
Property-Preserving Hash Functions and
Combinatorial Group Testing

Kazuhiko Minematsu

NEC, Kawasaki Japan
Yokohama National University, Yokohama Japan

k-minematsu@nec.com

Keywords: Hash function · Property-Preserving Hash · Combinatorial Group
Testing · Provable Security

Abstract. Property-preserving hash (PPH) function is a class of hash
functions that allows an evaluation of the property of inputs from their
hash values. Boyle et al. at ITCS 2019 recently introduced it and con-
sidered the robustness of PPH against an adversary who accesses the
internal randomness of PPH, and proposed two robust PPH constructions
for a weak form of Hamming distance predicate. The second construction
received attention for its short hash value, although it relies on an ad-hoc
security assumption. The first construction, which is entirely hash-based
and based on the classical collision-resistance assumption, has been largely
overlooked. We study their first construction and discover its close con-
nection to a seemingly different field of hash/MAC-based (adversarial)
error detection using the theory of Combinatorial Group Testing (CGT).
We show some consequences of this discovery. In particular, we show
that some existing proposals in the field of CGT-based error detection
can be converted into a PPH for the Hamming distance property, and
they immediately improve and generalize Boyle et al.’s hash-based PPH
proposal. We also show that the idea of Boyle et al. is useful in the context
of a variant of CGT problem.

1 Introduction

Compressing a large amount of data into small digests while maintaining some
of their properties is one of the fundamental goals in computer science. Popular
algorithms such as Bloom filter [2] or Cukoo hashing [31] offer such property-
preserving hashing for approximate set membership property. Locality-sensitive
hash (LSH) functions [22] allow for compressing two inputs independently and
evaluating if they are close or not with respect to some metric from their digests.
These algorithms are randomized and usually studied in the setting where inputs
are independent of the internal random coin. In real-world use cases, this may
not be enough, because we often need to consider an adversary who has an
incentive to corrupt the algorithm by giving maliciously crafted inputs. Such an
adversary would somehow try to learn the internal random coin, however, basic
property-preserving hashing algorithms have no guarantee against such attacks.

Based on this motivation, Boyle et al. [4] (BLV19) initiated the study of
robust property-preserving hash (PPH) functions that resist such attacks. They
proposed two constructions for the Gap Hamming predicate, which is a weak form
of Hamming distance predicate. The first construction was entirely hash-based
and relied on the classical collision resistance of the hash function. The second
was based on an ad-hoc assumption related to the hardness of decoding linear
codes. The second construction has a much shorter hash size than the first and
stipulated research on pairing or lattice-based PPHs for (exact) Hamming distance
predicate with similar hash size, as shown by Fleischhacker and Simkin [18] and
Fleischhacker et al. [17]. In contrast, the first construction has been largely
overlooked since the proposal, possibly because of its large hash size. However,
its simplicity and computational efficiency, and high-security reliance may make
it attractive in practical applications.

Our Contributions. The core idea of BLV19’s first construction (hereafter PPH1)
is subsampling. That is, taking hash values for a predetermined set of input sub-
sequences and concatenating them. We discover that this idea of PPH1 is closely
related to a different application field of hash functions or message authentication
codes (MACs), namely hash/MAC function with detection capability [14, 19, 25].
Such a hash/MAC function can be interpreted as an application of classical
Combinatorial Group Testing (CGT) to the detection of data corruptions, where
detection means to pinpoint the parts of the input data that have been corrupted.
For convention, we say CGT-based hash function to mean this application. Our
finding derives several interesting consequences.

In more detail, we show that known schemes in the aforementioned field of
CGT-based hash can be interpreted as a robust PPH (in the sense of BLV19) for
the Hamming distance predicate, with a much better compression rate, i.e. smaller
hash size, than PPH1. Note that PPH1 only preserves a weaker Gap Hamming
distance predicate. CGT-based hash functions also have smaller computation
time for hashing and preserve more informative properties than plain Hamming
distance predicate. The security (robustness) against the adversary is also proved
with minor modifications to the original proofs for the security notions of CGT-
based hash. Moreover, a MAC-based PPH is also naturally derived from the
known CGT-based MACs [19,25,26]. As well as the hash-based counterpart, a
MAC-based PPH preserves the Hamming distance property and fulfills a weak
form of robustness defined by BLV19. Moreover, by using the technique of [25],
the resulting scheme can significantly reduce the hashing time thanks to its special
structure for the internal MAC function. Finally, we show that the construction
of PPH1, which uses a bipartite expander graph, is also useful in building a test
matrix for CGT that aims at estimating the number of defectives rather than
detecting them [7]. Therefore, the connection is not one-way.

We came up with this finding while studying the existing CGT-based hash/MAC
schemes. Our study did not present any new scheme. Once found, the connection
may look rather obvious, while we are not aware in the literature and present
a formal security analysis. We think bridging two seemingly different areas is
important and will help understanding and development of both areas.

2

2 Preliminaries

2.1 Notations

Let [i] denote {1, . . . , i} for i ≥ 1. The set of all binary strings is denoted by {0, 1}∗,
which includes the empty string ε. We write the bit length of X ∈ {0, 1}∗ by |X|,
where |ε| = 0. The Hamming weight of a binary stringX is denoted by Hw(X). For
X = (X1, . . . , Xn) ∈ Xn for some finite set X and V = (V1, . . . , Vn) ∈ {0, 1}n, let
X|V be the sub-sequence of X indexed by V . That is, X|V is (Xi1 , . . . , Xiv), where
Hw(V) = v and ij ∈ [n] is the index of the j-th bit set at V . For X,X ′ ∈ Xn, let
D(X,X ′) := (test(X1, X

′
1), . . . , test(Xn, X

′
n)), where test is a test function (i.e.,

test(A,B) = 1 if A = B and 0 otherwise). For X,Y ∈ {0, 1}n, X ∨Y denotes the
bitwise Boolean sum (logical OR) of X and Y .

