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Abstract—With the enormous increase in portable crypto-
graphic devices, physical attacks are becoming similarly popular.
One of the most common physical attacks is Side-Channel
Analysis (SCA), extremely dangerous due to its non-invasive
nature. Threshold Implementations (TI) was proposed as the first
countermeasure to provide provable security in masked hardware
implementations. While most works on hardware masking are
focused on optimizing the area requirements, with the newer
and smaller technologies area is taking a backseat, and low-
latency is gaining importance. In this work, we revisit the scheme
proposed by Arribas et al. in TCHES 2018 to secure unrolled
implementations. We formalize and expand this methodology,
to devise a masking scheme, derived from TI, designed to
secure hardware implementations optimized for latency named
Low-Latency Threshold Implementations (LLTI). By applying
the distributive property and leveraging a divide-and-conquer
strategy, we split a non-linear operation in layers which are
masked separately. The result is a more efficient scheme than the
former TI for any operation of algebraic degree greater than two,
achieving great optimizations both in terms of speed and area.
We compare the performance of first-order LLTI with first-order
TI in securing a cubic gate and a degree-7 AND gate without
using any registers in between. We achieve a 137% increase in
maximum frequency and a 60% reduction in area for the cubic
gate, and 3131 times reduction in area in the case of a degree-
7 AND gate compared to TI. To further illustrate the power of
our scheme we take a low-latency PRINCE implementation from
the literature and, by simply changing the secure S-box with the
LLTI version, we achieve a 46% max. frequency improvement
and a 38% area reduction. Moreover, we apply LLTI to a secure
a low-latency AES implementation and compare it with the TI
version, achieving a 6.9 times max. freq. increase and a 47.2%
area reduction.

I. INTRODUCTION

With the exponential increase of IoT devices, Side-Channel
Analysis (SCA) arises as one of the most threatening physical
attacks. It exploits the side channels produced by the electronic
device, such as the power consumption, the electromagnetic
radiations, or the computation time. The most common attack
of this kind is the Differential Power Analysis (DPA) [1].
Several strategies or countermeasures exist to help preventing
side-channel attacks. One countermeasure that has caught great
attention for the past years in the literature is masking [2],
[3], [4], [5], [6], [7], [8], [9]. It is a technique derived from
secret-sharing and multi-party computation (MPC), in which
secret variables are split into multiple pieces or “shares”, to
make the information leaked independent of sensitive data.

Cryptographic algorithms combine linear and non-linear
operations to achieve the desired security. The only non-linear
part in symmetric cryptographic primitives is usually the S-
box. S-boxes have been designed with implementation costs
in mind, but not taking into account the costs of side-channel

resistance. A recent manuscript, from Bilgin et al. [10] stresses
the importance of taking into account SCA resistance at design
time, where the number of multiplications and the logical
depth are the deciding factors to achieve efficient protected
implementations. The logic depth has a direct impact on the
latency of secure hardware implementations, which are prone
to increase the unexpected dependencies caused by glitches [3].
Additionally, [10] analyzes larger S-boxes, with six and seven
bits, limiting their investigations to quadratic operations due
to the latency penalty when securing operations with a higher
algebraic degree.

The perfect example of a construction with a big AND depth
is the AES S-box, which has algebraic degree 7. There are
multiple strategies to implement a masked AES S-box, the
most common being the tower filed decomposition [11], [12],
[13], [14], [8]. An also popular approach is the power maps
decomposition [15], [4], [16], [17]. All these methods need
several register layers to cope with the high non-linearity. To
the best of our knowledge, there is no previous work securing
the AES S-box by applying straightforward masking to the
Algebraic Normal Form (ANF). Most of the literature regarding
the masking of AES focuses on area efficient implementations.
Only a few recent works proposed low-latency AES implemen-
tations [9], [18]. As chip manufacturing technology becomes
smaller, the area constraints grow secondary, and lower latency
implementations gain importance.

A. Related Work

The most popular type of masking used in hardware
implementations is Boolean masking, where the pieces of
the secret, or shares, are combined using an XOR operation to
retrieve the unmasked data. Within this work, we focus on this
type of masking. One of the first masked implementations is the
one from Trichina [19], often referred to as the Trichina AND
gate. A more formal study from Ishai, Shahai, and Wagner
(ISW) [2], proposes the first security proofs and provable secure
scheme for SCA protection at arbitrary order. They introduce
the probing model, a widely used model in the design of
masking primitives. Nevertheless, these techniques were not
secure in hardware, since they did not capture in their models
the hardware non-ideal behavior, i.e., glitches.

The first masking scheme to provide first-order provable
security in the presence of glitches was Threshold Implemen-
tations (TI) [3], later expanded to Higher-Order Threshold
implementation (HOTI) [6], to cope with higher orders of
security. These schemes are often referred as td+ 1 masking.
In a subsequent manuscript by Reparaz et al. [7], it was
shown that the properties defined by HOTI were not enough
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to protect against multivariate attacks. Consolidating Masking
Schemes (CMS) [7] proposes a reduction of the number of
shares to achieve the same degree of security, in line with
the proposal from [2]. This reduction additionally requires
independence among the input variables to preserve the
security warranties. Following CMS, Domain Oriented Masking
(DOM) [8], improves on the randomness needed in CMS. These
schemes are often referred as d+1 masking. Finally, the paper
from Moos et al. [20] shows that both CMS and DOM present
flaws from third-order onwards.

On low-latency masking, the manuscript from Arribas et
al. [21] presents the first low-latency TI applied to secure an
unrolled implementation of Keccak. Following closely, Generic
Low-Latency Masking (GLM) from Gross et al. [9] uses d+
1 masking as the main building block. The latest work by
Sasdrich et al. [18] uses an alternative technique based on
gate-level masking, known as LUT-based Masked Dual-Rail
with Pre-charge Logic (LMDPL).

B. Our Contribution

In the cases where the AND depth equals to two, it is
common practice to secure each AND gate separately, placing
one register in between, as done in [22]. Hence, the greater the
AND depth the more registers are needed. Current masking
methodologies do not provide the means to directly secure
high-algebraic-degree operations, such as the one found in the
AES S-box, harming the latency of the design [10]. In this
manuscript, we close this gap, proposing a methodology to
mask any-logic-depth circuit without a single register, while
still achieving competitive area results.

We present Low-Latency Threshold Implementations (LLTI),
a masking methodology suitable for securing low-latency imple-
mentations, derived from the well-known masking scheme TI.
The scheme we propose builds upon the concepts on unrolled
implementations presented in Sect. 4 from previous work by
Arribas et al. [21]. The scheme presented by Arribas et al. was
utilized for securing unrolled implementations, proposing the
first steps to devise the masking strategy needed within each
unrolled round or layer. Within this manuscript, we formalize
and extend the concepts from Arribas et al. to optimize the
masking of higher-degree operations, and prove its applicability
to any order of security and any algebraic degree.

We demonstrate how, by using our methodology, we can
achieve the same minimal bounds for input and output shares
as proposed in TI, with more efficient implementation results.
Moreover, we prove that the optimization strategy used in [21]
can be used at any security order and for any algebraic
degree. Our scheme provides the means to mask any-degree
operation without registers in between. It achieves realistic and
competitive circuit complexity, compared to the direct sharing
from [3], [6]. With our scheme we can not only implement
efficiently high-algebraic-degree operations, but we can also
use it to optimize the area requirements and the maximum
frequency. LLTI works at the algorithmic level, so no synthesis
or place-and-route constraints are needed for its implementation.
It is important, however, to ensure that no optimizations happen
during synthesis that could harm the security of the design.

Throughout this manuscript, we use the concept of latency to
refer both to the number of clock cycles (or number of register
layers), and the time from input to output. The reason behind
this is that different communities use this term in distinct ways.
On the one hand, the masking community uses it as cycle
count or registers needed within a gadget ([9], [18], [10]),
while, on the other hand, the works proposing PRINCE (or
other full-cipher) implementations use latency as time from
input to output ([23], [24], [25]). With this new scheme we aim
to optimize both. The main feature of LLTI is to reduce the
number of register layers. However, its application results in
significant improvements in maximum frequency with respect
to TI, leading to an enhanced input-output computation time.

Traditionally, in digital design, there is always a trade-off
between area and latency: improving the design latency incurs
in area penalty. In this work, we show how the application
of LLTI minimizes this area increase in comparison with
traditional strategies (like TI) when used for low-latency
applications. Moreover, we show how it additionally increases
the overall speed by further reducing the maximum frequency.
We illustrate the advantages of LLTI by taking primitives
implemented with low-latency in mind and comparing them to
the corresponding TI secured version. We can see that while
keeping the (low-) latency constant, LLTI highly reduces the
area and frequency compared to the TI version.

Applying the concepts of the proposed scheme, we show a
straightforward example of a first-order secure cubic AND gate
(regularly used in symmetric primitives). Compared to using
the direct sharing of traditional TI, with LLTI we achieve a
maximum frequency improvement of 137% and a reduction in
area of more than 60%. Additionally, we provide a sharing of a
degree-7 operation, which is, to the best of our knowledge, the
first sharing suitable to mask the AES S-box without adding
any registers in between. This sharing, applied on a single
monomial, is more than 3 100 times smaller compared to the
direct sharing if we were to use TI. To show the performance of
LLTI when applied to realistic implementations, we experiment
with PRINCE and AES designs. By simply swapping the secure
S-box of a state-of-the-art PRINCE implementation targeting
low-latency with an LLTI version, we achieve a 46% max.
frequency improvement and a 38% area reduction. Moreover,
we propose an LLTI AES with a single register layer and zero
online randomness and compare it with the corresponding TI
version, resulting in almost 7 times higher max. freq. and a
reduction of 47% in area when using LLTI. We practically
evaluate the security of both versions for up to 100 million
traces.

The next sections of the paper are organized as follows. In
Sect. II, we present more in detail related preliminary works.
Then, in Sect. III, we introduce all the core concepts and proofs
of our scheme. In the following Sect. IV, we illustrate different
applications of our scheme. Finally, in Sect. V, we present
several implementations with LLTI.

