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used metrics in the field of side-channel analysis. We provide a self-contained presentation of each metric, along with a discussion
of its limitations. We practically demonstrate the metrics on examples of relevant implementations of the Advanced Encryption
Standard (AES), and make the software implementation of the presented metrics available to the community as open source. This
work, being beyond a survey of the current status of metrics, will allow researchers and practitioners to produce a well-informed

security evaluation through a better understanding of its supporting and summarizing metrics.
CCS Concepts: » Security and privacy — Cryptanalysis and other attacks; Side-channel analysis and countermeasures.
Additional Key Words and Phrases: Side-Channel Attacks, Side-Channel Analysis Metrics, Information Theoretic Metrics, Cryptography

ACM Reference Format:
Kostas Papagiannopoulos, Ognjen Glamocanin, Melissa Azouaoui, Dorian Ros, Francesco Regazzoni, and Mirjana Stojilovi¢. 2023. The

Side-Channel Metrics Cheat Sheet. 1, 1 (April 2023), 37 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Embedded and cyber-physical devices pervade several aspects of our lives, including extremely critical ones such as
personal identification, payment, health and safety. Contrary to personal computers and cloud servers, embedded
devices are, at least potentially, in the hand of the attackers, which can exploit this physical access to extract secret

information. Side-channel attacks, and in particular the attacks exploiting the relation between the power consumed
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by the device and the data being computed, have attracted significant attention from both the industrial and the
academic communities [73]. Their powerful nature allows the side-channel attacks to easily extract the complete key
of a mathematically secure cryptographic algorithm. Moreover, the equipment needed to launch such attacks can be
obtained for a few thousands of Euros, thus consolidating them as solid options in an attacker’s arsenal.

In this context, protecting from side-channel attacks is of utmost importance. Researchers designed countermeasures
to mitigate these attacks as soon as they became known to the general public [44]. In parallel, research also proceeded in
finding better and more efficient ways to extract secret information from devices. However, despite more than 20 years
of research in the domain of side-channel attacks, the problem of assessing the security of certain implementations and
the problem of comparing different attacks is still far from being solved. The main reason for this is the lack of a clear,
“silver-bullet” metric for the specific problem. This is still true, despite the several attempts that the community has
done to date to propose an objective and scalable metric for assessing side-channel resistance. Metrics proposed so far
may be suitable only in a particular evaluation context, or allow only to draw specific conclusions which can not be
generalized. Often, to have a complete picture, evaluators compute more than a single metric.

To extricate from the jungle of metrics is extremely difficult, due to the complexity of the subject and because of
the high fragmentation of the related literature. Metrics for side-channel attacks are in fact either the sole argument
of a paper [83, 84] or are shortly summarized where they are applied [66]. As a result, the current literature on the
topic suffers from several limitations. Firstly, it does not provide a complete picture, because papers mostly focus on a
single metric. Secondly, it is seldom self-contained. Finally, it is not accompanied by an open-source library that can be
directly used by designers to evaluate their devices. As a result, despite it being extremely needed, an up to date review

that reflects the current state of the art in the domain is missing.

A roadmap for side-channel metrics. In this work, we provide a critical review of the most common metrics proposed
so far for the evaluation of side-channel attacks. Our goal is, naturally, to explain and demystify the available metrics
but—perhaps more importantly—to also sketch their boundaries and limitations. Our analysis takes the form of a cheat

sheet, presented in Table 1, that encompasses the evolution of metrics, as dictated by existing limitations.

e We commence in Section 2 with the most generic of metrics which is the number of traces needed to break a
cryptographic device, i.e., a metric that uses a single scalar to describe an inherently stochastic attack process.
This simplification leads to the discussion about the score and rank metrics of Section 4 that can visualize the

probabilistic progress of a side-channel attack.

Motivated by the workflow of an evaluation laboratory, we distinguish between a black-hat attacker that aims to

recover the key and a white-hat evaluator that aims to thoroughly assess the difficulty of recovering the key.

Their subtle differences are reflected in side-channel metrics by contrasting the success rate and guessing entropy

metrics of Section 5 with the score and rank metrics of Section 4.

e We note that most side-channel attacks operate in a divide-and-conquer manner, recovering a key partition
instead of the full key. This fact propagates to our discussion on metrics and we show in Section 8 how all the
attack-based metrics, such as rank and guessing entropy, necessitate an extension to the respective full key rank
and full key guessing entropy metrics.

e We continue by pinpointing a core limitation that affects a multitude of metrics: the close link between attack

methods and the metrics’ formulation. In other words, computing the metrics described in Sections 2, 4 , 5

and 8 stipulates an attack. This limitation led to the development of attack-independent metrics based on the
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signal-to-noise ratio (Section 3), the mutual information between the leakage and the secret key (Section 7) and
statistical tests (Section 9), all of which are decoupled from a potentially time-consuming attack procedure. We
stress that the close link between attacks and metrics is also hindering our ability to assess the security level
of a device that we are unable to break using an attack. This gap can be filled with metrics based on mutual
information (Section 7) and correlation (Section 6) that are capable of performing security projections.

e We showcase that most metrics are subject to underlying assumptions about the attack process and/or the
leakage emitted by the device. That is, discrepancies between the assumed models and the actual (unknown)
device leakage can damage their reliability. To alleviate this limitation, the metrics of perceived information and

hypothetical information in Section 7 can be used to assess our ability to model the leakage properly.

Open-source software library for computing side-channel metrics. We notice a large degree of fragmentation of
the available code to compute any side-channel metric. Our solution to this is the development of MetriSCA! software
library (see supplemental material). With MetriSCA, we aim to consolidate current and future efforts on metrics
implementations and develop stable and consistent software that removes any metric-related ambiguity during an

evaluation.

Experimental evaluation. In the supplemental material, we give a detailed description of our simulation and mea-
surement setups for collecting side-channel traces. In every section of this manuscript, a subset of the acquired traces is

used to practically evaluate the corresponding metrics.

2 NUMBER OF TRACES

As mentioned, side-channel attacks start from the physical observables of a device. Their goal is to identify in these
quantities any bias about the cipher’s intermediate values, for instance, finding whether a register bit is more likely
to be zero than one. Subsequently, they exploit such bias to recover the secret key, using techniques that bear a close
resemblance to linear and differential cryptanalysis [9, 61]. The bias observed in physical quantities of unprotected
devices is often much higher compared to the bias observed when cryptanalyzing a cipher without monitoring such
quantities. Therefore, side-channel attacks are colloquially referred to as cryptanalysis with a large bias, vividly portraying
their strong potential and their relationship with standard cryptography. Given that side-channel attacks are in fact a

branch of cryptanalysis, it comes naturally to adjust the existing security metrics from that field.

2.1 Description

The common metrics that reflect the security of a cipher are the time, memory and data complexity required for an
attack [37], i.e., the number of encryptions, the needed storage size and the number or type of plaintexts and ciphertexts.
Translating the time complexity into the side-channel field results in the metric of measurement complexity, which tells
us how many times we need to perform encryption (or decryption)—while measuring a certain side-channel—so as to
recover the device’s secret key [82]. The literature refers to side-channel measurements as traces, thus the measurement
complexity is typically stated as number of traces, one of the most common metrics of side-channel resistance.

When considering symmetric ciphers like AES-128, the starting attack point in cryptanalysis (without side-channels) is
abrute-force attempt, with time complexity of 2128 encryptions (worst-case). From this point on, specialized cryptanalytic

attacks aim to reduce the time complexity, usually with a varying degree of success: Attacks can range from total breaks

Uhttps://metrisca.epfl.ch/
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Table 1. Side-channel metrics cheat sheet: summary table.
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to small improvements that can just distinguish the cipher from a truly random permutation [43]. Such cryptanalytic
attacks (without side-channels) can be carried out on any device since they only require the attacker to implement
and execute the cipher. Multiple encryptions can be carried out in parallel, thus computer clusters constitute prime
candidates for the cryptanalytic computational effort. Note also that some attacks use random plaintext while others
require it to be constant or known.

In the same spirit, cryptanalysis with side-channels aims to reduce the time complexity of AES-128 from 228
encryptions to a substantially smaller number of encryptions, typically by using random plaintexts. Unlike standard
cryptanalysis though, a side-channel attack requires physical measurements that can only be performed on the device
under test (DUT), aided by a measurement apparatus (e.g., resistors, EM probes, oscilloscopes, etc.). This close relation
between side-channel attacks and devices means that speeding up or parallelizing the cipher encryption is less likely to
be an option and the attacker is essentially limited by the encryption throughput of the particular device. Therefore, the
number of traces metric contains an implicit single-device limitation and thus a hidden measurement cost. Analytically,
the processing speed of the device, the input/output communication delays and any overhead due to the measurement
apparatus may slow down the side-channel cryptanalysis and result in a bottleneck?. Estimating precisely this cost is

case-dependent with optimistic side-channel attackers placing it at 21°

, i.e., carrying out an encryption on a specific
device (while measuring the side-channel) is approximately 1000 times slower than simply carrying out the same
encryption (without measuring the side-channel) on a high-end processor. More pessimistic attackers place this cost
up to 230 [34]. In general, we can conclude that a slow device-under-test or delays during measurement or simply the
attacker’s inability to parallelize the encryption can assist the defender and perplex the metric.

Despite the hidden measurement cost in the number of traces metric, it is the most common approach to measure
side-channel security. Secure chip manufacturers, evaluation labs and researchers apply a wide variety of techniques
that eventually boil down to the statement: “We are able to recover the secret key using X side-channel traces.” Several
certification bodies and governmental agencies have integrated this metric into their guidelines, for instance, the current
ISO/IEC 17825:2016 3 [41, 94] proposes the usage of specific side-channel analysis techniques and requires that no
security flaws are found after measuring 10,000 or 100,000 traces, depending on the desired security level. Following
a different school of thought, methodologies like JHAS [49] try to account for the hidden measurement cost (among

other things) by specifying the time (in days or months) at the attacker’s disposal, instead of the number of traces.

2.2 Limitations

The number of traces depends on the attack. Even such a popular metric is by no means a standalone panacea and
has several limitations. The obvious deficit of the number of traces (and most side-channel metrics) is the fact that it is
linked to a specific side-channel attack or technique. Therefore, a more truthful statement is the following: “Deploying
attack A, we are able to recover the secret key using X side-channel traces.” Unfortunately, the deployed attack A may be
suboptimal, i.e., it may not effectively exploit the side-channel leakage and the device may appear more resistant than it

actually is*. Even worse, certain attacks may fail when side-channel countermeasures are present, while different lines

2Notably, designers have even introduced encryption delays on purpose, in order to slow down the side-channel adversary. This option is particularly
popular when encryption speed is not critical to the overall performance of the device. E.g., the User Identifier encryption in iOS 9 was designed to take
80 milliseconds to delay adversaries [50].

3ISO/IEC 17825:2016 [ISO/IEC 17825:2016] Information technology - Security techniques - Testing methods for the mitigation of non-invasive attack
classes against cryptographic modules.

“In fact, side-channel research has identified cases where certification schemes were found lacking, since they propose suboptimal analysis techniques [94].
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of attack may achieve key recovery. Motivated by such pitfalls, certification schemes like EMVCo ° recommend that
side-channel evaluations stay up-to-date with recent attack methods, encouraging a holistic analysis effort®.

Note also that attacks are often linked to the attacker’s computational capabilities, thus it is often hard to distinguish
between the inherent leakage of the device and the attacker’s ability to exploit it effectively. The inherent leakage of the
device is particular to the electronic and electrical layer: It refers to the actual physical phenomena that cause leakage.
In contrast to this, the attacker’s computational capabilities may enable her to obtain a very large amount of traces, to
train a computationally intense model and to search the key space quickly. This coalescence between the device leakage
and the attacker’s capabilities makes it harder to obtain a clear picture of the vulnerability. As a result, it becomes harder
to identify countermeasures that perform well, irrespective of the attacker exploiting them. In light of such deficits, we
stress that every side-channel metric should always be considered in the context of 1) the device-under-test and 2) the
attack that produced it. Forgetting this may lure the evaluator into a false sense of security, since most metrics cannot
fully convey the attack strength on their own. We postpone the discussion about attacker-independent side-channel

metrics until Section 7, where we will introduce metrics that alleviate this problem.

The number of traces does not fully specify the key recovery. Another crucial deficit of the number of traces
metric is its vagueness regarding key recovery. Going back to the security statement, we observe that the phrase “We are
able to recover the secret key” is lacking a clear context. Attaching a precise meaning to it necessitates the construction

of new metrics, namely the score and rank of key candidates after an attack. This topic is examined in Sections 4 and 5.

3 SIGNAL TO NOISE RATIO

To a large extent, the discussion about side-channel metrics is motivated and influenced by the available attack methods
and their limitations. Thus, in most sections we examine metrics in conjunction with the attack that produced them.
Still, before continuing, we here digresses to a more intuitive and standalone side-channel metric, the signal-to-noise

ratio (SNR). The SNR is not computed as part of an attack and it requires only a few modeling assumptions.

3.1 Description

The SNR metric can be obtained directly from the traces of any side-channel experiment, without the need to launch an
attack. The evaluator has typically measured a dataset with numerous side-channel traces, each containing multiple
time samples. Side-channel analysis is interested in a subset of these samples, specifically in the samples that leak
information about the intermediate values of a cipher. These intermediate values are in turn linked to the secret key,
thus the information contained in them is critical for security’. In order to define the SNR, we must first model the

leakage L of an interesting time sample. We will use the following standard modeling approach:
L=Ly+Ly=g(V)+Ly,, where L, ~ N(0,0°) (1)

In the formula above, the random variable L represents the leakage at a certain time sample and it is assumed to

be the sum of two components. The first component, Ly, is known as the deterministic part (or the data part) and is

Shttps://www.emvco.com/

%Such recommendations have been triggered by the fairly recent interest into deep-learning based approaches for side-channel attacks [6, 57].

"The relationship between the cipher’s intermediate values and the key can be more or less straightforward, depending on the cipher under attack. E.g.,
assume that we have recovered any 8-bit Sbox output of the first round of AES-128 through side-channel analysis. This implies that we can directly
recover the respective 8-bit Sbox input, since the Sbox is a bijective function. Continuing, we can directly recover the respective 8-bit part of the secret
key during the AddRoundKey operation, since the plaintext is known and we just have to XOR it with the Sbox input to reach the key. On the contrary,
the 4-bit Sbox output of the DES cipher does not directly map to the respective part of the secret key, since DES uses a 6 to 4 bit Sbox. Recovering the
Sbox output results only in partial information about the key.
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linked to the cipher’s intermediate value V, which leaks at this point in time. The leakage behavior of V' is specified by
a function g(-), referred to as the leakage function. When modeling leakage in theory, common choices for g(-) are the
identity function, the Hamming weight and linear models. The second component, Ly, is known as the non-deterministic
part (or the noise) and it encapsulates various effects in the DUT and the measurement apparatus that produce variation.
It is often modelled as a normal distribution with zero mean and variance 2. We stress that such assumptions about
L,L; and L, are by no means the only way to model the leakage. Still, using this simple model, we can proceed to
define the SNR metric:
@)
The SNR is defined as the ratio between the variance of the data (deterministic part) and the variance of the noise
(non-deterministic part). The metric shows intuitively the ratio between the useful and the useless part of the signal.
The goal of the attacker is to improve their setup and increase the SNR, while the goal of the defender is to decrease
it, hiding the useful signal in noise. Below we explain how to compute the SNR in two scenarios: simulated leakage
and real measurements. We also discuss NED, NSD and NICV, three variants of the SNR metric. We note that the SNR
and its variants require to estimate simple first and second order statistics, thus they can be computed efficiently and

provide a quick first metric for the evaluator.

