
McFly
Verifiable Encryption to the Future Made Practical

Nico Döttling 1 Lucjan Hanzlik1 Bernardo Magri2 Stella Wohnig1,3

1CISPA Helmholtz Center for Information Security

2The University of Manchester

3Saarbrücken Graduate School of Computer Science

{doettling,hanzlik,stella.wohnig}@cispa.de,
bernardo.magri@manchester.ac.uk

April 5, 2022

Abstract

Blockchain protocols have revolutionized the way individuals and devices can interact
and transact over the internet. More recently, a trend has emerged to harness blockchain
technology as a catalyst to enable advanced security features in distributed applications,
in particular fairness. However, the tools employed to achieve these security features are
either resource wasteful (e.g., time-lock primitives) or only efficient in theory (e.g., witness
encryption). We present McFly, a protocol that allows one to efficiently “encrypt a message
to the future” such that the receiver can decrypt the message almost effortlessly. Towards
this goal, we design and implement a novel primitive we call signature-based witness en-
cryption and combine it with a BFT blockchain (or a blockchain finality layer) in such a
way that the decryption of the message can be piggybacked on the tasks already performed
by the blockchain committee, resulting in almost-for-free decryption. To demonstrate the
practicality of the McFly protocol, we implemented our signature-based witness encryption
scheme and evaluated it on a standard laptop with Intel i7 @2,3 GHz. For the popular
BLS12-381 curve, a 381-bit message and a committee of size 500 the encryption time is 9.8s
and decryption is 14.8s. The scheme remains practical for a committee of size 2000 with an
encryption time of 58s and decryption time of 218s.

1

Contents

1 Introduction 1
1.1 Our Contributions . 1
1.2 Technical Overview . 3
1.3 Related work . 6
1.4 Organisation . 7

2 Preliminaries 7

3 Signature-based Witness Encryption 12

4 The McFly protocol 14
4.1 Formal model . 14
4.2 Protocol guarantees . 15
4.3 Protocol description . 17
4.4 Proofs . 17
4.5 Integration with Casper . 19
4.6 Applications . 20

5 BLS signatures with modified aggregation 21
5.1 Construction . 21
5.2 Proofs . 22

6 Construction of Signature-based Witness Encryption 24
6.1 Construction . 24
6.2 Efficiency . 25
6.3 Proofs . 25

7 A Compatibility Layer for Proof Systems 30
7.1 Well-Formedness Proofs . 30
7.2 Proofs of Plaintext Equality . 31
7.3 Putting Everything together: Verifiable SWE . 33

8 Implementation and Evaluation 33
8.1 Setup . 33
8.2 Computing Discrete Logarithms . 35
8.3 Experiments and Results . 35

9 Conclusion 36

A Discussion on proofs of possession 39

1 Introduction

Blockchain protocols have become increasingly popular as they revolutionized the way peer-
to-peer transactions can be made. In its most basic form, blockchain protocols are run by
independent parties, the so-called miners, that keep their own copy of the blockchain and verify
the contents of all transactions they receive before appending them to their own copy of the
blockchain. The fact that the content of the transactions can be verified before its inclusion
in the blockchain is fundamental for the validity of the transactions and the consistency of the
blockchain. However, there are many scenarios where one would like to keep the contents of a
transaction secret for some time even after inclusion in the blockchain. One simple example is
running sealed-bid auctions on the blockchain; one would like for its bid to be included in the
blockchain, but at the same time such a bid should remain hidden until the end of the auction.
Another example is for building randomness beacons on the blockchain, where a straightforward
and popular approach is to combine the randomness chosen by many different parties; if the
randomness is not hidden, then the last party to pick its randomness could bias the final output.
A more general application for such a mechanism, that can keep the contents of a blockchain
transaction secret for some pre-defined time, would be to simply use it as a tool to realize
timed-release encryption [30] without a trusted third-party.

In previous works [15, 6], solutions to the problems above were based on time-lock primitives,
such as time-lock puzzles (TLP) or verifiable delay functions (VDF). An inherent problem of
time-lock type primitives is that they are wasteful in terms of computational resources and
notoriously difficult to instantiate with concrete parameters. Usually a reference hardware
is used to measure the ”fastest possible” time that it takes to solve a single operation of the
puzzle (e.g., modular squaring) and this reference number is used to set the security parameters.
Moreover, in a heterogeneous and decentralized system such as a blockchain, where different
hardware can have gaps in speed of many orders of magnitude, an approach like this could
render the system impractical. An operation that takes one time unit in the reference hardware
could take 1000 time units on a different hardware used in the system.

Moreover, the environmental problems that proof-of-work blockchains, where miners invest
computation power to create new blocks, can cause have been intensively debated by the com-
munity and regulators. This made the majority of blockchain systems adopt a proof-of-stake
(PoS) consensus for being a much more sustainable solution. In PoS systems, typically a subset
of users is chosen as a committee, which jointly decides which blocks to include in the chain.
This selection can be by a lottery with winning probability proportional to the amount of coins
parties hold on the chain or by the parties applying by locking a relatively big amount of their
coins, preventing them from spending them. In light of that, any solution employing a time-
lock type primitive completely defeats the purpose of achieving a more resource efficient and
environmentally conscious system.

1.1 Our Contributions

In that vein, we diverge from the time-lock primitive approach and propose McFly, an efficient
protocol to keep the contents of a message (e.g., a blockchain transaction) secret for some
pre-specified time period. McFly is based on a new primitive that we call signature witness
encryption (SWE), that combined with a byzantine fault tolerance (BFT) blockchain or with
any blockchain coupled with a finality layer such as Ethereum’s Casper [12] or Afgjort [16] allows
users to encrypt messages to a future point in time by piggybacking the decryption procedure
on the tasks already performed by the underlying committee of the blockchain (or the finality
layer). More specifically, in BFT blockchains consensus on the current state of the blockchain
is reached by having a committee vote and sign on every new potential block. Similarly, in a

1

finality layer a committee votes and signs blocks at regular intervals to make them “final” in
the underlying blockchain.

Different from general witness encryption constructions [21] that are highly inefficient, SWE
is a witness encryption for a specialized statement that is composed of the verification keys
of the committee members, and a specific block height (or counter when considering a finality
layer). When a block at that specific height is built and the committee jointly signs it, all parts
of the witness become available for the decryption of the message. That way, users can encrypt
messages to the future and simply reuse the infrastructure of the blockchain to decrypt the
messages at the specified time. We detail our contributions next.

Signature Witness Encryption We formally define a new primitive that we call signature
based witness encryption (SWE). To encrypt a message m, the encryption algorithm takes a set
of verification keys for an aggregateable multi-signature scheme1 and a reference message r as
an input and produces a ciphertext ct. The witness to decrypt ct consists of a multi-signature
of the reference message r under a threshold number of keys. Note that if the receiver of such a
ciphertext ct is external to the key holders, they may only observe and wait for the signatures
to be made; this is sensible in a setting where we expect people to sign the reference message
naturally as a committee naturally signs blocks on a blockchain. We instantiate SWE with
an aggregateable multi-signature scheme that is a BLS scheme [9] with a modified aggregation
mechanism. We show, that this signature scheme fulfills the same security notions as previous
aggregateable BLS multi-signatures.

Concretely, the guarantees for SWE are that (1) it correctly allows to decrypt a ciphertext
upon a multi-signature on the underlying reference and (2) if the adversary does not gain access
to a sufficient number of signatures on the reference then ciphertext-indistinguishability holds.
The security guarantee is conceptually closer related to that of identity based encryption, rather
than that of fully-fledged witness encryption; decryption is possible when a threshold number
of key holders participate to unlock. We achieve this in the bilinear group setting from the
bilinear Diffie-Hellman assumption. Furthermore, to ensure that decryption is always possible
we make SWE verifiable by designing specially tailored proof-systems to show well-formedness
of ciphertexts as well as additional properties of the encrypted message.

McFly protocol We build an “encryption to the future” protocol by combining SWE with a
BFT blockchain or a blockchain finality layer. The main idea of combining an SWE scheme with
a blockchain is to leverage the existing committee infrastructure of the underlying blockchain
that periodically signs blocks in the chain to piggyback the decryption procedure of the SWE
scheme. At a high level, a message is encrypted with respect to the set of verification keys of all
the committee members and a specified block height (in the future) of the underlying blockchain;
once the block with the specified height is created by the committee, it automatically becomes
the witness required to decrypt the ciphertext produced. We have the following requirements
on the underlying blockchain:

• BFT-style or finality layer. The blockchain must be run by a known committee of
parties (dynamic or not) that produces signatures on blocks. Alternatively, a blockchain
coupled with a finality layer [12, 17] can also be used. For simplicity, we will explicitly
assume that all blocks are immediately finalized, but the proofs can be transferred to
a setting where we know at which height the next blocks are which will eventually be
finalized.

• Block structure. We assume that blocks have a predictable header, which we will model
by a block counter, and some data content. When finalizing a block the committee signs

1This type of signature schemes allows to compress multiple signatures by different signers on different mes-
sages into just one verifiable signature.

2

the block as usual, but additionally it also signs the block counter separately.
• Public Key Infrastructure. The public keys of the committee members must have a
proof of knowledge. This can be achieved, e.g., by registering the keys with a PKI.

• Honest majority committee.2 The majority of the committee behaves honestly. That
is, there will not be a majority of committee members colluding to prematurely sign
blocks.

• Constant block production rate. To have a meaningful notion of “wall-clock time”,
the blocks must be produced at a near constant rate.

To model the requirements above, we present a blockchain functionality in Section 4 and we
show the security of the McFly protocol in this hybrid model. For concreteness, we also describe
how McFly can be instantiated on Ethereum 2.0 running with Casper The Friendly finality
gadget [12] (which has a static committee) in Section 4.5. Intuitively, to make Ethereum 2.0 +
Casper compatible with our blockchain model we only need to add the public-key-infrastructure
and require the committee members to sign the block counter separately for each finalized block.

Implementation To demonstrate the practicality of McFly, we implement the SWE scheme
and run a series of benchmarks on a standard Macbook Pro with an Intel i7 processor @2,3
GHz. We show that for the popular BLS12-381 curve it is possible to encrypt 381-bit messages
in under 1 minute for even up to 2000 verification keys, i.e. committee size. For the same
setting, decrypting takes only around 4 minutes. In the case of a supermajority threshold, the
encryption time remains the same but the decryption time increases, as to be expected, to
around 6 minutes. Lowering the size of the verification key set to 500 increases the efficiency.
The same message can now be encrypted in 10 seconds. Depending on the threshold decryption
takes 14.6 seconds for the majority of signers and 26.6 seconds for the supermajority of signers.
For small committees ≤ 200 we even get encryption and decryption times smaller than 5 seconds.
We stress that our results should be treated as a baseline since we used JavaScript, and any
native implementation of the SWE scheme will significantly outperform our prototype.

1.2 Technical Overview

SWE based on BLS Our construction of Signature-based Witness Encryption is based on
the BLS signature scheme [10] and its relation to identity-based encryption [8]. Recall that BLS
signatures are defined over a bilinear group, i.e. we have 3 groups G1,G2,GT (with generators
g1, g2, gT) of prime-order p and an efficiently computable bilinear map e : G1 × G2 → GT . A
verification key vk is of the form vk = gx2 , where x ∈ Zp is the corresponding signing key. To
sign a message T ∈ {0, 1}∗, we compute σ = H(T)x, where H : {0, 1}∗ → G1 is a hash function
(which is modelled as a random oracle in the security proofs). To verify a signature σ for a
message T , all we need to do is check whether e(σ, g2) = e(H(T), vk).

The BLS signature scheme is closely related to the identity-based encryption scheme of
Boneh and Franklin [8]. Specifically, in the IBE scheme of [8] BLS verification keys take the
role of the master public key, the signing key takes the role of master secret key and signatures
take the role of identity secret keys, where the signed messages correspond to the identities,
respectively. In this sense, the BF scheme can be seen as a witness encryption scheme which
allows to encrypt plaintexts m with respect to a verification key vk and a message T , such that
anyone in possession of a valid signature of T under vk will be able to decrypt the plaintext m.
Specifically, we can encrypt a message m ∈ {0, 1} by computing ct = (gr2, e(H(T), vk)r · gmT).

2The honest majority requirement must be strengthened to honest supermajority (i.e. at least 2/3 of members
being honest) if the underlying blockchain or finality layer considers a partially synchronous network model. For
simplicity, we choose to describe it in the synchronous network model where honest majority plus PKI is sufficient.

3

Given a signature σ = H(T)x, we can decrypt a ciphertext ct = (c1, c2) by computing d =
c2/e(σ, c1) and taking the discrete logarithm of d with respect to gT (which can be done efficiently
as m ∈ {0, 1}).
SWE for BLS Multi-Signatures The BLS scheme can be instantiated as a multi-signature
scheme [5]. Specifically, assume that for i = 1, . . . , n we have messages Ti with a corresponding
signature σi with respect to a verification key vki. Then we can combine the signatures σ1, . . . , σn
into a single compact multi-signature σ =

∏n
i=1 σi. Verifying such a multi-signature can be done

by checking whether e(σ, g2) =
∏n

i=1 e(H(Ti), vki), where correctness follows routinely.
We can adapt the BF IBE scheme to multi-signatures in a natural way: To encrypt a

plaintext m ∈ {0, 1} to messages T1, . . . , Tn and corresponding verification keys vk1, . . . , vkn
compute a ciphertext ct via ct = (gr2, (

∏n
i=1 e(H(Ti), vki))

r · gmT). Such a ciphertext ct = (c1, c2)
can be decrypted analogously to above by computing d = c2/e(σ, c1) and taking the discrete
logarithm with respect to gT . To decrypt ct we need a multi-signature σ of all Ti under their
respective verification keys vki.

For our envisioned applications this requirement is too strong, instead we need a threshold
scheme where a t-out-of-n multi-signature suffices as a witness to decrypt a ciphertext. Thus,
we will rely on Shamir’s secret sharing scheme [32] to implement a t-out-of-n access structure.
This, however leads to additional challenges. Recall that Shamir’s secret sharing scheme allows
us to share a message r0 ∈ Zp into shares s1, . . . , sn ∈ Zp, such that r0 can be reconstructed
via a (public) linear combination of any t of the si, while on the other hand any set of less
than t shares si reveals no information about r0. The coefficients Lij of the linear combination
required to reconstruct r0 from a set of shares si1 , . . . , sit (for indices i1, . . . , it) can be obtained
from a corresponding set of Lagrange polynomials. Given such Lij , we can express r0 as r0 =∑t

j=1 Lijsij .
We can now modify the above SWE scheme for multi-signatures as follows. To encrypt a

plaintext m ∈ {0, 1}, we first compute a t-out-of-n secret sharing s1, . . . , sn of the plaintext
m. The ciphertext ct is then computed by ct = (gr2, (e(H(Ti), vki)

r · gsiT)i∈[n]). Security of this
scheme can be established from the same assumption as the BF IBE scheme, namely from the
bilinear Diffie-Hellman (BDH) assumption [23].

We would now like to be able to decrypt such a ciphertext using a multi-signature. For
this purpose, however we will have to modify the aggregation procedure of the multi-signature
scheme. Say we obtain t-out-of-n signatures σij , where σij is a signature of Tij under vkij .
Let Lij be the corresponding Lagrange coefficients. Our new aggregation procedure computes

σ =
∏t

j=1 σ
Lij

ij
. That is, instead of merely taking the product of the σij we need to raise each σij

to the power of its corresponding Lagrange coefficient Lij . We can show that this modification
does not hurt the security of the underlying BLS multi-signature scheme.

To decrypt a ciphertext ct = (c0, c1, . . . , cn) using such a multi-signature σ, we compute

d =
∏t

j=1 c
Lij

ij
/e(σ, c0) and take the discrete logarithm of d with respect to gT . Correctness

follows via a routine calculation.

