
Understanding binary-Goppa decoding

Daniel J. Bernstein1,2,3

1 Department of Computer Science, University of Illinois at Chicago, USA
2 Horst Görtz Institute for IT Security, Ruhr University Bochum, Germany

3 Research Center for Information Technology Innovation, Academia Sinica, Taipei
djb@cr.yp.to

Abstract. This paper reviews, from bottom to top, a polynomial-time
algorithm to correct t errors in classical binary Goppa codes defined by
squarefree degree-t polynomials. The proof is factored through a proof
of a simple Reed–Solomon decoder, and the algorithm is simpler than
Patterson’s algorithm. All algorithm layers are expressed as Sage scripts.
The paper also covers the use of decoding inside the Classic McEliece
cryptosystem, including reliable recognition of valid inputs.

1 Introduction

This paper is aimed at a reader who

• is interested in how ciphertexts are decrypted in the McEliece cryptosystem,
• has arrived at a mysterious-sounding “Goppa decoding” subroutine, and
• wants to understand how this works without taking a coding-theory course.

A busy reader can jump straight to Algorithm 6.2 and Theorem 6.4 for a concise
answer, highlighting the main mathematical objects inside the decoding process.

In more detail: The cryptosystem uses a large family of subspaces of the vector
space Fn

2 , namely “classical binary Goppa codes” defined by squarefree degree-t
polynomials. This paper reviews a simple polynomial-time “t-error-correction”
algorithm for these codes: an algorithm that recovers a vector c in a specified
subspace given a vector that agrees with c on at least n−t positions. Components
of the algorithm are introduced in a bottom-up order: Sections 3, 4, 5, and 6
present, respectively, “interpolation”, finding “approximants”, interpolation with
errors (“Reed–Solomon decoding”), and Goppa decoding.

1.1. Hasn’t this been done already?Goppa codes are more than 50 years old.
There are many descriptions of Goppa decoders in the literature. Self-contained

This work was funded by the Intel Crypto Frontiers Research Center; by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) as part of the Excel-
lence Strategy of the German Federal and State Governments—EXC 2092 CASA—
390781972 “Cyber Security in the Age of Large-Scale Adversaries”; by the U.S. Na-
tional Science Foundation under grant 2037867; and by the Cisco University Research
Program. “Any opinions, findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect the views of
the National Science Foundation” (or other funding agencies). Permanent ID of this
document: 8561e73dab75d01a6dd6bf542594ddac03cdbe6e. Date: 2022.03.20.

2 Daniel J. Bernstein

descriptions appear in, e.g., van Tilborg’s coding-theory textbook [77, Section
4.5, “A decoding algorithm”], a Preneel–Bosselaers–Govaerts–Vandewalle paper
on a software implementation of the McEliece cryptosystem [67, Section 5.3], a
Ghosh–Verbauwhede paper on a constant-time hardware implementation of the
cryptosystem [42, Algorithm 3], and the Overbeck–Sendrier survey of code-based
cryptography [61, pages 139–140].

All of these sources—and many more—are describing an algorithm introduced
by Patterson [64, Section V] to correct t errors for binary Goppa codes defined
by squarefree degree-t polynomials. McEliece’s paper introducing the McEliece
cryptosystem [56] had also pointed to Patterson’s algorithm.

However, Patterson’s algorithm isn’t the simplest fast binary-Goppa decoder.
A side issue here is that there are tradeoffs between simplicity and the number
of errors corrected (which in turn influences the required McEliece key size), as
the following variations illustrate:

• Patterson’s paper contained a simpler algorithm to correct bt/2c errors.
• More complicated “list decoding” algorithms, starting with Sudan [74] and

Guruswami–Sudan [45], correct slightly more than t errors.

But let’s focus on fast algorithms to correct exactly the t errors traditionally used
in the McEliece cryptosystem. The main issue is that, within these algorithms,
Patterson’s algorithm isn’t the simplest.

Goppa had already pointed out in the first paper on Goppa codes [43, Section
4] that a binary Goppa code defined by a squarefree degree-t polynomial g is
also defined by g2. The problem of correcting t errors in the code defined by g2
immediately reduces to the problem of polynomial interpolation with t errors,
i.e., Reed–Solomon decoding. The resulting binary-Goppa decoder is simpler
than Patterson’s.

The benefits of simplicity go beyond general accessibility of the topic: software
for simpler algorithms tends to be easier to optimize, easier to protect against
timing attacks, and easier to test. It isn’t a coincidence that the same simple
structure is used in the state-of-the-art McEliece software from Bernstein–Chou–
Schwabe [14], Chou [30], and Chen–Chou [28]. This software eliminates data-
dependent timing and at the same time includes many speedups in subroutines.
Avoiding Patterson’s algorithm also seems likely to help for formal verification
of software correctness, a top challenge for post-quantum cryptography today.

Maybe someday software for Patterson’s algorithm will catch up in these other
features, and maybe it will bring further speedups—or maybe not. Patterson’s
algorithm uses degree t instead of degree 2t for some computations, but it also
includes extra computations, such as inversion modulo g; the literature does
not make clear whether the speedups outweigh the slowdowns. Also, even if
Patterson’s algorithm ends up faster, surely there will be applications where
simplicity is more important. Having only Patterson’s algorithm brings to mind
Knuth’s quote [49, page 268] that “premature optimization is the root of all evil”.

For an audience familiar with coding theory, it suffices to say “the Goppa
code for g is the same as the Goppa code for g2; now use your favorite Reed–
Solomon decoder as an alternant decoder” (essentially as in [15, Section 5], which

Understanding binary-Goppa decoding 3

also generalizes from F2 to Fq). For a broader audience, one can reduce to the
previous sentence by saying “Take the following course on coding theory”. But
it’s more efficient for the audience to take a minicourse focusing on this type of
decoder—and I haven’t found any such minicourse in the literature.

To summarize, this paper is a general-audience introduction to a simple t-error
decoder for binary Goppa codes defined by squarefree degree-t polynomials, with
the proof factored through a proof of a t-error Reed–Solomon decoder.

1.2. Bonus features. This paper systematically presents each algorithm layer
in two forms: a theorem with a full proof (Theorems 3.1, 4.1, 5.4, and 6.4), and
an algorithm statement (Algorithms 3.3, 4.4, 5.3, and 6.2).

Each algorithm layer is presented as a script in the Sage [76] mathematics
system rather than as pseudocode. The scripts use Sage’s built-in support for
fields, matrices, and polynomials. The scripts do not use Sage’s functions for
interpolation (lagrange_polynomial), the Berlekamp–Massey algorithm, etc.

As context, Section 8 explains how the Classic McEliece cryptosystem uses
a Goppa decoder. In this context, it is important to reliably recognize invalid
ciphertexts. Most descriptions of decoders in the literature simply assume that
the input vector has at most t errors, but for cryptography one has to verify the
input vector. This paper includes various efficient characterizations of vectors
having at most t errors (Theorems 5.5, 6.5, and 7.4), and an analysis of safe
options for recognizing valid ciphertexts (Sections 8.3 and 8.4).

Finally, this paper includes extensive pointers to the literature, primarily to
give appropriate credit but also to point the reader to further material explaining
how to turn this algorithm into today’s state-of-the-art software.

1.3. Acknowledgments. Thanks to Tanja Lange and Alex Pellegrini for their
comments.

2 Polynomials

This section reviews the definition of the polynomial ring k[x] over a field k and
the necessary properties of polynomials.

2.1. Commutative rings. A commutative ring is a set R with elements
0, 1 ∈ R, a unary operation − : R→ R, and binary operations +, · : R×R→ R
satisfying the identities r + s = s + r; r + (s + t) = (r + s) + t; r + (−r) = 0;
0 + r = r; r · s = s · r; r · (s · t) = (r · s) · t; r · (s+ t) = (r · s) + (r · t); 1 · r = r.

These identities imply all of the identities satisfied by Z, the set of integers
with its usual 0, 1,−,+, ·.

Normally r · s is abbreviated rs, and r + (−s) is abbreviated r − s.

2.2. Ring morphisms. A ring morphism from R to S, where R and S
are commutative rings, is a function from R to S preserving 0, 1,−,+, ·: i.e.,
a function ϕ : R → S with ϕ(0) = 0, ϕ(1) = 1, ϕ(−r) = −ϕ(r), ϕ(r + s) =
ϕ(r) + ϕ(s), and ϕ(rs) = ϕ(r)ϕ(s).

4 Daniel J. Bernstein

This is the universal-algebra definition of a ring morphism. This is equivalent
to a shorter definition that omits the conditions ϕ(0) = 0 and ϕ(−r) = −ϕ(r).

A ring morphism maps every 0, 1,−,+, · formula in the inputs to the same
formula in the outputs: e.g., ϕ(r+st) = ϕ(r)+ϕ(s)ϕ(t) and ϕ(

∑
i ri) =

∑
i ϕ(ri).

2.3. Multiples. Let R be a commutative ring. The notation uR, for u ∈ R,
means the set {uq : q ∈ R}. The notation uR + vR, for u, v ∈ R, means the set
{uq + vr : q, r ∈ R}.
2.4. Units. The notation R∗ means {u ∈ R : 1 ∈ uR}; i.e., u ∈ R∗ exactly when
some v ∈ R satisfies uv = 1. The elements of R∗ are called the units of R.

2.5. Fields. One calls R a field if R∗ = {u ∈ R : u 6= 0}. In other words, an
element of a field is a unit and if only if it is nonzero.

For example, the set {0, 1} with −,+, · defined as arithmetic modulo 2 is a
field, denoted F2. As another example, the set Q of rational numbers with its
usual 0, 1,−,+, · is a field.

2.6. Vector spaces. Let k be a field. A k-vector space is a set V with an
element 0, a unary operation −, a binary operation +, and, for each α ∈ k, a
unary operation v 7→ α · v such that v + w = w + v; u+ (v + w) = (u+ v) + w;
0+ v = v; v+(−v) = 0; 1 · v = v; α · (v+w) = α · v+α ·w; (αβ) · v = α · (β · v);
and (α+ β) · v = (α · v) + (β · v) for all u, v, w ∈ V and α, β ∈ k.
2.7. The standard n-dimensional vector space. Let n be a nonnegative in-
teger. The set kn = {(v0, v1, . . . , vn−1) : v0, v1, . . . , vn−1 ∈ k} is a k-vector space
under the following operations:

• 0 is (0, 0, . . . , 0).
• −(v0, v1, . . . , vn−1) is (−v0,−v1, . . . ,−vn−1).
• (v0, v1, . . . , vn−1)+(w0, w1, . . . , wn−1) is (v0+w0, v1+w1, . . . , vn−1+wn−1).
• α · (v0, v1, . . . , vn−1) is (αv0, αv1, . . . , αvn−1).

2.8. Linear maps. Let k be a field, and let V,W be k-vector spaces. A k-
linear map from V to W is a function from V to W preserving 0,−,+, ·: i.e.,
a function ϕ satisfying ϕ(0) = 0, ϕ(−v) = −ϕ(v), ϕ(u+ v) = ϕ(u) + ϕ(v), and
ϕ(α · v) = α · ϕ(v) for all u, v ∈ V and all α ∈ k.

This is the universal-algebra definition of a k-linear map as a k-vector-space
morphism. This is equivalent to a shorter definition that omits the conditions
ϕ(0) = 0 and ϕ(−v) = −ϕ(v).

If n,m ∈ Z with n > m ≥ 0 then any k-linear map from kn to km must map
some nonzero input to zero.

2.9. Polynomials. Let k be a field. By definition k[x] is the set of vectors
(f0, f1, . . .) with all nonnegative integers as indices, fi ∈ k for each nonnegative
integer i, and {i : fi 6= 0} finite.

If one drops the requirement that {i : fi 6= 0} is finite then one obtains the
power-series ring k[[x]], but the reader can safely focus on k[x] for this paper.

2.10. The ring structure of polynomials. The set k[x] is a commutative
ring under the following operations:

Understanding binary-Goppa decoding 5

• 0 is the vector (0, 0, . . .).
• 1 is the vector (1, 0, . . .).
• Negation maps (f0, f1, . . .) to (−f0,−f1, . . .).
• Addition maps (f0, f1, . . .), (g0, g1, . . .) to (f0 + g0, f1 + g1, . . .).
• Multiplication (“convolution”) maps (f0, f1, f2, f3, . . .), (g0, g1, g2, g3, . . .) to

(f0g0, f0g1 + f1g0, f0g2 + f1g1 + f2g0, f0g3 + f1g2 + f2g1 + f3g0, . . .).

2.11. The k-algebra structure of polynomials. The map α 7→ (α, 0, 0, . . .)
from k to k[x] is a ring morphism. This map is injective, so one can view k as a
subset of k[x].

2.12. Units of k[x]. The units of k[x] are exactly the elements (α, 0, 0, . . .)
where α ∈ k∗.

2.13. The k-vector structure of polynomials. The set k[x] is a vector space
under the following operations: 0,−,+ are as defined above; α · (f0, f1, . . .), for
α ∈ k, is defined as (αf0, αf1, . . .).

This k-vector structure matches the k-algebra structure: (αf0, αf1, . . .) is the
same as the product (α, 0, 0, . . .)(f0, f1, . . .).

2.14. Powers of x. The vector (0, 1, 0, . . .) ∈ k[x] is abbreviated x. One then
has x0 = (1, 0, 0, . . .) = 1, x1 = (0, 1, 0, . . .), x2 = (0, 0, 1, . . .), etc.

Any f = (f0, f1, . . .) ∈ k[x] equals the finite sum
∑

i:fi 6=0 fix
i. One can also

write f as the infinite sum
∑

i≥0 fix
i; only finitely many terms here are nonzero.

2.15. Coefficients. If f = (f0, f1, . . .) ∈ k[x] and i ∈ Z then the coefficient
of xi in f means the entry fi for i ≥ 0, or 0 for i < 0. (The case i < 0 arises in
the proof of Theorem 4.1 if t > degA.)

One conventionally hides the formal definition of a polynomial as a vector:
rather than constructing a polynomial f as (f0, f1, . . .) and referring to fi as
the entry at position i in f , one constructs f as

∑
i fix

i and refers to fi as the
coefficient of xi in f .

2.16. Degree. If f = (f0, f1, . . .) ∈ k[x] then the degree of f , written deg f ,
is −∞ for f = 0, and otherwise the largest i such that fi 6= 0.

If f, g ∈ k[x] then deg fg = deg f +deg g and deg(f ± g) ≤ max{deg f, deg g}.

2.17. Monic polynomials. An element f = (f0, f1, . . .) ∈ k[x] is called monic
if f 6= 0 and fdeg f = 1; i.e., f 6= 0 and the coefficient of xdeg f in f is 1.

