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Abstract
Cybersecurity has become one of the focuses of organisations. The number of cyberattacks keeps increasing
as Internet usage continues to grow. An intrusion detection system (IDS) is an alarm system that helps
to detect cyberattacks. As new types of cyberattacks continue to emerge, researchers focus on developing
machine learning (ML)-based IDS to detect zero-day attacks. Researchers usually remove some or all
attack samples from the training dataset and only include them in the testing dataset when evaluating
the performance of an IDS on detecting zero-day attacks. Although this method may show the ability
of an IDs to detect unknown attacks; however, it does not reflect the long-term performance of the IDS
as it only shows the changes in the type of attacks. In this paper, we focus on evaluating the long-term
performance of ML-based IDS. To achieve this goal, we propose evaluating the ML-based IDS using a
dataset that is created later than the training dataset. The proposed method can better assess the long-
term performance of an ML-based IDS, as the testing dataset reflects the changes in the type of attack and
the changes in network infrastructure over time. We have implemented six of the most popular ML models
that are used for IDS, including decision tree (DT), random forest (RF), support vector machine (SVM),
naïve Bayes (NB), artificial neural network (ANN) and deep neural network (DNN). Our experiments
using the CIC-IDS2017 and the CSE-CIC-IDS2018 datasets show that SVM and ANN are most resistant
to overfitting. Besides that, our experiment results also show that DT and RF suffer the most from
overfitting, although they perform well on the training dataset. On the other hand, our experiments using
the LUFlow dataset have shown that all models can perform well when the difference between the training
and testing datasets is small.

1 Introduction

Cybersecurity has gained more attention in recent years as we rely more on computers. Due to the global
pandemic, our lives are moving online; however, at the same time, cybersecurity issues are getting even
worse. We rely more on the Internet for daily activities, including virtual meetings, purchasing daily
necessities, and ordering food. At the same time, cyberattacks are also skyrocketing. According to a
report from PR Newswire, the FBI reported that the cyberattacks on their Cyber Division had increased
by 400%, to nearly 4000 attacks per day [30] since the global pandemic. Organisations should take
necessary countermeasures to address the cyberattacks. There are multiple countermeasures available to
safeguard the security of an organisation’s computer system, including network access control, antivirus
software and Virtual Private Network (VPN). Besides that, an Intrusion Detection System (IDS) is also
one of the control measures. An intrusion detection system (IDS) is a hardware or software application
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that ensures the security of computer systems by monitoring traffic for the sign of intrusions [26]. Once
suspicious activities have been identified, an alarm will be raised, and IT personnel could take action
accordingly. Depending on the monitored traffic, an IDS can be classified as network-based IDS (NIDS)
or host-based IDS (HIDS) [26]. A NIDS monitors the network traffic while HIDS monitors operating
system files. In literature, NIDS is usually referred to as flow-based NIDS, where only the packet header
is analysed to detect intrusions.

Besides NIDS and HIDS, an IDS can also be classified as signature-based IDS or anomaly-based IDS
[26], based on the method that is used to detect intrusions. A signature-based IDS is also known as
misuse detection [19], where attacks are identified by utilising the signature of known attacks stored in
the database. Hence, it cannot capture attacks that it has never seen before. The advantage of signature-
based IDS is zero false-positive rates, as it will never classify a benign activity as malicious [22]. On the
other hand, anomaly-based IDS classify network traffic with a set of pre-defined rules for “normal activity”.
If an activity does not fit into those rules, it will be classified as “suspicious activity” [15]. Therefore, an
anomaly-based IDS is also known as rule-based IDS [26]. The main distinction from signature-based
IDS is that it identifies attacks based on traffic behaviour instead of explicit signatures. This gives the
anomaly-based IDS the flexibility to identify unseen attacks.

In recent years, existing works focused heavily on adapting Machine Learning (ML) to improve the
accuracy of IDS. ML is a science that aims to imitate human’s ability to learn [9]. When used for
IDS, it can learn the behaviour of benign and malicious network traffic and differentiate between them.
Recent research has proven that IDS that adopts ML algorithms can achieve good accuracy and surpass
conventional methods. One weakness that the IDS typically suffers from is detecting unseen attacks,
specifically zero-day attacks. A zero-day attack occurs when the hackers exploit a system vulnerability
that is unknown to the developer or before the developers address it [18]. Although having high accuracy
in detecting known attack activities, IDS often has the limitation of detecting zero-day attacks and unseen
attacks. The weakness might have been solved by utilising Machine Learning (ML). Research done by
Hindy et al. [11] has shown promising results in detecting zero-day attacks by using Support Vector
Machine (SVM) and Artifical Neural Network (ANN) for IDS.

Although studies in recent years have achieved compelling results, one particular gap in those studies
is that a single dataset is being used for both training and evaluation. For example, the study by Hindy et
al. [11] used only the normal traffic for training, while the attack activities were used to mimic zero-day
attacks. However, we are not able to get a clear picture of the long-term performance of an IDS when the
same dataset is being used for both training and testing. In a real-world scenario, we usually have to train
that model using an existing dataset while using the model to examine future network traffic. The point
is that the network environment in the future will not be the same as today. For instance, organisations
and attackers will update their infrastructures and network topologies over time. Besides that, zero-day
attacks in the future will never be available in the existing dataset. The interest of this paper is to further
increase the deviation between the data used for training and the data used for evaluation to mimic real-
world situations. Thus, we use different datasets to train and evaluate our ML models. The difference
between the existing methods and the proposed method is further illustrated in Figure 1. Based on the
proposed method, our contributions in this paper are listed as below:

(a) We proposed training and evaluating ML-based IDS using different datasets to mimic real-world
scenarios.

(b) We identified multiple datasets for the evaluation, including the CIC-IDS2017, the CSE-CIC-
IDS2018, and the LUFlow datasets.

(c) We compared the performance of decision tree (DT), random forest (RF), support vector machine
(SVM), naïve Bayes (NB), artificial neural network (ANN) and deep neural network (DNN) using
the proposed method.
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Figure 1: Current studies used the same dataset for both training and testing while this paper proposed
to use different datasets for training and testing.

The remainder of the paper is organised as follows: Section 2 provides some related background. In
Section 3, we review related literature. The experiment process and experiment environment are described
in Section 4. Section 5 discusses the experiment results, and further discussions on the results are provided
in Section 6. Finally, Section 7 concludes this paper.

2 Related Background

In this section, we introduce some of the most well-known datasets that are used in the domain of IDS.
We also discuss the machine learning models that are used in this paper.

2.1 Dataset

The availability of datasets is one of the biggest challenges in the domain of IDS. Due to privacy and
security reasons, most organisations will never share their network traffic data. However, a high-quality
dataset is crucial to develop an anomaly-based IDS and evaluate its performance. Hence, multiple datasets
have been developed by different organisations for research purposes. In this section, we introduce the
datasets that are used for our experiments.

2.1.1 CIC-IDS2017 Dataset

The CIC-IDS2017 dataset [32] is one of the most popular datasets from recent years. The dataset was
created by the Canadian Institute for Cybersecurity (CIC) in 2017. As the dataset is created recently,
it covers various operating systems, protocols and attack types. A comprehensive network environment
consisting of modem, firewall, switches and routers, with different operating systems, including Windows,
Mac OS and Ubuntu, was set up to create the dataset. The behaviour of 25 users was simulated, and
protocols like HTTP, HTTPS, FTP, SSH and email protocols were used to develop benign traffic. After
that, the most common attacks in 2016 were simulated. The attacks include Brute force attack, DoS
attack, DDoS attack, Infiltration attack, Heart-bleed attack, Botnet attack and Port Scan attack. The
dataset was then made publicly available on the University of New Brunswick’s website [14] as a CSV file.
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The biggest downside of the dataset is that it suffers from the high-class imbalance problem [33], where
more than 70% of the traffics are benign, and some of the attacks contribute to less than 1% of the overall
traffic.