SNR with simulated leakage. In this theoretical scenario, the evaluator is simulating herself the leakage L by
specifying precisely L; and L,,. For example, she simulates the leakage of an 8-bit value V (uniformly random). To that
end, she chooses a leakage function g(V) = a V + 5, where a, f§ are known constants. That is, L; = a V + f, a scaled
version of identity leakage (by factor a), that is offset by factor . In addition, she chooses noise L, ~ N'(0,¢?) and
specifies the numerical value of the parameter 2. Note that the simulation can be noiseless (o = 0) if the evaluator
aims to identify leakage, or noisy (o # 0) if the evaluator aims to analyze the device/countermeasure behavior in the
presence of noise. In this simulation, we can proceed to compute the SNR directly using the following expectations E(-):

255 255 255

B(Li) = BlgV)) = 2, 900) Prie) = 352 > ao +f) B = Bg0)) = 355 Ve
_Var(Lg) E(sz) - E(Ly)®
SNR= Var(Lp) o? &

SNR with real measurements. In this practical scenario, the evaluator has no a priori knowledge (or control) of L;
and L,. Since she can only observe their sum L, she cannot compute directly the variance of L; and L. For example,
she has carried out an experiment observing the leakage L of an 8-bit value V, obtaining n traces Iy, . . ., I, each trace [;
containing a single time sample that leaks information about V. By assuming that the deterministic part of the leakage

can be described by a function g which depends only on the value of the intermediate V, we have that:
L=g(V)+Ly, thatis (L|V =) ~ N(g(0),0?) ()

We have no knowledge of Ly, L, and thus we don’t know the leakage function g(-) and variance o of the noise. Still,
we see that setting V = v in Equation 5 will result in normally distributed leakage with mean g(v) and variance o?.

Using this observation, our new goal is to estimate this mean and variance using the n available traces. In particular:

(1) We partition the n traces into 256 groups, based on the value of V and we obtain the sets Lo, L1, ..., Las5. The

set L, contains all traces [ that are observed when V = v.
Manuscript submitted to ACM
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Fig. 1. SNR for the unprotected AES Sbox.

(2) We estimate the statistical mean i (the hat notation over p denotes estimation using the dataset) of every set £,

and the overall mean. This results in fi, fi1, . . ., fi2s5 and fi:
1 D 1 §
fio = ! A= fio, (6)
Izl & 256 214

where | L] is the size of set Ly, i.e., the number of traces s.t. V = 0.

(3) We estimate the statistical variance of every set L, resulting in &2, 612, e 6%55 and compute their average, &2
1 1 B8
~2 A \2 ~2 ~2
6= ——— - ‘= — 0 7
o= o 2 (ke 72 D% ™
le L, =0

After these estimation steps, we can proceed with the SNR computation
255
Var(Ly) Z (o= )

SNR = =
Var(Ly) 62

®)

Using the real dataset of the unprotected Shox and the estimation steps, we compute the SNR for the whole trace
length (Figure 1). We observe that several time samples exhibit peaks (SNR~ 0.02), indicating the presence of leakage,
while other time samples exhibit negligible SNR.

NED, NSD and NICV metrics. There are three additional metrics that bear a close resemblance to SNR, namely

normalized energy deviation (NED), normalized standard deviation (NSD) and normalized inter-class variance (NICV):

max (L) — min(L) NSD = Var(L) 10 _ Var(E(L|V))

NED = (11)

The functions max(-), min(-) denote the maximum and minimum leakage during a single time sample. Both NED
and NSD have been utilized when analyzing specific CMOS styles [54, 87] that aim to resist side-channel attacks. If
such an analysis is based on a noiseless leakage simulation, the leakage L is equal to its useful part L. In this case,
the NED/NSD metrics intuitively convey the variation of Ly, i.e., high values implies strong leakage and low values
implies weak leakage. If however, the leakage L contains noise, then NED/NSD become less useful, since its unclear
whether the leakage variation originates from L, or L. Similarly, NICV [8] uses the leakage L directly, computing the
ratio between the explained variance and the total variance. Note that NICV can be computed without partitioning the
dataset based on the value v of V (SNR steps 1-3) and can also be viewed as an ANOVA F-test.

Manuscript submitted to ACM
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3.2 Limitations

The SNR does not reflect feasibility of a side-channel attack. The inherent strength and weakness of SNR is its
relationship with side-channel attacks. The metric is not linked by default® to a specific side-channel attack, thus it can
maintain some level of generality. On the downside, the lack of an actual attack means that SNR cannot directly convey

the actual security level.

The SNR uses a simplified univariate leakage model. Although the leakage assumptions required to compute the
SNR are fairly reasonable, we still rely implicitly on a certain leakage model. Equation 1 makes assumptions about the
components Ly, Ly, i.e., the leakage function g(-) and the noise distribution. Thus, in a simulated leakage scenario, where
g(+) and the noise are under the evaluator’s control, the SNR metric is accurate by construction. On the contrary, in a
real measurement scenario, the leakage may diverge from our model’s assumptions. Therefore, we would need to test if
the model is a good statistical fit and adjust it, if needed. Moreover, even if the leakage fits the simple model precisely,
the statistical parameters (mean and variance) of the distributions A (g(v), 6?) need to be adequately estimated from
the traces. A poor estimation (due to a limited number of traces) may, in turn, produce misleading results. A discussion
about such practical issues has been carried out by Lomné et al. [52]. We will return to the issue of model choice and
parameter estimation in Section 7. An additional modeling limitation of the SNR metric is its univariate definition: The
metric focuses on a single time sample at a time, ignoring joint multivariate leakage. Unfortunately, the adversary is
not as limited and various attacks are able to effectively exploit multiple samples [14]. To adapt, the metric has been

extended in the multivariate context [88], which in turn results in additional constraints and computational effort.

4 SCORE & RANK

We now return to the question posed in the end of Section 2 and clarify the process of “recovering the secret key.” To this

end, we describe a standard side-channel attack and develop the score and rank metrics.

4.1 Description

The majority of side-channel attacks have the same modus operandi. First, they use a divide-and-conquer strategy [11, 44],
and they partition the full cipher key in small parts that are easy to attack. For example, instead of recovering directly
the full 16-byte key of AES-128, the attack divides it in 16 parts and tries to recover every one of the bytes individually.
For every 8-bit key part, the attack will produce scores for every key candidate, while ranking the candidates from best
to worst. Throughout this overview, we denote key candidates using the variable K and its variable instances using k.

Below, we go through the steps of an attack that recovers a single key byte K of AES-128.

(1) We focus on an 8-bit value, thus our set of key candidates k is limited to K = {0, 1,. .., 255}.

(2) The attack on the 8-bit key value produces 256 scores [scorey, scorey, . .., scorezss], where score is the attack
score of the key candidate k. For example, scorey; is the attack score achieved by the key candidate k = 42.

(3) Subsequently, the attack uses the scores to guess which key candidates are the best, producing 256 guesses
[guessi, guessy, . . ., guessase ], starting from guess 1. The quantity guess; is equal to the key candidate that scored
the best during the attack and is thus the prime choice for the true key. For instance, if the best score during the

attack came from candidate k = 42, then guess; = 42.

81t is worth noting that the SNR metric can be tweaked and used as a side-channel distinguisher of its own accord (https://ileanabuhan.github.io/leakage/
detection/2021/05/27/SNR-distinguisher.html)
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Algorithm 1: The workflow of a standard side-channel attack.

Input: Attack score function f(-)
Input: Key candidates K, with set size |X|
Data: Simulated or real side-channel traces
Output: scorey, guessy, ranky, for all k € K and all key partitions
> Partition the full cipher key and attack all key parts
partitions = divide-and-conquer(full key)
for all partitions do
> Compute the attack score for every key candidate
for allk € K do
L scorer = f(traces, k)
> Sort the scores and compute the key guesses
[score;, score;j, ..., scorey] = sort([scoreg, scorey, ..., score‘f;q_l])
[guessl,guessz,...,guess‘qq] =i, j,...,m]
> Compute the rank of every key candidate using the key guesses
for all guess;, i € {1,2,...,|K|} do
L rankgyess; = i

(4) Finally, we can produce a vector [ranky, ranky, ..., rankass], where ranky is the rank of key candidate k and
the best possible rank equals 1. For example, if the best score came from k = 42 (and thus guess; = 42), then

rankyy = 1. By convention, rank equal to 1 indicates the best key candidate.

This process of scoring and ranking is typically repeated for all bytes of the key; that is, in our AES-128 example, it will
be performed 16 times (partitioning the full key to 16 key byte-sized parts). Algorithm 1 describes this attack process.

Using the score and rank of a key candidate can clarify the phrase “We recover the secret key with X traces.” Figures’ 2a
and 2b y-axes display respectively the score and rank metrics after performing the common correlation power analysis
attack (CPA) [11] on a single key byte of the AES-128 cipher. The x-axis displays the number of traces used in the current
side-channel attack. What we typically look for in such graphs is a key candidate that stands out compared to the rest.
That is, we search for a candidate that achieves the highest score (or the lowest rank, namely rank 1) and maintains this
top score (or rank 1) as we keep increasing the number of traces. Such convergent behavior typically implies that our
attack has managed to distinguish a key candidate from the rest, thus it concluded successfully. In Figures 2a and 2b,
the key candidate K = 203 is reaching the highest score and rank 1 after an attack that uses approximately 15,000 traces.
Increasing the number of attack traces (up to 50,000) does not alter the situation, i.e., we observe convergent behavior.
With the aid of these graphs we can state that “We recover a byte of the secret key with 15,000 traces” and thus we attach
a concrete meaning to our security statement.

Keep in mind that the best key candidate K = 203 according to Figures 2a, 2b is still a guess. In our current
situation, the attacker cannot be certain about the correctness of the guess, unless she performs a full key recovery (as
demonstrated in Algorithm 1) that recovers all 16 key bytes that constitute the full key. Using the full key, the attacker
should be able to verify whether her guesses can correctly decrypt the ciphertext and thus, reach certainty. Still, it is a
very common practice in the literature to attack a single key partition (typically a byte) and subsequently extrapolate
the security of the remaining partitions. Such an extrapolation is motivated by time and computational limitations
as well as by the strong leakage similarities between intermediate cipher values which are typically processed and
protected in similar ways. E.g., in the case of an unprotected AES-128, we have no strong indications that another Sbox
Manuscript submitted to ACM
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(a) Scores of 256 key candidates. The candidate K = 203 (blue  (b) Ranks of 256 key candidates. The candidate K = 203 (blue
line) reaches the maximum score around 15,000 traces. line) reaches rank 1 around 15,000 traces.

Fig. 2. Scores and ranks of all key candidates for the unprotected Sbox, under correlation power analysis.

of the implementation is more (or less) resilient to side-channel analysis. Thus, we could limit the scope of our analysis
to a single key byte recovery and avoid the repetitive full key recovery. Note that the time to compute the score or rank
metrics may vary depending on the attack, i.e., CPA-based scores are typically quick to estimate but a sophisticated

distinguisher based on a large neural network architecture can imply a considerable time overhead.

4.2 Limitations

Score and rank require attack repetitions to ensure statistical stability. Despite their widespread usage, the score
and rank metrics do not come without pitfalls and there exist cases where they do not convey the full security picture.
The first issue encountered is the statistical stability of the metrics. Any score or rank graph is typically produced using
a side-channel traceset under a fixed cipher key. It is not unlikely that other key values are more (or less) easy to recover.
Thus, a good experimental practice is to repeat the side-channel measurements using different keys and/or datasets
and subsequently repeat the attack, computing the average rank/score together with its standard deviation [29]. This

statistical stability guideline is recommended in other side-channel metrics as well.

Score and rank require key enumeration when the key is unknown. The second issue with the score and rank
metrics becomes apparent when the performed side-channel attack is suboptimal. Assume the following case: Our attack
does not exploit the traces in the best way possible or perhaps it just does not have enough traces to do so. Therefore,
the attack may fail to place the correct key at rank 1. Still, if the correct key is placed at a fairly low rank (say rank 2 or
3), one could conclude that the implementation is vulnerable, since a brute-force attack is feasible. The underlying issue
is that in such closed evaluations the full device key is unknown. The only way to find the key is to launch an attack,
acquire the rank 1 key candidates of all 16 key bytes, use them to construct the full key and finally verify the correctness
of the full key using, e.g., cipher decryption’. If this fails, one may repeat the full key verification process after including
key candidates that ranked 2, 3, etc., as long as they can manage the computational cost of trying many different
combinations of key candidates. By construction, the rank and score metrics are focused on a key partition (e.g., a single
key byte), therefore they cannot be linked directly to the security of the full cipher key. For example, even after acquiring
the ranks of all key candidates for all AES-128 key bytes [[rankgyteo, . ranks%teo], o [rankgytels, s%te”]],
it is not straightforward to derive the rank of the full 16-byte key. Finding the security of the full key when the key is

...,rank

9The topic of key verification is not heavily detailed in the literature. Most works assume that the attacker can use mechanisms like cipher decryption, a
cryptographic protocol or a communication layer that, once executed with the correct full key, can easily confirm whether the full key is correct indeed.
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unknown requires a process of trial and error that is known as key enumeration [90] and is often time-consuming, as
discussed in Section 8.

To reduce the workload of side-channel evaluations and to avoid the lengthy key enumeration, analysts try to avoid
(if possible) the unknown key scenario. What they do instead is to perform a more open evaluation where they know
the full cipher key beforehand. After performing any side-channel attack on a key byte, they can find the distance
between the key candidate that achieved rank 1 and the correct key candidate. This evaluation is often referred to as
known-key analysis. Although it appears as slightly counter-intuitive, it helps us find a better answer to the question
“Can we recover the secret key?”. Instead of replying with simple “yes/no” we are also able to show how far we are from
key recovery, enabling a more precise risk assessment. As expected, the concept of known-key analysis necessitates new

side-channel metrics, such as the success rate and the guessing entropy that we examine in the next section (Section 5).

5 SUCCESS RATE & GUESSING ENTROPY

As discussed, in a known-key analysis, the evaluator has a priori access to the key she is trying to recover. At first
it appears paradoxical for the evaluator to demand the key of a device that she is tasked to break, since an attacker
would not (and should not) have access to it anyway. The notions of evaluator and attacker are largely synonymous,
yet here we observe the first divergence between them. The goal of the attacker is to recover the key, while the goal of
the evaluator is to assess how hard it is to find the key, even if she is not able to do so. This divergence motivates the
known-key analysis and its respective metrics, namely the known-key score, the known-key rank, the success rate (SR)
and the guessing entropy (GE). Similar considerations will resurface in Sections 6 and 7, where we consider cases in
which the available leakage is not enough to perform key recovery, prompting new metrics that highlight again the

difference between attacker and evaluator.

5.1 Description

The known-key versions of the score and rank metrics are often used when the analyst wants to show the security of a
cryptographic implementation. Figures 3a and 3b, highlight the score and rank of the correct key, after performing CPA
on the protected masked Sbox 110. The figures/pdf show that the correct key is unable to achieve a maximum score (or
equivalently rank 1) consistently, even with 50,000 attack traces. Since convergence is not achieved, we can conclude

that this protected Sbox implementation remains secure against the particular CPA attack with 50,000 traces.

(a) Score of the correct key (green line). We observe that it does  (b) Rank of the correct key (green line). We observe that it is
not achieve the maximum score. unable to converge to rank 1.

Fig. 3. Score and rank of the correct key for the masked Sbox 1, under correlation power analysis.

OHijghlighting the correct key is possible because we now perform a known-key analysis.
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Fig. 4. Success rate (SR) of the correlation power analysis for 16 parallel unprotected Sboxes.

Like the known-key score and rank, the SR metric requires the correct key to be known and is computed in the
following way. Assume a side-channel attack trying to recover a key byte of AES-128. Recall that that the output of
a standard side-channel attack (Algorithm 1) is a guess vector [guessi, guess, . . ., guess|y|] and let us assume that
the correct key is equal to k.. In its simplest form (Equation 5.1) the success rate of the side channel experiment no. i
(i.e., SRY) is equal to 1 if the best guess is equal to the correct key, that is if guess; = k.. Otherwise, the success rate is
equal to 0. One can easily derive an equivalent expression for SR! using the rank of the correct key (that is ranky,) as
seen in Equation 12. To ensure statistical stability, it is common practice to repeat the SR' computation using multiple
experiments and various keys. The final success rate metric (SR) is estimated with Equation 13, where p denotes the

total number of experiments that are averaged.

. 1, if k. = guess ) 1, if rank;, =1 1L .
SR = e T gues SR = ke (12) SR=— "SR! (13)
0, otherwise 0, otherwise P

Figure 4 shows the success rate of a CPA attack on the unprotected AES implementation that uses 16 parallel Sboxes.
The metric is computed by attacking all its 16 unprotected AES Sboxes under fixed key and averaging the respective
SRis. We observe that increasing the number of attack traces, improves the success rate gradually, reaching SR ~ 0.8
with 100,000 traces. Getting closer to SR = 1 implies a high probability of correct key recovery .

