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Abstract

An aggregate signature (ASIG) scheme allows any user to compress multiple signatures into a
short signature called an aggregate signature. While a conventional ASIG scheme cannot detect
any invalid messages from an aggregate signature, an ASIG scheme with detecting functionality
(D-ASIG) has an additional property which can identify invalid messages from aggregate sig-
natures. Hence, D-ASIG is useful to reduce the total amount of signature-sizes on a channel.
On the other hand, development of quantum computers has been advanced recently. However,
all existing D-ASIG schemes are insecure against attacks using quantum algorithms, which we
call quantum attacks. In this paper, we propose a D-ASIG scheme with quantum-security
which means security in a quantum setting. Hence, we first introduce quantum-security notions
of ASIGs and D-ASIGs because there is no research on such security notions for (D-)ASIGs.
Second, we propose a lattice-based aggregate one-time signature scheme with detecting function-
ality, and prove that this scheme satisfies our quantum-security in the quantum random oracle
model and the certified key model. Hence, this scheme is the first quantum-secure D-ASIG.

1 Introduction

Background and Related Work. Digital signature is a fundamental primitive in public key cryp-
tography that ensures integrity of data. The range of applications of this primitive is very wide since
publicly verification of data is very useful in many situations. However, when checking validity of
multiple messages simultaneously, a total amount of signature-sizes transmitted on a channel (e.g.,
the internet) is too large, since the total size of signatures is proportional to the number of all the
messages. In order to reduce such an amount of signature-sizes, we can use an aggregate signature
(ASIG) scheme which compresses multiple signatures into a short signature called an aggregate
signature. Boneh et al. introduced the notion of ASIGs and proposed a pairing-based scheme in the
random oracle model (ROM) [4]. Under the certified key model in which each signer has to prove
knowledge of its secret key in order to certify the corresponding public key, Rückert and Schröder
gave a multilinear map-based ASIG scheme without random oracles [27]. Hohenberger, Sahai,
and Waters presented (identity-based) ASIG schemes without random oracles by using multilinear
maps [15]. Boneh and Kim proposed an aggregate one-time signature (AOTS) and an interactive
ASIG based on lattice problems [5]. In addition, other types of aggregate signature schemes have
also been researched. Gentry and Ramzan constructed the first (identity-based) synchronized ASIG
scheme which aggregates only signatures with the same value [13]. Under this restriction, it is
possible to construct ASIG schemes with some properties (e.g., ASIGs without pairing). Thus,
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several synchronized ASIG schemes have been proposed in [13, 1, 16]. Lysyanskaya, Micali, Reyzin,
and Shacham introduced sequential ASIGs which allows each signer to add his/her signature into
the previous aggregate signature, in order [22]. Because there are several useful applications of
sequential ASIGs, many schemes have been proposed in [22, 20, 2, 26, 8, 11, 19, 12]. Hartung et
al. [14] proposed a fault-tolerant ASIG that has functionality of both aggregating multiple signa-
tures and identifying invalid messages from an aggregate signature. In particular, Sato, Shikata,
and Matsumoto introduced the notion of ASIGs with detecting functionality (D-ASIGs) which can
detect invalid messages, and proposed D-ASIG schemes by combining ASIGs with group-testing in
a comprehensive way [29]. Since the detecting property of D-ASIGs with a total amount of small
signature-size is useful, we focus on this topic in public key cryptography.

Furthermore, development of quantum computers has been advanced recently, and many re-
searchers have paid much attention to constructing cryptographic protocols secure against attacks
using quantum algorithms, which we call quantum attacks. In particular, we focus on the security
model where an adversary is allowed to issue a quantum query (i. e., a quantum superposition of
queries) to the signing oracle in a security game [7]. This is because this security model expresses
a practical situation where sufficiently large quantum computers are realized. Regarding existing
researches, Boneh et al. introduced the security model in which an adversary can issue quantum
queries to random oracles (called the quantum random oracle model). Since then, many cryptosys-
tems in security models where issuing quantum queries is allowed have been researched actively
(e.g., [33, 32, 7, 6, 31, 28, 18]). Regarding digital signatures, Boneh and Zhandry gave a formal-
ization of security in this model [7], which we call quantum-security in this paper, and proposed
signature schemes satisfying this formalized quantum-security. As for (D-)ASIGs, however, there is
no research on quantum-security. Furthermore, all existing D-ASIG schemes are insecure against
quantum attacks by using several quantum algorithms such as Shor’s algorithm [30]. Hence, it is
important to research quantum-secure D-ASIG schemes.

Contribution. Our goal is to propose a quantum-secure D-ASIG scheme. To this end, we first
formalize quantum-security notions of (D-)ASIGs since there is no research on (D-)ASIGs in the
security model where an adversary can issue quantum queries to given oracles. Next, we show
that a generic construction of quantum-secure D-ASIGs satisfies our formalized security. Then, we
present a concrete aggregate one-time signature (AOTS) scheme which can be applied to the generic
construction. This implies that the resulting scheme is quantum-secure. Details on our contribution
are shown as follows:

• First, we formalize quantum-security notions of ASIGs and D-ASIGs, namely, security notions
in the model where an adversary is allowed to issue quantum queries to the signing oracle in a
(D-)ASIG’s security game. Following a definition of quantum-security for digital signatures [7],
we give quantum-security definitions for ASIGs and D-ASIGs.