Moving to the Source Group While the above scheme provides our desired functionality,
implementing this scheme leads to a very poor performance profile. There are two main reasons:

1. Each ciphertext encrypts just a single bit. Thus, to encrypt any meaningful number of
bits we need to provide a large number of ciphertexts. Observe that each ciphertext
contains more than n group elements. Thus, encrypting k bits would require a ciphertext
comprising kn group elements, which would be prohibitively large even for moderate values
of k and n.

2. Both encryption and decryption rely heavily on pairing operations and operations in the
target group. From an implementation perspective, pairing operations and operations in

4

the target group are typically several times slower than operations in one of the source
groups (see Section 8).

To address these issues, we will design a scheme which both allows for ciphertext packing
and shifts almost all group operations into one of the two source groups (in our case this will
be G2). This scheme is provided in Section 6 and we will only highlight a few aspects here.

• Instead of computing a secret sharing of the plaintext m, we compute a secret sharing of
a random value r0 ∈ Zp. The value r0 can be used to randomize many batch-ciphertext
components, leading to ciphertexts comprising only O(k + n) group elements.

• We encrypt each share si in the source group G2 instead of GT . That is, we compute
the ciphertext-component ci via ci = vkri · g

si
2 . This will necessitate a corresponding

modification of the decryption algorithm and require that all messages Ti are identical, but
this requirement is compatible with our envisioned applications. Somewhat surprisingly,
this modification does not necessitate to make a stronger hardness assumption, but only
requires a rather intricate random-self-reduction procedure in the security proof. That
is, even with this modification we can still rely on the hardness of the standard BDH
assumption.

• Instead of just encrypting single bits m ∈ {0, 1}, we allow the message m to come from
{0, . . . , 2k − 1}. This will allow us to pack k bits into each ciphertext component. Recall
that decryption requires the computation of a discrete logarithm with respect to a gen-
erator gT . We can speed up this computation by relying on the Baby-Step-Giant-Step
(BSGS) algorithm [34] to O(2k/2) group operations. This leads to a very efficient im-
plementation as the required discrete logarithm table for the fixed generator gT can be
precomputed. For details see Section 8

A Compatibility-Layer for Efficient Proof Systems Our scheme so far assumes that en-
cryptors behave honestly, i.e. the ciphertext ct is well-formed. A malicious encryptor, however,
may provide ciphertexts which do not decrypt consistently, i.e. the decrypted plaintext m may
depend on the signature σ used for decryption. Furthermore, for several of the use-cases, we
envision it is crucial to ensure that the encrypted message m satisfies additional properties. To
facilitate this, we provide the following augmentations.

• We provide an efficient NIZK proof3 in the ROM which ensures that ciphertexts decrypt
consistently, i.e. the result of decryption does not depend on the signature which is used
for decryption. This is provided in Section 7.1.

• We augment ciphertexts with efficient proof-system enabled commitments and provide
very efficient plaintext equality proofs in the ROM. In essence, we provide an efficient
NIZK proof system that allows to prove that a ciphertext ct and a Pedersen commitment
C commit to the same value. This is discussed in Section 7.2

• We can now rely on efficient and succinct proof systems such as Bulletproofs [11] to
establish additional guarantees about the encrypted plaintext. For instance, we can rely
on the range-proofs of [11] to ensure that the encrypted messages are within a certain
range to ensure that our BSGS decryption procedure will recover the correct plaintext.
This is discussed in Section 7.3.

3Technically speaking, since our systems are only computationally sound, we provide non-interactive argument
systems. However, to stay in line with the terminology of [20, 11] we refer to them as proof systems.

5

1.3 Related work

Timed-release crypto and “encryption to the future” The notion of timed-release
encryption was proposed in the seminal paper by Rivest, Shamir and Wagner [30]. The goal
is to encrypt a message so that it cannot be decrypted, not even by the sender, until a pre-
determined amount of time has passed. This allows to “encrypt messages to the future”. In [30]
the authors propose two orthogonal directions for realizing such a primitive. Using trusted
third-parties to hold the secrets and only reveal them once the pre-determined amount of time
has passed, or by using so-called time-lock puzzles, that are computational problems that can
not be solved without running a computer continuously for at least a certain amount of time.
With the advent of blockchains, multiple proposals to realize timed-release encryption using
the blockchain as a time-keeping tool emerged. These previous results, presented here, are all
more of theoretical interest, while we demonstrate practical efficiency of our scheme by our
implementation reported in Section 8.

In [25] the authors propose a scheme based on extractable witness encryption using the
blockchain as a reference clock; messages are encrypted to future blocks of the chain that once
created can be used as a witness for decryption. However, extractable witness encryption is a
very expensive primitive. Concurrently to this work, [14] proposes an “encryption to the future”
scheme based on proof-of-stake blockchains. Their approach is geared at transmitting messages
from past committee members to future slot winners of the proof-of-stake lottery and requires
active participation in the protocol by the committee members. Our results differ from this by
enabling encrypting to the future even for encryptors and decryptors that only read the state
of the blockchain and we require no active participation of the committee beyond their regular
duties.

Another related line of work is presented in [4], where a message is kept secret and “alive”
on the chain by re-sharing a secret sharing of the message from committee to committee. This
allows to keep the message secret until an arbitrary condition is met and the committee can
finally reveal the message. A more general approach is the recent YOSO protocol [22] that
allows to perform secure computation in that same setting. While these approaches realize
some form of encryption to the future, they require massive communication from parties and
are still far from practical.

BLS signatures and Identity based encryption (IBE) The BLS signature scheme, in-
troduced in [10], is a pairing-based signature scheme with signatures of one group element in
size. Additionally, it is possible to aggregate signatures of multiple users on different messages,
thus saving space as shown in [9]. Due to the very space-efficient aggregation, BLS signatures
are used in widely deployed systems such as Ethereum 2.0 [18]. In [7] a different aggregation
mechanism is used to achieve multi-signatures, where signatures can be aggregated even if the
messages contain duplicates. However this scheme only allows to aggregate once, i.e, all signa-
tures have to be combined in one step. Alternatively, signing multiples of the same message
can be achieved by using proofs-of-possession [29], where users need to show that they know
the secret key corresponding to their public key to a key registration authority.

Identity based encryption was first introduced by Shamir [33]. The initial idea was to use
the identity - e.g. a mailing address - as a public key that messages can be encrypted to. In a
sense, our scheme can be seen as a threshold IBE, as we encrypt with respect to a committee
and can only decrypt if a threshold of the committee members collaborate.

6

1.4 Organisation

We will provide definitions for all the cryptographic building blocks required in our work in
Section 2 and give a definition of signature based witness encryption in Section 3. We explain
our McFly protocol, which integrates SWE with a blockchain and its properties and possible
applications in Section 4. Then we proceed to construct the underlying primitives: an aggre-
gateable multi-signature scheme based on BLS (Section 5), an SWE scheme (Section 6) and
a proof-system to show well-formedness and additional properties of encrypted messages (Sec-
tion 7). We conclude by giving an analysis of a prototype implementation of our SWE scheme
in Section 8.

2 Preliminaries

We denote by λ ∈ N the security parameter and by x← A(in) the output of the algorithm A on
input in. We denote by A(in; r) if algorithm A is randomized with r ← {0, 1}∗ as its randomness.
We omit this randomness where it is obvious and only mention it explicitly when required. We
denote by x ←$ S an output x being chosen uniformly at random from a set S. We denote
the set {1, . . . , n} by [n]. For a group element g we denote by ⟨g⟩ a canonic encoding of g as
a bitstring. PPT denotes probabilistic polynomial time. Further, poly(x),negl(x) respectively
denote any polynomial or negligible function in parameter x.

Hash Functions A keyed family of hash functions H consists of the following functions:

• k ← KeyGen(1λ): The key generation algorithm takes a security parameter and outputs
a key k.

• h ← Hk(m): The hash algorithm takes as input a key k and a message m. It outputs a
hash h.

We expect a hash function family to be collision resistant.

Definition 1 (Collision resistance). A family of hash functions is collision resistant, if for any
PPT adversary A

Pr

[
m1 ̸= m2 and Hk(m1) = Hk(m2) :
k ← KeyGen(1λ); (m1,m2)← A(k)

]
< negl(λ)

In the following, for convenience we will omit the key and assume it has been handed out
as a public hash function H = Hk.

Furthermore, we will be using the random oracle model, in which a hash function can only
be evaluated by directly querying the hashing oracle [3]. The output on a message that has not
been queried yet is uniform and determined at the time of the query. This is a heuristic for
the behaviour of hash functions that allows us to simulate the hashing oracle ourselves in our
reductions.

Pseudo-random functions A keyed family of functions
PRFk : {0, 1}s → {0, 1}t for keys k ∈ {0, 1}∗ and some s, t = poly(|k|) is a pseudo-random
function (PRF) family, if

• given k,m the function PRFk(m) is efficiently computable
• and for every PPT distinguisher D,

DPRFk(.) ≈c DF (.),

where k ←$ {0, 1}λ and F is chosen randomly from all functions from {0, 1}s(λ) to
{0, 1}t(λ).

7

Commitment Schemes A (non-interactive) commitment scheme (CS) CS = (Setup,Commit,
Vrfy) is composed of the following algorithms:

• CRS ← Setup(1λ): The setup algorithm takes the security parameter λ and outputs a
common reference string CRS.

• (com, γ) ← Commit(CRS,m): The commit algorithm takes as input a common reference
string CRS and a message m. It outputs a commitment com and an opening information
γ.

• b← Verify(CRS, com,m, γ): The verification algorithm takes as input a common reference
string CRS, a commitment com, a message m and opening information γ. It outputs a bit
b ∈ {0, 1}.

Definition 2 (Correctness). We say that a commitment scheme is correct if for all λ ∈ N,
CRS← Setup(1λ) and every message m we have that

Pr [1← Verify(CRS, com,m, γ) : (com, γ)← Commit(CRS,m)] = 1.

Definition 3 (Computational Hiding). We say that a commitment scheme is computationally
hiding if for all λ ∈ N, CRS ← Setup(1λ) and all PPT adversaries A = (A1,A2) we have that
the following probability is negligible in λ:∣∣∣∣∣∣Pr

b← A2(com, aux) :
(m0,m1, aux)← A1(CRS)

b←$ {0, 1}
(com, γ)← Commit(CRS,mb)

− 1

2

∣∣∣∣∣∣
Definition 4 (Perfect Binding). We say that a commitment scheme is perfectly binding if for
all λ ∈ N, CRS← Setup(1λ) and all adversaries A we have that

Pr

m0 ̸= m1 ∧ b = b′ = 1 :
(com,m0, γ0,m1, γ1)← A(CRS)
b← Verify(CRS, com,m0, γ0)
b′ ← Verify(CRS, com,m1, γ1)

 = 0.

Zero-knowledge proofs We require two types of proof systems in the random oracle model
which we will describe below. Definitions are partially taken from [20]:

Definition 5 (Zero-knowledge proof of knowledge). A proof of knowledge for an NP language
L defined by an efficiently verifiable binary relation R via x ∈ L ⇔ ∃w s.t. (x,w) ∈ R consists
of the following functions, which have access to a hash function H:

• π ← ProveH(x,w): The proof algorithm takes a statement x and a witness w. It outputs
a proof π.

• b ← VrfyH(x, π): The verification algorithm takes as input a statement x and a proof π.
It outputs a bit b.

A zero-knowledge proof of knowledge in the random oracle model consist of (Prove,Vrfy)
fulfilling completeness, zero-knowledge and extractability as below:

Definition 6 (Completeness). A proof system (Prove,Vrfy) is complete, if for any (x,w) ∈ R,
any hash function H, it holds

Pr
[
VrfyH(x,ProveH(x,w)) = 1

]
= 1

Definition 7 (Zero-Knowledge). We say that a proof system (Prove,Vrfy) is zero-knowledge in
the random oracle model, if there exists a PPT simulator S such that for all PPT distinguishers
D the following distributions are computationally indistinguishable:

8

• Let H be a random oracle, set π0 = ∅, δ0 = 1λ. Repeat for i = 1, . . . , n until D stops:
(xi, wi, δi) ← DH(i, πi−1, δi−1), where πi ← ProveH(xi, wi) if (xi, wi) ∈ R or π ← ⊥
otherwise. Output D’s final output.

• Let (H0, τ0) ← S(0, 1λ), set π0 = ∅, δ0 = 1λ. Repeat for i = 1, . . . , n until D stops:
(xi, wi, δi) ← DHi−1(i, πi−1, δi−1), where (Hi, πi, τi) ← S(i, xi, τi−1, YES) if (x,wi) ∈ R or
(Hi, πi, τi)← S(i, xi, τi−1, NO) otherwise. Output D’s final output.

Definition 8 (Extractability). There exists a PPT extractor E , such that for every PPT algo-
rithm A and the simulator S from the zero-knowledge definition, it holds:
Let (H0, τ0)← S(0, 1λ), set π0 = ∅, δ0 = 1λ. Repeat for i = 1, . . . , n until A stops: (xi, wi, δi)←
AHi−1(i, πi−1, δi−1), where (Hi, πi, τi) ← S(i, xi, τi−1, YES) if (x,wi) ∈ R or (Hi, πi, τi) ←
S(i, xi, τi−1, NO) otherwise. Let (x, π) be A’s final output and and QA be the queries that
A made to oracles Hi. Let w ← E(x, π,QA). Then, if (x, π) ̸= (xi, πi) for all i ∈ [n],

Pr
[
(x,w) ̸∈ R ∧ VrfyHn(vk, π) = 1

]
≤ negl(λ)

Definition 9 (Non-interactive Zero-knowledge Proof Systems). A NIZK proof system for an NP
language L defined by an efficiently verifiable binary relation R via x ∈ L ⇔ ∃w s.t. (x,w) ∈ R
consists of (Prove,Vrfy) as above and fulfills completeness, zero-knowledge and computational
soundness4:

Definition 10 (Computational Soundness). We say that a proof system (Prove,Vrfy) has com-
putational soundness if for all λ ∈ N, every collision resistant hash function H, and PPT
adversaries A, it holds

Pr

[
VrfyH(x, π) = 1 and x ̸∈ L and |x| = λ :
(x, π)← AH(1λ)

]
= negl(λ)

Schnorr’s Proof of Knowledge for Discrete Log We recall the extractable proof of knowl-
edge for discrete logarithms due to Schnorr [31]. It consists of a proof algorithm Schnorr.Prove
and a verification algorithm Schnorr.Valid. Its proof algorithm is defined on input (h, x) for
h ∈ G of prime order p, with a generator g and x ∈ Zp.

Schnorr.Prove(h = gx, x) Schnorr.Valid(h)

r ←$ Zp

u← gr
u−→

c←$ Zp
c←−

z ← r + cx
z−→

check whether gz=uhc.
If so, return 1, else 0.

Table 1: Proof of Knowledge for Discrete Log

In a paper by Fischlin [20], a transformation is described, that yields a non-interactive
version of Schnorr. In their paper, this scheme is proven in the random oracle model to fulfill
the requirements of a zero-knowledge proof of knowledge for the relation K = {(gx, x) : x ∈

4As stated above, this is typically referred to as an argument system, but we call it a proof for consistency
with prior works.

9

Zp}. In the following, we will refer to these transformed algorithms with the syntax π ←
Schnorr.Prove(vk, sk) and Schnorr.Valid(vk, π).

We use Fischlin, rather than the Fiat-Shamir-transformation [19], because the latter doesn’t
guarantee extraction of the witness in polynomial time.

Bilinear group setting We regard the same setup as in [9], that is we assume groups G1, G2,
GT of prime order p with their respective generators g1, g2 and gT . Additionally, we assume a
computable bilinear map e : G1 ×G2 → GT .