Strictly speaking, key recovery implies that the side-channel adversary is able to recover the exact key, i.e., SR =1
and the correct key k. converges to rank 1 after increasing the number of traces used in the attack. However, we want
the SR metric to reflect also the cases where the correct key is ranked fairly high, yet less than rank 1. Figure 4 for
instance shows that SR (with 100,000 traces) across multiple Sbox instances equals to 1 only 80% of the time. Thus, the
correct key is ranked first often, but not always. To solve this issue, the SR metric was extended with the notion of
order. Given a guess vector [guessy, guessy, . . ., guess|g|], we can define the SR of order o in the experiment no. i in the
following manner.

1, if k¢ € [guessy, guessa, . . ., guessy|

p
i |1, if ranky, < 1 i
SR, = SR = rant. =0 (14) SRo =5 > SR} (15)
i=1

0, otherwise 0, otherwise

In other words, if the correct key is found within the top o key guesses, then SR, considers the attack successful. If we
set the order o to 1, then the attack is successful only if the correct key comes first, i.e., we revert to our first definition of
SR (Equation 12). Note that, as in the score/rank metrics, the computational effort for SR depends on the attack method.

Manuscript submitted to ACM



Kostas Papagiannopoulos, Ognjen Glamocanin, Melissa Azouaoui, Dorian Ros, Francesco Regazzoni, and Mirjana
14 Stojilovié¢

Fig. 5. The guessing entropy of the 8-bit secret key, after correlation power analysis on an unprotected Shox (blue line) and two
protected AES Sbox implementations: masked Sbox 1(green) and masked Sbox 2 (orange).

There exists an interesting link between an evaluator with SR of order o and an actual attacker. If the evaluator
(using a known key) finds that the success rate of order o is equal to 1, then the attacker (with unknown key) has a
maximum of o key candidates to verify (i.e., enumerate), after applying the same side-channel attack. That is, if an
evaluator attacks a single byte of AES and achieves SR5 = 1, then the attacker must try at most 5 candidates in order
to find the correct key byte. However, such a key enumeration process must be repeated for all divide-and-conquer
partitions of the full key and all possible key combinations must be verified until the correct combination is found. For
example, if the evaluator achieves SR5 = 1 for all 16 key bytes of AES-128, then an attacker that uses the same attack
has to verify at most 5'° full keys to succeed. Searching among that many key candidates is an inherently heuristic task
that becomes computationally hard as the order o increases. Although efficient key enumeration strategies exist, we
stress that selecting an appropriate value for the order o reflects the attacker’s computational ability to enumerate keys
and it can be particularly challenging to decide in advance.

To steer clear from the heuristic process of enumeration, evaluators bypass the order of SR by using the more flexible
metric of guessing entropy (GE) [46, 58]. In particular, given a rank vector [ranko, ranky, ..., rank|q_1] and the correct
key ke, the evaluator can always find the rank of k. (ranky_) and plot it against the number of traces used in the attack,
as in Figure 3b. Most evaluations focus only on the rank of the correct key and ignore the rank of other (incorrect) key
candidates, therefore the term rank plot typically signifies the known-key rank plot and thus, a known-key analysis. In
addition, evaluators repeat the rank computation using multiple experiments with various keys and ensure statistical
stability by computing the average rank. The guessing entropy metric can be directly derived from the rank and average
rank of the correct key (ranky, ). For a certain experiment i, GE' is equal to log, (ranky,) and it is typically expressed in
bits (Equation 16).

p
. 1 -
GE' = log, (ranky,) (16) CE=~ > GE (17)
i=1

In the case of the GE metric (Equation 17), p is the number of different experiments and GE' the rank of the correct key
during experiment i. It is recommended to change the correct key k. between experiments.

The ranky, and GE metrics indicate the average remaining workload needed after the side-channel attack. Figure 5
depicts the GE against the number of traces, when attacking three different AES Sboxes. In the case of the unprotected
Sbox, GE reaches 0 bits after 15,000 traces, indicating that the side-channel attack has removed all uncertainty about the
secret key. On the contrary, the GE of the masked Sboxes does not reduce substantially below 8-bits (even after 50,000
traces) and indicates resistance against the attack.
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5.2 Limitations

SR and GE require rank estimation to assess the security of the full key. The first pitfall of the SR and GE metrics
is evident should you ask what is their relation to the security of the full cipher key. In other words, given the guessing
entropy of all AES-128 key bytes [GEPY!e GEbYteo . GEDY!ess] after an attack, is it possible to compute the GE of
the full key? Unfortunately, like the rank and score metrics introduced in Section 4, SR and GE do not directly convey
the effort of a full key recovery. Reaching conclusions for the full key requires the process of key rank estimation,
which can be considered as the known-key equivalent of key enumeration. In the same way that we use the known-key
analysis to move from rank and score metrics to SR and GE metrics, we can use our knowledge of the full cipher key in
order to perform the relatively fast process of rank estimation instead of the slow key enumeration. Additional details

are provided in Section 8.

SR and GE cannot be used directly in security projections. The second pitfall of SR and GE is more subtle
compared to other metrics. Consider the following scenario. First the evaluator performs a side-channel attack on
AES-128 trying to recover the value of a single key byte. If the attack is partially successful she will observe an increase
in SR (and decrease of GE), leading to a statement in the lines of: “Deploying attack A, using X traces, we achieve Z %
success rate in recovering the secret key”. However, if the SR percentage is close to that of a random key guess (i.e., 1/256),
the evaluator can solely conclude that “Deploying attack A, using X side-channel traces, we were unable to recover the
secret key”. In other words, she cannot estimate if one would be able to recover the key using a larger amount of traces.
Note, however, that cryptanalysis favors the idea of projected security bounds, i.e., even if one is not close to breaking
a cipher, one should still be able to project approximately the remaining effort. Although GE is an expression of the
remaining effort, like SR, it is derived from a specific number of measured traces. For both metrics, the underlying issue
is that they are always linked to the number of attack traces at hand and they cannot be directly used for security
projections. The necessity for such security bounds led to the development of new metrics and to stronger theoretical

ties between the attack scores and the number of traces. Such links are examined in Sections 6 and 7.

6 CORRELATION AS A METRIC

A desirable property of security metrics is flexibility. That is, a good side-channel metric should be able to encompass
various side-channel attacks, without involving their particular distinguishers and methods. It is easy to see that rank,
score, success rate and guessing entropy fulfill this criterion, since they are agnostic to the underlying attack process!!.
However, Section 5.2 laid out a strong limitation on these metrics: In the case of a failed attack, they cannot convey any
information other than their inability to recover the key. Thus, they cannot assist us to project the security level and
estimate how many traces would the adversary need (theoretically) to break the device.

To fill in this gap, researchers have investigated the links between attack techniques and side-channel metrics, trying
to derive theoretical security bounds [55]. This work has already made use of CPA (Section 4), one of the most popular
side-channel attacks that relies on the computationally efficient correlation statistic to extract the correct key candidate.
Expanding, this section will demonstrate useful theoretical links between the correlation statistic and attack metrics such
as the success rate and the number of traces needed to recover the key. The advantage of using the correlation statistic
directly (instead of performing a full CPA attack) is that this statistic can be estimated, irrespective of the success or

failure of the CPA attack. Thus, it can be used to provide a security projection, even when the attack is unsuccessful.

Note that agnostic here does not mean independent. The metrics are still directly linked to the attack, yet exchanging one attack for another can still
produce such metrics.
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6.1 Description

Correlation and number of traces. The work of Mangard [55] focuses on predicting the number of traces for the
success of CPA attacks using the Pearson’s correlation coefficient p. During a CPA attack, the evaluator estimates
the correlation between two datasets. The first dataset is the observed device leakage Iy, o, .. ., I for n traces that
relate to the leakage of an intermediate value V. The second dataset is the modeled leakage g(v;) of n instances of the
intermediate value V, using the leakage function g(-) and the correct key candidate k.. The intermediate value under
attack is typically a function of a known input x € X and the key candidate, i.e., v; = f(x;, k). We denote the correlation

under the correct key candidate as py.

)y (zi - %Zli) (g(f(xi,kc» - %;g(f(xi, kc»)

i=1
Pk, = ! (18)

n n 2 n n 2
> (zi - %Zh) )y (g(f(xi, ke)) - %;g(f(xi, kc»)

i=1

Any CPA attack will succeed in recovering the key if the absolute value!? of Pk, is higher than the correlation of
other candidates. A simplifying assumption used in [55] is that the number of traces that is needed to recover the
secret key is mainly determined by the distance between the estimated py_ for the correct key and p = 0, since the
correlation of incorrect key candidates should be negligible and thus very close to zero. Assuming that n traces were
used to estimate py_, we can phrase this as a statistical test for the ability to distinguish the correct key among all
key candidates using a set of n’ traces and reach the shortcut formula in Equation 19. The quantity n’ is the projected

number of traces that an attacker would need to extract the key using CPA3.

2

1 1+ pp, 1
n =348 — % where Z ~ N |p==1n Phe , of= (19)
2 1= pk, n-3

> a is set (via consensus) between 10~! and 10™%. Note

The quantity z, is the @% quantile'* and the type I error!
also that the correlation of the correct key (py,) is the only score that must be estimated, thus the evaluator avoids the

lengthy process of computing the scores of all key candidates.

Correlation and Success Rate. Similarly to [55], the work of Rivain [75] focuses on predicting the success rate SR of
a CPA attack using the absolute correlation scores p of all key candidates. Like before, assuming uniformly distributed
inputs to the cipher, an intermediate value v = f(x, k), leakage model g(-) and inputs x € X, the evaluator can acquire
experimentally a set £ with n traces Iy, Iy, . .., I,. Carrying on with a normal attack, the evaluator can use this dataset

to estimate a custom correlation coefficient g for all key candidates k € K.

= D oGk (20)
i=1

12positive or negative correlation are equally useful for a side-channel attack, thus this section considers only the absolute value of the statistic.

13We use the notation n’ instead of number of traces to indicate that the two metrics are not equivalent, since the first is projected and the second is not.
Bpr(Z <zq)=a

15The probability of rejecting a null hypothesis when the null hypothesis is true.
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The key k that maximizes the coefficient jj. is then chosen by CPA as the best candidate. The work in [75] shows that the
vector p = [po, p1. - - -, B(|%|-1)] follows a multivariate normal distribution with mean vector Bp= (o, pi1s - -+ (i3 -1) ]

and covariance matrix 35 = (2ij)o<; j<|%]|-1> defined in Equations 21 and 22.

ik = ﬁ D 9ok o whereo = f(x k) and fip = ﬁ 2! @
xeX el
1 1
%ij = WZ( 9Uf(x.1) 9(f(x.)) & whereo = f(x.ke) and &)= Ty lg =) (22

Note that the quantities /i, and 62 are both estimated using the n experimentally acquired traces £, and L, is the
subset of these traces that are observed when V = v. Observe also that Equation 22 includes the quantity n’, i.e., the
projected number of traces that could be used by an adversary to recover the key. After setting n’ to a specific theorized
value that reflects the strength of the adversary, we can link p to the (projected) SR metric. To do so, we take multiple
random samples from the distribution NV (u o 2 5)- Every sampled vector can be subsequently sorted from highest to
lowest value and then the projected rank of the correct key (ranky_) can be derived, as described in Algorithm 1. Using

ranky, and Equation 12 or 14, we can approximate the projected SR or SR, of a CPA attack that utilizes n” traces.

6.2 Limitations

Shortcut formulas rely on assumptions that may not hold for a device. Naturally, the described bounds are not
always accurate due to assumption errors. That is, the underlying simplifications may not always hold on a real device
due to various electrical/electronic effects. In addition, the statistical estimation of the correlation coefficient (or any
statistic used as a score) is always imperfect, with these errors reducing the reliability of the shortcut formulas. Note that
several approaches for shortcut formulas have been proposed in the literature. These include analytical formulas [75],
shortcuts for template attacks [75], extensions that account for the cipher’s structure [30] and for masking [30, 51]. A
collection of similar links and shortcuts formulas can be found in [22]. Finally, note that these bounds only describe the
projected number of traces needed to distinguish the correct key with a high probability and are meant to be used either

before an experiment or when the experimental traces are not able to guarantee key recovery.

7 INFORMATION-THEORETIC METRICS

Before defining the information-theoretic metrics for side-channel analysis, it is worth mentioning the two main
reasons behind their development and adoption. The first was the evolution of side-channel analysis, which managed
to produce strong multivariate attacks like templates [14, 17] and linear regression analysis [24, 78], often assisted
by dimensionality reduction techniques like PCA, LDA and SSA [1, 71]. Such attacks were often able to outperform
the univariate CPA attack and can recover the secret key using a substantially smaller number of traces. Naturally,
before reaching a conclusion about side-channel security, evaluators want to apply the strongest attack in their arsenal.
Extending metrics such as correlation and the SNR to a multivariate setting is not always straightforward; therefore, it
necessitated new metrics that can capture multivariate attacks and provide a fair picture of the adversarial capabilities.

The second (and probably more ambitious) goal behind information-theoretic metrics was the desire to distinguish
between A) an implementation that leaks side-channel information and B) the adversary that exploits such information.
So far in this text we have deliberately avoided distinguishing between these two components, typically putting them
both under the umbrella term side-channel attack. Very often though, the evaluator is interested in comparing between
cryptographic implementations and countermeasures (A), irrespective of the adversary’s strength (B), a task that cannot
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be easily carried out by existing metrics. In other words, information-theoretic metrics were developed so as to answer
the question “How secure is a certain implementation against side-channel attacks?” Such formulation helps us to shift
away from metrics like SR and GE that are linked to the specific attack at hand and to the processing/storage/enumeration
capabilities of the adversary. Instead, the new metrics will assist us to draw generic conclusions about the implementation
that can be applied in various adversarial cases. Such a separation between implementation and adversary can be
viewed as yet another divergence between the attacker (whose main concern is full key recovery in a certain device)
and the evaluator, who must often consider the security of various devices and countermeasures so as to propose a

generic security solution.

7.1 Description: Mutual Information - Part 1

The introduction of information-theoretic metrics in the context of side-channel analysis came with the adoption of
the Mutual Information (MI) metric [84]. As discussed, we would like the new information-theoretic metric to capture
multivariate leakages, i.e., attacks which utilize multiple time samples. Thus, we switch from the leakage variable L to
the leakage vector L and its instances 1 that typically take values in R™, where m is the number of time samples used in
the side-channel analysis. We now proceed with the definition of the mutual information metric, which quantifies how
much information (in bits) we can learn about the secret key K by observing the multivariate side-channel leakage L.

Using the definitions of mutual information and conditional entropy [20, 47]:

MI(L;K) = H(K) — H(K|L) = E(-log, Pr(K)) — E(—log, Pr(K|L)) (23)
=(- Z Pr(k)log, Pr(k)) -l- Z Pr(k,1) log, Pr(k[l) (24)
keK keKle L
Applying the Bayes Rule Pr(k,1) = Pr(1}k)Pr(k) and converting the sum to an m—dimensional integral'® we get:
MI(L;K) = — Z Pr(k) log, Pr(k) + Z Pr(k) / Pr(1k) log, Pr(k|l)dl (25)

keK keK leR™

Observing Equation 25, we see that the evaluator needs to compute several quantities. The entropy and conditional
entropy H(K), H(K|L) require the knowledge of Pr(k), for all k € K. For example, in the case of a single-byte key
attack, it holds that K = {0, 1,..., 255} and if key is uniformly random, then Pr(k) = 1/256, for all k € K. In general,
in the very common case of uniformly random key, it holds that H(K) = log, |X| and Pr(k) = 1/|K]|. Note that
sometimes the evaluator is interested in recovering the Hamming weight of the secret key, say secret variable W, where
W = HammingWeight(K). In this case, she needs to adjust the probability as Pr(w) = (k’gz‘y(l)/l‘l(l. For instance, the
probability that the Hamming weight of a single byte is w is equal to Pr(w) = ( fv) /256. Returning to Equation 25, the
evaluator must also compute the quantities related to the conditional entropy H(K|L). This requires the knowledge
of Pr(llk) and Pr(k|l). The quantity Pr(1|k) shows how likely the leakage vector 1 is when the key is k. The quantity
Pr(k|l) can be expressed as a function of Pr(l|k) using the Bayes rule and the marginal probability definition as follows:

Pr(k,1) _ Pr(llk)Pr(k) _ Pr(llk)Pr(k) _ Pr(l|k)Pr(k)

Prkih = pr()) ~ Pr(l Y Pr(LkY) T Y Pr(ljk*)Pr(k*) (26)
k*eK k*eK

16Typically we define the leakage space £ as continuous, therefore we use integration. In cases of simulated leakage or oscilloscope-quantized leakage
values, the leakage 1 may take discrete values over a finite set L. In such cases we keep the summation and Equation 23 becomes: MI(L;K) =
— X Pr(k)log, Pr(k)+ Y Pr(k) X Pr(llk)log, Pr(k|l).

kekK kekK leL
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If the key K is uniformly random, then Pr(k) = Pr(k*) = 1/|K|. Thus Equation 26 can be simplified to Pr(k|l) =

% and the MI formula can be restated as

k*ex

1k
MILiK) =loge KT+ ), % / Prillktlog; zprz(ﬁj(ﬂk‘*)

kex leR™ k*eK
In Equation 27, the only remaining quantity for the evaluator to compute is Pr(1|k), that is the likelihood of a

dl (27)

side-channel leakage, given a certain key. Such computation is directly linked to the concepts of leakage profiling,

leakage modeling and parameter estimation that we introduce briefly in the following Section (7.2).

