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Abstract. Predictable arguments introduced by Faonio, Nielsen and
Venturi (PKC17) are private-coin argument systems where the answer
of the prover can be predicted in advance by the verifier. In this work, we
study predictable arguments with additional privacy properties. While
the authors in [PKC17] showed compilers for transforming PAs into PAs
with zero-knowledge property, they left the construction of witness in-
distinguishable predictable arguments (WI-PA) in the plain model as an
open problem. In this work, we first propose more efficient constructions
of zero-knowledge predictable arguments (ZK-PA) based on trapdoor
smooth projective hash functions (TSPHFs). Next, we consider the prob-
lem of WI-PA construction in the plain model and show how to transform
PA into WI-PA using non-interactive witness-indistinguishable proofs.
As a relaxation of predictable arguments, we additionally put forth a
new notion of predictability called Commit-and-Prove Predictable Argu-
ment (CPPA), where except the first (reusable) message of the prover,
all the prover’s responses can be predicted. We construct an efficient
zero-knowledge CPPA in the non-programmable random oracle model
for the class of all polynomial-size circuits. Finally, following the connec-
tion between predictable arguments and witness encryption, we show an
application of CPPAs with privacy properties to the design of witness
encryption schemes, where in addition to standard properties, we also
require some level of privacy for the decryptors who own a valid witness
for the statement used during the encryption process.

Keywords: predictable arguments, zero-knowledge, witness indistinguisha-
bility, witness encryption

1 Introduction

Interactive proofs (IPs) and arguments introduced by Goldwasser, Micali, and
Rackoff [GMR89] are cryptographic protocols that allow a prover to convince
a verifier about the veracity of a public statement x ∈ L, where L is an NP
language. The interaction may consist of several rounds of communication, at
the end of which the verifier decides to accept or reject the prover’s claim on
the membership of x in L. There are two properties required for an IP, namely
completeness and soundness. Completeness means that if x ∈ L, the honest
prover can always convince the honest verifier. Soundness means that for x /∈ L



no (even unbounded) malicious prover can convince the honest verifier that x ∈
L. Argument systems are like IPs, except they are only computationally sound;
i.e., it should be computationally hard (and not impossible) for a malicious prover
to convince the verifier that x ∈ L. An interactive proof is called public-coin if
the verifier messages are uniformly and independently random, and private-coin
otherwise.

Recently, Faonio, Nielsen and Venturi [FNV17] introduced a new property for
argument systems called predictability. Predictable arguments (PA) are private-
coin argument systems where the answer of the prover can be predicted effi-
ciently, given the honest verifier’s (private) random coins. The prover in such
arguments is deterministic and must be consistent with the unique accepting
transcript throughout the entire protocol. Faonio et al. [FNV17] formalized this
notion and provided several constructions based on various cryptographic as-
sumptions. They also considered PAs with additional privacy properties, namely
a zero-knowledge (ZK) property, and showed two transformations from PAs into
ZK-PAs, the first in the common reference string (CRS) model, and the second
in the non-programmable random oracle (NPRO) model.

1.1 Our Contribution

In this paper, we study predictable arguments with privacy properties in more
detail. Our results are three-fold:

First, we provide a more efficient construction of ZK-PA in the CRS model.
Compared to the generic transformation of [FNV17], the resulting argument is
much more efficient although it works only for a restricted class of languages; i.e.,
all languages that admit SPHFs. This includes all algebraic languages described
in section 2.0.2.

Second, we answer an open problem raised in [FNV17] and show how to
construct witness indistinguishable PAs (WI-PA) in the plain model by using
non-interactive witness indistinguishable (NIWI) proofs in the plain model. In-
formally, in order to ensure that the verifier’s challenge in the first round is
well-formed, we force the verifier to provide a NIWI proof for the statement
that “the produced challenge is well-formed”. Witness-indistinguishability fol-
lows from the soundness of the underlying NIWI and the predictability of the
argument. Moreover, we provide a reduction that shows how an adversary break-
ing the soundness of the WI-PA can be exploited in order to violate the WI
property of the underlying NIWI proof system.

Third, motivated by the fact that predictable argument (even without pri-
vacy properties) is a strong notion 1, we put forward a relaxation of predictable
arguments, namely, commit-and-prove 2 predictable arguments (CPPA) that,

1 This follows by the fact that predictable arguments and witness encryption (that only
exists based on strong primitives like indistinguishability obfuscation) are equivalent.

2 We call our notion commit-and-prove PA because, roughly speaking, a prover first
commits to an input (once and for all) and later proves that an opening for the
commitment satisfies some properties of interest. Our name is also inspired by the
phrase “commit-and-prove schemes” used in some papers, e.g., [CFQ19].
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except the first message of the prover, all the prover’s responses can be pre-
dicted. We formalize this notion for the language of dynamic statements of form
x = (cm, C, y), where cm is the prover’s first message, and C is an arbitrary
polynomial-size circuit possibly specified by the verifier. In particular, we con-
sider a case where the prover publishes a first message cm, after which the prover
can run an unbounded number of predictable arguments for different but corre-
lated statements (cm, Ci, yi). In contrast to PAs for which efficient construction
based on standard assumptions (even without ZK) seems out of reach, we give
a construction of ZK-CPPA for any polynomial-size circuit C ∈ P in the NPRO
model using garbled circuits (GC) and oblivious transfer (OT). Our construc-
tion is very similar to the three-round zero-knowledge argument of [GKPS18]
with the main difference being the reusability of the prover’s first message and
providing ZK in the non-UC model under milder assumptions.

Applications. To demonstrate the usefulness of (CP)PA with privacy proper-
ties, we will give its application in the context of witness encryption. We consider
witness encryption schemes with a strong notion of privacy for the decryptor,
wherein a malicious encryptor should not learn any information about the de-
cryptor’s witness, even after the decryptor reveals the decrypted message. Our
motivating applications for this scenario are dark pools and over-the-counter
(OTC) markets in which an investor (the encrypting party) is interested to com-
municate with only those trading parties (potential decryptors) whose financial
conditions satisfy some constraint. To realize this application, a recent work by
Ngo et al. [NMKW21] introduced the notion of witness key agreement (WKA)
which allows the two sides to agree on a secret key k, given that the trading
parties hold a witness that satisfies the desired relation. We show in section 6.1
that the witness encryption (WE) interpretation of our ZK-CPPA construction
can be used to realize this application with an efficiency improvement in some
aspects.

1.2 Related work

This paper is a follow-up to the work of Faonio et al. [FNV17] that introduced
the notion of predictable arguments of knowledge (PAoK) systems. While PAs
are always honest-verifier zero-knowledge, providing zero-knowledge or even the
weaker notion of witness-indistinguishability is quite challenging. In [FNV17],
the authors show a compiler for constructing ZK-PA in the CRS model and
leave the construction of WI-PA in the plain model as an open problem. We an-
swer the open problem and propose more efficient ZK-PAs in the CRS model. A
related work is that of Bitansky and Choudhuri [BC20] who recently constructed
deterministic-prover ZK arguments for NP and showed that such arguments im-
ply ZK-PA for NP. Different from [BC20] who mainly focus on feasibility results
and require strong assumptions (e.g., indistinguishability obfuscation) in their
construction, our work considers practical solutions in the CRS model. In another
related work, Dahari and Lindell [DL20] studied deterministic-prover honest ver-
ifier ZK arguments in the plain model. In the same work, they also constructed
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full ZK arguments given that the prover has access to a pair of witnesses one
of which can be used as a basis for the prover’s randomness. This differs from
our ZK-PA construction wherein the prover is “truly deterministic” although at
the cost of requiring a trusted setup. The recent work of [CPW20] introduced
the notion of Witness Maps. A Unique Witness Map (UWM) is a cryptographic
notion that maps all the witnesses for an NP statement to a single witness in
a deterministic way. While UWMs can be seen as deterministic-prover NIWI
arguments, they differ from WI-PA in several respects, making the two concepts
incomparable. First, WI-PA does not require a trusted setup in the form of a
common reference string, whereas UWMs are in the CRS model. Second, we
consider WI-PA as an interactive protocol, whereas UWMs are non-interactive.
Lastly, although UWMs are deterministic-prover, they are not necessarily pre-
dictable.