That is, e has the following properties:

1. Bilinearity: for all u ∈ G1, v ∈ G2 and a, b ∈ Z, it holds that e(ua, vb) = e(u, v)ab.
2. Non-Degeneration: e(g1, g2) ̸= 1.

From these, it follows also that for any u1, u2 ∈ G1, v, w ∈ G2 it holds e(u1 · u2, v) = e(u1, v) ·
e(u2, v).We assume that the group operations in all of these groups as well as e can be computed
in one time step and that the computational co-Diffie-Hellman assumption holds in (G1, G2) and
the bilinear Diffie-Hellman assumption hold in (G1, G2, GT). In some instances we additionally
require the knowledge of exponent assumption to hold in (G1, G2, GT).

Definition 11 (Computational Co-Diffie-Hellman). The computational Co-Diffie-Hellman as-
sumption for a pair of groups (G1, G2) states that the probability

Pr [A(g1, g
x
1 , g2, g

x
2 , h) = hx : x←$ Zp, h←$ G1]

is negligible for polynomial adversaries A, where g1 ∈ G1, g2 ∈ G2 are generators.

Definition 12 (Bilinear Diffie-Hellman). The bilinear Diffie-Hellman assumption for a triple of
groups (G1, G2, GT) of order p states that the following distributions are computationally close:

(g1, g
x
1 , g

α
1 , g2, g

x
2 , g

r
2, g

αxr
T) ≈c (g1, g

x
1 , g

α
1 , g2, g

x
2 , g

r
2, g

y
T),

where x, y, α, r ←$ Zp and g1 ∈ G1, g2 ∈ G2, gT = e(g1, g2) ∈ GT are generators.

We will now adapt the knowledge of exponent assumption [2] to the bilinear setting. Similar
to the original one this assumption holds generically.

Definition 13 (Knowledge of exponent assumption). For a pair of groups (G1, G2, GT) with
generators (g1, g2, gT) of prime orders p as above this assumption states that if there exists a
PPT adversary A where:

• A takes as input a generator h ∈ G1.
• A outputs two group elements C ∈ G1, Y ∈ G2 such that e(h, Y) = e(C, g2), that is
(g2, Y) and (h,C) have the same dlog relationship.

If such an A exists, then there exists a PPT extractor Ā, that takes the same input (and
potentially randomness) as A and outputs the same C, Y and additionally c, such that C =
hc, Y = gc2.

Secret Sharing and Coding Theory
We will briefly introduce some elementary concepts relating to Shamir’s secret sharing and

its underlying coding structure, Reed-Solomon codes. Let Zp be the finite field of prime order
p and fix distinct elements ξ = ξ1, . . . , ξn ∈ Zp. The Reed-Solomon code consists of all RSn,k[ξ]

vectors c = (f(ξ1), . . . , f(ξn)) for some polynomial f(X) =
∑k−1

i=0 aiX
i of degree k − 1. This

10

code is generated by the matrix G = (ξji)i,j ∈ Zn×k
p and has a parity-check matrix H =(

1∏
l̸=j(ξj−ξl)

ξij

)
i,j
∈ Z(n−k)×n

p .

Lagrange Interpolation For a set of supporting points χ1, . . . , χk from a finite field Zp,
where p ∈ N is prime, the Lagrange basis polynomials are given by L1, . . . , Lk, where

Li(x) =
∏

j∈[k];j ̸=i

x− χj

χi − χj
.

These are chosen such that Li(χj) = 1 iff i = j and 0 otherwise. Consequently, given a set of
k data points (χi, yi), we can output a polynomial fL(x) = Σi∈[k]Li(x) ·yi that will run through
these points and which has degree at most k-1. This process is called Lagrange Interpolation.

Aggregateable Multi-Signatures with extractable proof-of-knowledge
We need aggregateable signature schemes for which we can extract the secret keys. Aggre-

gateable multi-signatures are digital signatures that allow to compress multiple signatures by
multiple users on multiple messages that may contain duplicates into one aggregate signature.
A construction of an aggregateable multi-signature based on BLS is proven secure in [29]. Their
model requires all public keys to be registered with a key registry via a proof of possession.

In a similar vain, we assume that all published public keys come with a proof of knowledge
that shows, that the issuer knows a corresponding secret key. This proof can either be appended
to one’s public verification key or registered with a certifying authority/key registry and allows
us to extract secret keys in our proofs.

All algorithms below implicitly have oracle access to a hash function H as input.

Definition 14 (Aggregateable Multi-signatures). An aggregate signature scheme Sig = (KeyGen,
Sign,Vrfy,Agg,AggVrfy,Prove,Valid) is a tuple of seven algorithms where:

• (vk, sk) ← KeyGen(1λ): The key generation algorithm takes a security parameter and
outputs a pair of verification and signing keys (vk, sk).

• σ ← Sign(sk, T): The signing algorithm takes as input a signing key sk and a message T .
It outputs a signature σ.

• b ← Vrfy(vk, T, σ): The verification algorithm takes as input a verification key vk, a
message T and a signature σ. It outputs a bit b.

• σ ← Agg((σ1, . . . , σk), (vk1, . . . , vkk)): The aggregation algorithm takes a list of signatures
(σ1, . . . , σk) and verification keys (vk1, . . . , vkk). It outputs one aggregate signature σ.

• b ← AggVrfy(σ, (vk1, . . . , vkk), (T1, . . . , Tk)): The verification algorithm for aggregate sig-
natures takes an aggregate signature σ as well as two lists of public verification keys vki
and messages Ti, which may include duplicates. It outputs a bit b. For convenience, we
consider this identical to Vrfy, if only σ and one key vk1 and message T1 are input.

• π ← Prove(vk, sk): The proving algorithm has access to a hash function oracle H, takes a
verification key vk and a signing key sk. It outputs a proof π.

• b ← Valid(vk, π): The validity algorithm has access to a hash function oracle H, takes a
verification key vk and a proof π. It outputs a bit b.

We require such a signature scheme to be correct and unforgeable. Additionally (Prove,Valid)
must be a zero-knowledge proof of knowledge for the relation K = {(vk, sk)|∃r s.t. (vk, sk) ←
KeyGen(1λ; r)}5

5Note, that this requires implicitly, that it is efficiently checkable, whether a secret key belongs to a given
public key. This will be true for our use-case.

11

Definition 15 (Correctness). An aggregateable multi-signature scheme Sig = (KeyGen, Sign,
Vrfy,Agg,AggVrfy,Prove,Valid) is correct if the following holds:

1. For all λ ∈ N and all messages T :

Pr

[
Vrfy(vk, T,Sign(sk, T)) = 1 :
(vk, sk)← KeyGen(1λ)

]
= 1.

2. For all λ ∈ N, k = poly(λ), all messages T1, . . . , Tk, sets of public keys V = (vk1, . . . , vkk)
and signatures (σ1, . . . , σk) such that Vrfy(vki, Ti, σi) = 1 for i ∈ [k] it holds:

Pr

[
AggVrfy(σ, V, (T1, . . . , Tk)) = 1 :
σ ← Agg((σ1, . . . , σk), V)

]
= 1.

Definition 16 (Unforgeability). An aggregateable multi-signature scheme Sig = (KeyGen, Sign,
Vrfy,Agg,AggVrfy,Prove,Valid) is unforgeable if the following holds: For all λ ∈ N, N = poly(λ)
and all PPT adversaries A, A has only negligible advantage in the experiment ExpUnf(A, N)
described in the following:

• The experiment randomly chooses (vk, sk)← KeyGen(1λ) and outputs vk to A.
• A may request signatures from a signing oracle Sign(sk, ·).
• A may also request to see a proof for vk, which the experiment answers with π ←
Prove(vk, sk). If it does, A may not use vk as one of the keys in its forge.

• Eventually, A outputs ((T1, . . . , Tk), (vk2, . . . , vkk), (π2, . . . , πk), σ
∗) as a forge. If A re-

quested a proof for vk before, but one of the vki for i ∈ {2, . . . , k} is vk, the experiment
outputs 0.

• The experiment outputs 1, if AggVrfy(σ∗, (vk, vk2, . . . , vkk), (T1, . . . , Tk)), T1 was never
queried to the oracle Sign(sk, ·), Valid(vki, πi) = 1 for all i ∈ {2, . . . , k} and the number of
keys k is upper bounded by N . Otherwise, the output is 0.

The advantage of A is defined as AdvAUnf = Pr [ExpUnf(A, N) = 1] . The case k = 1, where A
outputs no additional keys is explicitly allowed.

3 Signature-based Witness Encryption

We formally define the new SWE primitive next.

Definition 17 (Signature-based Witness Encryption). A t-out-of-n SWE for an aggregate sig-
nature scheme Sig = (KeyGen,Sign,Vrfy,Agg,AggVrfy,Prove,Valid) is a tuple of two algorithms
(Enc,Dec) where:

• ct ← Enc(1λ, V = (vk1, . . . , vkn), (Ti)i∈[ℓ], (mi)i∈[ℓ]): The encryption algorithm takes as
input a set V of n verification keys of the underlying scheme Sig, a list of reference signing
messages Ti and a list of messages mi of arbitrary length ℓ ∈ poly(λ). It outputs a
ciphertext ct.

• m ← Dec(ct, (σi)i∈[ℓ], U, V): The decryption algorithm takes as input a ciphertext ct, a
list of aggregate signatures (σi)i∈[ℓ] and two sets U, V of verification keys of the underlying
scheme Sig. It outputs a message m.

You may think of reference messages as messages that you are convinced will be signed at a
later point in time - in practice, we will consider block numbers that a committee will sign when
extending the blockchain.

We require such a scheme to fulfill two properties: robust correctness and security. The idea
here is modelling fine-grained access; When we encrypt messages mi under reference messages

12

Ti, then to decrypt mind at a specific index ind, it suffices to get an aggregated signature of Tind

under at least t keys. However, even if we get such signatures on other Ti, if we do not get
one on Tind, then mind stays hidden. In practice this can be used to unlock different parts of a
message at different points in the future with just one ciphertext being transferred.

Definition 18 (Robust Correctness). A t-out-of-n SWE scheme SWE = (Enc,Dec) for an
aggregate signature scheme Sig = (KeyGen,Sign,Vrfy,Agg,AggVrfy,Prove,Valid) is correct if for
all λ ∈ N and all ℓ = poly(λ) there is no PPT adversary A with more than negligible probability
of winning in the following experiment:

• A outputs an index ind ∈ [ℓ], a set of keys V = (vk1, . . . , vkn), a subset U ⊆ V with
|U | ≥ t, message lists (mi)i∈[ℓ], (Ti)i∈[ℓ] and a signature σind.

• A wins, iff AggVrfy(σind, U, (Tind)i∈[|U |]) = 1 and

Dec(Enc(1λ, V, (Ti)i∈[ℓ], (mi)i∈[ℓ]), (σi)i∈[ℓ], U, V)ind ̸= mind

Definition 19 (Security). A t-out-of-n SWE scheme SWE = (Enc,Dec) for an aggregate signa-
ture scheme Sig = (KeyGen,Sign,Vrfy,Agg,AggVrfy,Prove,Valid) is secure if for all λ ∈ N, such
that t = poly(λ), and all ℓ = poly(λ), subsets SC ⊆ [ℓ], there is no PPT adversary A that has
more than negligible advantage in the experiment ExpSec(A, 1λ) described in the following:

1. Let Hpr be a fresh hash function from a keyed family of hash functions, available to the
experiment and A.

2. The experiment generates n−t+1 key pairs for i ∈ {t, . . . , n} as (vki, ski)← Sig.KeyGen(1λ)
and provides vki as well as Sig.Prove

Hpr(vki, ski) for i ∈ {t, . . . , n} to A.
3. A inputs V C = (vk1, . . . , vkt−1) and (π1, . . . , πt−1). If for any i ∈ [t−1], Sig.Valid(vki, πi) =

0, we abort. Else, we define V = (vk1, . . . , vkn).
4. A gets to make signing queries for pairs (i, T). If i < t, the experiment aborts, else it

returns Sig.Sign(ski, T).
5. The adversary announces challenge messages m0

i ,m
1
i for i ∈ SC, a list of messages

(mi)i∈[ℓ]\SC and a list of signing reference messages (Ti)i∈[ℓ]. If a signature for a Ti with
i ∈ SC was previously queried, we abort.

6. The experiment flips a bit b←$ {0, 1}, sets mi = mb
i for i ∈ SC and sends Enc(V, (Ti)i∈[ℓ],

(mi)i∈[ℓ]) to A.
7. A gets to make further signing queries for pairs (i, T). If i ≥ t and T ̸= Ti for all i ∈ SC,

the experiment returns Sig.Sign(ski, T), else it aborts.
8. Finally, A outputs a guess b′.
9. If b = b′, the experiment outputs 1, else 0.

We define A’s advantage by AdvASec = Pr
[
ExpSec(A, 1λ) = 1

]
− 1

2 .

Definition 20 (Verifiable Signature-based Witness Encryption). A scheme SWE = (Enc,Dec,
Prove,Vrfy) is a verifiable SWE for relation R, if Enc,Dec are as above and Prove,Vrfy are a
NIZK proof system for a language given by the following induced relation R′:

(V = (vk1, . . . , vkn), (Ti)i∈[ℓ], ct), ((mi)i∈[ℓ], r, w)) ∈ R′ ⇔
ct = Enc(1λ, V, (Ti)i∈[ℓ], (mi)i∈[ℓ]); r) and (m,w) ∈ R,

where m =
∑
i∈[ℓ]

2(i−1)kmi

13

4 The McFly protocol

In this section, we describe how to build a general-purpose time-release encryption mechanism,
that we call McFly, by integrating a verifiable signature based witness encryption SWE′ with a
blockchain. The time-release mechanism is available to all users of the underlying blockchain.
This allows for countless complex applications with a minimal overhead. First we introduce a
formal model for the underlying blockchain and then we give a concrete instantiation of the
McFly protocol. Later, we discuss concrete applications that can take advantage of the time-
release encryption mechanism provided by the combination of SWE and the blockchain.

4.1 Formal model

In this section we introduce a simplified model for blockchains in the form of the BCλ,H func-
tionality reflecting the requirements introduced in Section 1.1.

Functionality BCλ,H

Initialization

T := ()
ctr := 0
C := ∅ ▷ Set of corrupted parties
Wait until (Corrupt, ·) is called by adversary
for i ∈ [n] do

if i ̸∈ C then
Draw (ski, vki)← Sig′.KeyGen(1λ)
Output πi ← Sig′.Prove(vki, ski) to the adversary.

end if
end for
V := {vki}i∈[n]

Public Interface

Input: (QueryAt, CTR)
if CTR ≤ T.len() then

return T[CTR]
end if

Input: (QueryTime)
return T.len()

Input: (QueryKeys)
return V

Interface for adversary

Input: (Corrupt, C ′, {vk′i}i∈C′ , {πi}i∈C′) ▷ This can be called once during initialization,
modelling static corruption
if |C ′| ≤ c and C ′ ⊂ [n] and Sig′.ValidHpr(vk′i, πi) for i ∈ C ′ then
C := C ′

for i ∈ C do

14

Set vki = vk′i
end for

end if
Input: (Tick,m)
ctr+ = 1
for i ∈ ([n] \ C) do

Output (σi)← Sig′.Sign(ski, H(ctr)) to adversary
Output (σ′

i)← Sig′.Sign(ski, H(ctr,m)) to adversary
end for
Set S := [n] \ C.
Await input (C ′, (σi)i∈C′) from adversary
if for all i ∈ C ′, Sig′.Vrfy(vki, H(ctr), σi) = 1 then

S := S ∪ C ′.
end if
Append (Sig′.Agg((σi)i∈S , (vki)i∈S), (vki)i∈S) to T.

