
Optimal Private Set Union from Multi-Query Reverse Private
Membership Test

Cong Zhang1,2, Yu Chen3, Weiran Liu4, Min Zhang3, and Dongdai Lin1,2

1 State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of
Sciences

{zhangcong,ddlin}@iie.ac.cn,
2 School of Cyber Security, University of Chinese Academy of Sciences

3 School of Cyber Science and Technology, Shandong University
yuchen.prc@gmail.com, zm_min@mail.sdu.edu.cn

4 Alibaba Group
weiran.lwr@alibaba-inc.com

Abstract. Private set union (PSU) protocol enables two parties, each holding a set, to com-
pute the union of their sets without revealing anything else to either party. So far, there are
two known approaches for constructing PSU protocols. The first mainly depends on additively
homomorphic encryption (AHE), which is generally inefficient since it needs to perform a non-
constant number of homomorphic computations on each item. The second is mainly based on
oblivious transfer and symmetric-key operations, which is recently proposed by Kolesnikov et
al. (KRTW, ASIACRYPT 2019). It features good practical performance, which is several orders
of magnitude faster than the first one. However, neither of these two approaches is optimal in
the sense that their computation and communication complexity are not both O(n), where n
is the size of the set. Therefore, the problem of constructing the optimal PSU protocol remains
open.

In this work, we resolve this open problem by proposing a generic framework of PSU from obliv-
ious transfer and a newly introduced protocol called multi-query reverse private membership
test (mq-RPMT). We present two generic constructions of mq-RPMT. The first is based on
symmetric-key encryption and general 2PC techniques. The second is based on re-randomizable
public-key encryption. Both constructions lead to PSU with linear computation and communi-
cation complexity.

By instantiating the generic constructions of mq-RPMT, we obtain two concrete PSU protocols
based on SKE and PKE techniques respectively. We implement our two PSU protocols and
compare them with the state-of-the-art PSU. Experiments show that our PKE-based protocol
has the lowest communication of all schemes, which is 4.1− 14.8× lower depending on set size.
The running time of our PSU scheme is 1.2− 12× faster than that of state-of-the-art depending
on network environments.

1 Introduction

Private set union (PSU) enables two parties, each holding a private set of elements, to compute the
union of the two sets while revealing nothing more than the union itself. PSU and its variants have
numerous applications, such as information security risk assessment [LV04], IP blacklist and vulner-
ability data aggregation [HLS+16], joint graph computation [BS05], distributed network monitoring
[KS05], building block for private DB supporting full join [KRTW19], private ID [GMR+21] etc.

Over the last decade, there has been a significant amount of work on private set operation, espe-
cially private set intersection (PSI) [FNP04, PSZ14, KKRT16, PRTY19, CM20, PRTY20]. We refer the
reader to [PSZ18] for an overview of different PSI paradigms. State-of-the-art semi-honest PSI proto-
cols in the two-party setting [KKRT16, PRTY19, CM20, RS21, GPR+21] all mainly rely on symmetric-
key operations, except for a few base oblivious transfer (OT) operations in OT extension protocol
[IKNP03, KK13]. Let n denote the size of input set, the communication complexity of these OT-based
PSI protocols has been improved from initial nonlinear O(n log n) [PSZ14, PSSZ15, KKRT16] to linear
complexity O(n) [PRTY19, FNO19, GN19, CM20, RS21, GPR+21].

1.1 Motivation

In contrast to the affairs of PSI, the efficiency of the state-of-the-art PSU is less satisfactory. Roughly,
there are two known approaches for constructing PSU protocols. The first is mainly based on public-
key techniques. Existing constructions along this approach [KS05, Fri07, HN10, SM18] have to perform
a non-constant number of additively homomorphic encryption (AHE) operations on each set element,
rendering the overall protocols inefficient. The other is mainly based on symmetric-key techniques
in combination with OT [KRTW19, GMR+21], which is several orders of magnitude faster than
AHE-based constructions. However, neither of the two approaches is optimal in the sense that their
computation and communication complexity are not both O(n), where n is the size of the set. We note
that [DC17] is the work closest to optimal bound, but its communication and computation complexity
additionally depend on the statistical security parameter λ. This leaves the following open problem:

Can we construct PSU protocols with linear computation and communication complexity?

1.2 Our Contribution

In this paper, we answer this question affirmatively in the semi-honest setting. Our contribution can
be summarized as follows:

1. We revisit the state-of-the-art PSU protocol [KRTW19] (KRTW protocol for short hereafter) in
depth. Roughly, KRTW protocol is built upon two building blocks, namely oblivious transfer (OT)
and reverse private membership test (RPMT). We figure out the root causing KRTW protocol
non-optimal is that RPMT has linear communication complexity and super-linear computation
complexity, and it has to be carried out n times independently, where n is the size of sender’s
private set.

2. To achieve linear complexity, we propose a new framework for constructing PSU protocols. The
core building block is a newly introduced protocol called multi-query RPMT (mq-RPMT). Com-
pared with original RPMT [KRTW19], mq-RPMT enables a sender to test whether his n elements
belong to receiver’s input set X in a one-shot, rather than repeating n times.

Multi-query RPMT dominates the complexity of the resulting PSU protocol. However, it is chal-
lenging to construct mq-RPMT. We identify and overcome several technical difficulties for build-
ing optimal mq-RPMT, and give a modular construction from oblivious key-value store (OKVS)
[GPR+21] and a novel functionality called vector oblivious decryption-then-matching (VODM).
We then give two realizations of mq-RPMT via carefully instantiating the OKVS and the VODM
functionality. The first is mainly based on symmetric-key encryption (SKE) and 2PC techniques,
while the second is mainly based on re-randomizable public-key encryption (ReRand-PKE). Both
the two concrete mq-RPMT protocols achieve linear communication and computation complexity.

3. We further abstract a new primitive called membership encryption (ME), which broadens the scope
of the candidate encryption scheme, unifies our two constructions, and halves the communication
complexity of our SKE-based construction on receiver side.

4. Combining OT and the above mq-RPMT, we eventually obtain SKE-based and PKE-based PSU
protocols with optimal complexity for the first time. Experiments show that our PKE-based proto-
col has the lowest communication of all schemes, which is 4.1−14.8× lower depending on set size.
The running time of our PSU scheme is 1.2−12× faster than that of state-of-the-art depending on
the network environment. In addition to our scheme, we also use Silent OT [BCG+19, YWL+20]
to optimize the scheme of [GMR+21], and provide different parameter selection of Ferret OT
[YWL+20].

Fig. 1 depicts the technical overview of our new PSU framework. We elaborate the details in the
next subsection.

1.3 Overview of Our Techniques

We provide the high-level technical overview for our new framework of PSU protocol.

2

Fpsu

Sec 5

F(l)mq-rpmt

Sec 3.2

Fot

F(l)vodmOKVS

SKE+2PC Re-randomizable PKEPolynomial GBF 3H-GCT++

Sec 2.5 Sec 4.1 Sec 4.2

Fig. 1: Technical overview of our new PSU framework. The new primitives and functionalities are marked with
rectangles.

KRTW protocol revisit. Our starting point is the recent PSU protocol of Kolesnikov et al.
[KRTW19]. The core of KRTW protocol is a subprotocol called reverse private membership test
(RPMT), which can test whether a sender’s element y belongs to the receiver’s input set X, and let
the receiver obtain the result. After that, both parties execute OT protocol to let the receiver obtain
{y} ∪X. The computation cost of original RPMT [KRTW19] is O(n log2 n) and the communication
cost is O(n). For the purpose of computing the set union, the parties need to execute RPMT n times
independently, which results in O(n2) communication and O(n2 log2 n) computation. The complexity
can be further reduced to O(n log n) and O(n log n log log n) separately via hash to bin technology,
but it is still super-linear. The bottleneck of the KRTW protocol is exactly RPMT.

Zoom in on the original RPMT. The original RPMT protocol employs an oblivious PRF (OPRF)
functionality Foprf and a private equality test (PEQT) functionality Fpeqt. In OPRF, the sender
learns a random PRF key k and the receiver learns the PRF output Fk(y1), . . . , Fk(yn) on its inputs
y1, . . . , yn ∈ Y . In PEQT, the functionality receives two strings from the receiver and the sender
respectively and tells the receiver whether the two strings are equal. Their RPMT uses an indication
string s to indicate the membership of X.

More precisely, their RPMT protocol executes as follows with sender S’s input y and receiver
R’s input X = {x1, . . . , xn}: S and R execute the OPRF protocol first. The receiver R receives a
PRF key k. The sender S inputs y, and receives q∗ = Fk(y). Next, R chooses a random indication
string s. Then, R computes and sends the interpolation polynomial P which passes through points
{(xi, s ⊕ Fk(xi))}i∈[n] to the sender. After receiving P , S computes s∗ := q∗ ⊕ P (y). Now, S and R
invoke the Fpeqt-functionality with input s∗ and s separately. Finally, R receives output from Fpeqt.

If y ∈ X, i.e., there exists an xi such that y = xi, then we have s∗ = q∗⊕P (y) = Fk(xi)⊕P (xi) = s.
If y /∈ X, then q∗ = Fk(y) is pseudorandom, which implies that s∗ = q∗⊕P (y) ̸= s with overwhelming
probability.

To identify the root of the inefficiency of the original RPMT protocol, we first try to interpret it at
an abstract level. Our first key observation is that the polynomial actually plays the role of oblivious
key-value store (OKVS). Our second key observation is that the usage of OPRF is three-fold. Firstly,
R uses an OPRF to derive n pseudorandom one-time pads, then encrypts the same indication string
into n ciphertexts under these one-time pads. Secondly, S utilizes OPRF to decrypt a ciphertext
obliviously. Finally, OPRF provides OKVS with randomness to ensure the correctness of the protocol.

Based on the above new interpretation, we are ready to describe our new mq-RPMT protocol in
an incremental way over the original RPMT protocol.

Enhanced oblivious key-value store. One reason that accounts for the super-linear complexity of
the original RPMT protocol is that the polynomial related operations are costly. More precisely, the
complexity of polynomial interpolation is O(n log2 n), and the amortized complexity of polynomial
evaluation is O(log2 n). According to our first observation, polynomial essentially plays the role of
OKVS. This greatly increases the space of the concrete mapping schemes that can be used. A drop-in

3

replacement of polynomial with more efficient OKVS candidates can reduce the computation com-
plexity immediately. However, as we observed before, an additional randomness property should be
satisfied now, since we do not use OPRF to provide randomness anymore. To achieve this goal, we
enhance OKVS in two aspects: efficiency and security. (See Section 2.5 for the details.)

Oblivious decryption-then-matching. Another reason that accounts for the super-linear complex-
ity is that the original RPMT protocol is one-time in nature. To see this, note that in the original
RPMT protocol S learns the purported indication string. This design lets S learn more information
than needed, and is exactly the reason that hinders multi-query. For example, if there are two distinct
elements belonging to R’s set, then S will obtain the same indication string. This will let S know that
the two elements belong to the intersection, which violates security.

Based on the above discussion, the rough idea of making RPMT support multi-query is to encode
the ciphertext of indication string in OKVS instead of the indication string itself. In this way, S will
obtain some ciphertexts (i.e. the value of OKVS(y)), andR has the corresponding key. We need to letR
decrypt these ciphertexts, and match the results with the indication string. A naive attempt is to have
S directly send the ciphertexts to R, and in the sequel, R tries to decrypt and match. However, this
rough idea is problematic since it is insecure even against a semi-honest receiver. Consider R records
the correspondence between xi and OKVS(xi). In this way, R is able to learn S’s private input y by
simple look-up when y ∈ X, rather than merely the fact that y ∈ X. We overcome this difficulty in two
steps. The first step is to re-factor the functionality of OPRF to encryption and oblivious decryption
functionality. Let R encrypt the indication string locally. Then R computes the corresponding OKVS
and sends it to S. To ensure the overall protocol still constitutes an RPMT protocol, the second step
is to merge the oblivious decryption functionality and PEQT into a new functionality, namely, vector
oblivious decryption-then-matching (VODM) functionality. In this functionality, the sender inputs a
vector of ciphertexts and the receiver inputs a key and a plaintext. The functionality decrypts these
ciphertexts with the key and matches the results with the plaintext input by the receiver. If it matches,
the receiver outputs 1, and outputs 0 otherwise.

Putting all the pieces together, we can build mq-RPMT protocol from OKVS, encryption, and
VODM functionality in a modular way. (See Section 3 for the technical details).

Two generic constructions of mq-RPMT. Our first generic construction chooses probabilistic
SKE as the encryption scheme, and resorts to general 2PC to implement the VODM functionality.
See Section 4.1 for details. Our second generic construction chooses re-randomizable PKE as the
encryption scheme and uses re-randomization technique to implement VODM functionality, without
resorting to generic 2PC.

Our idea is to let S re-randomize all the ciphertexts and then send the results to R. In this way,
R fulfills the decryption-then-matching functionality in an oblivious manner for all yi ∈ X. We note
that this method will leak some information of y /∈ X, however, as observed by KRTW, this leakage
does not cause any harm to the PSU, since the PSU protocol releases that value anyway.

Looking ahead, one may doubt our PKE-based scheme is inefficient. We note that our PKE-
based scheme can still be very efficient because we use PKE techniques in an entirely different way
compared to prior PKE-based protocol [KS05, Fri07, DC17]. We only need to perform the encryption,
rerandomization, and decryption operations per item, while they need to carry out many ciphertext
homomorphism operations per item. See Section 4.2 for details.

Optimization with membership encryption. In the above framework, the underlying encryption
schemes must be probabilistic to make the security proof go through. As a consequence, this incurs
considerable overhead on communication costs due to ciphertext expansion. Observe that the VODM
functionality reveals only one-bit information for every ciphertext. A second thought indicates that
a full-fledged encryption scheme might be overkill for our construction of mq-RPMT protocol, and
a new type of encryption scheme suffices. We propose the new encryption scheme as membership
encryption (ME).

We sketch the definition of membership encryption in the symmetric key setting as below. Let X
be a string set. The encryption algorithm takes a key k and an element xi ∈ X as inputs, outputs
a ciphertext c. The decryption algorithm takes a key k and a ciphertext c as inputs, outputs a
bit to indicate if the encrypted element belongs to X. For the correctness, we require that for any
xi ∈ X and any c ← Enc(k, xi), we have Dec(k, c) = 1. The security requirement is multi-element

4

pseudorandomness, namely, {Enc(k, xi)}xi∈X are computationally indistinguishable to Cn, i.e. the
uniform distribution over ciphertext space. The consistency requirement is that a random ciphertext
decrypts to “0” with overwhelming probability.

Membership encryption distills the right functionality we need for an encryption scheme in mq-
RPMT protocol. It not only encompasses the constructions from randomized SKE and PKE in a
unified manner, but also admits new construction from deterministic SKE, which enjoys compact
ciphertext. As we elaborate in Section 4.3, this new construction helps to halve the communication
complexity on the receiver side.