For a keyed function F : K ×X → Y for key space K, we may write FK(X)
instead of F (K,X). Let negl(λ) for a security parameter λ ∈ N be a negligible
function. For a finite set X we write X $← X to mean X is uniformly sampled
over X . For a probabilistic polynomial-time (PPT) adversary A and the oracles
O1,O2,Oc, AO1,...,Oc → Y denotes the event that A possibly adaptively queries
to Oi in an arbitrarily order and outputs Y . The set of all functions of domain X
and range Y is written as Func(X ,Y) and a uniformly random function (URF)
R : X → Y is a random function that uniformly distributes over Func(X ,Y).

Advantage functions. Let F,G : X → Y be two (possibly randomized) functions.
Let A be an adversary who tries to distinguish F from G using oracle access, and
outputs a binary decision. We define

AdvIND
F,G(A) := Pr[AF → 1]− Pr[AG → 1]

as the advantage of A in distinguishing F and G. Similarly, let AdvEvent
F (A)

denote the probability of an event Event invoked by A in the game.

Matrix representations. LetM be an n×m binary matrix. We writeMi,∗ to denote
the i-th row, and M∗,j to denote the j-th column, and Mi,j to denote the entry at
i-th row and j-th column. For simplicity we may abbreviate Mi,∗ to Mi. The rows
and columns of M are interchangeably seen as sets, e.g. Mi = {j ∈ [m] : Mi,j = 1},
and a ∈Mi means Mi,a = 1. This may also apply to any binary string.

2.2 Property-Preserving Hash Function

Following BLV19, we describe the basics of property-preserving hash functions.
For a finite set Z, a Z-valued property for a pair of messages in message space X
is a function P : X × X → Z. When |Z| = 2 it is called a predicate. A property
is called promise if it is undefined for some inputs and otherwise called total. We
only consider the latter case. This paper focuses on two-input properties, but
generalization is possible.

3

Definition 1. Let X = Bn for some set B and a positive integer n. let Hd(X,X ′)
for X,X ′ ∈ X be the generalized Hamming distance defined as

Hd(X,X ′) := Hw(D(X,X ′)).

As we may see a binary string as a set, we also have Hd(X,X ′) = |D(Xi, X
′
i)|.

The Hamming predicate with threshold d ∈ [n] is defined as

HAMd(X,X ′) :=
{

1 if Hd(X,X ′) ≥ d
0 otherwise

Moreover, the (generalized) Gap-Hamming predicate with parameter (d, ε) for
ε ∈ (0, 1) is defined as

GapHAMd,ε(X,X ′) :=

1 if Hd(X,X ′) ≥ d · (1 + ε)
0 if Hd(X,X ′) ≤ d · (1− ε)
undefined otherwise

As shown above, Gap-Hamming is a premise predicate.
For simplicity, we assume B = {0, 1}b for some b ≥ 1. When b = 1, Hd(∗, ∗)

corresponds to the classical Hamming distance between the bit strings.

Definition 2. (Property-preserving Hash Function) Let H : K × X → Y be a
keyed function. If H is a property-preserving hash (PPH) function for a property
P : X × X → Z, it requires the following algorithms:

– Sampling (key-generation) function Sample(λ) for the security parameter λ
that efficiently samples K over K (we hereafter assume λ as a fixed constant
and simply write K $← K to represent this)

– Hash output evaluation function Hash : K×X → Y that returns H(K,X) on
input (K,X)

– Property evaluation function Eval : K × Y × Y → Z

We say H is η-compressing if log |Y| ≤ η log |X | for 0 < η < 1.

The role of Eval is to give an estimate of P (X1, X2) for some X1, X2 ∈ X , using
the key K and their corresponding hash values.

2.3 Robustness Notions for PPHs

Let H : K × X → Y be a PPH for a property P : X × X → Z and let H.hash
and H.Eval be the corresponding Hash and Eval functions. The goal of PPH has
some similarities to the existing objects, such as LSH [22], which is a randomized
hashing algorithm that preserves the distance between the inputs for some metric.
However, the security against the adversary who may query the hashing and
evaluation processes or even access the internal randomness has not been formally
studied. Based on this observation, BLV19 introduced multiple robustness notions
of PPH to capture such security, using the security parameter λ. Each robustness
notion has a different adversary model, as shown below.

4

X

X ′

HK

HK

Y

Y ′

EvalK ≈ HAM(X,X ′)

HashK

X

X ′

HK Y

DecodeK ≈ D(X,X ′)
Corruption

HK

Detection

Fig. 1: PPH (top) and CGT-based MAC/Hash scheme defined at Section 4
(bottom).

Definition 3. (Non-Robust PPH [4]) If H is a non-robust PPH for a property
P , for any PPT adversary A,

AdvNR-PPH
H (A)

:= Pr[K $← K : A→ (X,X ′),Eval(K,HK(X), HK(X ′)) 6= P (X,X ′)] ≤ negl(λ).

Definition 4. (Evaluation-Oracle-Robust PPH [4]) If H is an Evaluation-Oracle
(EO) robust PPH for a property P , for any PPT adversary A,

AdvEO-PPH
H (A)

:= Pr[K $← K; AOH.Eval → (X,X ′) : Eval(K,HK(X), HK(X ′)) 6= P (X,X ′)]] ≤ negl(λ).

Definition 5. (Double-Oracle-Robust PPH [4]) If H is an Double-Oracle (DO)
robust PPH for a property P , for any PPT adversary A,

AdvDO-PPH
H (A)

:= Pr[K $← K; AOH.Hash,OH.Eval → (X,X ′) : Eval(K,HK(X), HK(X ′)) 6= P (X,X ′)]] ≤ negl(λ).

