequence Q. When con-
sidering the query q, note that E[cntq] ≥ 3n/4. By Chernoff Bounds, we know that Pr[cntq < n/2] ≤ e−Θ(n)

as each of the n runs are independent. Therefore, such a query q would have been added by GenQueries(D)
except with negligible in n probability. By a Union Bound over all n possible queries, we know if such a
q ∈ [n] existed, GenQueries(D) would have added it except with negligible in n probability.

Therefore, any query sequence Q output by GenQueries(D) is maximally discoverable except with
negligible in n probability.

For the next step, we will use ideas from the cell sampling technique [51, 43] and the incompressibility
technique [32, 31, 21, 35] that have previously been used to prove other lower bounds. In our work, we will
use these ideas to construct a PPT adversary as opposed to directly proving lower bounds as done in prior
works. Let us consider the following sample experiment. Recall that for any database D in the support of the
hard distribution, the set nz(D) = {j ∈ [n] | Dj 6= 0b} consists of the r indices of the non-zero entries in D.
We will sample a subset T by adding each index of nz(D) to T with probability 1/10. We say that a query q
is resolved by T if all non-zero entries that were not probed by previous queries and are probed by q appear in
T . Consider querying index 1 after executing any maximally discoverable query sequence Q. We know that
the query to index 1 will discover at most O(log n) non-zero entries with constant probability. As a result,
the query to index 1 will be resolved by a random subset T with probability (1/10)O(logn) = 1/poly(n). By
manipulating the probabilities, we show that it is possible to find a subset T that resolves the queries to
index 1 with high probability by sampling a polynomial number of random subsets T .

We formalize this idea using the following PPT algorithm that will eventually be used by a PPT adversary.
We will use a slightly different method to sample subsets, but the same idea still holds.

Sample(D):

1. Let Q← GenQueries(D) and set ν = 1/(128n0.25).

2. Repeat the following a1 = n times:

(a) Pick a uniformly random subset T ⊂ nz(D) of size exactly r/10.

(b) Initialize cnt← 0.

(c) Repeat the following a2 = n times:

i. Compute H ← Preprocess(D,RH) with uniformly random string RH .

ii. Compute SQ ← nzP(Q,D,H, (R1, . . . , R|Q|)) for independently and uniformly selected se-
quences of coin tosses R1, . . . , R|Q|.

iii. Compute S1 ← nzP(1, D,H,R) for a uniformly selected sequence of coin tosses R.

iv. If S1 \ SQ ⊆ T and |S<i| < r/128, set cnt← cnt + 1.
Note that Si \ S<i is the contribution of the query to index 1.

(d) If cnt ≥ 3/2νn, return (Q,T ).

3. Return (⊥,⊥).
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Definition 8. Set ν = 1/(128n0.25) and let D be such that ED(D) = 1. For a pair (Q,T ) consisting of
a maximally discoverable query sequence Q and a subset T ⊂ nz(D), we say E

Q,T
D (Q,T ) = 1 if and only if

|T | = r/10 and

Pr
RH ,R

[
contrib(1, Q,D,H,R) ⊆ T ∧

∣∣nzP(Q,D,H,R≤|Q|)
∣∣ < r

128

]
≥ ν

where R = (R1, . . . ,R|Q|+1) is the randomness for |Q|+ 1 queries.

In what follows, we will omit the database D from E
Q,T
D (Q,T ) whenever it is clear from the context. We

shall show in Lemma 5 that, except with negligible probability, Sample, when run on input D such that
ED(D) = 1, outputs a pair (Q,T ) such that EQ,T(Q,T ) = 1. We first prove the following technical lemma.

Lemma 4. Let D be a database such that ED(D) = 1 and let Q be a maximally discovering query sequence
for D. Then,

Pr
T,RH ,R

[
contrib(1, Q,D,H,R) ⊆ T ∧

∣∣∣nzP(Q,D,H,R≤|Q|)
∣∣∣ < r

128

]
≥ 4ν

where T ⊂ nz(D) is a uniformly random subset of size exactly r/10.

Proof. Define the following variables for events:

• A denotes the event contrib(1, Q,D,H,R) ⊆ T .

• B denotes the event
∣∣nzP(Q,D,H,R≤|Q|)

∣∣ < r
128 .

• C denotes the event
∣∣contrib(1, Q,D,H,R)

∣∣ < logn
16 .