1.4 Related Work

We survey existing PSU protocols with security against semi-honest adversaries. Hereafter, unless
otherwise declared, we calculate the efficiency by assuming a balanced setting, namely the sets of
both sender and receiver are of size n.

Kissner and Song [KS05] proposed the first PSU protocol based on polynomial representations and
additively homomorphic encryption (AHE). The polynomial representation of a set is to represent a
set by a polynomial f , in which each set item is the root of the polynomial. The main observation
of them is that when the set of two parties is represented by polynomials f and g, the root of fg
is exactly the union items. Two parties compute the AHE of fg. Before decryption, they execute a
reduction step to reduce the degree of roots. Then they decrypt the resulting polynomial and compute
the roots to obtain the union. The communication and computation complexity of the protocol are
both quadratic to the set size n, and the efficiency is very low due to the use of expensive AHE.

Frikken [Fri07] first uses polynomial representation to represent the receiver’s set X as a poly-
nomial f , then encrypt f via AHE, and let the receiver send the resulting polynomial encryption
Enc(f) to the sender. Using additive homomorphic property, the sender computes the encryption of
(yEnc(f(y)),Enc(f(y))) for all y ∈ Y and sends back to the receiver. The receiver decrypts these
ciphertexts. As we can see, y ∈ X if and only if f(y) = 0, receiver obtains two ciphertexts of 0, which
contain no information about y. For y /∈ X, f(y) ̸= 0, the receiver decrypts (yEnc(f(y)),Enc(f(y)))
and computes y := yf(y) · (f(y))−1. The communication of this PSU protocol is linear with input size
O(n), however, the computation cost is expensive due to the multi-point evaluation on the encrypted
polynomial, which is O(n log log n).

Davidson and Cid [DC17] proposed a linear communication PSU based on Bloom Filter (BF) and
AHE. The receiver first computes the BF of its input set X with λ hash functions and XORs the all-1
string with BF. Then he encrypts this reversed BF with an AHE and sends it to the sender. For each
item y in the sender’s set, the sender computes λ positions of BF with the same hash functions, and
then adds the ciphertexts of corresponding positions. Let c denote the sum of these ciphertexts, the
sender computes (c, yc) and sends it back to the receiver. The receiver decrypts these ciphertexts. Note
that for y ∈ X, all the λ positions of BF is 0, the receiver obtains (0, 0). For y /∈ X, the ciphertext c
is not an encryption of 0, the receiver could obtain the corresponding y. The communication of this
PSU protocol is also linear with input size O(n). However, the computation cost is O(λ) public-key
operations per item. The total computation is O(λn), which leads to low efficiency.

Garimella et al. [GMR+21] recently proposed a new PSU protocol based on oblivious switching.
The main construction of them is a permuted characteristic functionality Fpc. In this functionality, the
sender inputs the set X = {x1, . . . , xn} and gets a permutation π over [n] as the output. The receiver
inputs the set Y and gets a vector e ∈ {0, 1}n, where ei = 1 if xπ(i) ∈ Y and ei = 0 otherwise. After
that, both parties invoke n instances of OT to let the receiver obliviously retrieve items outside Y . Their
core construction of Fpc needs an oblivious switching network (OSN) subprotocol [MS13]. However,
this OSN protocol also leads to a super-linear O(n log n) communication. In their construction, the
receiver has to compute a degree-3n interpolation polynomial. By using the hash to bin technology,
the computational complexity is O(n log n).

Other PSU protocols focus on multi-party settings [KS05, HKK+11, BA12, SCK12], malicious
settings [Fri07, HN10, SCK12] and computation with untrusted third party’s help [Bf12, CPPT14,
SM18]. All of the above constructions rely heavily on expensive AHE or zero-knowledge proof, which
are out of the scope of our consideration.

Table 1 provides an asymptotic comparison of our design with the previous PSU works; we elaborate
our protocol design in Section 4 and 5.

5

Table 1: Asymptotic communication and computation costs of two-party PSU protocols in the semi-honest
setting.

Protocol Communication (bits) Computation

[KS05] O(κ3n2) O(n2) pub

[Fri07] O(κn) O(n log logn) pub

[DC17] O(κλn) O(λn) pub

[KRTW19] O(κn logn) O(n logn log log n) sym

[GMR+21] O(κn logn) O(n logn) sym

Our SKE-based O((κ+ t)n) O(tn) sym

Our PKE-based O(κn) O(n) pub

Pub: public-key operations; sym: symmetric cryptographic operations. n is the size of the parties’ input
sets. κ and λ are computational and statistical security parameter respectively (typically κ = 128 and
λ=40). t is the number of AND gate in an SKE decryption circuit. We ignore the pub-key cost of κ base
OTs.

2 Preliminaries

2.1 Notation

We denote the parties as receiver R and sender S, and their respective input sets as X and Y with
|X| = nx and |Y | = ny. In the balanced setting, we often just assume that n = nx = ny. We use κ and
λ to denote the computational and statistical security parameters, respectively. We use [n] to denote
the set {1, 2, . . . , n}. For a bit string v we let vi denote the ith bit. We use F2σ to denote finite field
composed of all σ-long bit strings. We say that a function f is negligible in κ if it vanishes faster than
the inverse of any polynomial in κ, and write it as f(κ) = negl(κ). We use the abbreviation PPT to

denote probabilistic polynomial-time. By a
R←− A, we denote that a is randomly selected from the set

A, a ← A(x) denotes that a is the output of the randomized algorithm A on input x, and a := b
denotes that a is assigned by b.

2.2 Security Model

This work, similar to most protocols for private set operation, operates in the semi-honest model,
where adversaries may try to learn as much information as possible from a given protocol execution
but are not able to deviate from the protocol steps. This is in contrast to malicious adversaries which
are able to deviate arbitrarily from the protocol. PSU protocols for the malicious setting exist, e.g.,
[KS05, Fri07, HN10, BA12, SCK12], but they are less efficient than protocols for the semi-honest
setting.

Malicious model is of course the ultimate goal in this line of research. At the same time, we believe
semi-honest guarantee is sufficient in many scenarios. The semi-honest adversary model is appropriate
for scenarios where execution of the intended software is guaranteed via software attestation or business
restrictions, and yet an untrusted third party is able to obtain the transcript of the protocol after its
execution, by stealing it or by legally enforcing its disclosure.

Semi-honest security. We use the standard security definition for two-party computation [Can01]
in this work.

Definition 1. Let viewΠ
S (X,Y) and viewΠ

R(X,Y) be the views of S and R in the protocol, and let
output(X,Y) be the output of both parties in protocol. A protocol Π is said to securely compute func-
tionality f in the semi-honest model if for every PPT adversary A there exists a PPT simulator SimS
and SimR such that for all inputs X and Y ,

{viewΠ
S (X,Y), output(X,Y)} ≈c {SimS(X, f(X,Y)), f(X,Y)}

{viewΠ
R(X,Y), output(X,Y)} ≈c {SimR(Y, f(X,Y)), f(X,Y)}

6

2.3 Encryption Schemes

Our construction requires some encryption schemes. We use the standard definition of symmetric-
key encryption (SKE) and re-randomizable public-key encryption (ReRand-PKE) schemes. For our
purpose, we require a case-tailored security notion called single-message multi-ciphertext pseudoran-
domness. Due to the space limit, we give these definitions in Appendix A.

2.4 Oblivious Transfer

Oblivious transfer (OT) [Rab05] is an important cryptographic primitive used in various multiparty
computation protocols.

We define the generalized primitive of 1-out-of-2 OT in Fig. 2.

Parameters: Sender S, Receiver R, message length κ
Functionality:

– Wait for input b ∈ {0, 1} from the receiver R.
– Wait for input (x0, x1) from the sender S.
– Give xb to the receiver R.

Fig. 2: 1-out-of-2 Oblivious Transfer Functionality Fot

2.5 Oblivious Key-Value Stores

A key-value store [PRTY20, GPR+21] is simply a data structure that maps a set of keys to corre-
sponding values. The definition is as follows:

Definition 2 (Key-Value Store). A key-value store is parameterized by a set K of keys, a set V of
values, and a set of function H, and consists of two algorithms:

– EncodeH({(x1, y1), . . . , (xn, yn)}): on input key-value pairs {(xi, yi)}i∈[n] ⊆ K × V, outputs an
object D (or, with statistically small probability, an error indicator ⊥).

– DecodeH(D,x) : on input D and a key x, outputs a value y ∈ V.

Correctness. For all A ⊆ K × V with distinct keys:

(x, y) ∈ A and ⊥̸= D ← EncodeH(A) =⇒ DecodeH(D,x) = y

Obliviousness. For all distinct {x0
1, . . . , x

0
n} and all distinct {x1

1, . . . , x
1
n}, if EncodeH does not output

⊥ for {x0
1, . . . , x

0
n} or {x1

1, . . . , x
1
n}, then the distribution of {D|yi ← V, i ∈ [n],EncodeH((x0

1, y1), . . . , (x
0
n, yn))}

is computationally indistinguishable to {D|yi ← V, i ∈ [n],EncodeH((x1
1, y1), . . . , (x

1
n, yn))}.

A key-value store is an oblivious key-value store (OKVS) if it satisfies the obliviousness property.
Intuitively, obliviousness means that when value is randomly selected, the distribution of D is

independent from key’s set. In addition, our application requires OKVS to meet the Randomness
property defined below to argue the correctness of our scheme.
Randomness. For anyA = {(x1, y1), . . . , (xn, yn)} and x∗ /∈ {x1, . . . , xn}, the output of DecodeH(D,x∗)
is statistically indistinguishable to that of uniform distribution over V, where D ← EncodeH(A).

The efficiency of an OKVS scheme can be measured by following three parameters:

– Rate: Let ratio n/m be the rate of key-value store, where m is the size of object D. Note that
the optimal rate is 1.

– Encoding complexity: The computational cost of the EncodeH algorithm, as a function of the
number n of key-value pairs.

– Decoding complexity: The computational cost of the DecodeH algorithm.

7

We investigated the existing schemes and found that the main candidates for OKVS are: Poly-
nomial, Garbled Bloom Filter (GBF) [DCW13] and Garbled Cuckoo Table (GCT) [PRTY20, RS21,
GPR+21] etc. We give the general introduction and detailed comparisons of above OKVS in Appendix
B.1.

Before instantiation, 3H-GCT recently proposed by Garimella et al. [GPR+21] could be a good
candidate, which has linear encoding complexity O(n) and a rate of 0.81. However, we find that the
original 3H-GCT did not meet the Randomness we defined before because it was set to 0 in some
positions of D. To solve this problem, a natural idea is to set random values in these positions like
[RS21] does. We call this modified 3H-GCT as 3H-GCT++ and give the formal description in Fig. 3.
We give a proof that our 3H-GCT++ satisfies obliviousness and randomness in Appendix B.2.

2.6 Private Set Union

PSU is a special case of secure two-party computation. The ideal functionality for PSU is given in
Fig. 4.

3 Multi-Query Reverse Private Membership Test

3.1 Definition

We propose mq-RPMT and give the formal definition of mq-RPMT functionality in Fig. 5. For gen-
erality we set |Y | = ny and |X| = nx in our definition.

We define the vector oblivious decryption-then-matching Fvodm corresponding to encryption scheme
E = (Setup,KeyGen,Enc,Dec) in Fig. 6, as a component of mq-RPMT.

3.2 Framework of Multi-Query RPMT

Now we describe our framework of mq-RPMT protocol. As we mentioned in Section 1.3, the crypto-
graphic primitives we use are a single-message multi-ciphertext pseudorandomness encryption scheme
E = (Setup,KeyGen,Enc,Dec), an OKVS scheme (EncodeH ,DecodeH) and Fvodm functionality.

Let Y = {y1, . . . , yny} and X = {x1, . . . , xnx} be the input of mq-RPMT sender S and receiver
R. First, the receiver R picks an indication string s5. Then R chooses a random key k used in
encryption scheme E to encrypt s for nx times, and obtains (s1, . . . , snx). Next, R computes an
OKVS D := EncodeH((x1, s1), . . . , (xnx , snx)) and sends D to S. After receiving D, S computes
s∗i = DecodeH(D, yi) for i ∈ [ny]. Now S and R invoke the VODM functionality Fvodm. S acts as
sender with input S = {s∗1, . . . , s∗ny

} and R acts as receiver with input (k, s). As a result, S receives
nothing and R receives b ∈ {0, 1}ny , satisfying bi = 1 if and only if s∗i decrypts to s. Now, we give our
framework of mq-RPMT protocol in Fig. 7.

Correctness. For all i ∈ [ny], if yi ∈ X, there is an xj ∈ X, j ∈ [nx] s.t. yi = xj . In this case,
s∗i = DecodeH(D,h(xj)) = sj . Since sj = Enc(k, s), we have Dec(k, sj) = s, which means bi = 1. In
the case yi /∈ X, if hash functions collide, that is, h(yi) = h(x) for some yi /∈ X, the correctness will
be violated. By setting σ = λ + log nxny, a union bound shows probability of collision is negligible
2−λ. When no collision occurs, from the randomness of OKVS, s∗i = DecodeH(D,h(yi)) is a random
ciphertext, resulting in s∗i is not the encryption of s with overwhelming probability. The union bound
guarantees that for all yi /∈ X, the probability that there exists an s∗i s.t. Dec(k, s∗i) = s is negligible.

We now state and prove the security properties of our mq-RPMT.

Theorem 1. Assume the encryption scheme E = (Setup,KeyGen,Enc,Dec) satisfies single-message
multi-ciphertext pseudorandomness. The protocol in Fig. 7 securely computes Fmq-rpmt against semi-
honest adversaries in the Fvodm-hybrid model.

Proof. Due to space limitation, we only sketch here the simulators for the two cases of corrupt S and
corrupt R, the full security proof (via hybrid arguments) is deferred to Appendix C.

5 In fact, our indication string s could be any fixed value, e.g. s = 0, while s in KRTW must be selected
randomly.

8

Parameters:

– Computational security parameter κ and statistical security parameter λ.
– Input length n.
– A finite group G.
– Random fuctions h1, h2, h3 : {0, 1}∗ → [m′] and r : {0, 1}∗ → {0, 1}d+λ.
– Parameters m′ = 1.3n and d = 0.5 logn, as shown in [GPR+21], where d upper bound the size of

2-core of a (m′, n)-Cuckoo graph.
– Output length m = m′ + d+ λ.

EncodeH({(x1, y1), . . . , (xn, yn)}):

1. Define l(x) ∈ {0, 1}m
′
to be all zeroes except 1s at positions h1(x), h2(x), h3(x). Here we assume the

weight of l(x) is 3. Let row(x) := l(x)||r(x),

M (0) =

 l(x1)
...
l(xn)

 ∈ {0, 1}n×m′
,M (1) =

 r(x1)
...
r(xn)

 ∈ {0, 1}n×(d+λ)

and let

M = M (0)||M (1) =

 row(x1)
...
row(xn)

 ∈ {0, 1}n×m.