2 Preliminaries

Let PPT denote probabilistic polynomial-time. All adversaries throughout this
work will be stateful. By y ← A(x; r) we denote that A, given input x and
randomness r, outputs y. Let λ ∈ N be the security parameter and negl(λ) be
an arbitrary negligible function. We write a ≈λ b if |a− b| ≤ negl(λ).

2.0.1 Pairings. A pairing is defined by a tuple bp = (p,G1,G2,GT , ê, g1, g2)
where G1,G2,GT are (additive) groups of prime order p, g1 is a generator of G1,
g2 is a generator of G2, and ê : G1 × G2 → GT is an efficient, non-degenerate
bilinear map. In particular, ê(a · g1, b · g2) = (ab) · ê(g1, g2) for any a, b ∈ Zp. We
denote [a]t := a · gt for t ∈ {1, 2, T} where we define gT = ê(g1, g2). The same
notation naturally extends to matrices [M ]t for M ∈ Zn×m

p .

2.0.2 Algebraic languages. We refer to algebraic languages as the set of
languages associated to a relation that can be described by algebraic equations
over abelian groups. To be more precise, let gpar be some global parameters,
generated by a probabilistic polynomial-time algorithm setup.gpar which takes
the security parameter λ as input. These global parameters can correspond to
the description of groups involved in the construction and usually includes the
description of a bilinear group. Throughout the paper, we suppose that these
global parameters are implicitly given as input to each algorithm.

Let lpar = (M,θ) be a set of language parameters generated by a polynomial-
time algorithm setup.lpar which takes gpar as input. Here, M : Gℓ 7→ Gn×k and
θ : Gℓ 7→ Gn are linear maps such that their different coefficients are not neces-
sarily in the same algebraic structures. Namely, in the most common case, given
a bilinear group gpar = (p,G1,G2,GT , ê, [1]1, [2]2), they can belong to either
Zp, G1, G2, or GT as long as the equation θ(x) = M(x) ·w is “well-consistent”.
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Formally, for a set Xlpar that defines the underlying domain, we define an
algebraic language Llpar ⊂ Xlpar as

Llpar =
{
x ∈ G

∣∣∣∃w ∈ Zk
p : θ(x) = M(x) ·w

}
. (1)

An algebraic language whereM is independent of x and θ is the identity function
is called a linear language.

Finally, we note that algebraic languages are as expressive as generic NP
languages. This is because every binary circuit can be represented by a set of
linear equations.

2.0.3 Smooth Projective Hash Function. Let Llpar be a NP language,
parametrized by a language parameter lpar, and Rlpar ⊆ Xlpar be its correspond-
ing relation. A Smooth projective hash functions (SPHFs, [CS02]) for Llpar is a
cryptographic primitive with this property that given lpar and a statement x,
one can compute a hash of x in two different ways: either by using a projection
key hp and (x,w) ∈ Rlpar as pH← projhash(lpar; hp, x,w), or by using a hashing
key hk and x ∈ Xlpar as H ← hash(lpar; hk, x). The formal definition of SPHF
follows.

Definition 1. A SPHF for {Llpar} is a tuple of PPT algorithms (setup, hashkg,
projkg, hash, projhash), which are defined as follows:

setup(1λ): Takes in a security parameter λ and generates the global parameters
pp together with the language parameters lpar. We assume that all algorithms
have access to pp.

hashkg(lpar): Takes in a language parameter lpar and outputs a hashing key hk.
projkg(lpar; hk, x): Takes in a hashing key hk, lpar, and a statement x and outputs

a projection key hp, possibly depending on x.
hash(lpar; hk, x): Takes in a hashing key hk, lpar, and a statement x and outputs

a hash value H.
projhash(lpar; hp, x,w): Takes in a projection key hp, lpar, a statement x, and a

witness w for x ∈ L and outputs a hash value pH.

A SPHF needs to satisfy the following properties:

Correctness. It is required that hash(lpar; hk, x) = projhash(lpar; hp, x,w) for all
x ∈ L and their corresponding witnesses w.

Smoothness. It is required that for any lpar and any x ̸∈ L, the following distri-
butions are statistically indistinguishable:{

(hp,H) : hk← hashkg(lpar), hp← projkg(lpar; hk, x),H← hash(lpar; hk, x)
}

{
(hp,H) : hk← hashkg(lpar), hp← projkg(lpar; hk, x),H←$ Ω

}
.

where Ω is the set of hash values.
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2.0.4 Predictable Arguments. Predictable arguments are multi-round in-
teractive protocols where the verifier generates a challenge (which will be sent
to the prover) and at the same time it can predict the prover’s response to
that challenge. Here we recall the formal definition of predictable arguments
(PA) [FNV17]3.

Let RG be a relation generator that takes in a security parameter 1λ and
returns a polynomial-time decidable binary relation Rlpar. For a pair (x,w) ∈
Rlpar, we call x the statement and w the witness. The set of all possible relations
Rlpar that the relation generator RG (for a given 1λ) may output is denoted by
RGλ. To make the notation simple, we assume that Rlpar can be described with
a language parameter lpar by which λ can be deduced as well.

Definition 2 (Predictable Argument (PA)). A predictable argument for a
relation Rlpar (with the corresponding language parameter lpar) is an interac-
tive protocol between a prover P and a verifier V, which can be specified by two
algorithms Πpa = (Chall,Resp) defined as follows:

(Executed by V): (c, b) ← Chall(lpar, x). The algorithm takes in lpar and a
statement x, and returns a challenge c along with a predicted answer b.

(Executed by P): a ← Resp(lpar, x,w, c). The algorithm takes in lpar, a pair
of statement-witness (x,w) and a challenge c, and returns an answer a.

(Executed by V): If a = b, V returns acc; otherwise it returns rej.

We denote by ⟨P(lpar, x,w),V(lpar, x)⟩ an execution between P and V with
common inputs (lpar, x) and prover’s secret input w. The success of the prover
in convincing the verifier is denoted by ⟨P(lpar, x,w),V(lpar, x)⟩ = acc. Also, we
may call (c, b) as both the output of Chall(), or the output of V running Chall().
The same convention holds for a.

We require two properties for a PA: completeness and soundness.

– (Perfect) Completeness. A predictable argument has perfect complete-
ness if for all λ ∈ N, for all Rlpar ∈ RGλ, and for all (x,w) ∈ Rlpar

Pr
[
a = b : (c, b)← Chall(lpar, x); a← Resp(lpar, x,w, c)

]
= 1

– ϵ-Soundness. For all λ ∈ N, all x /∈ Llpar, and all PPT adversaries A

Pr
[
a = b : Rlpar ←$RGλ; (c, b)← Chall(lpar, x); a← A(lpar, x, c)

]
≈λ ϵ

We call a PA sound if ϵ ∈ negl(λ). A PA is secure if it is complete and sound.
Furthermore, we say that a PA is zero-knowledge (ZK-PA) if there exists a PPT
algorithm Sim that computes the predicted answer of any valid statement x
without knowing the random coins used in Chall() nor any witness for x, but only
knowing the challenge c. In the case of ZK in the CRS model, the algorithm takes
in also a CRS trapdoor τ which is generated by a setup algorithm (crsτ , τ) ←
setup(1λ). For notational simplicity, we assume that in this case lpar contains
crsτ as well.