2.18. Evaluation. If f = (f0, f1, . . .) ∈ k[x] and α ∈ k then the value of f at
α, denoted f(α), is

∑
i≥0 fiα

i, i.e.,
∑

i:fi 6=0 fiα
i. This is an element of k. Beware

the ambiguity of concatenation being used to express both multiplication and
evaluation: (α+ β)f , (α+ β) · f , and f · (α+ β) refer to products in k[x], while
f(α+ β) refers to a value in k.

For each α ∈ k, the map f 7→ f(α) from k[x] to k is a ring morphism. In
other words, for f, g ∈ k[x] one has f(α) = 0 if f = 0, f(α) = 1 if f = 1,
(−f)(α) = −f(α), (f + g)(α) = f(α) + g(α), and (f · g)(α) = f(α) · g(α).

6 Daniel J. Bernstein

2.19. Roots. For f ∈ k[x] and α ∈ k, saying that α is a root of f means that
f(α) = 0. This is equivalent to f = (x−α)q for some q ∈ k[x], i.e., f ∈ (x−α)k[x].

2.20. Vandermonde invertibility. If f 6= 0 then f has at most deg f roots.
Equivalently: if α1, α2, . . . , αn ∈ k are distinct, and f0, f1, . . . , fn−1 ∈ k satisfy∑

i fiα
i
j = 0 for all j ∈ {1, 2, . . . , n}, then (f0, f1, . . . , fn−1) = (0, 0, . . . , 0).

2.21. Transposed Vandermonde invertibility. If α1, . . . , αn ∈ k are distinct,
and c1, . . . , cn ∈ k satisfy the equations

∑
j cjα

i
j = 0 for all i ∈ {0, 1, . . . , n− 1},

then (c1, . . . , cn) = (0, 0, . . . , 0).

2.22. Derivatives. If f = (f0, f1, f2, f3, . . .) ∈ k[x] then the derivative of f
is (f1, 2f2, 3f3, . . .). In other words, the derivative of

∑
i fix

i is
∑

i≥1 ifix
i−1.

If f, g ∈ k[x] then (fg)′ = fg′ + f ′g, where f ′, g′, (fg)′ are the derivatives of
f, g, fg respectively; this is the product rule.

One consequence of the product rule is Bernoulli’s rule that if α ∈ k and
f(α) = 0 then (fg)′(α) = f ′(α) · g(α). Bernoulli’s rule is typically described as
a rule for evaluating some “0/0” expressions: if f(α) = 0 and f ′(α) 6= 0 then
the ratio (fg/f)(α) is (fg)′(α)/f ′(α). Bernoulli’s rule is often called L’Hôpital’s
rule, for reasons explained in [73].

As an example of Bernoulli’s rule, if α1, . . . , αn ∈ k and A =
∏

1≤j≤n(x−αj)
then A′(αh) =

∏
1≤j≤n,j 6=h(αh − αj).

2.23. Quotients and remainders. If f, g ∈ k[x] and g 6= 0 then there are
unique q, r ∈ k[x] such that f = gq + r and deg r < deg g. If r = 0 then the
notation f/g means q.

2.24. Unique factorization. The ring k[x] is a unique-factorization domain.
In particular, if f ∈ k[x] has roots α1, . . . , αn ∈ k, and α1, . . . , αn are distinct,
then f ∈ (x− α1) · · · (x− αn)k[x].

2.25. Greatest common divisors. If f, g ∈ k[x] are not both 0 then there
is a unique monic d ∈ k[x] such that dk[x] = fk[x] + gk[x]. This is called the
greatest common divisor of f and g, written gcd{f, g}. One has f, g ∈ dk[x]
and k[x] = (f/d)k[x] + (g/d)k[x], so gcd{f/d, g/d} = 1.

2.26. Squarefreeness. A nonzero element f ∈ k[x] is called squarefree if
it has the following property: g2 ∈ fk[x] implies g ∈ fk[x]. Equivalently, f
is not divisible by the square of any irreducible element of k[x]. Equivalently,
gcd{f, f ′} = 1 where f ′ is the derivative of f .

3 Interpolation

This section explains how to recover a polynomial f ∈ k[x] with deg f < n, given
(f(α1), . . . , f(αn)). Here α1, . . . , αn are distinct elements of k. See Section 5 for
a generalization that handles as many as t errors in the input vector, at the
expense of requiring deg f < n− 2t.

The formula for ϕ in Theorem 3.1 is usually called the “Lagrange interpolation
formula”. However, Waring [78] published the same formula earlier.

Understanding binary-Goppa decoding 7

def interpolator(n,k,a,r):
 a,r = list(a),list(r)
 assert k.is_field()
 assert len(a) == n and len(set(a)) == n and len(r) == n
 kpoly.<x> = k[]
 A = kpoly(prod(x-a[j] for j in range(n)))
 Aprime = A.derivative()
 return kpoly(sum(((r[i]/Aprime(a[i]))*(A//(x-a[i]))) for i in range(n)))

Algorithm 3.3. Direct interpolation algorithm to compute ϕ ∈ k[x] with degϕ < n
and (ϕ(α1), . . . , ϕ(αn)) = (r1, . . . , rn). Inputs: integer n ≥ 0; field k; (α1, . . . , αn) ∈ kn
with distinct entries; (r1, . . . , rn) ∈ kn.

Theorem 3.1 (direct interpolation). Let n be a nonnegative integer. Let k
be a field. Let α1, . . . , αn be distinct elements of k. Let r1, . . . , rn be elements of
k. Define

ϕ =
∑
i

ri
∏
j 6=i

x− αj

αi − αj
.

Then {f ∈ k[x] : deg f < n, (f(α1), . . . , f(αn)) = (r1, . . . , rn)} = {ϕ}.

Proof. By construction ϕ is a sum of n terms, each term having degree at most
n− 1 (more precisely, degree n− 1 if ri 6= 0, otherwise degree −∞), and hence
has degree at most n− 1.

Observe that ϕ(αh) =
∑

i ri
∏

j 6=i(αh−αj)/(αi−αj). If i 6= h then αh−αj = 0
for j = h so

∏
j 6=i(αh−αj)/(αi−αj) = 0. If i = h then

∏
j 6=i(αh−αj)/(αi−αj) =∏

j 6=h(αh − αj)/(αh − αj) = 1. Hence ϕ(αh) = rh as claimed.
Any f ∈ k[x] with deg f < n and (f(α1), . . . , f(αn)) = (r1, . . . , rn) must have

f = ϕ. Otherwise f−ϕ is a nonzero polynomial, so it has at most deg(f−ϕ) < n
roots, but it visibly has the distinct roots α1, . . . , αn, contradiction. ut

3.2. An interpolation algorithm. Algorithm 3.3 interpolates a polynomial
from its values, using the ϕ formula in Theorem 3.1.

The algorithm starts by computing the polynomial A =
∏

j(x − αj). This
takes Θ(n2) operations in k using schoolbook arithmetic in k[x]. Then, for each
i, the algorithm uses Θ(n) operations to compute A/(x−αi) =

∏
j 6=i(x−αj), and

Θ(n) operations to compute A′(αi) =
∏

j 6=i(αi − αj), where A′ is the derivative
of A. In total this takes Θ(n2) operations.

3.4. More interpolation algorithms. An older interpolation method (due to
Newton), the “divided differences” method, recursively interpolates a polynomial
g ∈ k[x] with (g(α2), . . . , g(αn)) = ((r2−r1)/(α2−α1), . . . , (rn−r1)/(αn−α1)),
and then takes f = r1+(x−α1)g. This method is more complicated than direct
interpolation to express as a concise formula but also costs Θ(n2).

There is an extensive literature on algorithms using n1+o(1) operations in k,
not just for interpolation but also for multiplication (multiplying

∑
0≤i<n fix

i

by
∑

0≤i<n gix
i), division, and other basic operations. See generally [6].

8 Daniel J. Bernstein

One particularly fast case is interpolating f from its values at every point in
a finite field k, using various types of “fast Fourier transforms”. A difficulty here
is that each of these transforms uses a standard order of points, while α1, . . . , αn

are in a secret order inside the McEliece cryptosystem. There are algorithms to
apply a secret permutation without using secret array indices; see generally [10].

4 Approximants

Let A,B be elements of k[x] with degA > degB, and consider the rank-2 lattice
k[x] · (A, 0) + k[x] · (B, 1) inside k[x]2. Readers familiar with integer-coefficient
lattices should note that this is something different, a k[x]-lattice. The elements
of this lattice have the form a(B, 1) − b(A, 0) = (aB − bA, a) for polynomials
a, b ∈ k[x]. The vector (aB − bA, a) is a short vector when both aB − bA and a
have low degree.

It’s useful to vary the weights put on the two vector components: let t be a
nonnegative integer, and consider the lattice k[x] · (A, 0)+k[x] · (B, xdegA−2t−1).
The point of this section is to find, inside this lattice, a minimum-length nonzero
vector (aB − bA, axdegA−2t−1).

(If 2t ≥ degA then there’s a denominator here. One can manually track
weights of polynomials to avoid ever having to consider denominators; this is how
the theorems below are phrased. One can instead allow denominators, dropping
the requirement of staying inside k[x]2. Alternatively, one can clear denominators
by considering the lattice k[x] · (x2t+1−degAA, 0)+ k[x] · (x2t+1−degAB, 1) in the
case 2t ≥ degA. Or one can simply prohibit this case; such large values of t
aren’t of interest for the application to decoding.)

Theorem 4.1 says that one can arrange for both aB − bA and axdegA−2t−1

to have degree at most degA − t − 1. This also forces b to have degree below
t. (Otherwise deg bA ≥ degA + t, while deg aB = degB + deg a < degA + t,
so deg(aB − bA) ≥ degA + t.) One can also take a, b to be coprime; then, by
Theorem 4.2, any lattice vector of degree at most degA−t−1 must be a multiple
of this particular vector.

Why take a minus sign on b? Why multiply a by B and b by A, rather
than a by A and b by B? Answer: small aB − bA means that the rational
function b/a is close to B/A. This rational function b/a has small height, meaning
that its numerator and denominator are small. The perspective of small-height
rational approximations has played an important role in the development of fast
algorithms in this area.

Theorem 4.1 (approximants). Let t be a nonnegative integer. Let k be a
field. Let A,B be elements of k[x] with degA > degB. Then there exist a, b ∈
k[x] such that gcd{a, b} = 1, deg a ≤ t, deg b < t, and deg(aB− bA) < degA− t.

Proof. Define n = degA. Consider the following k-linear map from k2t+1 to
k2t: the input is a vector (a0, a1, . . . , at−1, at, b0, b1, . . . , bt−1); the output entries
are the coefficients of xn+t−1, xn+t−2, . . . , xn−t in aB − bA, where a = atx

t +
at−1x

t−1 + · · · + a1x + a0 and b = bt−1x
t−1 + · · · + b1x + b0. Explicitly, if A =

Understanding binary-Goppa decoding 9

Anx
n + An−1x

n−1 + · · · and B = Bn−1x
n−1 + · · · then the output entries are

atBn−1 − bt−1An, atBn−2 + at−1Bn−1 − bt−1An−1 − bt−2An, etc.
The input dimension 2t + 1 exceeds the output dimension 2t, so there is

a nonzero input that maps to zero. The corresponding polynomials a, b have
(a, b) 6= (0, 0), deg a ≤ t, deg b < t, and deg(aB − bA) < n− t. Finally, to ensure
that gcd{a, b} = 1, replace (a, b) with (a/gcd{a, b}, b/gcd{a, b}); this subtracts
deg gcd{a, b} ≥ 0 from deg a, deg b, and deg(aB − bA). ut

Theorem 4.2 (the best-approximation property of approximants). Let
t be a nonnegative integer. Let k be a field. Let A,B, a, b, c, d be elements of k[x]
such that gcd{a, b} = 1, deg a ≤ t, deg(aB − bA) < degA − t, deg c ≤ t, and
deg(cB − dA) < degA− t. Then (c, d) = (λa, λb) for some λ ∈ k[x].

Equivalently (in the case c 6= 0), if deg a ≤ t, if deg c ≤ t, deg(B/A− b/a) <
−t − deg a, and deg(B/A − d/c) < −t − deg c, then d/c must equal b/a. To
approximate B/Amore closely than the fraction b/a constructed in Theorem 4.1,
one must take larger-degree denominators.

One way to describe the proof is as follows: if the lattice mentioned above
has two independent vectors (aB− bA, axdegA−2t−1), (cB−dA, cxdegA−2t−1) of
degree at most degA − t − 1, then the lattice determinant has degree at most
2 degA− 2t− 2; but, by inspection, the lattice determinant is AxdegA−2t−1, of
degree 2 degA− 2t− 1. Combining linear dependence with gcd{a, b} = 1 forces
(c, d) = (λa, λb).

Proof. c(aB − bA)− a(cB − dA) = (ad− cb)A. The left side has degree smaller
than degA, so ad − cb = 0. In particular, cb ∈ ak[x]; but gcd{a, b} = 1, so
c ∈ ak[x], and similarly d ∈ bk[x]. Write λ for c/a if a 6= 0, or for d/b if b 6= 0; in
both cases (c, d) = (aλ, bλ) as claimed. ut

4.3. An approximant algorithm. Algorithm 4.4 computes a, b from t, k, A,B.
This algorithm works in the same way as the proof of Theorem 4.1, constructing
coefficients of a, b as solutions to an explicit system of 2t equations in 2t + 1
variables. Straightforward matrix algorithms use O(t3) operations in k, typically
Θ(t3) operations.

4.5. More approximant algorithms. One can construct a, b via an extended-
gcd computation. Straightforward extended-gcd algorithms use O(t2) operations,
typically Θ(t2) operations.

More sophisticated extended-gcd algorithms use t1+o(1) operations. See [6,
Section 21]. Applying a sequence of 2t “divsteps”, taking n = 2t in [16, Theorems
A.1 and A.2], uses t1+o(1) operations with the “jump” algorithms in [16] while
avoiding the timing variability of polynomial division.

4.6. Approximants as ratios. With the following definition, the conclusion of
Theorem 4.1 is that there is an approximant to B/A at degree t. This definition
would also slightly compress the statement of Theorem 4.2 and the statements
of some theorems later in this paper. For the benefit of a reader looking at

10 Daniel J. Bernstein

def approximant(t,k,A,B):
 assert t >= 0 and A.base_ring() == k and B.base_ring() == k
 kpoly,n = A.parent(),A.degree()
 assert n > B.degree()
 M = [[B[t+n-1-i-j] for i in range(t+1)]
 + [-A[t+n-1-i-j] for i in range(t)] for j in range(2*t)]
 M = matrix(k,2*t,2*t+1,M)
 ab = list(M.right_kernel().gens()[0])
 a,b = kpoly(ab[:t+1]),kpoly(ab[t+1:])
 d = gcd(a,b)
 return a//d,b//d

Algorithm 4.4. Linear-algebra algorithm to compute a, b ∈ k[x] with gcd{a, b} = 1,
deg a ≤ t, deg b < t, and deg(aB − bA) < degA − t. Inputs: integer t ≥ 0; field k;
A ∈ k[x]; B ∈ k[x] with degA > degB. Note that [...]+[...] in Sage is concatenation
of lists.

just one theorem, this paper avoids using this definition in theorem statements,
but readers exploring the literature may find this definition useful. Analogous
comments apply to, e.g., Definition 5.8 below.