2. Initialize empty vectors DL ∈ Gm′
and DR ∈ Gd+λ, let D = DL||DR.

3. Initialize stack P .
4. While there is a node j ∈ [m′] such that the set {xi /∈ P |j ∈ {h1(xi), h2(xi), h3(xi)}} is a singleton:

Let xi be the element of that singleton, and push xi onto P .
5. Let S = {xi|xi /∈ P}, and let R ⊂ [n] index the rows of M in S, i.e. R = {i|M (0)

i,h1(xi)
= M

(0)

i,h2(xi)
=

M
(0)

i,h3(xi)
= 1 ∧ xi ∈ S}. Let d̃ := |R| and abort if d̃ > d.

6. Let M̃ (1) ∈ {0, 1}d̃×(d+λ) be the submatrix of M (1) obtained by taking the row indexed by R. Abort if
M̃ (1) does not contain an invertible d̃×d̃ matrix. Otherwise let M̃∗ be one such matrix and C ⊂ [d+λ]
index the corresponding columns of M̃ (1).

7. Let C′ := {j|i ∈ R,M
(0)
i,j = 1} ∪ ([d + λ] \ C +m′) and for i ∈ C′ assign Di ← G. For i ∈ R, define

y′
i := yi − (MDT)i where Di is assumed to be zero if unssigned.

8. Using Gaussian elimination solve the system M̃∗(Dm′+C1
, . . . , Dm′+C

d̃
)T = (y′

R1
, . . . , y′

R
d̃
)T .

9. While P not empty:

(a) pop xi from P .
(b) DL is undefined in at least one of the positions h1(xi), h2(xi), h3(xi). Set the undefined position(s)

so that ⟨row(xi), D⟩ = yi.

10. Set any empty position in D with a random value from G.
11. Output D.

DecodeH(D,x):

1. Return ⟨row(x), D⟩.

Fig. 3: 3H-GCT++ algorithm

9

Parameters: Sender S, Receiver R, set sizes ny and nx.
Functionality:

– Wait for input X = {x1, . . . , xnx} ⊂ {0, 1}∗ from the receiver R.
– Wait for input Y = {y1, . . . , yny} ⊂ {0, 1}∗ from the sender S.
– Give output X ∪ Y to the receiver R.

Fig. 4: Private Set Union Functionality Fpsu

Parameters: Sender S, Receiver R, set sizes ny and nx

Functionality:

– Wait for input Y = {y1, . . . , yny} ⊂ {0, 1}∗ from the sender S.
– Wait for input X = {x1, . . . , xnx} ⊂ {0, 1}∗ from the receiver R.
– Set bi = 1 if and only if yi ∈ X and bi = 0 otherwise for i ∈ [ny]. Give output b ∈ {0, 1}ny to the

receiver R.

Fig. 5: Multi-Query Reverse Private Membership Test Functionality Fmq-rpmt

Corrupt sender: To simulate OKVS in Step 3, the simulator computes a random OKVS D by selecting
nx random key-value pairs. Then, the simulator sets s∗i := DecodeH(D,h(yi)) and invokes underlying
VODM simulator with inputs (s∗1, . . . , s

∗
ny
).

Briefly, this simulation is indistinguishable for the following reasons: the single-message multi-
ciphertext pseudorandomness of the encryption ensures that value (ciphertext) is indistinguishable
from random, and then by the obliviousness of OKVS, D is distributed uniformly.

Corrupt receiver: The simulator for a corrupt R first obtains b from the ideal mq-RPMT functionality.
The only message that needs to be simulated is the VODM functionality in Step 5. The simulator just
executes Step 1 honestly and invokes the underlying VODM simulator with inputs (k, s, b).

4 Generic Constructions of Multi-Query RPMT

In this section, we give two generic constructions of mq-RPMT protocol. In the first construction, we
use SKE as the encryption scheme and generic 2PC to implement VODM. The advantage is that this
scheme only uses OT and symmetric operations. In the second construction, we use PKE and a re-
randomization method to implement the encryption scheme and a leaky version of VODM respectively,
which leads to a leaky version of mq-RPMT. However, as observed by KRTW, this leaky version can
still be used to construct a secure PSU. Both schemes achieve linear computation and communication
complexity.

4.1 Construction from SKE and 2PC

As we noted before, a single-message multi-ciphertext pseudorandom SKE and 2PC are sufficient for
constructing mq-RPMT. The correctness and security can be directly derived from the general con-
struction in Section 3.2. It is straightforward to show that PRF-based SKE satisfies the single-message
multi-ciphertext pseudorandomness property. We give proof in the Appendix D for completeness.

We use the general 2PC as the implementation of VODM. Formally,

Theorem 2. Taking the PRF-based SKE as the encryption scheme in Fig. 7. Assuming that the 2PC
implementing VODM is semi-honest secure, then the protocol in Fig. 7 securely computes Fmq-rpmt

against semi-honest adversaries.

This theorem immediately follows from Lemma 1 and Theorem 1.

10

Parameters: Sender S, Receiver R, set sizes n, an encryption scheme E = (Setup,KeyGen,Enc,Dec).
Functionality:

– Wait for input k and s from the receiver R.
– Wait for input {s∗1, . . . , s∗n} ⊂ {0, 1}∗ from the sender S.
– For i ∈ [n]:

Compute s′i = Dec(k, s∗i). If s
′
i = s, let bi = 1, otherwise bi = 0.

– Give output b ∈ {0, 1}n to the receiver R.

Fig. 6: Vector Oblivious Decryption-then-Matching Functionality Fvodm

Parameters:

– Two parties: sender S and receiver R.
– A single-message multi-ciphertext pseudorandomness encryption scheme E =

(Setup,KeyGen,Enc,Dec).
– Ideal Fvodm primitives specified in Fig. 6.
– An OKVS scheme (EncodeH ,DecodeH).
– A collision-resistant hash function h(x) : {0, 1}∗ → {0, 1}σ.

Input of S: Y = {y1, . . . , yny} ⊂ {0, 1}∗
Input of R: X = {x1, . . . , xnx} ⊂ {0, 1}∗
Protocol:

1. R selects a random indication string s ∈ F2σ . R also runs pp← Setup(1κ) and KeyGen(pp) to obtain
a key k (public or symmetric key depend on concrete scheme). Then, R runs Enc(k, s) for nx times
to obtain (s1, . . . , snx).

2. R computes an OKVS D := EncodeH((h(x1), s1), . . . , (h(xnx), snx)).
3. R sends D to S.
4. S computes s∗i := DecodeH(D,h(yi)) for i ∈ [ny].
5. S and R invoke the VODM functionality Fvodm. S acts as sender with input S = {s∗1, . . . , s∗ny

} and
R acts as receiver with input k, s. As a result, S receives nothing and R receives b ∈ {0, 1}ny .

Fig. 7: General construction of mq-RPMT Protocol Πmq-rpmt

4.2 Construction from Re-randomizable PKE

Now we consider a specialized way to construct Fvodm. Our main idea is that since the receiver cannot
know the randomness used in each ciphertext, as long as the encryption scheme satisfies the property
of rerandomization, the sender can re-randomize all ciphertexts and send the new ciphertexts to the
receiver so that the receiver can not obtain additional information by comparing randomness. Note
that another problem arises here. The property of re-randomization can only guarantee that for y ∈ X,
the receiver is not allowed to learn which one is the sender’s element. For y /∈ X, the ciphertext s∗i
obtained by the sender is related to y, so the plaintext obtained by the receiver is also related to y,
which will reveal the information of y. However, as observed by KRTW, in the case of y /∈ X, we
want (in the overall PSU protocol) the receiver to learn y anyway. Fully secure mq-RPMT is actually
overkill for PSU, a relaxed version suffices. We define the leaky VODM functionality in Fig. 8.

Since the SKE scheme is hard to re-randomize, we consider the use of public-key encryption (PKE)
which is easier to re-randomize. We describe our PKE-based leaky VODM protocol in Fig. 9.

We now state and prove the security of the above leaky VODM protocol.

Theorem 3. Assume the security of the ReRand-PKE scheme. The protocol in Fig. 9 securely com-
putes Flvodm against semi-honest adversaries.

Proof. Because the sender does not receive messages in the protocol, we just need to simulate the
view of the receiver. We exhibit simulator SimR for simulating corrupt R.

Corrupt receiver: SimR(pk, sk, s, b, {s′i|bi = 0}) simulates the view of corrupt semi-honest receiver.
Note that the only messages that need to be simulated by the simulator are ciphertexts {s̄i}i∈[n].

11

Parameters: Sender S, Receiver R, set sizes n, an encryption scheme E = (Setup,KeyGen,Enc,Dec).
Functionality:

– Wait for input k and s from the receiver R.
– Wait for input {s∗1, . . . , s∗n} ⊂ {0, 1}∗ from the sender S.
– For i ∈ [n]:

Compute s′i = Dec(k, s∗i), if s
′
i = s, let bi = 1 otherwise bi = 0.

– Give output b ∈ {0, 1}n and {s′i|bi = 0} to the receiver R.

Fig. 8: Leaky VODM Functionality Flvodm

Parameters:

– Two parties: sender S and receiver R.
– A re-randomizable PKE scheme (Setup,KeyGen,Enc,Dec,ReRand).

Input of S: (pk, S∗ = {s∗1, . . . , s∗n})
Input of R: ((pk, sk), s)
Protocol:

1. S selects random r′1, . . . , r
′
n and computes s̄i := ReRand(pk, s∗i ; r

′
i) for i ∈ [n].

2. S sends s̄1, . . . , s̄n to R.
3. R sets bi = 1 if and only if Dec(sk, s̄i) = s for i ∈ [n].

Fig. 9: PKE-based Leaky VODM Protocol Πlvodm

SimR computes s̄i := Enc(pk, s; ri) if bi = 1 and s̄i := Enc(pk, s′i; ri) if bi = 0 for i ∈ [n]. SimR
appends {s̄i}i∈[n] to the view.

The indistinguishability of ReRand-PKE scheme guarantees the view output by SimR is indistin-
guishable from the real one.

Note that the mq-RPMT constructed with the above leaky VODM is also a leaky version. We
don’t give a specific description of this leaky mq-RPMT. Instead, we use leaky VODM to construct
PSU protocol directly and prove its security in Appendix E.

4.3 Unification with Membership Encryption

We have presented two generic constructions of mq-RPMT protocols from probabilistic SKE and
probabilistic PKE respectively. It is intriguing to study if there is a unified way to encompass the two
different constructions.

We retrospect the high level idea underlying our mq-RPMT protocol. If privacy is not a concern,
reverse membership test can be simply done by having the receiver first create a membership relation
R for his set Y , namely R(y) = 1 iff y ∈ Y , then having the sender send his elements to the receiver in
clear. To make the reverse membership test private, the receiver can “encrypt” his membership relation
and send the “encoding” of resulting ciphertexts to the sender. After receiving the “encoding”, the
sender is able to retrieve the membership encryptions corresponding to his elements. In the sequel, the
receiver can fulfill the reverse private membership test by decrypting the ciphertexts in an oblivious
manner.

Based on the above discussion, we realize that the right encryption scheme needed in our mq-
RPMT protocol is an abstract new notion called membership encryption (ME). Roughly speaking,
ME for set X encrypts an element x into a ciphertext, which decrypts to “1” if x ∈ X. We formalize
the syntax and security notion of ME in the private-key setting as below.

Definition 3 (Membership Encryption). Membership encryption for set X consists of four poly-
nomial time algorithms satisfying the following properties.

– Setup(1κ): on input a security parameter κ, outputs public parameters pp, which include the ci-
phertext space C.

12

– KeyGen(pp,X): on input public parameters pp and X ⊆ {0, 1}∗, outputs a key k.
– Enc(k, x): on input a key k and an element x ∈ X, outputs a ciphertext c ∈ C. For uttermost

generality, the behavior of Enc on x /∈ X is unspecified. Looking ahead, such treatment suffices for
the construction of mq-RPMT protocol.

– Dec(k, c): on input a key k and a ciphertext c ∈ C, outputs “1” indicating c is an encryption of
an element x in X and “0” if not.

Correctness. For any x ∈ X, ∀k ← KeyGen(pp,X), Dec(k, c = Enc(k, x)) = 1.
Consistency. For any x /∈ X, Pr[Dec(k, c) = 0] = 1−ϵ(κ), where pp← Setup(1κ), k ← KeyGen(pp,X),

c
R←− C. Here, ϵ represents the consistency error, which must be negligible in κ.

Multi-element pseudorandomness. For any n distinct elements x1, . . . , xn ∈ X, {Enc(k, xi)}i∈[n] ≈c

UCn .

The ME notion naturally extends to the public-key setting by letting the KeyGen algorithm generate
a keypair (pk, sk), in which pk is used to encrypt and sk is used to decrypt. We omit the details for
its straightforwardness.

We then study the generic construction of ME. Note that the essence of ME is to encrypt element’s
membership relation, rather than the element itself. The membership relation can be created by
establishing a mapping H from elements to the set under test. Basically, there are two extreme cases
of mapping. The first is to select a single indication string s as the characteristic of the set, then
map all elements to s, i.e., H : xi → s, which we refer to as lossy mapping. The second is to select n
indication strings si as the characteristic of the set, then map elements to distinct indication strings,
i.e., H : xi → si, which we refer to as injective mapping. With the above understanding in head, we
present various constructions of ME by mixing encryption schemes and membership mapping.

ME from probabilistic SKE and lossy mapping. The construction is as below.

– Setup(1κ): runs SKE.Setup(1κ) to generate pp.
– KeyGen(pp,X): runs SKE.KeyGen(pp) to sample kske, picks a random element s ∈ M , where M

is the message space of SKE, sets H be a mapping that maps all elements in X to s, outputs
k = (kske,H)

– Enc(k, x): parses k = (kske,H), outputs c← SKE.Enc(kske,H(x)).
– Dec(k, c): parses k = (kske,H), outputs ‘1’ iff SKE.Dec(kske, c) = s.

ME from probabilistic PKE and lossy mapping. The construction is as below.

– Setup(1κ): runs PKE.Setup(1κ) to generate pp.
– KeyGen(pp,X): runs PKE.KeyGen(pp) to generate (pkpke, skske), picks a random element s ∈ M ,

where M is the message space of PKE, sets H be a mapping that maps all elements in X to s,
outputs pk = pkpke and sk = (skpke,H)

– Enc(pk, x): parses pk = pkpke, outputs c← PKE.Enc(pkpke,H(x)).
– Dec(sk, c): parses sk = (skpke,H), outputs ‘1’ iff PKE.Dec(skpke, c) = s.

Theorem 4. If SKE (resp. PKE) satisfies single-message multi-ciphertext pseudorandomness, then
the above ME construction satisfies multi-element pseudorandomness with consistency error 1/|M |.