Restrictions on the adversary

For each round ri, the adversary is required to send a message (Tick,m) for some block
content m within time ∆τ .

As we are modelling BFT blockchains and blockchains coupled with a finality layer, all
the blocks in our abstraction are final and cannot be rolled-back. Parties only require the
signatures of the committee members on the block counter to decrypt ciphertexts, thus the
blockchain in our model simply consists of a list T containing these signatures. We keep a
counter ctr representing the current number of blocks produced. Our model takes a security
parameter λ and two hash functions H,Hpr as parameters.

Let the number of committee members be n and the corruption threshold of the adversary
be c < n/2. We allow the adversary to corrupt up to c parties statically - that is they may chose
their signing keys in the beginning of the execution and input the signatures used in making
the aggregated signatures on block counter for these parties later on. We additionally require
a proof of knowledge for the public keys of committee members. Further, the adversary gets to
decide when to make a new block (up to delay ∆τ per round) by calling Tick, - we allow them
full control over the content of these blocks, except for the fixed block counters. They also get
to see all unagreggated signatures by the honest parties.

4.2 Protocol guarantees

Let L0 be an NP language defined by relation R0 via m ∈ L0 ⇔ ∃w s.t. (m,w) ∈ R0. Our
protocol McFly consists of five algorithms (Setup,Enc,Dec,Prove,Vrfy) in a hybrid model where
access to the public interface of the functionality BC = BCλ,H is assumed with committee size
n = poly(λ) and corruption threshold c < n/2. The syntax of these algorithms is as follows:

CRS ← Setup(1λ): The setup algorithm takes a security parameter λ. It outputs a common
reference string CRS.

ct ← EncBC(1λ,m, d): The encryption algorithm takes a security parameter λ, a message m
and an encryption depth d. It outputs a ciphertext ct.

m← DecBC(ct, d): The decryption algorithm takes a ciphertext ct and an encryption depth d.
It outputs a message m.

15

π ← ProveBC(1λ,CRS, ct,m, d, w0, r): The proving algorithm takes a security parameter λ, a
common reference string CRS, a message m, an encryption depth d and a witness w0. It
outputs a proof π.

b ← VrfyBC(CRS, ct, π, d): The verification algorithm takes a common reference string CRS, a
ciphertext ct, a proof π and an encryption depth d. It outputs a bit b.

We will prove the following security guarantees for McFly, which are inspired by traditional
time-lock puzzles:

Definition 21 (Correctness). A protocol McFly = (Setup,Enc,Dec,Prove,Vrfy) is correct, if for
any parameter λ, message m, depth d, and algorithm A running the adversarial interface in BC,
if ct ← EncBC(1λ,m, d) is run at any point and McFly.DecBC(ct, d) is run, when the number of
finalized blocks BC.QueryTime is at least d, it will output m, except with negligible probability.

Definition 22 (Security). A protocol McFly = (Setup,Enc,Prove,Vrfy,Dec) is secure, if for any
parameter 1λ and committee size n = poly(λ), corruption threshold c < n/2 there is no PPT
adversary A with more than negligible advantage in the experiment ExpLock(A, 1λ) described in
the following:

1. The experiment computes CRS← Setup(1λ) and outputs it to A.
2. A gets to use the adversarial interface in BC, which is run by the experiment.
3. At some point, A sends two challenge messages m0,m1 and a depth d > 0. |m0| = |m1|

must hold.
4. The experiment draws b←$ {0, 1}.
5. Run ct← EncBC(1λ,mb, d) and send ct to A.
6. A can submit a bit b′ at any point while ctr < d in BC
7. Once ctr ≥ d on BC with no prior input from A, b′ ←$ {0, 1} is set instead.

The advantage of A in this experiment is defined as AdvALock = |Pr [b = b′] |

Note that there are two different points in time in Tick that we use in these guarantees - The
moment ctr is incremented can be seen as the point in time where it is clear that an agreement
was reached among the committee, and that a new finalized block will be added. The addition of
the aggregated signatures to T symbolizes the point in time where the finalized block (including
the committee signatures) becomes available to all honest users on the blockchain (even outside
of the committee). We point out that our synchronous network model guarantees that all
honest parties receive the messages of other honest parties by the end of each round. However,
the best practical guarantee that we can hope to achieve is that an adversary corrupting up
to n/2 − 1 committee members is unable to decrypt a ciphertext before seeing any honest
member’s signature. However, this might occur before a block is made available to honest
users. In practice, such a gap exists naturally, as we also need to account for communication
and network delay. We additionally require a verifiability property:

Definition 23 (Verifiability). A protocol McFly = (Setup,Enc,Dec,Prove,Vrfy) is verifiable for
an NP language L0 with witness relation R0, if (Prove,Vrfy) is a NIZK proof system for a
language L′ given by the following induced relation R′:

(V =(vk1, . . . , vkn), d, ct), (m, r,w0)) ∈ R′ ⇔
ct = McFly.Enc(1λ,m, d; r, V) ∧ (m,w0) ∈ R0.

16

Here, Enc(. . . ; r, V) denotes, that the randomness used is r and the keys obtained from the
blockchain are V .

Note that this guarantees that (1) a receiver of a verifying pair (ct, π) can be sure to retrieve
an output after block d was made and the output will be in L0 and (2) outputting π alongside
ct reveals no further information.

4.3 Protocol description

Next, we give a formal description of the McFly protocol. Let COM = (Setup,Commit,Vrfy) be
a Pederson commitment, H be the hash function in BC and H2 be another hash function. H,H2

are implicitly made available in all calls to SWE′, which is set up for parameters t = n/2 out of
n. k is the upper bound on the message lengths for SWE′6. We now describe the algorithms of
McFly:

Setup(1λ): Return COM.Setup(1λ).
McFly.EncBC(1λ,m, d):

• Obtain the keys V by calling QueryKeys to BC.
• Split m = (mi)i∈[ℓ] where mi are from {0, . . . , 2k − 1} with m =

∑
i∈[ℓ] 2

(i−1)kmi.

• Call ct← SWE′.Enc(1λ, V, (H(d))i∈[ℓ], (mi)i∈[ℓ]).
• Output ct.

McFly.Dec(ct, d)BC :

• If QueryTime returns a number smaller than d, abort.
• Get (σ, U) by calling (QueryAt, d) and V by calling QueryKeys to BC.
• Call (mi)i∈ℓ ← SWE′.Dec(ct, (σ)i∈[ℓ], U, V).

• Output m =
∑

i∈[ℓ] 2
(i−1)kmi.

McFly.ProveBC(1λ,CRS, ct,m, d, w0, r):

• Obtain the keys V by calling QueryKeys to BC.
• Split m = (mi)i∈[ℓ] such that m =

∑
i∈[ℓ] 2

(i−1)kmi.

• Call π ← SWE′.Prove(CRS, V, (H(d))i∈[ℓ], ct, (mi)i∈[ℓ], w0, r).
• Output π.

McFly.VrfyBC(CRS, ct, π, d):

• Obtain the keys V by calling QueryKeys to BC.
• Output b← SWE′.Verify(CRS, V, (H(d))i∈[ℓ], ct, π).

Note, that, while for simplicity we considerMcFly to encrypt only one message to one specific
block height (in the future), we could easily use the same encryption procedure to encrypt
multiple messages to different heights by setting corresponding subsets of the references Ti in
our call to SWE′ to each of these heights. This could be useful in applications, where we want
a set of messages transferred that unlock at different points for a multi-step protocol.

4.4 Proofs

In this section we show that the McFly protocol satisfies the definitions of Section 4.2.

Theorem 1. McFly is correct, given that SWE′ has robust correctness.

6The size limit is required for efficient decryption. Check Section 6, where we give a construction of an SWE
for more information

17

Proof. Let a parameter λ, some CRS ← Setup(1λ), a message m∗, a depth d and an algorithm
A be given. Let ct← EncBC(1λ,m∗, d) at any point.

We show that ifMcFlyBC .Dec(ct, d) is run, when the number of finalized blocks BC.QueryTime
is greater or equal d, it outputs m. By construction, we have ct← SWE′.Enc(CRS, V, (H(d))i∈[ℓ],
(m∗

i)i∈[ℓ]), where V is the (static) set of keys obtained from BC and (m∗
i)i∈[ℓ] is the result of

splitting m∗ into chunks from {0, . . . , 2k − 1}.
In our call to Dec, since BC.QueryTime is greater or equal d, we can call (QueryAt, d) and

receive (σ, U), which is by definition, such that (σ, U) = (Sig′.Agg((σi)i∈S , (vki)i∈S), (vki)i∈S),
where for all i ∈ [S] Sig′.Vrfy(vki, H(d), σi) = 1. By correctness of Sig′, it holds Sig′.AggVrfy(σ,
U, (H(d))i∈[S]) = 1. We then call m← SWE′.Dec(ct, (σ)i∈[ℓ], U, V).

Now, if there was an index ind such that mind ̸= mind
∗, forwarding that ind, V , U , (mi)i, (Ti)i

and σ to the experiment for robust correctness of SWE′ would constitute a winning adversary.
Thus, except with negligible probability m = m∗, concluding the proof.

Theorem 2. McFly is secure given that SWE′ is secure and H is collision resistant.

Proof. Let λ, committee size n = poly(λ) and a corruption threshold c < n/2 be given. Let us
assume towards contradiction, that there is an adversary A with non-negligible advantage ε in
ExpLock(A, 1λ).

First, we discuss a hybrid game H1: It corresponds to the real experiment, but once we
received d from A, if A has received a signature on H(d) before, we abort. If they query on
a signature on that message afterwards, we also abort. If A had a non-negligible advantage in
differentiating H1 from the experiment, they would have to have a non-negligible advantage in
causing an abort. If this were the case, we could directly build a reduction against collision
resistance of H.

Thus, we now assume we have an adversary who wins in H1 with non-negligible probability.
We describe a reduction to security of SWE′ for t = n/2 out of n for the set of indices S = [n]
at which the challenge message is included. W.l.o.g. we assume n is even.

• The reduction gets access to Hpr from the experiment and sets up BC with access to Hpr.
• It computes CRS← Setup(1λ) and outputs it to A.
• It honestly simulates BC to A, except in the way it generates the keys and answers signing
queries.

• In the initialization:

– Let C ′ be the indices of malicious keys chosen by A and set C̄ = [n] \ C ′. Let
V ′ = (vki)i∈C′ be the malicious keys and πi the corresponding proofs.

– The reduction receives n/2 + 1 keys VE = vk′i from the experiment and sets the
first n/2 + 1 of the honest keys (vki)i∈C̄ , to be these vk′i. If the adversary chose
|C ′| < n/2 − 1, the remaining honest keys are generated by Sig′.KeyGen and saved
as VR. The proofs of validity for keys in VE are received from the experiment and
for VR, the reduction computes them honestly.

• For signing:

– For keys in VR we sign honestly.
– For keys in VE we relay signing queries to the experiment.

• Then, we output VR∪V ′ as challenge keys to the experiment, where we receive the validity
proofs for V ′ from A. These verify by definition of BC.

• We receive messages m0,m1 and a depth d > 0 from A. We choose (m0
i)i ∈ [ℓ] as a split

of m0 and (m1
i)i ∈ [ℓ] as a split of m1. We output (mi)i and Ti = d for all i ∈ [ℓ] to the

experiment.

18

• We receive back a ciphertext ct that we forward to A.
• Now, if A outputs a bit b in time, we output it to the experiment. Otherwise, we output
a random bit.

Note, that by our abort conditions, we have not asked for a signature on Tind before outputting
it nor afterwards, causing the interaction with the experiment to run through.

If the experiment chooses bit b′, our output is identically distributed to running H1 with
b = b′. Since we also guess randomly, if A does not output a bit, that means, that we get the
same advantage as A does in H1. Assuming security of SWE′, that concludes the proof.

Theorem 3. McFly is verifiable, given that SWE′ is a verifiable SWE.

This follows immediately by the definition of McFly.Enc and verifiability of SWE′, as we only
invoke the underlying NIZK proof system.

4.5 Integration with Casper

Luckily, many widely deployed systems [17, 12, 28] can be easily modified to satisfy our require-
ments. As a concrete example, we discuss the changes necessary to work with Ethereum 2.0
running with the Casper finality layer [12].

Casper is a finality layer running on top of the Ethereum blockchain. In the simple version
of the Casper protocol described in [12], there is a fixed committee for the entire duration of
the protocol. The members of the committee can cast votes on the blocks they believe to be
final by signing blocks using their signing keys. Once a majority of the committee votes on the
same block it becomes final. According to metrics gathered from beaconscan.com, the Casper
protocol running on the Ethereum 2.0 network produces a new final block roughly every 15
minutes, thus it also satisfies the near-constant block production rate.

Next, we describe all the changes needed to make McFly run on Ethereum 2.0 + Casper:

• Since Casper already uses BLS signatures, there are two possible alternatives. (1) The com-
mittee of Casper adopts the aggregation mechanism described in Section 5, or alternatively
(2) decryptors obtain the unaggregated signatures themselves (which is already possible with
the Ethereum beacon chain)7. In the latter case, signature aggregation can be performed
locally at the decryptor and hence no modifications are necessary. One could also envision
dedicated aggregation servers when the system is widely adopted.

• For each finalized block the committee additionally signs a counter r that represents the
number of finalized blocks.

• The public keys of the committee members must have a proof of knowledge. This can be
achieved, e.g., by registering the keys with a PKI.

Extension for dynamic committees A fixed committee can be a security risk for a finality
layer deployed in the wild as committee members usually become target of attacks. Hence,
finality layers advocate for a short-lived dynamic committee [17], mitigating this risk. When
adapting the time-release encryption mechanism described above to dynamic committees, an
immediate limitation is how far in the future it is possible to encrypt. To encrypt a message
to a future counter r′, the verification keys of the committee members responsible for finalizing
the r′-th block need to be known. Hence, one can only encrypt a message for as far in the
future as the committees are currently known. Moreover, in the period where the current

7See https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/p2p-interface.md#

attestation-subnets

19

https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/p2p-interface.md#attestation-subnets
https://github.com/ethereum/consensus-specs/blob/dev/specs/phase0/p2p-interface.md#attestation-subnets

committee is about to be replaced and the next committee is not yet known, the limitation
becomes more severe. However, this can be mitigated by considering interleaved committees for
the finality layer; one committee starts to be active at the middle of the lifetime of the other,
and both committees independently run the protocol - this ensures a smooth transition between
committees.

4.6 Applications

In this section we describe two applications that can be easily built using the McFly protocol.

Decentralized Auctions An auction is a process of trading goods for bids, and it is run
among an arbitrary number of bidders, that post bids to acquire the good, and an auctioneer
that determines the winner of the auction. At the beginning of the auction, all bidders submit
their bid to the auctioneer, that eventually checks all the bids to determine the winner. If the
auctioneer is not fully honest, it is easy to see that the outcome of the auction cannot be trusted,
as there are no guarantees that the winner of the auction is indeed the highest bidder. Therefore,
protocols for decentralized auctions (or auctioneer-free protocols) are of great interest.

Here we focus on sealed-bid auctions that are run exclusively on a blockchain, i.e., the
communication of the parties happens only through blockchain transactions. Additionally, the
set of parties running the blockchain and bidding on the auction can overlap, making it profitable
for malicious parties to, e.g., not include bids that are greater than their own.