• Second, we propose a quantum-secure AOTS scheme with detecting functionality (D-AOTS).
To this end, we prove that a generic construction starting from a quantum-secure ASIG scheme
and a non-adaptive group testing protocol is a quantum-secure D-ASIG. Then, in order to
obtain a quantum-secure D-ASIG, we propose a lattice-based AOTS scheme satisfying the for-
malized quantum-security of ASIGs in the quantum random oracle model [3] and the certified
key model [21, 27]. Notice that it is widely believed that lattice problems are computation-
ally hard even if it is possible to utilize quantum algorithms. Hence, the resulting D-AOTS
scheme is quantum-secure in the quantum random oracle model and the certified key model.
We claim that this proposed scheme is the first quantum-secure D-ASIG, and would be useful
like [14, 29] in a quantum era.
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Table 1: Comparison of D-ASIG schemes

Scheme Underlying Unforgeability Identifiability Certificateless Total Aggregate
Primitives Model ? Signature-Size

HKKKR ASIG [4] aggUF CMP and wSND ✓ O(d2 log ℓ)|σ|against cCMA against cCMA

SSM ASIG [4] and aggUF CMP and SND ✓ O(d2 log ℓ)(|σ|+ |π|)SNARK [24] against cCMA against cCMA

Our Scheme AOTS aggUF CMP and wSND
O(d2 log ℓ)|σ|in Section 4 against qCMA against qCMA

HKKKR and SSM are concrete D-ASIG schemes which are constructed by applying the schemes described in “Underlying
Primitives” to generic constructions proposed in [14] and [29], respectively. SNARK means succinct non-interactive argument
of knowledge. The terms “Unforgeability” and “Identifiability” are the security notions of D-ASIGs, which were formalized in
[29]. cCMA and qCMA mean “classical chosen message attacks” and “quantum chosen message attacks”, respectively. aggUF
means “aggregate 　 unforgeability”. CMP and SND (resp., wSND) mean completeness and soundness (resp., a weak variant
of soundness) of the identifiability of D-ASIGs. Certificateless model means a model where key-registration is unnecessary. ℓ
(resp. d) is the total number of messages (resp. the maximum number of invalid messages). |σ| (resp. |π|) is the bit-length of

the signature of underlying ASIG (resp. the proof of underlying SNARK).

Furthermore, we compare D-ASIG schemes in order to clarify the difference between existing
D-ASIG schemes and our scheme. Table 1 shows a comparison of D-ASIG schemes. Notice that
ASIGs with interactive tracing functionality [17] are not included in this comparison because the
security model of [17] is different from that of [14, 29]. Regarding the underlying primitives applied
to generic constructions of [14, 29], we have selected schemes whose signature/proof-lengths are the
shortest of existing schemes. First, the advantage of our scheme is summarized as follows: From the
terms “Unforgeability” and “Identifiability” in Table 1, we see that our scheme satisfies the formalized
quantum-security while all existing schemes achieve security only in classical security models. As
described before, it should be noted that all existing D-ASIGs are insecure against quantum attacks.
As another advantage of our scheme, the increment of a total aggregate signature-size of our scheme
is not larger than that of any existing one, even though our scheme achieves security in a quantum
setting. Second, the disadvantage of our scheme lies in that each signer with a key-pair can generate
only one signature, and the security of ours is ensured in the certified key model.

2 Preliminaries

Notation. In this paper, we use the following notation: For a positive integer n, let [n] :=
{1, . . . , n}. For n values x1, . . . , xn and a subset I ⊆ [n] of indexes, let (xi)i∈I be a sequence of
values whose indexes are in I, and let {xi}i∈I be a set of values whose indexes are in I. For a
vector x with dimension n, let xi be the i-th entry (i ∈ [n]). For a m × n matrix X, let xi,j be
the entry at the i-th row and the j-th column (i ∈ [m], j ∈ [n]). For a function f : N → R, if
f(λ) = o(λ−c) for arbitrary positive c, then f is negligible in λ, and we write f(λ) = negl(λ). For
λ ∈ N, let poly(λ) be a universal polynomial in λ. A probability is overwhelming if it is 1− negl(λ).
In addition, we use the following notation for quantum computation. We write an n-qubit state |ψ〉
as a linear combination |ψ〉 =

∑
x∈{0,1}n ψx|x〉 with a basis {|x〉}x∈{0,1}n and amplitudes ψx ∈ C

such that
∑

x∈{0,1}n |ψx|2 = 1. When |ψ〉 is measured, a state x is observed with probability |ψx|2.
Suppose that we have superposition |ψ〉 =

∑
x∈X,y∈Y,z∈Z ψx,y,z|x, y, z〉, where X and Y are finite

sets and Z is a work space. For an oracle O : X → Y , we write quantum access to O as a mapping
|ψ〉 7→

∑
x∈X ,y∈Y,z∈Z ψx,y,z|x, y + O(x), z〉, where + : Y × Y → Y is a group operation on Y.

“Quantum polynomial-time” is abbreviated as QPT.
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2.1 Group Testing

Dorfman presented the first group testing protocol in order to effectively detect blood samples
contaminated by some disease during the world war II [9]. Group testing (e.g., [10]) is a method to
detect positive items among many items with a smaller number of tests than the straightforward
individual testing for each item. There are many applications of group testing, such as screening
blood samples for detecting a disease, and detecting clones which have a particular DNA sequence.

Canonical non-adaptive group testing is designed by a d-disjunct matrix or a d-cover-free family
(e.g., see [10]). A non-adaptive group testing protocol with u tests for ℓ items is represented by a
u× ℓ binary matrix, and the (i, j)-th element of the matrix is equal to 1 if and only if the i-th test
is executed to the j-th item. The d-disjunct property of binary matrices is defined as follows.