Definition 4.7. Let k be a field. Let A,B be elements of k((x−1)) with A 6= 0.
Let t be a nonnegative integer. If (a, b) ∈ k[x] × k[x] satisfy gcd{a, b} = 1,
deg a ≤ t, and deg(aB− bA) < degA− t then b/a is an approximant to B/A
at degree t.

For simplicity the theorems in this section were stated specifically for A,B ∈
k[x], but the concepts and proofs do not require this. This paper does not define
k((x−1)), but instead notes that k((x−1)) contains the field k(x) of rational
functions in x, and that k(x) in turn contains the polynomial ring k[x], so readers
not familiar with k((x−1)) can substitute k[x] for k((x−1)) in the definition.

The condition deg(aB − bA) < degA − t is equivalent to deg(B/A − b/a) <
−t−deg a; this is why it is safe to describe the input as B/A rather than (A,B).
As for the output, knowing the ratio b/a and knowing gcd{a, b} = 1 does not
exactly determine the pair (a, b), but the only ambiguity is that one can replace
(a, b) by (λa, λb) for λ ∈ k∗; this replacement does not affect the conditions on
deg a, deg b, and deg(aB − bA).

4.8. History. Euclid’s subtractive algorithm [36, Book VII, Propositions 1–2;
translation: “the less of the numbers AB,CD being continually subtracted from
the greater”] recognizes coprime integers, and, more generally, computes the gcd
of two integers.

What is typically called Euclid’s algorithm—see [50, Section 4.5.2, text before
Algorithm E] for an argument that this must be what Euclid had in mind—is
a variant that iterates (A,B) 7→ (B,A mod B). This is much faster than the
original algorithm when bA/Bc is large. This version also has a polynomial
analogue: Stevin [71, page 241 of original, page 123 of cited PDF] computed
polynomial gcd by iterating (A,B) 7→ (B,A mod B).

Understanding binary-Goppa decoding 11

According to [22, page 3], an extended-gcd algorithm computing solutions
to aB − bA = 1, for coprime integers A,B, is due to Aryabhata around the
6th century, and the forward recurrence relation for coefficients in the extended
algorithm—in other words, numerators and denominators of convergents to a
continued fraction—is due to Bhascara in the 12th century.

Lagrange [53] used convergents to continued fractions of rational functions
as small-height approximations to power series. Kronecker [51, pages 118–119
of cited PDF] gave both the continued-fraction construction and (“in directer
Weise”) the linear-algebra construction. Consequently, it seems reasonable to
credit Theorem 4.1 to Lagrange, but the short proof to Kronecker. Small-height
approximations to power series are often miscredited to [62] under the name
“Padé approximants”.

An earlier paper of Lagrange [52, pages 723–728 of cited URL] had described,
in the integer case, an algorithm for basis reduction for rank-2 lattices—in the
context of simplifying quadratic forms, rather than as a perspective on extended-
gcd computations. Lagrange reduction is often miscredited to [41] under the
name “Gauss reduction”.

In coding theory, finding an approximant is called “solving the key equation”;
the “key equation” is, by definition, the congruence d−aB ∈ Ak[x] where deg a ≤
t and deg d < degA − t. Decoding algorithms are typically factored through
this concept, and often the proofs are factored through continued-fraction facts;
when the continued-fraction machinery is stripped away, those facts boil down
to Theorem 4.2. For the more complicated setting of list-decoding algorithms,
short vectors in arbitrary-rank lattices often appear as an abstraction layer; see,
e.g., [21], [7], [32], [8], and [9].

5 Interpolation with errors

This section explains how to recover a polynomial f ∈ k[x] with deg f < n− 2t,
given a vector that matches (f(α1), . . . , f(αn)) on at least n− t positions. Here
α1, . . . , αn are distinct elements of k. The special case t = 0 of this problem was
handled in Section 3, and is used as a subroutine for handling the general case.

5.1. Hamming weight. If e ∈ kn, where n is a nonnegative integer, then
“wt e” means #{i ∈ {1, 2, . . . , n} : ei 6= 0}, the number of nonzero positions in e.
A vector r ∈ kn matches c = (f(α1), . . . , f(αn)) on at least n− t positions if and
only if wt(r − c) ≤ t, i.e., wt(r1 − f(α1), . . . , rn − f(αn)) ≤ t.

5.2. An interpolation-with-errors algorithm. Algorithm 5.3 recovers f
given (n, t, k, α, r), where r is a vector with wt(r1 − f(α1), . . . , rn − f(αn)) ≤ t.
The algorithm has three steps:

• Interpolate the input vector into a polynomial B ∈ k[x] with degB < n, as
in Theorem 3.1.

• Compute an approximant b/a to B/A at degree t as in Theorem 4.1, where
A =

∏
i(x− αi).

• Compute f = B − bA/a. Theorem 5.4 says that this works.

12 Daniel J. Bernstein

from interpolator import interpolator
from approximant import approximant

def interpolator_with_errors(n,t,k,alpha,r):
 alpha,r = list(alpha),list(r)
 assert k.is_field()
 assert len(alpha) == n and len(set(alpha)) == n and len(r) == n
 B = interpolator(n,k,alpha,r)
 kpoly = B.parent()
 A = kpoly(prod(kpoly([-alpha[j],1]) for j in range(n)))
 a,b = approximant(t,k,A,B)
 if a.divides(A):
 if a*B-b*A == 0 or (a*B-b*A).degree() < n-2*t+a.degree():
 return B-b*A//a

Algorithm 5.3. Algorithm to compute the unique f ∈ k[x] with deg f < n − 2t for
which (f(α1), . . . , f(αn)) matches r on at least n − t positions, or None if no such f
exists. Inputs: integer n ≥ 0; integer t ≥ 0; field k; (α1, . . . , αn) ∈ kn with distinct
entries; r ∈ kn.

The algorithm returns None for invalid input vectors, recognized as follows: f
exists if and only if A ∈ ak[x] (which is equivalent to #{j : a(αj) = 0} = deg a)
and deg(aB − bA) < n− 2t+ deg a. See Theorem 5.5.

Beware that Sage’s degree function is not the same as the conventional degree
function for polynomials: on input 0, it returns −1 rather than −∞. This is why
Algorithm 5.3 includes a separate test for aB − bA = 0.

Theorem 5.4 (interpolation with errors). Let n, t be nonnegative integers.
Let k be a field. Let α1, . . . , αn be distinct elements of k. Define A =

∏
i(x−αi).

Let B, a, b, f be elements of k[x] with gcd{a, b} = 1, deg a ≤ t, deg(aB − bA) <
n−t, and deg f < n−2t. Define e = (B(α1)−f(α1), . . . , B(αn)−f(αn)). Assume
wt e ≤ t. Then A ∈ ak[x]; f = B − bA/a; deg(aB − bA) < n − 2t + deg a; and
{i : ei 6= 0} = {i : a(αi) = 0}.

Proof. Define E =
∏

i:ei=0(x− αi) and c =
∏

i:ei 6=0(x− αi). Then Ec = A.
If ei = 0 then B(αi) = f(αi) so B − f ∈ (x − αi)k[x]. This implies B − f ∈

Ek[x], since α1, . . . , αn are distinct.
Define d = (B − f)/E ∈ k[x]. Then dA = (B − f)c so cB − dA = cf . Note

that deg c = wt e ≤ t; also deg f < n− 2t so deg(cB − dA) < n− t.
The conditions of Theorem 4.2 are satisfied: A,B, a, b, c, d are elements of

k[x] with gcd{a, b} = 1, deg a ≤ t, deg(aB − bA) < degA − t, deg c ≤ t, and
deg(cB − dA) < degA− t.

Hence (c, d) = (λa, λb) for some λ ∈ k[x] by Theorem 4.2. By construction
c 6= 0, so a 6= 0. Also A ∈ ck[x] ⊆ ak[x]. Consequently B− f = dA/c = bA/a, so
f = B − bA/a and deg(aB − bA) = deg af < n− 2t+ deg a.

To see that ei 6= 0 exactly when a(αi) = 0: A(αi) = 0 so if a(αi) = 0 then, by
the Bernoulli rule, (A/a)(αi) = A′(αi)/a

′(αi) 6= 0 where a′, A′ are the derivatives

Understanding binary-Goppa decoding 13

of a,A respectively; also b(αi) 6= 0 since gcd{a, b} = 1, so ei = (B − f)(αi) =
(bA/a)(αi) 6= 0. If a(αi) 6= 0 then ei = (bA/a)(αi) = 0 since A(αi) = 0. ut

Theorem 5.5 (checking interpolation with errors). Let n, t be nonnegative
integers. Let k be a field. Let α1, . . . , αn be distinct elements of k. Define
A =

∏
i(x−αi). Let B, a, b be elements of k[x] such that gcd{a, b} = 1, deg a ≤ t,

A ∈ ak[x], and deg(aB−bA) < n−2t+deg a. Define f = B−bA/a. Then f ∈ k[x];
deg f < n− 2t; and wt(B(α1)− f(α1), . . . , B(αn)− f(αn)) ≤ t.

The condition deg(aB − bA) < n − 2t + deg a here cannot be weakened to
deg(aB− bA) < n− t. Consider, e.g., n = 3; t = 1; any field k with #k ≥ 3; any
distinct α1, α2, α3 ∈ k; A = (x− α1)(x− α2)(x− α3); B = x; a = 1; and b = 0.
Then deg(aB − bA) = deg x = 1 = n− 2t+deg a. The values of B on α1, α2, α3

are α1, α2, α3 respectively, and there is no polynomial f with deg f < 1 that
matches more than one of those values.

Proof. By assumption A ∈ ak[x], and a 6= 0 since A 6= 0, so f = B−bA/a ∈ k[x].
Also deg f = deg(aB − bA)− deg a < n− 2t.

If B(αi) − f(αi) 6= 0 then (bA/a)(αi) 6= 0, so (A/a)(αi) 6= 0, but A(αi) = 0,
so a(αi) = 0. The number of roots of a is at most deg a ≤ t, and α1, . . . , αn are
distinct, so wt(B(α1)− f(α1), . . . , B(αn)− f(αn)) ≤ t. ut

5.6. More algorithms: varying the pair (A,B). If A =
∏

i(x − αi) and
B =

∑
i(ri/A

′(αi))A/(x− αi), where A′ is the derivative of A, then

B

A
=
∑
i

ri
A′(αi)(x− αi)

=
∑
i

ri
A′(αi)

(
1

x
+
αi

x2
+ · · ·

)
=
∑
s≥0

1

xs+1

∑
i

riα
s
i

A′(αi)
.

One can vary the choice of (A,B) while preserving the ratio B/A: e.g., one can
take A = 1 and B =

∑
s≥0 x

−s−1∑
i riα

s
i/
∏

j 6=i(αj−αi). Formally, this requires
defining k((x−1)); but the terms in B/A after x−2t do not matter for decoding,
so one can take A = x2t and B =

∑
0≤s<2t

∑
i riα

s
ix

2t−s−1/
∏

j 6=i(αj − αi).
These variations preserve the set of (a, b) ∈ k[x]×k[x] such that gcd{a, b} = 1,

deg a ≤ t, and deg(aB − bA) < degA − t. If deg f < n − 2t and wt e ≤ t with
e = (r1 − f(α1), . . . , rn − f(αn)) then {i : ei 6= 0} = {i : a(αi) = 0} for any such
(a, b). If one assumes that F2 ⊆ k and that e ∈ Fn

2 then knowing {i : ei 6= 0} is
enough information to reconstruct e and thereby f . To instead handle arbitrary
e ∈ kn, one can use any of these variants of (A,B) to compute (a, b), and then
return to the original (A,B) to apply the formula f = B−bA/a in Theorem 5.4.

5.7. Reed–Solomon codes. The set of vectors (f(α1), . . . , f(αn)) is called
a Reed–Solomon code; see Definition 5.8. This is a subspace of the k-vector
space kn. Each vector is called a codeword. With this terminology, Theorem 5.4
recovers a Reed–Solomon codeword from a vector that matches the codeword on
at least n− t positions. One can similarly define Goppa codes in Section 6.

14 Daniel J. Bernstein

Definition 5.8. Let n, t be nonnegative integers. Let k be a field. Let α1, . . . , αn

be distinct elements of k. Then {(f(α1), . . . , f(αn)) : f ∈ k[x],deg f < n− 2t}
is the Reed–Solomon code over k of dimension n − 2t with support
(α1, . . . , αn).

5.9. History. Reed–Solomon [68] suggested encoding a polynomial f ∈ k[x]
with deg f < n−2t as (f(α1), . . . , f(αn)) for distinct α1, . . . , αn, so as to be able
to recover f even if t vector entries are corrupted. The point is that the code
C = {(f(α1), . . . , f(αn)) : f ∈ k[x],deg f < n− 2t} has “minimum distance” at
least 2t + 1 (every nonzero c ∈ C has wt c ≥ 2t + 1), so the map (e, f) 7→
e + (f(α1), . . . , f(αn)) from {(e, f) ∈ kn × k[x] : wt e ≤ t,deg f < n− 2t} to kn
is injective. This raises the question of how efficiently one can decode ≤t errors
in C, i.e., recover (e, f) from e+ (f(α1), . . . , f(αn)).

Assume n > 2t. Prange’s “information-set decoding” [66] interpolates f from
n − 2t values at selected positions in the input vector, checks the remaining
values of f to deduce e, and, if e has the wrong weight, tries another selection of
n− 2t positions. This takes polynomial time if t is close enough to 0 or n/2, but
is much slower in general. Reed and Solomon did not have the idea of checking
the weight of e: they had instead suggested trying many selections of n − 2t
positions to find the most popular choice of f , and relying on an upper bound
for how often any particular incorrect choice could appear.

Forney [38, Chapter 4] (see also [39]) introduced a polynomial-time decoding
algorithm for Reed–Solomon codes. Forney’s algorithm simplified and extended
an algorithm by Gorenstein and Zierler [44], which handled the special case
{α1, . . . , αn} = k∗. The latter algorithm extended an algorithm by Peterson [65],
which handled the following special case: F2 ⊆ k, each f(αj) is in F2, and e ∈ Fn

2 .
The Peterson–Gorenstein–Zierler–Forney algorithm is bottlenecked by matrix

operations that, when carried out in a simple way, use n3+o(1) operations in k,
assuming n ∈ t1+o(1). The exponent for generic matrix operations was later
reduced below 3 (starting with exponent log2 7 for matrix multiplication by
Strassen [72], along with the same exponent for solving linear equations under
various nonsingularity constraints), but it turns out that one can obtain much
better decoding speeds using the structure of these particular matrices.