7.2 Profiled Side-Channel Attacks

Many side-channel attacks are referred to as profiled attacks because of their different modus operandi, compared to
standard attacks described in Section 4. Like the attacks introduced in Algorithm 1, they use a divide-and-conquer
strategy to partition the full cipher key in parts that are easy to guess. However, instead of attempting to recover the
key directly, they choose to profile the leakage of the device first, trying to learn as much information as possible before
launching the actual attack. Such a preparation phase requires an open profiling device that is identical to the DUT.
Both terms (open, identical) carry a specific meaning that needs specific highlighting in the context of such attacks.

The term open implies that the evaluator has full control over the device and can set the secret key at will. Note that
an open-device analysis is slightly different to the known-key analysis: The evaluator can set any key on the profiling
device but not necessarily on the device she plans to attack. In fact, the open device is only needed to learn the leakage
behavior of different keys and such behavior will be subsequently used in recovering the secret key on the DUT,
regardless of whether the key there is known or not. Contrarily, the known-key analysis has knowledge of the key
on the DUT because the evaluator needs to assess how far she is from key recovery, typically using SR or GE metrics.
Still, a very common profiled attack configuration is to use the same open device for profiling and attacking, i.e., the
open-device analysis inherently implies a known-key analysis. We shall refer to this scenario as same-device analysis.

Regarding the term identical, it typically suggests that the two devices (open profiling device, closed device-under-
attack) are technologically identical, i.e., they possess the same design/processor/peripherals and probably similar
side-channel behavior. Identical also implies that the two devices have the same cryptographic implementation (in
software or hardware), that is, they compute the same cipher in the exact same manner. Such open hardware/software
implementations encourage security over obscurity; therefore, the identical device scenario is supported by certification
standards like Common Criteria [40]. Still, when considering the degree of similarity between two separate physical
entities (like the profiling and the attack device), it is plausible to question the limits of such an assumption. The natural
variance of chip manufacturing processes, age differences between the profiling and the attack device and many other
factors can insert cracks in the identical device assumption [74]. This problem is studied by the field of knowledge
transferability and has led to techniques that alleviate it [15, 86]; yet, side-channel evaluations still face confusion when
it comes to assessing the effectiveness of attacks that require two separate devices. An easy way to tackle this issue
is to keep in mind that cryptanalysis tends to favor strict security bounds. That is, an evaluation should consider the
worst possible scenario and assume an adversary capable of perfect transferability, which essentially is a same-device
analysis that builds and tests profiles on a single device. This worst-case approach is often used to speed up evaluations
since it uses a single device and avoids multiple measurement campaigns and setups. Interestingly, there exist cases
where such a same-device analysis is possible, even when an open device is not available [77].

Having discussed the intricacies of open and identical devices, we proceed with profiled attacks in Algorithm 2:
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(1) The first step (after divide-and-conquer partitioning of the full key) is the leakage profiling. In this step, the
evaluator makes use of the profiling device, sets the key K to a specific value and then measures a large number

of side-channel traces corresponding to that value. We denote the leakage when profiling key k as L‘sz and we
denote the measured profiling traces as the set .Esz , for all k € K. In addition, we describe this profiling phase

as Limf — L‘me , to indicate that the traces can be acquired by measuring when the cipher encrypts using

prof prof prof
o L3 ""’Ll?(l—l
it is experimentally hard or very slow to re-key the cipher, therefore the evaluator may keep a fixed key and

key k. The process results in the following sets of traces: [ £ ]. Note that sometimes
profile a key-dependent value instead!”. Since the evaluator possesses an open profiling device, the amount of
traces at this step can be arbitrarily large. We note that certification schemes (and the metrics of Sections 2, 4, 5)
typically consider the number of traces needed for attacking and not necessarily for profiling, which leads to
some confusion on whether the profiling traces must be included or excluded in a certification’s guidelines. This
confusion originates from the early side-channel attacks like DPA and CPA, both unproﬁled18 attacks, therefore
such a distinction between number of traces used for profiling and number of traces used for attacking was not a
concern.

(2) After measuring traces for every key k € K, the second (and probably most crucial step) of a profiled attack
is the leakage modeling. In this step the evaluator starts by assuming a leakage model that she believes to be a
simplification or an approximation of the measured traces. There exists a plethora of options regarding leakage
models: Statistical modeling options include parametric distributions [14], linear models [78], machine learning
provides models based on support vector machines [38, 48] and more recently deep learning has used multi-layer
perceptrons and various neural networks to the same end [6, 57, 68]. Evaluators have used multiple models
with varying degrees of success, reminding us of the anecdotal statement in statistics that “All models are wrong,
but some are useful”, and prompting us to closely examine the relationship between metrics and models. In
all cases, after performing an appropriate model assumption, the evaluator will use the the measured traces
Liruf to train models for every key candidate k, a process that parametric statistical modeling commonly
refers to as parameter estimation. We denote this process as modely « _L‘zrof and it results in the model list
[modely, modely, . . ., model|(K|,1].

(3) The third (and final) step in a profiled attack is the leakage exploitation, where the evaluator proceeds with the
actual attack. During this step the evaluator first measures traces from the attack device, which uses the correct
key k. that she is trying to recover. We will refer to these observable as L]t;iSt and to the test traces as Lii”.
We use the expression thciSt — Li‘z” to show that the test traces can be acquired by measuring traces when
the cipher uses the correct key candidate k.. These test traces are compared to the leakage models of all keys
[modely, modely, . .., model|4c|_1], then a score is computed (score) for every model and finally the models are

ranked from best to worst, based on how well they fit the test traces.

71n the case of AES-128, it is common to observe the leakage LP" °f of the Sbox output, since learning the Sbox output is equivalent to learning the key,
when the plaintext is also known. This shortcut is ignoring the direct key leakage (since the key is always the same), yet it becomes useful if re-keying
AES is impossible (e.g., due to a hard-wired key) or if re-keying creates measurement bottlenecks (e.g., due to slow PUF processes).

18Sjde-channel attacks described in Algorithm 1 do not use an open device to learn the leakage behavior and they analyze directly the device-under-attack.
Thus they are often called unprofiled, yet this term appeared after the spread of profiled attacks.
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Algorithm 2: The workflow of a profiled side-channel attack.

Input: Model score function g(-)
Input: Key candidates K, with set size |K]|
Data: Profiling side-channel traces [Lg rof , .Cf rof L L rof ]

[K|-1
Data: Test side-channel traces .E’me

Output: scoreg, guessy, ranky., forall k € K
> Partition the full cipher key and attack all partitions
partitions = divide-and-conquer(full key)
for all partitions do
> Step 1: leakage profiling
for allk € K do

L L‘me - Lirof
> Step 2: leakage modeling
for allk € K do

L modely. «— _[jimf
> Step 3: leakage exploitation
le;ist — L;:;St
for allk € K do

L scorey = g(modelk,L]tc‘ZSt)

> Sort the scores and compute the key guesses

[score;, scorej, ..., scoreny] = sort([scoreg, scorey, ..., score|g¢|-1)
[guessl,guessz,,..,guess‘qq] =[ij,....,m]
> Compute the rank of every key candidate using the key guesses
for all guess;, i =1,2,...,|K]| do

L rankgyess; = i

7.3 Description: Mutual Information - Part 2

Having described the workflow of profiled attacks, we return to our original goal, which is to compute the MI metric
and in particular the quantity Pr(l|k) in Equation 27. The MI metric requires that Step 1 (leakage profiling) and Step 2

(leakage modeling) of Algorithm 2 have already been carried out. For instance, assuming a profiled attack on a key byte

prof
255

assume that a fitting model is a univariate (single-sample) normal distribution. For normal distributions, the step of

of AES-128, the evaluator can use an open device to measure traces [LgJ rof R Lf rof oL ]. Subsequently, she can
leakage modeling is equivalent to estimating appropriate values for the parameters y and o and producing the model
list [N (po, 00), N (1, 01)s - - .» N (1255, 0255)]. That is, Pr(l|k) ~ N (p, o). The statistical parameters y, o are typically
estimated using the sample mean and variance (as in Section 3, Equations 6, 7), yet we note that different models may
imply vastly different estimation/training procedures!”. We now return to Equation 27 and show how to compute the
MI metric when the leakage is modeled with univariate normal distributions, a model assumption that is commonly

referred to as univariate template [14].

19Neural networks estimate the weights of connected nodes, support vector machines estimate hyperplanes etc.
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(a) Mutual Information. (b) Perceived information.

Fig. 6. Mutual and perceived information vs. noise o for the unprotected Sbox (blue line), 2-share masking projection (gray line) and
3-share masking projection (red line).

1 - (ﬂ)z / Pr(llk)

e %/, MI(L;K) =1o 7(+ Pr(l|k] L
N (LK) = log, IX] |7<| LKl log; 3 Pl
k*e

Like the correlation metric in Section 6, the MI metric can be used directly for deriving security bounds, i.e., even if

[T

Pr(ik) = — " a1 (28

we are not able to achieve key recovery, we can still project the security level. Equation 29 links MI to the number of
traces required for key recovery [25] and Equation 30 does the same when the masking countermeasure [13] is present
in the device. The masking countermeasure splits the key-dependent values of the cipher into d shares, forcing the
attacker to recombine them. E.g., the value Y will be split to Y1, Ya, ... Y, shares, leaking Ly, Ly, ..., Ly, respectively.
Increasing the number d of shares results in noise amplification?’. Equations 29, 30 offer an adequate approximation
when the noise is high and assume that all intermediate values (or shares) leak the same amount of information. Such
shortcut formulas can speed up an analysis, yet the evaluator must keep in mind that they provide bounds that may
overestimate the attacker’s capabilities. Still, we emphasize that MI can capture directly multivariate attacks, so unlike
correlation-based shortcuts, these bounds can provide a more fair picture.

_HE (29) number of traces > _H®)
MI(L; K) MI(L;; Y;)4

Figure 6a shows the effect of noise and masking on the MI metric. We evaluate the MI metric using the simulated

(30)

number of traces >

traces of the unprotected AES Sbox. Low noise levels result in MI close to six bits, showing low security. Increasing
the noise results in lower MI, showing that the device is more secure. Note that MI conveys the security of the device
directly, i.e,. it does not rely on a specific adversary that produces scores and ranks. Hence, it can evaluate the security
level, regardless of the adversary. The effect of masking on the device security (computed using Equation 30) is also

visible in Figure 6a. As the number of shares increases, the slope of MI curve changes, showing the noise amplification.

7.4 Hypothetical Information

It is worth noting that the MI metric is inherently flexible regarding the leakage model, that is it offers a framework
that can work with various types of leakage functions. Depending on our analysis’ goals, it may not be necessary to
estimate the model; from experimental profiling traces Lirof . For example, if our goal is to evaluate the behavior
and effectiveness of different theorized leakage models (independently of the adversary), then the evaluator can skip
the leakage profiling (Step 1 of Algorithm 2). Subsequently, she can replace the leakage model in Step 2 with her

20For more details w.r.t. masking see also [39, 62] (early masking techniques), [42, 76] (recent masking techniques) and [3, 66] (practical issues in masking).
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theoretical choice. For instance, if she wants to examine the side-channel security when the leakage is a univariate
normal distribution, she can simply replace the parameter estimation process (mean and standard deviation estimators
of a traceset) with chosen parameters y and o. If the model assumption is any probability distribution (like N (g, o)
in this case), then we refer to parameters y, o as the true parameters in order to distinguish them from the estimated
parameters fI, &, which are derived from experimental traces. A version of the MI metric that uses the true parameters is
useful when theorized leakage models are tested against countermeasures in order to identify potential weaknesses and
to perform adversary-independent assessments. Masking schemes constitute a prime example for such cases. Although
masking has been proven secure under certain leakage models [13], they often present vulnerabilities when the model
diverges from the underlying assumption. For example standard, as well as low-entropy masking schemes [3, 4, 35]
have been tested against non-linear or distance-based leakage models, in order to assess their effectiveness.

Since MI can be encountered with either true or estimated model parameters, later works [42] distinguish between
these two versions by using the term MI with true parameters and the term HI (standing for Hypothetical Information)
with estimated parameters2!. The following equation defines HI, using the quantity Pr(1|k) that denotes a model with

estimated parameters.

Br(ljk)

> Pr(ljk*)
k*eK

HI(L;K) = — Z Pr(k) log, Pr(k) + Z Pr(k) / Pr(1k] log, (31)

keK keK leR™

7.5 Perceived Information

The goal of MI is to provide a separation between implementation and adversary. When considering leakage mod-
els with true parameters, such separation is largely achieved, i.e., the MI metric can lead to attacker-independent
conclusions and answer directly “How secure is this implementation?” Still, in the estimated parameter version of the
metric, that is HI, such separation can easily come under scrutiny. If the evaluator’s analysis is not limited to theoretical
leakage models, then she immediately faces the task of capturing a large training dataset _[:‘sz and subsequently
choosing an adequate leakage model that reflects the device leakage. In other words, moving from MI to HI rein-
troduces adversary-related aspects such as the ability to capture and store a large number of traces, as well as the
ability to identify and train effective models. Unfortunately, an adversary’s inability to capture many training traces

or a poor modelling choice on her side is not fully reflected in the HI metric. We elaborate on this by examining two cases.

Estimation errors. In the first case, assume an evaluator that has chosen an adequate leakage model model4, i.e., this
model (after training) can describe sufficiently well the actual chip leakage. Then, the evaluator trains two instances of

model?: one instance by using training dataset Limf ! with a large number of traces (we call this instance model?l)

and one instance using a training dataset Lirof ? with a small number of traces (we call this instance modelﬁz). Such a

weak leakage profiling step could occur due to, e.g., an intentional delay mechanism that limits the number of captured

traces in the profiling device or simply due to the limited storage and computational power of the adversary. Because

of the difference between the two profiling steps, it is very likely that the model]‘:n will translate into an increased HI

1?2 and this in turn will result in less traces needed for key recovery using the shortcut Equation

30. In other words, the weak profiling step is reflected in HI. However, if Limf 2 is too small, then the leakage profile

compared to mode

becomes inadequate and it may be impossible to recover the key using the trained modell‘jz. Despite this, the HI metric

nterestingly, the first definition of MI as a side-channel metric used the true statistical parameters [84].
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stays positive (by definition) and the shortcut Equation 30 suggests that key recovery is still possible! The underlying
problem in this first case lies in the estimation errors that occur during leakage modelling [27] and it showcases that

positive HI does not necessarily imply key recovery.

Assumption errors. In the second case, assume an evaluator that has chosen an inadequate leakage model (modelf),
i.e., her model assumption does not reflect the actual device leakage. Experimentally, such an incorrect assumption
may arise in various scenarios. For instance, when leakage profiling is carried out on a different device (i.e., we are not
performing a same-device analysis), we face the problem of profile transferability (Section 7.2) which may severely alter
the model. Likewise, uncommon leakage behavior caused by measurement setup instabilities or waveform nonidealities
such as drift, may not be captured by the adversary’s model assumption (for instance [69] attempts to gradually adjust
a linear model with quadratic terms). In such cases, even when using well-estimated model parameters (typically with a
large training dataset Limf ), the key recovery may be severely hindered if not impossible. Once again though, the HI
will be positive, suggesting the contrary. The underlying problem in this case is the assumption error during leakage

modelling [27] and demonstrates once again that HI can be misleading.