Definition 1 (d-disjunct). A matrix G = [g1, . . . , gℓ] ∈ {0, 1}u×ℓ is d-disjunct if for any d columns
gs1 , . . . , gsd and any ḡ ∈ {g1, . . . , gℓ}\{gs1 , . . . , gsd} (s1, . . . , sd ∈ [ℓ]), there exists z ∈ [u] such that
vz < ḡz, where v =

∨d
i=1 gsi , and

∨
is the bitwise-OR.

By using a d-disjunct matrix, a non-adaptive group testing protocol can efficiently detect at
most d positive items. We simply describe the process of group testing with a d-disjunct matrix
G ∈ {0, 1}u×ℓ as follows: Let Si(G) = {j | j ∈ [ℓ] ∧ gi,j = 1} for i ∈ [u] and G ∈ {0, 1}u×ℓ.

Step 1. Initialize a set J ← {1, 2, . . . , ℓ} of indexes of positive items’ candidates.

Step 2. For each i ∈ [u], compress items whose indexes are in Si(G).

Step 3. For each i ∈ [u], set J ← J\Si(G) if the test result of the i-th compressed item is negative.
Here, note that the test result of a compressed item shows positive if at least one positive item
are included, and shows negative otherwise.

Step 4. Output J .

Then, the output J is a set of indexes of all positive items, due to the d-disjunct property of G.

2.2 Aggregate Signatures (with Detecting Functionality)

We first describe the syntax of aggregate signatures and formalize its quantum-security notion.

Definition 2 (Aggregate Signatures). An aggregate signature (ASIG) scheme ASig consists of five
polynomial-time algorithms (KGen, Sign,Vrfy,Agg,AVrfy): For a security parameter λ, let M =
M(λ) be a message space, and let S = S(λ) be a signature space.

• (pk, sk)← KGen(1λ): The randomized algorithm KGen takes as input a security parameter 1λ,
and it outputs a public key pk and a secret key sk.

• σ ← Sign(sk,m): The randomized or deterministic algorithm Sign takes as input a secret key
sk and a message m ∈M, and it outputs a signature σ ∈ S.

• 1/0 ← Vrfy(pk,m, σ): The deterministic algorithm Vrfy takes as input a public key pk, a
message m ∈M, and a signature σ ∈ S, and it outputs 1 (accept) or 0 (reject).

• σ̂ ← Agg((pk1,m1, σ1), . . . , (pkℓ,mℓ, σℓ)): The randomized or deterministic algorithm Agg
takes as input a tuple (pk1,m1, σ1), . . ., (pkℓ,mℓ, σℓ) of public keys, messages and signatures,
and it outputs an aggregate signature σ̂ ∈ S.

4



• 1/0 ← AVrfy((pk1,m1), . . . , (pkℓ,mℓ), σ̂): The deterministic algorithm AVrfy takes as input a
tuple (pk1,m1), . . . , (pkℓ,mℓ) of public keys and messages, and an aggregate signature σ̂ ∈ S,
and it outputs 1 (accept) or 0 (reject).

We require that an ASIG scheme satisfies correctness as follows.

Definition 3 (Correctness). An ASIG scheme ASig = (KGen, Sign,Vrfy,Agg,AVrfy) satisfies correctness
if the following conditions hold:

• For every (pk, sk) ← KGen(1λ) and every m ∈ M, it holds that Vrfy(pk,m, σ) = 1 with
overwhelming probability, where σ ← Sign(sk,m).

• For any ℓ = poly(λ), every (pk1, sk1) ← KGen(1λ), . . . , (pkℓ, skℓ) ← KGen(1λ), and every
m1, . . . ,mℓ ∈M, it holds that AVrfy((pk1,m1), . . . , (pkℓ,mℓ), σ̂) = 1 with overwhelming proba-
bility, where σ̂ ← Agg((pk1,m1, σ1), . . . , (pkℓ,mℓ, σℓ)) and σi ← Sign(ski,mi) for every i ∈ [ℓ].

Following definitions of quantum-security of digital signatures [7] and classical security of ASIGs [4],
we formalize aggregate unforgeability against quantum chosen message attacks (denoted by aggUF-qCMA
security) as a quantum-security notion of ASIGs, .

Definition 4 (aggUF-qCMA security). An ASIG scheme ASig = (KGen, Sign,Vrfy,Agg,AVrfy) satis-
fies aggUF-qCMA security if for any QPT adversary A against ASig, its advantage Advagguf-qcma

ASig,A (λ) :=
Pr[A wins] is negligible in λ. [A wins] is the event that A wins in the following game:

Setup. A challenger generates (pk∗, sk∗)← KGen(1λ), and sends pk∗ to A.

Queries. Given a quantum signing-query (i.e., a superposition of messages)∑
m∈M,s∈S,z

ψm,s,z|m, s, z〉,

the signing oracle SIGN chooses randomness r used in the Sign algorithm, where it does not
need to choose randomness r if Sign is deterministic. Then, it returns∑

m∈M,s∈S,z
ψm,s,z|m, s⊕ Sign(sk∗,m; r), z〉.

Let Q be the number of queries which A submits to the SIGN oracle.

Output. A outputs (PM (1), σ̂(1)), . . . , (PM (Q+1), σ̂(Q+1)), where for i ∈ [Q+1], PM (i) = ((pk
(i)
1 ,m

(i)
1 ),

. . . , (pk
(i)

ℓ(i)
,m

(i)

ℓ(i)
)). A wins if it holds that (i) AVrfy(PM (i), σ̂(i)) = 1 for every i ∈ [Q + 1],

(ii) there exists m∗(i) ∈ M such that (pk∗,m∗(i)) ∈ PM (i) for every i ∈ [Q + 1], and (iii)
(pk∗,m∗(1)), . . . , (pk∗,m∗(Q+1)) are distinct.

Next, following [29], we describe the syntax of D-ASIGs.

