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Abstract. The cloud-based Internet of Things (IoT) creates opportuni-
ties for more direct integration of the physical world and computer-based
systems, allowing advanced applications based on sensing, analyzing and
controlling the physical world. IoT deployments, however, are at a par-
ticular risk of counterfeiting, through which an adversary can corrupt
the entire ecosystem. Therefore, entity authentication of edge devices is
considered an essential part of the security of IoT systems. A recent pa-
per of Farha et al. suggested an entity authentication scheme suitable for
low-resource IoT edge devices, which relies on SRAM-based physically
unclonable functions (PUFs). In this paper we analyze this scheme. We
show that, while it claims to offer strong PUF functionality, the scheme
creates only a weak PUF: an active attacker can completely read out
the secret PUF response of the edge device after a very small amount of
queries, converting the scheme into a weak PUF scheme which can then
be counterfeited easily. After analyzing the scheme, we propose an alter-
native construction for an authentication method based on SRAM-PUF
which better protects the secret SRAM startup state.

Keywords: Entity authentication, SRAM-PUF, Physical security, Security
analysis.

1 Introduction

1 The Internet of Things is an important new application domain for connected
computing. It facilitates the connection of physical objects, such as sensors and
actuators, to the digital domain. This synergy allows us to monitor and control
far-off devices with improved accessibility, and to automate management pro-
cesses. For example, a smart traffic control system can optimize vehicle routing
with the aid of traffic sensors. A typical IoT deployment consists of a large num-
ber of edge devices connected to a powerful central cloud server. It is important
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to keep in mind that many IoT edge devices, especially the low budget ones,
have restricted computational power and limited energy budgets.

Because IoT deployments rely on many low-powered edge devices, they are
at a particular risk of counterfeiting. An adversary who counterfeits an edge
device can corrupt the entire ecosystem, by sending false data to the cloud
server. Such an adversary can also gain financial benefit by reverse-engineering
or stealing original designs, and then making cheap clones of the edge devices
that abuse the resources provided by the cloud server. A particular risk comes
from the overproduction scenario, in which a subcontractor hired to produce a
limited amount of IoT edge devices produces a much larger amount, and sells
the surplus by itself. To protect against this risk, each IoT edge device needs to
be uniquely identified and authenticated before connecting to the cloud server.
Traditional ID mechanisms, however, are not feasible in IoT, due to the con-
strained runtime environment of the IoT edge device. Other mechanisms, which
rely on a standalone secure element chips or e-fuses, introduce additional costs
to the edge device and make them more difficult to deploy.

A recent paper of Farha et al. [4] suggested an entity authentication scheme
suitable for low-resource IoT edge devices, based on physically unclonable func-
tions, or PUFs [6,15]. A PUF is a function that maps between challenges and
responses, and is embodied by a certain physical device. A good PUF is easy to
evaluate on one particular device, but hard to characterize and replicate on a
different device. A PUF is considered weak if the number of challenge-response
pairs (CRPs) is limited, and strong if there is a significant number of CRPs [7]. As
more formally stated by Herder et al. [8], one of the requirements for a strong
PUF is: “an adversary given a polynomial-sized sample of adaptively chosen
CRPs cannot predict the response to a new, randomly chosen challenge.”

To use PUFs for authentication, the verifier, or authenticator, first issues a
series of challenges to the prover in a safe setting, and records the responses in a
database. Then, to authenticate, the verifier issues one of the stored challenges
to the prover, collects the response, and compares it to the pre-recorded one.
Obviously a strong PUF is better for the purpose of authentication than a weak
PUF, since the limited number of available CRPs can severely limit the usable
runtime of the authentication system.

The scheme of Farha et al. [4] relies on static random access memory (SRAM)
based PUFs. SRAM is a memory technology widely used in low-cost processors.
Each SRAM cell is composed of two cross-coupled inverters designed to be sym-
metric. Process variations, however, disrupt this symmetry. As a result, each
individual SRAM cell has its own bias toward a preferable start-up value (either
1, 0, or random). The start-up values are random between devices but are largely
static per device. Thus, using an array of SRAM cells generates a unique fin-
gerprint, as originally proposed by Holcomb et al. [9]. SRAM PUF designs must
compensate for bits in the SRAM with random or unreliable startup states. To
do so, the algorithm which extracts the fingerprint from SRAM cells typically
makes use of helper data, which identifies the proper subset of bits to use, as well



as error-correcting codes, which compensate for the remaining small amount of
startup instability.