With this notation in place, we need to prove that if ED(D) = 1 and Q is maximally discovering for D, then
it must hold that PrT,RH ,R [A ∧B] ≥ 4ν. We will actually prove that PrT,RH ,R [A ∧B ∧ C] ≥ 4 ·ν and then
the lemma will follow from the observation that PrT,RH ,R [A ∧B] ≥ PrT,RH ,R [A ∧B ∧ C] ≥ 4 · ν.

The first step consists in deriving a lower bound for PrT,RH ,R [A | B ∧ C]:

PrT,RH ,R

[
A | B ∧ C

]
≥ ( r−log n/16

r/10−log n/16)
( r
r/10)

≥ (r/10)·(r/10−1)···(r/10−logn/16+1)
r·(r−1)···(r−logn/16+1)

≥
(
r/10−logn/16

r

)logn/16

≥
(

1
10 −

logn
16·r

)logn/16

(since r ≥ 3 log n)

≥
(

1
16

)logn/16 ≥ 1
n0.25 = 128 · ν.

Since ED(D) = 1, we have that PrRH ,R[B̄] < 1/32. By the fact that Q is maximally discoverable, we have
that PrRH ,R[C] > 3/4. Therefore, we know that PrRH ,R[B ∧ C] ≥ PrRH ,R[C] − PrRH ,R[B̄] ≥ 1/32. This
implies that PrT,RH ,R [A ∧B ∧ C] = PrT,RH ,R[A | B ∧ C] · PrRH ,R[B ∧ C] ≥ 4 · ν.

We are now ready to prove the properties of algorithm Sample.

Lemma 5. Sample is a PPT algorithm that, on input D such that ED(D) = 1, returns a pair (Q,T ) such
that EQ,T(Q,T ) = 1 except with negligible in n probability over the internal randomness of Sample.

Proof. We proceed in two steps. First, we show that Sample(D) returns (⊥,⊥) only with negligible prob-
ability. Secondly, we show that Sample(D) returns (Q,T ) such that EQ,T(Q,T ) = 1 except with negligible
in n probability. A union bound over the two bad cases results in the desired lemma.
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For the first part, note that GenQueries(D) returns a maximally discoverable Q except with probability
negligible in n by Lemma 3. Therefore,

P := Pr
T,RH ,R

[
contrib(1, Q,D,H,R) ⊆ T ∧ |nzP(Q,D,H,R≤|Q|)| <

r

128

]
≥ 4ν.

Now, for a subset T of size r/10, define Good(T ) = 1 iff

Pr
RH ,R

[
contrib(1, Q,D,H,R) ⊆ T ∧ |nzP(Q,D,H,R≤|Q|)| <

r

128

]
≥ 2ν.

We can bound P by conditioning on Good(T ) in the following way

P ≤ PrT[Good(T) = 1]+

PrT,RH ,R

[
contrib(1, Q,D,H,R) ⊆ T ∧ |nzP(Q,D,H,R≤|Q|)| < r

128

∣∣∣ Good(T) = 0
]

≤ PrT[Good(T) = 1] + 2ν.

and thus we can conclude that PrT[Good(T) = 1] ≥ P − 2ν ≥ 2ν.
Note Sample(D) randomly picks a1 = n subsets T . The probability that none of the a1 sampled T ’s is

good is at most (1− 2ν)n ≤ eΘ(−n0.75). Therefore, except with negligible in n probability, at least one good
T is sampled. Moreover, by definition, for a good T and for randomly chosen RH and (R1, . . . , R|Q|+1), the
test of the inner loop is passed with probability at least 2ν and thus E[cnt] ≥ 2νn. By Chernoff Bounds,
we know that Pr[cnt < 3/2 · νn] is negligible in n as each of the n runs are independent. This implies that
Sample(D) returns (⊥,⊥) with negligible probability.

Let us move on to the second part and consider any pair (Q,T ) returned by Sample(D). Clearly
|T | = r/10. Towards a contradiction, suppose that EQ,T(Q,T ) = 0 and consider the test of the inner loop.
Note that, for such a T , E[cnt] < νn and thus, by Chernoff Bounds, we get that Pr[cnt ≥ 3/2 ·νn] is negligible
in n. Therefore, the probability that Sample(D) returns a pair (Q,T ) where EQ,T(Q,T ) = 0 is negligible.

The previous result shows that Sample(D) is a PPT algorithm can find a pair (Q,T ) such that
EQ,T(Q,T ) = 1 except with negligible probability. For the next theorem, we will leverage the security of
PIR to show that the same statement holds for any query that is executed (not just queries to the index 1
as considered by the above statements).

To do this, we first present the following definition.