Berlekamp [5] introduced a decoding algorithm using just n2+o(1) operations
instead of n3+o(1) operations; the main work inside the algorithm is polynomial
arithmetic rather than matrix arithmetic. Massey [55] streamlined Berlekamp’s
algorithm and factored the algorithm into two layers, where the top layer is a
decoder and the bottom layer is a subroutine for “shift register synthesis”. The
subroutine is called the Berlekamp–Massey algorithm.

Sugiyama–Kasahara–Hirasawa–Namekawa [75] built an n2+o(1) algorithm for
Reed–Solomon decoding on top of an extended-gcd computation. Algorithms
using just n1+o(1) operations were already known for gcd (see [6, Section 21.6] for
history) and for all other necessary subroutines; these algorithms were applied
to Reed–Solomon decoding by Justesen [48] and independently Sarwate [69],
reducing the costs of decoding to n1+o(1).

Understanding binary-Goppa decoding 15

It turned out that Berlekamp decoders and Sugiyama–Kasahara–Hirasawa–
Namekawa decoders are equivalent: Mills [57] pointed out that “shift register
synthesis” is the same as the problem of finding approximants, the problem
of finding (a, b) in Theorem 4.1. See also [79] for how the result after each
polynomial division inside an extended-gcd computation appears inside in the
Berlekamp–Massey algorithm; [34] for an extended-gcd explanation of all further
quantities inside the Berlekamp–Massey algorithm; and [16, Appendix C] for
a reformulation in terms of “divsteps”. In a nutshell, the polynomials in the
Berlekamp–Massey algorithm are polynomials in an extended-gcd computation
but with coefficients in reverse order.

This does not mean that all Reed–Solomon decoders are the same. See, for
example, Section 5.6 regarding different choices of (A,B); the choice of (A,B)
in Theorem 5.4 was published by Shiozaki [70, Section III] and later Gao [40].
For the problem of computing (a, b) in Theorem 4.1, algorithms in the literature
have costs ranging from n3+o(1) down through n1+o(1). A “systematic” Reed–
Solomon code represents a polynomial f of degree below n − 2t as the values
(f(α1), . . . , f(αn−2t)) ∈ kn−2t rather than as the coefficients of f ; one needs to
look closely at algorithms to see which representation allows faster decoding,
although obviously the gap cannot be larger than the cost of converting between
representations, i.e., the cost of evaluation and (error-free) interpolation. Finally,
there are list-decoding algorithms that can handle more than t errors.

6 Binary-Goppa decoding

The title problem of this paper and of this section, binary-Goppa decoding, is
to recover e, c ∈ Fn

2 from e+ c, assuming wt e ≤ t and
∑

i ciA/(x− αi) ∈ gk[x].
Here α1, . . . , αn are distinct elements of a finite field k containing F2; A means∏

i(x − αi); and g is a squarefree degree-t element of k[x] with gcd{g,A} = 1,
i.e., with g(α1), . . . , g(αn) all nonzero. This section presents an algorithm to solve
this problem.

6.1. An algorithm to decode binary Goppa codes. Algorithm 6.2 allows
any r ∈ kn as an input vector, and returns the unique e ∈ Fn

2 with wt e ≤ t such
that

∑
i(ri − ei)A/(x − αi) ∈ gk[x], or None if no such e exists. The algorithm

has three steps:

• Interpolate a polynomial B satisfying B(αi) = riA
′(αi)/g(αi)

2. Here A′ is
the derivative of A, so A′(αj) =

∏
i6=j(αj − αi).

• Compute an approximant b/a to B/A at degree t as in Theorem 4.1.
• Compute {i : ei = 1} as {i : a(αi) = 0}. Theorem 6.4 says that this works.

The algorithm recognizes the None case using tests stated in Theorem 6.5: e exists
exactly when A ∈ ak[x], g2b − a′ ∈ ak[x], and deg(aB − bA) < n − 2t + deg a.
Here a′ is the derivative of a. The test g2b−a′ ∈ ak[x] can be skipped for inputs
r ∈ Fn

2 ; see Section 7.

16 Daniel J. Bernstein

from interpolator import interpolator
from approximant import approximant

def goppa_errors(n,t,k,alpha,g,r):
 alpha,r = list(alpha),list(r)
 assert k.is_field() and k.characteristic() == 2
 assert g.base_ring() == k and g.degree() == t and g.is_squarefree()
 assert len(alpha) == n and len(set(alpha)) == n and len(r) == n
 kpoly = g.parent()
 A = kpoly(prod(kpoly([-alpha[j],1]) for j in range(n)))
 Aprime = A.derivative()
 rtwist = [r[i]*Aprime(alpha[i])/g(alpha[i])^2 for i in range(n)]
 B = interpolator(n,k,alpha,rtwist)
 a,b = approximant(t,k,A,B)
 aprime = a.derivative()
 if a.divides(A):
 if a.divides(g^2*b-aprime):
 if a*B-b*A == 0 or (a*B-b*A).degree() < n-2*t+a.degree():
 return [k(a(alpha[j]) == 0) for j in range(n)]

Algorithm 6.2. Algorithm to compute the unique e ∈ Fn
2 with

∑
i(ri−ei)A/(x−αi) ∈

gk[x] and wt e ≤ t, or None if no such e exists. Here A =
∏

i(x − αi) ∈ k[x]. Inputs:
integer n ≥ 0; integer t ≥ 0; field k containing F2; (α1, . . . , αn) ∈ kn with distinct
entries; squarefree g ∈ k[x] with deg g = t and each g(αj) nonzero; r ∈ kn.

Theorem 6.3 (Goppa squaring). Let n be a nonnegative integer. Let k be
a finite field with F2 ⊆ k. Let α1, . . . , αn be distinct elements of k. Define
A =

∏
i(x − αi). Let g be a squarefree element of k[x] such that gcd{g,A} =

1. Let c be an element of Fn
2 . Then

∑
i ciA/(x − αi) ∈ gk[x] if and only if∑

i ciA/(x− αi) ∈ g2k[x].

Goppa proved Theorem 6.3 in [43, Section 4]. The same proof works for all
perfect fields of characteristic 2, not just finite fields.

Proof. Write Z =
∏

i:ci=0(x− αi) and C =
∏

i:ci=1(x− αi). Then A = ZC. By
hypothesis gcd{g,A} = 1, so gcd{g, Z} = 1.

The derivative C ′ of C is
∑

i:ci=1 C/(x−αi). Hence
∑

i ciA/(x−αi) ∈ gk[x] if
and only if ZC ′ ∈ gk[x]; i.e., if and only if C ′ ∈ gk[x]. Similarly,

∑
i ciA/(x−αi) ∈

g2k[x] if and only if C ′ ∈ g2k[x]. It thus suffices to show that C ′ ∈ gk[x] if and
only if C ′ ∈ g2k[x].

Assume that C ′ ∈ gk[x]. Write C as
∑

j Cjx
j . By assumption k is a finite

field containing F2, so C ′ =
∑

j C2j+1x
2j ; also, C2j+1 has a square root C1/2

2j+1

in k, so C ′ = S2 where S =
∑

j C
1/2
2j+1x

j . Thus S2 ∈ gk[x], implying S ∈ gk[x]
since g is squarefree, implying C ′ ∈ g2k[x].

Conversely, if C ′ ∈ g2k[x] then certainly C ′ ∈ gk[x]. ut

Theorem 6.4 (Goppa decoding). Let n, t be nonnegative integers. Let k be
a finite field with F2 ⊆ k. Let α1, . . . , αn be distinct elements of k. Define

Understanding binary-Goppa decoding 17

A =
∏

i(x − αi). Let g be a squarefree element of k[x] such that deg g = t and
gcd{g,A} = 1. Let B, a, b be elements of k[x] with gcd{a, b} = 1, deg a ≤ t, and
deg(aB− bA) < n− t. Let A′, a′ be the derivatives of A, a respectively. Let e be
an element of Fn

2 such that wt e ≤ t and

∑
i

(
g(αi)

2B(αi)

A′(αi)
− ei

)
A

x− αi
∈ gk[x].

Then ei = [a(αi) = 0] for all i; wt e = deg a; A ∈ ak[x]; g2b − a′ ∈ ak[x]; and
deg(aB − bA) < n− 2t+ deg a.

The notation [a(αi) = 0] means 1 if a(αi) = 0, else 0.

Proof. Write ci = (g2B)(αi)/A
′(αi)−ei. By assumption

∑
i ciA/(x−αi) ∈ gk[x],

so
∑

i ciA/(x − αi) ∈ g2k[x] by Theorem 6.3. Write f = (
∑

i ciA/(x − αi))/g
2.

Then f ∈ k[x] and deg f < n− 2t, since degA = n and deg g = t.
Notice that (g2f)(αi)/A

′(αi) = ci. Indeed,∑
i

ciA
′(αi)

∏
j 6=i

x− αj

αi − αj
=
∑
i

ci
∏
j 6=i

(x− αj) =
∑
i

ci
A

x− αi
= g2f,

so ciA′(αi) = (g2f)(αi) by Theorem 3.1.
Now (g2B− g2f)(αi)/A

′(αi) = ei, so (B− f)(αi) = eiA
′(αi)/g(αi)

2, which is
nonzero exactly when ei 6= 0, so wt((B − f)(α1), . . . , (B − f)(αn)) = wt e ≤ t.

By Theorem 5.4, A ∈ ak[x]; f = B−bA/a; deg(aB−bA) < n−2t+deg a; and
{i : (B − f)(αi) 6= 0} = {i : a(αi) = 0}. Hence {i : ei 6= 0} = {i : a(αi) = 0}. By
assumption ei ∈ F2, so ei 6= 0 exactly when ei = 1, so ei = [a(αi) = 0]. Also, wt e
equals the number of roots of a among α1, . . . , αn, namely deg a since A ∈ ak[x].

Finally, say a(αi) = 0. Then a′(αi) 6= 0 and, by Bernoulli’s rule, (A/a)(αi) =
A′(αi)/a

′(αi), so

1 = ei =
g(αi)

2(B − f)(αi)

A′(αi)
=
g(αi)

2(bA/a)(αi)

A′(αi)
=
g(αi)

2b(αi)

a′(αi)
,

so (g2b− a′)(αi) = 0. Hence g2b− a′ ∈ ak[x]. ut

Theorem 6.5 (checking Goppa decoding). Let n, t be nonnegative integers.
Let k be a finite field with F2 ⊆ k. Let α1, . . . , αn be distinct elements of k.
Define A =

∏
i(x − αi). Let g be an element of k[x] such that deg g = t and

gcd{g,A} = 1. Let B, a, b be elements of k[x] with gcd{a, b} = 1, deg a ≤ t,
A ∈ ak[x], deg(aB − bA) < n− 2t+ deg a, and g2b− a′ ∈ ak[x], where a′ is the
derivative of a. Define e ∈ Fn

2 by ei = [a(αi) = 0]. Then wt e = deg a and

∑
i

(
g(αi)

2B(αi)

A′(αi)
− ei

)
A

x− αi
∈ g2k[x]

where A′ is the derivative of A.

18 Daniel J. Bernstein

One can replace g2 in this theorem by any polynomial of degree 2t with no
roots among α1, . . . , αn, but the extra generality is not useful for this paper.

Proof. First a 6= 0 since 0 6= A ∈ ak[x]. Define f = B − bA/a. Then f ∈ k[x]
and deg f = deg(aB − bA)− deg a < n− 2t; also deg g = t, so deg g2f < n.

Observe that ei = (g2bA/a)(αi)/A
′(αi) = (g2B − g2f)(αi)/A

′(αi):

• If a(αi) = 0 then a′(αi) 6= 0 and (A/a)(αi)/A
′(αi) = 1/a′(αi). Also g2b−a′ ∈

ak[x] so (g2b)(αi) = a′(αi). Multiply: (g2bA/a)(αi)/A
′(αi) = 1 = ei.

• If a(αi) 6= 0 then (g2bA/a)(αi)/A
′(αi) = 0 = ei since A(αi) = 0.

Hence∑
i

(
(g2B)(αi)

A′(αi)
− ei

)
A

x− αi
=
∑
i

(g2f)(αi)

A′(αi)

A

x− αi

=
∑
i

(g2f)(αi)
∏
j 6=i

x− αi

αj − αi
= g2f ∈ g2k[x]

by Theorem 3.1.
To see wt e = deg a: Since A splits into linear factors of the form x− αi, the

same is true for a, so #{i : ei = 1} = #{i : a(αi) = 0} = deg a. ut

6.6. Goppa decoders via Reed–Solomon decoders. Fix β1, . . . , βn ∈ k∗,
and consider the problem of recovering f ∈ k[x] with deg f < n−2t given a vector
that agrees with (β1f(α1), . . . , βnf(αn)) on at least n− t positions. Dividing βj
out of the jth position immediately reduces this to the problem considered in
Section 5.

The main point of the proof of Theorem 6.4 is that the vectors c ∈ kn satisfying∑
i ciA/(x − αi) ∈ gk[x] are exactly the vectors (β1f(α1), . . . , βnf(αn)) where

βj = g(αj)
2/A′(αj). Any Reed–Solomon decoder can thus be used as a Goppa

decoder.
Algorithm 6.2 starts from this approach but streamlines the computation of

e, taking advantage of the assumption e ∈ Fn
2 . The critical information coming

from the Reed–Solomon decoder is the “error-locator polynomial” a, which is a
nonzero constant multiple of

∏
i:ei 6=0(x− αi). Knowing the positions of nonzero

entries in e immediately reveals e, since each entry of e is either 0 or 1.
Without the assumption e ∈ Fn

2 , one can compute each ei in the Reed–
Solomon context as (bA/a)(αi), which is b(αi)A

′(αi)/a
′(αi) when a(αi) = 0.

In the binary-Goppa context one multiplies by βi = g(αi)
2/A′(αi) to obtain

ei = g(αi)
2b(αi)/a

′(αi) when a(αi) = 0. Streamlining this to ei = 1 might
not seem helpful in Algorithm 6.2, since the algorithm checks g2b − a′ ∈ ak[x]
anyway, and the obvious way to do this is to check g(αi)

2b(αi) = a′(αi); but
Section 7 shows that this check can simply be skipped when the input vector is
in Fn

2 .

Understanding binary-Goppa decoding 19

7 A closer look at binary Goppa codes

The main point of this section is that if the input vector is assumed to be in
Fn

2 , not merely in kn, then the test g2b − a′ ∈ ak[x] can be removed from
Algorithm 6.2.

