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Abstract. We investigate the susceptibility of the Texas Instruments
SimpleLink platform microcontrollers to non-invasive physical attacks.
We extracted the ROM bootloader of these microcontrollers and then
analysed it using static analysis augmented with information obtained
through emulation. We demonstrate a voltage fault injection attack tar-
geting the ROM bootloader that allows to enable debug access on a pre-
viously locked microcontroller within seconds. Information provided by
Texas Instruments reveals that one of our voltage fault injection attacks
abuses functionality that is left over from the integrated circuit manu-
facturing process. The demonstrated physical attack allows an adversary
to extract the firmware (i.e. intellectual property) and to bypass secure
boot. Additionally, we mount side-channel attacks and differential fault
analysis attacks on the hardware AES co-processor. To demonstrate the
practical applicability of these attacks we extract the firmware from a
Tesla Model 3 key fob.
This paper describes a case study covering Texas Instruments SimpleLink
microcontrollers. Similar attack techniques can be, and have been, ap-
plied to microcontrollers from other manufacturers. The goal of our work
is to document our analysis methodology and to ensure that system de-
signers are aware of these vulnerabilities. They will then be able to take
these into account during the product design phase. All identified vul-
nerabilities were responsibly disclosed.

Keywords: SimpleLink · Firmware recovery · Fault injection · Side-
channel analysis.

1 Introduction

Embedded devices are often interconnected using a broad variety of wireless tech-
nologies. Texas Instruments (TI) offers the SimpleLink microcontroller platform
to enable the development of such connected embedded devices. The platform
offers code portability, enabling the reuse of the same code (i.e. Intellectual
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submission improvements or corrections. The Version of Record of this contribution
is published in COSADE 2022, and is available online at https://doi.org/[insert DOI]



2 L. Wouters et al.

Property (IP)) on a variety of microcontrollers with different functionalities.
The microcontroller lineup includes Bluetooth Low Energy (BLE) and Wi-Fi
enabled microcontrollers but also sub-1 GHz and multi-protocol enabled micro-
controllers. According to TI these microcontrollers are suitable for a wide variety
of applications ranging from home automation to automotive and medical ap-
plications as well as critical infrastructure applications [56].

TI advertises the SimpleLink microcontrollers to implement secure boot and
other security features that allow protection of user data and IP [52, 53]. While
TI does not claim any resistance to physical attacks for the SimpleLink plat-
form microcontrollers, it is clear that many of the products designed using these
microcontrollers will be deployed in an open and possibly hostile environment.

This hostile environment may comprise physical attackers who want to ex-
tract IP or compromise the secure boot chain. Extracting the IP or firmware
also enables remote attackers to more easily identify application specific soft-
ware vulnerabilities [17, 48, 58]. Therefore, performing a physical attack on a
single device can lead to remote attacks that scale without having to perform
the physical attack on each device [25, 45, 59].

In this paper we take on the role of the physical attacker and use non-invasive
physical attacks. We use Voltage Fault Injection (VFI) to extract the contents
of non-volatile memory of SimpleLink microcontrollers that have all debug func-
tionalities disabled. Additionally, we demonstrate secret key extraction by tar-
geting the Advanced Encryption Standard (AES) hardware accelerator using
Side-Channel Analysis (SCA) and Differential Fault Analysis (DFA).

While the physical attacker is outside of the attacker model used by TI it
is still valuable to assess the physical security of these products. Furthermore,
we argue that the purpose of debug security features is to protect from an at-
tacker who has physical access to the device, as those debug features are only
available to someone who already has physical access. The analysis presented in
this work allows device manufacturers to make better informed decisions during
their initial threat modeling phase.

1.1 Related work

Embedded systems have been the subject of physical attacks for over 20 years [2,
3, 27, 29]. Nevertheless, those same physical attack techniques can still be used
today to extract secret information from many embedded systems.

The passive physical attacker has physical access to the device and observes
its normal operation. For example, when performing a physical side-channel
attack an adversary will observe one or multiple physical properties of the de-
vice. These physical properties, or side-channels, can be analysed to extract
secret information from the device under attack [27]. Over the years researchers
have shown that side-channels such as instantaneous power consumption [27,
29], ElectroMagnetic (EM) emanations [16, 43], execution time [26], tempera-
ture and photonic emissions [14] can all be used to recover secret information
from a target device. In most cases statistical analysis is used to extract se-
cret information from the side-channel measurements. Among the most widely
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used techniques are Differential Power Analyis (DPA) [27], Correlation Power
Analysis (CPA) [6], Template Attacks [8] and more recently machine learning
techniques [23].