3 We define PAs as one-round protocols. As shown in [FNV17], this is without loss of
generality as every ρ-round PA can be squeezed into a one-round PA.
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Zero-Knowledge

(crsτ , τ)← setup(1λ); (x,w, c)← A(crsτ , τ);
if Rlpar(x,w) = 0, then return 0;

b←$ {0, 1}; if b = 0 then a← Resp(lpar, x,w, c); else a← Sim(lpar, x, τ, c);

b′ ← A(a);
return b = b′;

Fig. 1: Experiment for the definition of Zero-knowledge

– Zero-Knowledge. A predictable argument Π is zero-knowledge if there ex-
ists a PPT simulator Sim such that for all PPT adversaryA, Pr[ExpzkΠ,Sim(A, λ) =
1] ≈λ

1
2 , where ExpzkΠ,Sim(A, λ) is depicted in fig. 1.

In this work, we also consider a weaker version of zero-knowledge, called wit-
ness indistinguishability (WI) [FS90] which informally states that the adversarial
verifier cannot identify which witnesses are held by the prover.

– Witness-Indistinguishability. A predictable argument Π is statistically
witness indistinguishable if for any adversary A, for any common statement
x, for any witnesses w1,w2 such that (x,w1) ∈ Rlpar, (x,w2) ∈ Rlpar, the
following holds:

⟨P(lpar, x,w1),A(lpar, x)⟩ ≈λ ⟨P(lpar, x,w2),A(lpar, x)⟩

2.0.5 Oblivious Transfer. A 2-round oblivious transfer (OT) is a protocol
between a receiver and a sender and consists of three polynomial-time algorithms
ΠOT = (ΠR

OT, Π
S
OT, Π

O
OT) defined as follows:

First round. The receiver generates the first message mR ← ΠR
OT(b; r

R) for
the selection bit b ∈ {0, 1} and random tape rR ∈ {0, 1}poly(λ).

Second round. For the input messages (x0, x1), where xl ∈ {0, 1}poly(λ) for l ∈
{0, 1}, the sender generates the second message mS ← ΠS

OT(m
R, (x0, x1); rS)

using random tape rS ∈ {0, 1}poly(λ).
Output. The receiver computes the output x = ΠO

OT(m
S , b, rR).

In this work, we are interested in OT protocols that are correct and securely
implement the ideal functionality in fig. 2 in the presence of malicious adver-
saries. Moreover, we require an additional property called sender-extractability
in [GKPS18], which at a high-level means that the randomness of the sender is
sufficient to reconstruct its input. The formal definition of this property can be
found in appendix A.1.
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Choose. On input (receive, sid, b) from R , where b ∈ {0, 1}, if no messages
of the form (receive, sid, b) is stored, store (receive, sid, b) and send
(receive, sid) to S.

Transfer. On input (send, sid, x0, x1) from S, with x0, x1 ∈ {0, 1}k, if no
messages of the form (send, sid, x0, x1) is stored and a message of the
form (receive, sid, b) is present, send (sent, sid, xb) to R.

Fig. 2: The ideal functionality FOT for oblivious transfer

2.0.6 Garbled Circuits. We recall the definition of garbling schemes formal-
ized in [BHR12]. At a high-level, a garbling scheme consists of four algorithms
GC = (Garble,Encode,Eval,Decode) defined as follows: Garble takes a circuit C
and outputs a garbled circuit C, encoding information e, and decoding infor-
mation d. Encode takes an input e and x, and outputs a garbled input X. Eval
takes as input a garbled circuit C, and a garbled input X and outputs a garbled
output Y . Finally, Decode takes d and a garbled output Y , and outputs a plain
output y. In this work, we also assume an extra verification algorithm Verify that
takes (C,C, e) as input and outputs 1 if this triple is valid.

A garbling scheme GC should satisfy correctness and the following security
properties: authenticity which informally captures the unforgeability of the out-
put of a garbled circuit evaluations, and verifiability that ensures the existence of
an algorithm Verify that takes a circuit C, a (possibly maliciously generated) gar-
bled circuit C, and encoding information e, and outputs 1 if C is a valid garbling
of C. The formal definition of these properties can be found in appendix A.2.

3 More efficient ZK-PA

PAs have deterministic provers and hence by an impossibility result from Goldre-
ich and Oren [GO94] cannot be zero-knowledge in the plain model for non-trivial
languages. Faonio et al. [FNV17] circumvented this impossibility and provided
two constructions by using setup assumptions. Their first construction in the
CRS model is based on the natural idea of adding a NIZK proof of knowledge π
for the “well-formedness” of the challenge generated by the challenger. Although
this gives a generic compiler for constructing ZK-PAs from PAs, here we inves-
tigate designing out-of-the-box ZK-PA protocols with concrete efficiency. We
give a construction in the CRS model which is based on the notion of Trapdoor
Smooth Projective Hash Functions (TSPHFs).

3.1 TSPHF-based ZK-PAs in the CRS model

As shown in [FNV17], PAs can be constructed from SPHFs, but since the pro-
jection key in SPHFs can be generated in a malicious way, they can provide
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– Setup(1λ): Run (crsτ , τ)← tsetup(1λ) and return (crsτ , τ).
– Chall(lpar, x):
• Run hk←$ hashkg(lpar) and hp← projkg(lpar; hk, x).
• Compute H← hash(lpar; hk, x).
• Return (c, b) := (hp,H).

– Resp(lpar, x,w, c): For c := hp, check if verHP(crsτ , hp) = 1, then run
pH← projhash(lpar; hp, x,w) and return a := pH.

– Sim(lpar, x, τ, c): Parse c := hp and return tH← thash(lpar; hp, x, τ).

Fig. 3: ZK-PA Πzkpa from TSPHFs.

only honest-verifier zero-knowledge property and it is not clear how to construct
ZK-PA from standard SPHFs directly. Benhamouda et al. [BBC+13] defined
the notion of trapdoor SPHFs (TSPHFs) as an extension of SPHF in which
one can verify the correctness of the projection key generation. More in details,
a TSPHF comes with three additional algorithms (tsetup, verHP, thash). tsetup
outputs a CRS crsτ with a trapdoor τ . The trapdoor τ can be used by thash to
compute the hash value of any statement x (only by knowing public hp). The
algorithm verHP takes in a key hp and the CRS crsτ , and outputs 1 if hp is a
valid projection key. The properties a TSPHF must verify are the same as SPHF,
except the smoothness property is no longer statistical but computational as hp
should now contain enough information to compute the hash of any statement.
Moreover, a TSPHF should satisfy zero-knowledge property which informally
states that for any statement x with valid witness w, the projected hash value
pH← projhash(lpar; hp, x,w) should be indistinguishable from the trapdoor hash
value tH ← thash(lpar; hp, x, τ). For a more formal definition of TSPHFs, We
refer the reader to [BBC+13].

In this section, we show the connection between ZK-PAs and TSPHFs [BP13],
namely we construct ZK-PA for a relation Rlpar given a TSPHF for the same
relation. Different from [FNV17], the relation Rlpar here is identical. This is
because [FNV17] considers the connection for the knowledge-sound PAs (and
extractable SPHFs) whereas here we only consider soundness and (computa-
tional) smoothness. As a direct result of this, we obtain ZK-PA for all languages
that admit TSPHFs (i.e., algebraic languages).