7.1. Overview of the logic. Theorem 7.2 rewrites
∑

i ciA/(x − αi) ∈ gk[x]
as the following system of linear equations:

∑
i ci/g(αi) = 0,

∑
i ciαi/g(αi) = 0,

and so on through
∑

i ciα
t−1
i /g(αi) = 0. Ths theorem is from Goppa [43, Section

3], and is used inside the standard method of computing McEliece keys.
Theorem 7.3 uses this system of linear equations to show that any solution

c ∈ kn with at least n − t entries in F2 must have all entries in F2. I wouldn’t
be surprised if this is already in the literature, but I don’t know a reference.

In the context of decoding, skipping the test g2b− a′ ∈ ak[x] means that one
finds c ∈ kn given any e + c ∈ kn with wt e ≤ t. If one adds the requirement
that the input e+ c is in Fn

2 then the resulting c must have at least n− t entries
in F2, so it is in Fn

2 , so e ∈ Fn
2 as desired. Theorem 7.4 spells out the precise

conditions.

Theorem 7.2 (Goppa parity checks). Let n, t be nonnegative integers. Let
k be a field. Let α1, . . . , αn be distinct elements of k. Define A =

∏
i(x − αi).

Let g be an element of k[x] such that deg g = t and gcd{g,A} = 1. Let c be an
element of kn. Then

∑
i ciA/(x − αi) ∈ gk[x] if and only if

∑
i ciα

s
i/g(αi) = 0

for all nonnegative integers s < t.

Proof. Define B =
∑

i(ci/g(αi))A/(x − αi) and C =
∑

i ciA/(x − αi). Then
B(αi) = ciA

′(αi)/g(αi) and C(αi) = ciA
′(αi) by Theorem 3.1, so C(αi) −

g(αi)B(αi) = 0, so C − gB ∈ Ak[x] since α1, . . . , αn are distinct.
By hypothesis deg g = t. If degB < n − t then deg gB < n = degA so

C = gB ∈ gk[x]. Conversely, if C ∈ gk[x] then (C/g−B)g = C − gB ∈ Ak[x] so
C/g−B ∈ Ak[x] since gcd{g,A} = 1; but deg(C/g−B) < degA, so C/g−B = 0,
so degB = deg(C/g) < n− deg g = n− t.

Define Q =
∑

i(ci/g(αi))α
t
iA/(x− αi). Then

xtB −Q =
∑
i

ci
g(αi)

(xt − αt
i)

A

x− αi
= A

∑
i

ci
g(αi)

∑
0≤s<t

xt−1−sαs
i .

One has degQ < n, so degB < n− t if and only if deg(xtB−Q) < n, i.e., if and
only if

∑
i(ci/g(αi))

∑
0≤s<t x

t−1−sαs
i = 0, i.e., if and only if

∑
i(ci/g(αi))α

s
i = 0

for all s with 0 ≤ s < t. Hence C ∈ gk[x] if and only if
∑

i ciα
s
i/g(αi) = 0 for all

s with 0 ≤ s < t. ut

If the formal structure of this paper allowed k((x−1)) then one could replace
the last paragraph of the proof with the following: degB < n − t if and only if
deg(B/A) < −t, i.e., if and only if

∑
i ciα

s
i/g(αi) = 0 for all nonnegative integers

s < t, since B/A =
∑

s x
−s−1∑

i ciα
s
i/g(αi) as in Section 5.6. The proof given

above replaces B/A with the approximation (xtB−Q)/xtA so as to work entirely
with polynomials.

20 Daniel J. Bernstein

Theorem 7.3 (Goppa alignment). Let n, t be nonnegative integers. Let k
be a finite field with F2 ⊆ k. Let α1, . . . , αn be distinct elements of k. Define
A =

∏
i(x − αi). Let g be a squarefree element of k[x] such that deg g = t and

gcd{g,A} = 1. Let c be an element of kn such that
∑

i ciA/(x− αi) ∈ gk[x]. If
#{i : ci ∈ F2} ≥ n− t then c ∈ Fn

2 .

Proof. Write di = c2i − ci. Saying ci ∈ F2 is the same as saying di = 0.
Write I = {i : di 6= 0}. By hypothesis di = 0 for at least n− t values of i, i.e.,

#I ≤ t. The objective is to show that di = 0 for all i, i.e., that I = {}.
By Theorem 7.2,

∑
i ciα

s
i/g(αi) = 0 for 0 ≤ s < t.

Also
∑

i ciA/(x − αi) ∈ g2k[x] by Theorem 6.3. Substitute (g2, 2t) for (g, t)
in Theorem 7.2 to see that

∑
i ciα

s
i/g(αi)

2 = 0 for 0 ≤ s < 2t.
One has 2 = 0 in k since k contains F2, so (v+w)2 = v2+2vw+w2 = v2+w2

for all v, w ∈ k: in short, squaring maps sums to sums. Squaring is also injective:
if v2 = w2 then (v + w)2 = v2 + w2 = 2v2 = 0 so v + w = 0 so v = w.
Consequently α2

1, . . . , α
2
n are distinct.

For each s with 0 ≤ s < t, square the equation
∑

i ciα
s
i/g(αi) = 0 to obtain∑

i c
2
iα

2s
i /g(αi)

2 = 0. Also
∑

i ciα
2s
i /g(αi)

2 = 0 since 0 ≤ 2s < 2t. Subtract to
obtain

∑
i diα

2s
i /g(αi)

2 = 0, i.e.,
∑

i∈I diα
2s
i /g(αi)

2 = 0.
The first #I of these equations, the equations with s < #I, now imply

di/g(αi)
2 = 0 for each i ∈ I by transposed Vandermonde invertibility, since

the quantities α2
i for i ∈ I are distinct. Hence di = 0 for each i ∈ I, but di 6= 0

for i ∈ I, so #I = 0 as claimed. ut

A slightly different proof takes I to be any set of size at most t containing all i
for which di 6= 0. This still reaches the conclusion that di = 0 for each i ∈ I. One
also has di = 0 for each i /∈ I by definition of I, so di = 0 for all i as claimed.

Theorem 7.4 (checking Goppa decoding for received words in Fn
2). Let

n, t be nonnegative integers. Let k be a finite field with F2 ⊆ k. Let α1, . . . , αn

be distinct elements of k. Define A =
∏

i(x− αi). Let g be a squarefree element
of k[x] such that deg g = t and gcd{g,A} = 1. Let B, a, b be elements of k[x] with
gcd{a, b} = 1, deg a ≤ t, A ∈ ak[x], and deg(aB− bA) < n− 2t+deg a. Assume
that g(αi)

2B(αi)/A
′(αi) ∈ F2 for all i. Define e ∈ Fn

2 by ei = [a(αi) = 0]. Then
wt e = deg a and ∑

i

(
g(αi)

2B(αi)

A′(αi)
− ei

)
A

x− αi
∈ g2k[x]

where A′ is the derivative of A.

Compared to Theorem 6.5, this adds the condition that g(αi)
2B(αi)/A

′(αi) ∈
F2, but removes the condition that g2b− a′ ∈ ak[x].

Proof. First a 6= 0 since 0 6= A ∈ ak[x]. Define f = B − bA/a. Then f ∈ k[x]
and deg f = deg(aB − bA)− deg a < n− 2t; also deg g = t, so deg g2f < n.

Understanding binary-Goppa decoding 21

Define c ∈ kn by ci = (g2f)(αi)/A
′(αi). Then∑

i

ci
A

x− αi
=
∑
i

(g2f)(αi)
∏
j 6=i

x− αi

αj − αi
= g2f ∈ g2k[x]

by Theorem 3.1.
Define ri = (g2B)(αi)/A

′(αi). If a(αi) 6= 0 then (A/a)(αi) = 0 so B(αi) =
f(αi) so ri = ci. There are at most deg a ≤ t indices i for which a(αi) = 0, so
#{i : ri = ci} ≥ n− t. By hypothesis ri ∈ F2, so #{i : ci ∈ F2} ≥ n− t. Hence
c ∈ Fn

2 by Theorem 7.3.
Now the difference ri − ci is in F2 for each i. If ei = 0 then a(αi) 6= 0 so

again ri = ci. If ei = 1 then a(αi) = 0, so ri − ci = (g2B − g2f)(αi)/A
′(αi) =

(g2b)(αi)/a
′(αi) 6= 0 since gcd{a, b} = 1, so ri − ci = 1. In all cases ri − ci = ei.

Finally
∑

i(ri−ei)A/(x−αi) =
∑

i ciA/(x−αi) ∈ g2k[x], and (as in Theorem 6.4)
wt e = #{i : a(αi) = 0} = deg a since A ∈ ak[x]. ut

8 McEliece decryption

The reader is presumed to be interested specifically in Classic McEliece [12],
although without much work one can also cover other versions of the McEliece
cryptosystem.

8.1. Ciphertexts. In this cryptosystem, a secret vector e ∈ Fn
2 with wt e = t is

encoded as a shorter ciphertext H(e) ∈ Fmt
2 . This function H : Fn

2 → Fmt
2 has

three critical properties:

• Linear: The function is F2-linear. This allows the function to be concisely
communicated as a matrix, the public key.

• Goppa: Each c ∈ Fn
2 has H(c) = 0 if and only if

∑
i ciA/(x − αi) ∈ gk[x].

Here k is a field with #k = 2m, and α1, . . . , αn, g are as in Section 6, as
usual with A =

∏
i(x− αi).

• Systematic: The composition H ◦ ι : Fmt
2 → Fmt

2 is the identity map,
where ι is the injection Fmt

2 → Fn
2 that simply appends n−mt zeros to the

input. In other words, the first mt ×mt block of the matrix is an identity
matrix. Obviously the identity matrix can then be omitted from the public
key, saving some space; less obviously, this reduces the cost of optimized
decoding from n2+o(1) to n1+o(1).

For each k, α1, . . . , αn, g there is at most one H satisfying these properties. One
can construct this H, if it exists, by converting

∑
i ciA/(x − αi) ∈ gk[x] into a

system of F2-linear equations (a “parity-check matrix”) using Theorem 7.2, and
then row-reducing the equations to obtain systematic form. Conjecturally, this
succeeds about 30% of the time. In case of failure, the traditional response is to
try again with a new (α1, . . . , αn, g); Chou’s “semi-systematic form” options (see
[13]) instead apply a limited permutation to (α1, . . . , αn); [3] had instead applied
an arbitrary permutation to (α1, . . . , αn). See [13] for step-by-step algorithms.

22 Daniel J. Bernstein

8.2. Decryption. Decryption of a ciphertext H(e) works as follows. Define
c = ι(H(e)) − e ∈ Fn

2 . One has H(ι(H(e))) = H(e) by the systematic-form
property of H, so H(c) = 0 by linearity. One then has

∑
i ciA/(x− αi) ∈ gk[x]

by the Goppa property of H. Recovering e from H(e) is thus a simple matter of
appending n−mt zeros to obtain ι(H(e)) = e+ c, and then recovering e, c ∈ Fn

2

from e+ c as explained in Section 6. This recovery uses α1, . . . , αn, g, which are
secrets known to the party that generated the public key.

8.3. Rigidity. The cryptosystem includes defenses against chosen-ciphertext
attacks. These defenses require, among other things, recognizing invalid input
vectors. An input vector σ ∈ Fmt

2 is by definition valid exactly when it is in
{H(e) : e ∈ Fn

2 ,wt e = t}.
One way to handle this is as follows:

• Feed σ through any decoding algorithm that works for valid inputs. More
precisely, apply some function D : Fmt

2 → Fn
2 with the following property:

all e ∈ Fn
2 with wt e = t have D(H(e)) = e.

• In all cases, whatever the output e ∈ Fn
2 is, check that wt e = t. If this fails,

the input vector is invalid.
• “Reencrypt” to double-check validity of σ: compute H(e) and check whether
H(e) = σ. If this fails, the input vector is invalid.

Handling the matrix for H in the last step incurs similar costs to encryption.
Consider, e.g., [63] saying that this “necessitates the inclusion of the public key
as part of the private key and increases the running time of decapsulation”,
although to save space one could instead take time to “regenerate the public key
from the private key when needed”.

A more efficient approach, already noted in [12, Section 2.5] and used in the
software accompanying [12], checks whether H(e) = σ “without using quadratic
space”, and in particular without storing or recomputing the matrix for H. The
point is that the following properties are equivalent:

• σ = H(e);
• H(ι(σ)) = H(e), by the systematic-form property of H;
• H(c) = 0 for c = ι(σ)− e, by linearity;
•
∑

i ciA/(x− αi) ∈ gk[x], by the Goppa property of H.

This last condition, checking that c = ι(σ)− e is a codeword, no longer involves
H: it is simply some extra polynomial arithmetic, the same type of arithmetic
that is being carried out anyway.

A third approach is to inspect the details of decoding, relying not just on
Theorem 6.4 to decode valid inputs but also Theorem 6.5 to identify invalid
inputs. Specifically, after interpolating B with B(αi)g(αi)

2/A′(αi) = ι(σ)i and
finding an approximant b/a to B/A at degree t, one checks

• that deg a = t (this also forces deg(aB − bA) < n − 2t + deg a, since an
approximant by definition has deg(aB − bA) < n− t);
• that A ∈ ak[x] (i.e., that a has exactly t roots among α1, . . . , αn); and

Understanding binary-Goppa decoding 23

• that bg2 − a′ ∈ ak[x] (i.e., that bg2 − a′ vanishes on each of the roots of a).

If all of these checks succeed then wt e = t and H(e) = σ where ei = [a(αi) = 0].
Otherwise σ is invalid.

It is not clear that the condition bg2 − a′ ∈ ak[x] is more efficient to evaluate
than the condition

∑
i ciA/(x− αi) ∈ gk[x]. See generally the discussion of fast

“syndrome” computation in [14].
A fourth approach is to interpolate, find an approximant b/a, check that

deg a = t, and check that A ∈ ak[x], skipping the check that bg2 − a′ ∈ ak[x].
This relies on Theorem 7.4 and the fact that ι(σ) ∈ Fn

2 .

8.4. Robust system design. There are several reasons to recommend the
second approach, the approach taken in Classic McEliece, even if it is not quite
as efficient as the fourth approach.

What happens if there’s a mistake in the extra logic leading to Theorem 7.4,
or in the handling of invalid inputs in the software implementing a decoding
algorithm? Software is normally tested on many valid inputs; this doesn’t provide
any assurance that invalid inputs are correctly recognized.

A separate reencryption step, whether expressed as testing H(e) = σ or more
efficiently as testing that c = ι(σ) − e is a codeword, splits the decryption task
into two simpler tasks. The task of decoding is to correctly handle valid inputs.
The task of reencryption is to reject invalid inputs. Reencryption is redundant
if the decoder also rejects invalid inputs, but having the separate reencryption
step means that the requirements on the decoder are reduced.

As an illustration of the value of reencryption, consider the efficient chosen-
ciphertext attack from Chou [31] breaking both specified versions (namely [3]
and [4]) of “NTS-KEM”, a McEliece variant that skipped reencryption.