Definition 9. Let D be a database such that ED(D) = 1 and let (Q,T ) be a pair such that EQ,T(Q,T ) = 1.
Then, for a sequence of random coin tosses R = (RH , R1, . . . , R|Q|) where RH is the random coin tosses
used by Preprocess to produce H and each Ri is the random coin tosses used by the i-th query in Q, we say
that ER(R) = 1, if and only if the following condition Cond(x,R) = 1 for all x ∈ {2, . . . , n}:

• Cond(x,R) = 1 if and only if the following hold where H = Preprocess(D,RH):

1. PrR|Q|+1

[
contrib(x,Q,H, (R,R|Q|+1)) ⊆ T

]
≥ ν/2.

2. |nzP(Q,D,H,R)| < r/128.

Otherwise, we denote the event ER(R) = 0.

Note that ER(R) = 0 if and only if there exists x ∈ {2, . . . , n} such that the Cond(x,R) = 0 because at
least one of the two conditions in the above definition is false. Note that Cond(x,R) is defined only for a
fixed tuple (D,Q, T ) such that ED(D) = 1 and EQ,T(Q,T ) = 1. We do not make this dependency explicit in
our notation Cond(x,R) not to overburden our notation.

We will show next that ER(H,R) = 0 cannot hold for too many choices of random sequences of coin tosses
R. Otherwise, we construct a PPT adversary that will be able to compromise privacy.
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Theorem 4. Consider a (ε, δ)-secure PIR with preprocessing scheme with δ = 1/n. Fix database D such
that ED(D) = 1 and let (Q,T ) such that EQ,T(Q,T ) = 1. Then

Pr
R

[ER(R) = 1] ≥ ν/4

where R = (RH ,R1, . . . ,R|Q|).

Proof. We construct a sequence of PPT adversaries A2,A3, . . . ,An. If the theorem does not hold, at least
one adversary in the sequence contradicts (ε, δ)-security of the PIR. First, we describe our PPT adversary
Aj(D,H) for any j ∈ {2, . . . , n} as follows:

Adversary Aj(D,H):

1. Receive the database D and hint H.

2. Execute (Q,T )← Sample(D).

3. Compute the set SQ consisting of the non-zero entries of D that are probed by the queries of Q using
hint H and random coin tosses.

4. Output challenge queries 1 and j and receive transcript T .

5. Verify if Cond holds on the transcript T and output 1 iff it holds. Specifically,

(a) From the transcript T , compute the set S of the non-zero entries of D that were probed in the
transcript.

Note that S \ SQ is the contribution of the query for which T is the transcript.

(b) If S \ SQ ⊆ T and |SQ| < r/128, then output 1. Otherwise, output 0.

Towards a contradiction, suppose that there exists x ∈ {2, . . . , n} for which

Pr
R

[Cond(x,R) = 1] < ν/4

and consider adversary Ax. Observe that by the property of algorithm Sample(D), we have that the pair
computed at Step 1 satisfies EQ,T(i, T ) = 1 except with negligible probability. For the rest of the proof, we
will assume that EQ,T(Q,T ) = 1 as this decreases the distinguishing probability of Ax by at most negligible
in n additive factor.

Suppose that T is a randomly selected transcript of the query to index 1 being executed on D. Then, by
the definition of EQ,T(Q,T ) = 1, we have that Ax outputs 1 with probability at least ν.

Consider now the case in which T is a randomly selected transcript of query x being executed on D and
let R be the random of the randomness used to generate the hint and execute the queries in Q. We denote
H = Preprocess(D,RH). Then, we can analyze the probability that Ax outputs 1 into the scenarios when
Cond(x,R) = 0 and Cond(x,R) = 1. When Cond(x,R) = 1, we can make the pessimistic assumption that
Ax always outputs 1. For the case when Cond(x,R) = 0, we break down the analysis depending on which
one of the requirements (or both) are violated. If the second requirement is violated, then Ax always outputs
0. If the first requirement is violated, then Ax outputs 1 with probability at most ν/2. Therefore, when
Cond(x,R) = 0, Ax outputs 1 with probability at most ν/2. Putting it all together,

PrR[Ax(D,H) = 1] ≤
∑

b∈{0,1}
PrR[Ax(D,H) = 1 | Cond(x,R) = b] · PrR[Cond(x,R) = b]

≤ ν
2 + ν

4 = 3ν
4 .