3.1.1 Construction of ZK-PA from TSPHFs. We are now ready to
present our construction of ZK-PAs from TSPHFs. Let Πtsphf = (setup, tsetup,
hashkg, projkg, hash, projhash, verHP, thash) be a TSPHF for Llpar. The construc-
tion of Πzkpa = (Setup,Chall,Resp,Sim) in the CRS model is given in fig. 3.

Theorem 1. If the TSPHF Πtsphf is correct, (computationally) smooth and
zero-knowledge, then Πzkpa in fig. 3 is secure and zero-knowledge.
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Proof. The correctness ofΠzkpa is trivial and follows directly from the correctness
of the TSPHF. Here we only give a sketch of the proofs for soundness and ZK.
(Soundness). To show soundness, let A be a PPT adversary that breaks the
soundness, i.e., A outputs the predicted answer for a chosen x ̸∈ Llpar with
non-negligible probability. We construct a PPT algorithm B that breaks the
smoothness of the underlying TSPHF. Given (hp,H) as input, B proceeds as
follows: it first runs A on the security parameters to receive x. Next, it runs A
on input (x, hp) and receives the answer a. Now depending on whether a = H or
not, B can decide if H is a hash value or random. This breaks the smoothness
property.
(ZK). The ZK property can be shown by a straightforward reduction to the
ZK property of the underlying TSPHF. To do so, let A be an efficient adversary
against the ZK property of Πzkpa. We construct an efficient algorithm B against
the ZK property of Πtsphf as follows: B runs (crsτ , τ) ← setup(1λ) and sends
(crsτ , τ) to A. Upon receiving (x,w, c) from A, B sends the same tuple (x,w, c)
to the challenger. Given the challenge a, B finally runs A(a) and return the same
guess as A. It is easy to see that B can now distinguish a real answer from a
simulated one with the same advantage as A’s advantage. This completes the
proof.

Instantiation and Efficiency Evaluation. Given the above connection,
one can now obtain a secure ZK-PA for any algebraic language Llpar with lpar =
(M,θ) (see eq. (1)) in the bilinear setting based on the efficient construction
of TSPHF in [BP13]. For the sake of completeness, we provide the construction
in fig. 8 in appendix B. The resulting ZK-PA is sound under the DDH assumption
in G2 (See [BP13], Appendix E.3 for the security proof). To evaluate efficiency,
we note that compared to the original construction of ZK-PA in [FNV17], the
above construction is more efficient as it only has one more group element in
the challenge c (compared to the non-zk construction of PA), whereas the idea
of adding a NIZK proof for the well-formedness of c in [FNV17] has at least a
linear overhead in the size of c 4.

Remark 1 (Non-Blackbox Construction in the plain model). Recently, Abdol-
maleki et al. [AKL21] show how one can use non-blackbox techniques to con-
struct a subversion-resistant variant of smooth projective hash functions. Fol-
lowing a similar approach directly yields the construction of ZK-PA in the plain
model, thus giving another way to circumvent the [GO94] impossibility using
non-blackbox techniques. The key idea is to rely on the existence of an effi-
cient (non-blackbox) extractor that—after checking the well-formedness of c—
can extract a function of the verifier’s randomness (e.g., [α]2) by which one can
efficiently compute the predictable answer b.

Remark 2. In their recent work, Bitansky and Choudhuri [BC20] also construct
ZK-PA for all NP. Their construction, however, mainly focuses on a feasibility

4 Here we are assuming that the security of the construction should remain under
standard and falsifiable assumptions as it is easy to construct succinct NIZKs based
on non-falsifiable assumptions.
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result rather than efficiency, and requires strong assumptions such as indistin-
guishability obfuscation. Moreover, while the zero-knowledge simulator in their
construction is non-black-box which is inherent in the plain model, we rather
focus on more efficient constructions in the CRS model.

4 Witness-Indistinguishable Predictable Arguments

Due to a classical impossibility result [GO94], a prerequisite for constructing
2-message ZK proof systems based on black-box techniques is a common refer-
ence string (CRS)—a string generated by a trusted party to which both prover
and verifier have access. Requiring such a trust model may however be overkill
for some applications where a weaker notion of privacy such as witness indis-
tinguishability (WI) is sufficient. Weaker than ZK property, this property states
that for any two possible witnesses w1,w2, an adversary cannot distinguish proofs
generated by w1 from the proofs generated by w2. Given a PAΠpa = (Chall,Resp)
for an NP language L, we show how to construct a WI-PA Πwipa = (Chall′,Resp′)
for the same language. At first it may seem that regardless of which witness is
used by the prover when running Resp, it has the same functionality since all
the witnesses return the same (predicted) answer. This argument is however not
true: while for an honestly-generate challenge, Resp behaves the same regardless
of which valid witness is used, this might not be true for maliciously generated
challenges. To circumvent this issue, the key idea is to require the verifier to
prove that the challenge is indeed generated from a proper run of Chall with
some randomness. This should be done without breaking the soundness, mean-
ing the secret coins of the verifier should be kept hidden from the prover. To
this end, we will use a NIWI proof system as an ingredient, through which the
verifier proves the following statement: there exists a random string α, such that
c = Chall(lpar, x;α). The prover first checks if the NIWI proof verifies and if so,
computes the predicted answer as before.

Since we use a NIWI proof system in the plain model as an ingredient of our
construction, below we recall the definition of WI for such proof systems. We
note that a construction of NIWI in the plain model for all NP languages and
based on standard assumptions is presented in [GOS06].

Definition 3. Let Πniwi = (Pniwi,Vniwi) be a non-interactive proof system for a
language Llpar. We say that Πniwi is computationally witness-indistinguishable if
for all (x,w1,w2) such that (x,w1) ∈ Rlpar and (x,w2) ∈ Rlpar, and for all PPT
adversaries A,

Pr
[
A(π) = 1 : π ← Pniwi(lpar, x,w1)

]
≈λ Pr

[
A(π) = 1 : π ← Pniwi(lpar, x,w2)

]
4.1 Our Construction

Let Πpa = (Chall,Resp) be a predictable argument for language Llpar, and Πniwi

be a non-interactive computational WI proof system in the plain model for the
language of statements c for which there exists α such that c = Chall(lpar, x;α).
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We construct a WI-PA Πwipa = (Chall′,Resp′) for Llpar as depicted in fig. 4. The
completeness of the construction follows straightforwardly from the completeness
of Πpa. We prove soundness and WI in the next theorem.

– Chall′(lpar, x): the verifier computes (c, b) ← Chall(lpar, x;α) and sends
the challenge c along with a NIWI proof π for the existence of α such
that c is the first output of Chall(lpar, x;α).

– Resp′(lpar, x,w, c, π): the prover first checks the NIWI proof π. If π ver-
ifies, the prover computes a← Resp(lpar, x,w, c) and returns a.

Fig. 4: Construction of WI-PA

Theorem 2. The construction in fig. 4 is a statistical witness-indistinguishable
predictable argument in the plain model.

Proof. Soundness. Let x /∈ Llpar and A be an efficient adversary that breaks
soundness of Πwipa by convincing the honest verifier V with non-negligible prob-
ability ε. I.e., ε(n) ≥ 1

p(n) for some polynomial p and for infinitely many n’s.