The active physical attacker tries to transiently or permanently disrupt the
device’s normal operation. The most common non-invasive techniques for fault
injection include Voltage Fault Injection (VFI) [29], clock glitching [1, 29] and
EM Fault Injection (EMFI) [10, 29]. However, for some modern chip packag-
ing standards (e.g. Wafer Level Chip Scale Package (WLCSP) and Flip Chip
Ball Grid Array (FCBGA)) the list of non-invasive techniques can be extended
with techniques that used to be considered semi-invasive such as optical fault
injection [50] and body bias injection [33, 40].

Both passive and active physical attacks have been demonstrated to be ap-
plicable in real world scenarios. Embedded microcontrollers are frequently the
target of attacks, as they can contain proprietary code and hardcoded secrets.
Consequently, it is not uncommon that a physical attack mounted on a single
device leads to a system-wide compromise, these are also known as break-once
run everywhere (BORE) attacks.

Goodspeed demonstrated a practical timing side-channel attack targeting the
TI MSP430 microcontroller’s BootStrap Loader (BSL), allowing to recover the
BSL password [20, 21]. Meriac extracted firmware from a Microchip PIC18F mi-
crocontroller by erasing a single block of program memory and loading it with
a program to dump the remaining blocks [34]. Similarly, the popular STMicro-
electronics STM32 series of microcontrollers has been the subject of multiple
physical attacks that aim to bypass code readout protection features [37, 38, 47].

Practical side-channel attacks against Microchip’s KeeLoq cipher, used in
vehicle immobilisers and remote keyless entry products, were demonstrated on
software and hardware implementations [13, 25]. In some cases these side-channel
attacks allowed to recover the master key, effectively compromising all devices of
the same manufacturer by mounting a single side-channel attack [25]. Wouters et
al. performed several practical attacks on DST80-based immobiliser systems [59].
The authors demonstrated fault injection attacks to bypass debug security fea-
tures in automotive microcontrollers, and mounted both unprofiled and pro-
filed side-channel attacks that allowed to extract cryptographic keys. For some
DST80-based deployments the authors were able to compromise every immo-
biliser after carrying out physical attacks on a single device. Van den Herrewe-
gen et al. demonstrated practical attacks targeting embedded bootloaders of
several commercially available microcontrolllers [22]. Additionally, they provide
a list of anti-patterns that can help guide the design of secure implementations.

Countless additional examples of physical attacks are available online [31, 18,
32] and in the academic literature [4, 5, 9, 35, 44], unfortunately we cannot cover
all of them here. Interested readers can find more examples of physical attacks
performed on embedded devices in the review paper by Shepherd et al. [49].

1.2 Contributions

The contributions of this paper can be summarised as follows:
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– ROM bootloader analysis. We extracted and analysed the ROM boot-
loader of two SimpleLink microcontrollers. Our analysis includes emulating
the ROM bootloader to augment static analysis, and revealed two potential
avenues for fault injection to bypass code readout protection. One of these
code paths is, under normal circumstances, only used during the integrated
circuit manufacturing process.

– Voltage fault injection to enable debug features. We perform two
voltage fault injection attacks allowing to enable debugging features on a
previously locked down microcontroller. These physical attacks allow to by-
pass all IP protection functionality and secure boot features provided by the
manufacturer. We perform both attacks on two distinct development boards
with different microcontrollers of the SimpleLink series and demonstrate
firmware recovery on a commercial product.

– Side-channel analysis and differential fault analysis on hardware
AES. We mount a successful correlation power analysis attack on the hard-
ware AES implementation included in these microcontrollers. Additionally,
we successfully perform differential fault analysis on the hardware AES co-
processor.

– Open-source implementations. We provide open-source Python note-
books that can be used to reproduce and extend the experiments covered in
this paper1.

2 Experimental setup

In Sect. 1 we introduced the SimpleLink platform and noted the similarity be-
tween the microcontrollers, and the portability of IP. Given these similarities
it is likely that there are also similarities in the underlying hardware of the
SimpleLink microcontrollers. While we cannot evaluate all 137 parts that are
offered as part of the SimpleLink platform, it is likely that the physical attacks
documented in this work can be adapted to work on most SimpleLink parts.