SRAM PUFs are intrinsically weak PUFs, since the device only has a single
response, namely its SRAM startup value. This limits their utility as a mech-
anism for authentication. Farha et al. designed a scheme that aims to convert
the SRAM-based weak PUF into a strong PUF. Their proposed scheme uses
CRPs represented by re-ordered memory addresses as challenges, and the corre-
sponding SRAM cells’ startup values as responses. From a security perspective,
the proposed scheme was designed to be robust against attempts to authenti-
cate a fake end device to the system. This includes man-in-the-middle attacks,
side-channel attacks, extraction of hashing tables, and brute force attacks.

In this article we analyze the scheme of Farha et al. and show that, while it
claims to offer strong PUF functionality, the scheme creates only a weak PUF.
In particular, as we show below, an active attacker can completely read out
the secret PUF response of the edge device after a very small amount of queries,
converting the scheme into a weak PUF scheme, which can then be counterfeited
easily. After studying the security of Farha et al.’s scheme, we next propose
an alternative construction for SRAM-PUF based authentication, which better
protects the secret SRAM startup state.

2 The Scheme of Farha et al.

The proposed scheme is meant to allow end devices (provers) to prove their
identity to a smart gateway (verifier). The scheme consists of two phases: the
enrollment phase, in which the PUF response is calculated and stored, and the
authentication phase, in which the edge device interacts with the verifier to prove
that it knows the value of the secret PUF response. The attack we describe in
this paper targets the authentication phase.

2.1 Enrollment phase

In the enrollment phase of the proposed scheme, the edge device carries out the
following steps:

– Read out 1KB of SRAM data for 50 times.

– Create a stability map of those SRAM values.

– Run a simple algorithm to select the stable cells, while keeping the final
Hamming weight to ∼50%.

– Generate helper data with an ECC algorithm.

– Store the stability map and helper data in the non-volatile storage of the
edge device.

– Transmit the generated fingerprint (100 bits) to the authenticator device
(i.e., smart gateway) via an eavesdropping-resistant channel.



2.2 Authentication phase

In the authentication phase, the authenticator (i.e., smart gateway) sends a
challenge to the prover (i.e., edge device), retrieves a response, and finally checks
the response for correctness. This operation is summarized in Figure 1.

– The authenticator chooses a random re-ordering of the set of stable SRAM
cell addresses. While the original paper simply calls this value “challenge”,
we note that it is a permutation, and mark it here as π.

– The authenticator calculates a random value nonce, and sends it to the
prover together with π as a challange.

– The prover reads out the raw SRAM data, and processes it using the stored
helper data, to create the secret PUF response, which we denote as PUF .

– The prover applies the permutation π to PUF , reordering its bits, resulting
in a 100-bit value RPUF = π(PUF ).

– Finally, the prover uses a XOR operation to combine the nonce, the original
PUF response, and the reordered PUF response, and sends back a hash of
the response - H(nonce⊕ PUF ⊕ π(PUF )).

– To verify, the authenticator similarly calculates H(nonce⊕PUF ⊕π(PUF ))
using its stored value for the PUF response. If the values match, authenti-
cation succeeds.

Prover (IoT node)Verifier (cloud gateway)

nonce, π

H(nonce⊕ PUF ⊕ π(PUF ))

Fig. 1. Description of the scheme of Farha et al., based on [4].

The authors of [4] argue that their scheme implements a strong PUF, since
there are 100! ≈ 9.3 ∗ 10157 possible challenge permutations, each resulting in a
different response from the prover.

3 Our Attack

We now describe an attack on the authentication phase of the scheme, which
transforms it into a weak PUF. Let PUF be the secret PUF response of the
prover. The objective of the attack is to recover this secret value using a small



number of authentications. Now let PUFi be the i’th bit of this response, count-
ing from zero, and let swapi,j() be a permutation which swaps the values of
bits i and j in its input, where the least-significant bit index is zero. For exam-
ple: swap1,2(0100b) = 0010b. We note that if PUFi = PUFj then immediately
swapi,j(PUF ) = PUF .

This property of the permutation gives an active attacker, for instance in a
man-in-the-middle setting, the ability to determine whether two bits in the PUF
response are identical. Thus we can mount the following attack: The attacker
first fixes a random value n0 for nonce and selects a random initial permutation
π0. Next, the attacker progressively swaps bits in π0. After each bit swap, the
attacker requests another authentication response from the prover, obtaining a
series of responses, as follows:

R0 = H(n0 ⊕ PUF ⊕ π0(PUF )),

R1 = H(n0 ⊕ PUF ⊕ π0(swap0,1(PUF ))),

R2 = H(n0 ⊕ PUF ⊕ π0(swap0,2(PUF ))),

· · ·
R99 = H(n0 ⊕ PUF ⊕ π0(swap0,99(PUF )))

To recover the secret value of PUF , we note that for all i, if PUFi = PUF0

then Ri = R0
2. Therefore, after collecting 100 responses, the attacker knows

which bits of the secret PUF response are equal to PUF0, and which are different.
All that is left for the attacker is to try two possible assignments for PUF – one
in which PUF0 = 0 and one in which PUF0 = 1 – and verify which of the two
assignments can be used to produce the correct value of R0 originally sent by the
prover. Once the attack concludes, the attacker knows the value of PUF , and
can now produce a counterfeit edge device which can answer any authentication
challenge.