II. PRELIMINARIES

A. Notation
In this paper, we work in GF (2), meaning that sums and

multiplications correspond to XOR and AND gates in hardware.
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We describe any-algebraic-degree non-linear operations as AND
gates of different number of inputs. We use t to denote the
algebraic degree, and d for the order of security.

We focus entirely on Boolean masking, and thus, we
represent a shared variable as x = (x1, . . . , xs) such that
x = x1⊕ . . .⊕xs, where s refers to the number of shares and
the number of input shares of a function. When referring
to the number of output shares of a function we use so.
Thus, the sharing of any function is denoted with the tuple
(s, t, d, so). High algebraic degrees are designated with T, and
FT represents a function of such algebraic degree. Then, sT
refers to the input shares to this function, and dT to the desired
overall security order of FT.

In addition to the masking notation, an equivalent set
covering notation is used in the proofs presented in the
following sections. We represent the corresponding set covering
for the sharing tuple (s, t, d, so) as 〈C(s, t, d), so〉, such that∣∣C(s, t, d)∣∣ = so. We also provide the sharing of a variable or
a function with a set notation, e.g., the sharing of the variable
x = (x1, . . . , xs) would be represented as {1, . . . , s}. This
notation is typically used in subsets of a covering set, where
each subset represents the shares used in a shared function. For
instance, a shared function with two output shares and three
input shares could be represented as {{1, 2}, {2, 3}}, where
the first shared function depends on shares 1 and 2, and the
second one depends on shares 2 and 3. For clarity, we simplify
this representation with the following {12, 23}.

B. Adversarial Model

The adversarial model used throughput this manuscript is
the glitch extended d-probing model, first introduced in [7],
and refined in [26]. It is also known as (1, 0, 0)−robust d-
probing model [27]. Additionally, we assume independent
leakage among shares. It was shown in [28], that a circuit
which is secure in the d-probing model where each calculation
is treated separately, is also secure against dth-order SCA.

C. Threshold Implementations

Threshold Implementations (TI) [3] require an implemen-
tation to fulfill the following three properties in order to be
first-order SCA secure:
• Correctness: a shared function f such that fi(x) = yi,

where i = 1, . . . , s, is correct if
∑
yi = y = f(x).

• Non-completeness: a shared function f is non-complete
if every component function fi is independent of at least
one input share.

• Uniformity: Given a uniform sharing at the input of
f , the resulting output sharing must conform a uniform
distribution as well.

The paper by Bilgin et al. [6] extended the original version
of TI to Higher-Order Threshold Implementations (HOTI), to
provide resistance against higher-order attacks. The former
definition of non-completeness is expanded to:

Definition 1 (dth-Non-completeness [6]): A shared function
f is dth-order non-complete if any combination of up to d
component functions fi is indep. of at least one input share.

This work proposes minimum bounds for the number of input
and output shares to comply with the definition above as:

si ≥ td+ 1, so ≥
(
td+1
t

)
. (1)

Example: We provide an example of a first-order TI of the
AND/XOR gate z = a⊕ bc, with (s, t, d, so) = (3, 2, 1, 3):

z1 = a1 ⊕ b1c1 ⊕ b1c2 ⊕ b2c1,
z2 = a2 ⊕ b2c2 ⊕ b2c3 ⊕ b3c2, (2)
z3 = a3 ⊕ b3c3 ⊕ b1c3 ⊕ b3c1.

D. Set Coverings and Non-completeness

The non-completeness property of TI is reformulated in terms
of set coverings by Petrides [29]. He leverages this theory to
prove new concepts, which we use in the subsequent sections
to aid our proofs. Below, we summarize his contributions.

Definition 2 (non-complete set coverings [29]): A dth-order
non-complete set covering Cnc(s, t, d) is a set of subsets from
the universe of the inputs, Us = {1, . . . , s}, such that:

1) each t-subset of Us is a subset of at least one element of
Cnc(s, t, d),

2) each element of Cnc(s, t, d) has size at least t, and
3) a minimum of d+ 1 elements of Cnc(s, t, d) are needed

to cover Us.
Item 1 ensures correctness, item 2 prevents redundant

elements not contributing to correctness from appearing, and
item 3 ensures non-completeness. Note that the set covering
theory does not capture the uniformity property of TI, nor
necessary remasking. There can be several such non-complete
set coverings, which can be used as a guideline for obtaining
a non-complete TI for any algebraic degree t. Each subset
represents a shared function, and each element of the subset
is a share on which the sub-function is allowed to depend.
Example: We define Cnc(3, 2, 1) = {12, 23, 13}, which is the
set covering corresponding to the sharing from Eq. (2). It is
trivial to see that it satisfies all the conditions from Def. 2,
and that can be used to generate a non-complete sharing of
z = a+ bc.
Cnc(s, t, d) is a particular non-complete covering. We denote

the set of all such coverings as NC(s, t, d), its subset of
coverings with the smallest cardinality possible as N̂ C(s, t, d),
and a non-complete set covering with minimal cardinality by
Ĉnc(s, t, d). Finally, Us,t is the set of all t-subsets of Us.

1) Basic Results [29]: The first proposition presents the
minimum number of input shares to achieve non-completeness:

Proposition 2.1: If s ≥ td+ 1 then Us,t ⊆ NC(s, t, d).
Subsequently, conclusions regarding the trivial case, where
s = td+ 1, are presented. By using the trivial value of s, we
obtain non-complete set coverings with minimal cardinality:

Lemma 2.1.1: N̂ C(s, t, d) = Utd+1,t.
Thus, a single non-complete set covering of minimal

cardinality is represented as follows:
Corollary 2.1.1: 〈Ĉnc(td+ 1, t, d),

(
td+1
t

)
〉.

Finally, the subsequent proposition establishes an upper bound
for the size of subsets within a set covering, which represents
the maximum number of shares a sub-function of a shared
function can depend on.
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Proposition 2.2: For every S ∈ Cnc(s, t, d) it holds that∣∣S∣∣ ≤ s− (d− 1)t− 1. (3)

2) Extensions and Expansions [29]: In here, Petrides looks
at concepts corresponding with bounds beyond the trivial
ones defined in Eq. (1). The following lemma shows how
by increasing the number of input shares, the number of output
shares remains constant.

Lemma 2.2.1: If s ≥ td+ 1 then for every Cnc(s, t, d) there
exists Cnc(s+ 1, t, d) of equal cardinality.
Example: The set covering from the example above Cnc(3, 2, 1)
can be extended to Cnc(4, 2, 1) = {124, 134, 23}. From
Prop. 2.2 we see that in this new case

∣∣S∣∣ ≤ 4−(1−1)2−1 = 3.
Furthermore, by increasing the number of input shares, we

can also reduce the number of output shares or the cardinality
of the resulting set covering:

Corollary 2.2.1: For s ≥ td + 1 we have
∣∣Ĉnc(s, t, d)

∣∣ ≥∣∣Ĉnc(s+ 1, t, d)
∣∣.

The previous example has already minimum number of outputs,
so no further increase in s will reduce the size of the set
covering beyond 3. Nevertheless, this is extremely useful for
higher orders, where

∣∣Cnc(s, t, d)
∣∣ ≥ s.

In summary, Petrides defines the non-complete set covering,
reaching the same basic results for the trivial case of TI as [6]
in Eq. (1). This is then extended to the non-trivial case when the
number of input shares is increased beyond the minimum of the
trivial case, with the respective change in the number of output
shares to accommodate for non-completeness and uniformity.
Up to now, no systematic way of finding TI non-trivial sharings
has been found [29], [30].

E. Unrolled Implementations

The method proposed by Arribas et al. [21] is used to secure
an unrolled implementation of Keccak, where two rounds are
computed within one clock cycle. To achieve this, they proposed
to split the non-linear operations of the unrolled rounds into
different layers. Those layers are secured separately, with some
conditions precomputed to ensure that the subsequent union
preserves the security requirements. This allows the designer to
follow a divide-and-conquer procedure instead of solving the
problem of securing a complex operation as a whole, which
would be highly challenging or even impossible. Traditionally,
these functions are secured placing a register in between and
separately masking the smaller non-linear operations. In [21],
the authors propose a methodology to secure such functions
without placing registers in between. The designer is free to
choose how to split the more complex non-linear operations
into a total of N layers, each layer containing simpler non-
linear operations. The n-th layer is denoted as Rn, its input
shares sRn are expressed as sn for better readability, the degree
of security of this layer is referred as dRn , and its algebraic
degree as tRn .

The idea is that every layer is secured with a different sharing
scheme of a certain security order provided by the following
recipe:

dRn =

{
dF if n = N,

tRn+1 ∗ dRn+1 if n < N
(4)

Figure 1: Layer-wise first-order sharing of a combinational
quartic operation with an insecure sharing (left), and the secure
counterpart (right) from applying the guidelines of Eq. (4)
from [21], equivalent to a trivial LLTI with T = 4. The dashed
lines represent the layers separation.

By defining the last layer’s security requirements, the designer
can recursively compute backwards the non-completeness
degree needed in previous layers to achieve the desired security
order at the output. The shares of every layer are constructed
following the constraints from Eq. (4). Finally, the last layer
conforms a compression sharing. This kind of sharing can be
found for example in [31] and [13], and is defined in [21]:

Definition 3 (Compression sharing [21]): A compression
sharing is characterized by having s > so.

The authors of [21] use a quartic, or degree-four gate, as an
example to illustrate the application of Eq. (4). This represents
the algebraic degree resulting from removing the register layer
usually employed to split two quadratic rounds. This is the
case of Keccak, which is the algorithm analyzed in [21]. Fig. 1
presents this example, used to show how to leverage Eq. (4)
to devise the masking strategy to secure such function. On
the one hand, it shows an example in which the two layers
are secured independently with three input shares (left), which
makes it impossible to maintain the non-completeness property
given the combinations from both layers. On the other hand,
the secure version is presented using five input shares, derived
from applying the concepts from Eq. (4). As we can see, in
the end every output share depends on four input shares out
of five, ensuring non-completeness.