Recall that Berlekamp–Massey polynomials are extended-gcd polynomials but
with coefficients in reverse order. Reversing polynomials loses information if one
does not attach extra information (a “formal degree”) to each polynomial: for
example, both 3 + x + 4x2 and 3x + x2 + 4x3 have the same reversal, namely
4+x+3x2. The NTS-KEM decoding algorithms are shown in [31] to sometimes
find a polynomial ax of degree t when they should instead find a polynomial a
of degree t−1. This often leaks information if the attacker modifies a ciphertext
H(e) in a way that correponds to flipping one bit of e.

As further illustrations of how the decoding details matter, [31] identifies
bugs (deviations from the specification) in the decoding algorithms in each of
the four official NTS-KEM implementations (ref, opt, sse2, avx2); these bugs
stop the attack from working against one implementation (ref), although the
attack works against the other three implementations.

Reencrypting the incorrect weight-t error vector obtained from ax would have
detected the mismatch with σ and would have stopped this attack. A different
way to stop this attack would be to require computer verification of proofs that

• decoding algorithms decode correctly, including cases of weight below t, and
• decoding software correctly implements those algorithms.

24 Daniel J. Bernstein

Reencryption has the advantage of being easier. Verification has the advantage
of also ensuring that valid ciphertexts are handled correctly.

8.5. History. McEliece’s original cryptosystem [56] had a different ciphertext
shape: the secret message being sent was encoded as some c with H(c) = 0 (i.e.,
some Goppa codeword), and then transmitted as e+c for a secret e with wt e = t.
Niederreiter [58] introduced the idea of sending just H(e) as a ciphertext, with
e as the message. In both [56] and [58], the decoder handled matrices of similar
size to the public key.

McEliece started with a generator matrix for the Goppa code, meaning a
matrix with row space {c ∈ Fn

2 :
∑

i ciA/(x− αi) ∈ gk[x]}. McEliece said that
this matrix “could be in canonical, for example row-reduced echelon, form”. Row-
reduced echelon form is easily compressed into less space than a random matrix,
especially if one requires row-reduced echelon form specifically with no skipped
columns, i.e., systematic form.

But McEliece didn’t use this canonical matrix as the public key: McEliece
used a random generator matrix. McEliece also randomly permuted the output
positions; this is equivalent to randomly permuting (α1, . . . , αn).

Eventually it was understood that, after permuting (α1, . . . , αn), one can
safely use a canonical generator matrix (or, equivalently, a canonical parity-
check matrix), such as a systematic matrix. Canteaut and Chabaud [25, page
4, note 1] said that “most of the bits of the plain-text would be revealed” by a
systematic generator matrix but that using a random generator matrix “has no
cryptographic function”. Canteaut and Sendrier [26, pages 188–189] said that
the Niederreiter variant “allows a public key in systematic form at no cost for
security whereas this would reveal a part of the plaintext in McEliece system”.
As noted by Overbeck and Sendrier [61, page 98], the partial-plaintext problem
is eliminated by various McEliece variants designed for security against chosen-
ciphertext attacks: in these variants, the plaintext looks completely random, and
the attacker is faced with the problem of finding all of the bits of the plaintext.

The fact that one can decrypt using n1+o(1) time and space, including an
optimized version of a reencryption step to check H(e) = σ, appeared in [12].
This relies on systematic form

• to reduce decryption of σ to decoding of ι(σ); and, symmetrically,
• to reduce testing H(e) = σ to testing that ι(σ)− e is a codeword.

The first reduction had already appeared in the McEliece context in [14, Section
6], which in turn says that the choice of ι(σ) as a decoder input was recommended
to the authors by Sendrier.

References

[1] — (no editor), 39th annual symposium on foundations of computer science, FOCS
’98, November 8–11, 1998, Palo Alto, California, USA, IEEE Computer Society,
1998. See [45].

Understanding binary-Goppa decoding 25

[2] — (no editor), Proceedings of the 32nd annual ACM symposium on theory of
computing, Association for Computing Machinery, New York, 2000. ISBN 1-
58113-184-4. See [20].

[3] Martin Albrecht, Carlos Cid, Kenneth G. Paterson, CJ Tjhai, Martin Tomlinson,
NTS-KEM (2017); see also newer version [4]. URL: https://csrc.nist.gov/
projects/post-quantum-cryptography/round-1-submissions. Citations in this
document: §8.1, §8.4, §A.5, §A.7, §A.7, §A.7.

[4] Martin Albrecht, Carlos Cid, Kenneth G. Paterson, CJ Tjhai, Martin Tomlinson,
NTS-KEM: second round submission (2019); see also older version [3].
URL: https://csrc.nist.gov/projects/post-quantum-cryptography/round-
2-submissions. Citations in this document: §8.4, §A.5, §A.7, §A.7, §A.7.

[5] Elwyn R. Berlekamp, Algebraic coding theory, McGraw-Hill, 1968. Citations in
this document: §5.9.

[6] Daniel J. Bernstein, Fast multiplication and its applications, in [24] (2008),
325–384. URL: https://cr.yp.to/papers.html#multapps. Citations in this
document: §3.4, §4.5, §5.9.

[7] Daniel J. Bernstein, Reducing lattice bases to find small-height values of
univariate polynomials, in [24] (2008), 421–446. URL: https://cr.yp.to/
papers.html#smallheight. Citations in this document: §4.8.

[8] Daniel J. Bernstein, List decoding for binary Goppa codes, in IWCC 2011 [27]
(2011), 62–80. URL: https://cr.yp.to/papers.html#goppalist. Citations in
this document: §4.8.

[9] Daniel J. Bernstein, Simplified high-speed high-distance list decoding for alternant
codes, in PQCrypto 2011 [81] (2011), 200–216. URL: https://cr.yp.to/papers.
html#simplelist. Citations in this document: §4.8.

[10] Daniel J. Bernstein, Verified fast formulas for control bits for permutation
networks (2020). URL: https://cr.yp.to/papers.html#controlbits. Citations
in this document: §3.4.

[11] Daniel J. Bernstein, Johannes Buchmann, Erik Dahmen (editors), Post-quantum
cryptography, Springer, 2009. ISBN 978-3-540-88701-0. See [61].

[12] Daniel J. Bernstein, Tung Chou, Tanja Lange, Ingo von Maurich, Rafael Misoczki,
Ruben Niederhagen, Edoardo Persichetti, Christiane Peters, Peter Schwabe,
Nicolas Sendrier, Jakub Szefer, Wen Wang, Classic McEliece: conservative
code-based cryptography, “Supporting Documentation” (2017); see also newer
version [13]. URL: https://classic.mceliece.org/nist.html. Citations in this
document: §8, §8.3, §8.3, §8.5.

[13] Daniel J. Bernstein, Tung Chou, Tanja Lange, Ingo von Maurich, Rafael Misoczki,
Ruben Niederhagen, Edoardo Persichetti, Christiane Peters, Peter Schwabe,
Nicolas Sendrier, Jakub Szefer, Wen Wang, Classic McEliece: conservative
code-based cryptography, “Supporting Documentation” (2019); see also older
version [12]. URL: https://classic.mceliece.org/nist.html. Citations in this
document: §8.1, §8.1.

[14] Daniel J. Bernstein, Tung Chou, Peter Schwabe, McBits: fast constant-time code-
based cryptography, in [17] (2013), 250–272. URL: https://cr.yp.to/papers.
html#mcbits. Citations in this document: §1.1, §8.3, §8.5.

[15] Daniel J. Bernstein, Tanja Lange, Christiane Peters, Wild McEliece, in SAC 2010
[19] (2011), 143–158. URL: https://eprint.iacr.org/2010/410. Citations in
this document: §1.1.

[16] Daniel J. Bernstein, Bo-Yin Yang, Fast constant-time gcd computation and
modular inversion, IACR Transactions on Cryptographic Hardware and

https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions
https://cr.yp.to/papers.html#multapps
https://cr.yp.to/papers.html#smallheight
https://cr.yp.to/papers.html#smallheight
https://cr.yp.to/papers.html#goppalist
https://cr.yp.to/papers.html#simplelist
https://cr.yp.to/papers.html#simplelist
https://cr.yp.to/papers.html#controlbits
https://classic.mceliece.org/nist.html
https://classic.mceliece.org/nist.html
https://cr.yp.to/papers.html#mcbits
https://cr.yp.to/papers.html#mcbits
https://eprint.iacr.org/2010/410

26 Daniel J. Bernstein

Embedded Systems 2019.3 (2019), 340–398. URL: https://gcd.cr.yp.to/
papers.html. Citations in this document: §4.5, §4.5, §5.9.

[17] Guido Bertoni, Jean-Sébastien Coron (editors), Cryptographic hardware and
embedded systems—CHES 2013—15th international workshop, Santa Barbara,
CA, USA, August 20–23, 2013, proceedings, 8086, Springer, 2013. ISBN 978-3-
642-40348-4. See [14].

[18] Vijay K. Bhargava, H. Vincent Poor, Vahid Tarokh, Seokho Yoon (editors),
Communications, information and network security. With a foreword by Richard
E. Blahut (2003). ISBN 978-1-4020-7251-2; 978-1-4419-5318-6; 978-1-4757-3789-9.
See [40].

[19] Alex Biryukov, Guang Gong, Douglas R. Stinson (editors), Selected areas
in cryptography—17th international workshop, SAC 2010, Waterloo, Ontario,
Canada, August 12–13, 2010, revised selected papers, Lecture Notes in Computer
Science, 6544, Springer, 2011. See [15].

[20] Dan Boneh, Finding smooth integers in short intervals using CRT decoding, in
STOC 2000 [2] (2000), 265–272; see also newer version [21].

[21] Dan Boneh, Finding smooth integers in short intervals using CRT decoding,
Journal of Computer and System Sciences 64 (2002), 768–784; see also older
version [20]. ISSN 0022-0000. URL: https://crypto.stanford.edu/~dabo/
abstracts/CRTdecode.html. Citations in this document: §4.8.

[22] Claude Brezinski, The long history of continued fractions and Padé approximants,
in [23] (1981), 1–27. Citations in this document: §4.8.

[23] Marcel G. de Bruin, Herman van Rossum (editors), Padé approximation and its
applications, Amsterdam 1980, proceedings of a conference held in Amsterdam,
the Netherlands, October 29–31, 1980 (1981). ISSN 0075-8434. See [22].

[24] Joe P. Buhler, Peter Stevenhagen (editors), Surveys in algorithmic number theory,
Mathematical Sciences Research Institute Publications, 44, Cambridge University
Press, New York, 2008. See [6], [7].

[25] Anne Canteaut, Florent Chabaud, Improvements of the attacks on cryptosystems
based on error-correcting codes, report LIENS-95-21 (1995). URL: https://www.
di.ens.fr/reports/1995/liens-95-21.A4.pdf. Citations in this document:
§8.5.

[26] Anne Canteaut, Nicolas Sendrier, Cryptanalysis of the original McEliece
cryptosystem, in Asiacrypt ’98 [59] (1998), 187–199. URL: https://www.rocq.
inria.fr/secret/Anne.Canteaut/Publications/Canteaut_Sendrier98.pdf.
Citations in this document: §8.5.

[27] Yeow Meng Chee, Zhenbo Guo, San Ling, Fengjing Shao, Yuansheng Tang,
Huaxiong Wang, Chaoping Xing (editors), Coding and cryptology—third
international workshop, IWCC 2011, Qingdao, China, May 30–June 3, 2011,
proceedings, Lecture Notes in Computer Science, 6639, Springer, 2011. ISBN 978-
3-642-20900-0. See [8].

[28] Ming-Shing Chen, Tung Chou, Classic McEliece on the ARM Cortex-M4, IACR
Transactions on Cryptographic Hardware and Embedded Systems 2021.3 (2021),
125–148. URL: https://tungchou.github.io/papers/cm-m4.pdf. Citations in
this document: §1.1.

[29] Tung Chou, McBits revisited, in CHES 2017 [37] (2017), 213–231; see also newer
version [30]. URL: https://tungchou.github.io/papers/mcbits_revisited.
pdf.

[30] Tung Chou, McBits revisited: toward a fast constant-time code-based KEM,
Journal of Cryptographic Engineering 8 (2018), 95–107; see also older version

https://gcd.cr.yp.to/papers.html
https://gcd.cr.yp.to/papers.html
https://crypto.stanford.edu/~dabo/abstracts/CRTdecode.html
https://crypto.stanford.edu/~dabo/abstracts/CRTdecode.html
https://www.di.ens.fr/reports/1995/liens-95-21.A4.pdf
https://www.di.ens.fr/reports/1995/liens-95-21.A4.pdf
https://www.rocq.inria.fr/secret/Anne.Canteaut/Publications/Canteaut_Sendrier98.pdf
https://www.rocq.inria.fr/secret/Anne.Canteaut/Publications/Canteaut_Sendrier98.pdf
https://tungchou.github.io/papers/cm-m4.pdf
https://tungchou.github.io/papers/mcbits_revisited.pdf
https://tungchou.github.io/papers/mcbits_revisited.pdf

Understanding binary-Goppa decoding 27

[30]. URL: https://doi.org/10.1007/s13389-018-0186-9. Citations in this
document: §1.1.

[31] Tung Chou, An IND-CCA2 attack against the 1st- and 2nd-round versions of
NTS-KEM, in SecITC 2020 [54] (2020), 165–184. URL: https://tungchou.
github.io/papers/ntskem_cca2.pdf. Citations in this document: §8.4, §8.4,
§8.4, §A.5, §A.7.

[32] Henry Cohn, Nadia Heninger, Ideal forms of Coppersmith’s theorem and
Guruswami-Sudan list decoding, Advances in Mathematics of Communications
9 (2015), 311–339. URL: https://arxiv.org/abs/1008.1284. Citations in this
document: §4.8.

[33] Douglas E. Comer, How to criticize computer scientists: or, avoiding ineffective
deprecation and making insults more pointed (2001). URL: https://web.
archive.org/web/20010111213900/https://www.cs.purdue.edu/homes/dec/
essay.criticize.html. Citations in this document: §A.5.

[34] Jean Louis Dornstetter, On the equivalence between Berlekamp’s and Euclid’s
algorithms, IEEE Transactions on Information Theory 33 (1987), 428–431.
Citations in this document: §5.9.

[35] Peter van Emde Boas, The correspondence between Donald E. Knuth and Peter
van Emde Boas on priority deques during the spring of 1977 (2013). URL:
https://staff.fnwi.uva.nl/p.vanemdeboas/knuthnote.pdf. Citations in this
document: §A.

[36] Euclid, Elements, about 300 B.C. URL: https://www.claymath.org/library/
historical/euclid/files/elem.7.2.html. Citations in this document: §4.8.