Denoting this set by N , we restrict ourselves to n ∈ N from now on. This
indicates that there exists a first message c from V on which A convinces V
with probability at least ε. Fix this challenge c and the corresponding answer b
computed by V. Define a set S as follows:

S =
{
b : Pr

[
A(lpar, x, c) = b|(c, b)← Chall(lpar, x)

]
≥ ε

2

}
Fix some b0 ∈ S and define S0 ⊆ S as

S0 =
{
b ∈ S : Pr

[
A(lpar, x, c) = b|(c, b0)← Chall(lpar, x)

]
≥ ε

4

}
.

Since b0 ∈ S, we have that Pr
[
A(lpar, x, c) = b0|(c, b0) ← Chall(lpar, x)

]
≥ ε

2
and therefore |S0| · ε4 ≤ 1 − ε

2 , which consequently implies that |S0| ≤ 4
ε . Now,

the fact that ε is non-negligible indicates that S0 is bounded by a polynomial.
On the other hand, we have that Pr[b ∈ S] ≥ ε

2 , and that S is exponential
in the security parameter λ. This means that there should exist b1 ∈ S such
that b1 /∈ S0. We now construct a non-uniform PPT adversary B that breaks
the witness-indistinguishability of Πniwi. Let aux = (α0, α1, b0, b1) be such that
(c, b0)← Chall(lpar, x;α0) and (c, b1)← Chall(lpar, x;α1). Given aux as advice, B
proceeds as follows: it first returns (c, (b0, α0), (b1, α1)) to the WI challenger and
obtains a proof π. Next, B calls A on input (π, c) and returns i when it receives
bi from A. Note that for π that is computed using (r0, b0), A returns b1 with
probability at most ε

4 , whereas for π computed by (r1, b1), A returns b1 with
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probability at least ε
2 . This makes B a successful adversary in breaking WI.

WI. Let V∗ be an adversary against WI property of Πwipa and (x,w1,w2) be
such that (x,w1), (x,w2) ∈ Rlpar. It follows from (statistical) soundness of the
NIWI proof that V∗’s first message is computed correctly with overwhelming
probability. This together with predictability of the argument indicates that the
answer from the prover is unique regardless of which witness is used and thus
completes the proof. ⊓⊔

5 Commit-and-Prove Predictable Arguments

We study a relaxed notion of predictability in interactive argument systems
which consists of two phases: In phase 1 (commitment phase), the prover com-
mits to its witness once for all and sends the commitment to the verifier. In
phase 2 (challenge-response phase), the prover and the verifier engage in a pre-
dictable argument protocol, where the verifier’s challenges may depend on the
commitment in such a way that the prover’s responses can be predicted by the
verifier. The type of relations we consider are of the following form: a statement
x = (cm, C, y) and a witness (w, d) are in the relation (i.e., (x, (w, d)) ∈ R) iff
“cm commits to w by randomness d, and C(w) = y”. Here C is a circuit in some
polynomial-size circuit class C and y is the expected output of the circuit.

Definition 4 (Commit-and-Prove Predictable Arguments). Let C be a
class of polynomial-sized circuits. A commit-and-prove predictable argument for
C is a multi-round protocol (between a prover P and a verifier V) which consists
of three algorithms Πcppa = (Commit,Chall,Resp):

Commitment phase (executed by P): cm← Commit(w; d) on input a value
w, generates a commitment cm by using some randomness d.

Interaction phase. Each round proceeds as follows:

– (Executed by V): (c, b)← Chall(cm, C, y) on input a statement (cm, C, y)
such that C ∈ C, generates a challenge c and a predicted answer b.

– (Executed by P): a← Resp(cm, C,w, d, c) on input a commitment cm,
a circuit C ∈ C, the committed value w, the randomness d, returns a
response a.

V accepts the proof iff a = b in all rounds.

We call a CPPA as a ρ-round CPPA if the interaction phase consists of ρ
rounds. A CPPA should satisfy completeness and soundness as defined below:

(Perfect) Completeness. An honest prover with a statement x = (cm, C, y)
and witness (w, d) such that (w, d) opens the commitment (i.e., cm = Commit(w; d)),
and C(w) = y can always convince the verifier with overwhelming probabil-
ity. More precisely, a CPPA has perfect completeness if for all λ ∈ N, for all
C ∈ C, and for all (x = (cm, C, y), (w, d)) ∈ R

Pr
[
a = b : (c, b)← Chall(cm, C, y); a← Resp(cm, C,w, d, c)

]
= 1

13



ϵ-Soundness. For all λ ∈ N, and all (stateful) PPT adversaries A = (A1,A2)

Pr

[
a = b ∧

C(w) ̸= y
:

(w, d, C, y)← A1(1
λ); cm← Commit(w; d)

(c, b)← Chall(cm, C, y); a← A2(w, d, C, y, c)

]
≈λ ϵ

We call a CPPA sound if ϵ ∈ negl(λ). A CPPA is secure if it is correct and
sound. Similar to PAs, one can show that CPPAs can also be made extremely
laconic in terms of both round complexity and proof complexity. Specifically, the
same technique in [FNV17] can be used to collapse any ρ-round CPPA into a
single round CPPA.

In this work, we only focus on CPPA protocols with the zero-knowledge prop-
erty. A CPPA is zero-knowledge (ZK-CPPA) if there exists a PPT algorithm Sim
that computes the predicted answer of any valid statement x without knowing
the random coins used by Chall() nor any witness for x, but only knowing the
challenge c. Since our construction of ZK-CPPA is in the non-programmable
random oracle (NPRO) model, we define this property in this model.

Definition 5 (Zero-knowledge CPPA in the NPRO model). We say
that a CPPA (Commit,Chall,Resp) for a class of circuits C satisfies the zero-
knowledge property in the NPRO model if for any PPT adversary A, there exists
a PPT simulator Sim such that for all PPT distinguisher D, for all (x,w) ∈ R,
and all auxiliary inputs z ∈ {0, 1}∗, we have:

max
D,z

∣∣∣Pr[DH(x, τ, z) = 1 : τ ← (PH(x,w) ⇆ AH(x, z))]

− Pr[DH(x, τ, z) = 1 : τ ← SimH(x, z)]
∣∣∣ ≤ negl(|x|)

Where P and A are respectively the prover and the (malicious) verifier run-
ning the CPPA protocol, and PH(x,w) ⇆ AH(x, z) denotes the random variable
corresponding to a protocol transcript on input (x,w).

We now give our construction of ZK-CPPA for all polynomial-size circuits P
in the NPRO model. The construction is similar to the three-round ZK protocol
of [GKPS18], with the difference that the first message in our protocol is reusable.
Moreover, here we only focus on providing ZK property as defined above, whereas
the construction of [GKPS18] shows ZK in the UC model.

5.1 ZK-CPPA based on garbled circuits and oblivious transfer

Let GC = (Garble,Encode,Eval,Decode,Verify) be a garbled circuit with correct-
ness, authenticity, and verifiability, and ΠOT = (ΠR

OT, Π
S
OT, Π

O
OT) be a sender-

extractable oblivious transfer protocol that realizes FOT. At a high level, the
construction proceeds as follows. The prover P with witness w = (w1, . . . ,wn) ∈
{0, 1}n plays the role of the receiver in n instances of the OT protocol and com-
mits to its witness bits by providing wj as input to the j-th instance of ΠOT. Let
mR

j ← ΠR
OT(wj ; r

R
j ) and define cm and d as the set of {mR

j }j∈[n] and {rRj }j∈[n],
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respectively. For a circuit-value pair (C, y) of the verifier’s choice, let Ĉ be a
circuit that realizes the following relation R: R(x = (cm, C, y), (w, d)) = 1 iff
(w, d) open cm and C(w) = y. The verifier V constructs a GC C for Ĉ and
sends it along with the second message of the OT as the challenge c. Moreover,
V sets the predicted answer b to be the output 1-key k1 of the final gate in the
circuit. Now, P with a valid witness (w, d) evaluates C and sends the obtained
garbled output a = k1 as the predicted answer. It is not hard to see that this
construction results in a CPPA. To additionally ensure ZK property, we follow
the same approach as [GKPS18] by enforcing V to also provide a ciphertext
ct = H(k1)⊕ r, where H is a random oracle and r is the randomness used by V
to produce the second message of the OT. When P computes k1, she first recov-
ers r and then computes all the labels by executing the extractor Ext guaranteed
by the sender-extractability property. Finally, P verifies if the garbled circuit has
been constructed correctly and if so, she sends the predicted answer a = k1 to
V. The resulting protocol Πcppa is described in fig. 5. The proof idea is similar
in spirit to the proof of Theorem 4.2 in [GKPS18]. We give a proof sketch here.