Therefore the probability that Ax outputs 1 on a randomly chosen transcript to query x is at most
3/4ν. So, the difference of the probabilities that Ax outputs 1 in the two cases is at least ν/4 − negl(n) =
1/(512n0.25)− negl(n) > 1/n providing our contradiction for sufficiently large n.
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4.4 Completing the Proof

In this section, we show how to utilize the property we proved in the previous section to construct an
encoding of the database D that would beat the entropy bound, under the assumption that we have a PIR
with preprocessing scheme that beats our lower bound. In Theorem 4, we proved that a PPT adversary is
able to find a maximally discovering query sequence Q and subset T of size r/10 of non-zero entries from
a database D such that any query for index x ∈ [n] that follows the queries in Q is resolved by T with
reasonably high probability. Furthermore, the query sequence Q probes at most r/128 non-zero entries in
total. This implies that one will only need the r/10 entries in T and the at most r/128 non-zero entries
probed by query sequence Q to perform all queries and thus reconstruct D. However, for this to be of use,
we need to bound the error probability of the query algorithm.

Specifically, consider database D such that ED(D) = 1 and (Q,T ) such that EQ,T(Q,T ) = 1. Fix a random
coin toss sequence R = (R1, . . . , R|Q|) with ER(R) = 1. Let T be the non-zero entries probed by Q. The next
lemma shows that if we query any entry x ∈ [n] of D, the answer is correct with probability larger than 1/2
provided that the query is resolved by subset T .

Lemma 6. Consider a (ε, δ)-secure PIR with preprocessing scheme with ε ≤ 1/n2. Let D be a database
such that ED(D) = 1 and let (Q,T ) be such that EQ,T(Q,T ) = 1. Then there exists a sequence of coin tosses
R = (RH , R1, . . . , R|Q|) such that ER(R) = 1 and, for all x ∈ [n],

Pr
R|Q|+1

[
Query(x,H,R|Q|+1;D) = Dx | contrib(x,Q,H, (R,R|Q|+1)) ⊆ T

]
> 1/2

where H = Preprocess(D,RH).

Proof. Towards a contradiction, assume that for every R such that ER(R) = 1, there exists an index x ∈ [n]
for which

Pr
R|Q|+1

[
Query(x,H,R|Q|+1;D) 6= Dx | contrib(x,Q,H, (R,R|Q|+1)) ⊆ T

]
≥ 1/2.

and thus we have

PrR|Q|+1

[
Query(x,H,R|Q|+1;D) 6= Dx ∧ contrib(x,Q,H, (R,R|Q|+1)) ⊆ T

]
≥ 1

2 · PrR|Q|+1

[
contrib(x,Q,H, (R,R|Q|+1)) ⊆ T

]
≥ ν

4 ,

where in the last inequality we used the definition of ER(R) = 1.
Consider the case where the query x is drawn uniformly at random from [n]. Then, for any R such that

ER(R) = 1, we get that

Pr
x,R|Q|+1

[
Query(x, H,R|Q|+1;D) 6= Dx ∧ contrib(x, Q,H, (R,R|Q|+1)) ⊆ T

]
≥ ν

4 · n
.

Let us now look at the error probability of the PIR with preprocessing scheme when the query x is drawn
uniformly at random from [n]. Furthermore, suppose that true randomness is used to generate the hint and
execute the queries.

Prx,RH ,R≤|Q|,R

[
Query(x,H,R;D) 6= Dx

]
≥ PrRH ,R≤|Q| [E

R(RH ,R≤|Q|) = 1] Prx,RH ,R≤|Q|,R[Query(x,H,R;D) 6= Dx | ER(RH ,R≤|Q|) = 1]
≥ ν

4 ·
ν

4·n .

The last inequality utilizes Theorem 4 and the definition of ER(RH ,R≤|Q|) = 1. By reminding that ν =
1/(128n0.25), we obtain the error probability exceeds 1/n2 for sufficient large n to derive a contradiction.

Using this result about the correctness of resolved queries, we present a final impossible encoding to
complete the proof of our main theorem.
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Proof of Theorem 2. In our encoding scheme, Alice will receive a database D sampled according to D. Bob
will receive only Alice’s encoding and will attempt to decode D correctly. Note, that Alice and Bob are
computationally unbounded during the encoding and decoding. The only requirement for contradicting
Shannon’s source coding theorem is that the expected size of Alice’s message must be strictly smaller than
the entropy of random variable being encoded, D, and that Bob must be able to decode.

Alice’s Encoding. Alice receives as input database D in the support of the hard distribution D.