One difficulty in realizing decentralized auctions in blockchains, as noted in [15], is that a
bid transaction should be self-contained, i.e., the auction protocol should be able to terminate
and determine the correct winner after collecting all bid transactions. Particularly, this rules
out solutions where the bid transaction is a commitment to the real bid, and later an opening
to this commitment is sent. The reason is that if no opening is ever received, it is not possible
to determine if the opening was suppressed by malicious parties in the blockchain or a malicious
bidder is refusing to open his bid to DoS the auction. This is handled in [15] by including in the
bidding transaction a time-lock puzzle containing the opening of the commitment to the bid;
whenever an opening is not received, the auction can still terminate by solving the time-lock
puzzles and retrieving the bids.

However, as discussed in the introduction, time-lock-puzzle type primitives are wasteful in
computational resources and difficult to set parameters for. Usually a reference hardware is used
to measure the ”fastest possible” time that it takes to solve a single operation of the puzzle
(e.g., modular squaring), and then this is used as a reference to set the security parameters.
Moreover, in a heterogeneous and decentralized system such as a blockchain, where hardware
can have a gap of many orders of magnitudes in speed, an approach like this could render the
system unusable.

In contrast, with the proposed time-release encryption mechanism, we can easily realize the
same auction as [15] without any overhead on the blockchain, by simply encrypting the bids
for a future block. We give below a high level description on how to implement a decentralized
auction.

An auction run consists of a bidding phase, where all the participants post their bids, and
a final phase where the winner is announced. For an auction round, let the bidding phase start
at final block number r in the underlying blockchain, and span through a sequence of ℓ final
blocks, finishing at final block r + ℓ. After final block r + ℓ a winner can be announced and
the auction round can terminate. During the bidding phase, all parties will encrypt their bids
with respect to the committee members’ verification keys and to the counter r + ℓ. After this
final block is signed by the committee, the signature can be used as the witness to decrypt all
the bids, making it possible to publicly verify who the auction winner is. Note that with this

20

simple approach there is no bid privacy for the losing bids, as all the bids are opened at the end
of the auction run.

Randomness Beacons A randomness beacon is a tool that provides public randomness at
predefined intervals. Blockchains can be a great source of randomness to build decentralized
randomness beacons, where distrustful parties contribute to the randomness output by the
beacon. One known problem with using blockchains for building randomness beacons is that
malicious parties could somehow manipulate the contents to be included in the blockchain as a
way to introduce bias in the beacon output. For that, some solutions [24, 6, 1] leverage the use of
verifiable-delay functions (VDF) to delay the output of the beacon, such that malicious parties
do not have enough time at their disposal to be able to bias the randomness. However, VDFs
carry the same drawbacks as time-lock puzzles; they are wasteful and it is usually hard to set
parameters that result in a secure and usable system. As the role of VDFs in these randomness
beacon constructions is simply to hide information from the parties for a predetermined period of
time, with only minor modifications one could replace the VDFs for our time-release encryption
mechanism in [24, 6, 1] to get randomness beacons with almost no overhead on the blockchain.

5 BLS signatures with modified aggregation

In this section we describe a modified BLS signature scheme. Looking ahead, this scheme will
be used as a building block when we instantiate SWE in Section 6. The key generation, signing
and verification algorithms will be identical to regular BLS signatures.

5.1 Construction

Our system parameters include two base groups G1,G2 of prime order p with generators g1, g2
which have a bilinear map e : G1 × G2 → GT into a target group GT with generator g. Also
we assume full-domain hash functions H : {0, 1}∗ → G1 and H2, Hpr : {0, 1}∗ → Zp. Let
(Schnorr.Prove,Schnorr.Valid) be the non-interactive variant of the well-known Schnorr proofs
due to Fischlin [20] discussed in Section 2.

The algorithms of our aggregateable multi-signature scheme Sig′ = (KeyGen,Sign,Vrfy,Agg,
AggVrfy,Prove,Valid) are given as follow.

Sig′.KeyGen(1λ):

• Randomly pick x←$ Zp.
• Output (vk = g2

x, sk = x).

Sig′.Sign(sk, T):

• Output H(T)sk.

Sig′.Vrfy(vk, T, σ):

• Compute h = H(T).
• If (e(σ, g2) = e(h, vk)), output 1, else output 0.

Sig′.Agg((σ1, . . . , σk), (vk1, . . . , vkk)):

• Compute ξi = H2(vki) for i ∈ [k].

• Compute Li =
∏

j∈[k],i ̸=j
−ξj
ξi−ξj

for i ∈ [k].

• Output σ ←
∏

i∈[k] σ
Li
i .

Sig′.AggVrfy(σ, (vk1, . . . , vkk), (T1, . . . , Tk)):

• If e(σ, g2) =
∏

i∈[k] e(H(Ti), vki)
Li , output 1. Output 0 otherwise.

21

Sig′.Prove(vk, sk):

• Output Schnorr.ProveHpr(vk, sk).

Valid(vk, π):

• Output Schnorr.ValidHpr(vk, π).

It is shown in the random oracle model in [20], that Schnorr.Prove and Schnorr.Valid fulfill
the requirements for a zero-knowledge proof of knowledge for keys with a discrete logarithm
relation, as is the case here.

Alternatively, a standard proof of possession as used in [29] can be used in the construction of
Sig′. This still allows us to use Sig′ in the further constructions of SWE and McFly. The proof
of possession achieves weaker but similar guarantees to the proof of knowledge requirement
that are sufficient for the further proofs, if we additionally make the knowledge of exponent
assumption. The resulting algorithms would then be:

Prove(vk, sk):

• Outputs Sig′.SignHpr(sk, ⟨vk⟩).
Valid(vk, π):

• Check whether Sig′.VrfyHpr(vk, ⟨vk⟩, π).
• If so, output 1, else ⊥.

As the construction and proofs are more straight-forward using Schnorr, we will focus on this
case in the main body. We provide a discussion on using proofs-of-possession in Appendix A.

5.2 Proofs

We will now show that Sig′ fulfills the requirements for aggregateable multi-signatures stated in
Section 2. We have discussed that (Sig′.Prove, Sig′.Valid) constitutes a valid proof of knowledge
for the key relation already.

Theorem 4. Sig′ is correct.

Proof. The first part of correctness follows directly from [10] as the algorithms and definitions
are identical to standard BLS.

Let λ ∈ N, k = poly(λ), messages T1, . . . , Tk a set of public keys V = (vk1, . . . , vkk)
and signatures σ1, . . . , σk be given such that Vrfy(vki, Ti, σi) = 1 for i ∈ [k]. This means it
holds e(σi, g2) = e(H(Ti), vki) for i ∈ [k]. Let σ ← Agg((σ1, . . . , σk), V). We need to show
AggVrfy(σ, V, (T1, . . . , Tk)) = 1.

By construction, the aggregated multi-signature is σ =
∏

i∈[k] σ
Li
i for Li as defined in our

algorithm. Now, in our call to AggVrfy, it holds

e(σ, g2) = e(
∏
i∈[k]

σLi
i , g2) =

∏
i∈[k]

e(σi, g2)
Li =

∏
i∈[k]

e(H(Ti), vki)
Li .

Therefore, the output is 1.

Theorem 5. Assume that H is modelled as a random oracle. Sig′ is unforgeable, given that
the computational Co-Diffie-Hellman assumption holds for (G1,G2).

22

Proof. Our proof takes some ideas from [29] and [9], but mainly works due to the extractability
of Schnorr. We will regard adversaries A that will be allowed to make only polynomially many
qS queries for signatures.

We assume that A has non-negligible winning probability ε and will only output a forge
(T1, . . . , Tk), (vk2, . . . , vkk), (π2, . . . , πk), σ

∗ where Valid(vki, πi) = 1 for all i ∈ {2, . . . , k} and
T1 was not queried to the signing oracle, otherwise they would not be able to win in the
unforgeability experiment. Assuming control over the random oracle, we can use the fact that
(Prove,Valid) constitutes an extractable proof of knowledge.

We define a reduction against co-CDH:

The challenger receives a tuple g1, h1 = gx1 , g2, h2 = gx2 , h with the public parameters g1, g2 as
generators and is required to output hx.

The experiment executes (Hpr, τ0)← S(0, 1λ) and provides oracle access to Hpr to A.
The adversary gets access to the publicly known G1,G2, g1, g2, H2. Queries to the hash function

H are being programmed by the reduction.
The reduction provides as public key vk∗ = h2 to A.
Any queries to H are answered as follows:

• If the message T was previously queried, we respond as before.
• Else, with probability δ we select its hash as h · gθ1 for random θ ←$ [p] and save T
to a special list C.

• Otherwise, we select its hash as gθ1 for random θ ←$ [p]
• In both cases, we save A[T] = θ

IfA queries for a proof of knowledge for vk∗ we call (H1, π
∗, τ ′)← S(1, vk∗, τ, YES), respond with

π∗ and replace the oracle Hpr by H1 in future calls. By zero-knowledge of Schnorr, this
is indistinguishable from the real experiment’s output except with negligible probability.
We note, that all vk ∈ G2 actually have a valid secret key, making the YES call justified.

Any queries to the signing oracle for a message T under vk∗ are answered as follows:

• We determine H(T).
• If T is in the special list C, we abort.
• Otherwise, we know the hash H(T) = gθ1.
• We output as signature hθ1. Since h1 = gx1 for some x such that vk = h2 = gx2 , this is
simply gθx1 = H(T)x, which is a valid signature under vk.

Once we receive (T1, . . . , Tk), (vk2, . . . , vkk), (π2, . . . , πk), σ
∗ from A,

• For i ∈ {2, . . . , k}, we call the PPT extractor E(vki, πi, QA) where QA are the queries
to Hpr so far.

• Since Valid(vki, πi) holds by assumption, we can extract the ski except with negligible
probability and save them to a table P [vki] = ski. If we fail to extract for any index,
we abort.

• We check whether T1 is on the list C and whether σ∗ is a valid forge. If this is not
the case, we abort.

• If any of the keys vk2, . . . , vkn is equal to vk∗, the adversary may not have asked
for our simulated proof on vk∗ and therefore must have given a proof of their own
which we extracted from - we have x = P [vki] for that key by definition and thus
can output hx directly.

• Otherwise, it holds e(σ∗, g2) =
∏

i∈[k] e(H(Ti), vki)
Li where we consider vk∗ = vk1.

• Now for i ∈ {2, . . . , k}, we can make partial signatures σi = H(Ti)
P [vki]Li with

e(σi, g2) = e(H(Ti), vki)
Li .

23

• We set σ′ to be σ∗/
∏

i∈{2,...,k}(σi). Now, it clearly holds e(σ′, g2) = e(H(T1), vk1)
L1 .

Therefore, σ′ = (h · gA[T1]
1)xL1 and we output

(
σ′

h
A[T1]L1
1

)−L1

= hx. This holds as

h1 = gx1 .

Clearly, if no abort occurs, the output is indeed hx.
Now, what is the success probability? Assume the adversary A has advantage ε in winning

the unforgeability experiment. If they win, they can either query us for a proof on vk∗ or be
able to include vk∗ in their forge.
A can only succeed, if its combined probability of successfully registering all keys vk2, . . . , vkk

it chooses is at least ε, making every one of these probabilities non-negligible. By extractability
of our proof of knowledge and a union bound, this means we can extract all secret keys in
polynomial time except with negligible probability. We note that since the hashes and vk∗

are distributed uniformly random, this looks indistinguishable from the real experiment for A
unless they request a signature for one of the messages where T is in C. This probability can be
bounded by (1− δ)qS , assuming A only queries for messages once, as the probability is clearly
independent for every message requested. Conditioned on no such request being made, we have
a probability of ε of the adversary winning. Since the hash(es) which we created as h · gθ1 are
i.i.d. in the view of A, we then have a probability of δ of the first message m1 in fact being
such that we don’t abort.

This gives us a winning probability negligibly worse than (1− δ)qS · δ · ε. By appropriately
choosing δ = 1/qS we get (1− 1/qS)

qS · 1/qS · ε ≥ 0.1/qS · ε, assuming that qS ≥ 2, as (1− 1/x)x

converges to 1/e in a strictly increasing manner. Therefore the advantage of the reduction will
be non-negligible, if ε is not negligible.

The reduction is clearly running in polynomial time if A is.

6 Construction of Signature-based Witness Encryption

In this section we provide an instantiation for a t-out-of-n SWE scheme that is compatible with
the modified BLS signature scheme defined in the previous section. Its security is based on
the bilinear Diffie-Hellman assumption. Our construction is specifically optimized to push as
many operations as possible into the source group G2. This leads to significant performance
improvements over a naive approach if we choose G2 to be the one of the two source groups for
which group operations are cheaper.

6.1 Construction

We give the formal description next.

SWE.Enc(1λ, (vkj)j∈[n], (Ti)i∈[ℓ], (mi)i∈[ℓ]):

• Choose random values rj ←$ Zp for j ∈ {0, . . . , t− 1} .
• Let f(x) =

∑t−1
j=0 rj · xj . This will satisfy f(0) = r0.

• For j = 1, . . . , n set sj = f(ξj), where ξj = H2(vkj).
• Compute c = gr2.
• Choose h← G2 uniformly at random.
• Compute c0 = hr · gr02 .
• For j = 1, . . . , n compute cj = vkrj · g

sj
2 .

• For i = 1, . . . , ℓ c′i = e(H(Ti), g
r0
2) · gmi

T .

24

• Output ct = (h, c, c0, (cj)i∈[n], (c
′
i)i∈[ℓ]).

SWE.Dec(ct, (σi)i∈[ℓ], U, V):

• Parse ct = (h, c, c0, (cj)j∈[n], (c
′
i)i∈[ℓ]).

• Parse V = (vk1, . . . , vkn).
• Parse U = (vk′1, . . . , vk

′
k). If k < t or U ̸⊆ V abort.

• Define as I the indices j ∈ [n] such that vkj ∈ U .
• Compute ξj = H2(vkj) for j ∈ I.

• Compute Lj =
∏

i∈I,i ̸=j
−ξi
ξj−ξi

for i ∈ I.

• Compute c∗ =
∏

j∈I c
Lj

j .
• For i = 1, . . . , ℓ compute zi = c′i · e(σi, c)/e(H(Ti), c

∗).
• For i = 1, . . . , ℓ compute m′

i = dloggT (zi).
• Output (m′

i)i.

Notice here, that we only do the expensive computation of c∗ once. This is on the condition
that in the use of our protocol, the sets of signers are the same for all Ti. If they aren’t or only
some of the multi-signatures σi are given, it is still possible to compute the mi for which we
have signatures on Ti, but we may have to compute c∗ for all relevant sets U of signers.
In order to enable an efficient interface to a commitments scheme (see Section 7.2), the redundant
terms h and c0 are computed by encryption. Further, we choose mi from Zp to enable the usage
of efficient bulletproofs to go with these commitments. Note that the extraction of the discrete
logarithm does not cause a large overhead as we use the baby-step giant-step methodology
(compare Section 8).

6.2 Efficiency

We will briefly analyze the number of group operations in each group required for encryption
and decryption. We regard the number of n and ℓ to be fixed and give upper bounds on the
operations needed. We require no multiplications or exponentiations in G1. In practice G1 and
G2 can be reversed if G1 is more efficient in a given implementation.

encryption decryption

evaluations of H,H2 ℓ, n ℓ, n
multiplications, exponentiations in G2 n, 2 + 2n n− 1, n
multiplications, exponentiations in GT ℓ, ℓ 2ℓ, 0

pairing evaluations ℓ 2ℓ
dlog in GT 0 ℓ

6.3 Proofs

We will now show SWE fulfills the requirements for a signature-based witness encryption.

Theorem 6. SWE for the signature scheme Sig′ has robust correctness, given that H2 is collision
resistant.

Proof. Let λ ∈ N, ℓ = poly(λ) be given. Let us assume towards contradiction, that there is an
adversary A with non-negligible winning probability against the experiment.