Definition 6. (Direct-Access Robust PPH [4]) If H is a Direct-Access (DA)
PPH for a property P , for any PPT adversary A,

AdvDA-PPH
H (A)

:= Pr[K $← K; (X,X ′)← A(K) : Eval(K,HK(X), HK(X ′)) 6= P (X,X ′)]] ≤ negl(λ).

A DA-robust PPH may be simply called a robust PPH.

5

In DA-PPH the adversary is given K, hence can also simulate OHash and OEval.
For example, classical universal hash function [35] can be interpreted as a

non-robust PPH for the collision property (i.e. P (X,X ′) = 1 iff X = X ′). BLV19
provides in-depth discussions on these notions and relations to the existing ideas
such as one-way communication protocols. They are not relevant to our work, so
refer to BLV19 for more details.

2.4 Constructions of PPHs

As described in Introduction, BLV19 showed two constructions of PPH for Gap-
Hamming predicate (Definition 1), which we call PPH1 and PPH2. PPH1 is
entirely based on a collision-resistant hash function. The construction takes hash
values for multiple subsets of the input, where the subsets are specified by a
class of bipartite expander graph, and the output is the concatenation of these
hash values (see Sections 4.2 and 5 for more details). While intuitive, its large
hash size is problematic. PPH2 supports a smaller gap and better efficiency than
PPH1 (although the compression rate is constant for both schemes) and is based
on a new assumption related to the hardness of syndrome decoding of LDPC
codes. BLV19 stipulated research on PPHs. Fleischhacker and Simkin [18] showed
a PPH for the (exact, rather than Gap) Hamming distance predicate with a
hash length for threshold t, which is much better than PPH1. The security is
based on a new bilinear discrete-logarithm assumption in pairing friendly curves.
Fleischhacker et al. [17] proposed a PPH for the Hamming distance predicate
whose security is proved under a standard lattice hardness assumption while
having a larger hash size than [18]. These studies have been done with PPH2 in
mind.

Compared to PPH2, PPH1 has not been studied since the proposal, possibly
for its larger hash size. However, hash-based constructions may be worth studying
for their simplicity, computational efficiency, and classical security. The reduction
to classical symmetric-key cryptographic assumption is also meaningful in the
context of post-quantum cryptography. These observations made us turn our
attention to PPH1. As a result, we discover a connection between the idea of
PPH1 and the classical Combinatorial Group Testing.

3 Combinatorial Group Testing

We provide some basic ideas about Combinatorial Group Testing (CGT). It is a
method to detect defectives among a set of items by using a set of group tests.
A group test specifies a subset S of the whole samplesM and returns a binary
output indicating if S contains a defective. Originally Dorfman invented CGT
in WWII [15] to effectively find blood samples infected by syphilis. We write
M = [n] and I ⊆M to denote the (indices of) whole items and the defectives,
and in the classical setting we know |I| ≤ d for some d ∈ [n]. In the non-adaptive
setting, which is relevant for our case, the set of k group tests is determined by a

6

k × n binary matrix M, where Mi,j = 1 means j-th item is included in the i-th
test.

The fundamental goal of CGT is to detect all the defectives, using as few
tests as possible. In the case of non-adaptive CGT, we detect all the defectives
when the test matrix satisfies a property called d-disjunct [15].

Definition 7. A k × n binary matrix M is d-disjunct if, for any S ⊆ [n] and
|S| ∈ [d], M∗,j 6⊆

∨
h∈SM∗,h holds for any j 6∈ S. That is, a sum of any distinct

i ≤ d columns of M does not cover any other column.

An n× n identity matrix is n-disjunct. When the test matrix is d-disjunct and
|I| ≤ d, it is known that the so-called naive decoder can detect all the defectives.
Algorithm 1 shows the naive decoder for n items, k tags using k × n test matrix
M, taking the test result R = (R1, . . . , Rk) ∈ {0, 1}k, where Ri = 1 denotes that
i-th test is positive (indicating the test contains defectives).

Algorithm 1: Naive Decoder

1: procedure Decode(M, R) . k × n binary M, test result R ∈ {0, 1}k
2: P ← [n]
3: for i = 1, . . . , k do
4: if Ri = 1 then
5: P ← P \Mi

6: return P

Naturally, we want to minimize the number of rows (k) of a d-disjunct matrices
given d and n. Disjunct matrix has extensively been studied from the viewpoint
of combinatorics or designs or codes; refer to Du and Hwang [15] for classical
constructions and the bounds. Most importantly it is known that k = O(d2 logn).
Porat and Rothchild (PR11) [32], and Cheraghchi and Nakos (CN20) [9] presented
polynomial-time constructions that achieve this bound.

Since the inception, the most typical application of CGT is biology, such as
DNA screening [28]. One can also find a recent surge of research on applying
CGT to COVID-19 PCR testing (e.g. [27] and there are lots of many others).
Moreover, CGT has many other applications in the field of computer science,
such as image compression [21], streaming computation [10], digital forensics [19]
and (aggregate) MAC with detection capability [20,25,26,30].