The above ME constructions are exactly the backbones of our generic constructions of mq-RPMT
protocol presented in Section 4.1 and 4.2. Since ME requires multi-element pseudorandomness, the use
of lossy mapping inherently stipulates that the accompanying encryption schemes are probabilistic.
Therefore, in this case the ciphertext expansion is unavoidable. For example, in PRF-based probabilis-
tic SKE, the length of ciphertext is twice that of plaintext. In the design of our mq-RPMT protocol,
the value in OKVS is exactly ciphertext. As a consequence, ciphertext expansion incurs overhead to
the size of OKVS and thus also the communication cost on the receiver side. For this reason, reducing
the ciphertext expansion factor will immediately improve the performance of the overall mq-RPMT
protocol.

An important observation is that if we switch to injective mapping, then ME can be built from
deterministic encryption schemes satisfying multi-message multi-ciphertext pseudorandomness. The
constructions are similar as above except the decryption algorithm outputs ‘1’ iff the decryption

13

result falls into the prior-fixed indication string set S = {si}i∈[n]. In instantiation, we take H : xi → i
as the membership mapping, which renders efficient membership decryption by testing whether the
decryption is less than n.

Formally, we have the following theorem:

Theorem 5. If SKE (resp. PKE) satisfies multi-message multi-ciphertext pseudorandomness, then
the ME construction satisfies multi-element pseudorandomness with consistency error n/|M |.

If we instantiate the ME from the PRP-based deterministic SKE and injective mapping, the
ciphertext expansion factor is optimal. Therefore, a drop-in replacement to the ME from PRF-based
probabilistic SKE and lossy mapping will reduce the size of OKVS in the mq-RPMT protocol by half.

Due to space constraints, we put the description that how to construct mq-RPMT using the
language of ME in the Appendix F.

5 Our PSU Protocol

In this section, we describe our PSU construction achieving linear complexity and prove its semi-honest
security.

5.1 Generic Construction of PSU Protocols

With mq-RPMT and OT, we can simply combine them to construct a PSU protocol. We give the
formal description in Fig. 10.

Parameters:

– Two parties: sender S and receiver R.
– Ideal Fmq-rpmt and Fot primitives specified in Fig. 5, and Fig. 2, respectively.

Input of S: Y = {y1, . . . , yny} ⊂ {0, 1}∗
Input of R: X = {x1, . . . , xnx} ⊂ {0, 1}∗
Protocol:

1. S and R invoke the mq-RPMT functionality Fmq-rpmt first. The sender S acts as the sender in mq-
RPMT with input Y and receives nothing. The receiver R acts as the receiver in mq-RPMT with
input X and receives b ∈ {0, 1}ny .

2. R initialize set Z := {}.
3. For i ∈ [ny]:

(a) S and R invoke the OT functionality Fot.
(b) S acts as sender with input (yi,⊥).
(c) R acts as receiver with input bi.
(d) R obtains the OT output zi and sets Z = Z ∪ {zi}.

4. R outputs X ∪ Z.

Fig. 10: Private Set Union Protocol Πpsu

We now state and prove the security properties of the above PSU protocol.

Theorem 6. The protocol in Fig. 10 securely computes Fpsu against semi-honest adversaries in the
(Fmq-rpmt,Fot)-hybrid model.

Proof. We exhibit simulators SimR and SimS for simulating corrupt R and S respectively, and argue
the indistinguishability of the produced transcript from the real execution.

Corrupt Sender: SimS(Y = {y1, . . . , yny}) simulates the view of corrupt semi-honest sender. It executes
as follows:

1. SimS invokes mq-RPMT simulator SimS
mq-rpmt(Y) and appends the output to the view.

14

2. For i ∈ [ny], SimS invokes OT simulator SimS
ot(yi,⊥) and appends the output to the view.

Now we argue that the view output by SimS is indistinguishable from the real one. This is obtained
by the underlying simulators’ indistinguishability directly.
Corrupt Receiver: SimR(X = {x1, . . . , xnx}, X∪Y) simulates the view of corrupt semi-honest receiver.
It executes as follows:

1. SimR defines the set Z := X∪Y \X, i.e. the set of elements that Y “brings to the union”. Next, it
uses ⊥ to pads Z to ny elements and permutates these elements randomly. Let Z = {z1, . . . , zny}.

2. SimR sets bi = 1 if and only if zi ∈ X for i ∈ [ny]. Then, it invokes mq-RPMT simulator

SimR
mq-rpmt(X, b) and appends the output to the view.

3. For i ∈ [ny], SimR invokes OT simulator SimR
ot(bi, zi) and appends the output to the view.

Now we argue that the view output by SimR is indistinguishable from the real one. In the simulation,
the way R obtains the elements in Z = X \ Y is identical to the real execution. By the underlying
simulators’ indistinguishability, the simulated view is computationally indistinguishable from the real
one.

5.2 Instantiation of PSU

For our SKE-based construction, we can use a PRP as we mentioned in Section 4.3 to instantiate SKE,
which can achieve an optimal ciphertext expansion factor. Since we need to perform the 2PC decryp-
tion computation, we use the LowMC [ARS+15] as our PRP instantiation to minimize the circuit size.
As for generic 2PC, there are two classical methods, e.g. garbled circuit [Yao86] or GMW [GMW87].
The former has a constant number of rounds, while the latter has a lower communication. Since the
communication has a greater impact on our scheme, we consider instantiating 2PC by GMW.

For our PKE-based construction, we use the well-known ECC ElGamal [Gam85] scheme as our
ReRand-PKE.

5.3 Communication Cost

Now we analyze the communication cost of our two PSU constructions. For the SKE-based construc-
tion, we use our ME optimization in Section 4.3.

Let’s first analyze the size of decryption circuit in our SKE-based construction: the circuit needs
to compute decryption of every {s∗i }i∈[ny] and compares the result with nx. If Dec(k, s

∗
i) < nx, it sets

bi = 1 and bi = 0 otherwise. The total number of decryption computations is ny. To compare whether
a σ long string is less than nx, we only need to compute whether the OR of its first σ− log nx bits are
1, which requires σ − log nx − 1 AND gates (since a ∨ b = ā ∧ b̄). The total number of AND gates is
ny(t+ σ − log nx) = O(tny), where t is the number of AND gates in a PRP decryption circuit.

Now we are ready to calculate the communication of PSU protocol. Note that the communication
of our protocol consists of OKVS, VODM protocol and OT protocol. We analyze their complexity
respectively. We use the symbol Φ to represent the communication complexity, and its subscripts
represent different components.

– OKVS in both constructions: as we showed in Section 2.5, we use 3H-GCT++ as our OKVS
scheme:

Φokvs(nx) = (1.3nx + d+ λ)|c|

where |c| is the size of ciphertext, |c| = λ+log nxny and 4κ for SKE-based and PKE-based scheme
respectively.

– Oblivious decryption:
• In SKE-based construction: we use Φske

vod(ny, nx) to denote the communication of computing
oblivious decryption circuit. As we said in Section 5.2, we use GMW as our 2PC instantiation,
the communication consists of input sharing, multiplication gate computation and output re-
construction. In the input sharing phase, the communication is κ+nyσ bits, and in the output
reconstruction phase, it is ny bits. Using Beaver triple [Bea91], 4ny(t + σ − log nx) bits are
needed in multiplication phase. So we have Φske

vod(ny, nx) = κ+ nyσ + 4ny(t+ σ − log nx) + ny

15

• In PKE based construction: the communication of leaky VODM functionality, denoted by
Φpke
lvodm(ny, nx) = 4nyκ

– OT in both constructions:

Φot(ny) = ny(κ+ σ).

Let Φske
psu(ny, nx) denote communication of SKE-based construction and let Φpke

psu (ny, nx) denote
communication of PKE-based construction. The overall communication cost of our PSU protocol is:

Φske
psu(ny, nx) = (λ+ log nxny)(1.3nx + d+ λ) + Φske

vod(ny, nx) + ny(κ+ σ)

Φpke
psu (ny, nx) = 4κ(1.3nx + d+ λ) + 4κny + ny(κ+ σ).

6 Implementation and Performance

Recall that we have presented two variants of our protocol. In this section, we will refer to them as:

– SKE-PSU: PSU protocol with SKE-based mq-RPMT, where SKE and VODM are instantiated
with PRP and GMW [GMW87] respectively.

– PKE-PSU: PSU protocol with PKE-based mq-RPMT, where ReRand-PKE is instantiated with
ECC ElGamal encryption scheme.

The OKVS instantiation of both schemes uses the 3H-GCT++ in Fig.3. We focus on the case
where ny = nx = n, i.e., both parties have equal-size sets.

6.1 Theoretical Analysis of Communication

In Table 2, we show the theoretical communication complexity of our protocol compared with the
Frikken protocol [Fri07], the DC protocol [DC17], the KRTW protocol [KRTW19] and the GMRSS
protocol [GMR+21] in the semi-honest setting. This measures how much communication the protocols
require on an idealized network where we do not care about the protocol metadata, realistic encodings,
byte alignment, etc. In practice, data is split up into multiples of bytes (or CPU words), and different
data is encoded with headers, etc. Empirical measurements of such real-world costs are given later in
Table 4.

Protocol Communication
n = ny = nx

214 218 222

Frikken [Fri07] N + 2nxN + 4nyN 12288n 12288n 12288n

DC [DC17] 2λnxN + 4nyN 172032n 172032n 172032n

KRTW [KRTW19] βu(2ρ + λ + (u + 2)σ) + βu(κ + σ) 14977n 16927n 18956n

GMRSS [GMR+21] 1.27nyρ + 3nxσ + (1.27ny logny + ny)(κ + σ) 5417n 6687n 7947n

SKE-PSU (1.3nx + d + λ)σ + κ + nyσ 568n 610n 653n

+4ny(t + σ − lognx) + ny(κ + σ) +4tn +4tn +4tn

PKE-PSU 4κ(1.3nx + d + λ) + 4κny + ny(κ + σ)
1373n 1381n 1389n

Table 2: Theoretical communication costs of PSU protocols (in bits), calculated using computational security
κ= 128 and statistical security λ= 40. Ignore costs of base OTs (in our protocol, KRTW and GMRSS) which
are independent of input size. N is the size of the public key in Pallier encryption scheme (2048 is used here).
β and u are the number of bins and maximum bin size respectively. ρ is the width of OT extension matrix
(depends on n and protocol). t is the number of AND gates in the PRP decryption circuit. σ is the length of
items. ny and nx are the input sizes of the sender and receiver respectively.

For set sizes in the range 214 to 222, our PKE-PSU variant has the least communication of any of the
protocols we consider: up to an 8.8× improvement of Frikken, 125× improvement of DC, 10.9−13.6×

16

improvement of KRTW, and 3.9 − 5.7× of GMRSS. It means that our scheme has great advantages
in low bandwidth scenarios.

For our SKE-based protocol, the communication is dominated by t, i.e., the number of AND gates
in the PRP decryption circuit. As mentioned in Section 5.2, we use LowMC [ARS+15] to minimize the
number of AND gates, which is less than 800 for 128-bit security. Using LowMC, the communication
of our SKE-PSU protocol is even lower than GMRSS.

6.2 Experimental Setup

We run our experiments on a single Intel Core i9-9900K with 3.3GHz and 128GB RAM. To better
meet the potential deployment requirements, we do not use synchronous network connection. Instead,
we use Netty6 to maintain the communication channel. Netty is an asynchronous event-driven network
application framework for the rapid development of maintainable high-performance protocols that are
widely used for real applications. We design a unified data package format. Each data package contains
a 256-bit length header and the actual payload bytes. The header is defined as follows (See Appendix
G.1 for the detailed definition):

– Task ID (64-bit long): Each task is associated with a distinct task ID.
– Protocol ID (32-bit int): Each protocol is assigned with a distinct ID.
– Step ID (32-bit int): Each setup is also assigned with a distinct ID.
– Extra Info (64-bit long): Extra information for each step. For example, the current number of

AND operations in SKE-2PC LowMC.
– Sender ID (32-bit int): Sender ID.
– Receiver ID (32-bit int): Receiver ID.
– Payload (bytes): the payload of the data package.

We use Protocol Buffers7 for data serialization and deserialization. Protocol Buffers are Google’s
language-neutral, platform-neutral, extensible mechanism for serializing structured data and are fully
compatible with Netty. Note that Protocol Buffers introduce lengths of each byte array in Payload
Bytes in its serialization. Therefore, the actual communication costs are slightly higher than the
theoretical communication costs. The results reported in our setting would reflect the actual costs when
deploying protocols in real situations. We simulate the network connection using Linux tc command.

6.3 Implementation Details

Existing PSU implementations are under different MPC frameworks and different experimental set-
tings. For example, the [KRTW19] implementation is under 128-bit element length while the [GMR+21]
implementation is under 64-bit element length. Also, the [KRTW19] implementation supports multi-
thread execution, while the [GMR+21] implementation does not. Further, the [GMR+21] implemen-
tation heavily relies on 1-out-of-2 OT, introducing recent silent OT technique may further reduce
its communication cost [BCG+19, YWL+20]. However, existing efficient silent OT implementation
[YWL+20] is available in emp-toolkit8. Combining these implementations relies on relatively heavy
source code modification works.

After carefully studying existing open-source codes, we fully re-implement state-of-the-art PSU
protocols [KRTW19, GMR+21] and their underlying basic protocols using Java, including base OT
[NP01], OT extension [ALSZ13], silent OT [YWL+20], the specific OPRF variant [KKRT16], and GCT
data structures. One may think that Java is much slower than C/C++. It is shown that although
there is some performance gap, most basic operations in Java and C/C++ have similar performances9.
For operations that have a huge efficiency gap between Java and C/C++, we use the Java Native
Interface (JNI) technique to invoke C/C++ libraries. The details can be found in Appendix G.2. All
experiments are under 64-bit element length.

6 https://netty.io/
7 https://developers.google.com/protocol-buffers
8 https://github.com/emp-toolkit
9 Our tests show that on Macbook Pro 2019, Java needs 0.095us for one AES operation, while C/C++ under
AES instruction needs 0.071us. This is because Java would automatically use AES instruction if it detects
that the current operating system supports it.

17

https://netty.io/
https://developers.google.com/protocol-buffers
https://github.com/emp-toolkit

Our implementations support multi-thread executions for all PSU schemes, including [GMR+21],
achieved by using Java Stream.parallel(). Our performance reports show that we obtain improved
performance results for the [GMR+21] PSU scheme. Our complete implementation will be freely
available on GitHub. We emphasize that designing a unified framework for all PSU protocols under
C/C++ would further lead to better performance results, and we hope that our implementation can
be a starting point.