2.1.2 CSE-CIC-IDS2018 Dataset

The CSE-CIC-IDS2018 is an updated version of the CIC-IDS2017 dataset. The dataset is created by
CIC in conjunction with the Communications Security Establishments (CSE). The dataset is publicly
accessible [1] through Amazon Web Service (AWS) and is widely used in recent studies. The most
significant update is the laboratory environment that is used to create the dataset; it is significantly
more robust than its predecessor. Fifty machines were used to attack the infrastructure, and the victim
organisation was simulated with 420 machines and 30 servers across five departments. Besides that,
different versions of the Windows operating system were installed on the victim’s devices, including
Windows 8.1 and Windows 10. The servers were also running on different server operating systems,
including Windows server 2012 and Windows server 2016 [7]. The diversity of the devices in the laboratory
environment makes it more similar to real-world networks. The attacks towards the infrastructure are
similar to the CIC-IDS2017 dataset.

2.1.3 LUFlow Dataset

The LUFlow dataset [28] is one of the latest datasets for the domain of IDS. Lancaster University created
the dataset in 2020, and it was still being updated in 2021. The LUFlow dataset is unique because the
data is real-world data, which is captured through the honeypots within Lancaster University’s public
address space. Hence, the dataset can reflect the emerging threats in the real world. The limitation of
the dataset is that it only labels the traffic as benign or malicious instead of an explicit type of attack.
This limitation is due to the fact that the data is collected from the real world instead of a laboratory
environment; hence, it is impossible to tell the real intention behind each traffic. Besides that, some
traffics are classified as “outlier” if the traffics contain suspicious activity but without connection to a
malicious node. The existence of the outlier label indicates that unknown attacks may be classified as
outliers instead of malicious and might cause the dataset to be less meaningful.

2.2 Machine Learning Models

Machine learning (ML) is getting more and more attention in recent years, and researchers are exploring
its application in different areas. ML models are great at predicting or classifying data [9]. In the context
of IDS, ML is adopted to classify whether the traffic is benign or an attack. In this section, we briefly
discuss some of the most widely used ML models in the domain of IDS.

2.2.1 Decision Tree

A decision tree (DT) classifier is a model that classifies the sample using a tree-like structure. Each
decision tree is made up of multiple nodes and leaves, where the nodes represent some conditions while
the leaves represent different classes [4]. A decision tree will be built during the training stage based
on the training data. Figure 2 shows an example of the creation process of a decision tree. This is an
iterative process. In each iteration, one feature will be selected to split the data on a leaf node until all
data in a leaf node are homogeneous. The selection of features is based on how well a feature can split
the data into a homogeneous group, measured using metrics like Gini and Entropy. The features closer to
the root node split the data better and have a higher correlation with the predicted output. Therefore,
the decision tree can facilitate feature selection. In the testing stage, each sample in the testing dataset
will be input to the tree and traverse from the root node, i.e., the node at the top of the tree, to a leaf
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Figure 2: An example of a Decision Tree.

node. The leaf node to which a sample end represents the class of that sample. The decision tree is one
of the most popular models in the domain of IDS as it provides good accuracy while being easy to train.

2.2.2 Random Forest

Random forest (RF) [5] is a model made up of a branch of decision trees. A bootstrapped dataset is created
to build each decision tree within the random forest by randomly picking rows from the original training
dataset. Since each decision tree is trained using a different bootstrapped dataset, each is slightly different
from the other. As illustrated in Figure 3, the votes from each tree are collected, and the classification
depends on the class that received the most votes. By involving multiple decision trees, random forest
is less prone to overfitting problems and less sensitive to the noise in the dataset while maintaining the
simplicity of the decision tree [5].

Figure 3: Illustration of a simple Random Forest with three trees.
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2.2.3 Support Vector Machine

Support Vector Machine (SVM) is a model that aims to define a hyperplane that can separate the training
data into its respective classes [6]. As illustrated in Figure 4, the thick line represents a separator in a
2-dimensional space that separates the data of two different classes. To prevent overfitting, the separator
in Figure 4 should be in the middle of the dashed lines to ensure that the distance to data points of either
class is maximum. One challenge of SVM is that the data might be inseparable in the input space. To

Figure 4: A simple SVM in a 2-dimensional space.

solve this issue, kernel functions are used to non-linearly map the data to a higher dimensional feature
space [6]. If the data is still inseparable in the higher dimensional space, the model will map the data to
even higher-dimensional space. The downside of SVM is that it is computationally more expensive than
other ML models. Despite that, the model is still widely used as it is less prone to overfitting.

2.2.4 Naïve Bayes

The Naïve Bayes (NB) classifier [24] is a simple probabilistic classifier based on the Bayes theorem. The
equation of the Bayes theorem is shown in Eq. (1).

P (A | B) =
P (B | A)P (A)

P (B)
(1)

From Bayes theorem, it is given that the probability of A given B is equal to the probability of B given
A times the probability of A and divided by the probability of B [24]. In other words, we can calculate
P (A | B) if P (B | A), P (A) and P (B) is known. Therefore, the theorem can calculate the probability of
data being in each class based on the given information and classify the data. In the training stage, the
necessary probabilities are computed using the training data. As probability calculation is a simple task,
the model is very efficient. Although the model is “naïve” as it assumes that each feature is independent
of the other, it sometimes achieves comparable accuracy to other models.

2.2.5 Artificial Neural Network

Artificial neural network (ANN) is a more complicated model than the models discussed above. The
multi-layer perceptron (MLP), a type of ANN, is adapted in this work. The structure of an MLP is
typically represented using a graph as shown in Figure 5. As its name suggests, an MLP consists of
multiple layers of perceptron. There are multiple nodes on each perceptron layer, where the nodes are
also referred to as neurons. The example shown in Figure 5 is an MLP consisting of three perceptron
layers. The leftmost layer is also called the input layer. Each neuron from the input layer represents
one feature of the input data. The rightmost layer is known as the output layer, and each neuron to the
output layer represent the class of the data [27]. The neurons between different layers are connected by
weighted vertices.
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Figure 5: A simple MLP with one hidden layer.

The mapping from a perceptron to a neuron on the next layer is as simple as a linear function and a
non-linear activation function. The mapping illustrated in Figure 6 can be represented with the following
Equation [3, 35]:

hi(x) = f(wT
i x+ b), (2)

where x denotes the inputs to the next layer, wi represents the weights on the vertices, b denotes the
biases, and f denotes the activation function. When training an ANN, the task is to optimise the weights
(w) and biases (b) so that the model will fit the training data. As an ANN often includes a large number
of neurons, there will be many parameters to be optimised. Hence, training an ANN is computationally
more expensive than other models like decision trees and naïve Bayes. Besides that, a large dataset is
required to train the neural network to prevent overfitting [27].

Figure 6: Mapping to a neuron on next perceptron.

The main advantage of neural networks is that it overcomes the limitation of processing the data in
its raw form. Conventional models like decision trees are limited when processing the raw data; hence,
they heavily rely on hand-designed features. In other words, neural networks have a better chance to
achieve good accuracy when the features of the training dataset are not well optimised. The neural
networks overcome the limitation by transforming the data to a more abstract representation as the data
go through different perceptron. As a result, neural networks can learn very complex patterns [23].