Note that the MI metric (using true parameters and a perfectly matching model) faces neither estimation nor as-
sumption errors. HL, however, is “the amount of information that would be leaked from an implementation of which the
leakages would be exactly predicted” [42]. The pitfall of HI is that it takes into account solely the leakage profiling (Step
1) and leakage modeling (Step 2) of Algorithm 2 and does not consider the test dataset during the leakage exploitation
(Step 3). Rephrasing, HI does not test its estimated model against the actual device leakage. This gap is to be filled with
yet another information-theoretic metric, known as Perceived Information (PI) [74].

The definition of PI requires the notion of cross-entropy Hp 4(K|L). This quantity measures the information of the
variable (K|L), when the variable is modeled using distribution g, while the true distribution of the variable is p. In
our case, the leakage profiling and modeling steps of Algorithm 2 constitute the model distribution g, denoted with
probability Pr,oge (k|1). The true distribution p is denoted with probability Przpye (k|1).

PI(L;K) = H(K) — Htrye,model (KIL) = | = Z Pr(k)log, Pr(k)| —| - Z Prirue(k|1) log, PArmodel(k“) (32)
keK keK]le L
Assuming uniformly random keys and using the Bayes rule, we reach the following equation:

P 1|k
PILK) == ) Prk)log, Prk)+ 3 Pr(k) S Privue(1lk) log, —rmodel IR
kexk kex ez kg_::(KPrmodel(llk )

(33)

Computing the quantity Pr,,,40;(1/k) is identical to the computation of Pr(1]k) in the HI metric and it naturally relates
to the underlying model assumption and training dataset .Cimf . To compute the quantity Prrye(k|l), we distinguish

between the following two cases: simulated leakage and real traces.

PI with simulated leakage. In the theoretical case, the evaluator can replace Pryye (k|1) with any theorized probability
distribution that is of interest to her analysis. Such a PI metric quantifies how well the adversary can model a certain
distribution. That is, it answers the questions “Can a certain training process capture the theorized leakage well enough?”

Unlike MI and HI, PI is not positive by definition and if the model is under-trained it can result in negative values that
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indicate estimation errors (but not assumption errors). This version of PI can also be helpful when comparing different
training models that are all trying to model the same known leakage distribution. It helps us assess how many traces
are needed to profile the distribution adequately. Figure 6b shows the effect of noise and masking on the PI metric.
We evaluate the PI metric using the simulated traces of the unprotected AES Sbox, while adding artificial white noise.
We observe that the computed PI value is positive and close to the MI of Figure 6a, indicating that the model training

captures adequately the simulated leakage.

PI with real traces. In the practical application of PI the true distribution is unknown and the evaluator can only
sample the true leakage distribution via the test dataset £ Itf“ . Computing the PI metric requires a process similar to Step
3 of Algorithm 2 that captures a test dataset for all possible key candidates k (note that typically Step 3 captures only
Ly,). That is, the evaluator must observe L]tce“ and produce test datasets thf“ for all k € K. Every test dataset L]tc“’“

contains a finite number of ny test traces, i.e., .Cltc“t ={l},12,...,1y, }. Sampling the test datasets implies equiprobable

1
"k

leakages, i.e., Pripye(1lk) = and Equation 33 becomes:

mmﬁ—memmm+Zm@21%mrﬂﬂﬂw— (34)

keK keK le[}t{est k k*%q(‘PrmOdel (l|k*)

Analogously to the theoretical case, the practical PI metric can answer the question “Can a certain training process
capture the actual device leakage well enough?” and can detect the presence of both estimation and assumption errors.
Negative PI values indicate such errors (albeit without telling them apart) and show that key recovery is not possible.

We note that the security bounds in Equations 29, 30 can be computed with either MI or HI or PI (if PI is positive).
In addition, the following inequality holds between the metrics [12]:

PI(L;K) < MI(L;K) < HI(L;K) (35)

7.6 Limitations

Computing IT metrics requires probabilistic generative models. A shortcoming of the MI and HI metrics is
their inherent reliance on probabilistic generative leakage models. That is, to compute them, we need a modeling step
(Step 2 of Algorithm 2) that trains a model capable to describe the leakage and generate new instances for it via a
probability distribution. This can limit our modeling options, since it excludes discriminative models such as neural

network techniques.

Computing IT metrics for multiple dimensions is hard. The MI/HI/PI metrics are naturally multivariate and can
capture multiple samples of a leaky intermediate value. However, computing them can become hard as the sample
dimension m increases, due to the numerical issues stemming from integration. This evaluation complexity increases
even further when considering m-dimensional integration for all d shares of a masked implementation [33]. Similar
issues arise when using MI to evaluate the shuffling countermeasure [92]. To resolve this issue, evaluators can opt for

Monte-Carlo integration techniques, dimensionality reduction or approximations [25].

Computing IT metrics for horizontal attacks is hard. Ideally the evaluator would like to include many leaky
intermediate values of the cipher in the IT metric computation. For instance, observing both the Sbox input and the

Sbox output of AES can improve our chances of recovering the key. However, this will, again, increase the integral
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dimension and result in computational problems. To resolve this issue evaluators have developed approximations that

combine the information of multiple intermediates in feasible time [36].

8 KEY ENUMERATION & RANK ESTIMATION

Section 4 and Algorithm 1 demonstrated that side-channel attacks are usually performed in a divide-and-conquer
fashion, where each part of the key is attacked independently from all others. Most metrics described thus far focus on
the security of these key parts and do not generalize directly to the security of the full key. E.g., in the case of AES-128, if
all 16 correct key bytes are ranked first among their candidate set, the full key is trivially recovered. However, when this
is not the case, the adversary has to verify different full keys through trial and error (key enumeration). The evaluator
must also quantify the remaining effort for full key recovery (rank estimation). The goal of enumeration and estimation

processes is to convert the security metrics for the 16 8-bit parts of the key to a security metric for the full key.

8.1 Description

Key enumeration. This process is preceded by an unknown key analysis that results in key scores for all partitions of
the secret key, e.g., 256 X 16 scores for a byte-oriented attack on AES-128. Subsequently, key enumeration will utilize
this information in order to list full keys for the cipher. Thus, the input to enumeration is the scores of all key candidates
for all key partitions. The output of the process is binary: It will either find the correct full key or it will reach an upper
limit of verifications, say nep, and stop. This upper limit reflects the computational power of the adversary, typically her
limit on encryptions. Hence, although the computational effort of testing, e.g., all 2128 AES-128 full keys is unreachable,
a side-channel attack in conjunction with a key enumeration process could recover the full key within a realistic effort
nen. The first key enumeration algorithm was proposed by Veyrat-Charvillon et al. [90]. Other proposals followed
in the works of Bogdanov et al. [10], Longo et al. [53], Poussier et al. [70] and David et al. [21], the last trading the
effectiveness of the key enumeration for memory efficiency. In all cases, if the full key is attacked in p parts (each part
with m key candidates) and the upper limit of the enumeration is n,, then:

party part,

. . t t
security = KeyEnumeration( [[score0 soeesscore, L [scorepar LU scorepa_rlp]]) (36)

0 m

security = logz (n.) bits, if the full key is found in n < n,, verifications

security > logz(ne) bits, if the full key is not found after n,, verifications

Rank estimation. If key enumeration fails to recover the full AES-128 key after ne, verifications, we remain unaware
of the actual security level, because it could range anywhere from ne, to 2128, The actual level can make a significant
difference, since any improvement of the experimental setup, signal processing methods and attacks could quickly
alter the security picture. To overcome this limitation, the process of rank estimation was proposed. This process is
typically preceded by a known key analysis that results in the score/rank/GE of the correct key for all partitions of
the secret key (e.g., 16 scores for a byte-oriented attack on AES-128). Subsequently, rank estimation will utilize this
information to quickly estimate the remaining brute force effort to recover the full key, without necessarily listing
all possible keys. Veyrat-Charvillon et al. defined the first rank estimation algorithm [91]. Following, Ye et al. [97]
suggested a method to find the best enumeration effort distributor across key bytes. Other key ranking methods include
the knapsack-problem-based approach of Martin et al. [56], the histogram-convolution-based algorithm of Glowacz et
al. [31] and the polynomial-multiplication-based algorithm of Bernstein et al. [7]. Notably, rank estimation can also

work in the unknown key setting, since heuristics have been proposed to approximate the rank of an unknown secret
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key without performing key enumeration [2]. In the known key case, if the full key is attacked in p parts each with its

own correct key candidate k’ i=1,...,p, then:

t
security = RankEstzmatlon([score;{:1 tl,...,scorellz:r )} (37)
(4

To highlight the process of the rank estimation we use the histogram-convolution-based algorithm of Glowacz et
al. [31]. Preceding the rank estimation, a side-channel attack has observed the side-channel leakage and obtained a list
of probabilities, for each part and each key candidate. These probabilities can be used to derive the probability of any

full key and can also be phrased as sum of log probabilities.

scorelic =logPr(k%), fori=1,...,pandk=0,....m—1 (38) fullkey = [k, K2,.. ., kP] (39)

4 P
Pr(fullkey) = ]_[ Pr(k’) > logPr(fullkey) = Z log Pr(k’) (40)

i=1 i=1
The goal is to estimate how many full key candidates have a higher log probability than the log probability of the
correct full key [k}, k2,.. ., kf ]. This estimation defines how many full keys must be verified before reaching the correct

one, i.e., the overall enumeration effort. In the algorithm of Glowacz et al.[31]:

(1) For every key parti = 1,..., p, we compute the histogram of the m log probabilities (scores) using a fixed number
of bins ny,. This results in p histograms HY ..., HP with the same np.

(2) The p histograms are convoluted iteratively, producing a histogram H corresponding to the distribution of the
full key log probabilities. This provides a compressed version of the full key distribution that is subject to the

histograms quantization error which depends on ny,.
(3) We compute the log probability for the correct full key [k2, k2, .. kp] ie, Ipc = Z log Pr(kL). Subsequently,

we find in which bin of the histogram H it is positioned (we apply the function bln( ) on Ip, which returns the
bin index of a value in a histogram). Finally, the estimated rank of the correct full key amounts to summing the

number of full keys with log probability higher than Ip..

Algorithm 3 illustrates histogram-based rank estimation. The estimated rank is then lower and upper bounded by

tracking the quantization error of the histograms and the number of key parts as follows:

pp—(p-1) pnp—(p-1)
rank lower bound = Z H(j) and rank upper bound = Z H(j) (41)
Jj=bin(lpc)+p j=bin(lpc)—p

A tempting shortcut is to use easy-to-compute metrics to replace the rank estimation. At first glance, the product of
the individual key part ranks, or equivalently the sum of the log ranks, might seem to provide a good indication of
the remaining brute force effort to recover the full key. However, summing the log ranks does not correspond to an
enumeration strategy and additionally assumes an unrealistic adversary that would somehow have knowledge of the
key bytes ranks. As a result, the sum of log ranks provides a pessimistic lower bound on the rank of the full key. We
illustrate this with the following simple example. We consider a key consisting of four bits, where the first two bits and
the last two bits are targeted independently. After a side-channel attack we obtain the following probability vector for
each two-bit part that we denote by K! and K?:

Pr(K') =[00:0.8, 01:0.1, 10:0.08, 11 : 0.02]

Pr(K%) =1[00:0.09, 01:0.5, 10:0.01, 11:0.3]
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Algorithm 3: Histogram-based rank estimation

Input: score;c,for i=1...,pandk=0,....,m
Output: estimated rank, security (in bits)
> Compute the histogram for each key part
for i=1topdo
L Hi= hist([scoreé, ...,scorel ])
> Iterative convolution to produce the full key distribution
H=H!
for i=2topdo
L H = conv(H,H'), 1ie., the kth element of H after the convolution is H(k) = Y, H(j) - H (k — j + 1)
J
> Compute the sum of the log probability for the correct full key

P .
Ipe = ), log Pr(kl)
i=1

> Count the number of full keys with a higher log probability than the correct full key
pnp—(p-1)

estimated rank ~ > H(j) and security = log,(estimated rank)
J=bin(Ipc)

The correct full key value is [k2, k1] = [01,00]. To find the rank of the correct full key for this simple example in an
optimal way, we can simply list the keys in decreasing order of likelihood until we reach the correct key. This leads
to the following probability vector, where the rank of the correct full key is equal to 9 while following an optimal

enumeration strategy.

Pr[K',K?] = [0001 : 0.4, 0011 : 0.24, 0000 : 0.072, 0101 : 0.05, 1001 : 0.04,

0111 :0.03, 1011 : 0.024, 1101 : 0.01, 0100 : 0.009, ...]

Notice, however, that if we try to approximate the full key rank using, e.g., the product of the key part ranks, we will
obtain misleading results. In this case, rankki . rankkg =2-3 =6, i.e, aresult that appears (incorrectly) better than
the optimal strategy. We provide in Figures 7a and 7b results of two key rank estimations after performing template
attacks. Figure 7a shows an attack exploiting simulated leakage of the unprotected AES Sbox, while Figure 7b shows
the exploitation of the real leakage for the same target on the Sasebo-GII board. Note that the obtained upper/lower
bounds are very tight while only requiring a small amount of effort to perform the rank estimation. Figures 7a and 7b
also demonstrate the heuristic based on the sum of log ranks and we can observe that it only provides a lower bound

on the rank; hence, it underestimates the resistance of the target and overestimates the attackers knowledge.

8.2 Limitations

Rank estimation and key enumeration are not optimal when the scores are non-Bayesian. The optimality and
the soundness of both rank estimation and key enumeration techniques rely on the condition that the attack scores are
probability or log probability vectors, and additionally on the fact that in classic divide-and-conquer attacks, key bytes
are targeted independently. Although independent probabilities are naturally combined by multiplication, to find the
probability of a full key candidate, non-probability scores such as correlation coefficients do not have a natural and
mathematically correct combination function. Some heuristics can be adopted to combine the scores (e.g., by adding or

multiplying them) but they lead to inaccurate full key scores and suboptimal key enumeration and rank estimation.
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Fig. 7. Key rank for the simulated leakage (left) and measured leakage (right) of 16 instances of unprotected Sbox.

These limitations can be potentially mitigated in practice (since we do not always have access to Bayesian scores) by
using other heuristics, such as Bayesian extension defined by Veyrat-Charvillon et al. [90]. For a detailed discussion

and analysis, we refer to the work of Choudary et al. [16].

9 STATISTICAL HYPOTHESIS TESTS

Several leakage evaluation procedures utilize statistical hypothesis tests or informal adaptations thereof [93, 94]. Such
procedures often commence with the null hypothesis Hy that the DUT is secure and the alternate hypothesis H; that the
DUT has security flaws?2. The test procedure typically entails the computation of a statistic with a known or derivable
distribution under Hy. If the test statistic value crosses a threshold, then security flaws are detected (Hy is rejected). Not
crossing the threshold implies that there is no evidence of flaws (Hy is not rejected). Note that not rejecting Hy is not the
same as accepting Hy; the DUT is deemed secure since the data did not detect leakage, i.e., it is innocent until proven
guilty. The computed statistic, along with the binary test result (pass or fail) can be considered as a qualitative metric
for SCA. These metrics can be computed using various procedures, including the ¢-test in the TVLA framework [32],
the Pearson’s y? test [63, 67], the two sample Kolmogorov-Smirnov test [45, 81, 95] and the MI test [60].

9.1 Description

In this overview we limit the discussion to the one of the most computationally efficient tests, namely the ¢-test metric
computed using the TVLA framework. The test goal is to certify a device’s vulnerability (i.e., find an arbitrary leak in
at least one trace sample) or to certify a device’s security (i.e., find no leaks after sufficiently exhaustive testing). A
common TVLA configuration is that the DUT contains a fixed key and is being repeatedly supplied a plaintext that
alternates between random and fixed values. The observed leakage traces L are subsequently collected and split into
two sets: L, containing n, random plaintext traces and Ly containing n¢ fixed plaintext traces. Subsequently, the
TVLA methodology rephrases the original dichotomy Hj : “the device is secure” vs. Hy : “the device has security flaws” to
the following hypothesis test.

1
Hoy:fjr=p vs. Hj: [y # fif where ﬁi:—Zl andie {r,f} (42)
f f n;
lel;

22The structure of most statistical tests imposes a logical asymmetry in the decision process by putting emphasis on the null hypothesis and considering
it to hold unless proven otherwise. However, the choice of null and alternative can be a matter of perspective. Device manufacturers possibly prefer the
null hypothesis “the device is secure”, since it must be invalidated before they have to patch/alter their product. On the contrary, a public organization
tasked with certifying secure products for citizens may prefer the null hypothesis “the device has security flaws”. Such a hypothesis must be rejected
before a product is deployed.
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(a) t-value (b) Maximum absolute t-value

Fig. 8. The t-value per trace sample and the progression of the maximum absolute t-value with the number of traces.