Nevertheless, the experiments documented in this work were performed on
two distinct microcontrollers that are representative for the entire CC13xx and
CC26xx lineup [55]. The first target is a CC2640R2F BLE microcontroller, the
main application firmware is executed by an ARM Cortex-M3 CPU. Later,
in Sect. 4.4 we also extract the firmware from the automotive variant, the
CC2640R2F-Q1. The second target is a CC2652R1F multiprotocol wireless mi-
crocontroller using an ARM Cortex-M4F CPU to execute the main application
firmware. By default both microcontrollers run at a clock frequency of 48 MHz
generated by an internal RC oscillator or derived from an external crystal oscilla-
tor. Both microcontrollers use the internal RC oscillator during the execution of
the ROM bootloader. Note that both targets include a secondary ARM Cortex-
M0 CPU that is responsible for the lower level RF communications.

All of the physical attacks covered in this work were evaluated on commer-
cially available development kits of the target microcontrollers. Throughout this
1 https://github.com/KULeuven-COSIC/SimpleLink-FI
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work we use the NewAE ChipWhisperer Husky platform to acquire side-channel
traces and to perform voltage fault injection. Similar results were obtained using
the open-source NewAE ChipWhisperer-Lite [41].

2.1 Target modifications

All microcontrollers in the CC13xx and CC26xx lineup use a similar power
supply configuration [55]. Most notably, an internal low-dropout regulator is
used to generate the 1.28 V supply for the ARM Cortex CPU core. This internal
core voltage rail is exposed on the DCOUPL pin of the package to add an external
decoupling capacitor.

The availability of the internal CPU core voltage on an external pin of the
microcontroller is convenient for the non-invasive physical attacker. As a result
we choose to focus on voltage fault injection attacks and power side-channel
analysis, but similar results are likely achievable using other techniques. To per-
form voltage fault injection we can momentarily short the core voltage supply to
ground; this is also known as a crowbar voltage glitch [39]. Similarly, we can use
an external power supply to supply our own voltage (larger than 1.28 V): this
will disable the internal regulator and will allow us to measure the instantaneous
power consumption over a shunt resistor.

For the experiments covered in this paper we modified two development
boards, namely a LAUNCHXL-CC26x2R1 and LAUNCHXL-CC2640R2. Fig-
ure 1 shows the modified development boards. In both cases we removed the
capacitor connected to the reset pin (C20) and the decoupling capacitor con-
nected to the DCOUPL pin (C19). We also added a 10 Ohm shunt resistor and an
SMA connector to the DCOUPL pin. The SMA connector can be connected to the
ChipWhisperer for both fault injection and side-channel analysis.

Side-channel measurements were acquired using a sample rate of 240 Megasam-
ples Per Second (MSPS) while supplying 1.45 V to the DCOUPL pin using an
external power supply. All fault injection experiments were performed with the
ChipWhisperer configured to use a 200 MHz clock, resulting in a glitch offset
and glitch width resolution of 5 ns. The targets were connected to the ChipWhis-
perer using a 50 cm SMA cable; note that the length of this cable can influence
the glitch parameters.

3 The ROM bootloader

The SimpleLink microcontrollers include a bootloader that is stored in Read-
Only Memory (ROM). This bootloader is executed after an initial power-up or
reset of the microcontroller. The ROM bootloader is responsible for initialising
the microcontroller and enables or disables certain features based on settings
stored in the Customer Configuration (CCFG) page, the Factory Configuration
(FCFG) page and eFuses. As their names suggest, the CCFG can be programmed
by the customer or device manufacturer, the FCFG is programmed by TI and
cannot be modified by the customer. Both of these configuration pages are stored



6 L. Wouters et al.

Fig. 1. The LAUNCHXL-CC2640R2 (left) and LAUNCHXL-CC26x2R1 (right) de-
velopment boards modified for side-channel analysis and voltage fault injection. Both
boards have C20 and C19 removed, indicated by A and B respectively. The SMA connec-
tor indicated by C allows to capture the voltage drop over the 10 Ohm shunt resistor
inserted at B. We supply 1.45 V through connection D while acquiring side-channel
measurements, which disables the internal regulator. SMA connector E is optional and
allows for differential measurements. Finally, we removed the crystal oscillator on the
LAUNCHXL-CC2640R2 (left), which allows us to supply our own clock for synchronous
sampling; this modification is optional and is indicated by F. The SMA connectors are
grounded on the bottom side of the boards.
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in the internal and non-volatile flash memory of the microcontroller. Similarly,
eFuses are blown by Texas Instruments during chip manufacturing, but their
state can be read by customers. The ROM code additionally implements a serial
bootloader interface that allows to perform basic operations such as reading
and writing memory. The serial interface is only started when no valid firmware
image is present in flash memory, or when the bootloader backdoor functionality
is enabled and used [54].