Finally, the unrolled implementation can also be formulated
as non-complete set coverings. The covering set for layer
Rn is denoted as 〈Cn(sn, tn, dn), son〉. Sometimes, when the
parameters of such covering are clear from the context, or not
relevant at that moment, we use Cn for the sake of simplicity.

F. Unbalanced sharings

Unbalanced sharings have already been used in [26] App.
A, but they were not properly introduced until the work of
Wei et al. [32], used to devise a TI implementation of SM4.

Definition 4 (Unbalanced sharings [32]): In existing sharing
schemes, every input variable has the same number of shares.
However, it is perfectly possible that a sharing scheme in
which different input variables are split into different numbers
of shares still maintains the three essential properties for TIs.
Such a scheme is named an unbalanced sharing scheme.
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III. LOW-LATENCY THRESHOLD IMPLEMENTATIONS

In this section, we discuss our methodology. We present
first an example where the methodology of Arribas et al. [21]
does not achieve optimal results, and how to improve it. As a
result, we propose a new sharing for a cubic operation with
no registers in between, which at the same time represents
the most basic element of our scheme. Then, we introduce
Low-Latency Threshold Implementations (LLTI). We prove that
our methodology achieves minimal sharings for any security
order d, and any algebraic degree t, achieving the same bounds
as with TI. Additionally, we demonstrate how by increasing the
number of input shares we can achieve more optimal sharings.
Finally, we address the issue of uniformity and randomness.

A. Sub-optimal cases of [21]

The scheme proposed by Arribas et al. can be applied to
any non-linear operation, but it is not directly applicable to
odd prime algebraic degrees to achieve the minimal sharing.
We fix this and extend our methodology to obtain minimal
sharings for any degree.

To illustrate the cases where a sub-optimal sharing is
achieved when following the guidelines from Eq. (4), we
present an example of a decomposed simple cubic gate for first-
order security. With TI we can trivially share a cubic operation
with s = 3·1+1 = 4 shares for d = 1 (from Eq. (1)). However,
when decomposing the cubic gate, the resulting two layers are
composed by quadratic operations, so the result would be s = 5
shares for first-order security by applying Eq. (4), compared
to the four input and output shares from the direct case.

Figure 2: LLTI sharings for the two layers decomposition of
a combinational cubic operation, for first-order security using
unbalanced sharings with four and six shares.

In Fig. 2, we show that it is possible to achieve the minimum
number of shares also from the layered decomposition, includ-
ing the non-complete sharings for both layers. The two inputs
to the second AND gate are split with a different number of
shares: 6 and 4, respectively. The sharing in this layer is a
compression sharing, and, additionally, an unbalanced sharing.

Unbalanced sharings are operated in the same way as regular
sharings. However, note that the order of the elements within
the subsets of the final covering matters, as opposed to the
case when the sharings are symmetric. From the example
in Fig. 2, since the bottom input is not driven by any other
operation before, there are no further dependencies introduced
in this line. Hence, it is enough to have six and four shares
in respective inputs, instead of the 10 input shares as in the

example from [21] shown in Fig. 1. As we see from the picture,
the order in the indexes at the output of RN is important, since
one comes from a 6-shares sharing which at the same time
has further dependencies, while the other comes from a 4-
shares sharing equivalent to Us. Thus, the covering set for
an unbalanced sharing must be expressed using all the cross-
products from the two input sharings. With this example we
show that the strategy proposed in [21] is not always optimal.

B. Low-Latency Threshold Implementations

In their work, De Meyer et al. [26] proved that non-
completeness is a necessary condition for a masking scheme to
provide provable security. Thus, we focus on finding efficient
strategies to achieve the optimal non-complete sharing for a
higher algebraic degree operation. We benefit from the set
coverings theory from Sect. II-D to prove that we can achieve
minimal non-complete coverings for any degree t function.

Our scheme builds upon the one in [21], providing a
structured way of splitting the high-algebraic-degree non-
linear operations into layers of lower ones to achieve more
efficient sharings. As we have seen from the counterexample
in Sect III-A, we need to take into account cases when the
tree decomposition is not symmetric. Fig. 2 corresponds to
such a case, namely the decomposition of a cubic gate, of
prime algebraic degree. On the contrary, Fig. 1 corresponds
to the decomposition of a quartic operation with a composite
degree, which results in a symmetric tree of smaller operations.
Thus, we differentiate between two cases to cover all possible
operations: first, we define the scheme for t composite, and
subsequently, we extend the method for the cases where t is
prime.

1) Composite algebraic degree: Given a non-linear function
with a high algebraic degree T composite, denoted as FT,
we can split this operation into simpler non-linear operations
following its prime factors decomposition (PFD), such that

T =

N∏
i

ti,

where every ti prime factor designates a layer Ri, for a total of
N layers. Given the degree of security dT of FT = RN ◦ · · · ◦
R1, the resulting sharing for each layer has a similar structure
as Eq. (4). The decomposition and the corresponding sharing
for each layer are defined as follows:

∀ti ∈ PFD(T) with i ∈ [1, N ], ∃Ri : (5)

dRi =

{
dT if i = N,

tRi+1 ∗ dRi+1 if i < N

Lemma 1: Provided that the decomposition of FT is a
symmetric tree of operations, the number of input shares of the
first layer R1, obtained from applying Eq. (5), is equivalent
to the minimal input shares resulting from applying Eq. (1) to
the function FT, i.e.,

s1 ≥ t1 · d1 + 1 = T · dT + 1.
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In such a case, there exists always a compression sharing for
the layer RN , such that it is a minimal dthT -order non-complete
covering Ĉnc

N (sN , tN , dN ) with:

Ĉnc
N (sN , tN , dN ) = Ĉnc

FT
(TdT + 1,T, dT)⇒

〈Ĉnc
N (sN , tN , dN ) ,

(
TdT + 1

T

)
〉.

Proof: In the first layer R1, the sharing scheme is a set
covering in the form C1(s1, t1, d1), such that s1 ≥ t1 · d1 + 1.
From the definition in Eq. (5), we have that d1 = t2 · d2,
resulting in s1 ≥ t1 · (t2 · d2) + 1. If we keep going until
recursively reaching the last layer, and from Eq. (1), we have
that

s1 ≥ t1·(t2·. . . (tN−1·(tN ·dN )))+1 = (

N∏
i

ti)∗dN+1 = TdT+1

From this result, and together with Lemma 2.1.1, we con-
clude that the sharing of R1 uses the minimal input shares
corresponding to FT.

Now we have to prove that the sharing for the last layer
can be a non-complete compression sharing achieving the
corresponding minimal number of output shares of FT. From
Def. 2 (3), we know that, for the last covering set to satisfy
dth
T-order non-completeness, we need

∣∣CN ∣∣ ≥ dT + 1. From
Prop. 2.1, and taking the minimum number of elements at the
input and output of RN , it would result in sN = tn ·(

∣∣CN ∣∣−1)+
1. Since sN =

∣∣CN−1∣∣, and sN−1 = tN−1 · (
∣∣CN−1∣∣− 1) + 1,

we can write that sN = tN ·tN−1 ·(
∣∣CN ∣∣−1)+1. By recursively

reaching the first layer, we will have that

s1 = (

N∏
1

ti)·(
∣∣CN ∣∣− 1)︸ ︷︷ ︸∣∣CN ∣∣=dT+1

+1⇒ s1 = (

N∏
1

ti)∗dT+1 = TdT+1.

(6)
Thus, together with the first part of the proof, we can
affirm that with the resulting number of input shares in
R1, CN (sN , tN , dN ) ⊆ NC(sN , tN , dN = dT), i.e., is a
(dN = dT)

th-order non-complete covering. Finally, as the result
from Eq. (6) corresponds with the minimum number of input
shares, from Cor. 2.1.1 we conclude that

〈Ĉnc
N (sN , tN , dN ),

( ∏
i ti ∗ dT + 1∏

i ti

)
〉 ⇔

⇔ 〈Ĉnc
FT

(TdT + 1,T, dT),

(
TdT + 1

T

)
〉.

2) Prime algebraic degree: When T is prime, there is no
further decomposition possible. In this case, to split FT into
layers of simpler operations, we follow the above procedure
to decompose FT−1 instead, where T − 1 will always be
composite. To the output of the symmetric tree derived from
FT−1, we just add an extra 2-input AND gate with the last input
to realize a decomposition tree for FT. Fig. 3 illustrates this
concept with an example for T = 7. Hence, we have that RN−1

is the last layer of FT−1’s decomposition, and RN includes the
last AND gate to complete FT. It is important to note that the
sharing in the last layer of FT−1 is not a compression sharing

anymore. In this case, the sharing in RN is both an unbalanced
sharing and a compression sharing. The sharing of the first
input to the last AND gate will have

∣∣Ĉnc
FT−1

(sT−1,T− 1, dT)
∣∣

number of input shares, while the corresponding sharing for
the second input will have s1 input shares, conforming the
unbalanced sharing. Additionally, the number of output shares
will be

(
TdT+1

T

)
, resulting in a compression sharing.