6.4 Experimental Details

The SKE-PSU protocol is instantiated with the LowMC encryption scheme [ARS+15] where the block
size and the key length are both 128 bits, and the number of Sboxes is m = 10 (i.e., the SboxLayer
is a 10-folded parallel application of the basic 3-bit Sbox on the first 30 bits of the state, and for the
remaining 88 bits, the SboxLayer is the identity). The concrete parameters in LowMC are from the
Mobile PSI implementations provided by Kales et al. [KRS+19]10. We use the improved inverse of the
SBoxLayer provided by Liu et al. [LIM21] and follow the SBoxLayer implementation idea by Kales
et al. [KRS+19] to implement the (non-2PC) decryption procedure. The underlying OKVSs for our
PSU protocols are instantiated with our 3H-GCT++ in Fig. 3.

In SKE-PSU, we assume a commonly used setting where Boolean multiplication triples are pre-
computed offline and stored locally. This follows real scenarios where Boolean multiplication triples
are pre-generated by parties themselves or with the help of a Trusted-Third Party under the Trusted
Dealer model.

In PKE-PSU, the ReRand-PKE is instantiated with the ECC ElGamal encryption scheme un-
der the curve secp256k1. We found an interesting point in the implementation of PKE-PSU: In
elliptic-curve-based cryptography, point compression is a standard trick, which can roughly reduce
the representation of an EC point by half. The cost of this trick is that one has to perform point de-
compression in the future, which is typically considered to be cheap. Somewhat surprisingly, it turns
out that point decompression is very costly. According to existing implementations provided in MCL
and OpenSSL libraries, point decompression is as expensive as point exponentiation. Due to this fact,
we prefer to use standard point representation for better efficiency when bandwidth is not of first
priority. In the implementation, we use PKE-PSU∗ to represent the version that does not perform
point compression.

We further introduce Silent OT [BCG+19, YWL+20] in the GMRSS scheme. We denote GMRSS
schemes with Silent OT and standard OT extension by GMRSS-Silent and GMRSS-IKNP, re-
spectively. The challenge is that current Silent OT implementations only provide Learning-Parity-with-
Noise (LPN) parameters for large COT output sizes but not for small COT output sizes. For example,
the Ferret OT [YWL+20] only provides LPN parameters that can output 10 million COTs. We follow
a similar strategy introduced in [YWL+20] to find LPN parameters to output 214, 216, 218, 220, 222

COTs in the regular-index setting, while all known attacks (e.g., Gaussian elimination, low-weight
parity-check and information set decoding) require at least 2128 arithmetic operations. The parame-
ters are shown in Table 3. We refer readers to see [YWL+20] for details on setting these parameters
in Ferret OT.

The simulated network settings include typical LAN (10Gbps bandwidth and 0.02ms RTT latency)
and WAN (10Mbps bandwidth and 80ms latency). We also introduce 100Mbps with 80ms latency and
1Gbps with 40ms latency as the intermediate network settings. In our KRTW implementation, we
follow the pipelining optimization shown in [KRTW19] with 28 pipelining size when the receiver sends
polynomials to the sender. In our PKE-PSU, we also leverage the pipelining optimization with the
same 28 pipelining size when the sender sends ReRand outputs to the receiver.

We divide all protocols into two phases: the one-time setup phase and the online phase. As the
name suggests, the one-time setup phase does necessary operations before actual protocol execution,
including key distribution, base OT execution, and the one-time setup phase for Ferret OT [YWL+20].
The online phase does subsequent protocol executions. Note that in our PKE-PSU, the receiver can
send the public key to the sender in the one-time setup phase, and all fixed-point precomputations re-
lated to the public key can also be done in that phase. We emphasize that fixed-point precomputations
only need to be performed once, regardless of the number of subsequent protocol executions.

10 https://github.com/contact-discovery/mobile_psi_cpp/blob/master/droidCrypto/lowmc/lowmc_

128_128_20.c

18

https://github.com/contact-discovery/mobile_psi_cpp/blob/master/droidCrypto/lowmc/lowmc_128_128_20.c
https://github.com/contact-discovery/mobile_psi_cpp/blob/master/droidCrypto/lowmc/lowmc_128_128_20.c

of COTs One-time Setup Iteration

k0 n0 t0 k n t

214 1152 8792 581 1408 25167 1475

216 2304 12832 409 4352 78354 1411

218 2432 27451 872 15232 289584 1526

220 4864 71040 1131 55680 1119616 1536

222 12160 237343 1508 218880 4431616 1536

224 43776 882063 1533 860160 17658880 1536

Table 3: Extended Parameters in Ferret OT [YWL+20]

Detailed comparisons for set sizes 214, 216, 218, 220 and controlled network configurations are shown
in Table 4. We also show the relationship between communication/set size and set size of different
schemes in Fig. 11. And Fig. 12 shows the relationship between the running time of different schemes
and the bandwidth. Since the performance of GMRSS-Silent is worse than GMRSS-IKNP, we only
compare the GMRSS-IKNP scheme in Fig. 12.

104 105 106

10−1.5

10−1

10−0.5

Set size

C
o
m
m
u
n
ic
a
ti
o
n
/
S
et

si
ze

KRTW

GMRSS-IKNP

GMRSS-Silent

SKE-PSU

PKE-PSU

PKE-PSU*

Fig. 11: Relationship between Communication / Set size and Set size for our protocols compared with
KRTW,GMRSS-IKNP and GMRSS-Silent. Both x and y-axis is in log scale.

6.5 Performance Evaluation

Communication improvement. Our PKE-PSU protocol has the lowest communication among all
protocols, which is 12.3−14.8× lower than KRTW, 5.1−6.3× lower than GMRSS-IKNP and 4.1−6.1×
lower than GMRSS-Silent. The communication of our SKE-PSU is about 2.5× higher than that of
PKE-PSU. The communication of our PKE-PSU∗ is about 2× higher than that of PKE-PSU, which
is due to the absence of point compression. Nevertheless, all our schemes have lower communication
than that of KRTW and GMRSS schemes. As shown in Fig. 11, the communication costs of all our
protocols are linear with the parties’ set sizes, while the communication costs of the KRTW and
GMRSS protocols are not. The larger the parties’ set sizes are, the larger the communication cost

19

C
o
m
m
.
(M

B
)

R
u
n
n
in
g
ti
m
e
(s
)