4 Constructing PPHs from CGT

4.1 CGT-Hash as Direct-Access Robust PPH

Defining CGT-Hash. We describe a class of CGT-based hash function (recall that
this is to detect data corruptions rather than telling the binary verification result).
For X = Bn, B = {0, 1}b for some fixed b, let G : K× [k]×X → T for T = {0, 1}t

7

be the atomic (keyed) hash function, and let M be a k×n binary matrix. Taking
G and M as parameters, CGT-Hash[G,M] : K×X → Y for Y = T k is defined as

CGT-Hash[G,M](K,X) = (Y1, . . . , Yk), Yi = G(K, i,X|Mi
)

Note that M is a fixed, public matrix. This could be used to detect corruptions
on X ∈ X : first we take Y = CGT-Hash[G,M](K,X) with key K and store Y
to a tamper-free storage. Later, we take Y ′ = CGT-Hash[G,M](K,X ′) for X ′
which is a possibly corrupted version of X by the adversary, and try to detect
the locations of corruptions (namely, D(X,X ′)) via Y and Y ′. CGT-Hash is an
application of CGT described in Section 3. From the definition of d-disjunct
matrix, if X consists of n items and the adversary can corrupt at most d items, by
using d-disjunct matrix M and the naive decoder (Alg. 1), we can detect D(X,X ′)
without an error, if G is secure. CGT-Hash will bring more useful information
than just taking one hash for the entire X. Moreover, it significantly reduces
the size of tamper-free storage than taking hash values for each item. In other
words, it allows a trade-off between the size of hash values and the resolution of
detection.

Effectively the same idea has been seen in Corruption-localizing hashing by
Crescenzo et al. [14] and follow-up works [3, 11], where different attack models
and different decoders are used. From a practical viewpoint, a basic form of hash-
based corruption detection (say by taking hash values for all the files in a server)
has been extensively used by major commercial integrity protection/management
products, such as TripWire1 or Splunk2. In principle, the use of CGT-Hash will
reduce the size of tamper-free storage in these applications.

Connection to PPH. We can use CGT-Hash as a PPH for Hamming distance
property. By writing H(K, ∗) to denote CGT-Hash[G,M](K, ∗), Hash procedure
just performs HK(X) for input X, and the Eval procedure taking (K,Y, Y ′) s.t.
Y = H(K,X) and Y ′ = H(K,X ′) for some X 6= X ′ ∈ X first obtains D(Y, Y ′)
and performs the naive decoder. If decoder output is larger than d, Eval returns
1 and 0 otherwise. Formally, the following theorem shows that CGT-Hash is a
DA-robust PPH for the Hamming distance predicate if G (given the random key
K) is collision-resistant.

Theorem 1. In the aforementioned problem setting, if M is d-disjunct and G
is collision-resistant, CGT-Hash[G,M] is a DA-robust PPH for the (generalized)
Hamming predicate with threshold d (HAMd) over Bn.

Proof. In the game of DA-Robust PPH, suppose the adversary A uses q Hash
queries, with total σ blocks and τ time. Note that Eval oracle does not need the key,
hence this can be accessed for free. The i-th Hash query and the corresponding tag
vector are denoted by X(i) and T (i) = (T (i)

1 , . . . , T
(i)
k). Let Cons (for consistency)

be the event that [∀i, j ∈ [q], i 6= j,∀h ∈ [k] : X(i)
|Mh
6= X

(j)
|Mh
⇔ T

(i)
h 6= T

(j)
h].

1 https://www.tripwire.com/
2 https://www.splunk.com/

8

https://www.tripwire.com/
https://www.splunk.com/

It is clear that to invoke
T

(i)
h = T

(j)
h

for some distinct i, j ∈ [q] and h ∈ [k] s.t. X(i)
|Mh
6= X

(j)
|Mh

, A needs to invoke
a collision on G. If T (i)

h 6= T
(j)
h we must have X(i)

|Mh
6= X

(j)
|Mh

for any G. Thus,
invalidation of Cons is equivalent to finding a non-trivial collision on G.

We also observe that, as long as Cons holds, the problem exactly matches
with non-adaptive CGT with error-free tests. Moreover, whenever the difference
is larger than d, Eval will always detect this fact because the decoder output is
always larger than d from the property of the naive decoder (i.e., it never evicts
non-corrupted items). A group testing scheme with this property is called a strict
group testing [13], and any non-adaptive CGT scheme with a naive decoder and
a disjunct test matrix is a strict group testing. This means that HAMd property
is always preserved. Therefore,

AdvDA-PPH
CGT-Hash[G,M](A) ≤ AdvColl

G (B)

holds for some collision adversary B against G using qt queries with total σ
blocks, τ ′ = τ +O(σ) time. ut

By using order-optimal d-disjunct matrices derived by PR11 or CN20, the
compression rate of CGT-Hash[G,M] is kt/bn for k = O(d2 logn). The evaluation
Eval runs in time O(nk) relying upon the naive decoder. We note that, the
evaluation complexity can be greatly improved if efficient decoder is available
for the test matrix. For example, the disjunct matrix construction by Indyk et
al. [23] achieves k = O(d2 logn) tests with O(d4 logn) decoding time, and that by
Ngo et al. [29] achieves k = O(d2 logn+ d logn · log logd n) tests with O(k log2 n)
decoding time. The construction by CN20 also has an efficient decoder. More
precisely, it presented a construction achieving k = O(d2 min{logn, (logd n)2})
tests with O(k + d log2(n/d)) decoding time.

4.2 Beyond Predicate

Theorem 1 is easily extended to a more informative property defined below:

DETECTd(X,X ′) :=
{
D(X,X ′) if Hd(X,X ′) ≤ d
0 otherwise

The DETECTd property tells exact indices of different components when the
difference is smaller than the threshold, and otherwise tells that the difference is
indeed larger than d. Such a property will facilitate further investigation and is
useful for some applications, e.g., biometrics or digital forensics.

Comparison with PPH1. BLV19’s first construction (PPH1) is a PPH for the
Gap-Hamming property with parameter (d, ε), taking b = 1. It utilizes a bipartite
expander graph with a certain regularity. Using a hash G of t-bit output, its

9

Table 1: Comparison of Hash-based PPHs. We assume that the baseline hash G
runs in O(n) time for n-bit/item input.