Many of the security features implemented by the SimpleLink microcon-
trollers rely on an unaltered behaviour of the ROM bootloader. Debug security
features allow a developer to disable access to the serial bootloader interface
and to disable the Debug Access Port (DAP); these settings are stored in the
CCFG and are parsed by the ROM bootloader. Disabling these debug features
is paramount for the IP protection and secure boot features [53]. Texas Instru-
ments recommends disabling the bootloader serial interface and the DAP in the
CCFG of production hardware [54].

3.1 Extracting and analysing the ROM bootloader

As indicated earlier, the ROM bootloader is responsible for disabling debugging
features. The ability to analyse this code is helpful to gain a better understand-
ing of how certain features are enabled or disabled, and to identify potential
vulnerabilities. However, we have to obtain a copy of the ROM bootloader code
before we can analyse it.

We implemented a basic Python module that allows communication with
the bootloader’s serial interface over UART. Using this bootloader interface it
is possible to read memory, including the ROM that stores the bootloader itself.
We dumped the ROM bootloader from both of our target microcontrollers on
development boards over which we had full control. In both cases the ROM could
be extracted by reading data starting at address 0x10000000.

We used the free and open-source Ghidra software reverse engineering tool
to statically analyse the ROM code. We used the SVD-loader plugin [46] to
automatically populate the Ghidra memory map for our target, including all
documented peripheral registers. Afterwards we were able to identify the code
responsible for disabling debug interfaces, by searching for references to the
CCFG:TAP_DAP_x fields.

This initial analysis revealed that, in the case of the CC2640R2F, the
AON_WUC:JTAGCFG register is used to enable or disable the Joint Test Action
Group (JTAG) interface. The equivalent register for the CC2652R1F is referred
to as AON_PMCTL:JTAGCFG. In the remainder of this paper we will refer to both
registers by JTAGCFG. According to the publicly available documentation the least
significant byte of the JTAGCFG is reserved. By reading the value of this register
when JTAG is disabled and when JTAG is enabled, it is clear that these lower
bits are used to enable or disable specific TAPs and DAPs. This observation will
later help us to speed up initial fault injection campaigns in Sect. 4.2.
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3.2 ROM bootloader emulation

To further extend the available information during static analysis we also emu-
lated the ROM bootloader using Unicorn engine’s Python bindings. We parsed
a System View Description (SVD) file for our target to automatically generate
the correct memory mappings; this is similar to what the SVD-loader plugin
does in Ghidra. Additionally we have to manually guide the emulation the first
time, as the bootloader may get stuck waiting for (non-emulated) peripherals or
interrupts. Once these hurdles are identified they can be overcome by register-
ing simple callback functions or patching the bootloader code. To ensure that
all debug security related features were emulated correctly we also loaded valid
CCFG and FCFG flash regions in the emulator. Additionally, we read the eFuse
memory of our target using the SDK functions provided by TI and emulated the
peripheral.

Execution coverage traces of the emulated bootloader can be exported and
visualised in Ghidra using plugins such as Dragon Dance [24] or Emerald [36].
This visualization highlights parts of the code executed during normal operation
and makes it easier to understand the execution flow of the bootloader. This
visualization helped us to identify a, normally unused, code path which writes
0x6f to the JTAGCFG register.

Figure 2 summarises our analysis of the bootloader and depicts the security-
related actions performed by the bootloader. The first decision made by the ROM
bootloader is based on the value of the ninth eFuse row. In commercially available
chips the most significant fuse bit in this fuse row will be blown (i.e. set to 1).
This results in the JTAGCFG register being set to zero, disabling all TAPs/DAPs.
The alternative execution path writes 0x6F to the JTAGCFG register and sets a
GPIO pin high. Information provided by TI indicates that this functionality is
used during the integrated circuit manufacturing process. Note that subsequent
updates of the JTAGCFG do not clear any bits that are already set. Afterwards,
the FCFG and CCFG are parsed, and a TAP or DAP will only be enabled if it
is enabled in both configurations.