Definition 5 (Aggregate Signatures with Detecting Functionality). An aggregate signature scheme
with detecting functionality (D-ASIG) consists of five polynomial-time algorithms (KGen, Sign,Vrfy,
DAgg,DVrfy) associated with a set G consisting of d-disjunct matrices: For a security parameter λ,
let M =M(λ) be a message space, and let S = S(λ) be a signature space.

• (pk, sk) ← KGen(1λ):　 The randomized algorithm KGen takes as input a security parameter
1λ, and it outputs a public key pk and a secret key sk.
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• σ ← Sign(sk,m):　The randomized or deterministic algorithm Sign takes as input a secret key
sk and a message m ∈M, and it outputs a signature σ ∈ S.

• 1/0 ← Vrfy(pk,m, σ): The deterministic algorithm Vrfy takes as input a public key pk, a
message m ∈M, and a signature σ ∈ S, and it outputs 1 (accept) or 0 (reject).

• (σ̂1, . . . , σ̂u) ← DAgg(G, (pk1,m1, σ1), . . . , (pkℓ,mℓ, σℓ)): The randomized or deterministic al-
gorithm DAgg takes as input a d-disjunct matrix G ∈ {0, 1}u×ℓ∩G, a tuple ((pk1,m1, σ1), . . . ,
(pkℓ,mℓ, σℓ)) of public keys, messages, and signatures, and it outputs a tuple (σ̂1, . . . , σ̂u) of
aggregate signatures.

• J ← DVrfy(G, ((pk1,m1), . . . , (pkℓ,mℓ)), (σ̂1, . . . , σ̂u)): The deterministic algorithm DVrfy takes
as input a d-disjunct matrix G ∈ {0, 1}u×ℓ∩G, a tuple ((pk1,m1), . . . , (pkℓ,mℓ)) of public keys
and messages, and a tuple (σ̂1, . . . , σ̂u) of aggregate signatures, and it outputs a set J of public
keys and messages.

We require that D-ASIG scheme satisfies correctness.

Definition 6 (Correctness). A D-ASIG scheme D-ASig = (KGen, Sign,Vrfy,DAgg,DVrfy) satisfies
correctness if the following conditions hold:

• For every (pk, sk) ← KGen(1λ) and every m ∈ M, it holds that Vrfy(pk,m, σ) = 1 with
overwhelming probability, where σ ← Sign(sk,m).

• For any ℓ = poly(λ), every d-disjunct matrix G ∈ {0, 1}u×ℓ∩G, every (pk1, sk1)← KGen(1λ), . . .,
(pkℓ, skℓ) ← KGen(1λ), and every m1, . . . ,mℓ ∈ M, it holds that DVrfy(G, ((pk1,m1), . . . ,
(pkℓ,mℓ)), (σ̂1, . . . , σ̂ℓ)) = ∅ with overwhelming probability, where (σ̂1, . . . , σ̂ℓ) ← DAgg(G,
(pk1,m1, σ1), . . . , (pkℓ,mℓ, σℓ)) and σi ← Sign(ski,mi) for every i ∈ [ℓ].

Regarding classical security notions of D-ASIGs, unforgeability and identifiability were formal-
ized in [29]. Following the definitions of [29] and [7], we define these notions in the security model
where an adversary is allowed to issue quantum queries to given oracles. First, the signing ora-
cle SIGN which an adversary is given quantum access to is defined as follows: Given a quantum
signing-query ∑

m∈M,s∈S,z
ψm,s,z|m, s, z〉,

the signing oracle SIGN chooses randomness r used in the Sign algorithm, where it does not need
to choose randomness r if Sign is deterministic. Then, it returns∑

m∈M,s∈S,z
ψm,s,z|m, s⊕ Sign(sk∗,m; r), z〉.

Next, we define the two security notions in the quantum security model. Regarding the un-
forgeability of D-ASIGs in the security model, we define detectable aggregate unforgeability against
quantum chosen message attacks, denoted by daggUF-qCMA security.

Definition 7 (daggUF-qCMA security). A D-ASIG scheme D-ASig = (KGen, Sign,Vrfy,DAgg,DVrfy)
satisfies daggUF-qCMA security if for any QPT adversary A against ASig, its advantage
Advdagguf-qcma

ASig,A (λ) := Pr[A wins] is negligible in λ. [A wins] is the event that A wins in the following
game:
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Setup. A challenger generates (pk∗, sk∗)← KGen(1λ), and sends pk∗ to A.

Queries. A is allowed to issue quantum queries to the SIGN oracle. Let Q be the number of queries
which A submits to the SIGN oracle.

Output. A outputs (G(1), PM (1), Σ̂(1)), . . . , (G(Q+1), PM (Q+1), Σ̂(Q+1)), where for every i ∈ [Q +

1], G(i) ∈ {0, 1}u(i)×ℓ(i)∩G, PM (i) = ((pk
(i)
1 ,m

(i)
1 ), . . . , (pk

(i)

ℓ(i)
,m

(i)

ℓ(i)
)) and Σ̂(i) = (σ̂

(i)
1 , . . . , σ̂

(i)

u(i)).
The challenger computes J (i) ← DVrfy(G(i), PM (i), Σ̂(i)) for every i ∈ [Q + 1]. A wins in
this game if the following conditions hold: (i) (pk∗,m∗(i)) /∈ J (i) for every i ∈ [Q + 1], (ii)
(pk∗,m∗(i)) ∈ PM (i) for every i ∈ [Q+1], and (iii) (pk∗,m∗(1)), . . . , (pk∗,m∗(Q+1)) are distinct.