2.2.6 Deep Neural Network

The Deep Neural Network (DNN) has gained popularity since Hinton, Osindero, and Teh [13] had suc-
cessfully trained a DNN with three hidden layers in 2006. The application of DNN in the domain of
IDS has also gained popularity in recent years [8]. The DNN is classified as deep learning (DL) model,
which is an MLP with multiple hidden layers [3]. Compared to MLP with a single hidden layer, DNN
performs better when pretraining is eliminated [12]. Besides that, DNN has the ability to learn more
complicated patterns with its deep architecture. With the additional complexity, DNNs take longer to
train and require a larger dataset to optimise its parameter.
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2.3 Feature Selection

Besides using the suitable algorithm and optimising its hyperparameters, feature selection is also an
important aspect to improve the performance of an IDS [2]. The feature selection aims to select a concise
set of features to classify the network traffic. A modern dataset like the CSE-CIC-IDS2018 may contain
around 80 features; such a high dimensional dataset significantly increases the complexity and duration
for training the model. By reducing the number of features, not only the training time can be reduced,
but the accuracy of the model can also be improved since unrelated information has been filtered out.

Random forest is one of the most widely used algorithms to perform feature selection. Li et al. [25]
conducted a study to improve the accuracy of the neural network while reducing the training time by
reducing the number of features. A random forest is built to reduce the number of features, and the
features are ranked according to their respective permutation importance score [10] calculated during the
training process. The most important features are then selected and grouped into an even smaller set of
features. The proposed model was compared to KitNET [29] by using the CSE-CIC-IDS2018 dataset. In
the paper, Li et al. show that the number of features can be reduced from 80 to around 20. Compared
to KitNET, the authors show that the model has comparable accuracy with KitNET; at the same time,
the detection time was significantly reduced.

3 Related works

The adoption of ML in IDS has been widely explored over the last decade. A review by García-Teodoro
et al. [15] shows that researchers had been working in the domain since the 2000s. Researchers are still
developing more advanced algorithms to improve the accuracy and efficiency of the ML-based IDS.

In 2019, Kaja, Shaout and Ma [16] proposed a two-stage IDS that combines an unsupervised model
and a supervised model to mitigate the false positive and false negative. In the first stage, the model uses
K-Means Clustering, an unsupervised model, to detect malicious activity. In the second stage, supervised
models like Decision Tree, Random Forest and Naïve Bayes are used to classify the malicious activity.
The authors showed that the proposed models could achieve 99.97% to 92.74% accuracy on the KDD99
dataset. In the same year, Kanimozhi and Jacob [17] conducted a study on utilising ANN for IDS. Their
study focused on detecting the botnet attacks in the CSE-CIC-IDS2018 dataset. With hyperparameter
optimisation, they achieved an accuracy of 99.97%, with an average false positive rate of only 0.001.

Besides conventional ML models like SVM, Decision Tree and Naïve Bayes, researchers are also ex-
ploring the application of modern models like Deep Learning in the domain of IDS. The review by Ferrag
et al. [8] shows that more than 40 works have been done for the adoption of Deep Learning in the domain
of IDS. In 2019, Vinayakumar et al. [35] conducted a study focusing on the adoption of Deep Learning in
both HIDS and NIDS. The study proposed a scalable and hybrid DNNs framework. The authors showed
that the proposed DNNs framework could achieve an accuracy rate of 93.5%. Although the accuracy
rate is not as high compared to DT and RF, the proposed framework is claimed to be computationally
inexpensive for training.

We can see from the recent literature that IDS with ML models can easily achieve a higher than 90% of
accuracy. Hence, some literature focuses on a comparative study, where multiple models are implemented
and evaluated using various datasets. In 2018, Verma and Ranga [34] implemented ten models for IDS,
including both supervised and unsupervised ML models. The authors evaluated multiple ML models,
including ANN, Deep Learning, KNN and SVM. They provided a detailed comparative study using the
CIDDS-001 dataset. The result shows that KNN, SVM, DT, RF and DL are the best performing models,
with accuracy rates above 99.9%.

In 2020, Ferrag et al. [8] summarised more than 40 works that implemented Deep Learning for IDS
and described 35 well-known datasets in the domain of IDS. The authors also implemented seven deep
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learning models and compared the performance with Naïve Bayes, ANN, SVM and Random Forest. In the
study, they used CSE-CIC-IDS2018 and the Bot-IoT datasets. The result shows that the Deep Learning
models achieved a 95% of detection rate, which outperformed the 90% of detection rate achieved by other
models.

In 2021, a comprehensive literature review was conducted by Kilincer et al. [20] to compare the
performance of SVM, KNN and DT. Multiple datasets were used for the comparative analysis, including
the CSE-CIC-IDS2018, UNSW-NB15, ISCX-2012, NSL-KDD and CIDDS-001 datasets. The result from
the study shows that the accuracy of the models ranged from 95% to 100% except for the UNSW-NB15
dataset. DT consistently performed the best among all implemented models regardless of the dataset.

When evaluating the performance of the IDS, the ability to detect unknown attacks is also an area of
concern. In 2020, Hindy et al. [11] focused on the performance of ML-based IDS on detecting unknown
attacks. The study proposed an IDS to detect zero-day attacks with high recall rates while keeping the
miss rate to a minimum. Besides that, they implemented a one-class SVM to compare with the proposed
model. The study used the CIC-IDS2017 dataset and the NSL-KDD dataset for model training and
evaluation. To fulfil the setting of zero-day attack detection, only the normal traffics were used when
training the model and all attack activities were used to mimic zero-day attacks. The result from the
study showed that both models had a low miss rate on detecting zero-day attacks.

As summarised in Table 1, we can see that recent studies commonly involve multiple ML models and
multiple datasets for evaluation. However, the evaluation using different datasets is done separately. The
models are retrained when evaluating the dataset using a different dataset. This is because different
dataset has different feature set. In this paper, we identified multiple pairs of datasets for training and
testing. Each pair of datasets share the same feature set. Besides that, in our work, the testing dataset is
created later than the training dataset so that the long-term performance of IDS can be better reflected.

Table 1: ML models and datasets that used by recent literature.
Ref. ML models Datasets used

[34]
ANN, DL, RF, KNN, SVM, DT, NB,

KMC, EMC, SOM
CIDDS-001

[16] KMC + DT, RF, NB KDD99

[35] DNNs, RF, KNN, SVM, DT, NB
KDD99, NSL-KDD, UNSW-NB15,

Kyoto, WSN-DS, CIC-IDS2017
[17] ANN CSE-CIC-IDS2018
[8] DNNs, NB, ANN, SVM, RF CSE-CIC-IDS2018, Bot-IoT
[11] ANN, SVM CIC-IDS2017, NSL-KDD
[25] DNN CSE-CIC-IDS2018
[20] SVM, KNN, DT CSE-CIC-IDS2018, NSL-KDD, CIDDS-001, ISCX2012

4 Framework of Experiment

The experiments of this paper are separated into five main steps. The first step is dataset pre-processing,
where the datasets are cleaned, and the necessary processing is carried out. The second step is feature
selection, which is an important step to improve the performance of the models as described in Section 2.3.
The third step is to optimise the hyperparameters to improve the accuracy of the models. The accuracy
of the models is validated using cross-validation after optimising the hyperparameters. Finally, the per-
formances of the models on the testing dataset are evaluated using various metrics. The complete flow
of the experiment is illustrated in Figure 7. The details of each experiment step are further discussed in
Section 4.1 to Section 4.5.
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Figure 7: The workflow of the experiment process.