Theorem 3. Let GC be a correct, authentic, and verifiable garbling scheme,
ΠOT be a sender-extractable OT protocol that securely implements FOT, and H
be a random oracle. The protocol Πcppa in fig. 5 is a secure and zero-knowledge
commit-and-prove predictable argument as defined in definitions 4 and 5.

Proof (Sketch). Completeness follows straightforwardly by the correctness prop-
erty of the underlying OT and the garbling scheme.

In order to show soundness, let us consider a PPT adversary A = (A1,A2)
and assume that (w, d, C, y) is a tuple returned by A1 that corresponds to a false
statement. That is, x = (cm, C, y), where cm = Commit(w; d) and C(w) ̸= y. We
show that for (c, b)← Chall(cm, C, y), if A2 having c can compute the predicted
answer b, then one can either break the sender security of the underlying OT
protocol, or the authenticity of the garbling scheme. To show this reduction, we
first note that b is the correct label k1. Now, given that C(w) ̸= y, there can be
two cases where A2 can output k1 with non-negligible probability. In the first
case, A2 outputs k1 by the ability of computing invalid labels k

1−wj

j that does
not correspond to its committed value. It is not hard to see that such A2 can be
used to break OT sender security. The reduction B proceeds as follows: B first
computes a garbled circuit C and sends the labels to the OT challenger. Next, it
extracts A2’s input w and forwards it as the choice bits of the receiver. The OT
challenger computes the sender’s message either by invoking a real sender, or by
invoking the simulator, and sends it to the reduction who further forwards to
A2 together with C and a random T . Now, since A2 can compute k1 only in the
real execution of ΠOT, a successful A2 with non-negligible probability ϵ implies
that B can distinguish the real and simulated view of the OT protocol with
probability at least ϵ. In the second case, where A2 does not use invalid labels
but computes the correct k1, it is straightforward to construct an adversary B
that breaks the authenticity of the underlying garbling scheme by forging k1 for
a given garbled circuit C.
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We now argue that Πcppa is zero-knowledge in the NPRO model. Let V∗ be
a PPT adversary against the ZK property. We construct an efficient simulator
Sim that simulates the protocol as follows. Sim observes V∗’s calls to the ran-
dom oracle, so that for every query H(u) made by V∗, Sim records u in a set
L. To simulate the first message, Sim invokes the simulator of ΠOT for the cor-
rupt receiver. Upon receiving V∗’s message c, Sim parses c as (C, {mS

j }j∈[n], T )

and defines the set R̃ = {H(u) ⊕ T |u ∈ L}. For any r ∈ R̃ parsed as r =
r1|| . . . ||rn, Sim computes (k0j , k

1
j ) ← Ext(mR

j ,m
S
j , r

S
j ) for j ∈ [n] and checks if

Verify(Ĉ,C, {k0j , k1j}j∈[n]) = 1. If there exists such r ∈ R̃, the simulator sends Y
to V∗, where Y ∈ L is so that r = H(Y )⊕T . Otherwise, Sim aborts the protocol.
It should be clear that the output of the simulator is perfectly indistinguishable
from the real distribution. This completes the proof. ⊓⊔

6 Applications: Witness Encryption with Decryptor
Privacy

Besides being a notion of theoretical interest, we also show the applications
of (commit-and-prove) predictable arguments with zero-knowledge or witness-
indistinguishability property in the context of witness encryption. Witness en-
cryption (WE) is a powerful notion of encryption introduced by Garg et al. [GGSW13].
A WE scheme for an NP relation Rlpar allows to encrypt a message m with
respect to a statement x as ct ← WE.Enc(lpar,m, x). The ciphertext can be
decrypted as m ← WE.Dec(ct,w) for any w such that (x,w) ∈ Rlpar. Security
guarantees that no adversary should learn any non-trivial information about m
if x ̸∈ Llpar, where Llpar is the language corresponding to Rlpar. More formally,
we say that a WE is secure if it is complete and sound as defined below:

– Completeness. AWE has completeness if for all λ ∈ N, for allRlpar ∈ RGλ,
for all m, and for all (x,w) ∈ Rlpar

Pr[Dec(Enc(lpar, x,m),w) = m] ≥ 1− negl(λ)

If the probability is 1, we say WE is perfectly complete.
– Soundness. A WE has soundness if for all λ ∈ N and all PPT adversaries
A, there exists a negligible function negl(λ) such that for any m0,m1

Pr

[
Rlpar ←$RGλ; x← A(lpar); b←$ {0, 1};
ct← Enc(lpar, x,mb); b

′ ← A(lpar, x, ct)
:
b = b′ ∧ x ̸∈ Llpar

∧|m0| = |m1|

]
≈λ negl(λ)

While being a very powerful notion, existing constructions of WE are not sat-
isfactory, as they are either based on strong assumptions such as indistinguisha-
bility obfuscation and multilinear maps [GGH+13, GGSW13, GKW17, CVW18],
or based on new and unexplored algebraic structures [BIJ+20].

As noted in [FNV17], predictable arguments imply witness encryption as one
can encrypt a bit m by generating a challenge-answer pair (c, b) for the PA and
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– Oracles and Primitives: A correct, authentic, and verifiable gar-
bling scheme GC = (Garble,Encode,Eval,Decode), a sender-extractable
2-round OT ΠOT, and a hash function H : {0, 1}∗ → {0, 1}poly(λ) mod-
eled as a random oracle.

– P’s private input: w ∈ {0, 1}n, where n = poly(λ).
– Commitment Phase: P plays the role of the receiver in n instances of

ΠOT and computes (cm, d) as follows:
1. Sample uniformly random rRj from {0, 1}λ, and compute mR

j ←
ΠR

OT(wj ; r
R
j ) for j ∈ [n].

2. Define cm = {mR
j }j∈[n] and d = {rRj }j∈[n].

– Common inputs: A security parameter λ, and a statement x =
(cm, C, y), where C is a polynomial-size circuit.

– Challenge: Let Ĉ be a circuit that realizes the following relation R:
R(x = (cm, C, y), (w, d)) = 1 iff (w, d) opens cm and C(w) = y. V plays
the role of the sender in n instances of ΠOT and computes a pair (c, b)
of challenge-predicted answer as follows:
1. Compute (C, e, d) ← Garble(1λ, Ĉ), where e := {k0j , k1j}j∈[n], and

d := (k0, k1).
2. For j ∈ [n], sample uniformly random rSj from {0, 1}λ, and compute

mS
j = ΠS

OT(k
0
j , k

1
j ,m

R
j ; r

S
j ).