Definition 8 (Identifiability against Quantum Chosen Message Attacks). Regarding the identifiability
of a D-ASIG scheme D-ASig = (KGen, Sign,Vrfy,DAgg,DVrfy), we define completeness and sound-
ness, which are denoted by cmp-qCMA security and snd-qCMA security, respectively. Let A be a d-
dishonest QPT adversary against D-ASig, where a QPT adversary A against D-ASig is d-dishonest
if it outputs (G, (pk1,m1, σ1), . . . , (pkℓ,mℓ, σℓ)) such that |{(pki,mi) | i ∈ [ℓ] ∧ Vrfy(pki,mi, σi) =
0}| ≤ d, in the following security game:

Setup. A challenger generates (pk∗, sk∗)← KGen(1λ) and sends pk∗ to A.

Queries. A is allowed to issue quantum queries to the SIGN oracle.

Output. A outputs (G, (pk1,m1, σ1), . . . , (pkℓ,mℓ, σℓ)). The challenger computes (σ̂1, . . . , σ̂u) ←
DAgg(G, (pk1,m1, σ1), . . . , (pkℓ,mℓ, σℓ)) and J ← DVrfy(G, ((pk1,m1), . . . , (pkℓ,mℓ)), (σ̂1, . . . , σ̂u)).

The cmp-qCMA security and snd-qCMA security are defined as follows: For a set {(pk1,m1, σ1), . . . ,
(pkℓ,mℓ, σℓ)}, let D = {(pki,mi) | i ∈ [ℓ] ∧ Vrfy(pki,mi, σi) = 0}, and D̄ = {(pki,mi) | i ∈
[ℓ] ∧ Vrfy(pki,mi, σi) = 1}.

• Completeness: D-ASig satisfies cmp-qCMA security against d-dishonest adversaries, if for
any d-dishonest QPT adversary A against D-ASig, its advantage

Advcmp-qcma
D-ASig,A (λ) := Pr

[
∃m∗ ∈ {mi}i∈[ℓ], (pk∗,m∗) ∈ D̄ ∩ J

]
is negligible in λ.

• Soundness: D-ASig satisfies snd-qCMA security against d-dishonest adversaries, if for any
d-dishonest QPT adversary A against D-ASig, its advantage

Advsnd-qcma
D-ASig,A (λ) := Pr

[
∃m∗ ∈ {mi}i∈[ℓ], (pk∗,m∗) ∈ D\J

]
is negligible in λ.

In addition, weak-snd-qCMA security is defined in the same way as snd-qCMA security except that
the advantage of a d-dishonest QPT adversary A against D-ASig is defined as Advw-snd-qcma

D-ASig,A (λ) :=
Pr[∃distinct m∗k1 , . . . ,m

∗
kt
∈ {mi}i∈[ℓ], t ≥ Q+1∧(pk∗,m∗k1), . . . , (pk

∗,m∗kt) ∈ D\J ], where k1, . . . , kt ∈
[ℓ] are distinct, and Q is the number of queries which A submits to the SIGN oracle.

The weak-snd-qCMA security is a weak variant of snd-qCMA security since the winning condition
of weak-snd-qCMA security is a special case of that of snd-qCMA security. Furthermore, Proposition 1
shows the relation between daggUF-qCMA security and weak-snd-qCMA security.
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Proposition 1. If a D-ASIG scheme D-ASig = (KGen, Sign,Vrfy,DAgg,DVrfy) fulfills daggUF-qCMA
security, then D-ASig also satisfies weak-snd-qCMA security.

Proof. Let A be a QPT adversary breaking the weak-snd-qCMA security of D-ASig, and let Q
be the number of signing-queries issued by A. By using A, we construct a QPT algorithm F
breaking the daggUF-qCMA security of D-ASig, as follows: F takes as input a public key pk∗

and sends pk∗ to A. When A issues a signing-query, F simulates the signing oracle by using
the oracle given in the daggUF-qCMA game, in the straightforward way. In Output phase, A
outputs (G, (pk1,m1, σ1), . . . , (pkℓ,mℓ, σℓ)). Then, F computes (σ̂1, . . . , σ̂u) ← DAgg(G, (pk1,m1,
σ1), . . . , (pkℓ,mℓ, σℓ)). If there exist distinct m∗k1 , . . . ,m

∗
kt
∈ {mi}i∈[ℓ] such that t ≥ Q + 1 and

(pk∗,m∗k1), . . . , (pk
∗,m∗kt) ∈ D\J , then F outputs (G(1), PM (1), Σ̂(1)), . . . , (G(Q+1), PM (Q+1), Σ̂(Q+1))

by setting G(i) = G, PM (i) = ((pk1,m1), . . . , (pkℓ,mℓ)), and Σ̂(i) = (σ̂1, . . . , σ̂u) for i ∈ [Q + 1].
Otherwise, F aborts.

We analyze the output of F. We assume that the A’s output fulfills the winning condition
∃distinct m∗k1 , . . . ,m

∗
kt
∈ {mi}i∈[ℓ], t ≥ Q+1 and (pk∗,m∗k1), . . . , (pk

∗,m∗kt) ∈ D\J . The first winning
condition of daggUF-qCMA security holds since for i ∈ [Q + 1], there exists (pk∗,m∗ki) /∈ J

(i) = J .
The second condition also holds since for i ∈ [Q + 1], (pk∗,m∗ki) is included in PM (i). The third
condition holds clearly since m∗k1 , . . . ,m

∗
kt

are distinct due to the winning condition of A. Hence, the
output of F is a valid forgery in the daggUF-qCMA security game, and then we obtain the advantage
Advw-snd-qcma

D-ASig,A (λ) ≤ Advdagguf-qcma
D-ASig,F (λ).