The experiment of this paper is conducted twice, each using a different set of datasets. The first
set of datasets is the CIC-IDS2017 dataset [32] and the CSE-CIC-IDS2018 dataset. As described in
Section 2.1, both datasets are created by Canadian Institute for Cybersecurity (CIC). As created by the
same organisation, both datasets share a common set of features. Besides that, the CSE-CIC-IDS2018
dataset was created one year after the CIC-IDS2017 dataset. Hence, these datasets meet the needs of this
paper, and the CIC-IDS2017 dataset is used as the training dataset while the CSE-CIC-IDS2018 dataset
is used as the testing dataset.

The second set of datasets is derived from the LUFlow dataset [28]. Although it may seem contradictory
to the aim of our experiment, it is important to note that the LUFlow dataset organises the data according
to the day that the data is collected. In this experiment, the data collected in July 2020 is used as the
training dataset, while the data collected in January 2021 is used as the testing dataset.

4.1 Data Pre-Processing

The first step of the experiment is to pre-process the dataset. First, we perform dataset cleaning by
eliminating unwanted entries in the dataset. Entries containing missing or infinity values are dropped as
they only contribute to a relatively small portion of the dataset. Besides that, we also remove duplicates
to expose the models to as many unique samples as possible.
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Next, we address the high-class imbalance problem, where some classes have significantly more samples
than others. The problem results in a bias towards the majority class, which in turn makes the accuracy of
the model meaningless. We downsample the majority class to address the high-class imbalance problem.
In our approach, samples are selected randomly to reduce the number of samples for the majority class.
Besides that, multiple minority classes are combined to form a larger class.

We also ensure that both datasets have the same set of columns with the same sequence, as we proposed
using different datasets for training and testing. Besides that, both datasets are relabelled, if necessary,
to ensure that both datasets have the same classes.

4.2 Feature Selection

It is important to perform feature selection before training the model. Since modern datasets like the
CIC-IDS2017 dataset contain around 80 features, training the model without any feature selection will
consume time. Other than that, some features may include noise and reduce the accuracy of the model.
As pointed out by Aksu et al. [2], the accuracy of the models starts to drop when more than 40 features
of the CIC-IDS2017 dataset are used to train the model.

We use the random forest algorithm by utilising the RandomForestClassifier provided by scikit-learn
to perform feature selection. A random forest is trained using the training data, and the top n features
with the highest importance score are selected. The reason for choosing random forest is because it is
widely used in the domain of IDS. As an example, Sharafaldin, Lashkari and Ghorbani [32] and Kostas
[21] also used the random forest for feature selection on the CIC-IDS2017 dataset.

After reducing the number of features using random forest, we further reduce the number of features
using brute force. We then built preliminary ML models using a different number of features. A for loop
is used to add a new feature in each iteration to construct the ML models until all n features are included.
The accuracy of each model is recorded with respect to the number of features. Based on the accuracy
rate of the models, a more concise set of features is selected.

Moreover, some features are removed by human inspection. Some features should be removed although
having a high correlation with the output variable, source IP address, for example, is one of them. When
a dataset includes a large amount of malicious traffic from one IP address, the “source IP address” may be
ranked as an important feature by the random forest. However, the feature should be removed to prevent
overfitting, as classifying the traffic based on the IP address may not be relevant in the future.

4.3 ML Models Training

We train the models using the training dataset after selecting the features. When training the models,
the hyperparameters of the models are optimised using grid search by utilising the GridSeachCV function
provided by scikit-learn. The grid search method works by searching through a predefined hyperparameter
space, and different combinations of hyperparameters are used to train the model. The hyperparameters
that give the best accuracy is chosen to train the final models. The hyperparameters of a model are
parameters that govern the training process. Take DNN as an example; the number of hidden layers is
the hyperparameter, while the weights and biases of the neural network are the parameters of the model.
Since optimising the hyperparameters require training the models multiple times, only a fraction of the
training dataset is used to speed up the entire process.

4.4 Model Accuracy Verification

In this step, the goal is to verify the accuracy of the models. Before we test the models using a different
dataset, it is important to ensure that they perform well on the training dataset. Hence, we measure
the performance of the models using cross-validation. The training dataset is split into k-folds, and the
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models are validated through k iteration. In each iteration i, the i-th fold of the training dataset is used
for testing, and the rest of the training dataset is used for training (as illustrated in Figure 8). The average
accuracy through the cross-validation is the accuracy of the model. After that, the accuracy of the models
is compared with other literature. If the model achieved a comparable accuracy with other literature, we
would proceed to the next step. Otherwise, the experiment process is revised for improvement.

Figure 8: An example of k fold cross-validation with k = 5.

4.5 Model Evaluation

After verifying the accuracy of the models, the last and most crucial step of this paper is performed. The
last step is training the final model and testing the models using the testing dataset. First, we use 70%
of the training dataset to train the final models. Next, we use the rest of the training dataset to calculate
the accuracy of the models on the training dataset. Finally, we use the testing dataset to test the models.

The interest of this paper is to compare the accuracy of each model when a different dataset is being
used. At the same time, a comparison between different models is conducted in terms of accuracy and
efficiency. The performance metrics that are used to measure the performance of the models include
accuracy, precision, recall and F1-score, as shown in Eq. (3), Eq.(4), Eq.(5) and Eq.(6).

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1Score = 2× Precision×Recall

Precision+Recall
(6)

In the above equations, true positive (TP) and true negative (TN) denote the number of samples that
are correctly classified as positive and negative, respectively. False positive (FP) and false negative (FN)
indicate the number of incorrectly classified samples as positive and negative, respectively. Besides that,
we also visualise the classification result using a confusion matrix.

Moreover, we also measure the time complexity of each model. Our primary focus is the time con-
sumption of each model to be trained and the time consumption for prediction. We do not compare with
other literature regarding time efficiency as the time consumption depends on the implementation of the
model, the number of samples and the hardware used to execute the experiment.
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5 Experiments and Discussions

In this section, the experiment results are discussed in detail. Section 5.1 discusses the software and
hardware environments used for our experiments. Section 5.2 discusses the experiment results using the
CIC-IDS2017 and the CSE-CIC-IDS2018 datasets, while Section 5.3 discusses the experiment results using
the LUFlow dataset. The experiment details of this paper are also made publicly accessible via a GitHub
repository; see reference [36] to access the source codes for all our experiments.

5.1 Experiment Environment

We first introduce the experiment environment of this work. The environment for the experiment is
important as it will affect the performance of the implementation. The ML models of this paper are
implemented using Python programming language in conda environment. The conda version is 4.10.1,
which use Python 3.8.8. Python libraries, including scikit-learn [31], pandas, NumPy and Matplotlib
are being used for the implementation of this work. The hardware environment used for this paper is a
laptop powered by the Intel® Core™ i7-8550U Central Processing Unit (CPU). The main frequency of the
processor is 1.80GHz, equipped with 8GB of Random-Access Memory (RAM). The Graphics Processing
Unit (GPU) of the system is Intel® UHD Graphics 620 integrated graphics unit. Besides that, the system
is running on Windows 11 Home 64-bit operating system.

5.2 Experiment Using CIC’s Dataset

In this section, the experiment results of using the datasets created by the CIC is being discussed. The
CIC-IDS2017 dataset is used for training, and the CSE-CIC-IDS2018 dataset is used for testing.

5.2.1 Dataset Pre-Processing

Both the CIC-IDS2017 and the CSE-CIC-IDS2018 datasets are huge datasets, where the former contains
800MB of data and the latter contains 6.4GB of data. The CSE-CIC-IDS2018 dataset is too large to be
handled by the hardware used in our work; hence, we only use 10% of the dataset.

Although the CIC-IDS2017 and CSE-CIC-IDS2018 are some of the most recently created datasets,
they still require some pre-processing. In both datasets, there are a small number of entries that contain
missing values or infinity values. Those entries are removed as they only contribute to a small portion of
the dataset. Besides that, duplicates in both datasets are also removed.