Let us consider a hybrid H1: It is identical to the experiment, except if H2(vki) = H2(vkj)
for any i, j ∈ [n], i ̸= j, we abort. Clearly, except with negligible probability running H1 with
A has the same outcome as the original experiment. Otherwise, we could build a reduction
against the collision resistance of H2.

25

We now show, that in H1, the probability of winning for the adversary is 0. Let any index
ind ∈ [ℓ], keys V = (vk1, . . . , vkn), a subset U ⊆ V with |U | ≥ t, reference messages (Ti)i∈[ℓ],
messages (mi)i∈[ℓ] and σind be given by A. Let I be the set of all indices i for which vki ∈ U .

We note, that since g2 is a generator of G2, there exist xi such that vki = gxi
2 for i ∈

[n]. We assume AggVrfy(σind, U, (Tind)i∈[|U |]) = 1, that is e(σind, g2) =
∏

i∈[k] e(H(Tind), vki)
Li .

Otherwise, A could not win. We now show that

Dec(Enc(1λ, V, (Ti)i∈[ℓ], (mi)i∈[ℓ]), (σi)i∈[ℓ], U, V)ind = mind

The ciphertext ct = (h, c, c0, (cj)j∈[n], (c
′
i)i∈[ℓ]) = Enc(1λ, V, (Ti)i∈[ℓ], (mi)i∈[ℓ]) has the rele-

vant components for decryption c = gr2, cj = vkrj · g
sj
2 for j ∈ [n] and c′i = e(H(Ti), g2)

r0 · gmi

for i ∈ [ℓ], where sj = f(ξj) for a polynomial such that f(0) = r0.
Now, the ξj , Lj computed by Dec are identical to those used in Enc and in Sig′.Sign. Note

that since no two distinct vkj ̸= vkj′ collide under H2, the support points ξj = H2(vkj) are all
distinct and |I| ≥ t so Lagrange interpolation will correctly recover r0 from the sj by computing
r0 = f(0) =

∑
j∈I sjLj . Thus it holds that

c∗ =
∏
j∈I

c
Lj

j =

∏
j∈I

vk
Lj

j

r

·
∏
j∈I

g
sjLj

2 = (vk∗)r · gr02 .

where vk∗ :=
∏

j∈I vk
Lj

j = g
∑

j∈I xjLj

2 . Thus, it holds for index ind:

e(H(Tind), c
∗) = e(H(Tind), g

r·
∑

j∈I xjLj

2 · gr02)

=
∏
j∈I

e(H(Tind), vkj)
r·Lj · e(H(Tind), g2)

r0

= e(σind, g2)
r · e(H(Tind), g2)

r0

= e(σind, c) · e(H(Tind), g2)
r0 .

Since c′ind = e(H(Tind), g2)
r0 · gmind

T , it follows that zind = c′ind · e(σind, c)/e(H(Tind), c
∗) = gmind

T .
It follows for the ind-th output: m′

ind = dloggT (zind) = mind, and robust correctness follows.

Theorem 7. Assume that the hash functions H,H2 are modelled as random oracles. Then SWE
for the signature scheme Sig′ is secure under the BDH assumption in (G1,G2). The security
reduction is tight.

Proof. Assume that A is a PPT adversary against the SWE security experiment with distin-
guishing advantage ε. We will construct a PPT distinguisher D with advantage ε against the
BDH problem in (G1,G2). The complexity of D is essentially the same as that of A.

Let I = {1, . . . , t − 1} be the set of indices of verification keys vki which are chosen by the
adversary. For each i ∈ I let vki = gxi

2 where ski = xi. In the following we will assume that the
distinguisher D has access to all the signing keys xi for i ∈ I. This can be achieved, by using
the fact that Sig′ has an extractable proof of knowledge.

Let SC be the set of indices at which the challenge messages are included in encryption.
The distinguisher D receives as input a tuple (g1, h1, v, g2, h2, w, z), where g1 is a generator

of G1, g2 is a generator of G2, h1 = gx1 for some x ∈ Zp, h2 = gx2 for the same x ∈ Zp, v = gα1
for an α ∈ Zp and w = gr2 for an r ∈ Zp. The term z ∈ GT is either of the form gαxrt , in which
case we say that this is a BDH tuple, or z is chosen uniformly random from GT , in which case
we say this is a random tuple.

26

The distinguisher D simulates the security experiment for SWE, except in the way the
verification keys vki for i ∈ Ī = {t, . . . , n} are chosen, the corresponding signatures for these
keys are computed and the challenge-ciphertext ct∗ is computed. It uses the simulator S to
create Hpr and the outputs of Prove on its verification keys and it uses the extractor to gain
access to the secret keys of the adversary.

To simulate the random oracles H,H2 lazily, D initializes two lists L,L2 = ∅. D first
computes the following auxiliary terms.

• For i ∈ [n] randomly draw ξi ←$ Zp.

• Define the Lagrange polynomials L′
0(x) =

∏
j∈I

x−ξj
−ξj

and L′
i(x) = x

ξi

∏
j∈I\{i}

x−ξj
ξi−ξj

for

i ∈ I. That is, the L′
i are an interpolation basis for the support points {0} ∪ {ξj | j ∈ I}.

• For every i ∈ Ī choose x′i ← Zp uniformly at random and set h1,i = h
L′
0(ξi)

1 · gx
′
i

1 , h2,i =

h
L′
0(ξi)

2 · gx
′
i

2 .
• Choose y ← Zp uniformly at random and set A = e(v, g2)

y/z and B = gyT /e(h1, w).
• The reduction sets (H0, τ0)← S(0, 1λ). It also sets a counter ctr = 1.

The verification keys vki, random-oracle queries, signature queries and the challenge cipher-
text ct∗ are now computed as follows.

• For every honest party with index i ∈ Ī, D computes the verification key vki as vki = h2,i
and generates the associated proof of knowledge by (Hctr, πi, τctr)← S(ctr, vki, τctr−1, YES),
incrementing ctr after each call. Finally, we set Hpr = Hctr and make it available to A.
Due to the zero-knowledge property of the proof of knowledge, this is possible without
noticeably changing the distribution of the output from the real experiment, except with
negligible probability.

• When A sends (vki, πi) for i ∈ I, we proceed as follows.

– If ValidHpr(vki, πi) ̸= 1 for any i ∈ I we return ⊥.
– Otherwise, we compute and store ski ← E(vki, πi, QA), where QA denotes the queries

to Hpr that A made so far.

By extractability, extraction of the secret keys succeeds except with negligible probability.
Since A must give a valid proof for all of its polynomially many keys, we extract all their
secret keys except with negligible probability.

• Every query to H for a message T ̸= Ti for all i ∈ SC (or before the challenge messages
are announced) is answered as follows: If H has been queried on T before, retrieve the
pair (T, αT) from the list L. Otherwise, choose αT uniformly at random, add (T, αT) to
L. Output gαT

1 . We will program H on (Ti)i∈SC specifically later on.
• Every query to H2 on some input X is treated similarly: Initially, we add (vki, ξi) to L2
for every i ∈ [n]. If L2 has an entry for X, retrieve the pair (X,βX) from the list L2.
Otherwise, choose βX uniformly at random, add (X,βX) to L2. Output βX .

• For every signature query of a message T ̸= Ti for all i ∈ SC (or before the challenge
messages are announced) for an honest party with index i ∈ Ī, D computes the signature
σ as follows. Determine H(T) and retrieve the pair (T, αT) from the list L. Output
σ = hαT

1,i .
• D computes the challenge-ciphertext ct∗ as follows.

– Set c = w.
– Draw randomly γ ← Zp.
– Set h = h2 · gγ2 .
– Set c0 = wγ · gy2 .
– For all i ∈ I choose si uniformly at random and set ci = wxi · gsi2 .

27

– For all i ∈ Ī we set ci = g
L′
0(ξi)y+

∑
j∈I L

′
j(ξi)·sj

2 · wx′
i .

– For all j ∈ [ℓ] \ SC set c′j =
e(g1,g2)

αTj
y

e(h1,w)
αTj

g
mj

T where (Tj , αTj) is from L.

– For i ∈ SC choose γi, δi ← Zp uniformly at random, program H(Ti) = vγi · gδi1 and
set c′i = Aγi ·Bδi · gmi

T .

We will now show the following:

1. If (g1, h1, v, g2, h2, w, z) follows the BDH distribution, i.e. h1 = gx1 , h2 = gx2 , v = gα1 ,
w = gr2 and z = gαxrT , then D simulates the security experiment of SWE perfectly from
the view of A. Thus, A’s advantage in this simulation is at least ε.

2. If (g1, h1, v, g2, h2, w, z) follows the random distribution, i.e. h1 = gx1 , h2 = gx2 , v = gα1 ,
w = gr2 and z = u for a uniformly random u ← GT , then the advantage of A in D’s
simulation is 0.

From these two points it will follow that the distinguishing advantage of D against BDH is
at least ε.

We will first analyze the distribution of the vki, the signatures σ and the challenge-ciphertext
components h, c0, c and ci.

We will first calculate the terms h1,i and h2,i for i ∈ Ī. It holds that

h1,i = h
L′
0(ξi)

1 · gx
′
i

1 = g
L′
0(ξi)x+x′

i
1 = gx̃i

1

h2,i = h
L′
0(ξi)

2 · gx
′
i

2 = g
L′
0(ξi)x+x′

i
2 = gx̃i

2 ,

where we set x̃i = L′
0(ξi)x+ x′i. Note that since the x′i are uniformly random, so are the x̃i.

Hence, for the verification keys vki for i ∈ Ī it holds that

vki = h2,i = gx̃i
2 .

Next, we consider the distribution of the signatures σ of a message T created upon a signing
request for an honest key vki for i ∈ Ī. It holds that

σ = hαT
1,i = gαT ·x̃i

1 = H(T)x̃i .

Regarding the challenge-ciphertext ct∗, let us make some definitions. We define r0 = y− rx
and set f to be the (uniquely defined) polynomial of degree t− 1 obtained by interpolating the
pairs (0, r0), (ξi, si)i∈I . For i ∈ Ī, we now set si = f(ξi). Now, the following holds:

• c = w = gr2
• h = h2 · gγ2 is uniformly distributed
• c0 = wγ · gy2 = gγr2 · g

y−xr+xr
2 = (gγ+x

2)r · gr02 = hr · gr02
• For i ∈ I it holds that

ci = wxi · gsi2 = gr·xi
2 · gsi2 = vkri · g

si
2 .

• For i ∈ Ī it holds that

ci = g
L′
0(ξi)·y+

∑
j∈I L

′
j(ξi)sj

2 · wx′
i

= g
L′
0(ξi)·(rx+r0)+rx′

i+
∑

j∈I L
′
j(ξi)sj

2

= g
r(L′

0(ξi)x+x′
i)+L′

0(ξi)r0+
∑

j∈I L
′
j(ξi)sj

2

= g
r(L′

0(ξi)x+x′
i)+f(ξi)

2

= grx̃i+si
2

= vkri · g
si
2 .

28

Note that the si have the proper distribution: r0 as well as the si for i ∈ I are uniformly random
and independent. Thus f is a uniformly random polynomial of degree t− 1. Next, we consider
the ciphertext components c′j for j ∈ [ℓ] \ SC. It holds

c′j =
e(g1, g2)

αTj
y

e(h1, w)
αTj

g
mj

T

=
e(g1, g2)

αTj
y

e(gx1 , g
r
2)

αTj
g
mj

T

= e(g1, g2)
αTj

(y−xr)
g
mj

T

= e(g
αTj

1 , g2)
r0g

mj

T

= e(H(Tj), g2)
r0g

mj

T .

This conforms to the regular distribution.
We will finally consider the ciphertext components c′i for i ∈ SC. In the first case, assume

that (g1, h1, v, g2, h2, w, z) follows the BDH distribution, i.e. z = gαxrT . In this case, it holds
that

A = e(v, g2)
y/z = g

α(rx+r0)
T · g−αxr

T = gαr0T

and

B = gyT /e(h1, w) = grx+r0
T · g−xr

T = gr0T .

It follows that

H(Ti) = vγi · gδi1 = gγiα+δi
1 = gαi

1 ,

where we set αi = γiα + δi. Note that since δi is chosen uniformly random, αi is distributed
uniformly random.

Now, c′i is distributed according to

c′i = Aγi ·Bδi · gmi
T

= gαr0γiT · gr0δiT · gmi
T

= g
r0·(γiα+δi)
T · gmi

T

= gαir0
T · gmi

T

= e(gαi
1 , g2)

r0 · gmi
T

= e(H(Ti), g2)
r0 · gmi

T .

Thus, c′i has the same distribution as in the SWE security experiment.
On the other hand, if (g1, h1, v, g2, h2, w, z) follows the random distribution, then write z as

z = gαxr+τ
T for a uniformly random and independent τ . Since τ is uniformly random, it holds

that τ ̸= 0, except with negligible probability 1/p. Thus assume in the following that τ ̸= 0.
The terms B and H(Tind) are computed as above. The term A is now of the form

A = e(v, g2)
y/z = g

α(rx+r0)
T · g−αxr−τ

T = gαr0−τ
T .

Finally, the terms c′i for i ∈ SC are of the form:

c′i = Aγi ·Bδi · gmi
T

= g
r0·(γiα+δi)−τγi
T · gmi

T

= g
r0·(γiα+δi)
T g−τγ

T · gmi
T

29

Now note that since γi and δi are uniformly random and independent, γiα+ δi and τγi are also
uniformly random and independent as τ ̸= 08. Since the term g−τγ

T is uniformly random and
independent of all other terms, it follows that c′i is uniformly random and thus independent of
mi. Consequently, in this case the advantage of A is 0.

7 A Compatibility Layer for Proof Systems

We will now construct a compatibility layer for our SWE scheme and common proof systems.
The high-level idea of this compatibility layer is to attach a proof-system-friendly commit-

ment to a ciphertext and provide an efficient NIZK proof guaranteeing that ciphertext and
commitment encrypt the same value. We can then use efficient and readily available proof sys-
tems such as Bulletproofs [11] to establish additional properties about the encrypted message.

7.1 Well-Formedness Proofs

In this section we will provide a proof system to efficiently prove that a given SWE ciphertext is
decryptable. More precisely, this proof system will ensure that the SWE scheme is committing in
the sense that regardless of which committee-members contribute to the aggregated signature,
the decrypted message is always the same. This proof system will not yet ensure that the
message mi are in the correct range, though. This will be ensured using the proof systems in
Sections 7.2 and 7.3.

We will provide a proof system to certify that ciphertexts generated by SWE.Enc are well-
formed. That is, we define a NIZK proof (P1,V1) for the language defined by the relation

(x = (ct, (vkj)j , (Ti)i), w = ((mi)i, r1)) ∈ R ⇔ ct = SWE.Enc(1λ, (vkj)j , (Ti)i, (mi)i; r1)

The ciphertexts produced by SWE.Enc are of the form ct = (h, c, c0, (cj)j∈[n], (c
′
i)i∈[ℓ]) as follows.

c = gr2

c0 = hr · gr02
cj = vkrj · g

sj
2 for j = 1, . . . , n

c′i = e(H(Ti), g2)
r0 · gmi

T for i = 1, . . . , ℓ

where s = (s1, . . . , sn) is the vector of shares of r0 under Shamir’s secret sharing scheme.
Since (r0, s) is a codeword of the Reed-Solomon codes RS[Zq, n + 1, t], it holds that H · s = 0,

where H ∈ Zk×(n+1)
p is the parity-check matrix of RS[Zq, n+ 1, t].

To prove well-formedness of such a ciphertext, we proceed as follows. Let H ′ and H ′′ be
hash-functions (modelled as a random oracle).

P1(ct, (vkj)j , r) : The prover proceeds as follows, requiring only r ∈ Zp as witness.

• Compute v = H ′(ct) ∈ Zk
p and set w⊤ = v⊤ ·H. Parse w = (w0, w1, . . . , wn).