Then, the evaluator can use the two-tailed Welch’s ¢-test to make informed judgment about the similarities of these two

sets by computing the test statistic ¢t and the degrees of freedom df in Equation 43.

~2\2
~2 o
& °r
—_— + —_—
ny  ng 1
df = ” po &t = — > -y (43)
oy f leL;
(”%("r‘l)) njzc(nf—l)

The test statistic metric ¢ is itself an instance of a random variable T that follows a Student ¢-distribution, thus
conclusions drawn from statistical tests are subject to error. The two-tailed test will reject Hy when |t| > th, where
the specified threshold th is set in a manner that balances the test errors. In particular, the decision to reject the null
hypothesis Hy when it is, in fact, true (i.e., declare the device as vulnerable, even though it is secure) is called a Type
I error (false positive). A statistical test seeks to control this probability at a significance level @ and TVLA suggests

setting @ = 107 to ensure this costly error is avoided.
a = Pr(“detect flaws”| “device is secure”) = P(reject Hy|Hp holds) = P(¢t < —th) + P(t > th) = 2P(t > th)  (44)

Setting 2P(t > th) = 10~ and inverting the Student cdf (assuming df > 1000) results in the well-known th = 4.5 [19, 80].
Continuing, the failure to reject Hyp when it is, in fact, false (i.e., declare the device as secure, even though it is not) is
called a Type I error (false negative), commonly denoted as ff and it can also be set to a specified value via consensus. The
TVLA process sets only the parameter o and conducts independent tests on every sample point of the measured traces.
Figure 8 demonstrates the behavior of the unprotected and masked implementations. As expected, the unprotected
implementation produces t-values that reject Hy and detect flaws. Unexpectedly, security flaws are also detected in
both masked implementations, albeit under the current TVLA configuration (random vs. fixed plaintext) it is unclear
which intermediate values leak. We note that numerous masking schemes face practical issues and imperfections once
deployed on a real-world device [3, 66].

Figure 8 shows a straightforward way to utilize the t-value as a metric and decide on the security level of the
device. The metric can also be used in a heuristic manner: High t-values (and respectively low p-values?®) indicate
leaky time samples in a trace, thus the metric can provide guidance for point-of-interest selection and more detailed

leakage profiling. Regardless of the usage of the metric, the evaluator should keep in mind that the metric value and

23The probability to observe a statistic as extreme as ¢.
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the statistical significance of the results usually says more about the parameters of the experiment rather than the
experimental results [65]. Equation 45 demonstrates the tradeoff between these test parameters a, f,n, = n =1, 63, ?fj%
and 6 [18, 93]. The parameter § is the effect size, i.e., the difference between means that the test can detect reliably. The
quantities z,/,, zg are the respective quantiles of the standard normal distribution?*. Any use of the t-value as a metric
implicitly utilizes all the involved test parameters and they must be set in a meaningful way in advance by the evaluator.
2
(Za/z +Zﬁ) (Af + 6'3)
n=2 52 (45)

Note that the described random vs. fixed test targets all intermediate values and transitions and is referred to as

nonspecific. Even though any intermediate value (or combination) is covered by it, a negative result cannot be concluded
from a single test, due to its dependency of the selected fixed plaintext. It is therefore recommended to repeat the test
with at least a few different inputs to avoid a false conclusion on resistance of the device?®. The nonspecific test can
also be performed using a custom plaintext that leads to a certain intermediate value and then is referred to as the
semi-fixed vs. random test [5]; it is often better suited for testing devices where the precise start and end of the AES
operations cannot be easily determined. The test can also be adapted to detect higher-order leakage, e.g., to assess a
masked implementation by preprocessing and then testing higher-order or mixed moments [80]. Finally, the TVLA
methodology describes specific tests that target a particular intermediate value or transitions in the implementation
(e.g., Sbox output or Hamming distance in a round register). Such a test requires knowing the device key and carefully
choosing the device inputs. If a nonspecific ¢-test reports a detectable leakage, the specific one results in the same

conclusion, but with a higher confidence [79].

9.2 Limitations

Contrary to the classical approach of attacking a device under test and linking the attack effectiveness to a metric,
statistical test metrics and methodologies decouple the detection of leakage from its exploitation. The main advantages
of this decoupling is increased efficiency (w.r.t. time and data complexity) and the ability to be applied with fairly little
implementation knowledge. These advantages are due to two factors: a reduction of the number of classes for which the
leakage has to be estimated to only two classes (e.g., random vs. fixed plaintext), and a simple statistical approach based
on the estimation and comparison of statistical moments. The main drawback of such simplifications is a discrepancy
between the test results (which decide about Hy : fir = fif vs. H : fi # iy ) and the actual device security (which must

decide about Hy :“device is secure” vs. H; :“flaws are detected”) [28]. This discrepancy takes several forms.

Statistical tests do not reflect the attack effort. Detecting leakage in certain intermediate values does not automat-
ically imply that the intermediates are exploitable in a simple divide and conquer side-channel attack. For instance,
recovering values in certain parts of the cipher may require a large brute-force effort when guessing key candidates
and this overhead is not captured by the t-test metric. For example, a CPA attack on the AES Sbox output requires 28

232

key guesses, while a similar attack on the MixColumns output requires 2°“ key guesses. While both attacks are feasible,

the increased brute-force effort is not reflected in the t-test metric.

Statistical tests may detect benign plaintext/ciphertext leakage. Naturally, the random vs. fixed t-test will detect
leakage when the device processes the plaintext. The plaintext is independent of the key thus any plaintext-related
UPr(Z > z4) =aand Z ~ N(0,1)

%5Good practice also recommends that the random and fixed plaintext are randomly interspersed and the internal device states are reset between
subsequent measurements
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spikes should be neglected. However, consider an example scenario where the initial plaintext is being transferred to
memory at the very same time that a well-protected AES is in the fifth round of encryption (assume that the device is
capable of some concurrency and the plaintext transfer can happen in parallel to its encryption). Any experiment aims
to capture the full AES and thus it will unintentionally capture the concurrent plaintext transfer as well. The test is
unable to distinguish between the parallel operations and it will raise a false alarm due to the unprotected (yet safe)

plaintext transfer.

Statistical significance does not always imply practical exploitability. As stated, the TVLA result (pass/fail) can
only conclude whether a difference of means is significant or not. Even if the leaky intermediate is easy to attack (e.g.,
AES Sbox output), the statistically significant difference still does not guarantee that a divide-and-conquer attack is
able to recover the key. In Equation 45 we observe that the difference of means § that can be detected is inversely
proportional to the number of traces n used in the test. That is, increasing n will produce a test that can spot gradually
smaller 8. This seemingly good property has a downside: the fact that a certain § is detected does not imply such § is
large enough to be utilized by a side-channel distinguisher. Thus, using the ¢-statistic to decide on security (pass/fail) or
to select leaky samples when § is very small (and typically n is very high) can be statistically significant when, in fact, it

is inconsequential.

Statistical tests use only moments instead of the full distribution. Equation 43 shows that the ¢-test metric
requires the computation of mean and variance. In general, moment-based approaches for detecting or exploiting flaws
are very common in the literature (e.g., in higher-order DPAs using a combination function [64, 72]), yet may become
suboptimal compared to using the full leakage distribution or an approximation thereof [85]. This risk is particularly
difficult to anticipate as the number of shares and security order of a masked implementation increases [83]. Mitigating
this drawback, while avoiding quantitative information theoretic analysis of leakages [84], requires coupling Welch’s
t-test with the y?-test [63].

Statistical tests are affected by the multiple comparisons problem. By construction, repeating any ¢-test multiple
times will always result on false positives (controlled by the type I error ). Consider the following scenario. We apply
(as in Figure 8a) the t-test on every sample of traces and such traces possess a very large number of samples. This
implies a large number of test repetitions and thus a high probability of false positives [23]. The underlying issue is that
TVLA assumes independence between samples and the threshold th = 4.5 reflects that. To counteract this problem of

multiple comparisons the evaluator can adjust the threshold using the Bonferroni [26] or Sidak [89] correction formulas.

10 CONCLUSIONS

In this work, we critically analyzed the main metrics used in the field of side-channel analysis. They range from simple
attack-based sub-key metrics to full key recovery metrics. For each of them, we provide a self-contained definition and
its interpretation in terms of security, along with the discussion of its limitations. We showcase examples computed
on both simulated and measured side-channel traces and we make the software implementing the presented metrics
available to the community as open source. Since the literature about the topic is extremely fragmented, our paper
follows the style of a cheat sheet, collecting in a single place all the information that designers and analysts need to
assess to evaluate the side channel resistance of a device. Thanks to this format, our work represents a solid base for
future analysis, including the promising direction of investigation of machine and deep learning related metrics, as

side-channel analysis keeps evolving [59, 96, 98].

Manuscript submitted to ACM



The Side-Channel Metrics Cheat Sheet 33

ACKNOWLEDGMENTS

This work is partially supported by the European Union Horizon 2020 Program under the CERBERO project (grant

agreement number 732105) and EVEREST project (grant agreement No 957269), and by the Swiss National Science
Foundation (grant No. 182428).

REFERENCES

(1]

(2]

3

[4

flaa

&

(6]

(71

8

=

(9]
[10]

[11]

[12

[13]

[14]

[15]

[16]

[17

[18

[19

Cédric Archambeau, Eric Peeters, Francois-Xavier Standaert, and Jean-Jacques Quisquater. 2006. Template Attacks in Principal Subspaces. In
Cryptographic Hardware and Embedded Systems—CHES *06, Louis Goubin and Mitsuru Matsui (Eds.). Lecture Notes in Computer Science, Vol. 4249.
Springer, Berlin, 1-14.

Melissa Azouaoui, Romain Poussier, Frangois-Xavier Standaert, and Vincent Verneuil. 2019. Key Enumeration from the Adversarial Viewpoint. In
Smart Card Research and Advanced Applications—CARDIS °19, Sonia Belaid and Tim Giineysu (Eds.). Lecture Notes in Computer Science, Vol. 11833.
Springer, Berlin, 252-67.

Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz, and Frangois-Xavier Standaert. 2014. On the Cost of Lazy Engineering for Masked
Software Implementations. In Smart Card Research and Advanced Applications—CARDIS ’14, Marc Joye and Amir Moradi (Eds.). Lecture Notes in
Computer Science, Vol. 8968. Springer, Berlin, 64-81.

Gilles Barthe, Marc Gourjon, Benjamin Grégoire, Maximilian Orlt, Clara Paglialonga, and Lars Porth. 2021. Masking in Fine-Grained Leakage
Models: Construction, Implementation and Verification. JACR Transactions on Cryptographic Hardware and Embedded Systems 2021, 2 (Feb. 2021),
73-96.

G. Becker, J. Cooper, E. DeMulder, G. Goodwill, J. Jaffe, G. Kenworthy, T. Kouzminov, A. Leiserson, M. Marson, P. Rohatgi, and S. Saab. 2013. Test
Vector Leakage Assessment (TVLA) Methodology in Practice. In International Cryptographic Module Conference. Semantic Scholar, Gaithersburg
area, MD, USA, 1-13.

Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli, and Cécile Dumas. 2020. Deep learning for side-channel analysis and introduction
to ASCAD database. Journal of Cryptographic Engineering 10, 2 (Nov. 2020), 163-188.

Daniel J. Bernstein, Tanja Lange, and Christine van Vredendaal. 2015. Tighter, faster, simpler side-channel security evaluations beyond computing
power. Cryptology e-print archive 2015/221. International Association for Cryptologic Research (IACR). http://eprint.iacr.org/2015/211.

Shivam Bhasin, Jean-Luc Danger, Sylvain Guilley, and Zakaria Najm. 2014. NICV: Normalized Inter-Class Variance for Detection of Side-Channel
Leakage. In International Symposium on Electromagnetic Compatibility—EMC 2014. IEEE, Tokyo, Japan, 310-13.

Eli Biham and Adi Shamir. 1991. Differential cryptanalysis of DES-like cryptosystems. Journal of Cryptology 4, 1 (Jan. 1991), 3-72.

Andrey Bogdanov, Ilya Kizhvatov, Kamran Manzoor, Elmar Tischhauser, and Marc Witteman. 2015. Fast and Memory-Efficient Key Recovery
in Side-Channel Attacks. In Conference on Selected Areas in Cryptography—SAC 15, Orr Dunkelman and Liam Keliher (Eds.). Lecture Notes in
Computer Science, Vol. 9566. Springer, Berlin, 310-27.

Eric Brier, Christophe Clavier, and Francis Olivier. 2004. Correlation Power Analysis with a Leakage Model. In Cryptographic Hardware and
Embedded Systems—CHES ’04, Marc Joye and Jean-Jacques Quisquater (Eds.). Lecture Notes in Computer Science, Vol. 3156. Springer, Berlin, 16-29.
Olivier Bronchain, Julien M. Hendrickx, Clément Massart, Alex Olshevsky, and Francois-Xavier Standaert. 2019. Leakage Certification Revisited:
Bounding Model Errors in Side-Channel Security Evaluations. In Advances in Cryptology—CRYPTO ’19, Alexandra Boldyreva and Daniele Micciancio
(Eds.). Lecture Notes in Computer Science, Vol. 11692. Springer, Berlin, 713-37.

Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. 1999. Towards Sound Approaches to Counteract Power-Analysis Attacks. In
Advances in Cryptology—CRYPTO °99, Michael Wiener (Ed.). Lecture Notes in Computer Science, Vol. 1666. Springer, Berlin, 398-412.

Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. 2002. Template Attacks. In Cryptographic Hardware and Embedded Systems—CHES "02, Burton
S. Kaliski Jr., Cetin Kaya Koc, and Christof Paar (Eds.). Lecture Notes in Computer Science, Vol. 2523. Springer, Berlin, 13-28.

Marios O. Choudary and Markus G. Kuhn. 2018. Efficient, Portable Template Attacks. IEEE Transactions on Information Forensics and Security 13, 2
(Feb. 2018), 490-501.

Marios O. Choudary, Romain Poussier, and Francois-Xavier Standaert. 2016. Score-Based vs. Probability-Based Enumeration - A Cautionary Note.
In Progress in Cryptology—INDOCRYPT °16, Orr Dunkelman and Somitra Kumar Sanadhya (Eds.). Lecture Notes in Computer Science, Vol. 10095.
Springer, Berlin, 137-52.

Omar Choudary and Markus G. Kuhn. 2013. Efficient Template Attacks. In Smart Card Research and Advanced Applications—CARDIS ’13, Aurélien
Francillon and Pankaj Rohatgi (Eds.). Lecture Notes in Computer Science, Vol. 8419. Springer, Berlin, 253-70.

Shein-Chung Chow, Jun Shao, and Hansheng Wang. 2002. A Note on Sample Size Calculation for Mean Comparisons Based on Noncentral t-Statistics.
Journal of Biopharmaceutical Statistics 12, 4 (Nov. 2002), 441-56.

Thomas De Cnudde, Oscar Reparaz, Begiil Bilgin, Svetla Nikova, Ventzislav Nikov, and Vincent Rijmen. 2016. Masking AES with d + 1 Shares in
Hardware. In Cryptographic Hardware and Embedded Systems—CHES 16, Axel Y. Poschmann Benedikt Gierlichs (Ed.). Lecture Notes in Computer
Science, Vol. 9813. Springer, Berlin, 1-21.

Manuscript submitted to ACM


http://eprint.iacr.org/2015/211

34

[20

[21

[22

[23

[24

[25

[26
[27

[28

[29

[30

[31

[32

[33

(34

[35

[36

[37
[38

[39

[40

[41

[42

[43

[44

]

]

]

]

]

)

]
]

]

]

]

]

]

]

]

]
]

]

]

]

]

]

Kostas Papagiannopoulos, Ognjen Glamocanin, Melissa Azouaoui, Dorian Ros, Francesco Regazzoni, and Mirjana
Stojilovié¢

Thomas M. Cover and Joy A. Thomas. 2006. Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing). Wiley-
Interscience, New York, NY, USA.

Liron David and Avishai Wool. 2017. A Bounded-Space Near-Optimal Key Enumeration Algorithm for Multi-subkey Side-Channel Attacks. In The
Cryptographers’ Track at the RSA Conference—CT-RSA °17, Helena Handschuh (Ed.). Lecture Notes in Computer Science, Vol. 10159. Springer, Berlin,
311-27.