Quantum Random Oracle Model and Certified Key Model. The quantum random oracle
model is a model where a hash function is modeled as an ideal random function, and any party is
allowed to issue quantum queries to this function as an oracle called a quantum random oracle. See
[3] for details on this model. In addition, the certified key model is a model where every signer has
to provide a key-pair (pk, sk) in order to certify pk, and (pk, sk) is added to the list L of registered
key-pairs if sk is a valid secret key corresponding to pk. Following [21, 27], we use this model in
order to construct a quantum-secure AOTS scheme.

3 Quantum-Secure D-ASIG from Quantum-Secure ASIG

We consider a D-ASIG generic construction starting from an ASIG scheme and a non-adaptive group
testing protocol. This scheme is the same as a generic construction of [29] except that we assume
the underlying ASIG satisfies the formalized quantum-security. Then, we prove that this D-ASIG
scheme satisfies our quantum-security. The D-ASIG scheme D-ASig = (KGen, Sign,Vrfy,DAgg,DVrfy)
is as follows: Let ASig = (KGenasig, Signasig,Vrfyasig,Aggasig,AVrfyasig) be an ASIG scheme. For a
matrix G ∈ {0, 1}u×ℓ and i ∈ [u], let Si(G) = {j | j ∈ [ℓ] ∧ gi,j = 1}.

• (pk, sk)← KGen(1λ): Output (pk, sk)← KGenasig(1λ).

• σ ← Sign(sk,m): Output σ ← Signasig(sk,m).

• 1/0← Vrfy(pk,m, σ): Output 1/0← Vrfyasig(pk,m, σ).

• (σ̂1, . . . , σ̂u) ← DAgg(G, (pk1,m1, σ1), . . . , (pkℓ,mℓ, σℓ)): For each i ∈ [u], generate σ̂i ←
Aggasig((pkk,mk, σk)k∈Si(G)). Output (σ̂1, . . . , σ̂u).

• J ← DVrfy(G, ((pk1,m1), . . . , (pkℓ,mℓ)), (σ̂1, . . . , σ̂u)): Set J ← {(pk1,m1), . . . , (pkℓ,mℓ)}. For
each i ∈ [u], if AVrfyasig((pkk,mk)k∈Si(G), σ̂i) = 1 holds, then set J ← J\{(pkk,mk)}k∈Si(G).
Output J .
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Theorems 1 and 2 show the quantum-security of D-ASig.

Theorem 1. If an ASIG scheme ASig fulfills aggUF-qCMA security, then the resulting D-ASIG
scheme D-ASig satisfies daggUF-qCMA security.

Proof. Let A be a QPT adversary breaking the daggUF-qCMA security of D-ASig, and let Q be the
number of (quantum) signing-queries issued by A. By using A, we construct a QPT algorithm F
breaking the aggUF-qCMA security of ASig, in the following way: F is given a public key pk∗ and runs
A by sending pk∗. When A issues a (quantum) signing-query, F responds to this query by using the
given signing oracle, in the straightforward way. When A outputs (G(1), PM (1), Σ̂(1)), . . . , (G(Q+1),
PM (Q+1), Σ̂(Q+1)) in Output phase, F finds distinct (pk∗,m∗(1)), . . . , (pk∗,m∗(Q+1)) such that (pk∗,m∗(i)) /∈
J (i) and (pk∗,m∗(i)) ∈ PM (i) for i ∈ [Q + 1] by following the procedure of the challenger of
the daggUF-qCMA game. Then, for every i ∈ [Q + 1], it finds an index ji ∈ [u(i)] such that
AVrfyasig((pkk,mk)k∈Sji

(G(i)), σ̂
(i)
ji
) = 1 and (pk∗,m∗(i)) ∈ {(pkk,mk)}k∈Sji

(G(i)), and outputs the

pairs ((pkk,mk)k∈Sji
(G(i)), σ̂

(i)
ji
)i∈[Q+1]. If there do not exist distinct (pk∗,m∗(1)), . . . , (pk∗,m∗(Q+1))

satisfying the above conditions, then F aborts.
F clearly simulates the environment of A. We analyze the output of F. The A’s output satisfies

the conditions (i) (pk∗,m∗(i)) /∈ J (i) for every i ∈ [Q+1], (ii) (pk∗,m∗(i)) ∈ PM (i) for every i ∈ [Q+1],
and (iii) (pk∗,m∗(1)), . . . , (pk∗,m∗(Q+1)) are distinct. Owing to the conditions (ii) and (iii), there
exist distinct pairs (pk∗,m∗(1)), . . . , (pk∗,m∗(Q+1)) such that (pk∗,m∗(i)) ∈ PM (i) for i ∈ [Q + 1].
Furthermore, the condition (i) ensures that for i ∈ [Q+ 1], there exists an aggregate signature σ̂(i)ji

(where ji ∈ [u(i)]) such that (pk∗,m∗(i)) ∈ {(pkk,mk)}k∈Sji
(G(i)) and AVrfyasig((pkk,mk)k∈Sji

(G(i)),

σ̂
(i)
ji
) = 1. Therefore, the tuple ((pkk,mk)k∈Sji

(G(i)), σ̂
(i)
ji
)i∈[Q+1] is a valid forgery in the aggUF-qCMA

security game. Then, we obtain the advantage Advdagguf-qcma
D-ASig,A (λ) ≤ Advagguf-qcma

ASig,F (λ), and the proof
is completed.

Theorem 2. The resulting D-ASIG scheme D-ASig satisfies the following identifiability: Let d be
arbitrary positive integer.

(i) If G is a d-disjunct matrix, and an ASIG scheme ASig meets correctness, then D-ASig satisfies
cmp-qCMA security against d-dishonest adversaries.