Property Output Hash time Eval time
PPH1 [4] GapHAMd,ε O(nt

logn) O(n2

logn) O(n
logn)

CGT-Hash HAMd, DETECTd O(d2t log n) O(d2n log n) O(d2n log n)1

1 Improved to poly(d2 log n) if efficient decoders are available (see Sec-
tion 4.1)

output is k · t bits, where k = O(n/ logn) [4, Lemma 47], d = O(n/t). Direct
comparison is not possible, however, CGT-Hash (for the same input, using the
same G) implements a robust PPH for the exact Hamming distance predicate
with k · t-bit output, where k = O(d2 logn). Thus, the size reduces by a factor of
about n/(d2 log2 n), which is non-negligible when we focus on the case d� n.

We remark that PPH for relatively small d is still usable: it allows to check if
two inputs are close even the adversary has full knowledge of the hashing scheme,
which is a typical and intuitive application of PPH to (e.g.) biometrics.

4.3 CGT-MAC as Double-Oracle Robust PPH

We consider a MAC-based counterpart to CGT-Hash. Namely, using a variable-
input-length pseudorandom function (PRF) F : K × [k]×X → T ,

CGT-MAC[F,M](K,X) = (Y1, . . . , Yk), Yi = F (K, i,X|Mi
)

as in the same manner to CGT-Hash. Eval is identical to that of CGT-Hash
and does not involve the key. We cannot give K to the adversary, as there is
no security guarantee for PRF once the key is known. Thus Robust PPH is
impossible in the first place. The next strong robustness notion is DO-PPH.
Assuming F is a monolithic, black-box PRF, proving DO-PPH security for the
above CGT-MAC is almost identical to the DA-PPH security proof of CGT-Hash,
hence we omit it here. Such an instantiation of CGT-MAC scheme is the same
as the core component of what Goodrich et al. [19] proposed for data forensics
applications.

To achieve a further efficiency improvement from the above scheme, we take
a CGT-based MAC scheme proposed by Minematsu [25], called GTM. It is a
blockcipher-based scheme, however, instead of a conventional variable-input-
length PRF (or MAC) such as CMAC, GTM uses a variant of vector-input
PRF [34] that accepts an empty string as a component of an input vector, where
a vector consists of (a fixed number of) bit strings. Namely, if the i-th row
of the test matrix is (1, 0, 1), the input to the underlying vector-input PRF is
(X1, ε,X3), rather than conventional (X1, X3), together with additional index
i. Such a PRF is easily built on any variable-input-length PRF via an input
encoding, but if we adopt a structure similar to PMAC [1,33] and simply skip the
computation for j-th component if it is an empty string, it allows a significant

10

computational improvement in our application while maintaining appropriate
security. Concretely, CGT-MAC uses F which is defined as

F (K, i,X|Mi
) = E′

K2, i,
∑
j∈Mi

E(K1, j,Xj)

 . (1)

To learn why this F can be interpreted as a vector-input PRF, please refer to [25].
The above F is based on two PRFs, E : K1× [k]×X → C for C = {0, 1}c for some
positive c, and E′ : K2 × [k]× C → T . The key is K = (K1,K2). As mentioned
above, it is closely related to PMAC. Let GTM[F,M] denote the PPH using F and
the test matrix M that is d-disjunct. The Hash and Eval procedures are defined
as in the same manner to CGT-Hash. We show that GTM[F,M] is a DO-PPH for
HAMd.

Theorem 2. Let F be a keyed function built on E,E′ as Eq. (1). If M is d-
disjunct and E,E′ are PRFs, GTM[F,M] is a DO-robust PPH for the (generalized)
Hamming predicate with threshold d (HAMd) over Bn.

Proof. Since Eval is a keyless function, the proof approach is almost identical to
that of CGT-Hash, and the proof is similar to that of [25]. We first analyze the
information-theoretic setting. Let RF be a function having the same domain and
range as F , and uses two b-bit URFs R, R′ instead of E and E′. Using a similar
argument as the proof of Theorem 1, we observe that breaking the DO-PPH
security implies the invalidation of Cons event. Let A be an adversary using q
queries to GTM[RF ,M].Hash oracle and infinite computation time (note that
queries to the key-less GTM[RF ,M].Eval oracle are simulatable hence we omit).
We have

AdvDO-PPH
GTM[RF ,M](A) ≤ AdvCons

GTM[RF ,M].Hash(A′),

for some adversary A′ using q Hash queries. Let Ideal be the idealized version of
GTM[RF ,M], namely using an independent URF instead of F (K, i, ∗), for each
i ∈ [k]. Using the standard hybrid argument, we have

AdvCons
GTM[RF ,M](A

′) ≤ AdvIND
GTM[RF ,M].Hash,Ideal.Hash(B) + AdvCons

Ideal.Hash(A′′) (2)

Since each component function of Ideal is an independent random function, as in
the case of CGT-Hash, the last term of the right hand side of Eq. (2) is reduced
to the collision probability (in the same component function; we do not have to
care about collision between different components). Let AdvColl

Ideal.hash(A) denote
such a collision probability by A. We have

AdvCons
Ideal.hash(A′′) ≤ AdvColl

Ideal.hash(A′′) ≤ q2

2t+1 , (3)

where the last equation follows from the standard collision analysis. For the first
term of the r.h.s. of Eq. (2), defineX(i) and T (i) = (T (i)

1 , . . . , T
(i)
k) as the i-th Hash

query and its response, and let S(i) = (S(i)
1 , . . . , S

(i)
k) ∈ ({0, 1}c)k be the inputs

11

to R′, i.e., S(i)
j =

∑
h∈Mj

R(K1, h,X
(i)
h). Based on the analysis [25] (which is also

a variant of PMAC’s security proof [33]), we show that the indistinguishability is
reduced to the collision between S, namely the first term of the r.h.s. of Eq. (2)
is bounded by(

q

2

)
· Pr[∃h, h′ ∈ [q], i ∈ [k] : X(h)

|Mi
6= X

(h′)
|Mi

, S
(h)
i = S

(h′)
i] ≤

(
q

2

)
· 1

2c ≤
q2

2c+1 ,

(4)
where the probability is defined by A′′ and GTM[RF ,M]. The second inequality
follows from the observation that each component of keyed message hashing
procedure, Y ←