N. Debande, E. Oswald, R. Poussier, and F.-X. Standaert. 2018. REASSURE, Deliverable D2.3, Shortcut Formulas for Side Channel Evaluation. ,
41 pages. http://reassure.eu/wp-content/uploads/2018/09/REASSURE_D23.pdf Accessed: 29/09/2022.

A. Adam Ding, Liwei Zhang, Francois Durvaux, Francois-Xavier Standaert, and Yunsi Fei. 2017. Towards Sound and Optimal Leakage Detection
Procedure. In Smart Card Research and Advanced Applications—CARDIS ’17, Thomas Eisenbarth and Yannick Teglia (Eds.). Lecture Notes in Computer
Science, Vol. 10728. Springer, Berlin, 105-22.

Julien Doget, Emmanuel Prouff, Matthieu Rivain, and Francois-Xavier Standaert. 2011. Univariate side channel attacks and leakage modeling.
Journal of Cryptographic Engineering 1, 2 (Aug. 2011), 123-44.

Alexandre Duc, Sebastian Faust, and Francois-Xavier Standaert. 2019. Making Masking Security Proofs Concrete (Or How to Evaluate the Security
of Any Leaking Device), Extended Version. Journal of Cryptology 32, 4 (Jan. 2019), 1263-97.

Olive Jean Dunn. 1961. Multiple Comparisons Among Means. J. Amer. Statist. Assoc. 56, 293 (March 1961), 52-64.

Frangois Durvaux, Francois-Xavier Standaert, and Nicolas Veyrat-Charvillon. 2014. How to Certify the Leakage of a Chip? In Advances in
Cryptology—EUROCRYPT ’14, Phong Q. Nguyen and Elisabeth Oswald (Eds.). Lecture Notes in Computer Science, Vol. 8441. Springer, Berlin, 459-76.
Francois Durvaux and Francois-Xavier Standaert. 2016. From Improved Leakage Detection to the Detection of Points of Interests in Leakage Traces.
In Advances in Cryptology—EUROCRYPT °16, Marc Fischlin and Jean-Sébastien Coron (Eds.). Lecture Notes in Computer Science, Vol. 9665. Springer,
Berlin, 240-62.

Bradley Efron and Robert Tibshirani. 1986. Bootstrap Methods for Standard Errors, Confidence Intervals, and Other Measures of Statistical Accuracy.
Statist. Sci. 1, 1 (Feb. 1986), 54-75.

Yunsi Fei, Qiasi Luo, and A. Adam Ding. 2012. A Statistical Model for DPA with Novel Algorithmic Confusion Analysis. In Cryptographic Hardware
and Embedded Systems—CHES ’12, Emmanuel Prouff and Patrick Schaumont (Eds.). Lecture Notes in Computer Science, Vol. 7428. Springer, Berlin,
233-50.

Cezary Glowacz, Vincent Grosso, Romain Poussier, Joachim Schiith, and Francois-Xavier Standaert. 2015. Simpler and More Efficient Rank Estimation
for Side-Channel Security Assessment. In Fast Software Encryption—FSE ’15, Gregor Leander (Ed.). Lecture Notes in Computer Science, Vol. 9054.
Springer, Berlin, 117-29.

Gilbert Goodwill, Benjamin Jun, Josh Jaffe, and Pankaj Rohatgi. 2011. A Testing Methodlogy for Side-Channel Resistance Validation. In NIST
Non-Invasive Attack Testing Workshop. NIST, Nara, Japan, 1-15.

Vincent Grosso and Frangois-Xavier Standaert. 2018. Masking Proofs Are Tight and How to Exploit it in Security Evaluations. In Advances in
Cryptology—EUROCRYPT ’18, Jesper Buus Nielsen and Vincent Rijmen (Eds.). Lecture Notes in Computer Science, Vol. 10821. Springer, Berlin,
385-412.

Vincent Grosso, Francois-Xavier Standaert, and Sebastian Faust. 2014. Masking vs. multiparty computation: How large is the gap for AES? Journal
of Cryptographic Engineering 4, 1 (March 2014), 47-57.

Vincent Grosso, Frangois-Xavier Standaert, and Emmanuel Prouff. 2013. Low Entropy Masking Schemes, Revisited. In Smart Card Research and
Advanced Applications—CARDIS ’13, Aurélien Francillon and Pankaj Rohatgi (Eds.). Lecture Notes in Computer Science, Vol. 8419. Springer, Berlin,
33-43.

Qian Guo, Vincent Grosso, Francois-Xavier Standaert, and Olivier Bronchain. 2020. Modeling Soft Analytical Side-Channel Attacks from a Coding
Theory Viewpoint. JACR Transactions on Cryptographic Hardware and Embedded Systems 2020, 4 (Aug. 2020), 209-38.

Martin Hellman. 1980. A cryptanalytic Time-Memory Trade-off. IEEE Transactions on Information Theory 26, 4 (July 1980), 401-6.

Gabriel Hospodar, Benedikt Gierlichs, Elke De Mulder, Ingrid Verbauwhede, and Joos Vandewalle. 2011. Machine learning in side-channel analysis:
A first study. Journal of Cryptographic Engineering 1, 4 (Oct. 2011), 293-302.

Yuval Ishai, Amit Sahai, and David Wagner. 2003. Private Circuits: Securing Hardware against Probing Attacks. In Advances in Cryptology—CRYPTO
’03, Dan Boneh (Ed.). Lecture Notes in Computer Science, Vol. 2729. Springer, Berlin, 463-81.

ISO/ESC. 2022. ISO/IEC 15408-1:2022, Information security, cybersecurity and privacy protection — Evaluation criteria for IT security — Part 1:
Introduction and general model.

ISO/IEC. 2016. ISO/IEC 17825:2016, Information technology — Security techniques — Testing methods for the mitigation of non-invasive attack
classes against cryptographic modules. https://www.iso.org/standard/60612.html Accessed: 29/09/2022.

Anthony Journault and Francois-Xavier Standaert. 2017. Very High Order Masking: Efficient Implementation and Security Evaluation. In
Cryptographic Hardware and Embedded Systems—CHES ’17, Wieland Fischer and Naofumi Homma (Eds.). Lecture Notes in Computer Science,
Vol. 10529. Springer, Berlin, 623-43.

Lars R. Knudsen. 1998. Contemporary Block Ciphers. In Lectures on Data Security, Modern Cryptology in Theory and Practice. Springer, Aarhus,
Denmark, 105-26.

Paul Kocher, Joshua Jaffe, and Benjamin Jun. 1999. Differential Power Analysis. In Advances in Cryptology—CRYPTO ’99, Michael Wiener (Ed.).
Lecture Notes in Computer Science, Vol. 1666. Springer, Berlin, 398-412.

Manuscript submitted to ACM


http://reassure.eu/wp-content/uploads/2018/09/REASSURE_D23.pdf
https://www.iso.org/standard/60612.html

The Side-Channel Metrics Cheat Sheet 35

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

(53]

[54]

[55]

[56

[57]

[58]

[59]

[60]

[61

[62

[63]

[64]

[65]

[66

[67]

[68]

[69]

Andrei N. Kolmogorov. 1933. Sulla determinazione empirica di una legge di distribuzione. Giornale dell’Instituto Italiano degli Attuari 4, 6.1 (Jan.
1933), 83-91.

Boris Képf and David Basin. 2007. An Information-Theoretic Model for Adaptive Side-Channel Attacks. In Proceedings of the 14th ACM Conference
on Computer and Communications Security. ACM, Alexandria, VA, USA, 286-96.

Richard J. Larsen and Morris L. Marx. 2006. An Introduction to Mathematical Statistics and Its Applications Fifth Edition. Pearson Prentice Hall,
Hoboken, NJ, USA.

Liran Lerman, Gianluca Bontempi, and Olivier Markowitch. 2014. Power Analysis Attack: An Approach Based on Machine Learning. International
Journal of Applied Cryptography 3, 2 (June 2014), 97-115.

Joint Interpretation Library. 2020. Application of Attack Potential to Smartcards and Similar Devices. https://www.sogis.eu/documents/cc/domains/
sc/JIL- Application-of- Attack-Potential-to- Smartcards-v3- 1.pdf Accessed: 29/09/2022.

Oleksiy Lisovets, David Knichel, Thorben Moos, and Amir Moradi. 2021. Let’s Take it Offline: Boosting Brute-Force Attacks on iPhone’s User
Authentication through SCA. IACR Transactions on Cryptographic Hardware and Embedded Systems 2021, 3 (July 2021), 496-519.

Victor Lomné, Emmanuel Prouff, Matthieu Rivain, Thomas Roche, and Adrian Thillard. 2014. How to Estimate the Success Rate of Higher-Order
Side-Channel Attacks. In Cryptographic Hardware and Embedded Systems—CHES ’14, Lejla Batina and Matthew Robshaw (Eds.). Lecture Notes in
Computer Science, Vol. 8731. Springer, Berlin, 35-54.

Victor Lomné, Emmanuel Prouff, and Thomas Roche. 2013. Behind the Scene of Side Channel Attacks. In Advances in Cryptology—ASIACRYPT ’13,
Kazue Sako and Palash Sarkar (Eds.). Lecture Notes in Computer Science, Vol. 8269. Springer, Berlin, 506-25.

Jake Longo, Daniel P. Martin, Luke Mather, Elisabeth Oswald, Benjamin Sach, and Martijn Stam. 2016. How low can you go? Using side-channel
data to enhance brute-force key recovery. Cryptology e-print archive 2016/609. International Association for Cryptologic Research (IACR). http:
//eprint.iacr.org/2016/609.

F. Mace, F. x. St, I. Hassoune, J. d. Legat, and J. j. Quisquater. 2004. A Dynamic Current Mode Logic to Counteract Power Analysis Attacks. In
Proceedings of XIX Conference on Design of Circuits and Integrated Systems—DCIS '04. IEEE, Bordeaux, 186-91.

Stefan Mangard. 2004. Hardware Countermeasures against DPA? A Statistical Analysis of Their Effectiveness. In The Cryptographers’ Track at the
RSA Conference—CT-RSA ’04, Tatsuaki Okamoto (Ed.). Lecture Notes in Computer Science, Vol. 2964. Springer, Berlin, 222-35.

Daniel P. Martin, Jonathan F. O’Connell, Elisabeth Oswald, and Martijn Stam. 2015. Counting Keys in Parallel After a Side Channel Attack. In
Advances in Cryptology—ASIACRYPT 15, Tetsu Iwata and Jung Hee Cheon (Eds.). Lecture Notes in Computer Science, Vol. 9453. Springer, Berlin,
313-37.

Zdenek Martinasek and Jan Hajny Lukas Malina. 2011. Optimization of Power Analysis Using Neural Network. In Smart Card Research and Advanced
Applications—CARDIS 14, Aurélien Francillon and Pankaj Rohatgi (Eds.). Lecture Notes in Computer Science, Vol. 8419. Springer, Berlin, 94-107.
James L Massey. 1994. Guessing and Entropy. In Proceedings of 1994 IEEE International Symposium on Information Theory. IEEE, Trondheim, Norway,
204.

Loic Masure, Cécile Dumas, and Emmanuel Prouff. 2019. A Comprehensive Study of Deep Learning for Side-Channel Analysis. IACR Transactions
on Cryptographic Hardware and Embedded Systems 2020, 1 (Nov. 2019), 348-75.

Luke Mather, Elisabeth Oswald, Joe Bandenburg, and Marcin Wojcik. 2013. Does My Device Leak Information? An a priori Statistical Power Analysis
of Leakage Detection Tests. In Advances in Cryptology—ASIACRYPT ’13, Kazue Sako and Palash Sarkar (Eds.). Lecture Notes in Computer Science,
Vol. 8269. Springer, Berlin, 486-505.

Mitsuru Matsui and Atsuhiro Yamagishi. 1992. A New Method for Known Plaintext Attack of FEAL Cipher. In Advances in Cryptology—EUROCRYPT
’92, Rainer A. Rueppel (Ed.). Lecture Notes in Computer Science, Vol. 658. Springer, Berlin, 81-91.

Thomas S. Messerges. 2000. Securing the AES Finalists Against Power Analysis Attacks. In Fast Software Encryption—FSE "00, Bruce Schneier (Ed.).
Lecture Notes in Computer Science, Vol. 1978. Springer, Berlin, 150-64.

Amir Moradi, Bastian Richter, Tobias Schneider, and Frangois-Xavier Standaert. 2018. Leakage Detection with the )(2 -Test. IACR Transactions on
Cryptographic Hardware and Embedded Systems 2018, 1 (Feb. 2018), 209-37.

Amir Moradi and Francois-Xavier Standaert. 2016. Moments-Correlating DPA. In Proceedings of the 2016 ACM Workshop on Theory of Implementation
Security. ACM, Vienna, Austria, 5-15.

Kevin R. Murphy, Brett Myors, and Allen Wolach. 2014. Statistical Power Analysis: A Simple and General Model for Traditional and Modern Hypothesis
Tests. Routledge, New York, NY, USA.

Kostas Papagiannopoulos and Nikita Veshchikov. 2017. Mind the Gap: Towards Secure 1st-Order Masking in Software. In Constructive Side-Channel
Analysis and Secure Design—COSADE ’17, Sylvain Guilley (Ed.). Lecture Notes in Computer Science, Vol. 10348. Springer, Berlin, 282-97.

Karl Pearson. 1992. On the Criterion that a Given System of Deviations from the Probable in the Case of a Correlated System of Variables is Such
that it Can be Reasonably Supposed to have Arisen from Random Sampling. In Breakthroughs in Statistics: Methodology and Distribution, Samuel
Kotz and Norman L. Johnson (Eds.). Springer New York, New York, NY, USA, 11-28.

Guilherme Perin, Baris Ege, and Lukasz Chmielewski. 2019. Neural Network Model Assessment for Side-Channel Analysis. Cryptology e-print archive
2019/722. International Association for Cryptologic Research (IACR). http://eprint.iacr.org/2019/722.

Romain Poussier, Qian Guo, Francois-Xavier Standaert, Claude Carlet, and Sylvain Guilley. 2017. Connecting and Improving Direct Sum Masking
and Inner Product Masking. In Smart Card Research and Advanced Applications—CARDIS °17, Thomas Eisenbarth and Yannick Teglia (Eds.). Lecture
Notes in Computer Science, Vol. 10728. Springer, Berlin, 123-41.

Manuscript submitted to ACM


https://www.sogis.eu/documents/cc/domains/sc/JIL-Application-of-Attack-Potential-to-Smartcards-v3-1.pdf
https://www.sogis.eu/documents/cc/domains/sc/JIL-Application-of-Attack-Potential-to-Smartcards-v3-1.pdf
http://eprint.iacr.org/2016/609
http://eprint.iacr.org/2016/609
http://eprint.iacr.org/2019/722

36

[70

(71

[72

[73

[74

[75

(76

(77

(78

(79

[80

(81

(82

[83

(84

[85

[86

[87

[88

[89

[90

[91

[92

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

Kostas Papagiannopoulos, Ognjen Glamocanin, Melissa Azouaoui, Dorian Ros, Francesco Regazzoni, and Mirjana
Stojilovié¢

Romain Poussier, Frangois-Xavier Standaert, and Vincent Grosso. 2016. Simple Key Enumeration (and Rank Estimation) Using Histograms: An
Integrated Approach. In Cryptographic Hardware and Embedded Systems—CHES ’16, Axel Y. Poschmann Benedikt Gierlichs (Ed.). Lecture Notes in
Computer Science, Vol. 9813. Springer, Berlin, 61-81.

Santos Merino Del Pozo and Francois-Xavier Standaert. 2015. Blind Source Separation from Single Measurements Using Singular Spectrum Analysis.
In Cryptographic Hardware and Embedded Systems—CHES 15, Tim Guneysu and Helena Handschuh (Eds.). Lecture Notes in Computer Science,
Vol. 9293. Springer, Berlin, 42-59.

Emmanuel Prouff, Matthieu Rivain, and Régis Bévan. 2009. Statistical Analysis of Second Order Differential Power Analysis. IEEE Trans. Comput. 58,
6 (June 2009), 799-811.

Francesco Regazzoni. 2016. Physical Attacks and Beyond. In Conference on Selected Areas in Cryptography—SAC ’16, Roberto Avanzi and Howard M.
Heys (Eds.). Lecture Notes in Computer Science, Vol. 10532. Springer, Berlin, 3-13.