Note that the attack can be optimized and made harder to detect. We first
note that the attacker does not have to recover all 100 bits of the PUF, but only
enough bits to make brute-forcing over the remaining bits practical. Considering
that modern computing hardware can perform more than 230 hash operations
per second [21], an attacker only needs to recover 50 bits of the PUF response,
then brute-force the remaining 50 bits in less than a week of post-processing.
The attacker can also evade detection through the use of fresh nonces and per-
mutations for each bit, that is:

2 If PUFi 6= PUF0 then with very high probability Ri 6= R0, depending on the
properties of the hash function H



R0,1 = H(n1 ⊕ PUF ⊕ π1(PUF )),

R1 = H(n1 ⊕ PUF ⊕ π1(swap0,1(PUF ))),

R0,2 = H(n2 ⊕ PUF ⊕ π2(PUF )),

R2 = H(n2 ⊕ PUF ⊕ π2(swap0,2(PUF ))),

· · ·
R0,99 = H(n99 ⊕ PUF ⊕ π99(PUF )),

R99 = H(n99 ⊕ PUF ⊕ π99(swap0,99(PUF )))

This modification doubles the amount of required queries, but makes the
attack much harder to detect.

4 An Alternative Construction

The motivation behind the novel authentication scheme proposed by [4] was the
claimed inability of IoT edge devices to support advanced asymmetric cryptog-
raphy. As the authors state, such devices are “[...] unable to run the security
methods that require intensive computational operations”. This led the authors
to seek attempt a custom construction which, as we showed, is insecure. In the
remainder of the paper, we briefly propose an alternative construction based on
asymmetric cryptography. We begin with a formal definition, follow with some
security proofs and conclude with a survey of related art.

4.1 Formal Definition

The ability of low-resource devices to run public-key cryptography was demon-
strated in a series of works centered on cryptography for low-powered RFID
tags. In particular, in 2008 Oren and Feldhofer presented WIPR, a full-strength
public-key encryption which can be implemented on a low-resource device [14].
A full microcontroller implementation of the scheme was provided in [1], showing
that it has very modest storage and runtime costs appropriate for low-resource
deployments. A variant of the scheme proposed in [22], called WIPR-SAEP,
provides a stronger security guarantee at a slightly higher implementation cost,
assuming the prover device has an existing implementation of a hash function.

The scheme is a straightforward implementation of randomized public key-
based authentication, where the prover has the public key and a secret ID, and
the verifier has the private key. The scheme begins when the verifier sends the
prover a random nonce. Next, the prover encrypts the nonce, together with its
own secret ID and some randomness, using the public key, and sends it to the
verifier. Finally, the verifier decrypts the message using the private key, verifies
the correctness of the nonce and learns the secret ID. The randomness is used
to prevent replay attacks and to provide forward and backward secrecy.



To apply this scheme to a low-resource setting, the WIPR scheme of Arbit et
al. applies several resource-saving steps which were proven not to affect security.
First, the chosen public key scheme is the Randomized Rabin encryption scheme,
a variant of Rabin’s encryption scheme of 1970 [16] proposed simultaneously by
Shamir and Naccache [18,13]. In Randomized Rabin, the expensive modular
reduction step is replaced with the addition of a large random multiple of the
public key n. As Shamir showed, if the random factor is chosen properly, this
scheme is as secure as the standard Rabin scheme, which is in turn at least as
hard as integer factorization. The encryption step, which must be performed
on the low-resource prover, is thus transformed into two multiply-accumulate
operations which do not require modular reductions, resulting in a very low
ROM and RAM footprint. Second, the public decryption key is stored in a
memory-efficient way, using Johnston’s method [11]. Third, the random strings
required by the scheme are stored in a space-efficient way based on reversible
ciphers.

A brief description of the scheme is provided in the Figure below. r1 and r2 are
random bit sequences generated by the prover, and MIX is a byte-interleaving
function designed to prevent large blocks of sender- or prover-generated blocks
from appearing in the data. In the example below, PUF is the plain PUF re-
sponse of the IoT node, which is sent in its entirety to the server. It is certainly
possible to integrate this scheme with other schemes such as ID-AKE [12] or
TCALAS [20] by replacing PUF with a protocol-specific payload.