∑
j∈Mi

R(j,Xj), is XOR-universal, that is, for any X(h) and
X(h′) and i ∈ [k] such that X(h)

|Mi
6= X

(h′)
|Mi

, the sum S
(h)
i ⊕ S(h′)

i is uniform. Note
that we do not have to count collisions between different component functions
thanks to the “finalization” by R′ taking the index of component as a part of
input (often called a domain separation). From Eqs. (2), (3), and (4), we have

AdvDO-PPH
GTM[RF ,M](A) ≤ q2

2c+1 + q2

2t+1 . (5)

Eq. (5) immediately tells that the computational security of GTM[F,M] assuming
that E and E′ are PRFs. More precisely, AdvDO-PPH

GTM[F,M](A) for any A with q Hash
queries with t time is at most the sum of PRF advantages of E and E′ (i.e., the
advantage in distinguishing them from the URF), and the bound shown above.
This bound is shown via the standard information-theoretic-to-computational
hybrid. ut

Reduced Hashing Time. A significant difference from the generic CGT-MAC is the
time complexity for hashing: assuming F runs in O(n) for n-block input (where a
block is b-bit), which holds for the most of popular constructions such as HMAC
or CMAC, CGT-MAC[F,M] needs O(kn) time for hashing an input. In contrast,
the hashing of GTM needs n calls of E and k calls of E′ – hence O(k + n) time
– by caching the outputs of E (See [25]). If we use the parameters of Table 1,
hashing time is reduced from O(d2n logn) to O((d2 logn) + n), assuming the
MAC runs in O(n) for n input items. Typically k � n, as otherwise, the hashing
does not compress well, hence this simple trick of [25] allows to reduce the cost
of hashing to that of single MAC/PRF computation3. We also note that this
computation cost does not depend on the contents of M.

4.4 XOR-GTM

Minematsu and Kamiya [26] (MK19) proposed a new approach to CGT-based
MAC, dubbed XOR-GTM. It enables to detect d corruptions among n data items
3 A more detailed comparison of GTM and CGT-MAC is possible by instantiating F
as a variant of PMAC using b-bit block cipher, and letting c = b and E and E′ be
the same b-bit block cipher. CGT-MAC needs w = O(kn) block cipher calls, where w
denotes the weight of M, and GTM needs (k + n) calls.

12

using a significantly smaller number of MAC tags than O(d2 logn), namely what
CGT-MAC or GTM can achieve with a disjunct matrix.

We only briefly describe the scheme. The scheme has almost the same proce-
dure as GTM, using a test matrix M and PRF E, except that the final E′ is a
tweakable block cipher [24] taking i ∈ [k] as a tweak. Here, a tweakable block
cipher is an extension of a conventional block cipher that takes a chosen public
value, called tweak, as a part of input in addition to the message block. On the
detection of corruptions, it first decrypts the received tags using the inverse of E′.
Next, it takes linear combinations of the decrypted tags, following the “extended”
test matrix MR, which is a submatrix of row span of M. It also takes the same
combinations from the received message and compares the linear combinations.
MK19 showed that if MR is d-disjunct, this scheme allows detecting of up to d
corrupted items. Since the communication cost (number of tags) only depends
on M, not MR, this implies the communication cost can be possibly smaller than
the limit of the number of rows of d-disjunct matrix. In other words, what is
needed here is a disjunct matrix of small rank for MR. MK19 presented several
such instances using error-correcting codes derived by finite geometry.

Robustness of XOR-GTM. It is natural to expect DO-PPH security for XOR-GTM
in the same manner as GTM. However, unlike GTM, the Evaluation oracle of
XOR-GTM involves the key. This fact makes the security proof for DO-PPH not
directly derived from the original proof of XOR-GTM. Most importantly, the
original security proof of XOR-GTM requires that the forward evaluation of E′
is pseudorandom, but does not require the pseudorandomness of the inverse.
Technically speaking, MK19 requires Tweakable Pseudorandom Permutation
(TPRP, for CPA-secure TBC) but not Tweakable Strong PRP (TSPRP, for
CCA-secure TBC). Proving DO-PPH security appears to require the latter.
This difference comes from the fact that the adversary in the game defined for
XOR-GTM (called Decoder Unforgeability, DUF) in MK19 does not have freedom
in choosing the tag given to the decoder, while the adversary in the game of
DO-PPH notion has no restriction on the choice of tags given to the evaluation
oracle. Considering that XOR-GTM significantly reduces the number of tags
beyond O(d2 logn), proving DO-PPH for XOR-GTM assuming TSPRP for E′ is
an interesting open question.

5 Expander Graph-based Constructions for PPH and
CGT

As stated earlier, PPH1 relies on a bipartite expander graph. The graph has
node sets L = [n] and R = [k], by defining the i-th test as its neighbors in L for
i ∈ R. We find the relationship between this expander-based PPH with a variant
of CGT problem that aims at determining the number of defectives rather than
identifying them. This problem has been actively studied for its practical and
theoretical importance, say [6, 8, 12,16] for example.