The emulated bootloader can be further expanded to simulate fault injection
or to fuzz the serial command interface using e.g. AFL++ in Unicorn mode [15].
Additionally, a side-channel trace can be emulated and compared to real side-
channel measurements to determine approximate offsets in time for glitch at-
tempts [30].

As part of the paper’s artifacts we provide example code to communicate with
the ROM bootloader’s serial interface. Additionally, we provide information on
how to load an extracted ROM bootloader in Ghidra and how to emulate the
bootloader using the Unicorn engine.

4 Bypassing debug security

We will assume an attack scenario in which the target device is in the most
locked down state possible. In other words the target is configured to disable the
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Fig. 2. Simplified ROM bootloader execution flowchart. This flowchart is based on the
ROM bootloader extracted from a CC2640R2F chip. Note that the bootloader will addi-
tionally check if the bootloader serial interface option is enabled in the CCFG:BL_CONFIG
register before executing incoming commands.
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serial bootloader interface and all JTAG access is disabled. An attack that is
able to compromise a device in this state will also work for a device using a less
secure configuration. In this scenario our goal as the adversary is to disable the
debug security features, as this allows us to completely compromise the device.
On the one hand such an attack allows us to obtain a copy of the firmware stored
in flash (i.e. the IP). This enables device cloning, vulnerability research and can
expose device secrets. On the other hand, such an attack also compromises the
secure boot functionality and any security feature relying on secure boot (e.g.
remote attestation) [53].

Section 3, and in particular Fig. 2, reveal two potential avenues for enabling
JTAG access using fault injection. We can try to inject a glitch during the first
decision in the flowchart or during parsing of the CCFG JTAG configuration.

In the remainder of this section we will determine a suitable range of glitch
parameters. Afterwards we evaluate voltage fault injection as a means to bypass
debug security by targeting the CCFG parsing and the debug security eFuse
check.

4.1 Determining a suitable glitch width

A crowbar voltage glitch is characterised by two main parameters: the glitch
width and and the glitch offset [39]. The glitch width is the amount of time the
glitch MOSFET is enabled. The glitch offset is the offset in time from a reference
signal.

We initially used a development board over which we have full control to
determine a suitable range for the glitch width. We used a common fault injec-
tion target program consisting of two nested for loops that increment a counter
value [7, 39, 40]. Figure 3 shows the results when targeting this dummy pro-
gram. The most promising glitch width was selected as the one resulting in most
faults overall (i.e. incorrect counter output), and is used as an initial value in
the remaining experiments. Enabling the glitch MOSFET for 100 ns resulted in
the most faulted counter outputs on the CC2640R2F using our setup. For the
CC2652R1F we determined that a 610 ns glitch width resulted in most faulted
outputs.

Note from Fig. 3 that for the CC2640R2F a narrow range (approximately
70 ns to 110 ns) of glitch widths is applicable; a smaller width will not produce a
faulty output and a longer glitch will always crash the device. The CC2652R1F
produces faulty counter outputs over a glitch width range of approximately 90 ns
to 730 ns. Presumably these differences are related to the different underlying
micro-architectures (Cortex-M3 versus Cortex-M4F).

4.2 Debug security bypass: CCFG configuration parsing

From our analysis of the ROM bootloader we know that the JTAG configuration
is read from the CCFG. Depending on the values stored in the CCFG:CCFG_TAP_DAP_x
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Fig. 3. Number of faulty counter outputs and crashes per combination of glitch offset
and glitch width. We performed 50 attempts for each combination of glitch parameters,
for a total of 90 k attempts per device. Note that the range of glitch widths (x-axis) is
not the same for both targets.

registers certain parts of the JTAG interface are enabled or disabled. As the ad-
versary we will attempt to inject transient faults by momentarily shorting the
core supply to ground while the ROM bootloader is parsing the CCFG.

We used side-channel analysis to determine the approximate offset in time
from the reset signal when the ROM bootloader would be parsing the CCFG
JTAG configuration. Figure 4 depicts two power traces from each of our targets
that cover the execution of the ROM bootloader after the microcontroller has
been reset. A noticeable difference can be observed between the black power
traces, corresponding to the execution of the ROM bootloader when a valid
firmware image is present in flash, and the gray power traces corresponding
to the execution of the ROM bootloader when the flash is erased (i.e. invalid
firmware).