Prover (IoT node)Verifier (cloud gateway)

nonce

(MIX(nonce, PUF, r1))2 + r2 ·N

Fig. 2. A modified scheme based on WIPR [1].

4.2 Security Analysis

As stated by Oren and Feldhofer [14], the following claims hold regarding the
security of the scheme, even if we assume the adversary has complete knowledge
of the entire system other than the private key. Most of these claims hold for
any randomized encryption scheme based on public keys. We also describe the
security of the scheme in an ephemeral secret leakage (ESL) setting [3], in which
the randomness is controlled by the adversary.



– Secrecy : An adversary observing a protocol exchange cannot learn anything
about the value of the secret PUF response, even if the adversary knows the
value of the public key n. This follows naturally from the use of public-key
encryption.

– Full backward and forward privacy : An adversary cannot determine whether
a node it currently holds was a part of any past or future protocol exchange
it has recorded, even if the adversary knows the value of the node’s PUF
response.

– Metadata privacy : The adversary cannot determine whether a certain public
key n was used in the protocol exchange.

– Implicit verifier authentication: Since only a verifier who holds a private
key can decipher data coming from the node, a succesful protocol execution
serves as an implicit way of authenticating the verifier. This lets the two
parties create a secure data channel.

– Security under ESL: An adversary who can control the verifier-side ran-
domness gains no advantage. An adversary who can control the prover-side
randomness can decrypt ciphertexts without knowing the private key, allow-
ing the recovery of the PUF’s response. However, even such an adversary
cannot break the forward and backward privacy property.

We note that this scheme does not claim to convert the SRAM PUF into
a strong PUF; specifically, a server-side compromise, which recovers either the
secret PUF response or the secret decryption key, will allow devices to be coun-
terfeited. However, unless the server is compromised, this scheme can still pro-
vide authentication over an extremely large number of challenges. The scheme
therefore achieves the implementation objectives and security claims of Farha et
al..

4.3 Related Work

As stated in [17], in 2002 Pappu [15] introduced the concept of PUFs as Physical
One-Way Functions. The indicated technology was based on the response ob-
tained when shining a laser on a bubble-filled transparent epoxy wafer. Gassend
et al. [5] introduced Silicon Physical Random Functions in 2002, which use man-
ufacturing process variations in ICs to uniquely characterize each IC. The sta-
tistical delay variations of transistors and wires in the IC were used to create a
parameterized self-oscillating circuit to measure frequency for characterization.
This circuit is nowadays known as a Ring Oscillator PUF. Besides hardware
intrinsic PUFs based on delay measurements, a second type, based on the mea-
surement of start-up values of memory cells, is known. This type includes the
use of the initial start-up values of SRAM as digital fingerprint introduced by
Guajardo et al. in 2007 [7], and also by Holcomb et al. [10] that year.

There is a large body of work on low-resource authentication schemes, and in
particular on authentication schemes using PUFs. Many of these works focus on
authenticated key agreement (AKA) and authenticated key exchange (AKE). In



2002 Canetti and Krawczyk introduced the notion of ESL security, which ana-
lyzes the security of a system even if the random nonces are controlled or known
by the adversary [3]. This setting is particularly interesting in the smart home
environment, when randomness generation and extraction can be offloaded to a
central server. For example, Liu et al. presented an authenticated key agreement
protocol secure against ESL attacks [12]. This protocol is designed for three par-
ties – a client, an application server and an authentication server. Shuai et al.
present an efficient authentication scheme for smart home environments based
on elliptic-curve cryptography [19]. This scheme was later analyzed by Banerjee
et al., who present a version with improved security [2]. The scheme we present
in this paper can be used as a building-block for one of these more advanced
protocols.

5 Author Response

We sent a draft of this report to Farha et al., the authors of the original paper,
during February 2022. We plan to update this section of the report with their
response, as it arrives.

6 Conclusion

In this comment, we discussed the recent scheme of Farha et al.. We showed how
an active attacker can recover the secret PUF response from this scheme after
exchanging a very small number of messages with the prover. Thus, we conclude
that the proposed scheme does not provide strong PUF ability. We next suggest
an alternative scheme which achieves the security aims of Farha et al. using a
low-resource version of a standard public-key asymmetric cipher.

IoT is a novel technological field with unique technical constraints. Even so,
when introducing new security constructions such as authentication schemes,
they should be carefully analyzed to make sure they do not introduce unexpected
vulnerabilities. The designers of future IoT security schemes are encouraged to
take inspiration from prior work on low-resource security constructions smart
cards, RFID tags and similar low-resource devices.
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