We can apply Eq. (5) to FT−1’s decomposition to get the
different sharings for the first RN−1 layers, with dN−1 =
dN = dT to achieve a full non-complete sharing. By definition,
with this split, we always have that tN = 2, and dN = dT.
To ensure non-completeness is preserved when adding the
last AND gate to form FT, it suffices to add dT additional
elements to UT−1

s , which refers to the number of elements in
the universe of FT−1. This way it is also possible to achieve
the minimum number of output shares, as shown in Fig. 2.
These concepts are formalized in the following lemma:

Lemma 2: Given FT, with T prime, the decomposition
of layers R1 to RN−1 corresponds to the decomposition of
T −1, where the conditions from Eq. (5) for FT−1 apply, with
dN−1 = dN = dT. Finally, an extra layer RN is appended to
realize FT, with tN = 2 and dN = dT. The sharing of RN is
both a compression and an unbalanced sharing, and it suffices
to have ∣∣UT

s

∣∣ = ∣∣UT−1
s

∣∣+ dT

to achieve Ĉnc
FT

(s,T, dT).
Proof: From Lemma 1 we know that the decomposi-

tion of FT−1 results in a minimal non-complete covering
Ĉnc
FT−1

(sT−1,T− 1, dT). From Eq. (1), in the minimal case
we have that

sT−1 = (T−1)·dT+1 = T · dT + 1︸ ︷︷ ︸
sT

−dT ⇒ sT = sT−1+dT,

from which we confirm that
∣∣UT
s

∣∣ = ∣∣UT−1
s

∣∣+ dT.
Then, we have to prove that with this number of input shares

and following the guidelines for FT−1 we can achieve a non-
complete minimal covering. From Def. 2 (2) and Prop. 2.2,
for the trivial case

∀S ∈ Ĉnc
FT−1

(sT−1,T− 1, dT) : (7)

∣∣S∣∣ = t1 · t2 · . . . · tRN−1 =

RN−1∏
i

ti.

Every S contains at most T − 1 elements of UT
s , and since

they conform a non-complete covering, any dT combinations
of sets contain at most dT ·

∏N−1
i ti = dT · (T− 1) elements.

Subsequently, an extra layer RN is added to complete FT.
Since the non-linear operation in RN is a simple 2-input AND
gate, and the second input set covering corresponds to UT

s :

∀S ∈ CFT(sT,T, dT) :
∣∣S∣∣ ≤ t1·t2·. . .·tRN−1+1 =

N−1∏
i

ti+1.
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Every S contains at most T− 1 + 1 = T elements. Similarly
as before, any dT combinations of sets will contain at most
dT · (

∏N−1
i ti + 1) = dT · T components. As we have that

sT = sT−1 + dT = (T− 1) · dT + 1 + dT = (8)
T · dT − dT + 1 + dT = dT · T+ 1,

Def. 2 (3) is satisfied, and we conclude that CFT
(sT,T, dT) ⊆

NC(sT,T, dT) . Finally, from this reasoning and together
with Cor. 2.1.1, we conclude that indeed Ĉnc

FT
(sT,T, dT) is a

minimal non-complete set covering.
Fig. 3 illustrates two examples, for T = 6 and T = 7,

respectively. It includes the decomposition in several layers,
together with the conditions that each layer must satisfy to
achieve an overall minimal non-complete covering.

(a) T = 6 (b) T = 7

Figure 3: Trivial LLTI security requirements for combinational
composite and prime Ts examples, following the application
of Eq. (5) and Lemma 2.

In the case of T = 6 in Fig. 3a, the trivial TI sharing for
first-order security given by Eq. (1) we have s = 7 and so = 7,
or 〈Ĉnc

F6
(7, 6, 1), 〉. Then, if we build the set covering following

the layered decomposition, the first thing to notice is that
s1 = 7 = s, as stated in Lemma 1. The resulting set coverings
for each layer are 〈Ĉnc

1 (7, 3, 2), 35〉 and 〈Ĉnc
2 (35, 2, 1), 7〉. For

overall second-order security, with dT = 2, if we calculate the
trivial TI sharing for F6, we have that:

s = 6 · 2 + 1 = 13 (9)

so =

(
6 · 2 + 1

6

)
= 1716⇒ 〈Ĉnc

F6
(13, 6, 2), 1716〉

Similarly, if we calculate the coverings with LLTI we have
that 〈Ĉnc

1 (13, 3, 4), 286〉 and 〈Ĉnc
2 (286, 2, 2), 1716〉.

Now, we do the same exercise for T = 7 from Fig. 3b.
The trivial TI sharing for first-order would have s = 8 and
so = 8, or 〈Ĉnc

F7
(8, 7, 1), 8〉. Then, the set coverings for the

layered decomposition would be: for R1, following Lemma 2,

〈Ĉnc
1 (sT−1 + dT, t1, d1) = Ĉnc

1 (7 + 1, 2, 3),

(
8

3

)
= 56〉;

for R2,

〈Ĉnc
2 (56, 2, 1),

(
56

2

)
= 1540〉;

and finally, for R3, the unbalanced and compression sharing,

〈Ĉnc
3 ([1540, 8], 2, 1), 8〉,

which has the minimal cardinality associated with F7, as
stated from Lemma 2. We can follow the same proce-
dure for dT = 2. On the one hand, the TI set cover-
ing for F7 would be 〈Ĉnc

F7
(15, 7, 2), 6435〉. On the other

hand, the set coverings corresponding to LLTI would re-
sult in 〈Ĉnc

1 (13 + 2, 3, 4), 455〉, 〈Ĉnc
2 (455, 2, 2), 103285〉, and

〈Ĉnc
3 ([103285, 15], 2, 2), 6435〉. With these examples, and the

theory presented in this section we have shown that with LLTI
we can achieve the same minimal bounds defined by TI in
Eq. (1).

C. Optimizing LLTI

We should not forget that the numbers from the examples
above refer to the number of shares. We can see that,
already for second-order security, the cardinality of the sets
grows enormously. However, these are only the examples
corresponding to the trivial LLTI constructions, with the
minimum number of input shares. In this section, we show how
to keep the intermediate coverings cardinality from growing
disproportionately by increasing the input shares. Throughout
the rest of the manuscript we use trivial LLTI (presented above)
to refer to LLTI constructed with sharings that strictly follow the
guidelines of Eq. (1). The optimized LLTI or LLTI (presented
below) refers to the construction of the scheme with non-trivial
sharings, as the ones described in Sect. II-D.

1) Preventing intermediate expansions: In [29], Petrides
studies more in-depth the cases where the set coverings do not
correspond to the trivial cases, which correspond to directly
applying Eq. (1). As we see from Cor. 2.2.1, it is possible to
reduce the cardinality of a set only by increasing the number
of input shares. This technique was already used in [21] to
convert the 5→ 10→ 5 sharing to a 6→ 6→ 6 one, avoiding
the expansion of the shares in between. As explained in [6],
the expansion does not entail a problem for uniformity, since
then the sharing goes back to the original size within the same
cycle. Nevertheless, it helps to optimize the area requirements.
In the following, we prove that it is possible to prevent the
expansion of shares in every layer independently, in a similar
fashion as in [21], for any order of security and any algebraic
degree without affecting the non-completeness.

Lemma 3: Given FT = RN ◦ · · · ◦R1 with T composite, we
can achieve constant cardinality for every set covering across
the different layers by increasing the number of input shares
s1 enough, such that they are still non-complete set coverings.

Proof: Given the case where s < so, we can always
achieve 〈C(s+ S, t, d), s+S = so〉 by applying Lemma 2.2.1.
Applying this concept consecutively to every layer, we can
achieve constant cardinality across the N layers. The non-
completeness follows from applying Cor. 2.2.1 together with
Lemma 1 to every layer as follows:∣∣Cnc(s, t, d)

∣∣ ≥ ∣∣Cnc(s+ 1, t, d)
∣∣ ≥

≥
∣∣Cnc(s+ 2, t, d)

∣∣ ≥ . . . ≥ ∣∣Cnc(s+ S, t, d)
∣∣.
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Thus, we conclude that C(s+ S, t, d) ⊆ NC(s+ S, t, d) and
〈Cnc(s+ S, t, d), s+ S〉.

For first-order security, s = so, so this technique is important
to prevent intermediate expansions from growing out of control.
For higher orders of security, it is always the case that so > s
for the trivial sharing, which means extra registers and fresh
randomness may be needed to bring it back to s = so.
Moreover, as we can see in the example from Fig. 3, the
intermediate expansions of shares rapidly grows out of control.
Thus, this property becomes of utmost importance in those
cases to achieve sharings of reasonable sizes. For the non-
trivial cases, which correspond to the cases where s does not
correspond to the minimal one from Eq. (1), there is no bound
for the minimal so anymore, and which is not straightforward
to find.

2) Prime T: In the case where T is prime, Lemmas 2
and 3 are not enough to ensure non-completeness when seeking
constant cardinality. For the non-trivial case, from Def. 2 (2)
and Prop. 2.2, we have that ti ≤

∣∣Si∣∣ ≤ s− (di− 1)ti− 1 = k
for a given Ri. Thus, Eq. (7) does not hold anymore, and
the dependencies at the input of RN are not precisely bound.
The cause of this is the variability introduced by the changing
number of input shares to seek constant cardinality. Layers
R1 to RN−1 adhere to the constraints given by Eq. (5), and
hence, from Lemma 3, constant cardinality can be achieved
without harming the non-completeness on those layers. Hence,
only an additional constraint for layer RN is needed. As we
have seen from Lemma 2, this problem does not exist in the
trivial case, since the universe of the inputs is strictly bound
to
∣∣UT
s

∣∣ =
∣∣UT−1
s

∣∣ + dT. Despite not being sufficient, the
guidelines from this lemma are still useful and can be used
as a guide in the search for a more optimal sharing in the
case of T prime. However, it does not guarantee any more that
CFT

(sT,T, dT) ⊆ NC(sT,T, dT). It is necessary to include
one additional constraint.

Proposition 1: To achieve Cnc
FT

(sT,T, dT) for T prime, the
covering at layer RN−1 has to satisfy that

∀S ⊆ Cnc
N−1(sN−1, N − 1, dN ) :

∣∣S∣∣ < ⌈ s1
dT

⌉
− 1, (10)

for UT
s .
Proof: Suppose the maximum number of dependencies

concerning UT
s at the output of layer RN−1 is denoted with∣∣SN−1∣∣. Since T is prime, tN = 2 and the second input sharing

is equivalent to UT
s . Then, as we have seen in Lemma 2, the

dependencies at the output of RN are at most
∣∣SN−1∣∣+1, i.e.,∣∣SN ∣∣ ≤ ∣∣SN−1∣∣+1. Given the security order dT, we know that

every output combination will have at most (
∣∣SN−1∣∣+1)·dT. To

ensure non-completeness, we need that s1 > (
∣∣SN−1∣∣+1) ·dT,

which brings us to ∣∣SN−1∣∣ < ⌈ s1
dT

⌉
− 1.