After the datasets are cleaned, the datasets are resampled to reduce the class imbalance problem.
As shown in Table 2 and Table 3, both datasets have severe class imbalance problems. The ratio of
benign samples to malicious samples is around 4:1. Besides that, most malicious samples contribute to
less than 1% of the dataset. The benign class and some attack classes are downsampled to make the class
distribution more balanced. For the CIC-IDS2017 dataset, attack classes containing more than 100000
samples are downsampled. After that, the benign class is also downsampled so that the ratio of benign
samples to malicious samples is 1:1.

For the CSE-CIC-IDS2018 dataset, the process is very similar, except that all malicious samples are
used. The class distribution of both datasets after cleaning and resampling is shown in Table 2 and
Table 3, respectively. Although the class distribution is still uneven after resampling, minority classes are
not upsampled as it will cause biases in the models. Instead, the malicious samples of both datasets are
relabelled as ‘malicious’ to prevent the models overfit a certain attack class.
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Table 2: Class distribution of the CIC-IDS2017 dataset

Classes
Before cleaning After cleaning and resampling

No. of rows No. of rows (%) No. of rows No. of rows (%)
BENIGN 2273097 80.3004% 324881 50.0000%
DoS Hulk 231073 8.1629% 100000 15.3903%
PortScan 158930 5.6144% 90694 13.9580%

DDoS 128027 4.5227% 100000 15.3903%
DoS GoldenEye 10293 0.3636% 10286 1.5830%
FTP-Patator 7938 0.2804% 5931 0.9128%
SSH-Patator 5897 0.2083% 3219 0.4954%
DoS slowloris 5796 0.2048% 5385 0.8288%

DoS Slowhttptest 5499 0.1943% 5228 0.8046%
Bot 1966 0.0695% 1948 0.2998%

Web Attack-Brute Force 1507 0.0532% 1470 0.2262%
Web Attack-XSS 652 0.0230% 652 0.1003%

Infiltration 36 0.0013% 36 0.0055%
Web Attack-Sql Injection 21 0.0007% 21 0.0032%

Heartbleed 11 0.0004% 11 0.0017%

Table 3: Class distribution of the CSE-CIC-IDS2018 dataset (10% of the entire dataset)
Before cleaning After cleaning and resampling

Classes No. of rows (10%) No. of rows (%) No. of rows No. of rows (%)
Benign 1347953 83.0747% 257791 50.0000%

DDOS attack-HOIC 68801 4.2402% 68628 13.3108%
DDoS attacks-LOIC-HTTP 57550 3.5468% 57550 11.1621%

DoS attacks-Hulk 46014 2.8359% 45691 8.8620%
Bot 28539 1.7589% 28501 5.5279%

FTP-BruteForce 19484 1.2008% 12368 2.3988%
SSH-Bruteforce 18485 1.1392% 16312 3.1638%

Infilteration 16160 0.9959% 16034 3.1099%
DoS attacks-SlowHTTPTest 14110 0.8696% 7251 1.4064%

DoS attacks-GoldenEye 4154 0.2560% 4153 0.8055%
DoS attacks-Slowloris 1076 0.0663% 1049 0.2035%

DDOS attack-LOIC-UDP 163 0.0100% 163 0.0316%
Brute Force -Web 59 0.0036% 59 0.0114%
Brute Force -XSS 25 0.0015% 25 0.0048%

SQL Injection 7 0.0004% 7 0.0014%

5.2.2 Feature Selection

The feature selection is an important process when training the models using the CIC-IDS2017 dataset,
as it includes 78 features. For the CIC dataset experiment, only the CIC-IDS2017 dataset is used for
feature selection. We do not inspect the features manually as the dataset includes many features.

When performing feature selection using the random forest algorithm, 10% of the dataset is used to
train the model. The features are then ranked according to their respective importance scores calculated
during the training process. The ranking of the features is displayed in Figure 9. As shown in Figure 9,
the scores of the top two features are significantly higher than the rest. Other than that, most features

14



Figure 9: Importance score of each feature in CIC-IDS2017 dataset.

have importance score of 0.03 to 0.01. From the result given by the random forest algorithm, the top 10
to 20 features are needed to train the models.

To further reduce the features, the brute force method is used. Preliminary ML models are trained
by using the top-ranked features. Starting from Bwd Packet Length Std, one feature is added in each
iteration according to their ranking. Figure 10 shows the accuracy of the models as the number of features
increases. From the figure, we can see that the top 11 features give the best overall accuracy.

5.2.3 Accuracy Validation

In this step, the accuracy of the models trained using the optimal hyperparameter is validated. The
accuracy score of each model is calculated using 5-fold cross-validation. The score of each model in each
fold is displayed in Table 4. The table shows that all models achieved higher than 95% of accuracy score
except NB. Besides that, the standard deviation of the accuracy of each model is very minimal. As the
maximum standard deviation is only 0.0029, the accuracy of each model on the CIC-IDS2017 dataset is
very consistent.

On the other hand, the NB has the worst performance, with only 73% accuracy. As the original target
was to ensure all models at least achieve 90% of accuracy, efforts have been made to improve the accuracy
of NB. For example, the feature selection process has been improved by including the brute force method.
Besides that, different variances of NB algorithms have been tested, including Gaussian Naïve Bayes and
Bernoulli Naïve Bayes. However, the accuracy of NB did not improve much.

As the accuracy of the model has been validated using cross-validation, the accuracy of each model is
compared against two literature, including the work done by Kostas [21] and the work done by Vinayaku-
mar et al. [35]. The reason for choosing these two works is that both studies used the CIC-IDS2017
dataset, and most models used by this paper are included in their studies. Besides that, both works
include binary classification, where the data are only classified as benign or malicious. Moreover, Kostas
also performed feature selection using the random forest algorithm; hence, the work is comparable to ours.
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Figure 10: Accuracy of the models with respect to the number of features.

Table 5 shows that the models implemented in this paper are comparable to other models. The models
using DT, RF, and SVM have a clear lead compared to the other existing works. The accuracy result
of NB is between the two studies. The NB implemented by Kostas [21] performed significantly better
than that of this paper. In contrast, the NB implemented by Vinayakumar et al. [35] had much poorer
accuracy than ours.

The difference is due to the fact that Kostas performed model-specific feature selection. In other
words, the features used to train each model in Kostas’s work are different. With such optimisation,
the NB is able to achieve significantly better accuracy. On the other hand, the accuracies of the models
implemented by Vinayakumar et al. are lower than that of this work, except ANN. This is because the
focus of Vinayakumar et al. is on proposing an optimised DNN that is less costly to train. Other models
implemented by Vinayakumar et al. are just to provide a reference on how their proposed models perform.
Hence, they may not perform optimisations to achieve the maximum possible accuracy. Besides that, it
is important to note that the ANN and DNN of this paper are compared against the DNN proposed by
Vinayakumar et al. with one and three hidden layers, respectively. Overall, the models implemented in
this paper achieved a comparable or better accuracy than the other literature.