Mathieu Renauld, Frangois-Xavier Standaert, Nicolas Veyrat-Charvillon, Dina Kamel, and Denis Flandre. 2011. A Formal Study of Power Variability
Issues and Side-Channel Attacks for Nanoscale Devices. In Advances in Cryptology—EUROCRYPT 11, Kenneth G. Paterson (Ed.). Lecture Notes in
Computer Science, Vol. 6632. Springer, Berlin, 109-28.

Matthieu Rivain. 2008. On the Exact Success Rate of Side Channel Analysis in the Gaussian Model. In Conference on Selected Areas in Cryptography—
SAC ’08, Roberto Maria Avanzi, Liam Keliher, and Francesco Sica (Eds.). Lecture Notes in Computer Science, Vol. 5381. Springer, Berlin, 165-83.
Matthieu Rivain and Emmanuel Prouff. 2010. Provably Secure Higher-Order Masking of AES. In Cryptographic Hardware and Embedded Systems—
CHES 10, Stefan Mangard and Francois-Xavier Standaert (Eds.). Lecture Notes in Computer Science, Vol. 6225. Springer, Berlin, 413-27.

Niels Samwel, Lejla Batina, Guido Bertoni, Joan Daemen, and Ruggero Susella. 2018. Breaking Ed25519 in WolfSSL. In The Cryptographers’ Track at
the RSA Conference—CT-RSA °18, Nigel P. Smart (Ed.). Lecture Notes in Computer Science, Vol. 10808. Springer, Berlin, 1-20.

Werner Schindler, Kerstin Lemke, and Christof Paar. 2005. Correlation Power Analysis with a Leakage Model. In Cryptographic Hardware and
Embedded Systems—CHES 05, Josyula R. Rao and Berk Sunar (Eds.). Lecture Notes in Computer Science, Vol. 3659. Springer, Berlin, 30-46.

Tobias Schneider and Amir Moradi. 2015. Leakage Assessment Methodology: A Clear Roadmap for Side-Channel Evaluations. In Cryptographic
Hardware and Embedded Systems—CHES ’15, Tim Giineysu and Helena Handschuh (Eds.). Lecture Notes in Computer Science, Vol. 9293. Springer,
Berlin, 495-513.

Tobias Schneider and Amir Moradi. 2016. Leakage Assessment Methodology. Journal of Cryptographic Engineering 6, 2 (June 2016), 85-99.
Nikolai Smirnov. 1948. Table for Estimating the Goodness of Fit of Empirical Distributions. The Annals of Mathematical Statistics 19, 2 (June 1948),
279-81.

Frangois-Xavier Standaert. 2016. High (Physical) Security & Lightweight (Symmetric) Cryptography (Invited talk), HighLight: High-Security
Lightweight Cryptography. https://perso.uclouvain.be/fstandae/PUBLIS/186.pdf Accessed: 29/09/2022.

Frangois-Xavier Standaert. 2018. How (Not) to Use Welsch’s T-Test in Side-Channel Security Evaluations. In Smart Card Research and Advanced
Applications—CARDIS ’18, Begiil Bilgin and Jean-Bernard Fischer (Eds.). Lecture Notes in Computer Science, Vol. 11389. Springer, Berlin, 65-79.
Frangois-Xavier Standaert, Tal Malkin, and Moti Yung. 2009. A Unified Framework for the Analysis of Side-Channel Key Recovery Attacks. In
Advances in Cryptology—EUROCRYPT °09, Antoine Joux (Ed.). Lecture Notes in Computer Science, Vol. 5479. Springer, Berlin, 443-61.
Francois-Xavier Standaert, Nicolas Veyrat-Charvillon, Elisabeth Oswald, Benedikt Gierlichs, Marcel Medwed, Markus Kasper, and Stefan Mangard.
2010. The World Is Not Enough: Another Look on Second-Order DPA. In Advances in Cryptology—ASIACRYPT ’10, Masayuki Abe (Ed.). Lecture
Notes in Computer Science, Vol. 6477. Springer, Berlin, 112-29.

Dhruv Thapar, Manaar Alam, and Debdeep Mukhopadhyay. 2020. TranSCA: Cross-Family Profiled Side-Channel Attacks using Transfer Learning on Deep
Neural Networks. Cryptology e-print archive 2020/1258. International Association for Cryptologic Research (IACR). http://eprint.iacr.org/2020/1258.
Kris Tiri, Moonmoon Akmal, and Ingrid Verbauwhede. 2002. A Dynamic and Differential CMOS Logic with Signal Independent Power Consumption
to Withstand Differential Power Analysis on Smart Cards. In Proceedings of the 28th European Solid-State Circuits Conference—~ESSCIRC ’02. IEEE,
Florence, 403-6.

Thomas Unterluggauer, Thomas Korak, Stefan Mangard, Robert Schilling, Luca Benini, Frank K. Giirkaynak, and Michael Muehlberghuber. 2017.
Leakage Bounds for Gaussian Side Channels. In Smart Card Research and Advanced Applications—CARDIS °17, Thomas Eisenbarth and Yannick
Teglia (Eds.). Lecture Notes in Computer Science, Vol. 10728. Springer, Berlin, 88-104.

Zbynék Sidak. 1967. Rectangular Confidence Regions for the Means of Multivariate Normal Distributions. J. Amer. Statist. Assoc. 62, 318 (June 1967),
626-33.

Nicolas Veyrat-Charvillon, Benoit Gérard, Mathieu Renauld, and Francois-Xavier Standaert. 2012. An Optimal Key Enumeration Algorithm and Its
Application to Side-Channel Attacks. In Conference on Selected Areas in Cryptography—SAC ’12, Lars R. Knudsen and Huapeng Wu (Eds.). Lecture
Notes in Computer Science, Vol. 7707. Springer, Berlin, 390-406.

Nicolas Veyrat-Charvillon, Benoit Gérard, and Francois-Xavier Standaert. 2013. Security Evaluations beyond Computing Power. In Advances in
Cryptology—EUROCRYPT 13, Thomas Johansson and Phong Q. Nguyen (Eds.). Lecture Notes in Computer Science, Vol. 7881. Springer, Berlin,
126-41.

Nicolas Veyrat-Charvillon, Marcel Medwed, Stéphanie Kerckhof, and Frangois-Xavier Standaert. 2012. Shuffling against Side-Channel Attacks: A
Comprehensive Study with Cautionary Note. In Advances in Cryptology—ASIACRYPT 12, Xiaoyun Wang and Kazue Sako (Eds.). Lecture Notes in
Computer Science, Vol. 7658. Springer, Berlin, 740-57.

Manuscript submitted to ACM


https://perso.uclouvain.be/fstandae/PUBLIS/186.pdf
http://eprint.iacr.org/2020/1258

The Side-Channel Metrics Cheat Sheet 37

[93]

[94]

[95

[96]

[97]

[98]

Carolyn Whitnall and Elisabeth Oswald. 2019. A Cautionary Note Regarding the Usage of Leakage Detection Tests in Security Evaluation. Cryptology
e-print archive 2019/703. International Association for Cryptologic Research (IACR). http://eprint.iacr.org/2019/703.

Carolyn Whitnall and Elisabeth Oswald. 2019. A Critical Analysis of ISO 17825 (‘Testing Methods for the Mitigation of Non-invasive Attack Classes
Against Cryptographic Modules’). In Advances in Cryptology—ASIACRYPT ’19, Steven D. Galbraith and Shiho MoriaiShiho (Eds.). Lecture Notes in
Computer Science, Vol. 11923. Springer, Berlin, 256—-84.

Carolyn Whitnall, Elisabeth Oswald, and Luke Mather. 2011. An Exploration of the Kolmogorov-Smirnov Test as a Competitor to Mutual Information
Analysis. In Smart Card Research and Advanced Applications—CARDIS °11, Emmanuel Prouff (Ed.). Lecture Notes in Computer Science, Vol. 7079.
Springer, Berlin, 234-51.

Lichao Wu, Guilherme Perin, and Stjepan Picek. 2021. On the Evaluation of Deep Learning-based Side-channel Analysis. Cryptology e-print archive
2021/952. International Association for Cryptologic Research (IACR). http://eprint.iacr.org/2021/952.

Xin Ye, Thomas Eisenbarth, and William Martin. 2014. Bounded, yet Sufficient? How to Determine Whether Limited Side Channel Information
Enables Key Recovery. In Smart Card Research and Advanced Applications—CARDIS ’14, Marc Joye and Amir Moradi (Eds.). Lecture Notes in
Computer Science, Vol. 8968. Springer, Berlin, 215-32.

Jiajia Zhang, Mengce Zheng, Jiehui Nan, Honggang Hu, and Nenghai Yu. 2020. A Novel Evaluation Metric for Deep Learning-Based Side Channel
Analysis and Its Extended Application to Imbalanced Data. IACR Transactions on Cryptographic Hardware and Embedded Systems 2020, 3 (June 2020),
73-96.

Manuscript submitted to ACM


http://eprint.iacr.org/2019/703
http://eprint.iacr.org/2021/952

The Side-Channel Metrics Cheat Sheet: Supplementary Material

KOSTAS PAPAGIANNOPOULOS?, University of Amsterdam, The Netherlands

OGNJEN G LAMOCANI N*, EPFL, Switzerland

MELISSA AZOUAOQOUI", NXP Semiconductors, Germany and Université Catholique de Louvain, Belgium
DORIAN ROS’, EPFL, Switzerland

FRANCESCO REGAZZONTI", University of Amsterdam, The Netherlands and Universita della Svizzera italiana,

Switzerland

MIRJANA STOJILOVIC*, EPFL, Switzerland

ACM Reference Format:
Kostas Papagiannopoulos, Ognjen Glamocanin, Melissa Azouaoui, Dorian Ros, Francesco Regazzoni, and Mirjana Stojilovi¢. 2023. The

Side-Channel Metrics Cheat Sheet: Supplementary Material. 1, 1 (April 2023), 5 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 SIDE-CHANNEL LEAKAGE IN SIMULATION AND MEASUREMENTS

In this work, we evaluate side-channel metrics on the following three AES Sbox implementations:

o baseline unprotected AES Sbox that uses a 256-byte look-up table (unprotected Sbox),
e masked AES Sbox (masked Sbox 1), introduced by Regazzoni et al. [3], and
e masked AES Sbox (masked Sbox 2), introduced by Canright and Batina [1].

In all the figures, results corresponding to the unprotected Sbox, masked Sbox 1, and masked Sbox 2 are consistently
colored in blue, green, and orange, respectively. Both simulated and measured power side-channel traces are recorded.

Table 1 lists the measured and simulated trace datasets. For each dataset, we specify the number and type of Sboxes
used, the number of traces in the dataset, the number of samples per trace, the key, plaintexts, and the list of references
to the figures in which the dataset in question was used. All the keys, plaintexts, and measured traces can be downloaded

from MetriSCA web page.
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Table 1. Measured (M) and simulated (S) trace datasets. To download the measured trace datasets, visit MetriSCA web page.

Dataset ~ Sbox type Traces Samples Key Plaintexts Figs. in the article
M-UR Unprotected 50,000 3,000 0xCB Random Figures 2, 5, 8
M-UF Unprotected 50,000 3,000 0xCB Fixed, 0x2B Figure 8
M-M1R  Masked 1 [3] 50,000 3,000 0xCB Random Figure 3, 5, 8
M-M1F Masked 1 [3] 50,000 3,000 0xCB Fixed, 0x2B Figure 8
M-M2R  Masked 2 [1] 50,000 3,000 0xCB Random Figures 5, 8
M-M2F  Masked 2 [1] 50,000 3,000 0xCB Fixed, 0x2B Figure 8
M-16UR  Unprotected, 16X 100,000 535 0xCB Random Figures 1, 4, 7b
S-URE Unprotected 256 5,000 0x00 Exhaustive, 0-255 Figure 6
S-16UR  Unprotected, 16X 1,000 8,000 See Section 1.1 Random Figure 7a

1.1 Simulation

Simulated power side-channel traces were produced with the Synopsys Nanosim simulator, on the post place and
route circuit realized using the NanGate 45nm library. The simulation and the current resolution were set to 1 ps. Two

simulations were ran:

o Single instance of the unprotected Sbox. Clock period was set to 1 ns. Each trace was five clock cycles long.
During the first three cycles, it was plaintext that was provided at the input. During the last two cycles, the input
was set to zero. Plaintext was taking a value in the range from 0 to 255 (exhaustively). The key was set to zero.

e Sixteen instances of the unprotected Sbox, operating concurrently. Clock period was set to 2 ns. Each trace was
four cycles long. During the first two cycles, plaintext was provided at the input. During the last two cycles, the
input was set to zero. Plaintext was randomly chosen and 10,000 traces were recorded. Key was set to 0xB828
5470 90D4 2282 EQ70 D5FF 4C4C F550.

1.2 Measurements

Measured power side-channel traces were obtained using the Sasebo-GII side-channel evaluation board [2]. The

measurement setup is illustrated in Fig. 1. It has three main components:

o A host computer, which communicates with the device under test (e.g, sending plaintexts, receiving ciphertexts)

and the oscilloscope (e.g., receiving traces).

Sasebo-GII board, equipped with two Xilinx FPGAs. One of them, commonly referred to as control FPGA, manages
the communication with the cryptographic core. The AES Sboxes were deployed on the second FPGA, commonly
referred to as cryptographic FPGA. Sboxes operated at 24 MHz clock frequency. To ensure the same initial
conditions, the Sbox was reset before every experiment. In the case of masked implementations, fresh masks
were generated for every encryption.

o The Tektronix MDO3104 oscilloscope was used for recording the power side-channel traces. In all experiments,
sampling frequency was set to 1 GSamples/s, i.e. time resolution of 10™° seconds. Each data sample was

represented using 8-bit encoding.
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Fig. 1. Measurement setup used for acquiring the power side-channel traces on the Sasebo-GlI board.

2 METRISCA LIBRARY DESCRIPTION
2.1 Introduction

MetriSCA is a software library written in C and C++, which provides a collection of leakage models and the metrics
presented in this paper. The library also includes an application that lets the user process the collected data traces, to

help in the device security evaluation process. The code is available for download at https://metrisca.epfl.ch/ [4].

2.2 Architecture

The block diagram of MetriSCA is depicted in Figure 2. The library contains five main modules: file loader, leakage
model, distinguisher, metric, and profiler. These modules have multiple built-in implementations, which correspond to
different algorithms that can be selected by the user.

The power side-channel traces, the plaintexts, and the encryption keys can be loaded from any file format provided
that a matching file loader implementation is available. The application then converts the input data into a binary
format that is optimized for fast data loading. The latter format can be loaded natively by the application, making it
convenient to share datasets across platforms. The performance of custom loaders is not particularly important as the
loaders are only used once, to create the optimized file. Currently, the library provides the support for the binary format

only; adding support for other formats is in progress.

2.3 Extensibility

The library is built with extensibility in mind, so that new algorithms and file formats can conveniently be added and
integrated by the users. This is achieved by internally representing each module in Figure 2 as a function pointer. Hence,
not only it is easy to extend the functionality of the library, the number of lines of code required for these extensions is

greatly reduced.

2.4 Usage

The library is accompanied by a command-line application, serving as the user interface. It implements commands to
load and analyse trace files. It also integrates documentation about the various commands and related arguments. The
metric outputs are saved in comma-separated value (CSV) format. All the plots in this manuscript are generated using
the MetriSCA application.

Additionally, the application provides commands to manage the trace data. As the size of a dataset can be large, the

application lets the user monitor the datasets currently loaded and unload them, if necessary. Datasets can also be split
Manuscript submitted to ACM
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Fig. 2. Block diagram of the MetriSCA library.

into multiple smaller chunks; splitting is helpful when metrics require multiple repetitions of the experiments for the
same device under test.

The application supports scripting: The users can load text files with a list of commands to be executed sequentially,
thus creating pipelines of operations on the data and avoiding redundant typing otherwise required by the command-line

interface.

2.5 Optimization And Performance

At the moment of writing, MetriSCA is not multi-threaded. However, it implements various techniques to optimize
the analysis runtime. For example, the application supports incremental computation of the correlation, which allows
the metrics to be computed with a different number of traces without having to recompute the correlation at each
computational step.

Some metrics computation, depending on the dataset size, can take considerable time. Furthermore, some intermediate
results can often be reused across metrics. The application, therefore, provides a caching mechanism that saves
intermediate results to the disk, as binary files. The application is then able to recognize the files that can be reused,
based on the information encoded in the file names, and further speed up the computation. If desired, the performance

optimizations can be disabled using the corresponding command-line arguments.
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