[37] Wieland Fischer, Naofumi Homma (editors), Cryptographic hardware and
embedded systems—CHES 2017—19th international conference, Taipei, Taiwan,
September 25–28, 2017, proceedings, 10529, Springer, 2017. ISBN 978-3-319-
66786-7. See [29].

[38] G. David Forney, Jr., Concatenated codes (1965). URL: https://dspace.
mit.edu/bitstream/handle/1721.1/4303/RLE-TR-440-04743368.pdf. Citations
in this document: §5.9.

[39] G. David Forney, Jr., On decoding BCH codes, IEEE Transactions on Information
Theory 11 (1965), 549–557. Citations in this document: §5.9.

[40] Shuhong Gao, A new algorithm for decoding Reed-Solomon codes, in [18] (2003),
55–68. URL: https://www.math.clemson.edu/~sgao/papers/RS.pdf. Citations
in this document: §5.9.

[41] Carl Friedrich Gauss, Disquisitiones arithmeticae, 1801. URL: https://archive.
org/details/disquisitionesa00gaus. Citations in this document: §4.8.

[42] Santosh Ghosh, Ingrid Verbauwhede, BLAKE-512-based 128-bit CCA2 secure
timing attack resistant McEliece cryptoprocessor, IEEE Transactions on
Computers 63 (2014), 1124–1133. URL: https://www.esat.kuleuven.be/cosic/
publications/article-2447.pdf. Citations in this document: §1.1.

[43] Valerii D. Goppa, A new class of linear correcting codes, Problemy
Peredachi Informatsii 6 (1970), 24–30. URL: http://www.mathnet.ru/links/
95a131fb57f5ed88dd732c324798a36a/ppi1748.pdf. Citations in this document:
§1.1, §6.1, §7.1.

[44] Daniel Gorenstein, Neal Zierler, A class of error-correcting codes in pm symbols,
Journal of the Society for Industrial and Applied Mathematics 9 (1961), 207–
214. URL: https://epubs.siam.org/doi/10.1137/0109020. Citations in this
document: §5.9.

https://doi.org/10.1007/s13389-018-0186-9
https://tungchou.github.io/papers/ntskem_cca2.pdf
https://tungchou.github.io/papers/ntskem_cca2.pdf
https://arxiv.org/abs/1008.1284
https://web.archive.org/web/20010111213900/https://www.cs.purdue.edu/homes/dec/essay.criticize.html
https://web.archive.org/web/20010111213900/https://www.cs.purdue.edu/homes/dec/essay.criticize.html
https://web.archive.org/web/20010111213900/https://www.cs.purdue.edu/homes/dec/essay.criticize.html
https://staff.fnwi.uva.nl/p.vanemdeboas/knuthnote.pdf
https://www.claymath.org/library/historical/euclid/files/elem.7.2.html
https://www.claymath.org/library/historical/euclid/files/elem.7.2.html
https://dspace.mit.edu/bitstream/handle/1721.1/4303/RLE-TR-440-04743368.pdf
https://dspace.mit.edu/bitstream/handle/1721.1/4303/RLE-TR-440-04743368.pdf
https://www.math.clemson.edu/~sgao/papers/RS.pdf
https://archive.org/details/disquisitionesa00gaus
https://archive.org/details/disquisitionesa00gaus
https://www.esat.kuleuven.be/cosic/publications/article-2447.pdf
https://www.esat.kuleuven.be/cosic/publications/article-2447.pdf
http://www.mathnet.ru/links/95a131fb57f5ed88dd732c324798a36a/ppi1748.pdf
http://www.mathnet.ru/links/95a131fb57f5ed88dd732c324798a36a/ppi1748.pdf
https://epubs.siam.org/doi/10.1137/0109020

28 Daniel J. Bernstein

[45] Venkatesan Guruswami, Madhu Sudan, Improved decoding of Reed-Solomon and
algebraic-geometry codes, in FOCS 1998 [1] (1998), 28–39; see also newer version
[46]. URL: https://madhu.seas.harvard.edu/papers.html. Citations in this
document: §1.1.

[46] Venkatesan Guruswami, Madhu Sudan, Improved decoding of Reed-Solomon and
algebraic-geometry codes, IEEE Transactions on Information Theory 45 (1999),
1757–1767; see also older version [46]. ISSN 0018-9448. URL: https://madhu.
seas.harvard.edu/papers.html.

[47] G. H. L. M. Heideman, Fokke W. Hoeksema, Henk E. P. Tattje (editors),
Proceedings of the 13th symposium on information theory in the Benelux,
Werkgemeenschap voor Informatie- en Communicatietheorie, 1992. See [67].

[48] Jørn Justesen, On the complexity of decoding Reed–Solomon codes, IEEE
Transactions on Information Theory 22 (1976), 237–238. Citations in this
document: §5.9.

[49] Donald E. Knuth, Structured programming with go to statements, Computing
Surveys 6 (1974), 261–301. Citations in this document: §1.1.

[50] Donald E. Knuth, The art of computer programming, volume 2: seminumerical
algorithms, 3rd edition, Addison-Wesley, 1997. ISBN 0-201-89684-2. Citations in
this document: §4.8.

[51] Leopold Kronecker, Zur Theorie der Elimination einer Variablen aus zwei
algebraischen Gleichungen, Monatsberichte der Königlich Preussischen Akademie
der Wissenschaften zu Berlin (1881). URL: https://archive.org/details/
werkehrsgaufvera02kronuoft/page/114/mode/2up. Citations in this document:
§4.8.

[52] Joseph-Louis Lagrange, Recherches d’arithmétique, Nouveaux Mémoires de
l’Académie royale des Sciences et Belles-Lettres de Berlin (1773). URL: https://
gallica.bnf.fr/ark:/12148/bpt6k229222d/f696. Citations in this document:
§4.8.

[53] Joseph-Louis Lagrange, Sur l’usage des fractions continues dans le calcul intégral,
Nouveaux Mémoires de l’Académie royale des Sciences et Belles-Lettres de
Berlin (1776). URL: https://gallica.bnf.fr/ark:/12148/bpt6k229223s/f303.
Citations in this document: §4.8.

[54] Diana Maimut, Andrei-George Oprina, Damien Sauveron (editors), Innovative
security solutions for information technology and communications—13th
international conference, SecITC 2020, Bucharest, Romania, November 19–20,
2020, revised selected papers, 12596, Springer, 2021. ISBN 978-3-030-69254-4. See
[31].

[55] James Massey, Shift-register synthesis and BCH decoding, IEEE Transactions
on Information Theory 15 (1969), 122–127. ISSN 0018-9448. Citations in this
document: §5.9.

[56] Robert J. McEliece, A public-key cryptosystem based on algebraic coding theory,
JPL DSN Progress Report (1978), 114–116. URL: https://ipnpr.jpl.nasa.
gov/progress_report2/42-44/44N.PDF. Citations in this document: §1.1, §8.5,
§8.5.

[57] William H. Mills, Continued fractions and linear recurrences, Mathematics of
Computation 29 (1975), 173–180. URL: https://www.ams.org/journals/mcom/
1975-29-129/S0025-5718-1975-0369276-7/. Citations in this document: §5.9.

[58] Harald Niederreiter, Knapsack-type cryptosystems and algebraic coding theory,
Problems of Control and Information Theory 15 (1986), 159–166. Citations in
this document: §8.5, §8.5.

https://madhu.seas.harvard.edu/papers.html
https://madhu.seas.harvard.edu/papers.html
https://madhu.seas.harvard.edu/papers.html
https://archive.org/details/werkehrsgaufvera02kronuoft/page/114/mode/2up
https://archive.org/details/werkehrsgaufvera02kronuoft/page/114/mode/2up
https://gallica.bnf.fr/ark:/12148/bpt6k229222d/f696
https://gallica.bnf.fr/ark:/12148/bpt6k229222d/f696
https://gallica.bnf.fr/ark:/12148/bpt6k229223s/f303
https://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
https://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
https://www.ams.org/journals/mcom/1975-29-129/S0025-5718-1975-0369276-7/
https://www.ams.org/journals/mcom/1975-29-129/S0025-5718-1975-0369276-7/

Understanding binary-Goppa decoding 29

[59] Kazuo Ohta, Dingyi Pei (editors), Advances in cryptology—ASIACRYPT’98:
proceedings of the international conference on the theory and application of
cryptology and information security held in Beijing, Lecture Notes in Computer
Science, 1514, Springer, 1998. ISBN 3-540-65109-8. See [26].

[60] Tavis Ormandy, Issue 1804: cryptoapi: SymCrypt modular inverse algorithm
(2019). URL: https://bugs.chromium.org/p/project-zero/issues/detail?
id=1804. Citations in this document: §A.5.

[61] Raphael Overbeck, Nicolas Sendrier, Code-based cryptography, in [11] (2009), 95–
145. Citations in this document: §1.1, §8.5.

[62] Henri Padé, Sur la représentation approchée d’une fonction par des fractions
rationnelles, Annales scientifiques de l’École normale supérieure 9 (1892), 3–93.
URL: https://web.archive.org/web/20180718235117/http://www.numdam.
org/article/ASENS_1892_3_9__S3_0.pdf. Citations in this document: §4.8.

[63] Kenneth G. Paterson, New version of NTS-KEM (2019). URL: https://groups.
google.com/a/list.nist.gov/g/pqc-forum/c/Gf5ucjoDok4/m/YciNWTraAwAJ.
Citations in this document: §8.3.

[64] Nicholas J. Patterson, The algebraic decoding of Goppa codes, IEEE Transactions
on Information Theory 21 (1975), 203–207. Citations in this document: §1.1.

[65] W. Wesley Peterson, Encoding and error-correction procedures for the Bose-
Chaudhuri codes, Transactions of the Institute of Radio Engineers 6 (1960), 459–
470. Citations in this document: §5.9.

[66] Eugene Prange, The use of information sets in decoding cyclic codes, IRE
Transactions on Information Theory IT-8 (1962), S5–S9. Citations in this
document: §5.9.

[67] Bart Preneel, Antoon Bosselaers, René Govaerts, Joos Vandewalle, A software
implementation of the McEliece public-key cryptosystem, in [47] (1992), 119–126.
URL: https://www.esat.kuleuven.be/cosic/publications/article-267.pdf.
Citations in this document: §1.1.

[68] Irving S. Reed, Gustave Solomon, Polynomial codes over certain finite fields,
Journal of the Society for Industrial and Applied Mathematics 8 (1960), 300–
304. URL: https://epubs.siam.org/doi/10.1137/0108018. Citations in this
document: §5.9.

[69] Dilip V. Sarwate, On the complexity of decoding Goppa codes, IEEE Transactions
on Information Theory 23 (1977), 515–516. URL: https://core.ac.uk/
download/pdf/158319337.pdf. Citations in this document: §5.9.

[70] Akira Shiozaki, Decoding of redundant residue polynomial codes using Euclid’s
algorithm, IEEE Transactions on Information Theory 34 (1989), 1351–1354.
Citations in this document: §5.9.

[71] Simon Stevin, L’arithmétique, Imprimerie de Christophle Plantin, 1585.
URL: https://web.archive.org/web/20190430054513/http://www.dwc.knaw.
nl/pub/bronnen/Simon_Stevin-[II_B]_The_Principal_Works_of_Simon_
Stevin,_Mathematics.pdf. Citations in this document: §4.8.

[72] Volker Strassen, Gaussian elimination is not optimal, Numerische Mathematik
13 (1969), 354–356. ISSN 0029-599X. Citations in this document: §5.9.

[73] Dirk J. Struik, The origin of L’Hôpital’s rule, The Mathematics Teacher 56
(1963), 257–260. URL: https://www.jstor.org/stable/27956806. Citations in
this document: §2.22.

[74] Madhu Sudan, Decoding of Reed Solomon codes beyond the error-correction bound,
Journal of Complexity 13 (1997), 180–193. ISSN 0885-064X. URL: https://
madhu.seas.harvard.edu/papers.html. Citations in this document: §1.1.

https://bugs.chromium.org/p/project-zero/issues/detail?id=1804
https://bugs.chromium.org/p/project-zero/issues/detail?id=1804
https://web.archive.org/web/20180718235117/http://www.numdam.org/article/ASENS_1892_3_9__S3_0.pdf
https://web.archive.org/web/20180718235117/http://www.numdam.org/article/ASENS_1892_3_9__S3_0.pdf
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/Gf5ucjoDok4/m/YciNWTraAwAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/Gf5ucjoDok4/m/YciNWTraAwAJ
https://www.esat.kuleuven.be/cosic/publications/article-267.pdf
https://epubs.siam.org/doi/10.1137/0108018
https://core.ac.uk/download/pdf/158319337.pdf
https://core.ac.uk/download/pdf/158319337.pdf
https://web.archive.org/web/20190430054513/http://www.dwc.knaw.nl/pub/bronnen/Simon_Stevin-[II_B]_The_Principal_Works_of_Simon_Stevin,_Mathematics.pdf
https://web.archive.org/web/20190430054513/http://www.dwc.knaw.nl/pub/bronnen/Simon_Stevin-[II_B]_The_Principal_Works_of_Simon_Stevin,_Mathematics.pdf
https://web.archive.org/web/20190430054513/http://www.dwc.knaw.nl/pub/bronnen/Simon_Stevin-[II_B]_The_Principal_Works_of_Simon_Stevin,_Mathematics.pdf
https://www.jstor.org/stable/27956806
https://madhu.seas.harvard.edu/papers.html
https://madhu.seas.harvard.edu/papers.html

30 Daniel J. Bernstein

[75] Yasuo Sugiyama, Masao Kasahara, Shigeichi Hirasawa, Toshihiko Namekawa,
A method for solving key equation for decoding Goppa codes, Information and
Control 27 (1975), 87–99. Citations in this document: §5.9.

[76] The Sage Developers (editor), SageMath, the Sage Mathematics Software
System (Version 9.2), 2020. URL: https://www.sagemath.org. Citations in this
document: §1.2.

[77] Henk C. A. van Tilborg, Coding theory, a first course, 1993. URL: https://www.
win.tue.nl/~henkvt/images/CODING.pdf. Citations in this document: §1.1.

[78] Edward Waring, Problems concerning interpolations, Philosophical Transactions
of the Royal Society 69 (1779), 59–67. URL: https://royalsocietypublishing.
org/doi/pdf/10.1098/rstl.1779.0008. Citations in this document: §3.

[79] Lloyd R. Welch, Robert A. Scholtz, Continued fractions and Berlekamp’s
algorithm, IEEE Transactions on Information Theory 25 (1979), 19–27. Citations
in this document: §5.9.

[80] Davey Winder, Warning: Google researcher drops Windows 10 zero-day security
bomb (2019). URL: https://www.forbes.com/sites/daveywinder/2019/06/12/
warning-windows-10-crypto-vulnerability-outed-by-google-researcher-
before-microsoft-can-fix-it/. Citations in this document: §A.5.