3) Achieving minimal circuit complexity: As concluded in
Lemma 3, it is always possible to achieve constant covering
cardinality across layers. However, this does not necessarily
mean that this results in the most optimal implementation.
To achieve this constant cardinality, one has to increase the

number of input shares, which also impacts the linear layers
(and other logic) surrounding the high-algebraic-degree non-
linear operation under consideration. Thus, in some cases,
it may be a better idea to moderately increase the number
of inputs, such that there is still a constrained expansion of
shares in the middle layers, to achieve the best compromise,
taking into account the surrounding logic as well. It is then
up to the designer to find a trade-off between the trivial case,
with enormous expansion in the middle layers and the least
number of input shares (with the corresponding necessity of
compressing so), and the constant cardinality case, where there
is no expansion in the middle layers but where the input shares
increase might drastically affect the overall architecture. It is
noteworthy that increasing the number of shares is one of the
strategies used in [30] to achieve uniformity. Therefore, the
increase in the number of input shares can lead not only to
improve the area performance but also to achieve uniformity,
making it worthwhile even if more surrounding logic is needed.

4) Merging the N coverings: A final step is needed when
using alternative sharings different from the trivial ones. The
coverings at each layer must be compatible with each other, i.e.,
that the composition of them results in a non-complete covering.
For the trivial cases from Sect. III-B this is straightforward,
since input and output shares are decided based on the worst-
case expansions, where every set combination corresponds to
a different element in the next layer. A more careful procedure
is needed in the optimized case.

D. Uniformity and Resharing
With the concepts presented above, we ensure non-

completeness is fulfilled, and hence, security within the same
cycle. For first-order security, it suffices to additionally satisfy
uniformity to achieve overall security. To achieve uniformity
there are several strategies we can follow [30], including
increasing the number of input shares, adding fresh randomness,
or duplicating different cross-terms, such that correctness still
holds. For LLTI, we can benefit from the optimization strategy
of Sect. III-C to also find a uniform sharing.

For higher orders of security, ensuring uniformity is not
enough to prevent multivariate attacks, as it was shown in [33].
Hence, we need to add extra randomness for remasking to keep
the security guarantees. It was noted in [20] that the security
claims of the ring refreshing from CMS [7] do not hold as of
third-order. Similarly for the refreshing proposed in [8], which
is broken from second-order on. In light of these results, for
higher-orders, we propose to use the ISW refreshing after every
non-linear operation masked with LLTI and before any registers
layer (if any) that may be placed in between. In [20] it is shown
as well that composing TI with an SNI refreshing does not
result in an SNI gadget. However, in this work we do not seek
to achieve SNI-ness, but glitch-probing security. Nevertheless,
we stress that this is only a recommendation, and it is not in
the scope of this paper to provide an optimal refreshing. As
mentioned in [8], this is still an open question. Similarly, the
optimization of the additional randomness requirements for
securing higher-order implementations is not within the scope
of this paper. In any case, LLTI could naturally benefit from any
such proposals to reduce randomness or ensure composability.
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IV. APPLICATIONS

As the name suggests, LLTI aims at achieving low-latency
masked implementations. The main applications of LLTI are to
secure higher algebraic degree functions such that no registers
are needed in between, and to secure unrolled implementations.
Nevertheless, it can be used to secure any composition of
multiple functions. In this section, we show that we can achieve
higher performance by applying LLTI already with the trivial
cases (Sect. III-B) than with the classic TI. Moreover, we
show that the trivial cases can be improved greatly according
to Sect. III-C, to achieve yet more optimal implementations.
Applying these concepts, we devise a first-order sharing for
T = 7, which is, to the best of our knowledge, the first sharing
capable of directly securing the AES S-box’s ANF.

A. High Algebraic Degree Functions

In this section, we show that the application of LLTI not only
makes the masking of functions with t > 2 possible without
incurring in further cycle penalties, but that the area reduction
is also significant. First, we discuss the circuit complexity
resulting from a masked implementation, giving an example
for a simple cubic AND gate masked with TI and LLTI, and
then show that the greater the security order and T, the greater
is the complexity reduction when applying LLTI. Finally, we
present highly optimized first-order coverings for different
values of T = 5, 6, 7.

1) Circuit complexity when masking: We can calculate the
number of AND and XOR operations of a given sharing based
on the number of input and output shares, and the algebraic
degree. The number of AND gates and XOR gates needed to
share a single monomial of degree t is given in Eq. (11):

#AND = (t− 1) · st (11)
#XOR = st − so.

The number of AND gates is given by all resulting cross-
products st from the multiplication, all of them being degree t,
which translates into (t− 1) multiplications per cross-product.
These cross-products are XORed together and distributed
among the different output shares. For the unbalanced sharing,
since we have two different number of input shares, the cross-
products are given by [s1 · s2], Eq. (11) resulting in:

#AND = [s1 · s2] (12)
#XOR = [s1 · s2]− so.

Finally, to calculate the gate numbers for a scheme applying
LLTI, it suffices to apply these equations layer-wise and add
the results together.

Example: To illustrate the power of LLTI, we show an
example on a single cubic operation, i.e., a 3-input AND gate
in GF (2), F3 = abc. We evaluate the number of operations
needed to mask it following the traditional TI (direct method),
using Eqs. (1), versus the operations needed using our proposed
method. Directly masking F3, we get that

(s, t, d, so) = (4, 3, 1, 4)⇒

{
#AND = 2 · 43 = 128

#XOR = 43 − 4 = 60
(13)

The number of gates needed in the example from Fig. 2 is

R1 : (4, 2, 1, 6) ⇒

{
#AND = (2− 1) · 42 = 16

#XOR = 42 − 6 = 10

R2 : ([6, 4], 2, 1, 4) ⇒

{
#AND = (6 · 4) = 24

#XOR = 6 · 4− 4 = 20
(14)

F3 : (4, 3, 1, 4) ⇒

{
#AND = 40

#XOR = 30

From Eq. (13), we obtain that sharing a cubic operation for
first-order security with a direct sharing requires 188 gates,
whereas with LLTI (Eq. (14)) it needs a total of 70 gates. This
entails a 62.77% reduction in circuit complexity. As described
in [10], a large number of symmetric primitives include
non-linear cubic operations of AND depth two, including
Prince [25], Present [22], or the inverse in GF (16), often
used in masking the AES S-box when implemented with tower
field decomposition.

2) What is the reason for this significant reduction?: The
reason lies in the basics of the distributive property. While the
direct method expands every cross-product and then compresses
them back, LLTI expands only the elements for the first
multiplication, and compresses those back before continuing
with the next multiplications. The equations below present these
implications for the previous first-order example of F3 = abc:

TI :
abc = (a1 ⊕ a2 ⊕ a3 ⊕ a4) · (b1 ⊕ b2 ⊕ b3 ⊕ b4) ·

(c1 ⊕ c2 ⊕ c3 ⊕ c4)
= a1b1c1 ⊕ a1b1c2 ⊕ . . .⊕ a4b4c4 = F3

LLTI :
ab = (a1 ⊕ a2 ⊕ a3 ⊕ a4) · (b1 ⊕ b2 ⊕ b3 ⊕ b4)

= a1b1 ⊕ a1b2 ⊕ . . .⊕ a4b4 = w

wc = (w1 ⊕ w2 ⊕ w3 ⊕ w4 ⊕ w5 ⊕ w6) ·
(c1 ⊕ c2 ⊕ c3 ⊕ c4)

= w1c1 ⊕ w1c2 ⊕ . . .⊕ w6c4 = z

We show an extremely simple example that perfectly illustrates
the reason behind this great reduction in logic gates:

(1 + 2 + 3) · (1 + 2 + 3) = 6 · 6 = 36 ⇒

{
#× = 1,

#+ = 4

1 · 1 + 1 · 2 + 1 · 3 + 2 · 1 + 2 · 2+ (15)

+2 · 3 + 3 · 1 + 3 · 2 + 3 · 3 = 36 ⇒

{
#× = 9,

#+ = 8

From this example, it is clear that the expansion of the cross-
products needs more “resources” to compute the same operation.
With the direct sharing, all cross-products are distributed among
the output shares. In LLTI, the sharings for the smaller degree
operations are computed separately, avoiding the high amount
of cross-products produced with high values of t.

With Eqs. (13) and (14) we have shown the area improve-
ments for first-order and T = 3. In the following, we calculate
some additional circuit complexity numbers for other algebraic
degrees to illustrate that the area improvements are more



10

dramatic the greater the values of T and dT are. In this
comparison, presented in Tab. I, we have only included the
trivial cases (as described in Sect. III-B) since for them we
can define the sharings without searching for them.

As we can see from Tab. I, for T = 7 we can achieve 455
times reduction for 1st-order security, compared to the 2.68
from the example above with T = 3. Although most of these
numbers are impractical, this comparison shows the drastic
reduction we can achieve with LLTI, making the design of
these sharings one step closer to a practical implementation.

3) Further optimizing the area: According to Eq. (11), the
circuit complexity increases notably with the number of input
shares, with more severity the greater the algebraic degree. To
reduce the area of the implementation of a given FT operation
we have to minimize the number of input shares on each
layer. From Prop. 2.1, we know that the direct case uses the
minimum number of shares to achieve a non-complete sharing,
which means that the circuit complexity for this method can
not be reduced further. For LLTI, for the same reason, we
cannot reduce further the area requirements of R1. However,
we can reduce the area for all subsequent layers by applying
the concepts from Sect. III-C. By increasing the number of
input shares of R1, we can reduce the number of output shares,
which correspond to the number of input shares for R2. We can
proceed similarly for subsequent layers, to reduce the overall
costs for the implementation of the non-linear operation.