13

Among these studies, a CGT scheme proposal by Bshouty and Haddad-
Zaknoon [7] (BH21) has an interesting overlap with BLV19’s PPH. In detail, they
first proposed the construction of matrix using a bipartite expander matrix in
the same manner as BLV19. Let M = [n] be the item set and I ⊆ M be the
set of defectives. The proposed matrix allows a distinguisher A(`,∆) who uses
m(`,∆) tests to distinguish whether |I| < `/∆2 (A returns 0) or |I| ≥ `/∆ (A
returns 1) without error, for certain parameters ` and ∆ > 1. Given the maximum
value for |I|, |I| < D, the proposed test (for n items and the defective set I)
runs A(D/∆i, ∆) for i = 0, 1, . . . , d(logD/ log∆)e, and outputs d̂ = D/∆i+1 for
the smallest i such that A(D/∆i, ∆)→ 1. The d̂ guarantees |I|/∆ ≤ d̂ ≤ |I|∆.
Using a known construction of bipartite expander graphs, the number of tests
is (D/∆2) · 2O(log3(logn)). This construction of A(`,∆) in BH21 is essentially
identical to the idea of PPH1. We note that the problem setting of BH21 requires
D as prior information on |I| and if D is not known there is no non-trivial testing
to estimate |I| [5]. BH21 can be a variant of hash-based PPH whose goal is to
give an estimate of the generalized Hamming distance with a predetermined
margin, however, such a variant is not covered by the original definition of PPH
by BLV19. Therefore, we cannot expect a direct translation from CGT scheme
into a PPH as we did in the previous sections. It may be interesting to further
explore the relationships.

6 Conclusions

This paper has shown the connection between the property-preserving hash (PPH)
functions and the adversarial error detection schemes combining the classical
Combinatorial Group Testing (CGT) and hash/MAC functions. Our findings
brought several implications and improvements to the hash/MAC-based PPHs,
which has been initially proposed by Boyle et al. [4] but largely overlooked since
the proposal. PPH is still in its infancy as a research field, and we believe that
the connection we have discovered will be useful for developing PPH. Moreover,
we hope that our results will also encourage the CGT research community to
look into research on PPH.

Acknowledgements

We thank the anonymous reviewers of ITC 2022 for their valuable comments and
suggestions.

References

1. Black, J., Rogaway, P.: A block-cipher mode of operation for parallelizable message
authentication. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp.
384–397. Springer, Heidelberg (Apr / May 2002). https://doi.org/10.1007/3-540-
46035-7_25

14

https://doi.org/10.1007/3-540-46035-7_25
https://doi.org/10.1007/3-540-46035-7_25

2. Bloom, B.H.: Space/Time Trade-offs in Hash Coding with Allowable Errors. Com-
mun. ACM 13(7), 422–426 (1970)

3. Bonis, A.D., Crescenzo, G.D.: Combinatorial Group Testing for Corruption Local-
izing Hashing. In: COCOON. Lecture Notes in Computer Science, vol. 6842, pp.
579–591. Springer (2011)

4. Boyle, E., LaVigne, R., Vaikuntanathan, V.: Adversarially robust property-
preserving hash functions. In: Blum, A. (ed.) ITCS 2019. vol. 124, pp. 16:1–16:20.
LIPIcs (Jan 2019). https://doi.org/10.4230/LIPIcs.ITCS.2019.16

5. Bshouty, N.H., Bshouty-Hurani, V.E., Haddad, G., Hashem, T., Khoury, F., Sharafy,
O.: Adaptive Group Testing Algorithms to Estimate the Number of Defectives. In:
ALT. Proceedings of Machine Learning Research, vol. 83, pp. 93–110. PMLR (2018)

6. Bshouty, N.H., Haddad, G., Haddad-Zaknoon, C.A.: Bounds for the Number of
Tests in Non-adaptive Randomized Algorithms for Group Testing. In: SOFSEM.
Lecture Notes in Computer Science, vol. 12011, pp. 101–112. Springer (2020)

7. Bshouty, N.H., Haddad-Zaknoon, C.A.: Optimal deterministic group testing al-
gorithms to estimate the number of defectives. Theor. Comput. Sci. 874, 46–58
(2021)

8. Chen, C.L., Swallow, W.H.: Using Group Testing to Estimate a Proportion, and to
Test the Binomial Model. Biometrics 46(4), 1035–1046 (1990)

9. Cheraghchi, M., Nakos, V.: Combinatorial group testing and sparse recovery schemes
with near-optimal decoding time. In: 61st FOCS. pp. 1203–1213. IEEE Computer
Society Press (Nov 2020). https://doi.org/10.1109/FOCS46700.2020.00115

10. Cormode, G., Muthukrishnan, S.: What’s hot and what’s not: tracking most frequent
items dynamically. ACM Trans. Database Syst. 30(1), 249–278 (2005)

11. Crescenzo, G.D., Arce, G.R.: Data Forensics Constructions from Cryptographic
Hashing and Coding. In: IWDW. Lecture Notes in Computer Science, vol. 7128,
pp. 494–509. Springer (2011)

12. Damaschke, P., Muhammad, A.S.: Competitive Group Testing and Learning Hidden
Vertex Covers with Minimum Adaptivity. Discret. Math. Algorithms Appl. 2(3),
291–312 (2010)

13. Damaschke, P., Muhammad, A.S., Wiener, G.: Strict group testing and the set
basis problem. J. Comb. Theory, Ser. A 126, 70–91 (2014)

14. Di Crescenzo, G., Jiang, S., Safavi-Naini, R.: Corruption-localizing hashing. In:
Backes, M., Ning, P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 489–504. Springer,
Heidelberg (Sep 2009). https://doi.org/10.1007/978-3-642-04444-1_30

15. Du, D., Hwang, F.: Combinatorial Group Testing and Its Applications. Applied
Mathematics, World Scientific (2000)

16. Falahatgar, M., Jafarpour, A., Orlitsky, A., Pichapati, V., Suresh, A.T.: Estimating
the number of defectives with group testing. In: ISIT. pp. 1376–1380. IEEE (2016)

17. Fleischhacker, N., Larsen, K.G., Simkin, M.: Property-Preserving Hash Functions
from Standard Assumptions. CoRR abs/2106.06453 (2021)