• Set c∗ = cw0
0 ·

∏n
j=1 c

wj

j .
• Set g∗ = hw0 ·

∏n
j=1 vk

wi
j .

• Choose y ← Zp uniformly at random and set f = gy2 and f∗ = (g∗)y.
• Compute α = H ′′(g2, c, g

∗, c∗, f, f∗).
• Compute z = y + αr.

8This can be seen as the matrix

(
α 1
τ 0

)
has full rank given that τ ̸= 0.

30

• Output π = (f, f∗, z).

V1(ct, (vkj)j , π) : To verify a proof π = (f, f∗, z), proceed as follows.

• Compute v = H ′(ct) and set w = v⊤ ·H. Parse w = (w0, w1, . . . , wn).
• Set c∗ = cw0

0 ·
∏n

j=1 c
wj

j .

• Set g∗ = hw0 ·
∏n

j=1 vk
wj

j .
• Compute α = H ′′(g2, c, g

∗, c∗, f, f∗).
• Check if (c∗)α · (f∗) = (g∗)z and cα · f = gz2 , if so output 1, otherwise 0.

Completeness of this proof system follows routinely.

Soundness To argue soundness, we will model H ′ and H ′′ as random oracles. First note the
following. A ciphertext ct is well-formed if and only if s = (r0, s1, . . . , sn) ∈ RS[Zq, n + 1, t],
which is exactly the case if Hs = 0. Thus assume that ct is not a valid ciphertext, i.e. it holds
that Hs ̸= 0. But this means that w⊤ · s = v⊤Hs ̸= 0, except with negligible choice over v. It
holds that

c∗ = cw0
0

n∏
j=1

c
wj

j = hrw0 · gr0w0
2

n∏
j=1

(vkrj · g
sj
2)wj = (g∗)r · gw

⊤s
2 .

Consequently, if w⊤s ̸= 0, then (g2, c = gr2) and (g∗, c∗ = (g∗)r · gw⊤s
T) do not satisfy the

same discrete logarithm relation. Consequently, the verifier will reject except with negligible
probability.

Zero-Knowledge To show that this proof-system is zero-knowledge, we can routinely make
use of the fact that the underlying Schnorr-like proof-system for equality of discrete logarithms
(see e.g.[13]) is zero-knowledge, i.e. by choosing f and f∗ depending on α in the simulation and
programming the random oracle accordingly.

7.2 Proofs of Plaintext Equality

First observe the following: A ciphertext ct = (h, c, c0, (cj), (c
′
i)) is a statistically binding com-

mitment to a message m = (mi)i, even if we drop the cj . In fact, the only purpose of the cj
is to facilitate decryption. If we fix h and the hT,i = e(H(Ti), g2), then com(m; r, r0) = (c =
gr2, c0 = hr · gr02 , (c′i = hr0T,i · g

mi
T)) is in fact a homomorphic commitment scheme and it holds

that

com(m; r, r0)
α · com(m′; r′, r′0)

β = com(αm+ βm′;αr + βr′, αr0 + βr′0),

where the exponentiation is component-wise.
Homomorphic operations for this commitment scheme are relatively expensive, as the c′i

components reside in the target group GT . To enable efficient proofs of statements over the
commited values m, we will leverage a second commitment scheme COM and provide a highly
efficient cross-scheme equality proof for two commitments com(m) and COM(m). Furthermore,
we will choose the commitment scheme COM to be proof-system friendly. Thus, the natural
choice for COM is a Pedersen commitment in a cryptographic group G of order p. For simplicity,
we may choose e.g. G = G1, butG could in fact be any group of order p. Thus, let g, h1, . . . , hℓ ←
G be public but randomly chosen group elements from the group G. Then COM(m) is computed
by COM(m; ρ) = gρ ·

∏ℓ
i=1 h

mi
i for a uniformly random ρ← Zp.

We will now provide a non-interactive zero-knowledge proof of knowledge (P2,V2) for the
following relation. For given crs = (h ∈ G2, hT,1, . . . , hT,ℓ ∈ GT) and CRS = (g, h1, . . . , hℓ ∈ G)
we want to establish that for c and C it holds that c = com(m; r, r0) and C = COM(m; ρ) for
some m ∈ Zℓ

p and r, r0, ρ ∈ Zp.
Let H : {0, 1}∗ → Zp be a hash-function, which will be modelled as a random oracle.

31

P2((crs,CRS, c,C), (m, r, r0, ρ)) :

• Choose u← Zℓ
p uniformly at random.

• Choose r′0, r
′, ρ′ ← Zp uniformly at random.

• Compute c′ = comcrs(u; r
′, r′0) and C′ = COMCRS(u; ρ

′).
• Compute α = H(crs,CRS, c,C, c′,C′).
• Compute m̃ = u+ αm, r̃ = r′ + αr, r̃0 = r′0 + α.r0 and ρ̃ = ρ′ + αρ.
• Output π = (c′,C′, m̃, r̃, r̃0, ρ̃).

V2((crs,CRS, c,C), π = (c′,C′, m̃, r̃, r̃0, ρ̃)) :

• Compute α = H(crs,CRS, c,C, c′,C′).

• Check if c′ · cα ?
= comcrs(m̃; r̃, r̃0) and C′ · Cα ?

= COMCRS(m̃; ρ̃), if so output 1,
otherwise 0.

Completeness of this proof system follows routinely. We will now briefly argue soundness
and zero-knowledge (both in the random oracle model).

Proof of Knowledge We will now argue that (P2,V2) is a proof of knowledge. Let CRS be a
given common-references string for COM. Fix a statement (crs,CRS, c,C).

Via a standard forking-lemma argument, we can argue that any PPT prover P∗ who produces
an accepting proof with non-negligible probability over the choice of H will be able to produce
accepting proofs π = (c′,C′, m̃, r̃, r̃0, ρ̃) and π′ = (c′,C′, m̂, r̂, r̂0, ρ̂) for two different choices α
and α′ of H(crs,CRS, c,C, c′,C′). Consequentially, it holds that

C′ · Cα = COMCRS(m̃; ρ̃)

and

C′ · Cα′
= COMCRS(m̂; ρ̂),

from which we can conclude that

Cα−α′
= COMCRS(m̃− m̂; ρ̃− ρ̂),

and therefore

C = COMCRS((m̃− m̂)/(α− α′); (ρ̃− ρ̂)/(α− α′)).

An analogous argument can be mounted for c. Thus, setting m̄ = (m̃− m̂)/(α− α′), r̄ = (r̃ −
r̂)/(α−α′), r̄0 = (r̃0−r̂0)/(α−α′) and ρ̄ = (ρ̃−ρ̂)/(α−α′) we can argue that c = comcrs(m̂; r̂, r̂0)
and C = COMCRS(m̂; ρ̂). This concludes our proof-sketch for the proof-of-knowledge property.

Zero-Knowledge To argue that (P,V) is zero-knowledge, we construct a simulator S which,
given a statement (crs,CRS, c,C), chooses a uniformly random m̃← Zℓ

p, and uniformly random
r̃, r̃0, ρ ← Zp as well as a uniformly random α ← Zp and sets c′ = comcrs(m̃; r̃, r̃0) · c−α and
C′ = COMCRS(m̃; ρ̃) · C−α. Further, the simulator S programs the random oracle H to output
α on input (crs,CRS, c,C, c′,C′). The simulated proof π is given by π = (c′,C′, m̃, r̃, r̃0, ρ̃).

It follows routinely that the simulation is perfect, unless A queries H on (crs,CRS, c,C, c′,C′)
before obtaining the proof π. But this only happens with negligible probability as the commit-
ments c′ and C′ are freshly chosen by S.

32

7.3 Putting Everything together: Verifiable SWE

We will now briefly discuss how we can combine the SWE scheme constructed in Section 6, the
proof systems of this section and an efficient proof system (e.g. Bulletproofs [11]) to obtain an
efficient proof system to make a verifiable SWE scheme, i.e. an SWE for which we can efficiently
prove statements about the encrypted messages.

Let a relation R for messages m and witnesses w be given and L be its induced language.
Let (P1,V1) be the proof system for well-formedness constructed in Section 7.1, let (P2,V2)

be the proof system for plaintext equality constructed in Section 7.2, and finally let (P3,V3) be
a proof system which asserts for a given C = COMCRS(m; ρ) that m ∈ L. In the following, let w
be an auxiliary witness for m ∈ L, i.e. P3 takes as input a commitment C(m; ρ) and a witness
ρ, w. To ensure efficient decryption even for maliciously generated ciphertexts, the language L
at the bare minimum must enforce that each component mi is in the appropriate range, i.e.
mi ∈ {0, . . . , 2k−1} for a small integer k. This will guarantee correctness of efficient decryption
with baby-step giant-step. Such efficient range-proofs are provided by the Bulletproofs proof
system [11]. In the following, we assume that the commitment scheme COM takes the same
common reference string CRS as provided for (P3,V3). The verifiable SWE scheme SWE′ is
given as follows. SWE′ has Enc,Dec identical to SWE.

We require the random coins r′ used in encryption to be input to the proof, and then extract
the subset of random coins (r, r0) as required by (P1,V1) and (P2,V2). Note that executing
encryption and the proof in one instance is more efficient and preferred in practice.

SWE′.Prove(CRS, (vkj)j∈[n], (Ti)i∈[ℓ], ct, (mi)i∈[ℓ], w, r
′) :

• Pick necessary random coins r, r0 from r′.
• Choose ρ← Zp uniformly at random and compute C = COMCRS((mi)i∈[ℓ]; ρ).
• Compute π1 = P1(ct, r).
• Compute π2 = P2((ct,C, (vkj)j∈[n], (Ti)i∈[ℓ]), ((mi)i∈[ℓ], r, r0, ρ)).
• Compute π2 = P3(C, (ρ, w)).
• Output π = (C, π1, π2, π3).

SWE′.Verify(CRS, (vkj)j∈[n], (Ti)i∈[ℓ], ct, π) :

• Output 1 if V1(ct, π1) = 1, V2((ct,C, (vkj)j∈[n], (Ti)i∈[ℓ]), π2) = 1 and V3(CRS,C, π3) =
1, otherwise output 0.

Correctness routinely follows from the correctness of the underlying ingredients. Likewise,
security of this scheme follows from security of SWE, the hiding property of the commitment
COM and the ZK-property of the proof systems (P1,V1), (P2,V2), (P3,V3). Finally, soundness
of this system follows from the soundness of (P1,V1), (P2,V2), (P3,V3).

8 Implementation and Evaluation

To show the practicality of our scheme we created a prototype implementation and evaluated
its performance. In this section we present more details.

8.1 Setup

In our prototype we use the noble-bls javascript library [27] that implements bilinear group
operations. This library is a fast implementation of the BLS12-381 curve used in many popular
cryptocurrencies like Zcash and Ethereum 2.0 for example. In the noble-bls implementation of
BLS signatures the verification key is given in the group G1 and the signature in group G2. For

33

Figure 1: Average timing over 100 executions of our prototype implementation of T -out-of-N
SWE encryption and decryption procedures. The X-axis is the number N of verification keys
used to encrypt a 381-bit plaintext divided into 16 of 24-bit values. Data sets correspond to
fractions T

N = 1
2 and T

N = 2
3 , representing majority and supermajority.

Figure 2: Average timing over 100 executions of our prototype implementation of T -out-of-
N SWE procedures for creation and verification of the proof of consistency. The X-axis is the
number N of verification keys used to encrypt a 381-bit plaintext divided into 16 of 24-bit values.
Data sets correspond to fractions T

N = 1
2 and T

N = 2
3 , representing majority and supermajority.

34

our prototype, we used the same setup and adapted our scheme accordingly, since the groups
are reversed there.

To evaluate the efficiency of our prototype we executed the script on a standard Macbook Pro
with an Intel i7 processor @2,3 GHz, 16 GB of RAM using npm version 8.1.4. For benchmarking
we used the micro-bmark library [26] that is also used by noble-bls.

Operation expG1 expG2 pairing expGT

Time [ms] 8 33 24 21

Table 2: noble-bls execution time on the test machine

8.2 Computing Discrete Logarithms

Our SWE scheme from Section 6 can be used to batch encrypt small exponents from the set
Zp. The caveat is that at the end of decryption we do not get an element in Zp but an element
zi in GT . To compute the actual message we have to compute the discrete logarithm of zi to
the base of gT .

The most efficient way to compute the discrete logarithm in such a case is to use the
baby-step giant-step algorithm. The key component for this algorithm is a precomputed data
structure containing (g1T , 1), ..., (g

2i

T , 2i) for some i. It is also important that this structure allows
for O(1) access to its elements. To this end, we used a HashMap to store the precomputed values.
The map is storing data in an array of a predetermined size of 232 − 1 and uses a simple hash
function to map keys (i.e. the powers of gT) to indices of the array.

For our setup, we were able to adapt the hash function in a way that even for i = 16 there
are no collisions in the HashMap and the discrete logarithm can be computed correctly. Below
we show details about the efficiency of the precomputation step and the computation of the
discrete logarithm.

In Tables 3,4 we show the execution time for the precomputation step and the actual baby-
step giant-step computation. We benchmark two scenarios where one is a standard approach
to the algorithm to divide precomputation and computation equally and in the second one, we
precompute more to get better efficiency of the actual computation. Based on the results we
decided to encrypt messages and precompute values for i = 16. The experiments below uses
this setting. The time it takes for the baby-step giant-step algorithm to solve the DLP for a 24
bit exponent is then only 27 ms which is comparable to one pairing operation (see Table 2).

Exponent Bit Size i 8 12 16 20 24 28 32

Precompution 1 6 26 105 412 1622 6350

DL Computation 3 8 27 106 421 1574 5846

Table 3: Execution time in milliseconds for baby-step giant-step precomputation and discretel-
ogarithm computation. Symmetric case with 2i/2 of precomputed exponents and 2i/2 steps of
computation.

8.3 Experiments and Results

We will now present evaluation results of our prototype implementation of the T -out-of-N
SWE scheme. We prepared a benchmark that measures the execution time of the 4 main pro-
cedures of our SWE implementation: encryption, decryption, proof of consistency generation,

35

Exponent Bit Size 6 9 12 15 18 21 24

Precompution 1 5 25 99 397 1607 6338

DL Computation 2 2 3 5 8 14 27

Table 4: Execution time in milliseconds for baby-step giant-step precomputation and discrete
logarithm computation. Asymmetric case with 22/3i of precomputed exponents and 21/3i steps
of computation.

and verification. For each case we compare the execution time for different thresholds: majority
(T/N = 1/2) and supermajority (T/N = 2/3).

In Figure 1 we show the results for the encryption and decryption procedures. Encryption
time is only slightly influenced by the different threshold parameters and takes around 1 min
when encrypting for N = 2000 verification keys. Lowering the number N to 500 improves the
execution time to around 10 second. A major difference, as to be expected, is visible in the
decryption time. For a smaller threshold, T decryption is more efficient. For the case of a
supermajority of N = 2000 decryption of a 381-bit plaintext divided into 16 blocks of 24-bit
values takes around 6 min. By lowering N to 500 we can get the decryption time down to
around 30 seconds.

In Figure 2 we also show our results for the procedures used to generate and verify the proof
of consistency. Contrary to the decryption procedure the efficiency of generating and verifying
the proof of consistency decreases with smaller T . This follows from the structure of the parity
matrix used in the proof for which size increases if T decreases. Creating a proof of consistency
for N = 1000 takes around 7 min for the majority case and around 4 min for the supermajority
case. For verification of the proof, the parity matrix also has to be computed which leads to a
similar execution time. Lowering N to 500 increases the efficiency to around 1 min.