3. Compute T = H(k1)⊕ rS , where rS = rS1 || . . . ||rSn .
4. Define c = (C, {mS

j }j∈[n], T ) and b = k1, and send c to P.
– Response: P proceeds as follows:

1. Execute k
wj

j = ΠO
OT(m

S
j ,wj , r

R
j ) for j ∈ [n].

2. Execute Y = Eval(C, {kwj

j }j∈[n]).

3. Recover rS = H(Y )⊕ T , and parse rS = rS1 || . . . ||rSn .
4. Reconstruct sender’s inputs (k0j , k

1
j )← Ext(mR

j ,m
S
j , r

S
j ) for j ∈ [n].

Abort if the extractor fails for some j ∈ [n].
5. Send the predicted answer a = Y if Verify(Ĉ,C, {k0j , k1j}j∈[n]) = 1;

and abort otherwise.
– V accepts the proof iff a = b.

Fig. 5: ZK-CPPA Πcppa based on GC and OT

define the ciphertext as (c, b⊕m). Viceversa, a PA can be constructed from WE
by encrypting a random bit m and then asking the prover to return m. Further-
more, it is not hard to show that commit-and-prove predictable arguments are
also equivalent to a variant of witness encryption studied in [BL20, CDK+21].
It is therefore interesting to see the applications of predictable arguments with
privacy in the context of witness encryption. While the standard definition of
witness encryption requires the above properties, for some applications explained
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E with private inputs (x,m) D with private inputs w
−−−−−−−−−−−−−−−→
←−−−−−−−−−−−−−−−

. . .
Output: ⊥ Output: m if (x,w) ∈ Rlpar

Fig. 6: Functionality of a WE scheme with decryptor privacy for a relation Rlpar

below, we may require some level of privacy for the decryptor as well. In other
words, we may ask for a WE scheme that mimics the following functionality
(See fig. 6): the functionality is parameterized by a message space M and an
NP relation Rlpar. An encryptor E with private inputs m ∈ M and bitstring x
interacts with a decryptor D with private input w, at the end of which D out-
puts m iff (x,w) ∈ R. Note that this is different from standard WE wherein
the decryptor aims to obtain the message internally without revealing it to the
environment. Here instead, the decrypted message is revealed to the encryp-
tor which may break the privacy of the decryptor. Since the encryptor knows
the plaintext when running the encryption algorithm, one may wonder how the
decrypted message can leak some information about the decryptor’s witness.
In appendix C, we provide an example to illustrate this scenario.

6.1 Application: Dark Pools

We now justify our model of WE with decryptor privacy. In our model, we
are assuming that the decryptor D sends back the decrypted message to the
encryptor E whereas in all previous works, the communication is non-interactive
(i.e., “one-shot”) in the sense that there is only one message ct from E to D.
Our motivating applications are dark pools and over-the-counter markets. Dark
pools are anonymized trading platforms that allow parties to place invisible
orders such that each party can only know their own orders. Such pools allow
the investors to communicate only to those whose transaction conditions satisfy
some constraints. At the same time, they should also guarantee that investors
do not learn any information about traders’ secret information.

In a recent work, Ngo et al. [NMKW21] introduced a new cryptographic
primitive called Witness Key Agreement (WKA) as a tool to make this possible.
In the dark pool scenario, a WKA allows a party E to securely agree on a
secret key with another party D who owns a secret witness satisfying some
arithmetic relation. More precisely, in the presence of a public bulletin board or
a public blockchain, a WKA addresses the following problem: given n parties
who have committed to their secret inputs w, and published the commitments
cm anonymously on the blockchain, an investor E wants to agree on a key k
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with any party whose committed secret w satisfies some relation; i.e., C(w) = y,
where C is an arbitrary arithmetic circuit specified by E. Similar to NP relations
defined in section 5, one can set x = (cm, C, y) and let R be defined such that
R(x, (w, d)) = 1 iff cm commits to w (with decommitment d) and C(w) = y.
Once the secret key k is recovered by the legitimate party (i.e., any party with
valid witness (w, d) such that R(x, (d,w)) = 1), they together with the investor
can secure their communication from any external party by using k.

We now demonstrate how our construction of ZK-CPPA can be used as a
drop-in replacement for a witness key agreement. At a high level, the protocol
proceeds as follows. All parties first commit to their secret values w via cm ←
Commit(w; d), and publish the resulting commitments cm. Later, an investor who
wish to communicate only with participants whose secret satisfy C(w) = y (for
some arbitrarily chosen circuit C and value y) considers the following relation:
R(x = (cm, C, y), (w, d)) = 1 iff C(w) = y, and cm = Commit(w; d). Let us
assume that xi = (cmi, C, y) is the statement corresponding to party i. The
investor now encrypts the secret key k under all such statements xi

5. It is not
hard to see that only the prover with the valid witness (wi, di) can decrypt the
ciphertext. Moreover, since the construction is ZK, the decrypted message k says
nothing about (wi, di), even if the ciphertext is generated maliciously.

Efficiency and Comparison with [NMKW21]. In [NMKW21], the au-
thors propose a WKA construction based on a type of Succinct Zero-Knowledge
Non-Interactive Argument of Knowledge Proof System (zk-SNARK) from non-
interactive linear proof systems (NILP), where the verifier is designated. The
construction at a high-level is as follows. A designated verifier—playing the role
of the investor— first broadcasts a CRS as a challenge for the relation R of
interest. Next, a prover publishes a partial zk-SNARK proof as a response for
the committed value that satisfies R. Finally, the verifier using the partial proof
can derive a shared secret key with the prover.

We now compare our proposed construction for WKA with that of [NMKW21].
In contrast to our scheme which is ZK, the construction of [NMKW21] only
provides honest-verifier ZK. Moreover, the WKA in [NMKW21] requires an ex-
pensive trusted setup which should be invoked every time an investor Ei asks for
the preprocessing of a new CRS corresponding to the relation Ri of Ei’s interest.
On the other hand, the major downside of our scheme is that the size of the ci-
phertext grows linearly with the number of parties in the system as the investor
should encrypt the message under every existing commitment in the system,
whereas the size of ciphertext in [NMKW21] is independent of the number of
parties. This suggests that there might well be a trade-off between the size of
the ciphertext and the required number of trusted setups and our construction
performs better when the number of parties is small.

5 We again emphasize that we see the notions of PA and WE (and their “commit-
and-prove” variants) interchangeably here, as the implication from one to another
is straightforward and shown in [FNV17].
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7 Conclusion and Open Problems

In this work, we study predictable arguments with privacy properties and show
their application to the construction of witness encryption schemes that require
decryptor’s privacy. We also introduce CPPAs that provide a weakening of pre-
dictability and give an efficient construction using garbled circuits techniques.
While we construct CPPA in the random oracle model, an interesting open
question is whether PA also exists in this model. Another theoretical question
left open by our work is to show if WI deterministic-prover argument (WI-DA)
implies WI-PA. While zero-knowledge deterministic-prover argument (ZK-DA)
was characterized in a recent work by Bitansky and Choudhuri in [BC20], where
they showed that ZK-DA implies ZK-PA, it would be interesting to do the same
characterization for the weaker notion of witness indistinguishability. Finally,
finding more applications for CPPA would be an interesting question.

Acknowledgment

We thank Matteo Campanelli and Jesper Buus Nielsen for helpful comments.
We also thank the anonymous reviewers of ACNS’22 for their valuable feed-
back. The author was funded by the Concordium Foundation under Concordium
Blockchain Research Center, Aarhus.

References
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PhD thesis, École Normale Supérieure, Paris, France, 2016.