This offers a great search space for the designer, to find the
best trade-offs for a particular case. The expansion of input
shares in R1 translates in the reduction of input shares for
subsequent layers, and ultimately, on the reduction of the area
of FT. However, the increase of input shares also entails a con-
sequent increase of shares in the surrounding logic. Hence, the
designer should find a balance between the area requirements of
the non-linear operation in isolation, and the whole circuit. An
example of this optimization procedure can be found in [21],
where the coverings 〈Ĉnc(5, 2, 2), 10〉 → 〈Ĉnc(10, 2, 1), 5〉 were
optimized to 〈Cnc(6, 2, 2), 6〉 → 〈Cnc(6, 2, 1), 6〉, increasing by
one the number of input and output shares.

Computing the numbers as in Tab. I for a monomial of the
6→ 6→ 6 sharing, we get a total number of gates of 198, a
1.4 times reduction compared to the 275 from the 5→ 10→ 5
sharing. Moreover, this entails a total of 12.6 times reduction
w.r.t. TI sharing with one input share less (see the first row
from Tab. I). The final implementation of [21], despite having
an extra share, achieved a better overall area and maximum
frequency performance compared to the trivial case.

4) The problem of finding min(s+so): For the cases where
s is not the minimal value, for first-order security, it is always
the case that so ≥ td+ 1, no matter how much one increases
the number of input shares with respect to the trivial case. For
higher orders, there is no longer a clear relationship between
s and so. The problem of finding the minimum (s+ so) for
s > td + 1 was already introduced in [6]. To date, it is still
an open question, and there are no formulas that establish
a relationship between them. A small step forward is taken
in [29], where the construction for second-order security of
a quadratic operation with s = so = 6 is proven to be the
minimal one, i.e., 〈Ĉnc(6, 2, 2), 6〉. Additionally, for t = 3 and

s = 9, the bound so ≤ 13 is given.
This problem is equivalent to the set cover problem in

combinatorics and complexity theory, considered an NP-
problem, and which has been studied for a long time [34],
[35], [36], [37], [38]. These works propose similar bounds for
the number of elements and the minimal number of subsets
needed to entirely cover them. This corresponds exactly to our
problem, with the exception that we need to include the non-
completeness constraint. In these works, a (v, k, t)-covering
design is a collection of k-element subsets of {1, 2, . . . , v},
such that any t-element subset is contained in at least one
block. In our notation, (v, k, t) corresponds to (s,

∣∣S∣∣, t). The
upper bounds for the coverings are given individually for every
particular case, depending on v, k, and t. These bounds are
found using different strategies, like greedy algorithms, induced
from other coverings, with the help of finite geometry, etc.
In [39], we can find the upper bounds for t = {2, 3, 4, 5},
depending on the different values of v and k.

Similar strategies and results are needed to find optimal TI
sharings, including non-completeness as a constraint, and for
the parameters (s, t, d). The problem of finding the minimum
bound for s+ so is beyond the scope of this manuscript and
remains as an interesting subject for future works. However,
our methodology can be used already to bound the search to
t ≤ 3. The layered decomposition allows a divide-and-conquer
strategy, where, instead of finding the bounds for t = 6, for
instance, with the corresponding exponential increase in cross-
terms, we can just search the minimum coverings for the two
layers with t = 3 and t = 2, respectively. Once the minimal
bound is established, it suffices to find a sharing within those
bounds such that the merge of both coverings conforms a
non-complete covering. For the case when T is prime, the
algorithm should also add the constraint given in Prop. 1.

5) Optimized sharings for T = 5, 6, 7: Here, we present
highly optimized first-order non-complete coverings for T =
5, 6, and, 7, following the guidelines from Sect. III-C to reduce
the gate requirements further compared to the ones presented
in Tab. I. To the best of our knowledge, these are the first
sharings given for such algebraic degrees. To allow checking
the validity of our results, we provide the reader the algorithms
we used to build these coverings, the detailed constructions,
and corresponding non-completeness checks in [40].

For the intermediate sharings, we use sharings from previous
papers or take the coverings from the set covering literature. The
covering sets described in [39] can be found in [41]. Note that
these coverings are not constructed with the non-completeness
property in mind, so it is important to check whether they satisfy
it. While tailored bounds to our problem are still missing, this
database is a great source for guiding the designer to get
the sharing needed. Nevertheless, smaller coverings may be
achieved by specifically searching the targeted set coverings
with non-completeness as an initial constraint.

a) T = 5: It suffices to increase the input shares by
one (as from Lemma 2) with respect to the optimal case for
T = 4 from [21] to find a non-complete covering. The covering
for the first layer is taken from the coverings of [41]. We
choose a covering set such that it is second-order non-complete,
according to the constraints from Eq. (5). Furthermore, the
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Table I: Gate complexity comparison between TI and the trivial cases of LLTI for T = 4, 5, 6, 7 applied to a single monomial,
for first- and second-order security, obtained by applying Eqs. (11) and (12).

TI trivial LLTI Reduction

Covering Size (g) Coverings Size (g) (g(TI)/g(LLTI))

dT = 1

T = 4 〈Ĉnc(5, 4, 1), 5〉 2495 2× 〈Ĉnc(5, 2, 2), 10〉 275 ×9
〈Ĉnc(10, 2, 1), 5〉

T = 5 〈Ĉnc(6, 5, 1), 6〉 39K 2× 〈Ĉnc(6, 2, 2), 15〉 1.7K ×23
〈Ĉnc(15, 2, 1), 105〉
〈Ĉnc([105, 6], 2, 1), 6〉

T = 6 〈Ĉnc(7, 6, 1), 7〉 706K 2× 〈Ĉnc(7, 3, 2), 35〉 4.4K ×160
〈Ĉnc(35, 2, 1), 7〉

T = 7 〈Ĉnc(8, 7, 1), 8〉 14.7M 2× 〈Ĉnc(8, 3, 2), 56〉 32.3K ×455
〈Ĉnc(56, 2, 1), 1540〉
〈Ĉnc([1540, 8], 2, 1), 8〉

dT = 2

T = 4 〈Ĉnc(9, 4, 2), 126〉 26K 2× 〈Ĉnc(9, 2, 4), 36〉 2.7K ×9.6
〈Ĉnc(36, 2, 2), 126〉

T = 5 〈Ĉnc(11, 5, 2), 462〉 804K 2× 〈Ĉnc(11, 2, 4), 55〉 37K ×22
〈Ĉnc(55, 2, 2), 1485〉

〈Ĉnc([1485, 11], 2, 2), 462〉

T = 6 〈Ĉnc(13, 6, 2), 1716〉 29M 2× 〈Ĉnc(13, 3, 4), 286〉 174K ×167
〈Ĉnc(286, 2, 2), 1716〉

T = 7 〈Ĉnc(15, 7, 2), 6435〉 1.2G 2× 〈Ĉnc(15, 3, 4), 455〉 3.4M ×353
〈Ĉnc(455, 2, 2), 103285〉

〈Ĉnc([103285, 15], 2, 2), 6435〉

choice of this covering has to comply with the restriction from
Prop. 1, so that the dependencies created in the second layer
are within the required bounds. Finally, the unbalanced and
compression sharing outputs the minimum number of shares.
The resulting set coverings for each layer are:

R1 : 〈C1(7, 2, 2), 7〉
R2 : 〈C2(7, 2, 1), 21〉
R3 : 〈C3([21, 7], 2, 1), 7〉

According to Eqs. (11) and (12), the total gates required to
realize this sharing is 546, 71 times smaller than the TI sharing,
and 3 times smaller than the trivial case.

b) T = 6: To design this covering we follow the layered
decomposition for T = 6 from Fig. 3a. For the first layer
we need a second-order non-complete covering for t1 = 3.
Petrides [29] precisely proposes in his work such a covering,
so we start from this set. Since second-order non-completeness
is ensured at the output of R1, the compression sharing for
the second layer is therefore constructed ensuring that there is
always one element from the input share missing:

R1 : 〈C1(9, 3, 2), 13〉
R2 : 〈C2(13, 2, 1), 9〉 (16)

The total number of AND and XOR gates to implement this
sharing is 4 677 gates. This entails a total of 151 times reduction

with respect to TI, given in Tab. I. In this case, however, the
number of gates needed for the LLTI trivial case is smaller.

We can go even further and apply LLTI again in the first
two cubic AND gates (See Fig. 3), to reduce the area of the
first layer. Now we have a case analogous to that of Fig. 2,
where we decompose R1 into R11 and R12. Finding the set
covering for this case is easier since we already have the
output shares indexes of R12, defined by the output shares of
the former R1. It remains to find a suitable covering for R11,
such that when added the dependency from applying R12, the
final combination sets can be distributed into the outputs of R1.
R11 is devised by manually reducing the trivial sharing (with
so =

(
9
2

)
= 36) as much as possible to 32 output sets. Hence,

the R1 set covering 〈C1(9, 3, 2), 13〉 can be split as follows:

R11 : 〈C11(9, 2, 2), 32〉
R12 : 〈C12([32, 9], 2, 2), 13〉 (17)

The combined number of AND and XOR gates to implement
the corresponding sharing counting R2 from Eq. (16) is 1 715,
a final reduction of more than 400 times with respect to TI,
and more than 2.5 times reduction with respect to the LLTI
trivial case and the previous LLTI optimized case.

c) T = 7: As shown in Fig. 3b, the constraints for
the first two layers are the same as in T = 6. The trivial
bound according to Eq. (1) is s = 8, which is equivalent
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to the outcome of applying Lemma 2. We may increase the
number of inputs by one, and proceed to calculate the set
coverings of every layer with s = 9. The sharing we used from
Petrides for the previous case also satisfies these constraints.
However, it does not comply with the requirement from Prop. 1.
The dependencies after the first layer are

∣∣S∣∣ = 5 number
of shares, which after the second non-linear operation turns
into at most 10 dependencies with respect to the input shares.
From Eq. (10), the covering from the second layer must have∣∣S∣∣ < 9