1. Iterate over all possible sequences of coin tosses and all maximally discoverable query sequences to
compute ED(D).

2. If ED(D) = 1, then try all possible query sequences Q of length k = /r log n, subsets T of size r/10
of nzP(D) and random coin tosses R to select pair (Q,T ), and sequence of coin tosses RH , R =
(R1, . . . , R|Q|) satisfying all the following properties:

• |nzP(Q,D,H,R)| < r/128.

• For all x,

Pr
R|Q|+1

[
contrib(x,Q,H, (R,R|Q|+1)) ⊆ T

]
≥ ν

2
.

• For all x,

Pr
R|Q|+1

[
Query(x,H,R|Q|+1;D) = Dx

∣∣ contrib(x,Q,H, (R,R|Q|+1)) ⊆ T
]
>

1

2

where H = Preprocess(D,RH).

3. If ED(D) = 0 or a tuple of (Q,T,RH , R) cannot be found satisfying the requirements above, then Alice
will use the following naive encoding of D:

(a) Encode a 0-bit.

(b) Encode the location and contents of each non-zero entry using log(n/r) + (b− 1) bits for a total
of r(log(n/r) + b− 1) bits.

4. Otherwise, Alice will utilize the following encoding scheme leveraging the tuple (Q,T,RH , R) as follows:

(a) Encode a 1-bit.

(b) Encode hint H = Preprocess(D,RH) using r bits.

(c) Encode the locations (but not the content) of the non-zero entries of D. That is, encode the r
indices of nz(D) using log(n/r) bits for each of them.

(d) Compute the set SQ := nzP(Q,D,H,R) by executing the query sequence Q with the hint H =
Preprocess(D,RH) and random coin tosses R.

(e) For each of the r non-zero entries, encode the content of the non-zero entries in the following way
iterating through all r parts in some fixed order:

• If the non-zero entry does not appear in T or SQ, encode a 0-bit.

• Otherwise, encode the contents of the non-zero entry using b − 1 bits. Recall that the first
bit of each non-zero entry is always a 1-bit.

Bob’s Decoding. Bob receives Alice’s message as input.

1. If Alice’s message starts with a 0-bit, decode D trivially by reading the location and contents of each
non-zero entry for each of the r parts using the next log(n/r) + b− 1 bits respectively.

2. Otherwise, when Alice’s message starts with a 1-bit, Bob will decode in the following way:
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(a) Decode the hint H using the next r bits.

(b) Decode nz(D) using the next r log(n/r) bits.

(c) Decode the content of all cells in T and SQ by iterating through all r parts in the same fixed
order as Alice:

i. If the next bit is a 0, then the non-zero entry in this part is not in T or SQ.

ii. If the next bit is a 1, then read the next b− 1 bits to get the content of this non-zero entry.

(d) For all indices x of non-zero entries that do not appear in T or SQ, decode the contents Dx in the
following way:

i. Iterate through all possible random strings R|Q|+1.

A. For each R|Q|+1, try to execute x using H as the hint and R|Q|+1 as the random coin
tosses. As soon as the query attempts to probe a non-zero entry outside of T or SQ, that
is, probe a non-zero entry in the set nz(D) \ (T ∪ SQ), then Bob will skip to the next
random string.

B. Note, as long as the query probes either zero entries in nz(D) or non-zero entries in T or
SQ, Bob can continue executing the query as the contents of all zero entries and non-zero
entries in T and SQ are known.

C. If Bob successfully finishes executing the query, Bob will keep track of all responses given
by successfully executed queries.

ii. Bob computes Dx as the majority answer amongst all queries that successfully completed.

Correctness. We first show that Bob will always be able to successfully decode D correctly. In the case that
Alice’s message starts with a 0-bit, Bob will always be able to decode D as Alice’s message naively encodes
the non-zero entries. Consider the case where Alice’s message starts with a 1-bit. Therefore, Alice finds the
desired (Q,T,RH , R) that satisfies the three requirements. As Alice encodes the locations of nz(D) and the
contents and locations of T and SQ trivially, Bob will be able to decode all of them correctly. The remaining
part is that Bob must decode all non-zero entries in nz(D) \ (T ∪ SQ) correctly. For each of these remaining
non-zero entries, Bob tries executing each query in nz(D) \ (T ∪ SQ) using all possible random strings with
H as the hint. By the property Alice used to select the tuple (Q,T,RH , R), Bob will be able to successfully
complete each query for at least ν/2-fraction of the random strings by the second requirement. Furthermore,
the majority vote of the successfully completed queries will be correct by the third requirement. Therefore,
Bob is able to successfully decode all non-zero entries of D.