(ii) If an ASIG scheme ASig meets aggUF-qCMA security, then D-ASig satisfies weak-snd-qCMA
security against d-dishonest adversaries.

Proof. Let A be a QPT adversary against D-ASig. It is shown that D-ASig fulfills cmp-qCMA
security, in the same way as the proof of Theorem 2 in [29], because this proof do not have to
use any list of quantum queries. Thus, we have Advcmp-qcma

D-ASig,A (λ) ≤ negl(λ). We can show that
D-ASig satisfies weak-snd-qCMA security by combining Proposition 1 and Theorem 1. Thus, we
have Advw-snd-qcma

D-ASig,A (λ) ≤ Advagguf-qcma
ASig,F (λ).

4 Quantum-Secure Aggregate One-Time Signature Scheme from
Lattices

In this section, we propose a quantum-secure AOTS scheme which can be applied to the generic
construction in Section 3. In order to prove the security of this AOTS, we describe the definition of
the short integer solution (SIS) problem which is a computationally hard problem related to lattice
problems [25].
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Definition 9 (SISR,k,q,β). For a security parameter λ, let k = k(λ), q = q(λ), and β = β(λ) be
positive integers, and let R = Rλ be a ring with a norm function ‖ · ‖ : R → N. The SISR,k,q,β

problem is as follows: Given a vector a
$← Rk

q , find a non-zero vector x ∈ Rk such that a⊤ · x = 0
and ‖x‖ ≤ β. In addition, the SISR,k,q,β assumption is defined as follows: For any polynomial-time
algorithm A, Pr

a
$←Rk

q

[
a⊤ · x = 0 ∧ ‖x‖ ≤ β ∧ x 6= 0 | A(a)→ x ∈ Rk

]
is negligible in λ.

Then, we present an SIS-based AOTS scheme. This scheme is constructed by combining an
existing SIS-based one-time signature scheme of [23] and the generic construction of quantum-
secure signatures in the quantum random oracle model [7]. Given one-time signatures σ1, . . . , σℓ,
our AOTS generates an aggregate signature by computing

∑
i∈[ℓ] σi. However, there is a rogue-key

attack against this AOTS. Hence, we assume the certified key model in order to prevent this attack.
Our AOTS scheme AOTS = (KGen, Sign,Vrfy,Agg,AVrfy) is constructed as follows: For a se-

curity parameter λ, let M = {0, 1}poly(λ) be a message space and U = {0, 1}poly(λ) be a random-
ness space. Let k, q, βs, βm, and βVrfy be positive integers, and let R be a ring. For β ∈ N, let

Bβ = {r ∈ R | ‖r‖ ≤ β}. As system parameters of AOTS, choose a
$← Rk

q and a cryptographic hash
function H :M×U → Bβm .

• (pk, sk) ← KGen(1λ): Choose s0, s1
$← Bk

βs
and r

$← U , and then compute v0 ← a⊤s0 and
v1 ← a⊤s1. Output pk = (v0, v1, r) and sk = (s0, s1, r).

• σ ← Sign(sk,m): Compute h← H(m, r). Output σ ← s0 · h+ s1 ∈ Rk.

• 1/0← Vrfy(pk,m, σ): Compute h← H(m, r). Output 1 if a⊤σ = v0 · h+ v1 and ‖σ‖ ≤ βVrfy,
and output 0 otherwise.

• σ̂ ← Agg((pk1,m1, σ1), . . . , (pkℓ,mℓ, σℓ)): Output σ̂ ←
∑

i∈[ℓ] σi ∈ Rk.

• 1/0← AVrfy((pk1,m1), . . . , (pkℓ,mℓ), σ̂): Let pki = (vi,0, vi,1, ri) and hi = H(mi, ri) for i ∈ [ℓ].
Output 1 if a⊤ · σ̂ =

∑
i∈[ℓ](vi,0 · hi + vi,1) and ‖σ̂‖ ≤ ℓ · βVrfy, and output 0 otherwise.

We assume R = Zn×n or R = Z[X]/(Xn + 1). AOTS satisfies correctness if it holds that
βVrfy ≥ n · βs(βm + 1). Furthermore, Theorem 3 shows the quantum-security of AOTS.

Theorem 3. If the SIS assumption SISR,k,q,2βVrfy
holds, then the AOTS scheme AOTS satisfies

aggUF-qCMA security in the quantum random oracle model and the certified key model.

Proof. Let A be a QPT adversary against AOTS. Let Qh be the number of queries which A submits
to the random oracleH. In order to prove Theorem 3, we consider security games Game0, . . . ,Game4.
Game0: This game is the ordinary aggUF-qCMA security game. Then, the probability that A wins in
Game0 is ϵ = Advagguf-qcma

AOTS,A (λ). Assuming ϵ is non-negligible, there exists a polynomial p = poly(λ)
such that poly(λ) > 1/ϵ for sufficiently large λ.
Game1: This game is the same as Game0 except that the random oracle H is defined as H(m, r) =
W (V (m, r)), where V : M × U → [κ] and W : [κ] → Bβm are random oracles, and we define
κ = 2C · p ·Q3

h for some constant C. Due to Lemma 2.4 in [7] (given by [32]), A wins Game1 with
at least probability (ϵ− 1/(2p)).
Game2: This game is the same as Game1 except that, at the beginning of the game, κ hash values
h1, . . . , hκ ∈ Bβm are chosen uniformly at random, and H is defined as H(m, r) = hV (m,r). Then,
it is possible to simulate V by using a 2Qh-wise independent hash function, due to Lemma 2.2 in
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[7] (given by [32]). The hash values h1, . . . , hκ are chosen uniformly at random and independent of
queries (m, r). Thus, A cannot distinguish between Game1 and Game2.
Game3: This game is the same as Game2 except for measuring the value of V (m, r∗). Due to Lemma
2.1 in [7], the probability that A wins in this game is at least (ϵ− 1/(2p))/κ.
Game4: This game is the same as Game3 except that, at the beginning of the game, the challenger

chooses i∗ $← [κ] and checks whether i∗ is equal to the result of measuring the value of V (m, r∗), at
the end of the game. The result of this measurement is equal to i∗ with at least probability 1/κ.
Thus, A wins this game with at least probability (ϵ− 1/(2p))/κ2