NMKW21. Chan Nam Ngo, Fabio Massacci, Florian Kerschbaum, and Julian
Williams. Practical witness-key-agreement for blockchain-based dark pools
financial trading. In Financial Cryptography and Data Security - 25th In-
ternational Conference, FC 2021, Virtual Event, March 1-5, 2021, Revised
Selected Papers, Part II, pages 579–598, 2021.

Yao86. Andrew Chi-Chih Yao. How to generate and exchange secrets (extended
abstract). In 27th FOCS, pages 162–167. IEEE Computer Society Press,
October 1986.

22



Choose. On input (receive, sid, b) from R , where b ∈ {0, 1}, if no messages
of the form (receive, sid, b) is stored, store (receive, sid, b) and send
(receive, sid) to S.

Transfer. On input (send, sid, x0, x1) from S, with x0, x1 ∈ {0, 1}k, if no
messages of the form (send, sid, x0, x1) is stored and a message of the
form (receive, sid, b) is present, send (sent, sid, xb) to R.

Fig. 7: The ideal functionality FOT for oblivious transfer

Supporting Material

A Additional Preliminaries

A.1 Oblivious Transfer

A 2-round oblivious transfer (OT) is a protocol between a receiver R and a sender
S and consists of three polynomial-time algorithms ΠOT = (ΠR

OT, Π
S
OT, Π

O
OT)

defined as follows:

First round. R generates the first message mR ← ΠR
OT(b; r

R) for the selection
bit b ∈ {0, 1} and random tape rR ∈ {0, 1}poly(λ).

Second round. For the input messages (x0, x1), where xl ∈ {0, 1}poly(λ) for
l ∈ {0, 1}, S generates the second message mS ← ΠS

OT(m
R, (x0, x1); rS)

using random tape rS ∈ {0, 1}poly(λ).
Output. R computes the output x = ΠO

OT(m
S , b, rR).

We require an OT protocol to securely implement the ideal functionality in fig. 7
in the presence of malicious adversaries.

For our construction, we also require another property called sender-extractability
in [GKPS18], which informally states that the randomness of the sender is suf-
ficient to reconstruct its input with high probability.

– Sender-Extractability. For any security parameter λ ∈ N, for any b ∈
{0, 1}, for any messages (x0, x1), where xl ∈ {0, 1}poly(λ) for l ∈ {0, 1}, there
exist a PPT algorithm Ext such that for mR ← ΠR

OT(b; r
R), and mS ←

ΠS
OT(m

R, (x0, x1); rS), where rR, rS ∈ {0, 1}poly(λ), we have

Pr
[
(x̄0, x̄1) ̸= (x0, x1) : (x̄0, x̄1)← Ext(mR,mS , rS)

]
≈λ 0



A.2 Garbled Circuit

Garbled circuit introduced by [Yao86] is a cryptographic technique that enables
two-party secure computation in which two parties do not trust each other and
want to jointly evaluate a function over their private inputs. The following def-
inition is from the garbling schemes abstraction introduced by Bellare et al.
in [BHR12].

Definition 6 (Garbling Scheme). Let C = {Cλ}λ∈N be a polynomial-size cir-
cuit class. A garbled circuit scheme GC for C consists of four polynomial-time
algorithms GC = (Garble,Encode,Eval,Decode):

(C, e, d)← Garble(1λ, C): On input a boolean circuit C ∈ Cλ, outputs (C, e, d),
where C is a garbled circuit, e is encoding information, and d is decoding
information.

X ← Encode(e, x): On input e and x, where x is a suitable input for C, outputs
a garbled input X.

Y = Eval(C, X): On input (C, X) as above, outputs a garbled output Y .

y ← Decode(d, Y ): On input (d, Y ) as above, outputs a plain output y.

A garbling scheme should satisfy the following correctness and security prop-
erties:

Correctness. For any security parameter λ ∈ N, for any circuit C ∈ Cλ, for
(C, e, d)← Garble(1λ, C), and for all suitable input x:

Decode(d,Eval(C,Encode(e, x))) = C(x)

Authenticity. For all circuits C : {0, 1}n → {0, 1}, inputs x ∈ {0, 1}n, where
n = poly(λ), and for all PPT adversaries A,

Pr

[
Ŷ ̸= Eval(C, X) ∧
Decode(d, Ŷ ) ̸= ⊥

:
(C, e, d)← Garble(1λ, C)

X = Encode(e, x); Ŷ ← A(C, x,C, X)

]
≈λ 0

Verifiability. There exists a PPT algorithm Verify such that for all circuits
C : {0, 1}poly(λ) → {0, 1},

Pr
[
Verify(C,C, e) = 1 : (C, e, d)← Garble(1λ, C)

]
= 1

B Details on ZK-PA

The construction of ZK-PA for algebraic languages Llpar with lpar = (M,θ) is
depicted in fig. 8.
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– Setup(1λ): τ ←$ Zp; return (crsτ = [τ ]2, τ).
– Chall(lpar,x): α ←$ Zn

p ; [γ]1 ← α⊤[M(x)]1; [ξ]2 ← α[τ ]2; c ←
([γ]1, [ξ]2); b← ê(α⊤[θ(x)]1, [1]2); return (c, b).

– Resp(lpar,x,w, c): parse c as ([γ]1, [ξ]2); if ([ξ]2 ̸∈ Gn
2 ∨ ê([γ]1, crsτ ) ̸=

ê([M]1, [ξ]2)) return ⊥; else return a← ê([γ]1w, [1]2).
– Sim(lpar,x, τ, c): parse c as ([γ]1, [ξ]2); return τ−1ê([θ(x)]1, [ξ]2).

Fig. 8: Construction of ZK-PA from [BP13].

C Witness Encryption with Decryptor’s privacy: An
example

To clarify how a decrypted message which is already known by the encryptor
can leak some information about the decryptor’s witness, let us consider a WE
scheme for a concrete disjunction language defined as follows: the language pa-
rameter lpar = (G, g, pk) includes a group G of order p with generator g, and an
ElGamal public key pk. A statement x is in the language iff x is the ElGamal
encryption of a bit under pk. More formally, for lpar = (G, g, pk), we define

Llpar =
{
x | ∃r ∈ Zp,∃b ∈ {0, 1} : x = (gr, pkrgb)

}
We denote the witness for x = (gr, pkrgb) as w = (r, b). Using generic techniques
for the disjunctions of languages( [ACP09, Ham16]), one can encrypt a message
m ∈ G under a statement x = (x0, x1) as follows:

1. select α0, α1, α2, α3 ←$ Zp.
2. compute aux0 = gα0pkα1 , aux1 = gα1xα2

0 ( x1g )
α3 and aux2 = gα2pkα3 . Define

aux = (aux0, aux1, aux2).
3. compute π = xα0

0 xα1
1 and π̃ = πxα0

0 ( x1g )
α1gα1 . Define ct = πm.

4. return ct = (c, aux, π̃).

Having a witness w = (r, 0) for x = (gr, pkr), one can decrypt the ciphertext by
first computing π = auxr0 and then recovering the message by computing π−1ct.
On the other hand, if the decryptor has a witness w = (r, 1) for x = (gr, pkrg),
he first obtains π from dividing π̃ by auxr0aux

1
1aux

−r
2 = xα0

0 ( x1g )
α1gα1 and then

computes m = π−1ct as before. While for an honestly generated ciphertext ct,
this construction does not leak any information about the witness, it is not
hard to see that a malicious encryptor can learn part of the witness (and thus
distinguish them) by simply defining π̃ to be a random group element. In this
case (i.e., b = 1), the decryptor fails to decrypt m correctly, hence making the
two cases b = 0 and b = 1 distinguishable for the encryptor.
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