1−1 = 8 ≯ 10, with respect to Us. To find an alternative
covering we go back to the database from [41]. We could not
find any set with s = 9 such that the previous condition is
fulfilled, so we go up to s = 10, where we succeed to find a
suitable non-complete covering. To construct the R2 sharing,
we can again search for a non-complete covering with 30 inputs
from [41], or construct it ourselves. We decide to construct
the covering set ourselves with non-completeness in mind. We
know that the maximum number of dependencies at the output
of R2 is

∣∣S∣∣ = 8, and that the last layer adds just one extra
dependency. Thus, ensuring that all output shares of R2 have
at least two shares missing from Us will allow us achieve
overall non-completeness. We calculate the dependencies of
each combination at R2 and get the complementary set (Sc)
with respect to Us. Then, we look at all different combinations
such that

∣∣Sc∣∣ = 2, and define them as the output shares
baskets of R2. By definition, the last layer adds a dependency
to each element, which means that

∣∣S3∣∣ = 9. Since s = 10
it suffices to identify a single missing share at every output
share of R3 and distribute the cross-products according to
this missing index dependency. A more detailed step-by-step
commented code to generate this sharing is included in [40].
The set covering corresponding to the three layers is:

R1 : 〈C1(10, 3, 2), 30〉
R2 : 〈C2(30, 2, 1), 45〉 (18)
R3 : 〈C3([45, 10], 2, 1), 10〉

Calculating the gate complexity with Eqs. (11), (12), we need a
total of 8 585 gates to construct the covering defined in Eq. (18).
This entails a 3.76 times reduction with respect to LLTI’s trivial
case, and a total of 1718 times reduction compared to TI.

Similarly as with T = 6, we reduce this covering further
by again applying LLTI on the first cubic gates. By applying
Eq. (10) to R11, we obtain that

∣∣S∣∣ = 3 is allowed. However,
with such a sharing, when the extra dependency added from
R12 is taken into account, it is impossible to distribute all
combinations according to R1 output shares. Thus, R11 is just
the trivial sharing, where so =

(
10
2

)
= 45, and

∣∣S∣∣ = 2. Finally,
〈C1(10, 3, 2), 30〉 can be split in:

R11 : 〈C11(10, 2, 2), 45〉
R12 : 〈C12([45, 10], 2, 2), 30〉

Achieving an overall gate count of 4 695, taking into account
R2 and R3 from Eq. (18). This means a reduction of 1.8 time
with respect to the previous case, a reduction of more than x6
times comparing with the trivial case, and a final reduction of
3131 times with respect to TI.

Table II: Summary of final first-order LLTI coverings for T =
3, 5, 6, 7 applied to a single monomial.

Degree Layer Covering Size Reduction times (w.r.t)

(gates) TI Trivial LLTI

T = 3 R1 〈C1(4, 2, 1), 6〉 70 ×2.68
R2 〈C2([6, 4], 2, 1), 4〉

R1 〈C1(7, 2, 2), 7〉
T = 5 R2 〈C2(7, 2, 1), 21〉 546 ×71 ×3

R3 〈C3([21, 7], 2, 1), 7〉

R11 〈C11(9, 2, 2), 32〉 1 715 ×400 ×2.5
T = 6 R12 〈C12([32, 9], 2, 2), 13〉

R2 〈C2(13, 2, 1), 9〉

R11 〈C11(10, 2, 2), 45〉
T = 7 R12 〈C12([45, 10], 2, 2), 30〉 4 695 ×3131 ×6.9

R2 〈C2(30, 2, 1), 45〉
R3 〈C3([45, 10], 2, 1), 10〉

Within this section we have proposed highly optimized first-
order sharings for T = 3, 5, 6, 7 (T = 4 already proposed
in [21]), summarized in Tab. II. The results presented in
this section can be used to mask higher algebraic degrees
of complex constructions efficiently, even if the AND depth
is greater than one. Moreover, the covering corresponding to
T = 7 can be used to directly mask the AES S-box ANF
without registers, which is, to the best of our knowledge, the
first sharing to allow it.

B. Securing a full cipher with LLTI

Previous sections focus on how to apply LLTI to a non-linear
function, which is the key element to secure in a cipher. Below,
we provide a recipe on how to apply LLTI to an entire cipher
to achieve a fully secured implementation:

• Number of shares: when implementing an SCA-secure
design, we first need to determine the desired security
order. The non-linear operation is the limiting factor of the
implementation, i.e. the most difficult element to secure.
Thus, the security order together with the algebraic degree
of the non-linear function will define the number of shares
to employ in the design. By plugging these parameters in
Eq. (5) and following the instructions from Sect. III, we
can obtain the complete sharing of the non-linear function
and the number of shares for the overall implementation.
In this work, we have presented a first-order sharing for
each basic multiplication of algebraic degree up to t = 7,
which are included in [40]. These sharings can be use
directly to secure any function of such algebraic degree.

• Refreshing: then, we should include a refreshing layer to
the masked non-linear function, as described in Sect. III-D.

• Full implementation: finally, since linear operations are
performed share-wise, every linear block from the design
should have the same number of copies as number of
shares in the design. Similarly, MUXes, buses, and Primary
Inputs and Outputs should be also replicated as many times
as the number of resulting shares from the application of
LLTI to the non-linear operation.

Overall, securing a cipher with LLTI follows the same major
steps as with any masking scheme, with the key differences in
how to secure the non-linear layer.
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C. Unrolled Implementations

The second application possible for LLTI is to secure
unrolled implementations, as it was done in the work of Arribas
et al. [21], where they proposed a first-order secure unrolled
implementation of Keccak.

The typical design flow to secure a (simple) S-box, is to take
the Algebraic Normal Form (ANF) and substitute each variable
with the shared representation, distributing the cross-terms
among the output shares respecting the security requirements
to realize the shared function. This is impossible to do with
unrolled implementations, since we cannot get a single equation
to define two (or more) rounds at once. Hence, the only
alternative to mask the unrolled expression is by masking
each round independently and then merging them, as in LLTI.

The equivalent overall degree t for a single round of
the unrolled implementation is calculated by looking at the
corresponding non-linear operations of each layer. Then, the
strategy from Sect. III is applied to look for the sharings. The
linear operations can be trivially included in the covering of
the corresponding layer, since they do not create dependencies
among different shares. They may create additional dependen-
cies among different variables of the inputs within one share,
but even if they do so, that is still not a problem since TI does
not require independent inputs.

V. IMPLEMENTATIONS AND CASE STUDIES

In this section we present the results of applying LLTI to
different primitives. We begin with the multiplication, the most
basic non-linear operation in symmetric key primitives. Then,
we present results for widely used ciphers, including example
for PRINCE and AES.

A. Platform and Evaluation

The synthesis results were obtained with the Synopsis Design
Compiler v2013.12, using the NANGATE 45nm Open Cell
Library [42]. The exact_map compile option is used to
prevent optimization across modules. Our implementation is
deployed on a Xilinx Spartan6 FPGA on a Sakura-G evaluation
board. For the synthesis, the KEEP_HIERACHY option is
enabled in Xilinx ISE to prevent optimization across modules
and shares in particular. The power measurements is taken on
a dedicated output on Sakura-G board.

We perform a non-specific leakage detection test (TVLA)
from Goodwill et al. [43]. The power measurements are split
in two sets: the first set S0 receives fixed plaintexts and the
second set S1 random plaintexts. The two sets of measurements
are compared using the t-test statistic:

t =
µ(S0)− µ(S1)√
σ2(S0)
|S0| + σ2(S1)

|S1|

(19)

The t-test verifies whether two populations have the same mean,
i.e. its null hypothesis H0 states that “the sets S0 and S1 are
drawn from populations with the same mean.” Large absolute
values of this t-statistic indicate that the null hypothesis can
be rejected with a high degree of confidence.

In order to verify that our setup is sound, we first perform
TVLA to an unprotected implementation, by turning off the

PRNG. With 100 000 power traces, we see clear evidence of
leakage (see Fig. 5, left). When we turn on the PRNG, the
masked AES by LLTI is secure up 100 million traces. (see
Fig. 5, right). Second- and third-order leakage are detected,
as expected. A threshold level of 4.5 is often used to decide
whether the hypothesis should be rejected. In practice, this
threshold should not be considered a hard limit. Fig. 5 shows
that the first-order t-statistic reaches the “threshold” at some
time samples. However, Fig. 4 demonstrates clearly that the
first-order t-statistic does not grow over 100 million traces, and
thus that we can say with confidence that the implementation
is first-order secure with this many traces.

B. Multiplication

To show the advantages of our methodology, we implement
several masked AND gates following the guidelines proposed
in the previous section. We have implemented a cubic AND
gate and a degree-7 AND gate, for both TI and LLTI for first-
order security. Additionally, we have implemented the cubic
AND gate with the method explained in [21] for comparison
purposes. Tab. III presents these results. As in [9], we refer to
a combinational circuit as a circuit needing 0 clock cycles to
compute the result. Similarly, a circuit with a single register
layer needs 1 clock cycle. For the security analysis, we
evaluate non-completeness and uniformity with VerMI [44],
and, additionally, include a mutual information (MI) analysis.

Table III: Comparison between TI and LLTI for several
protected AND gates implementations for first-order of security.

Method Area Rand.* # Reg. Max. Freq. NC Unif. MI
[GE] [bpc] layers [MHz]

T = 3
AND3 4sh. TI 258 3 0 690 X X 0.1379
AND3 5sh. Rhythm. 134 4 0 1538 X X 0.1399
AND3 4sh. LLTI 97 3 0 1639 X X 0.1379

T = 7
AND7 4sh. TI 709 9 1 1176 X ? ?
AND7 4sh. LLTI 357 9 1 1613 X ? ?
AND7 10sh. LLTI 5466 ≤ 9 0 375 X ? ?

* Cost of fresh random bits per cycle (bpc) during computation.