Recall from Fig. 2 that an erased microcontroller will start the serial boot-
loader interface and will be waiting for incoming commands over a UART or
SPI interface. The configuration of the JTAGCFG register based on the CCFG
and FCFG is performed right before the serial interface is started. When enu-
merating the glitch offset we thus work our way back from the point where the
two traces deviate.

In a realistic setting an adversary would have to reset the target micro-
controller, inject a glitch and attempt to connect to the target using a JTAG
debugger to verify whether the glitch was successful. Connecting to the target
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Fig. 4. Power traces covering the ROM bootloader execution of a CC2640R2F (top)
and CC2652R1F (bottom) microcontroller. In gray the power trace when the flash
memory is empty (i.e. invalid firmware), in black the power trace when a valid firmware
image is present in flash. The vertical dotted lines indicate the offset in time when
the debug security eFuse is checked. The vertical dashed lines indicate parsing of the
CCFG debug security settings; note that this line is close to when the power traces
start deviating. The power traces in this figure were acquired at 200 MSPS.
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using JTAG is relatively slow, and limits the rate at which attempts can be
made. To speed up the initial glitch parameter enumeration we used a custom
firmware image that sends the contents of the JTAGCFG register over UART to
a control PC. In this way we can determine the state of the JTAG peripheral
without having to connect using a JTAG debugger. Recall from our analysis of
the ROM bootloader that parts of the JTAG peripheral are enabled if the ROM
bootloader writes a non-zero value to the JTAGCFG register.

After basic glitch parameter enumeration we identified that glitching the
CC2640R2F between 188,300 and 188,400 cycles (of the 200 MHz ChipWhisperer
clock) after the reset signal goes high is likely to result in enabling JTAG access.
We were able to obtain a success rate of approximately 5%. For the CC2652R1F
we determined this offset to be between 161,700 and 162,000 cycles. On this
target we achieved a success rate of approximately 1%. The glitch offsets are
visualised in the side-channel traces shown in Fig. 4.

Using the aforementioned trick to speed up glitch attempts we could perform
10 glitch attempts per second on both targets. In a more realistic scenario in
which the adversary tries to connect to the chip using a JTAG debugger the
rate is reduced. When using the XDS110 debugger available on the development
board in combination with the UniFlash command line interface we were able
to perform one glitch attempt every 2.5 seconds.

4.3 Debug security bypass: eFuse readout

Figure 2 reveals a more interesting avenue for fault injection, namely the first
decision. Recall from Sect. 3.2 that in a normal scenario the false branch is
taken, setting JTAGCFG to 0. Our goal is to use voltage fault injection to divert
the ROM bootloader execution into the true branch, enabling access to all JTAG
TAPs and DAPs. Conveniently the ROM bootloader will signal that our fault
injection attempt was successful by pulling GPIO pin 23 high. This means that,
even in a realistic scenario, we can inject glitches at a much higher rate. In our
experiments we were able to perform up to 100 glitch attempts per second.

By enumerating glitch parameters we found that the CC2640R2F can be
forced to take the alternative execution path by injecting a glitch between
161,100 and 161,200 cycles after releasing the microcontroller from reset. We
found that slightly increasing the glitch width to 115 ns resulted in a success
rate of 10%. With the ability to inject 100 glitches per second and a success rate
of 10% it should not take more than a second to successfully enable all debugging
features.

The same experiment was also performed on the CC2652R1F target, and
successfull glitches were injected at offsets between 129,800 and 129,900 clock
cycles. Similar to the previous experiments the glitch width did not seem to
have a big impact on the success rate for the CC2652R1F target. Additionally
we observed a success rate of approximately 0.1%. Even though this success rate
is significantly lower, it would not take more than a few seconds to to enable all
debugging features.
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4.4 Extracting firmware from the Tesla Model 3 key fob

We extracted the firmware from a Tesla Model 3 key fob to evaluate the prac-
tical applicability of our attack. The key fob uses the CC2640R2F-Q1 chip, the
automotive variant of the chip we targeted before. All debugging features were
disabled, so simply reading the firmware using a debugger was not possible.

While it may be possible to perform our debug security bypass attack in-
circuit, we chose to desolder the chip from a target key fob. We also removed the
CC2640R2F from our LAUNCHXL-CC2640R2 development board and replaced
it with the CC2640R2F-Q1 from the key fob. Using this setup and our previously
gained knowledge about the target chip it was straightforward to enable the
debug functionality. This allowed us to recover the proprietary firmware stored
in the key fob.