R
S

L
A
N

1
G
b
p
s

1
0
0
M

b
p
s

1
0
M

b
p
s

T
=

1
T

=
8

T
=

1
T

=
8

T
=

1
T

=
8

T
=

1
T

=
8

n
P
ro

to
c
o
l

se
tu

p
o
n
li
n
e

se
tu

p
o
n
li
n
e

to
ta

l

se
tu

p
o
n
li
n
e

se
tu

p
o
n
li
n
e

se
tu

p
o
n
li
n
e

se
tu

p
o
n
li
n
e

se
tu

p
o
n
li
n
e

se
tu

p
o
n
li
n
e

se
tu

p
o
n
li
n
e

se
tu

p
o
n
li
n
e

K
R
T
W

0
.0
2

4
.1
7

0
.0
1

2
9
.6
3

3
3
.8

0
.2
7

4
.1
4

0
.1
9

1
.6
2

0
.7
7

1
8
.0
2

0
.7

1
5
.3
5

1
.2
4

3
0
.2
2

1
.1
1

2
8
.9
2

1
.2
6

5
9
.0
2

1
.1
2

5
8
.3
7

G
M

R
S
S
-I
K
N
P

0
.0
2

5
.8
9

0
.0
2

7
.9
6

1
3
.8
5

0
.3
1

1
.5
1

0
.2
1

0
.9
6

1
.0
3

3
.3
1

0
.8
1

2
.8
8

1
.4

6
.2
5

1
.2
8

5
.7

1
.5
1

1
6
.3
4

1
.4
4

1
5
.7
9

G
M

R
S
S
-S

il
e
n
t

0
.1
7

1
.8
6

0
.1
7

1
4
.7
6

1
6
.6
2

2
.1
3

2
.5
7

1
.9
8

1
.7
2

3
.4
2

7
.2
6

3
.2
7

6
.8
4

4
.4
9

1
2
.8
4

4
.3
2

1
1
.7
6

4
.6
7

2
5
.0
7

4
.6
4

2
4
.1

S
K
E
-P

S
U

0
.0
1

3
.1
6

0
3
.3
6

6
.5
2

0
.2
2

2
.1
7

0
.1
8

1
.9
2

0
.4
1

1
8
.3
7

0
.3
4

1
7
.7
2

0
.4
9

3
2
.8
9

0
.4
9

3
2
.5
7

0
.4
7

3
5
.2
9

0
.4
8

3
4
.9
2

P
K
E
-P

S
U

0
.0
1

1
.1
6

0
1
.5
9

2
.7
5

4
.7
6

3
.1
4

4
.7
3

1
.9
1

5
.0
5

3
.6
8

5
.0
1

2
.4
9

5
.2
5

4
.8
6

5
.2
2

3
.7
8

5
.3
2

6
.2
5

5
.3
2

5
.6
1

2
1
4

P
K
E
-P

S
U

∗
0
.0
1

2
.1
6

0
2
.9

5
.0
5

4
.7
5

2
.6
8

4
.6
8

1
.3
4

5
.0
3

3
.3

4
.9
9

2
.2
2

5
.3
1

4
.5
5

5
.2
8

3
.6
7

5
.3
5

7
.8
9

5
.2
7

7
.1
6

K
R
T
W

0
.0
2

1
7
.6
4

0
.0
1

1
2
2
.0
5

1
3
9
.6
9

0
.2
5

1
3
.7
1

0
.1
9

4
.5
7

0
.7
8

2
7
.3
7

0
.7
1

1
9
.6

1
.2
4

4
3
.0
3

1
.1
2

4
1
.6
9

1
.2
5

1
6
6
.6
7

1
.2
1

1
6
5
.4
3

G
M

R
S
S
-I
K
N
P

0
.0
2

2
5
.9
5

0
.0
2

3
4
.1
1

6
0
.0
6

0
.3
1

5
.3
3

0
.2
2

2
.9
9

1
.0
4

8
.3
1

0
.8
3

6
.4
2

1
.4
6

1
5
.2
5

1
.3
5

1
2
.8
9

1
.4
4

6
2
.1
8

1
.4
3

6
0
.2
5

G
M

R
S
S
-S

il
e
n
t

0
.2

6
.7

0
.2

4
4
.4
4

5
1
.1
5

2
.1
2

9
.6
6

2
.0
1

5
.7
1

3
.4
3

1
4
.6
9

3
.3
5

1
1
.7
6

4
.4
6

2
4
.0
4

4
.3

2
1
.1

4
.8
1

6
3
.5
2

4
.5
6

6
1
.3
7

S
K
E
-P

S
U

0
.0
1

1
2
.6
1

0
1
3
.4
1

2
6
.0
3

0
.2
2

6
.0
6

0
.2

4
.9
1

0
.3
7

2
4
.2
8

0
.3

2
3
.4

0
.5
1

4
0
.2
5

0
.4
8

3
8
.9

0
.4
9

5
2
.5
6

0
.4
5

5
1
.6
8

P
K
E
-P

S
U

0
.0
1

4
.6
2

0
6
.3
7

1
0
.9
9

4
.7
6

1
0
.9

4
.7
1

5
.6
1

5
.0
5

1
1
.9
8

4
.9
9

6
.7
6

5
.2
6

1
3
.2
7

5
.2
6

8
.1
5

5
.2
2

1
8
.6
5

5
.2
9

1
6
.2
4

2
1
6

P
K
E
-P

S
U

∗
0
.0
1

8
.6
3

0
1
1
.5
7

2
0
.1
9

4
.7
1

9
.5
6

4
.7
2

3
.8
1

5
.1
2

1
0
.5
7

5
.1

4
.9

5
.2
7

1
2
.3
3

5
.2
9

6
.9
6

5
.3

2
4
.0
8

5
.2
9

2
2
.0
9

K
R
T
W

0
.0
2

6
9
.2
9

0
.0
1

5
6
2
.7
6

6
3
2
.0
5

0
.2
6

6
4
.8

0
.1
8

1
8
.1
8

0
.8
2

9
0
.4
1

0
.6
9

4
4
.9

1
.2
2

1
2
2
.6
1

1
.2
4

1
2
2
.0
6

1
.2
7

6
6
6
.4
3

1
.1
9

6
6
4
.4
9

G
M

R
S
S
-I
K
N
P

0
.0
2

1
1
3
.7

0
.0
2

1
4
5
.1
1

2
5
8
.8
1

0
.3

2
2
.0
8

0
.2
1

1
1
.1
5

1
.0
2

2
9
.3
1

0
.8
2

1
9
.2
4

1
.3
7

5
1
.8
2

1
.3
6

4
0
.8
1

1
.4
4

2
5
3
.3
4

1
.3
9

2
4
4
.6
1

G
M

R
S
S
-S

il
e
n
t

0
.2
9

2
6
.1
5

0
.2
9

1
5
6
.7
9

1
8
2
.9
3

2
.2
9

3
8
.0
1

2
.1
7

2
1
.3
3

3
.6
6

4
7
.6
3

3
.8
2

3
1
.6
4

4
.8
1

6
6
.7

5
.1

5
1
.4
3

5
.3
5

2
1
7
.1
6

5
.3
3

2
0
1
.1
3

S
K
E
-P

S
U

0
.0
1

5
0
.3
4

0
5
3
.5
1

1
0
3
.8
5

0
.2
3

2
1
.4
8

0
.1
9

1
6
.3
8

0
.3
3

4
1
.3
2

0
.3
6

3
6
.3
6

0
.4
8

6
1
.6

0
.4
3

5
7
.8
4

0
.4
7

1
1
1
.3
1

0
.4
3

1
0
5
.6
7

P
K
E
-P

S
U

0
.0
1

1
8
.5

0
2
5
.4
5

4
3
.9
5

4
.7
3

4
3
.4

4
.7
2

2
1
.3
9

5
.0
5

4
4
.7
8

4
.9
9

2
3

5
.2

4
7
.9
1

5
.2
3

2
6
.0
1

5
.2
4

6
9
.2
4

5
.2
7

5
8
.6
2

2
1
8

P
K
E
-P

S
U

∗
0
.0
1

3
4
.5

0
4
6
.2
6

8
0
.7
6

4
.7
1

3
7
.5
1

4
.7

1
3
.8
5

5
.1

3
9
.5

5
.0
1

1
5
.8

5
.3
2

4
4
.5
6

5
.2
7

2
1
.0
6

5
.2
9

8
7
.9
7

5
.2
9

8
1
.5
9

K
R
T
W

0
.0
2

3
0
0
.1
4

0
.0
1

2
3
0
5
.8

2
6
0
5
.9
5

0
.2
5

2
4
6
.6
4

0
.1
8

6
9
.2
1

0
.8
2

2
8
2
.9
8

0
.6
7

1
1
9
.2
5

1
.1
5

3
6
7
.4
9

1
.1
4

3
6
6
.9
5

1
.1
7

2
6
4
7
.8
6

1
.2

2
6
3
7
.2
3

G
M

R
S
S
-I
K
N
P

0
.0
2

4
9
3
.2

0
.0
2

6
1
5
.9

1
1
0
9
.1

0
.2
7

1
0
0
.5
9

0
.1
9

5
2
.0
9

0
.8
6

1
2
2
.0
8

0
.8
1

7
8
.8
9

1
.4
6

2
1
0
.2
5

1
.3
4

1
6
0
.0
6

1
.4
9

1
0
7
5
.0
4

1
.3
4

1
0
3
4
.1
8

G
M

R
S
S
-S

il
e
n
t

0
.5
4

1
0
3
.3
3

0
.5
4

6
1
8
.9
4

7
2
2
.2
7

2
.8
6

1
7
3
.6
1

2
.5
4

1
0
6
.6
2

4
.0
5

1
9
3
.7
3

3
.8

1
2
9
.7
8

5
.5
5

2
5
1
.1
5

5
.3
4

1
8
8
.6
6

5
.7
6

8
3
1
.4
4

5
.5
6

7
7
0
.6
6

S
K
E
-P

S
U

0
.0
1

2
0
0
.8
8

0
2
1
3
.5
5

4
1
4
.4
3

0
.2
4

8
5
.2
4

0
.1
9

6
3
.7

0
.3
1

1
0
7
.9
5

0
.2
9

8
2
.8
7

0
.5

1
4
4
.6
2

0
.4
3

1
1
8
.3
7

0
.4
8

3
9
0
.6
7

0
.4
3

3
6
8
.3
9

P
K
E
-P

S
U

0
.0
1

7
4

0
1
0
1
.8

1
7
5
.8

4
.7
5

1
6
9
.5
2

4
.7
2

8
2
.0
2

4
.8

1
7
2
.5
9

4
.9
6

8
5
.3
7

5
.2
6

1
8
2
.2

5
.1
9

9
2
.5
8

5
.3
2

2
6
8
.6
9

5
.2
7

2
2
0
.4
1

2
2
0

P
K
E
-P

S
U

∗
0
.0
1

1
3
8

0
1
8
5

3
2
3

4
.7

1
4
4
.0
3

4
.6
8

5
1
.9
1

4
.9
9

1
4
8
.2
3

5
.0
1

5
9
.1
2

5
.2
6

1
6
7
.4
6

5
.2

7
2
.1
1

5
.2
8

3
4
4
.5
4

5
.2
5

3
1
6
.2
4

T
a
b
le

4
:
C
o
m
m
u
n
ic
a
ti
o
n
co
st
s
(i
n
M
B
)
a
n
d
ru
n
n
in
g
ti
m
e
(i
n
se
co
n
d
s)

fo
r
o
u
r
p
ro
to
co
ls
co
m
p
a
re
d
w
it
h
K
R
T
W

a
n
d
G
M
R
S
S
.
T
h
e
L
A
N

n
et
w
o
rk

h
a
s
1
0
G
b
p
s
b
a
n
d
w
id
th

a
n
d
0
.2

m
s
R
T
T

la
te
n
cy
.
A
ll
th
e
o
th
er

n
et
w
o
rk

se
tt
in
g
s
h
av
e
4
0
m
s
R
T
T
.
C
o
m
m
u
n
ic
a
ti
o
n
co
st

o
f
S
/
R

in
d
ic
a
te
s
th
e
o
u
tg
o
in
g
co
m
m
u
n
ic
a
ti
o
n
fr
o
m
S
/
R

to
th
e
o
th
er

p
a
rt
y.

T
h
e
b
es
t
p
ro
to
co
l
w
it
h
in

a
se
tt
in
g
is

m
a
rk
ed

in
b
lu
e.

20

100 101 102 103 104
100

101

102

Network bandwidth (Mbps)

R
u
n
n
in
g
ti
m
e
(s
)

KRTW

GMRSS

SKE-PSU

PKE-PSU

PKE-PSU*

,

100 101 102 103 104

100

101

102

Network bandwidth (Mbps)

100 101 102 103 104

101

102

103

Network bandwidth (Mbps)

R
u
n
n
in
g
ti
m
e
(s
)

,

100 101 102 103 104

101

102

103

Network bandwidth (Mbps)

100 101 102 103 104

102

103

Network bandwidth (Mbps)

R
u
n
n
in
g
ti
m
e
(s
)

,

100 101 102 103 104

101

102

103

Network bandwidth (Mbps)

100 101 102 103 104

102

103

104

Network bandwidth (Mbps)

R
u
n
n
in
g
ti
m
e
(s
)

,

100 101 102 103 104

102

103

104

Network bandwidth (Mbps)

Fig. 12: Decline of running time (in seconds) on increasing network bandwidth for our protocols compared
with KRTW and GMRSS. Both x and y-axis are in log scale. The four figures on the left correspond to
T = 1 and the right correspond to T = 8. The corresponding set sizes from the first row to the last row are
n = 214, 216, 218 and 220 respectively

21

ratios are. We also note that the ratio of GMRSS-Silent decreased first and then increased, mainly
due to the high overhead in the fixed initialization phase of Ferret OT.

Computation improvement. Our PKE-PSU scheme is the fastest one under low bandwidth, which
is due to its lowest communication, e.g., for n = 220, PKE-PSU requires 220.41 seconds in 10Mbps with
T = 8 threads, while KRTW requires 2637.23 seconds, a 12× improvement, GMRSS-IKNP requires
1034.18 seconds, a factor of 4.7× improvement, and GMRSS-Silent requires 770.66 seconds, a factor
of 3.5× improvement. Our SKE-PSU performs best when the set size and the bandwidth are large.
For example, for n = 220 with T = 1 thread in LAN setting, SKE-PSU requires 85.24 seconds, while
KRTW requires 246.64 seconds, a 2.9× improvement, GMRSS-IKNP requires 100.59 seconds, a factor
of 1.2× improvement, and GMRSS-Silent requires 173.61 seconds, a factor of 2× improvement. Our
PKE-PSU∗ performs best in medium bandwidth (100Mbps and 1Gbps). For example, for n = 220

with T = 8 threads in 100Mbps, PKE-PSU∗ requires 72.11 seconds, while KRTW requires 366.95
seconds, a 5.1× improvement, GMRSS-IKNP requires 160.06 seconds, a factor of 2.2× improvement,
and GMRSS-Silent requires 188.66 seconds, a factor of 2.6× improvement. We also noticed that the
performance of PKE-PSU∗ improved significantly in the case of multithreading. For example, when
increasing T from 1 to 8 in LAN setting, PKE-PSU∗ shows a factor of 2.8× improvement as the
running time reduces from 144.03 seconds to 51.91 seconds for an input of n = 220 elements.

References

[ALSZ13] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More efficient oblivious
transfer and extensions for faster secure computation. In CCS 2013, 2013.

[ARS+15] Martin R. Albrecht, Christian Rechberger, Thomas Schneider, Tyge Tiessen, and Michael Zohner.
Ciphers for MPC and FHE. In EUROCRYPT 2015, pages 430–454, 2015.

[BA12] Marina Blanton and Everaldo Aguiar. Private and oblivious set and multiset operations. In
ASIACCS 2012, 2012.

[BCG+19] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal, and Peter Scholl.
Efficient two-round OT extension and silent non-interactive secure computation. In CCS 2019,
2019.

[Bea91] Donald Beaver. Efficient multiparty protocols using circuit randomization. In CRYPTO 1991,
1991.

[Bf12] M. Burkhart and Xenofontas Dimitropoulos fontas. Fast private set operations with sepia. 2012.

[BS05] Justin Brickell and Vitaly Shmatikov. Privacy-preserving graph algorithms in the semi-honest
model. In ASIACRYPT 2005, 2005.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
FOCS 2001, 2001.

[CM20] Melissa Chase and Peihan Miao. Private set intersection in the internet setting from lightweight
oblivious PRF. In CRYPTO 2020, 2020.

[CPPT14] Ran Canetti, Omer Paneth, Dimitrios Papadopoulos, and Nikos Triandopoulos. Verifiable set
operations over outsourced databases. In PKC, 2014.

[DC17] Alex Davidson and Carlos Cid. An efficient toolkit for computing private set operations. In ACISP
2017, 2017.

[DCW13] Changyu Dong, Liqun Chen, and Zikai Wen. When private set intersection meets big data: an
efficient and scalable protocol. In CCS 2013, 2013.

[FNO19] Brett Hemenway Falk, Daniel Noble, and Rafail Ostrovsky. Private set intersection with linear
communication from general assumptions. In WPES@CCS 2019, 2019.

[FNP04] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private matching and set inter-
section. In EUROCRYPT 2004, 2004.

[Fri07] Keith B. Frikken. Privacy-preserving set union. In ACNS 2007, 2007.

[Gam85] Taher El Gamal. A public key cryptosystem and a signature scheme based on discrete logarithms.
IEEE Trans. Inf. Theory, 31(4):469–472, 1985.

[GMR+21] Gayathri Garimella, Payman Mohassel, Mike Rosulek, Saeed Sadeghian, and Jaspal Singh. Private
set operations from oblivious switching. In PKC 2021, 2021.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A complete-
ness theorem for protocols with honest majority. In STOC 1987, 1987.

22

[GN19] Satrajit Ghosh and Tobias Nilges. An algebraic approach to maliciously secure private set inter-
section. In EUROCRYPT 2019, 2019.

[GPR+21] Gayathri Garimella, Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. Oblivious key-
value stores and amplification for private set intersection. In CRYPTO 2021, 2021.

[HKK+11] Jeongdae Hong, Jung Woo Kim, Jihye Kim, Kunsoo Park, and Jung Hee Cheon. Constant-
round privacy preserving multiset union. Cryptology ePrint Archive, Report 2011/138, 2011.
https://ia.cr/2011/138.

[HLS+16] Kyle Hogan, Noah Luther, Nabil Schear, Emily Shen, David Stott, Sophia Yakoubov, and Arkady
Yerukhimovich. Secure multiparty computation for cooperative cyber risk assessment. In SecDev
2016, 2016.

[HN10] Carmit Hazay and Kobbi Nissim. Efficient set operations in the presence of malicious adversaries.
In PKC 2010, 2010.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers efficiently.
In CRYPTO 2003, 2003.

[KK13] Vladimir Kolesnikov and Ranjit Kumaresan. Improved OT extension for transferring short secrets.
In CRYPTO 2013, 2013.

[KKRT16] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and Ni Trieu. Efficient batched oblivious
PRF with applications to private set intersection. In CCS 2016, 2016.

[KRS+19] Daniel Kales, Christian Rechberger, Thomas Schneider, Matthias Senker, and Christian Weinert.
Mobile private contact discovery at scale. In USENIX Security 2019, 2019.

[KRTW19] Vladimir Kolesnikov, Mike Rosulek, Ni Trieu, and Xiao Wang. Scalable private set union from
symmetric-key techniques. In ASIACRYPT, 2019.

[KS05] Lea Kissner and Dawn Xiaodong Song. Privacy-preserving set operations. In CRYPTO 2005,
2005.

[LIM21] Fukang Liu, Takanori Isobe, and Willi Meier. Cryptanalysis of full lowmc and lowmc-m with
algebraic techniques. In CRYPTO 2021, 2021.

[LV04] Arjen K. Lenstra and Tim Voss. Information security risk assessment, aggregation, and mitigation.
In ACISP 2004, 2004.

[MS13] Payman Mohassel and Seyed Saeed Sadeghian. How to hide circuits in MPC an efficient framework
for private function evaluation. In EUROCRYPT 2013, 2013.

[NP01] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In Proceedings of the Twelfth
Annual Symposium on Discrete Algorithms, 2001.

[PRTY19] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. Spot-light: Lightweight private set
intersection from sparse OT extension. In CRYPTO 2019, 2019.

[PRTY20] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. PSI from paxos: Fast, malicious private
set intersection. In EUROCRYPT 2020, 2020.

[PSSZ15] Benny Pinkas, Thomas Schneider, Gil Segev, and Michael Zohner. Phasing: Private set intersection
using permutation-based hashing. In USENIX Security 2015, 2015.

[PSZ14] Benny Pinkas, Thomas Schneider, and Michael Zohner. Faster private set intersection based on
OT extension. In USENIX Security, 2014.

[PSZ18] Benny Pinkas, Thomas Schneider, and Michael Zohner. Scalable private set intersection based on
OT extension. ACM Trans. Priv. Secur., 21(2):7:1–7:35, 2018.

[Rab05] Michael O. Rabin. How to exchange secrets with oblivious transfer. IACR Cryptol. ePrint Arch.,
2005:187, 2005.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In STOC
2005, 2005.

[RS21] Peter Rindal and Phillipp Schoppmann. VOLE-PSI: fast OPRF and circuit-psi from vector-ole.
In EUROCRYPT 2021, 2021.

[SCK12] Jae Hong Seo, Jung Hee Cheon, and Jonathan Katz. Constant-round multi-party private set union
using reversed laurent series. In PKC 2012, 2012.

[SM18] Katsunari Shishido and Atsuko Miyaji. Efficient and quasi-accurate multiparty private set union.
In SMARTCOMP 2018, 2018.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In FOCS,
1986.

[YWL+20] Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and Xiao Wang. Ferret: Fast extension for
correlated OT with small communication. In CCS 2020, 2020.

23

https://ia.cr/2011/138

Appendix

A Encryption Schemes

A.1 Symmetric-key Encryption

A symmetric-key encryption (SKE) scheme is a tuple of four algorithms:

– Setup(1κ): on input the security parameter κ outputs public parameters pp, which include the
description of the message and ciphertext space M,C.

– KeyGen(pp): on input public parameters pp, outputs a key k.
– Enc(k,m): on input a key k and a plaintext m ∈M , outputs a ciphertext c ∈ C.
– Dec(k, c): on input a key k and a ciphertext c ∈ C, outputs a message m ∈M or an error symbol
⊥.

Correctness. For any pp← Setup(1κ), any k ← KeyGen(pp), any m ∈M , and any c← Enc(k,m), it
holds that Dec(sk, c) = m.
Security. For our purpose, we require a case-tailored security notion called single-message multi-
ciphertext pseudorandomness. Formally, a SKE scheme is single-message multi-ciphertext pseudoran-
dom if for any PPT A = (A1,A2):

AdvA(1
κ) = Pr

β = β′ :

pp← Setup(1κ);
k ← KeyGen(pp);
(m, state)← A1(pp);

β
R←− {0, 1};

c∗i,0 ← Enc(k,m), c∗i,1
R←− C, for i ∈ [n];

β′ ← A2(pp, state, {c∗i,β}i∈[n])

−
1

2

is negligible in κ.

Remark 1. The single-message multi-ciphertext pseudorandomness is a mild security notion that is
satisfied by most IND-CPA secure SKE schemes, for instance, the classical PRF-based SKE.