Expected length of the encoding. Next, we will analyze the expected length of Alice’s message. When
Alice’s message starts with a 0-bit, the length of Alice’s message is 1 + r(log(n/r) + b − 1) bits. For the
case when Alice’s message starts with a 1-bit, note that the total message length of the hint H and the set
of indices nz(D) is at most r + r log(n/r) bits. Moreover the encoding of the contents of nz(D) has 1 bit
for each of the r indices (this bit is 1 for indices in T ∪ SQ and 0 for the other indices) and (b − 1) bits to
specify the content of the indices in T ∪ SQ. As |T | = r/10 and |SQ| < r/128, this accounts for at most
r+ r · (b− 1)(1/10 + 1/128) bits. Therefore, the total number of bits used when Alice’s message starts with
a 1-bit is

1 + 2r + r log
n

r
+ r

69

640
· (b− 1).

Finally, we lower bound the probability that Alice’s message starts with a 1-bit. In the case that ED(D) =
0, note that Alice’s message always starts with a 0-bit. By Theorem 3, we know that PrD[ED(D) = 0] ≤ 1/2.
Let us suppose that ED(D) = 1. By Lemma 5, Sample(D) finds (Q,T ) such that EQ,T(Q,T ) = 1 except
with negligible probability over the internal randomness of Sample(D). As a result, Alice will always be
able to find (Q,T ) such that EQ,T(i, T ) = 1 by executing Sample(D) with all possible random strings. By
Lemma 6, Alice will be able to find the necessary RH and R such that Alice’s message starts with a 1-bit
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since ED(D) = 1 and EQ,T(Q,T ) = 1. Therefore, Alice’s message starts with a 1-bit with probability α ≥ 1/2.
Putting everything together, Alice’s expected message length is

1 + (1− α) · r
[
log n

r + b− 1
]

+ α ·
[
2r + r log n

r + r 69
640 · (b− 1)

]
= 1 + r log n

r + r(b− 1)
[
1− 571

640α
]

+ α [2r]
< r log n

r + r(b− 1)
[
1− 571

640α
]

+ α
[

1
3 log n+ 2r

]
(since, forsufficientlylarge n, wehave α

3 log n > 1)
< r log n

r + r(b− 1)
[
1− 571

640α
]

+ α
[

1
9r + 2r

]
(since log n ≤ r/3)

< r
[
log n

r + b− 1
]

= H(D) (since b ≥ 4 and α ≥ 1/2)

So, we contradict Shannon’s source coding theorem and complete the proof.

5 Conclusions

In this paper, we present a higher lower bound for computational single-server PIR with preprocessing.
We show that tr = Ω(n log n) thus improving the previously known lower bounds of tr = Ω(n) in [7].
Furthermore, our lower bounds match the highest known lower bounds in the considered model (for both
cryptographic and non-cryptographic primitives).
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A Optimal tr = O(n) Construction Sketches

In this appendix, we present constructions with tr = O(n) thus matching the lower bound of [20]. These construction
are implicit in [20] and we report it here for the sake of completeness.

For convenience, we present a construction with r = O(
√
n) and t = O(

√
n) that may be extended to arbitrary

r-bit hints and time t = O(n/r). In the offline phase, the client constructs a partition P = (P1, . . . ,Pm) of {1, . . . , n}
into m :=

√
n parts each of size

√
n. In order to be able to succinctly represent P, the partition is chosen to be

a pseudorandom partition and it is selected by using a pseudorandom permutation FK (see [49]) with a randomly
selected seed K. Specifically, the j-th part Pj consists of Pj = {FK((j − 1) ·

√
n + 1), . . . , FK(j ·

√
n)}. Then the

hint consists of bits b1, . . . , bm where bi is the XOR of the entries of the database D with indices in the i-th part Pi,
and of seed K (used to reconstruct P). Note that the length of the seed K is equal to the security parameter λ.
Therefore, r = Θ(

√
n).

The online phase proceeds identically to the protocol in the technical overview of [20]. Specifically, to query for
entry i of D, the client finds the part Pj that contains i and removes from it a single index i? determined as follows:

• With probability 1− (
√
n− 1)/n, the client sets i? = i;

• With the remaining probability, the client sets i? equal to a randomly chosen index from Pj .

The client then sends the set P = Pj \ {i?} to the server that replies with the XOR of the entries in P . Note that
the server has to probe O(

√
n) entries to compute its replies. For the analysis of correctness and security, we refer

readers back to the analysis in [20].
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