By using the adversary which wins in Game4, we construct a PPT algorithm S solving SISR,k,q,2βVrfy

as follows: Given an SISR,k,q,2βVrfy
instance a ∈ Rk

q , S generates pk∗ = (v∗0, v
∗
1, r
∗) and sk∗ =

(s∗0, s
∗
1, r
∗) following the KGen algorithm, and chooses h1, . . . , hκ

$← Bβm , i∗ $← [κ], and a 2Qh-wise
independent hash function. Then S sets a list L← ∅ and gives pk∗ to A.

When A submits a key-pair (pk, sk) to certify pk, S sets L← L∪ {(pk, sk)} if sk is the secret key
corresponding to pk. S responds to a quantum query to the SIGN oracle by using sk∗ = (s∗0, s

∗
1, r
∗),

and responds to quantum queries to the H oracle by using the values h1, . . . , hκ and a 2Qh-wise
independent hash function.

In Output phase, A outputs (PM (1), σ̂(1)) and (PM (2), σ̂(2)). Then S checks whether it holds
that AVrfy(PM (i), σ̂(i)) = 1 for i ∈ {1, 2}, there exists m∗(i) ∈M such that (pk∗,m∗(i)) ∈ PM (i) for
i ∈ {1, 2}, and (pk∗,m∗(1)), . . . , (pk∗,m∗(2)) are distinct. Furthermore, it checks whether all public
keys pk(i)1 , . . . , pk

(i)

ℓ(i)
∈ PM (i) (except for pk∗) are registered in L for i ∈ {1, 2}, and i∗ = V (m∗(i), r∗)

holds for some i ∈ {1, 2}. If the output of A does not satisfy these conditions, S aborts. If
the A’s output satisfies these ones, S checks whether Vrfy(pk∗,m∗(i), σ∗(i)) = 1 for i ∈ {1, 2},
where let σ∗(i) = σ̂(i) −

∑
j∈[ℓ(i)] s.t. (pk

(i)
j m

(i)
j ) ̸=(pk∗,m∗(i))

(
s
(i)
j,0 · h

(i)
j + s

(i)
j,1

)
for i ∈ {1, 2}, let sk

(i)
j =

(s
(i)
j,0, s

(i)
j,1, r

(i)
j ), and let h(i)j = H(m

(i)
j , r

(i)
j ) for i ∈ {1, 2} and j ∈ [ℓ(i)]. Let h∗(i) = H(m∗(i), r∗).

If Vrfy(pk∗,m∗(i), σ∗(i)) = 1 holds, it is proved that (s∗0h
∗(i) + s∗1, σ

∗(i)) is a collision of a for some
i ∈ {1, 2} (such that i∗ 6= V (m∗(i), r∗)), by combining the proofs of Theorem 3.2 and Lemma 4.7
in [23]. Namely, a⊤σ∗(i) = a⊤(s∗0h

∗(i) + s∗1) and σ∗(i) 6= s∗0h
∗(i) + s∗1 hold with at least probability

O((ϵ− 1/(2p))/κ2). Hence, the non-zero vector σ∗(i) − (s∗0h
∗(i) + s∗1) is a solution to SISR,k,q,2βVrfy

,
such that ‖σ∗(i) − (s∗0h

∗(i) + s∗1)‖ ≤ 2βVrfy and a⊤(σ∗(i) − (s∗0h
∗(i) + s∗1)) = 0. If the SISR,k,q,2βVrfy

assumption holds, we have O((ϵ− 1/(2p))/κ2) ≤ negl(λ), namely, ϵ− 1/(2p) ≤ negl(λ) holds. Since
ϵ > 1/p, 1/(2p) < negl(λ) holds, but this contradicts the fact p = poly(λ). Therefore, ϵ is negligible
in λ.

5 Conclusion Remarks

In this paper, we proposed a quantum-secure D-ASIG scheme. To this end, we did the following:
First, we formalized quantum-security notions of ASIGs and D-ASIGs. Concretely, we formalized
aggUF-qCMA security for ASIGs, and formalized aggUF-qCMA security, cmp-qCMA security, and
(weak-)snd-qCMA security for D-ASIGs. Second, we showed a D-ASIG generic construction starting
from any aggUF-qCMA secure ASIG scheme and any non-adaptive group testing protocol with d-
disjunct matrices, and then we proved that this scheme satisfies our quantum-security notions
daggUF-qCMA security, cmp-qCMA security, and weak-snd-qCMA security. Finally, we proposed
a lattice-based AOTS scheme with aggUF-qCMA security. To obtain a quantum-secure D-AOTS
scheme, it is possible to apply this AOTS to the D-ASIG generic construction. Therefore, the
resulting D-AOTS scheme is the first quantum-secure D-ASIG scheme.
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We should remark that it is possible to construct a D-AOTS with snd-qCMA security, by com-
bining our AOTS with a proof of knowledge system in the security model where an adversary utilizes
quantum computations by itself, but issues only classical queries. This construction is the same as
the D-ASIG generic construction with the soundness of the identifiability of D-ASIGs [29].
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