A.2 Re-randomizable PKE

A re-randomizable PKE (ReRand-PKE) scheme is a tuple of five algorithms:

– Setup(1κ): on input the security parameter κ outputs public parameters pp, which include the
description of the message and ciphertext space M,C.

– KeyGen(pp): on input public parameter pp, outputs a keypair (pk, sk).
– Enc(pk,m): on input a public key pk and a message m ∈M , outputs a ciphertext c ∈ C.
– Dec(sk, c): on input a secret key sk and a ciphertext c ∈ C, outputs a message m ∈M or an error

symbol ⊥.
– ReRand(pk, c): on input a public key pk and a ciphertext c ∈ C, outputs another ciphertext c′ ∈ C.

Correctness. For any pp← Setup(1κ), any (pk, sk)← KeyGen(pp), any m ∈M , any c← Enc(pk,m),
and any c′ ← ReRand(pk, c), it holds that Dec(sk, c) = Dec(sk, c′) = m.
Indistinguishability. For any pp ← Setup(1κ), any (pk, sk) ← KeyGen(pp), and any m ∈ M , the
distribution c0 ← Enc(pk,m) and the distribution c1 ← ReRand(pk, c0) are identical.
Security. For our purpose, we require a case-tailored security notion called single-message multi-
ciphertext pseudorandomness. Formally, a PKE scheme is single-message multi-ciphertext pseudoran-
dom if for any PPT A = (A1,A2):

AdvA(1
κ) = Pr

β = β′ :

pp← Setup(1κ);
(pk, sk)← KeyGen(pp);
(m, state)← A1(pp, pk);

β
R←− {0, 1};

c∗i,0 ← Enc(pk,m), c∗i,1
R←− C, for i ∈ [n];

β′ ← A2(pp, state, {c∗i,β}i∈[n])

−
1

2

is negligible in κ.

24

Remark 2. We remark that single-plaintext multi-ciphertext pseudorandomness is a very mild prop-
erty for PKE. This is because most natural IND-CPA secure PKE constructions satisfy single-message
single-ciphertext pseudorandomness, which further implies single-plaintext multi-ciphertexts pseudo-
randomness via a standard hybrid argument.

It is straightforward to verify that the DDH-based ElGamal PKE [Gam85] and Regev’s LWE-based
PKE [Reg05] are re-randomizable PKE schemes satisfying the above correctness, indistinguishability,
and single-plaintext multi-ciphertext pseudorandomness.

B Oblivious Key-Value Store Scheme

B.1 Instantiation of OKVSs

We recall some instantiations of OKVS and analyze their parameters.

Polynomial. Polynomial can be seen as a natural OKVS: to insert n key-value pairs {(xi, yi)}i∈[n],
one computes P as the polynomial which passes through points {(xi, yi)}i∈[n].

The advantage of polynomial is that its rate reaches optimal 1, which induces the lowest communi-
cation in the protocol. However, its encoding and decoding are less efficient. Using the optimization of
[PRTY19], the encoding and decoding complexity are respectively O(n log2 n) and O(log n). Another
disadvantage of polynomial is that it only satisfies correctness and obliviousness, not randomness
because polynomial generation is a deterministic algorithm.
Garbled Bloom Filter. Garbled Bloom Filter (GBF) was introduced in [DCW13] in the context of
PSI protocols. The values are taken from F2σ . A GBF is an m-long array D associated with k random
functions h1, . . . , hk : {0, 1}∗ → [m]. Let D[j] denote the jth component of array D. To insert a key-
value pair (x, y) in a GBF, one chooses random D[hi(x)] for i ∈ [k] conditioned on y = ⊕i∈[k]D[hi(x)].

In [DCW13], they showed that if the GBF has size m = O(λn) then the generation of GBF
succeeds with probability 1− 2−λ. Therefore, the rate of GBF is O(1/λ). The encoding complexity is
O(λn) and decoding requires λ XOR at most.
Garbled Cuckoo Table. Garbled Cuckoo Table (GCT) was introduced in [PRTY20] as an optimiza-
tion of GBF. The idea of GCT is similar to GBF, and the difference is that GCT uses only two hash
functions instead of λ. However, two hash functions will cause a non-negligible probability of failure.
To solve this problem, they introduce some additional positions and use a new random function to
map the key to these positions. They use cuckoo graph to analyze the probability of success, and
finally they achieve a better rate, which is about 0.42.

However, as Rindal and Schoppmann [RS21] pointed out, the original GCT scheme [PRTY20] does
not meet the obliviousness properties we defined before. The main reason is that the original GCT
needs to solve a linear equation to satisfy the key-value constraint. However, the free variable in the
equation is set to zero, which means keys are no longer randomly shared in some positions like GBF.
As a result, the GCT has some zeros depending on the key’s set. They made a little modification
to make GCT (they called XoPaXoS) meet this property. The main idea is to first assign random
values to the free variables, and then solve the remaining full rank equations. Recently, Garimella et
al. [GPR+21] improved original GCT to 3H-GCT, the rate is increased to 0.81 by using three hash
functions. However, the original 3H-GCT still assigns zero to the free variables in linear equation. We
use similar modifications to make 3H-GCT meet Obliviousness and Randomness, as we described in
Fig. 3.

We summarize the parameters and properties of the above schemes in Table 5.

B.2 Property Proof

The correctness is obvious. Now we prove the Obliviousness and Randomness of our 3H-GCT++.

Theorem 7. 3H-GCT++ in Fig. 3 satisfies the Obliviousness and Randomness.

Proof. Obliviousness: As we described before, 3H-GCT++ is generated by additive secret sharing of
values at the random position mapped by hash function, and selecting random value at the point not

25

Table 5: A comparison between the different OKVS schemes.

scheme rate encoding decoding obliviousness randomness

Polynomial 1 O(n log2 n) O(logn)
√

×
GBF [DCW13] O(1/λ) O(λn) O(λ)

√ √

2H-GCT [PRTY20] 0.42− o(1) O(λn) O(λ) × ×
XoPaXoS [RS21] 0.42− o(1) O(λn) O(λ)

√ √

3H-GCT [GPR+21] 0.81− o(1) O(λn) O(λ) × ×
3H-GCT++ in Fig. 3 0.81− o(1) O(λn) O(λ)

√ √

n is the number of key-value pairs, λ is a statistical security parameter (e.g.,λ = 40).

mapped. Since the value are uniform distribution, we have that {(D1, . . . , Dm)|Di ← G, i ∈ [m]} ≡
{(D1, . . . , Dm)|y ← G, Di ← G, i ∈ [m− 1], Dm := y −

∑
i∈[m−1] Di}, which implies Obliviousness.

Randomness: Let X = {x1, . . . , xn} denote the key’s set. For any x∗ /∈ X, let row(x∗) defined as
before. There are three cases:

Case 1: ∃xi ∈ X such that row(xi) = row(x∗). By the parameter of GCT scheme [PRTY20,
GPR+21], this probability is 2−λ.

Case 2: Let o(xi) ⊂ [m] be the set of positions that are 1s of row(xi), i ∈ [n] and let O :=
∪i∈[n]o(xi). In this case, o(x∗) ⊂ O, that is, all the 1 positions of row(x∗) have been mapped when
generating D. Now we can divide o(x∗) into several groups according to which key is mapped to that
location. If there is a location i mapped by both different keys, then the location i can be randomly
put into one of the groups. Since the different positions of a key mapped to corresponds to an additive
secret sharing of the corresponding value, the sum of each group should be a uniformly random element
in G. Therefore DecodeH(D,x∗) is a uniformly random string.

Case 3: ∃j ∈ [m] such that j ∈ o(x∗) ∧ j /∈ O, that is, there are some positions of row(x∗) were
not mapped when generating D. By the generation of GCT, those positions not mapped are assigned
with a random value. Therefore DecodeH(D,x∗) is a uniformly random string.

In summary, with probability 1− 2−λ, DecodeH(D,x∗) is a uniformly random string.

C Proof of Theorem 1

Below we give the details of the proof of Theorem 1.

Proof. We exhibit simulators SimR and SimS for simulating corrupt R and S respectively, and argue
the indistinguishability of the produced transcript from the real execution.

Corrupt sender: SimS(Y = {y1, . . . , yny}) simulates the view of corrupt semi-honest sender. It executes
as follows:

1. SimS selects nx random key-value pairs (xi, si)i∈[nx], where xi and si are random item and cipher-
text respectively. Then SimS computes OKVS D := EncodeH((h(x1), s1), . . . , (h(xnx), snx)) and
appends it to the view.

2. SimS computes s∗i = DecodeH(D,h(yi)) for i ∈ [ny]. Then, it invokes VODM simulator SimS
vodm(s

∗
1, . . . , s

∗
ny
)

and appends the output to the view.

Now we argue that the view output by SimS is indistinguishable from the real one. We formally prove
this by a standard hybrid argument method. We define four hybrid transcripts T0, T1, T2, T3 where T0

is real view of S, and T3 is the output of SimS .

– Hybrid0. The first hybrid is the real interaction described in Fig. 7. Here, an honest R uses input
X, honestly interacts with the corrupt S. Let T0 denote the real view of S.

– Hybrid1. Let T1 be the same as T0, except that (s1, . . . , snx) are replaced by nx random ciphertexts.
This hybrid is computationally indistinguishable from T0 by the single-message multi-ciphertext
pseudorandomness of the encryption scheme.
Specifically, if there is a distinguisher D can distinguish T0 and T1 with non-negligible probability,
then we can construct a PPT adversary A to break the single-message multi-ciphertext pseudoran-
domness of encryption scheme. A works as follows: when A receives pp from challenger, A selects

26

a random s as challenge message. Then A receives ciphertexts {c∗i }i∈[nx] from challenger. Now A
executes as an honest receiver with the corrupt S except step 2. In this step, A computes OKVS as
D := EncodeH({h(xi), c

∗
i }i∈[nx]). Now A invokes D with the sender’s view in the above interaction

and outputs D’s output. Note that if {c∗i }i∈[nx] are the encryption of s, the view of corrupt sender
is exactly the real view, which corresponds to T0. If {c∗i }i∈[nx] are random ciphertexts, the view
corresponds to T1. Therefore, A can break the security of the encryption scheme with the same
advantages as D.

– Hybrid2. Let T2 be the same as T1, except that the inputs of the receiver R are replaced by nx

random items. Note that the selection of value in OKVS has been replaced with random ciphertexts
in T1. By the obliviousness property of OKVS, T1 and T2 are statistically indistinguishable.

– Hybrid3. Let T3 be the same as T2, except that the VODM execution is replaced by simulator
SimS

vodm. The security of VODM functionality guarantees the view is indistinguishable from real
execution.

Corrupt receiver: SimR(X = {x1, . . . , xnx}, b) simulates the view of corrupt semi-honest receiver. It
executes as follows:

1. SimR selects a random s← {0, 1}σ and generates a random encryption key k as the semi-honest
receiver does in the real protocol. Then, it invokes VODM simulator SimR

vodm(k, s, b) and appends
the output to the view.

The view output by SimR is indistinguishable from the real one by the underlying simulators’ indis-
tinguishability.

D SKE-based Multi-Query RPMT

Now we show that PRF-based SKE satisfies the single-message multi-ciphertext pseudorandomness
property.

Let F := {fk : {0, 1}κ → {0, 1}κ}k∈K be a PRF family. The PRF-based SKE scheme is as follows:

– Setup(1κ): on input the security parameter κ outputs public parameters pp, which include the
description of the message and ciphertext space M = {0, 1}κ, C = {0, 1}2κ.

– KeyGen(pp): on input public parameter pp, outputs a key k
R←− K.

– Enc(k,m): on input a key k and a plaintext m ∈ M , chooses r
R←− {0, 1}κ, outputs a ciphertext

c = (r, fk(r)⊕m).
– Dec(k, c): on input a key k and a ciphertext c = (r, c2), outputs m = fk(r)⊕ c2.

Next, we prove the single-message multi-ciphertext pseudorandomness of the above PRF-based
SKE scheme.

Lemma 1. The PRF-based SKE satisfies the single-message multi-ciphertext pseudorandomness prop-
erty defined in Section A.1.

Proof. If there is a PPT adversary A = (A1,A2) can break the single-message multi-ciphertext pseu-
dorandomness of SKE scheme, then we can construct a PPT adversary B to break the security of PRF.
In particular, B runs Setup to obtain pp, then it invokes A1(pp) to obtain (m, state). Now, B selects

ri
R←− {0, 1}κ and queries the oracle with ri to obtain f(ri) for i ∈ [n]. Then, B sets ci = (ri, f(ri)⊕m)

and invokes A2(pp, state, {ci}i∈[n]) to obtain a bit β′. Finally, B outputs β′.
If f is PRF: {ci}i∈[n] are exactly the n times encryption of m, which correspond to β = 0.
If f is random function: f(r) is also a random string on {0, 1}κ, which means ci is a random

distribution in ciphertext space, corresponding to β = 1.Therefore, B distinguishes PRF with the
same probability as A in single-message multi-ciphertext pseudorandomness experiment.

E PSU Construction from Leaky VODM

We give the PSU protocol from leaky VODM in Fig. 13.

27

Parameters:

– Two parties: sender S and receiver R.
– A ReRand-PKE scheme (Setup,KeyGen,Enc,Dec,ReRand).
– An OKVS scheme (EncodeH ,DecodeH).
– A collision-resistant hash function h(x) : {0, 1}∗ → {0, 1}σ.

Input of S: Y = {y1, . . . , yny} ⊂ {0, 1}∗
Input of R: X = {x1, . . . , xnx} ⊂ {0, 1}∗
Protocol:

1. R selects a random indication string s ∈ F2σ . R also generates a random key pair pp ←
Setup, (pk, sk) ← KeyGen(pp), a randomness set R = {r1, . . . , rnx} and computes si := Enc(pk, s; ri)
for i ∈ [nx].

2. R computes an OKVS D := EncodeH((h(x1), s1), . . . , (h(xnx), snx)).
3. R sends D and pk to S.
4. S computes s∗i := DecodeH(D,h(yi)) for i ∈ [ny].
5. S and R invoke the leaky VODM functionality Flvodm. The sender S acts as sender in leaky VODM

with input {s∗i }i∈[ny] and receives nothing. The receiver R acts as receiver in leaky VODM with input
(pk, sk, s) and receives b ∈ {0, 1}ny and {s′i|bi = 0}.

6. R initialize set Z := {}.
7. For i ∈ [ny]:

(a) S and R invoke the OT functionality Fot

(b) S acts as sender with input (yi,⊥).
(c) R acts as receiver with input bi.
(d) R obtains the OT output zi and sets Z = Z ∪ {zi}

8. R outputs X ∪ Z.

Fig. 13: PSU from leaky VODM Πpsu

Theorem 8. Assume the Re-Rand PKE scheme E = (Setup,KeyGen,Enc,Dec) satisfies single-message
multi-ciphertext pseudorandomness. The protocol in Fig. 13 securely computes Fpsu against semi-
honest adversaries in the (Flvodm,Fot)-hybrid model.