The first three rows of Tab. III depict the results for the
masked cubic gate, for TI, [21], and LLTI, respectively. With
LLTI, the area complexity is reduced a 62% and a 28% w.r.t
respective other techniques, as expected from the calculations
made in Sect. IV-A. Furthermore, with this method we also
achieve a 137% increase in the maximum frequency with LLTI
compared to TI. In the case of TI, numerous cross-products
have to be compressed to the given number of output shares,
creating a deep XOR gates tree. With LLTI the total number
of cross-products to compress is highly reduced, which leads
to the corresponding improvement in maximum frequency. To
ensure uniformity we add some extra bits of randomness. Note
that in the examples we are only masking a single AND gate,
which is highly unbalanced by definition. For other functions,
it may be possible to reduce this number with (or even without)
increasing the number of shares. Finally, we have calculated
the mutual information of these examples. We have calculated
as well the MI of an insecure 2-bit AND gate with simply two
shares and a secure version with three shares from [30] to serve
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as reference. The results are 0.393 and 0.311, respectively. We
can see how the implementations from Tab. III considerably
reduce the MI information compared to these cases.

The second part of Tab. III presents the different implemen-
tations for a 7-input AND gate. The last row implementation
corresponds to the function illustrated in Fig. 3b. The previous
two rows implement the same function but with a register layer
between R1 and R2, which leave only cubic operations at both
sides of the register. To mask these cubic gates we benefit from
the results of masking the previous cubic gates, the first version
using TI, and the second using LLTI, both with 4 shares. The
area complexity is almost 50% smaller for the case with LLTI,
and the maximum frequency is 37% larger.

The last implementation is a masked 7-input AND gate
without any register in between. So far, there is no masked
implementation of the AES S-box purely combinational. Here
we only present the implementation of a single monomial
of the S-box ANF, but this implementation can be trivially
leveraged to implement the remaining monomials to realize
a full masked S-box implementation evaluated within the
same clock cycle. As we can see, the reduction in maximum
frequency is quite significant. Not only the critical path is split
in two by the register, but also the number of shares is greatly
reduced, leading to a great reduction of XOR gates needed to
compress all the cross-products. It is important to note that
this notorious decrease in the frequency would not happen in
a full implementation, since this operation would no longer
belong to the critical path. Hence, the designer should ponder
what is the impact of that one cycle reduction, and how much
is the maximum frequency affected.

For these implementations, it was not feasible to evaluate
the uniformity nor the MI. Since the 7-bit AND gate can be
decomposed in three cubic operations, as shown in Fig. 3, we
propose a total of 9 random bits, although further analysis is
required since this composition does not guarantee uniformity.

C. PRINCE
To further illustrate the power of LLTI, we take existing

masked implementations of PRINCE using TI and exclusively
modify the TI cubic sharing with the LLTI version proposed in
Fig. 2. In particular, we use the one from [24] with the lowest
latency. PRINCE has been designed with latency in mind,
unfortunately threatened by the use of registers that typically
appear in decomposed SBoxes or in d+ 1-like masking. Thus,
PRINCE highly benefits from the use of LLTI as we will see
in the following. Multiple previous works in the literature have
presented side-channel protected implementations of PRINCE,
like [23], [24], [25].

As we can see from the first two rows in Tab. IV, while
maintaining the same number of cycles, we increase the
maximum frequency by 46% and reduce the computation time
of the implementation by 31% with simply applying LLTI to
the protected S-box. Furthermore, this also reduces the total
area by 38% compared to the TI version. Since LLTI improves
the performance of the core element of the implementation, any
shared implementation of the multiple ciphers in the literature
using a cubic function would also result in similar performance
optimizations.

Table IV: SCA protected PRINCE implementations.

PRINCE Method Area Rand. Cycles Max. Freq. Time
1st order SCA [GE] [bpc] [MHz] (ns)

1. No S-box dec. LLTI 25857 48 12 488 24.6
2. No S-box dec. [24]* TI 41628 48 12 335 35.8

3. No S-box dec. [25] d+ 1 11596 48 24 376 63.8
4. S-box dec. [45] TI 14153 0 36 268 134
5. S-box dec.[23] TI 9292 0 40 250 160
6. S-box dec. [45] d+ 1 8701 24 72 260 277

* Original implementation source code recompiled with the NANGATE45 library.

D. AES

Finally, we analyze the benefits of applying LLTI to AES. So
far, we can only find two implementations of the AES S-box
in the literature with a single layer of registers, both using
different flavors of masking. The first one, from Gross et al. [9],
employs the proposed Generic Low-Latency Masking (GLM),
a masking scheme at the algorithmic level. The second one,
from Sasdrich et al. [18], uses LMDPL, a gate level masking
scheme. Hereunder, we present a new alternative using LLTI.

The AES S-box consists of an inversion in GF (28), and an
affine layer. The inversion in GF (28), which has algebraic
degree seven, can be decomposed into two simpler cubic
functions: x−1 = x254 = (x26)49 [16], [46]. We leverage
this decomposition to split our implementation into two stages
with one register layer in between the two functions. Instead of
splitting further these cubic functions, we directly mask them
with a 1st-order non-complete td+ 1 sharing.

Thanks to the non-completeness property, the affine trans-
formation can be applied to each share independently, and
compose with the non-linear part without using register. To
illustrate the great performance optimization that LLTI can
provide, we design our AES implementation using both TI and
LLTI for comparison. Tab. V presents the results of both our
implementations, together with previous works AES secure
implementations for reference.

Table V: 1st-order SCA secure AES Implementation Cost.

Design Area* [kGE] Rand. # Regs. Cycles Max. Freq.* Time*
S-box Total [bpc] S-box Total [MHz] (ns)

4 shares LLTI 25.78 36.49 0 1 216 277 779
4 shares TI 58.41 69.12 0 1 216 40 5 400

Bilgin et al. [13] 2.84 8.12 32 2 246 - -
De Cnudde et al. [14] 1.98 6.68 54 5 276 - -
Gross et al. [9] 60.76 - 2 048 1 - 356 -
Gross et al. [9] 6.74 - 416 2 - 584 -
Wegener-Moradi [47] 4.20 7.60 0 16 2 804 - -
Sugawara [48] 3.50 17.10 0 4 266 - -
Sasdrich et al. [18] 3.48 157.50 720 1 10 400 25

* Different designs used different standard cell libraries.

As we can see from Tab. V, our implementations achieve
minimal latency, with the S-box implemented with a single
layer of registers. Moreover, no additional randomness besides
the initial sharing is needed. We would like to stress that the
purpose of these implementations is not to present a new or
the best state-of-the-art AES implementation, but to illustrate
the power of LLTI. As we can see from the first two rows,
with LLTI we achieve 47.2% reduction in area and a 6.9 times
increase in maximum frequency w.r.t. the TI implementation.
The implementation from Gross et al. [9] using GLM is based
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Figure 4: Max t-test value in logarithmic scale. From left to right: masks-on AES-TI, masks-on AES-LLTI, mask-off.

Figure 5: TVLA results for unmasked AES with 100k traces (left) and masked AES-LLTI with 100 million traces (right). Top
to bottom: 1st-, 2nd- and 3rd-order t-statistic

on d+1 masking, contrary to the td+1 masking of LLTI. Since
they are both maskings at the algorithmic level, it is easier to
compare between them. We can see that with LLTI we manage
to significantly improve both area and online randomness.

The latest design from Sasdrich et al. [18] proposes an
efficient round-based implementation computed in 10 cycles.
However, it is difficult to have a one-to-one comparison since
Sasdrich et al. employ a gate level masking scheme. Although
our implementation is slower due to the serialized design, it
performs much better in terms of online randomness, using
zero bits compare to the 720 bits per cycle from Sasdrich et
al.’s design. This allows us to avoid any PRNG placed next to
our design, which greatly affects the overall area and power
performance. Moreover, the use of a PRNG creates additional
vulnerabilities, easily exploitable by the attackers. Finally,
compared to the implementations using zero online randomness,
the latency in cycles of our S-box is reduced 16 and 4 times
respectively, at the cost of larger area. Every implementation
has different trade-offs, and we should choose the most fitting
one tailored to the desired application. Our implementation is
presented as a new alternative to the state-of-the-art.

We use TVLA to evaluate the security of both our im-

plementations, deeming them secure for up to 100 million
traces. Figs. 4 and 5 present these results. In the case of
the TI implementation, we can see small leakage, but since
it does not grow with the number of traces (as opposed to
d = 2, 3) and stays close to the threshold we can say that
this leakage would not be exploitable by an attacker. On the
contrary, we can see that with LLTI this leakage no longer
appears. From Fig. 4, we can see that LLTI not only does
not harm the security of the implementation compared to
TI, but it even reduces the amount of leakage. This can
be attributed to LLTI’s reduction in the glitching activity.
Glitches introduce unexpected (and unwanted) combinations,
which threaten the security of masking in hardware [49]. As
we have seen from Eq. (15) LLTI considerably reduces the
XOR trees that are needed to compress all cross-terms to the
number of output shares. This leads to a considerable reduction
in glitching activity, which potentially translates into better
security warranties.

VI. CONCLUSION

In this manuscript, we have presented Low-Latency Thresh-
old Implementations (LLTI), a new masking methodology
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suitable for low-latency applications. It is derived and inherits
the properties of TI, achieving a considerable improvement
in the area, latency, and maximum frequency performances
for any operation with an algebraic degree greater than two.
For a first-order masked cubic AND gate, very often used
in symmetric primitives, we achieved a 137% increase in
maximum frequency and a 60% reduction in area compared
to TI. Furthermore, we have presented different sharings for
operations with T = 3, 5, 6, and 7, achieving a remarkable 3131
times reduction in gate complexity for a first-order masking
of a degree-seven monomial compared to TI. To show the
practical impact of LLTI, we applied it to both examples of
PRINCE and AES. We took a previously proposed PRINCE
implementation and simply substituting the S-box with the
new LLTI version, we achieved substantial improvements in
both area and latency. Similar gains could be achieved when
securing any cipher featuring a cubic AND operation. Finally,
we proposed a new AES design with a one-cycle S-box and its
TI equivalent, obtaining, with LLTI, an implementation with
half the area and seven times greater max. frequency.
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