18. Fleischhacker, N., Simkin, M.: Robust property-preserving hash functions for
hamming distance and more. In: Canteaut, A., Standaert, F.X. (eds.) EURO-
CRYPT 2021, Part III. LNCS, vol. 12698, pp. 311–337. Springer, Heidelberg (Oct
2021). https://doi.org/10.1007/978-3-030-77883-5_11

19. Goodrich, M.T., Atallah, M.J., Tamassia, R.: Indexing information for data forensics.
In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 05. LNCS, vol. 3531, pp.
206–221. Springer, Heidelberg (Jun 2005). https://doi.org/10.1007/11496137_15

20. Hirose, S., Shikata, J.: Aggregate Message Authentication Code Capable of Non-
Adaptive Group-Testing. IEEE Access 8, 216116–216126 (2020)

15

https://doi.org/10.4230/LIPIcs.ITCS.2019.16
https://doi.org/10.1109/FOCS46700.2020.00115
https://doi.org/10.1007/978-3-642-04444-1_30
https://doi.org/10.1007/978-3-030-77883-5_11
https://doi.org/10.1007/11496137_15

21. Hong, E.S., Ladner, R.E.: Group testing for image compression. IEEE Trans. Image
Process. 11(8), 901–911 (2002)

22. Indyk, P., Motwani, R.: Approximate Nearest Neighbors: Towards Removing the
Curse of Dimensionality. In: STOC. pp. 604–613. ACM (1998)

23. Indyk, P., Ngo, H.Q., Rudra, A.: Efficiently Decodable Non-adaptive Group Testing.
In: SODA. pp. 1126–1142. SIAM (2010)

24. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (Aug 2002).
https://doi.org/10.1007/3-540-45708-9_3

25. Minematsu, K.: Efficient message authentication codes with combinatorial group
testing. In: Pernul, G., Ryan, P.Y.A., Weippl, E.R. (eds.) ESORICS 2015,
Part I. LNCS, vol. 9326, pp. 185–202. Springer, Heidelberg (Sep 2015).
https://doi.org/10.1007/978-3-319-24174-6_10

26. Minematsu, K., Kamiya, N.: Symmetric-key corruption detection: When XOR-
MACs meet combinatorial group testing. In: Sako, K., Schneider, S., Ryan, P.Y.A.
(eds.) ESORICS 2019, Part I. LNCS, vol. 11735, pp. 595–615. Springer, Heidelberg
(Sep 2019). https://doi.org/10.1007/978-3-030-29959-0_29

27. Mutesa, L., Ndishimye, P., Butera, Y., Souopgui, J., Uwineza, A., Rutayisire,
R., Ndoricimpaye, E.L., Musoni, E., Rujeni, N., Nyatanyi, T., Ntagwabira, E.,
Semakula, M., Musanabaganwa, C., Nyamwasa, D., Ndashimye, M., Ujeneza, E.,
Mwikarago, I.E., Muvunyi, C.M., Mazarati, J.B., Nsanzimana, S., Turok, N.,
Ndifon, W.: A pooled testing strategy for identifying sars-cov-2 at low prevalence.
Nature 589(7841), 276–280 (Jan 2021). https://doi.org/10.1038/s41586-020-2885-5,
https://doi.org/10.1038/s41586-020-2885-5

28. Ngo, H.Q., Du, D.Z.: A Survey on Combinatorial Group Testing Algorithms with
Applications to DNA Library Screening. DIMACS Series in Discrete Mathematics
and Theoretical Computer Science (2000)

29. Ngo, H.Q., Porat, E., Rudra, A.: Efficiently Decodable Error-Correcting List Dis-
junct Matrices and Applications - (Extended Abstract). In: ICALP (1). Lecture
Notes in Computer Science, vol. 6755, pp. 557–568. Springer (2011)

30. Ogawa, Y., Sato, S., Shikata, J., Imai, H.: Aggregate message authentication codes
with detecting functionality from biorthogonal codes. In: ISIT. pp. 868–873. IEEE
(2020)

31. Pagh, R., Rodler, F.F.: Cuckoo hashing. J. Algorithms 51(2), 122–144 (2004)
32. Porat, E., Rothschild, A.: Explicit Nonadaptive Combinatorial Group Testing

Schemes. IEEE Trans. Inf. Theory 57(12), 7982–7989 (2011)
33. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to

modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (Dec 2004). https://doi.org/10.1007/978-3-540-
30539-2_2

34. Rogaway, P., Shrimpton, T.: A provable-security treatment of the key-wrap problem.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 373–390. Springer,
Heidelberg (May / Jun 2006). https://doi.org/10.1007/11761679_23

35. Wegman, M.N., Carter, L.: New hash functions and their use in authentication and
set equality. Journal of Computer and System Sciences 22, 265–279 (1981)

16

https://doi.org/10.1007/3-540-45708-9_3
https://doi.org/10.1007/978-3-319-24174-6_10
https://doi.org/10.1007/978-3-030-29959-0_29
https://doi.org/10.1038/s41586-020-2885-5
https://doi.org/10.1038/s41586-020-2885-5
https://doi.org/10.1007/978-3-540-30539-2_2
https://doi.org/10.1007/978-3-540-30539-2_2
https://doi.org/10.1007/11761679_23

	 Property-Preserving Hash Functions and Combinatorial Group Testing
	Introduction
	Preliminaries
	Notations
	Property-Preserving Hash Function
	Robustness Notions for PPHs
	Constructions of PPHs

	Combinatorial Group Testing
	Constructing PPHs from CGT
	CGT-Hash as Direct-Access Robust PPH
	Beyond Predicate
	CGT-MAC as Double-Oracle Robust PPH
	XOR-GTM

	Expander Graph-based Constructions for PPH and CGT
	Conclusions