Proof. We exhibit simulators SimR and SimS for simulating corrupt R and S respectively, and argue
the indistinguishability of the produced transcript from the real execution.

Corrupt Sender: SimS(Y = {y1, . . . , yny}) simulates the view of corrupt semi-honest sender. It executes
as follows:

1. SimS selects nx random key-value pairs (xi, si)i∈[nx], where xi and si are random item and
ciphertext respectively. Then SimS generates pp ← Setup, (pk, sk) ← KeyGen(pp), computes
D = EncodeH((h(x1), s1), . . . , (h(xnx), snx)) and appends (pk,D) to the view.

2. SimS computes s∗i = DecodeH(D,h(yi)) for i ∈ [ny]. Then, it invokes leaky VODM simulator

SimS
lvodm(s

∗
1, . . . , s

∗
ny
) and appends the output to the view.

3. For i ∈ [ny], SimS invokes OT simulator SimS
ot(yi,⊥) and appends the output to the view.

Now we argue that the view output by SimS is indistinguishable from the real one. We formally prove
this by a standard hybrid argument method. We define four hybrid transcripts T0, T1, T2, T3 where T0

is real view of S, and T3 is the output of SimS .

– Hybrid0. The first hybrid is the real interaction described in Fig. 13. Here, an honest R uses input
X, honestly interacts with the corrupt S. Let T0 denote the real view of S.

– Hybrid1. Let T1 be the same as T0, except that (s1, . . . , snx) are replaced by nx random ciphertexts.
This hybrid is computationally indistinguishable from T0 by the single-message multi-ciphertext
pseudorandomness of the encryption scheme.
Specifically, if there is a distinguisher D can distinguish T0 and T1 with non-negligible probability,
then we can construct a PPT adversary A to break the single-message multi-ciphertext pseudoran-
domness of encryption scheme. A works as follows: when A receives pp from challenger, A selects

28

a random s as challenge message. Then A receives ciphertexts {c∗i }i∈[nx] from challenger. Now A
executes as an honest receiver with the corrupt S except step 2. In this step, A computes OKVS as
D := EncodeH({h(xi), c

∗
i }i∈[nx]). Now A invokes D with the sender’s view in the above interaction

and outputs D’s output. Note that if {c∗i }i∈[nx] are the encryption of s, the view of corrupt sender
is exactly the real view, which corresponds to T0. If {c∗i }i∈[nx] are random ciphertexts, the view
corresponds to T1. Therefore, A can break the security of the encryption scheme with the same
advantages as D.

– Hybrid2. Let T2 be the same as T1, except that the inputs of the receiver R are replaced by nx

random items. Note that the selection of value in OKVS has been replaced with random ciphertexts
in T1. By the obliviousness property of OKVS, T1 and T2 are statistically indistinguishable.

– Hybrid3. Let T3 be the same as T2, except that the leaky VODM and OT execution is replaced by
simulator SimS

lvodm and SimS
ot. The security of leaky VODM and OT functionality guarantee the

view is indistinguishable from real execution.

Corrupt Receiver: SimR(X = {x1, . . . , xnx}, X ∪Y) simulates the view of corrupt receiver. It executes
as follows:

1. SimR executes first two step as an honest receiver and obtains s, (pk, sk), D.
2. SimR define the set Z := X ∪Y \X, i.e. the set of elements that Y “brings to the union”. Next, it

uses ⊥ to pads Z to ny elements and permutates these elements randomly. Let Z = {z1, . . . , zny}.
3. SimR sets bi = 1 if and only if zi ∈ X for i ∈ [ny]. For zi /∈ X, SimR computes s′i :=

Dec(sk,DecodeH(D,h(zi))) Then, it invokes leaky vectro ODM simulator SimR
lvodm(s, b, {s′i|bi = 0})

and appends the output to the view.
4. For i ∈ [ny], SimR invokes OT simulator SimR

ot(bi, zi) and appends the output to the view.

Now we argue that the view output by SimR is indistinguishable from the real one. In the simulation,
the way R obtains the elements in Z = X \ Y is identical to the real execution. By the underlying
simulators’ indistinguishability, the simulated view is computationally indistinguishable from the real
one.

F Multi-Query RPMT Based on Membership Encryption

We describe how to construct mq-RPMT using the language of Membership Encryption (ME). As we
mentioned in Section 4.3, this will help us reduce the communication by half when sending OKVS.
We first define the vector oblivious decryption (VOD) functionality in Fig. 14.

Parameters: Sender S, Receiver R, set sizes n, a membership encryption scheme E =
(Setup,KeyGen,Enc,Dec).
Functionality:

– Wait for input k from the receiver R.
– Wait for input {s∗1, . . . , s∗n} ⊂ {0, 1}∗ from the sender S.
– For i ∈ [n]:

Computes bi = Dec(k, s∗i).
– Give output b ∈ {0, 1}n to the receiver R.

Fig. 14: Vector Oblivious Decryption Functionality Fvod

Now, we use the language of ME to describe how to construct mq-RPMT. The formal protocol is
described in Fig. 15.

Correctness. For all i ∈ [ny], if yi ∈ X, there is a xj ∈ X, j ∈ [nx] s.t. yi = xj . In this case,
s∗i = DecodeH(D,h(xj)) = sj . Since sj = Enc(k, xj), we have Dec(k, sj) = 1. In the case yi /∈ X,
if hash functions collide, that is, h(yi) = h(x) for some yi /∈ X, the correctness will be violated.
By setting σ = λ+ log nxny, a union bound shows probability of collision is negligible 2−λ. When no

29

collision occurs, from the randomness of OKVS, s∗i = DecodeH(D,h(yi)) is a random ciphertext, result
in Dec(k, s∗i) = 0 with overwhelming probability. The union bound guarantees that for all yi /∈ X, the
probability that there exists an s∗i s.t. Dec(k, s∗i) = 1 is negligible.

We now state and prove the security properties of the above mq-RPMT protocol.

Theorem 9. Assume E = (Setup,KeyGen,Enc,Dec) is a membership encryption scheme as we defined
in section 4.3. The protocol in Fig. 15 securely computes Fmq-rpmt against semi-honest adversaries in
the Fvod-hybrid model.

Proof. We exhibit simulators SimR and SimS for simulating corrupt R and S respectively, and argue
the indistinguishability of the produced transcript from the real execution.

Corrupt sender: SimS(Y = {y1, . . . , yny}) simulates the view of corrupt semi-honest sender. It executes
as follows:

1. SimS selects nx random key-value pairs (xi, si)i∈[nx], where xi and si are random item and cipher-
text respectively. Then SimS computes OKVS D := EncodeH((h(x1), s1), . . . , (h(xnx), snx)) and
appends it to the view.

2. SimS computes s∗i = DecodeH(D,h(yi)) for i ∈ [ny]. Then, it invokes VOD simulator SimS
vod(s

∗
1, . . . , s

∗
ny
)

and appends the output to the view.

Now we argue that the view output by SimS is indistinguishable from the real one. We formally prove
this by a standard hybrid argument method. We define four hybrid transcripts T0, T1, T2, T3 where T0

is real view of S, and T3 is the output of SimS .

– Hybrid0. The first hybrid is the real interaction described in Fig. 15. Here, an honest R uses input
X, honestly interacts with the corrupt S. Let T0 denote the real view of S.

– Hybrid1. Let T1 be the same as T0, except that (s1, . . . , snx) are replaced by nx random ciphertexts.
This hybrid is computationally indistinguishable from T0 by the multi-elements pseudorandomness
of the membership encryption scheme.

Specifically, if there is a distinguisher D can distinguish T0 and T1 with non-negligible probability,
then we can construct a PPT adversary A to break the multi-elements pseudorandomness of
membership encryption scheme. A works as follows: when A receives ciphertexts {c∗i }i∈[nx] from
challenger, A executes as an honest receiver with the corrupt S except step 2. In this step, A
computes OKVS as D := EncodeH({h(xi), c

∗
i }i∈[nx]). Now A invokes D with the sender’s view

in the above interaction and outputs D’s output. Note that if {c∗i }i∈[nx] are the encryption of
xi, the view of corrupt sender is exactly the real view, which corresponds to T0. If {c∗i }i∈[nx]

are random ciphertexts, the view corresponds to T1. Therefore, A can break the multi-elements
pseudorandomness of the membership encryption scheme with the same advantages as D.

– Hybrid2. Let T2 be the same as T1, except that the inputs of the receiver R are replaced by nx

random items. Note that the selection of value in OKVS has been replaced with random ciphertexts
in T1. By the obliviousness property of OKVS, T1 and T2 are statistically indistinguishable.

– Hybrid3. Let T3 be the same as T2, except that the VOD execution is replaced by simulator SimS
vod.

The security of VOD functionality guarantees the view is indistinguishable from real execution.

Corrupt receiver: SimR(X = {x1, . . . , xnx}, b) simulates the view of corrupt semi-honest receiver. It
executes as follows:

1. SimR generates a random encryption key k as the semi-honest receiver does in the real protocol.
Then, it invokes VOD simulator SimR

vod(k, b) and appends the output to the view.

The view output by SimR is indistinguishable from the real one by the underlying simulators’ indis-
tinguishability.

30

Parameters:

– Two parties: sender S and receiver R.
– Ideal Fvod primitives specified in Fig. 14.
– A ME scheme (Setup,KeyGen,Enc,Dec).
– An OKVS scheme (EncodeH ,DecodeH)
– A collision-resistant hash function h(x) : {0, 1}∗ → {0, 1}σ.

Input of S: Y = {y1, . . . , yny} ⊂ {0, 1}∗
Input of R: X = {x1, . . . , xnx} ⊂ {0, 1}∗
Protocol:

1. R uses a ME scheme to generate a random key: pp ← Setup(X, 1κ), k ← KeyGen(pp) and computes
si := Enc(k, xi) for i ∈ [nx].

2. R computes an OKVS D := EncodeH((h(x1), s1), . . . , (h(xnx), snx)).
3. R sends D to the sender S.
4. S computes s∗i := DecodeH(D,h(yi)) for i ∈ [ny].
5. S and R invoke the vector oblivious decryption functionality Fvod. S acts as sender with input

S = {s∗1, . . . , s∗ny
} and R acts as receiver with input k. As a result, S receives nothing and R receives

b ∈ {0, 1}ny .

Fig. 15: ME-based Multi-Query Reverse Private Membership Test Protocol Πmq-rpmt

G Implementation Detail

G.1 Detailed Protocol Buffer Definition

The detailed protocol buffer definition is as follows:

1 ‘ ‘ ‘ protobuf
2 syntax = ” proto3 ” ;
3 message DataPacketProto {
4 // the package conta ins head and payload , s e p a r a t e l y
5 // de f ined by DataPacketSpecProto and PacketProto .
6 HeaderProto headerProto = 1 ;
7 PayloadProto payloadProto = 2 ;
8 // head d e f i n i t i o n
9 message HeaderProto {

10 // ta s k ID
11 i n t64 taskId = 1 ;
12 // p ro t o co l ID
13 i n t32 ptoId = 2 ;
14 // s t ep ID
15 i n t32 s t ep Id = 3 ;
16 // ex t ra in format ion
17 i n t64 ex t r a In f o = 4 ;
18 // sender ID
19 i n t32 sender Id = 5 ;
20 // r e c e i v e r ID
21 i n t32 r e c e i v e r I d = 6 ;
22 }
23 // payload d e f i n i t i o n
24 message PacketProto {
25 // repea ted means the pay load conta ins
26 // an array o f by t e []
27 repeated bytes payloadBytes = 1 ;
28 }
29 }

31

30 ’ ’ ’

G.2 JNI Technique

As mentioned in Section 6.2, we use the Java Native Interface (JNI) technique to invoke C/C++
libraries for speeding up performances. These include:

– Bit matrix transpose (used in OT extension and SKE-PSU). We follow the ideas provided by Mis-
chasan11 and adjust the implementation given in EMP-toolkit12 to implement bit matrix transpose
operations. The bit matrix is represented in the big-endian byte ordering, thus compatible with
Java.

– Polynomial operations (used in KRTW and GMRSS). We tried the pure-Java Rings polynomial
implementation13 but found that its efficiency is not acceptable. We instead use the NTL library14

with GMP library and GF2X library15 for speeding up the performance. We adjust the polynomial
representation to make the results returned from NTL compatible with Rings.

– ECC operations (used in base OT and PKE-PSU). We compared the ECC operation performances
via different libraries, including the pure-Java Bouncy Castle16, the C/C++ Relic17, and the
C/C++ MCL18. We found that (at least in our experiment platform) MCL library performs
best, especially for the fixed-point multiplication operation. However, the ECC addition operation
in Bouncy Castle is faster than MCL in our platforms. Therefore, we adjust the ECC point
representation returned from MCL to make it compatible with the ECC point representation in
Bouncy Castle to directly use Bouncy Castle to do the addition operations in Java.

– Switching Network programming (used in GMRSS). We used the code base open-sourced by
Garimella et al. [GMR+21]19 as a starting point. We replaced the switching node representation
from ‘int’ to ‘int8 t’ to reduce the memory cost.

11 https://mischasan.wordpress.com/2011/10/03/the-full-sse2-bit-matrix-transpose-routine/
12 https://github.com/emp-toolkit/emp-tool/blob/master/emp-tool/utils/block.h
13 (https://rings.readthedocs.io/
14 https://libntl.org/
15 https://gitlab.inria.fr/gf2x/gf2x
16 (https://www.bouncycastle.org/java.html
17 https://github.com/relic-toolkit/relic
18 https://github.com/herumi/mcl
19 https://github.com/osu-crypto/PSI-analytics/blob/master/psi_analytics_eurocrypt19/common/

benes.cpp

32

https://mischasan.wordpress.com/2011/10/03/the-full-sse2-bit-matrix-transpose-routine/
https://github.com/emp-toolkit/emp-tool/blob/master/emp-tool/utils/block.h
(https://rings.readthedocs.io/
https://libntl.org/
https://gitlab.inria.fr/gf2x/gf2x
(https://www.bouncycastle.org/java.html
https://github.com/relic-toolkit/relic
https://github.com/herumi/mcl
https://github.com/osu-crypto/PSI-analytics/blob/master/psi_analytics_eurocrypt19/common/benes.cpp
https://github.com/osu-crypto/PSI-analytics/blob/master/psi_analytics_eurocrypt19/common/benes.cpp

	Optimal Private Set Union from Multi-Query Reverse Private Membership Test
	Encryption Schemes
	Symmetric-key Encryption
	Re-randomizable PKE

	Oblivious Key-Value Store Scheme
	Instantiation of OKVSs
	Property Proof

	Proof of Theorem 1
	SKE-based Multi-Query RPMT
	PSU Construction from Leaky VODM
	Multi-Query RPMT Based on Membership Encryption
	Implementation Detail
	Detailed Protocol Buffer Definition
	JNI Technique