Recovering this firmware enables vulnerability research that may result in a
practical attack [58]. In the context of this work we performed some basic static
analysis of the firmware in Ghidra, and identified an AES key stored in flash
memory. Further analysis is required to determine the purpose of this key, but
it may be used to protect the confidentiality of firmware updates. We note that
the key fob firmware appears to also verify the authenticity of incoming firmware
updates, and that a separate secure element is likely responsible for performing
cryptographic operations related to unlocking or starting the car.

5 The hardware AES co-processor

The SimpleLink microcontrollers come with a hardware AES co-processor. Ac-
cording to the technical reference manual one AES operation takes 2+3 ·r clock
cycles, where r denotes the number of rounds [54]. One AES-128 operation thus
takes 32 clock cycles to complete, and the implementation operates on the full
128-bit state.

In this section we perform side-channel analysis and differential fault analysis
of the hardware AES co-processor. In both scenarios we target AES-128 in a
simple evaluation program that allows us to transmit the key and plaintext for
one block operation to the target over UART. We modified the standard library
code to insert a GPIO trigger signal as close to the AES operation as possible.
The main reason for this modification is to ensure that our glitches are inserted
during the actual AES operation instead of during the hardware accelerator
setup.

5.1 Side-channel analysis

We used known-key analysis to determine the leakage model of the target imple-
mentation [28]. To that end we acquired a set of 100 k side-channel traces with
random, but known, plaintexts and keys. For each of these traces we generated
all intermediate states and performed CPA with the full state Hamming weight.
Additionally, we perform CPA with the Hamming distance between all possible
combinations of intermediate states.
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The known-key analysis reveals Hamming weight leakage of the plaintext
and ciphertext, marking the start and end of the encryption operation respec-
tively. Within each round we observe Hamming distance between the SubBytes
operation output and the ShiftRows output. Additionally, we observe Ham-
ming distance leakage between round r AddRoundKey output and round r + 1
AddRoundKey output. Finally, we observe Hamming distance leakage between the
AddRoundKey operation output in round 9 and the ciphertext, a common leakage
model in unprotected hardware implementations that is easily exploitable [42].

During the initial known-key analysis we noticed that the captured traces
could be divided into two distinct sets. Traces from the same set can be easily
aligned using a sum of absolute difference alignment. However, traces that do
not belong to the same set do not align well. To resolve this issue we first split
the traces into the two sets and align them; afterwards each set is standardized
(zero mean, unit variance scaling). Finally both sets are combined again and used
during the attack phase. This preprocessing pipeline was automated in Python
and reused for all further attacks.

We mounted CPA attacks targeting the Hamming distance between the ci-
phertext and the AddRoundKey operation output in round 9. Figure 5 shows the
average guessing entropy of all 16 subkey bytes, averaged over 50 attacks with a
random key for each microcontroller. In total we carried out 100 attacks, using
100 k traces per attack for a total of 10 M traces. Using the segmented memory
feature of the ChipWhisperer Husky we were are able to acquire 100 k traces
in approximately 1.5 minutes. The traces captured from the CC2640R2F were
acquired synchronously by supplying a 12 MHz clock from the ChipWhisperer
to the target, internally this clock is divided to a CPU operating frequency of
24 MHz. The CC2652R1F target was running at 48 MHz and traces were ac-
quired asynchronously.

From Fig. 5 it is clear that some key bytes (e.g. byte 10 for the CC2640R2F)
can be recovered consistently with a small number of traces. Other key bytes
(e.g. byte 12 for both targets) cannot be consistently recovered, so there will
be some key enumeration remaining. This also indicates that the Hamming dis-
tance model is not optimal in this scenario. The attack performance can likely be
further improved using linear regression [11] or (non-)profiled deep learning ap-
proaches [57]. Alternatively one could attack multiple key bytes simultaneously,
this should reduce the amount of algorithmic noise (recall that the implementa-
tion operates on the full state) at the cost of increased computational complexity.

5.2 Differential Fault Analysis

Side-channel analysis revealed Hamming distance leakage between the SubBytes
operation output and the ShiftRows output. This indicates that it may be
relatively straightforward to inject a fault before the last MixColumns operation.
Such faults can be exploited using DFA to recover the cryptographic key [12,
19]. A single byte fault before the last round MixColumns operation will result
in four faulted bytes in the ciphertext. A valid ciphertext and two such faults
for each column are then sufficient to recover the cryptographic key.
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Fig. 5. Partial guessing entropy for all subkey bytes when targeting the hardware AES
implementation of the CC2640R2F (left) and for the CC2652R1F (right). In both plots
the partial guessing entropy is averaged over 50 experiments. Note that some key bytes
are consistently easy to recover with a small number of traces (e.g. key byte 10 for the
CC2640R2F). Other key bytes can not be consistently recovered (e.g. key byte 12 in
both cases).