5.2.4 Model Evaluation

After ensuring that the models have achieved good accuracy, the models are tested using the testing
dataset, the CSE-CIC-IDS2018 dataset. As described in Section 4.5, the models are trained again using
the optimal hyperparameters and tested again using the training dataset. This step is necessary to
evaluate the performance of the models on the training dataset. The accuracy and the F1-score of the
models on the training dataset are displayed in Table 6. Besides that, the accuracies of the models are
also visualised using the confusion matrixes as shown in Figure 11. The confusion matrix clearly shows
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Table 4: The accuracy result of 5-fold cross-validation on CIC-IDS2017 dataset.
Model Fold Accuracy Mean accuracy Standard deviation

Decision Tree

Fold-1 0.9972

0.9970 0.0002
Fold-2 0.9967
Fold-3 0.9971
Fold-4 0.9971
Fold-5 0.9970

Random Forest

Fold-1 0.9968

0.9972 0.0004
Fold-2 0.9978
Fold-3 0.9974
Fold-4 0.9968
Fold-5 0.9971

Support Vector Machine

Fold-1 0.9654

0.9650 0.0008
Fold-2 0.9641
Fold-3 0.9660
Fold-4 0.9641
Fold-5 0.9655

Naïve Bayes

Fold-1 0.7313

0.7311 0.0002
Fold-2 0.7312
Fold-3 0.7307
Fold-4 0.7311
Fold-5 0.7313

Artificial Neural Network

Fold-1 0.9688

0.9693 0.0029
Fold-2 0.9678
Fold-3 0.9705
Fold-4 0.9741
Fold-5 0.9653

Deep Neural Network

Fold-1 0.9773

0.9772 0.0006
Fold-2 0.9777
Fold-3 0.9777
Fold-4 0.9770
Fold-5 0.9761

Table 5: Comparison of accuracy with other literature when using the CIC dataset.

ML Models
Accuracy

This work Kostas [21] Vinayakumar et al. [35]
Decision Tree 1.00 0.95 0.94

Random Forest 1.00 0.94 0.94
Support Vector Machine 0.96 - 0.80

Naïve Bayes 0.73 0.87 0.31
Artificial Neural Network 0.95 0.97 0.96

Deep Neural Network 0.97 - 0.94

that DT and RF have the best accuracy, followed by SVM, ANN and DNN, while NB is biased towards
benign class.

The most interesting part of this paper is to evaluate the models using another dataset. Table 7 shows
the performance of the models on the CSE-CIC-IDS2018 dataset. The accuracy of each model is also
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Table 6: Performance of the models on the CIC-IDS2017 dataset.

Models
Evaluation Metrics

Class
Accuracy Precision Recall F1-score

Decision Tree 0.9959
0.9987 0.9932 0.9959 benign
0.9931 0.9987 0.9959 malicious

Random Forest 0.9967
0.9990 0.9945 0.9967 benign
0.9944 0.9990 0.9967 malicious

Support Vector Machine 0.9600
0.9923 0.9278 0.9590 benign
0.9312 0.9927 0.9610 malicious

Naïve Bayes 0.7296
0.6576 0.9671 0.7829 benign
0.9360 0.4884 0.6418 malicious

Artificial Neural Network 0.9549
0.9831 0.9264 0.9539 benign
0.9294 0.9839 0.9558 malicious

Deep Neural Network 0.9735
0.9930 0.9542 0.9732 benign
0.9552 0.9932 0.9738 malicious

Figure 11: Confusion matrix of each model on CIC-IDS2017 dataset.

visualised using confusion matrixes as shown in Figure 12. It is important to note that the models are
not trained using the CSE-CIC-IDS2018 dataset. The confusion matrixes show that all models have poor
performance except SVM. Looking at the accuracy score and F1-score, SVM has the highest accuracy,
with 76% accuracy, followed by ANN with 70% accuracy. The confusion matrixes also tell the problem of
the models – bias towards the benign samples. In other words, the models have overfitted the malicious
samples to different extents. Among them, SVM suffers less from overfitting. From Figure 12, we can
see that SVM allow more error, which incorrectly classifies more benign samples as malicious. In return,
SVM correctly classifies more malicious samples.

We use the data presented in Figure 13a and Figure 13b to compare which model suffers the most
from overfitting. Figure 13a compares the accuracy of the models on different datasets while Figure 13b
compares the F1-score. From Figure 13a, we can see that SVM has the smallest drop in terms of accuracy,
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Table 7: Performance of the models on the CSE-CIC-IDS2018 dataset.

Models
Evaluation Metrics

Class
Accuracy Precision Recall F1-score

Decision Tree 0.5942
0.5546 0.9660 0.7046 benign
0.8660 0.2208 0.3518 malicious

Random Forest 0.5949
0.5550 0.9668 0.7052 benign
0.8690 0.2214 0.3529 malicious

Support Vector Machine 0.7559
0.6977 0.9049 0.7879 benign
0.8639 0.6063 0.7125 malicious

Naïve Bayes 0.4972
0.4992 0.9920 0.6641 benign
0.0417 0.0003 0.0007 malicious

Artificial Neural Network 0.7000
0.6428 0.9031 0.7510 benign
0.8360 0.4959 0.6226 malicious

Deep Neural Network 0.6518
0.5977 0.9335 0.7288 benign
0.8468 0.3689 0.5139 malicious

Figure 12: Confusion matrix of each model on CSE-CIC-IDS2018 dataset.

followed by ANN and NB. However, it is important to note that NB has a significant drop in terms of
F1-score, as shown in Figure 13b. For DT and RF, the accuracy and F1-score of both models drop
significantly on the testing dataset. As a result, SVM and ANN suffer less from overfitting while DT and
RF suffer the most.

In terms of time consumption, ANN and DNN are costly to train. As shown in Figure 14a, the
training time of ANN and DNN is significantly longer than the other models implemented in this work.
However, in terms of time consumption on classifying the samples, the time consumed by ANN and DNN
are greatly reduced. As shown in Figure 14b, SVM consumes significantly more time to predict the class
of the samples. On the other hand, the time consumed by ANN and DNN to classify the samples is even
less than that of the RF. DT and NB are the most efficient models in terms of time consumption for both
training and predicting the class of the samples.
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(a) Accuracy of the models on the CIC’s dataset

(b) F1-score of the models on CIC’s dataset

Figure 13: Accuracy and F1-score of the models on the CIC’s dataset.

(a) Training time on CIC-IDS2017 dataset (b) Prediction time on CSE-CIC-IDS2018 dataset

Figure 14: Time consumption for training and prediction on the CIC dataset.
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5.3 Experiment Using LUFlow Dataset

This section discusses the experiment details using the LUFlow dataset. For the experiment using the
LUFlow dataset, the data collected in July 2020 is used as the training dataset, while the data collected
in January 2021 is used as the testing dataset. For the rest of this paper, the dataset is referred by the
year the data is collected. Hence, the training dataset is also referred to as LUFlow 2020 dataset, while
the testing dataset is also referred to as LUFlow 2021 dataset.

5.3.1 Dataset Pre-Processing

As the LUFlow dataset is organised according to the day that the data was collected, the first step is to
combine the files of each day into one single file for processing. However, the datasets are huge in size; the
LUFlow 2020 dataset contains 3.7 GB of data, while the LUFlow 2021 includes 2.5 GB of data. Hence,
only 10% of the samples are randomly selected for this work.

We discovered that both datasets contain a small amount of missing value and duplicated samples.
Besides that, no entry contain infinity values in both datasets. These unwanted entries are dropped as
they only make up a small portion of the dataset.

We also found that the datasets are slightly imbalanced. As shown in Table 8, the benign samples
account for 56% of the dataset. In contrast, the malicious traffic only accounts for 36% of the dataset.
Hence, benign samples are randomly selected so that the ratio of benign samples to malicious samples is
1:1. Moreover, samples in the class “outlier” are removed from the dataset as they are noise to the ML
models. The class distribution of the datasets after cleaning and re-sampling is shown in Table 9.

Table 8: Class distribution of LUFlow dataset before cleaning.