[81] Bo-Yin Yang (editor), Post-quantum cryptography—4th international workshop,
PQCrypto 2011, Taipei, Taiwan, November 29–December 2, 2011, proceedings,
7071, Springer, 2011. ISBN 978-3-642-25404-8. URL: https://doi.org/10.1007/
978-3-642-25405-5. See [9].

A Random tests

Beware of bugs in the above code; I have only proved it correct,
not tried it. —Knuth [35, page 11 in cited PDF]

Figures A.1, A.2, A.3, and A.4 are Sage scripts to test Algorithms 3.3, 4.4,
5.3, and 6.2 respectively on random inputs.

A.5. Test-development principles. The primary design objective of random
tests is, for any given amount of CPU time spent on testing, to minimize the
chance that bugs will avoid the tests. The obvious baseline is to ensure that tests
catch every known bug in the subroutine being tested. Beyond this, one can try
to proactively catch further bugs, extrapolating from what is known about the
processes by which people make mistakes.

Bug patterns are a central topic in the literature on software engineering.
There is far less attention to bugs in the literature on algorithms. If one is trying
to test, for example, an extended-gcd algorithm, then how does one evaluate
whether tests reach the baseline of catching every known extended-gcd bug,
never mind proactively catching further bugs?

Occasionally a bug will be highlighted because it has been shown to have
security consequences. For example, Section 8.4 described an exploitable bug
pointed out by Chou [31] in the Goppa decoder from [3] and [4]. As another
example, Ormandy [60] discovered that some inputs would cause an extended-
gcd algorithm in a Microsoft cryptography library to enter an infinite loop;

https://www.sagemath.org
https://www.win.tue.nl/~henkvt/images/CODING.pdf
https://www.win.tue.nl/~henkvt/images/CODING.pdf
https://royalsocietypublishing.org/doi/pdf/10.1098/rstl.1779.0008
https://royalsocietypublishing.org/doi/pdf/10.1098/rstl.1779.0008
https://www.forbes.com/sites/daveywinder/2019/06/12/warning-windows-10-crypto-vulnerability-outed-by-google-researcher-before-microsoft-can-fix-it/
https://www.forbes.com/sites/daveywinder/2019/06/12/warning-windows-10-crypto-vulnerability-outed-by-google-researcher-before-microsoft-can-fix-it/
https://www.forbes.com/sites/daveywinder/2019/06/12/warning-windows-10-crypto-vulnerability-outed-by-google-researcher-before-microsoft-can-fix-it/
https://doi.org/10.1007/978-3-642-25405-5
https://doi.org/10.1007/978-3-642-25405-5

Understanding binary-Goppa decoding 31

from interpolator import interpolator

for q in range(100):
 q = ZZ(q)
 if not q.is_prime_power(): continue
 print('interp %d' % q)
 sys.stdout.flush()
 k = GF(q)
 for loop in range(100):
 n = randrange(q+1)
 a = list(k)
 shuffle(a)
 a = a[:n]
 r = [k.random_element() for j in range(n)]
 phi = interpolator(n,k,a,r)
 assert phi.degree() < n
 assert all(phi(aj) == rj for aj,rj in zip(a,r))
 kpoly = phi.parent()
 assert phi == kpoly.lagrange_polynomial(zip(a,r))

Fig.A.1. Random tests for Algorithm 3.3.

this meant that an attacker could trivially cause a server to stop responding,
something that [80] called a “Windows 10 zero-day security bomb”.

However, this information is generally not indexed by algorithm. Furthermore,
the baseline goal is to catch every known bug—not merely the bugs already
shown to have security consequences. From an engineering perspective, one would
expect much more serious efforts to track what has previously gone wrong.

Comer’s introduction [33] to the differences between two computer-science
cultures, namely the mathematical culture and the engineering culture, lists
algorithms solely within the mathematical culture. Certainly most algorithm
papers are like most mathematics papers in viewing proofs as the primary goal.
A typical algorithm paper includes a proof that an algorithm works; the paper
is expected to avoid reminding readers that proofs are often wrong, and, in
particular, is expected to avoid taking any steps other than a proof to address
the risk that the algorithm is wrong. This position is defensible for the occasional
computer-verified proofs, but most proofs in the literature are not computer-
verified, and the systematic lack of attention to bugs makes test development
unnecessarily difficult.

A.6. General shape of these tests. The element 0 ∈ k plays a special role in
linear algebra, the definition of polynomials, etc. The tests here try small fields
k so that 0 will often appear at various positions in the computation. Hopefully
this means that any mishandling of 0 will be triggered by the tests.

Half of the tests of Reed–Solomon decoding in Figure A.3 are tests aimed at
checking correct behavior on decodable inputs. These tests use input vectors r

32 Daniel J. Bernstein

from approximant import approximant

for q in range(100):
 q = ZZ(q)
 if not q.is_prime_power(): continue
 print('approximant %d' % q)
 sys.stdout.flush()
 k = GF(q)
 kpoly.<x> = k[]
 for loop in range(100):
 Adeg = randrange(100)
 A = kpoly([k.random_element() for j in range(Adeg)]+[1])
 if Adeg == 0:
 B = kpoly(0)
 else:
 Bdeg = randrange(Adeg)
 B = kpoly([k.random_element() for j in range(Bdeg+1)])
 # note that B could actually have lower degree
 t = randrange(Adeg+3)
 a,b = approximant(t,k,A,B)
 assert gcd(a,b) == 1
 assert a.degree() <= t
 assert b.degree() < t
 assert a != 0
 assert a*B-b*A == 0 or (a*B-b*A).degree() < A.degree()-t

Fig. A.2. Random tests for Algorithm 4.4.

generated as e+c where c = (f(α1), . . . , f(αn)) and e has weight at most t (often
chosen to be below t). These tests check whether the decoder finds f .

The other half of the decoding tests are aimed at checking correct behavior
on non-decodable inputs. These tests use uniform random input vectors r. If
the decoder finds some f then the tests check that wt(r − c) ≤ t where c =
(f(α1), . . . , f(αn)). If the decoder returns None, there is no check whether the
decoder should actually have found some f ; a bug here should be caught more
efficiently by the first type of test.

Figure A.4 has an analogous split between testing decodable inputs and testing
non-decodable inputs for Goppa decoding. There is no similar split in Figures A.1
and A.2, since those algorithms handle all inputs successfully.

For Figures A.1, A.3, and A.4, n is chosen randomly between 0 and q; for
Figure A.2, degA is chosen randomly between 0 and 99. Similarly, t is chosen
randomly in Figures A.2, A.3, and A.4; in each case, the range of t covered by
the tests is slightly beyond the range of t useful for applications.

A.7. How the tests catch various bugs. The bug in the Goppa decoder from
[3] and [4] is triggered when the correct error vector e has weight t− 1 and has
ez = 0 where αz = 0. Figure A.4 is intended to catch this: the tests generate
uniform random sequences (α1, . . . , αn) of distinct field elements, and often use

Understanding binary-Goppa decoding 33

from rs import interpolator_with_errors

for q in range(100):
 q = ZZ(q)
 if not q.is_prime_power(): continue
 print('interpolator_with_errors %d' % q)
 sys.stdout.flush()
 k = GF(q)
 kpoly.<x> = k[]
 for loop in range(100):
 n = randrange(q+1)
 t = randrange(3+n//2)
 a = list(k)
 shuffle(a)
 a = a[:n]
 for known in True,False:
 if known:
 f = kpoly([k.random_element() for j in range(n-2*t)])
 r = list(map(f,a))
 e = [k.random_element() for j in range(t)]+[0]*(n-t)
 shuffle(e)
 assert len([ej for ej in e if ej != 0]) <= t
 for j in range(n): r[j] += e[j]
 else:
 f = 'unknown' # cut off data flow from previous iteration
 r = [k.random_element() for j in range(n)]
 f2 = interpolator_with_errors(n,t,k,a,r)
 if f2 == None:
 assert not known
 else:
 assert f2 == 0 or f2.degree() < n-2*t
 if known: assert f2 == f
 assert len([j for j in range(n) if f2(a[j]) != r[j]]) <= t

Fig.A.3. Random tests for Algorithm 5.3.

weight t − 1 for the error vector e; often αz will be 0 for some z, and often ez
will also be 0.

I tried modifying Algorithm 6.2 to imitate what [31] described; Figure A.4
immediately caught the bug. One could directly test the algorithms from [3]
and [4] by translating the algorithms from pseudocode to real code. One could
directly test the software accompanying [3] and [4] by extracting the Goppa-
decoding portions of that software and providing a shim layer to support the
goppa_errors interface.

The extended-gcd bug in Microsoft’s cryptography library was that a modular-
inversion algorithm continued to loop until finding gcd 1—which would always
happen for inputs with modular inverses, but the attacker could provide a non-
invertible input, triggering an infinite loop. In the decoding context, an extended-

34 Daniel J. Bernstein

from goppa import goppa_errors

for m in range(1,10):
 q = 2^m
 print('goppa_errors %d' % q)
 sys.stdout.flush()
 k = GF(q)
 kpoly.<x> = k[]
 for loop in range(100):
 while True:
 n = randrange(q+1)
 t = randrange(3+n//m)
 if t >= n: t = n
 a = list(k)
 shuffle(a)
 a = a[:n]
 g = kpoly([k.random_element() for j in range(t)]+[1])
 if g.is_squarefree():
 if all(g(aj) != 0 for aj in a):
 break

 assert g.degree() == t
 A = kpoly(prod(x-aj for aj in a))
 Aprime = A.derivative()
 for aj in a: assert Aprime(aj) != 0

 for known in True,False:
 if known:
 f = kpoly([k.random_element() for j in range(n-2*t)])
 r = [(f*g^2)(aj)/Aprime(aj) for aj in a]
 if randrange(2):
 e = [1]*t+[0]*(n-t)
 else:
 actualweight = randrange(t+1)
 e = [1]*actualweight+[0]*(n-actualweight)
 shuffle(e)
 assert len([ej for ej in e if ej != 0]) <= t
 for j in range(n): r[j] += e[j]
 else:
 e = 'unknown' # cut off data flow from previous iteration
 r = [k.random_element() for j in range(n)]
 e2 = goppa_errors(n,t,k,a,g,r)
 if e2 == None:
 assert not known
 else:
 assert len(e2) == n
 if known: assert e2 == e
 assert len([ej for ej in e2 if ej != 0]) <= t
 assert g.divides(sum((r[i]-e2[i])*A//(x-a[i]) for i in range(n)))

Fig.A.4. Random tests for Algorithm 6.2.

Understanding binary-Goppa decoding 35

gcd computation is the normal way to compute approximants, and one can
imagine someone

• starting with an extended-gcd algorithm that computes all remainders,
• augmenting the algorithm to record (a, b) for the first remainder aB− bA of

degree below degA− t, and
• not optimizing away the pointless computation of subsequent remainders,

so there could still be an infinite-loop bug. In these tests, because k is small,
some input positions will often be 0, forcing gcd{A,B} 6= 1, so if there is an
infinite loop for that case then the tests will trigger it.

Another easy bug to imagine in Reed–Solomon decoders and Goppa decoders
is testing deg(aB − bA) against n − t rather than n − 2t + deg a, although this
does not matter in an application that requires deg a = t. I checked that eight
runs of Figure A.3 consistently caught this bug; each run already caught the bug
with #k = 2. I also checked that eight runs of Figure A.4 consistently caught
this bug; here the eight runs caught the bug with #k = 8, #k = 16, #k = 4,
#k = 8, #k = 8, #k = 4, #k = 32, #k = 4 respectively. The variation in #k
here suggests running more repetitions of the tests for reliability, or adding tests
specifically for this case.

	Understanding binary-Goppa decoding
	1 Introduction
	1.1. Hasn't this been done already?
	1.2. Bonus features.
	1.3. Acknowledgments.

	2 Polynomials
	2.1. Commutative rings.
	2.2. Ring morphisms.
	2.3. Multiples.
	2.4. Units.
	2.5. Fields.
	2.6. Vector spaces.
	2.7. The standard n-dimensional vector space.
	2.8. Linear maps.
	2.9. Polynomials.
	2.10. The ring structure of polynomials.
	2.11. The k-algebra structure of polynomials.
	2.12. Units of k[x].
	2.13. The k-vector structure of polynomials.
	2.14. Powers of x.
	2.15. Coefficients.
	2.16. Degree.
	2.17. Monic polynomials.
	2.18. Evaluation.
	2.19. Roots.
	2.20. Vandermonde invertibility.
	2.21. Transposed Vandermonde invertibility.
	2.22. Derivatives.
	2.23. Quotients and remainders.
	2.24. Unique factorization.
	2.25. Greatest common divisors.
	2.26. Squarefreeness.

	3 Interpolation
	Theorem 3.1. Direct interpolation.
	3.2. An interpolation algorithm.
	Algorithm 3.3. Interpolation algorithm.
	3.4. More interpolation algorithms.

	4 Approximants
	Theorem 4.1. Approximants.
	Theorem 4.2. Best approximation.
	4.3. An approximant algorithm.
	Algorithm 4.4. Approximant algorithm.
	4.5. More approximant algorithms.
	4.6. Approximants as ratios.
	Definition 4.7. Approximant.
	4.8. History.

	5 Interpolation with errors
	5.1. Hamming weight.
	5.2. An interpolation-with-errors algorithm.
	Algorithm 5.3. Decoding algorithm for Reed–Solomon codes.
	Theorem 5.4. Interpolation with errors.
	Theorem 5.5. Checking interpolation with errors.
	5.6. More algorithms: varying the pair (A,B).
	5.7. Reed–Solomon codes.
	Definition 5.8. Reed–Solomon code.
	5.9. History.

	6 Binary-Goppa decoding
	6.1. An algorithm to decode binary Goppa codes.
	Algorithm 6.2. Decoding algorithm for Goppa codes.
	Theorem 6.3. Goppa squaring.
	Theorem 6.4. Goppa decoding.
	Theorem 6.5. Checking Goppa decoding.
	6.6. Goppa decoders via Reed–Solomon decoders.

	7 A closer look at binary Goppa codes
	7.1. Overview of the logic.
	Theorem 7.2. Goppa parity.checks.
	Theorem 7.3. Goppa alignment.
	Theorem 7.4. Checking Goppa decoding for binary received words.

	8 McEliece decryption
	8.1. Ciphertexts.
	8.2. Decryption.
	8.3. Rigidity.
	8.4. Robust system design.
	8.5. History.

	References
	A Random tests
	Figure A.1. Random tests for Algorithm 3.3.
	Figure A.2. Random tests for Algorithm 4.4.
	Figure A.3. Random tests for Algorithm 5.3.
	Figure A.4. Random tests for Algorithm 6.2.
	A.5. Test-development principles.
	A.6. General shape of these tests.
	A.7. How the tests catch various bugs.