We perform voltage fault injection to determine the susceptibility of the
hadware AES implementation to such an attack. While injecting faults we can
record one valid ciphertext output and all faulted outputs; these faulted outputs
were then split based on the number of faulted bytes and their positions within
the ciphertext. We used the open source phoenixAES implementation that is
part of the SideChannelMarvels project to recover the key from these faulted
ciphertexts [51]. Open-source tools such as these demonstrate that an attacker
does not necessarily need to understand the underlying key recovery mechanisms.
The attack was determined to be successful on both targets and a demonstration
Python notebook is provided in the repository.

We note that injecting a glitch before or after the AES operation would
often result in the implementation outputting 96 bytes of data, even though our
implementation is meant to output only 16 ciphertext bytes. This longer output
often contained the full key that was being used for the AES operation. We did
not investigate this behaviour further, as we were targeting a rather artificial
implementation in which the key was hardcoded within the same function.

6 Conclusion

Physical attacks can be a realistic threat for embedded systems. In many cases
these physical attacks can be carried out using commercially available and low-
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cost equipment. In this work we investigate the susceptibility of Texas Instru-
ments SimpleLink microcontrollers to low-cost non-invasive physical attacks. We
extracted the ROM bootloader of these microcontrollers and then analysed it
using a combination of static analysis and emulation. Our analysis reveals two
potential avenues for a physical attacker to circumvent debug security features.

To demonstrate our findings we perform two voltage fault injection attacks
that disrupt the normal execution flow of the ROM bootloader. First, we show
that code parsing the debug security settings is susceptible to fault injection.
Secondly, we identified an execution path that, according to TI, is only used
during the integrated circuit manufacturing process under normal circumstances.
We demonstrate that this code can be reached using voltage fault injection,
enabling all JTAG test access ports and debug access ports.

In summary, we demonstrate practical voltage fault injection attacks that
allow a physical attacker to gain full debugging access on a previously locked
down microcontroller. The attacks have a relatively high success rate and can
in some cases be executed in a few seconds. They allow to extract the device’s
firmware, to bypass secure boot features and any other security features building
on those. We apply our attacks to a Tesla Model 3 key fob to demonstrate the
practical applicability.

Additionally, we investigate the susceptibility of the included hardware AES
accelerator to physical attacks. First, we successfully mount a correlation power
analysis based side-channel attack on the hardware AES accelerator. Secondly,
we demonstrate key recovery by using voltage fault injection to introduce faults
that are exploitable using differential fault analysis.

Basic non-invasive physical attacks have become more accessible in recent
years, in no small part due to the availability of low cost open-source tooling
and training material [41]. Unfortunately the large majority of general purpose
microcontrollers lack countermeasures against such physical attacks. The classi-
cal threat model in which an adversary who has physical access is able to connect
a JTAG debugger, but is not able to perform basic non-invasive physical attacks,
may no longer be suitable today.

Similarly, it is important to remember that an adversary will attempt to
identify the weakest link when attacking a device. For example, software coun-
termeasures against side-channel attacks can be implemented on a device. A real
world adversary may decide to circumvent code readout protection features, al-
lowing to recover the cryptographic key from the firmware. This allows to extract
the secret key without having to defeat side-channel countermeasures.

6.1 Responsible disclosure

We first contacted the Texas Instruments Product Security Incident Response
Team (PSIRT) on November 6th 20212. The PSIRT indicated that they would
be unable to resolve the issues that bypass debug security features as the ROM
2 Instructions to report security vulnerabilities can be found at

https://www.ti.com/security
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is immutable, and noted that these products were not designed to withstand
physical attacks. As a result of our reports Texas Instruments released a general
security advisory to inform customers on the possibility of physical attacks3.

We also contacted Tesla on November 6th 20214. We recovered an AES key
from the extracted firmware, but this by itself was not deemed a security is-
sue. The recovered key may be used to protect the confidentiality (but not the
authenticity) of firmware updates. The key fob also uses an additional secure
element that is likely used when unlocking and starting the car.
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