9 Conclusion

We propose the McFly protocol that allows users to encrypt messages to the future. McFly
is composed mainly of two components: (1) A signature-based witness encryption (SWE) -
a cryptographic primitive that we introduce, and that allows messages to be encrypted with
respect to a set of verification keys and a reference message; the decryption becomes possible
once a threshold of the corresponding signing keys produce a signature on the reference message.
(2) A BFT blockchain or a blockchain coupled with a finality layer such as Casper [12] or
Afgjort [16]. By integrating the two together, with minor modifications the decryption of
the SWE becomes available automatically once the blockchain committee performs its tasks;
since these tasks usually happen within a predictable timeframe (e.g., block production rate),
messages encrypted with the SWE scheme will only be decrypted once a predictable time has
elapsed.

References

[1] Baum, C., David, B., Dowsley, R., Nielsen, J.B., Oechsner, S.: TARDIS: Time and rel-
ative delays in simulation. Cryptology ePrint Archive, Report 2020/537 (2020), https:
//eprint.iacr.org/2020/537

[2] Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round zero-
knowledge protocols. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 273–289.
Springer, Heidelberg (Aug 2004). doi: 10.1007/978-3-540-28628-8_17

36

https://eprint.iacr.org/2020/537
https://eprint.iacr.org/2020/537
http://dx.doi.org/10.1007/978-3-540-28628-8_17

[3] Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient
protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby, V. (eds.) ACM
CCS 93. pp. 62–73. ACM Press (Nov 1993). doi: 10.1145/168588.168596

[4] Benhamouda, F., Gentry, C., Gorbunov, S., Halevi, S., Krawczyk, H., Lin, C., Rabin,
T., Reyzin, L.: Can a public blockchain keep a secret? In: Pass, R., Pietrzak, K. (eds.)
TCC 2020, Part I. LNCS, vol. 12550, pp. 260–290. Springer, Heidelberg (Nov 2020). doi:
10.1007/978-3-030-64375-1_10

[5] Boldyreva, A.: Threshold signatures, multisignatures and blind signatures based on the
gap-Diffie-Hellman-group signature scheme. In: Desmedt, Y. (ed.) PKC 2003. LNCS,
vol. 2567, pp. 31–46. Springer, Heidelberg (Jan 2003). doi: 10.1007/3-540-36288-6_3

[6] Boneh, D., Bonneau, J., Bünz, B., Fisch, B.: Verifiable delay functions. In: Shacham,
H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol. 10991, pp. 757–788. Springer,
Heidelberg (Aug 2018). doi: 10.1007/978-3-319-96884-1_25

[7] Boneh, D., Drijvers, M., Neven, G.: Compact multi-signatures for smaller blockchains. In:
Peyrin, T., Galbraith, S. (eds.) Advances in Cryptology – ASIACRYPT 2018. pp. 435–464.
Springer International Publishing, Cham (2018)

[8] Boneh, D., Franklin, M.K.: Identity-based encryption from the Weil pairing. In: Kilian,
J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (Aug 2001).
doi: 10.1007/3-540-44647-8_13

[9] Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and verifiably encrypted signa-
tures from bilinear maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp.
416–432. Springer, Heidelberg (May 2003). doi: 10.1007/3-540-39200-9_26

[10] Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In: Boyd, C.
(ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (Dec 2001).
doi: 10.1007/3-540-45682-1_30

[11] Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: Short
proofs for confidential transactions and more. In: 2018 IEEE Symposium on Security and
Privacy. pp. 315–334. IEEE Computer Society Press (May 2018). doi: 10.1109/SP.2018.
00020

[12] Buterin, V., Griffith, V.: Casper the friendly finality gadget (2019)

[13] Camenisch, J., Kiayias, A., Yung, M.: On the portability of generalized Schnorr proofs. In:
Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 425–442. Springer, Heidelberg
(Apr 2009). doi: 10.1007/978-3-642-01001-9_25

[14] Campanelli, M., David, B., Khoshakhlagh, H., Konring, A., Nielsen, J.B.: Encryption to
the future: A paradigm for sending secret messages to future (anonymous) committees.
Cryptology ePrint Archive, Report 2021/1423 (2021), https://ia.cr/2021/1423

[15] Deuber, D., Döttling, N., Magri, B., Malavolta, G., Thyagarajan, S.A.K.: Minting mecha-
nism for proof of stake blockchains. In: Conti, M., Zhou, J., Casalicchio, E., Spognardi, A.
(eds.) ACNS 20, Part I. LNCS, vol. 12146, pp. 315–334. Springer, Heidelberg (Oct 2020).
doi: 10.1007/978-3-030-57808-4_16

37

http://dx.doi.org/10.1145/168588.168596
http://dx.doi.org/10.1007/978-3-030-64375-1_10
http://dx.doi.org/10.1007/3-540-36288-6_3
http://dx.doi.org/10.1007/978-3-319-96884-1_25
http://dx.doi.org/10.1007/3-540-44647-8_13
http://dx.doi.org/10.1007/3-540-39200-9_26
http://dx.doi.org/10.1007/3-540-45682-1_30
http://dx.doi.org/10.1109/SP.2018.00020
http://dx.doi.org/10.1109/SP.2018.00020
http://dx.doi.org/10.1007/978-3-642-01001-9_25
https://ia.cr/2021/1423
http://dx.doi.org/10.1007/978-3-030-57808-4_16

[16] Dinsdale-Young, T., Magri, B., Matt, C., Nielsen, J.B., Tschudi, D.: Afgjort: A partially
synchronous finality layer for blockchains. Cryptology ePrint Archive, Report 2019/504
(2019), https://ia.cr/2019/504

[17] Dinsdale-Young, T., Magri, B., Matt, C., Nielsen, J.B., Tschudi, D.: Afgjort: A par-
tially synchronous finality layer for blockchains. In: Galdi, C., Kolesnikov, V. (eds.)
SCN 20. LNCS, vol. 12238, pp. 24–44. Springer, Heidelberg (Sep 2020). doi: 10.1007/

978-3-030-57990-6_2

[18] ethereum.org: Ethereum 2.0 keys (2022), https://kb.beaconcha.in/ethereum-2-keys

[19] Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO’86. LNCS, vol. 263, pp. 186–194.
Springer, Heidelberg (Aug 1987). doi: 10.1007/3-540-47721-7_12

[20] Fischlin, M.: Communication-efficient non-interactive proofs of knowledge with online ex-
tractors. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 152–168. Springer,
Heidelberg (Aug 2005). doi: 10.1007/11535218_10

[21] Garg, S., Gentry, C., Sahai, A., Waters, B.: Witness encryption and its applications. In:
Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC. pp. 467–476. ACM
Press (Jun 2013). doi: 10.1145/2488608.2488667

[22] Gentry, C., Halevi, S., Krawczyk, H., Magri, B., Nielsen, J.B., Rabin, T., Yakoubov, S.:
YOSO: You only speak once - secure MPC with stateless ephemeral roles. In: Malkin,
T., Peikert, C. (eds.) CRYPTO 2021, Part II. LNCS, vol. 12826, pp. 64–93. Springer,
Heidelberg, Virtual Event (Aug 2021). doi: 10.1007/978-3-030-84245-1_3

[23] Joux, A.: A one round protocol for tripartite diffie–hellman. In: International algorithmic
number theory symposium. pp. 385–393. Springer (2000)

[24] Lenstra, A.K., Wesolowski, B.: A random zoo: sloth, unicorn, and trx. Cryptology ePrint
Archive, Report 2015/366 (2015), https://eprint.iacr.org/2015/366

[25] Liu, J., Jager, T., Kakvi, S.A., Warinschi, B.: How to build time-lock encryption. Des.
Codes Cryptogr. 86(11), 2549–2586 (2018). doi: 10.1007/s10623-018-0461-x, https:
//doi.org/10.1007/s10623-018-0461-x

[26] Miller, P.: micro-bmark (2022), https://github.com/paulmillr/micro-bmark

[27] Miller, P.: noble-bls12-381 (2022), https://github.com/paulmillr/noble-bls12-381

[28] Pass, R., Shi, E.: Thunderella: Blockchains with optimistic instant confirmation. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 3–
33. Springer, Heidelberg (Apr / May 2018). doi: 10.1007/978-3-319-78375-8_1

[29] Ristenpart, T., Yilek, S.: The power of proofs-of-possession: Securing multiparty signatures
against rogue-key attacks. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp.
228–245. Springer, Heidelberg (May 2007). doi: 10.1007/978-3-540-72540-4_13

[30] Rivest, R.L., Shamir, A., Wagner, D.A.: Time-lock puzzles and timed-release crypto. Tech.
rep., Massachusetts Institute of Technology, USA (1996)

38

https://ia.cr/2019/504
http://dx.doi.org/10.1007/978-3-030-57990-6_2
http://dx.doi.org/10.1007/978-3-030-57990-6_2
https://kb.beaconcha.in/ethereum-2-keys
http://dx.doi.org/10.1007/3-540-47721-7_12
http://dx.doi.org/10.1007/11535218_10
http://dx.doi.org/10.1145/2488608.2488667
http://dx.doi.org/10.1007/978-3-030-84245-1_3
https://eprint.iacr.org/2015/366
http://dx.doi.org/10.1007/s10623-018-0461-x
https://doi.org/10.1007/s10623-018-0461-x
https://doi.org/10.1007/s10623-018-0461-x
https://github.com/paulmillr/micro-bmark
https://github.com/paulmillr/noble-bls12-381
http://dx.doi.org/10.1007/978-3-319-78375-8_1
http://dx.doi.org/10.1007/978-3-540-72540-4_13

[31] Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard, G.
(ed.) CRYPTO’89. LNCS, vol. 435, pp. 239–252. Springer, Heidelberg (Aug 1990). doi:
10.1007/0-387-34805-0_22

[32] Shamir, A.: How to share a secret. Communications of the Association for Computing
Machinery 22(11), 612–613 (Nov 1979)

[33] Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G.R.,
Chaum, D. (eds.) CRYPTO’84. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (Aug
1984)

[34] Shanks, D.: Class number, a theory of factorization, and genera. In: Proc. of Symp. Math.
Soc., 1971. vol. 20, pp. 41–440 (1971)

A Discussion on proofs of possession

For our proofs based on Sig′ with proofs of possession, we additionally need the knowledge of
exponent assumption and we achieve somewhat weaker guarantees compared to 5. The zero-
knowledge and extractability properties additionally need an input setW, such that for vk ∈ W,
simulation works, while for all other keys extractability works. Simulation additionally needs an
advice string, while we only need to program the oracle once. Recall K is the relation on public-
secret key pairs. We will now state what guarantees we get for our modified BLS signature with
proofs of possession:

A signature (KeyGen,Sign,Vrfy,Agg,AggVrfy,Prove,Valid) has an extractable proof of pos-
session, if there exists a PPT simulator S = (S0, S1) and a PPT extractor E , such that for every
at most polynomially big set W there is some polynomial advice-string advice such that the
following holds:

• Completeness as in definition 9.
• Zero-Knowledge: For all distinguishers D the following distributions are computationally
indistinguishable:

– Let Hpr be a random oracle. Give D oracle access to Hpr and Prove′(·, ·), which
responds like Prove(vk, sk) on input (vk, sk) ∈ K for vk ∈ W and with ⊥ otherwise.
Let D output a bit b.

– Let (H0, τ) ← S0(W). Give D oracle access to H0 and S′(·, ·), which responds like
S1(τ, vk, advice) on input (vk, sk) ∈ K for vk ∈ W and with ⊥ otherwise. Let D
output a bit b.

• Extractability: Let (H0, τ)← S0(W). For every algorithm A it holds:
Let (H0, τ) ← S0(W). Give A oracle access to H0, S

′(·, ·). Let A finally output (vk, π),
and let QA be the queries that A made to H0, sk← E(vk, π, τ,QA). Then

Pr
[
vk ̸∈ W ∧ (vk, sk) ̸∈ K ∧ ValidH0(vk, π) = vk

]
≤ negl(λ)

Theorem 8. Given the knowledge of exponent assumption, Sig′ with (Prove,Valid) instantiated
by the proof of possession fulfills these requirements.

Proof. Completeness holds by the correctness of Sig′.
Now let us move on: Let W and λ be given. We assume the experiment receives/knows the

generators g1 ∈ G1, g2 ∈ G2. We take an optional second group element h ∈ G1 as parameter
or choose h randomly ourselves. We define the simulator S0: It takes a pseudorandom function

39

http://dx.doi.org/10.1007/0-387-34805-0_22

family PRFk with k ∈ {0, 1}a such that the domain is large enough for any input ⟨vk⟩ for vk
generated by KeyGen(1λ) and output mapped into Zp. It chooses k ←$ {0, 1}a, sets

H0(m) =

{
g
PRFk(m)
1 if m represents ⟨vk⟩ for vk ∈ W
hPRFk(m) otherwise

and outputs τ = k as information to S1. Let us now argue zero-knowledge holds: We construct
S1 as follows: S1(k, vk, advice) retrieves r = PRFk(⟨vk⟩) and outputs (H0, a(vk)

r) for advice
being a function a :W → G1, such that for every vk = gsk2 ∈ W, a(vk) = gsk1 .

In a first hybrid, we can replace Hpr by H0 in the first distribution. D can not detect the
change except with negligible probability, or else it could break pseudorandomness of PRF. Since
we only have to regard vk ∈ W, as other inputs prompt the return of ⊥ in both distributions,
it holds a(vk)r = gsk·r1 = H0(⟨vk⟩)sk. The distributions are then identical.

It remains to show extractability. Let us assume there is an algorithm A that produces an
accepting output (vk, π) with vk ̸∈ W with non-negligible probability. We argue that we can
build an adversary that internally runs A.

The adversary A′ receives a generator h′ ∈ G1. It runs the experiment with h = h′ as the
optional input. It runs S0(W) and retrieves H0, k.

It interacts with A like the experiment would, getting the queries QA made by A and the out-
puts vk, π. The simulation via S works without any issues as simulateable and extractable
keys are in distinct domains.

If A produces an accepting output vk, π for vk ̸∈ W, it must hold e(π, g2) = e(H0(⟨vk⟩), vk) =
e(hPRFk(m), vk). Thus, (g2, vk) and (hPRFk(m), π) share the same dlog relationship.

As we can see, this constitutes an adversary in the knowledge of exponent assumption. There-
fore, we are guaranteed the existence of an efficient extractor Ā′ that comes to the same output
as A′ - namely π ∈ G1, vk ∈ G2 and additionally outputs x such that vk = gx2 .

Now if we want to use this in our proofs, instead of the Schnorr based variant, we essentially
set W as the keys made by the reduction and then can extract for all keys chosen by the
adversary. There are some subtleties to this however; in the proof of unforgeability above, for
example, we may sometimes have to give a proof for vk∗ and sometimes the adversary may use
vk∗ itself. To deal with this, we guess in the beginning, which case happens and set W = ∅
or W = {vk∗} with probability 1/2, introducing a factor 1/2 to our success probability. We
constructed all our proofs such that the advice string can always be constructed, as for all
vk = gsk2 we give out in reductions, we make sure they already know gsk1 .

40

	Introduction
	Our Contributions
	Technical Overview
	Related work
	Organisation

	Preliminaries
	Signature-based Witness Encryption
	The McFly protocol
	Formal model
	Protocol guarantees
	Protocol description
	Proofs
	Integration with Casper
	Applications

	BLS signatures with modified aggregation
	Construction
	Proofs

	Construction of Signature-based Witness Encryption
	Construction
	Efficiency
	Proofs

	A Compatibility Layer for Proof Systems
	Well-Formedness Proofs
	Proofs of Plaintext Equality
	Putting Everything together: Verifiable SWE

	Implementation and Evaluation
	Setup
	Computing Discrete Logarithms
	Experiments and Results

	Conclusion
	Discussion on proofs of possession