Classes
LUFlow 2020 LUFlow 2021

No. of rows (10%) No. of rows (%) No. of rows (10%) No. of rows (%)
benign 1396168 55.71% 1638952 56.36%

malicious 905395 36.12% 591372 35.52%
outlier 204787 8.17% 469345 8.12%

Table 9: Class distribution of LUFlow dataset after cleaning.

Classes
LUFlow 2020 LUFlow 2021

No. of rows No. of rows (%) No. of rows No. of rows (%)
benign 879740 50% 569003 50%

malicious 879740 50% 569003 50%

5.3.2 Feature Selection

The LUFlow dataset is not large in terms of the number of features. The dataset only contains 16 features,
where the description of each feature is listed in Table 10. Although there are only a few features, feature
selection is still necessary as it would help remove noise from the dataset and improve the performance
of the models.

We first removed some features manually before using the random forest to select the features. First,
the ‘src_ip’ and the ‘dest_ip’ columns are removed as using the IP address to classify the traffics may cause
overfitting in the long run. Besides that, the ‘time_start’ and the ‘time_end’ columns are also removed.
The two columns record the start and end time using Unix timestamp, which will keep increasing over
time. Besides that, the ‘duration’ column represents the time between ‘time_start’ and ‘time_end’.
Hence, these two columns can be safely removed.
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Table 10: Description of features of LUFlow dataset. Retrieved from reference [28].
Feature Description

src_ip
The source IP address associated with the flow. This feature is anonymised
to the corresponding Autonomous System.

src_port The source port number associated with the flow.

dest_ip
The destination IP address associated with the flow. The feature is also
anonymised in the same manner as before.

dest_port The destination port number associated with the flow.
protocol The protocol number associated with the flow. For example, TCP is 6
bytes_in The number of bytes transmitted from source to destination.
bytes_out The number of bytes transmitted from destination to source.

num_pkts_in The packet count from source to destination.
num_pkts_out The packet count from destination to source.

entropy
The entropy in bits per byte of the data fields within the flow. This number
ranges from 0 to 8.

total_entropy The total entropy in bytes over all of the bytes in the data fields of the flow.
mean_ipt The mean of the inter-packet arrival times of the flow.
time_start The start time of the flow in seconds since the epoch.
time_end The end time of the flow in seconds since the epoch.
duration The flow duration time, with microsecond precision.

label
The label of the flow, as decided by Tangerine. Either benign, outlier, or
malicious.

After removing these four features, the remaining features are ranked according to their importance
score computed by random forest. The ranking of the features is visualised using Figure 15. From
Figure 15, ‘dest_port’ is the highest scored, and its score is significantly higher than the ‘bytes_out’
feature. Besides that, the importance scores of the last five features are substantially lower than the
higher-ranked features. The low importance score indicates that those features do not provide much
information to classify the data.

Figure 15: Importance score of each feature in LUFlow dataset.

Finally, the features are further reduced using brute force. For implementation using the LUFlow
dataset, all features are tested using brute force. Figure 16 shows the accuracy of the models with respect
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to the number of features. The figure shows that naïve Bayes reach their maximum accuracy when the
top two to six features are used. On the other hand, SVM, ANN and DNN achieved high accuracy when
at least the top six features are included. For DT and RF, the accuracy is very high, even with only one
feature. As a result, the top six features are chosen in the final feature set.

Figure 16: Accuracy of the models with respect to the number of features in the LUFlow dataset.

5.3.3 Accuracy Validation

After optimising the hyperparameter of the models, it is important to check if the models are over-
optimised, which will result in overfitting. We used five-fold cross-validation to validate the accuracies of
the models. The accuracy of the models in each fold is listed in Table 11. We can see from Table 11 that
all models achieved excellent accuracies, except NB. Besides that, the standard deviation of the accuracy
of each model is very minimal, indicating that the accuracies of the models are very consistent.

Looking at the accuracy score, DT and RF are the best models with an average of 99.94% of accuracy.
The worst performing model is NB, with only 72% of accuracy, making it the least reliable model. In
terms of accuracy, the performances of DT, RF and NB on the LUFlow dataset are aligned with those
achieved using the CIC-IDS2017 dataset. On the other hand, the accuracies of SVM, ANN and DNN on
the LUFlow dataset improve significantly, with accuracies above 99.5%.

For NB, it is the worst-performing model on both datasets. As described earlier, efforts have been
made to improve the performance of NB. However, the accuracy of NB hardly improves any further. For
the experiment using the LUFlow dataset, we do not compare the accuracy of each model with other
literature. This is because the dataset is still very new, and there is no existing work using this dataset
that can be compared to our work. Besides that, such comparison is unnecessary as most models have
achieved higher than 99% of accuracy.
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Table 11: The accuracy result of 5-fold cross-validation on LUFlow dataset.
Model Fold Accuracy Mean accuracy Standard deviation

Decision Tree

Fold-1 0.9995

0.9994 0.0001
Fold-2 0.9993
Fold-3 0.9994
Fold-4 0.9994
Fold-5 0.9995

Random Forest

Fold-1 0.9995

0.9959 0.0001
Fold-2 0.9994
Fold-3 0.9995
Fold-4 0.9996
Fold-5 0.9995

Support Vector Machine

Fold-1 0.9961

0.9959 0.0003
Fold-2 0.9960
Fold-3 0.9962
Fold-4 0.9956
Fold-5 0.9954

Naïve Bayes

Fold-1 0.7201

0.7198 0.0026
Fold-2 0.7154
Fold-3 0.7210
Fold-4 0.7234
Fold-5 0.7190

Artificial Neural Network

Fold-1 0.9953

0.9956 0.0003
Fold-2 0.9960
Fold-3 0.9959
Fold-4 0.9956
Fold-5 0.9952

Deep Neural Network

Fold-1 0.9984

0.9984 0.0002
Fold-2 0.9983
Fold-3 0.9983
Fold-4 0.9987
Fold-5 0.9986

5.3.4 Model Evaluation

Since we have ensured that the models are able to provide good accuracy by using cross-validation, we
then test the model using the testing dataset, the LUFlow 2021 dataset. As described in Section 4.5, the
final ML models are trained using the LUFlow 2020 dataset with the optimal hyperparameters. As the
size of the datasets is huge, only 20% of the LUFlow 2020 and the LUFlow 2021 datasets are used in our
experiments. We used 70% of the LUFlow 2020 dataset for training the model; the other 30% is used to
evaluate the performance of the models on the training dataset. The performance of the models on the
training dataset is listed in Table 12 and visualised using confusion matrixes in Figure 17.

From Figure 17, we see that most models have achieved a good accuracy except NB. The problem of
NB is that it overfits the benign samples, which is reflected in the recall score of NB on the malicious
sample, with a score of only 0.4732. In other words, NB correctly classifies less than half of the benign
samples. For other ML models, the precision and recall scores are very similar, indicating that they do
not bias towards a specific class.
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Table 12: Performance of the models on LUFlow 2020 dataset.

Models
Evaluation Metrics

Class
Accuracy Precision Recall F1-score

Decision Tree 0.9994
0.9996 0.9993 0.9994 benign
0.9993 0.9996 0.9994 malicious

Random Forest 0.9994
0.9995 0.9993 0.9994 benign
0.9993 0.9995 0.9994 malicious

Support Vector Machine 0.9956
0.9954 0.9957 0.9956 benign
0.9958 0.9954 0.9956 malicious

Naïve Bayes 0.7276
0.9600 0.4732 0.6339 benign
0.6518 0.9804 0.7830 malicious

Artificial Neural Network 0.9960
0.9953 0.9967 0.9960 benign
0.9967 0.9953 0.9960 malicious

Deep Neural Network 0.9982
0.9978 0.9985 0.9982 benign
0.9985 0.9978 0.9982 malicious

Figure 17: Confusion matrix of each model on LUFlow 2020 dataset.

The performance of the models on the LUFlow 2021 dataset is very interesting as the result is opposite
to that of our first experiments on the CIC dataset. As shown in Figure 18, we notice that the models still
perform very well on the LUFlow 2021 dataset. From the accuracy score of the models (see Table 13), we
observe that the accuracy scores of most models do slightly decrease. For example, the accuracy score of
the DT has fallen from 0.9994 to 0.9990, which is just a marginal drop. However, the recall score of NB
on benign class has increased from 0.4732 to 0.5046, which is very surprising.

Figure 19a and Figure 19b provide further comparisons on the performance of the models on the
training and testing dataset. From Figure 19a, we observe that the accuracy of SVM and ANN dropped
the most. Comparing the accuracy score shown in Table 12 and Table 13, we see that the accuracy score
of SVM and ANN have dropped more than 0.002. Besides that, the precision scores of both models on
the benign class of the LUFlow 2021 dataset are lower than their recall score (the difference is about
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Table 13: Performance of the models on the LUFlow 2021 dataset.

Models
Evaluation Metrics

Class
Accuracy Precision Recall F1-score

Decision Tree 0.9990
0.9994 0.9986 0.9990 benign
0.9986 0.9994 0.9990 malicious

Random Forest 0.9991
0.9995 0.9986 0.9991 benign
0.9986 0.9995 0.9990 malicious

Support Vector Machine 0.9934
0.9882 0.9989 0.9935 benign
0.9988 0.9880 0.9934 malicious

Naïve Bayes 0.7377
0.9477 0.5046 0.6585 benign
0.6612 0.9720 0.7870 malicious

Artificial Neural Network 0.9930
0.9874 0.9988 0.9931 benign
0.9988 0.9872 0.9930 malicious

Deep Neural Network 0.9975
0.9955 0.9996 0.9975 benign
0.9996 0.9955 0.9975 malicious

Figure 18: Confusion matrix of each model on LUFlow 2021 dataset.

0.01). The decrease in precision score may indicate that the models have started to bias towards the
benign class. However, since the accuracy score and the F1-score of both models are still high, we cannot
conclude that the models have started to bias towards a specific class.

In terms of time consumption for training, SVM and ANN are the most expensive models, as shown
in Figure 20a. On the other hand, DT and NB are still the most efficient models. Interestingly, DNN
consumes less time to train than RF, SVM and ANN. Two reasons contribute to the reduction in training
time. First, the number of neurons on each layer for the DNN is reduced to 10, compared to 15 neurons
in the experiment using the CIC’s datasets. Besides that, the CIC’s dataset is wide, while the LUFlow
dataset is long. In other words, the CIC’s datasets contain significantly more features than the LUFlow
dataset, while the LUFlow dataset contains considerably more samples than the CIC’s dataset. Hence,
the input layer contains fewer neurons. Besides that, the time complexity of each model is different. In
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(a) Accuracy of the models on LUFlow dataset

(b) F1-score of the models on LUFlow dataset

Figure 19: Accuracy and F1-score of the models on the LUFlow dataset.

(a) Training time on LUFlow dataset. (b) Prediction time on LUFlow dataset.

Figure 20: Time consumption for training and prediction on LUFlow dataset.

terms of the time consumption for prediction, Figure 20b shows that most models perform efficiently,
while SVM consumes significantly more time than others.
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6 Discussion of Results

We conducted the experiment twice in this work, one using the CIC’s datasets and the other using the
LUFlow dataset. Interestingly, the two experiments show two different results. The experiment results
using the CIC’s datasets show that all models suffered from different degrees of overfitting. On the other
hand, the experiment results using the LUFlow dataset show that the models do not have an overfitting
problem. This difference comes from the fact that the two experiments reflect two different scenarios.

The CIC’s datasets reflect a scenario where the environment used by the victims and the attackers
have become more complex, and attackers are trying to break into the system using different tools and
techniques. Hence, the deviation between the CIC-IDS2017 and the CSE-CIC-IDS2018 dataset is large.
First, the CSE-CIC-IDS2018 dataset is created with more machines and various operating systems. Be-
sides that, the class distribution of the CIC-IDS2017 and the CSE-CIC-IDS2018 dataset is different. For
example, port scan attacks account for 14% of the CIC-IDS2017 dataset, but there is no port scan attack
in the CSE-CIC-IDS2018 dataset. On the other hand, bot attack and infiltration increase from 0.30%
and 0.01% to 6% and 3%, respectively, in the CSE-CIC-IDS2018 dataset. The changes in the network
environment and the type of attacks cause the models to perform poorly on the CSE-CIC-IDS2018 dataset.

On the other hand, the LUFlow dataset reflects a scenario with minimum changes in the environment
used by attackers and no changes in the environment used by the victims. Besides that, Lancaster
University’s public address space may suffer fewer targeted attacks. Moreover, the type of attacks it faced
may not change much within six months; we use data collected in July 2020 for the training dataset and
use data collected in January 2021 for testing, which is six months apart. However, it is important to
note that the LUFlow dataset contains 8% of samples that are classified as an outlier. There may be some
unseen attacks in the outlier class, but they are not correctly classified in the dataset.

The experiment results from the first set of experiments have shown that the method proposed in
this paper has a better chance of detecting overfitting. From our experiment, we have shown that the
models perform very well on the training dataset. We even evaluate the performance of the models on
the training dataset using cross-validation, and there is no sign of overfitting. However, when we evaluate
the models using the testing dataset, overfitting of the models is discovered.

Our experiment results have also shown that ANN is the best model for a system for which the
infrastructures are updated frequently, and the cost of cyberattack is very high. The ANN has balanced
between resistance to overfitting and the time consumed on prediction. In contrast, DT is a better choice
for a system that does not frequently update its infrastructure and does not suffer from massive attacks.
This is because DT is one of the most efficient models in training and classifying new samples. Besides
that, DT also provides the best accuracy on the training dataset in both experiments. It is also important
to note that in the first set of experiments, the accuracy of the models on the testing dataset is lower
than 80%, which may be unacceptable for an IDS. Hence, periodically updating the IDS with newer data
is necessary, regardless of the ML model being used.

7 Conclusion

We proposed a new method to evaluate the long-term performance of a machine learning (ML) based
intrusion detection system (IDS). Our proposed method uses a dataset created later than the training
dataset to evaluate the ML models. To the best of our knowledge, this is the first work that trains and
evaluates the ML-based IDS using separate datasets. We identified two sets of suitable datasets, the CIC
dataset and the LUFlow dataset, to conduct our experiments using six ML models: decision tree (DT),
random forest (RF), support vector machine (SVM), naïve Bayes (NB), artificial neural network (ANN)
and deep neural network (DNN). From our experiment results, we conclude that ANN is the best model
if long-term performance is important. On the other hand, DT is more suitable for small organisations
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that are less targeted to attacks. The experiment results also show that our proposed method can detect
overfitting better. It is important to note that models proposed in other existing works may also suffer
from the overfitting problem that occurred in our first experiment. However, the problem may not be
discovered as the other existing works did not include a second dataset to evaluate their models.

In future, we aim to evaluate unsupervised ML models and other more comprehensive models proposed
by other literature. For example, we can evaluate one-class SVM using our proposed method as Hindy et
al. [11] have shown that one-class SVM has good accuracy in detecting zero-day attacks. Besides that,
future work may also aim to improve the feature selection method used in this paper. The selected features
can greatly impact the performance of the models. Hence, it is possible that the overfitting observed in
our first experiment can be improved by feature selection.
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