
Towards Smart Contract-based Verification of
Anonymous Credentials

Robert Muth, Tarek Galal, Jonathan Heiss, and Florian Tschorsch

Technische Universität, Berlin, Germany
{muth,j.heiss,florian.tschorsch}@tu-berlin.de

tgalal@mail.tu-berlin.de

Abstract. Smart contracts often need to verify identity-related information of
their users. However, such information is typically confidential, and its verifica-
tion requires access to off-chain resources. Given the isolation and privacy limi-
tations of blockchain technologies, this presents a problem for on-chain verifica-
tion. In this paper, we show how CL-signature-based anonymous credentials can
be verified in smart contracts using the example of Hyperledger Indy, a decentral-
ized credential management platform, and Ethereum, a smart contract-enabled
blockchain. Therefore, we first outline how smart contract-based verification can
be integrated in the Hyperledger Indy credential management routine and, then,
provide a technical evaluation based on a proof-of-concept implementation of
CL-signature verification on Ethereum. While our results demonstrate technical
feasibility of smart contract-based verification of anonymous credentials, they
also reveal technical barriers for its real-world usage.

Keywords: blockchains · anonymous credentials · zero knowledge

1 Introduction

Blockchains are increasingly used to host decentralized applications (DApps), which
are implemented as smart contracts. In contrast to centralized applications, each block-
chain node maintains its own application copy. Local copies are synchronized through
a consensus protocol that eventually establishes a globally consistent application state.
This equips DApps with novel characteristics, e.g., transparency and censorship-resis-
tance which make DApps interesting in various domains including decentralized fi-
nance [1], autonomous organizations [2], and the Internet of Things [3].

Interacting with DApps often requires their users to demonstrate identity-related in-
formation. For example, in DApps for crypto-token offerings, where an initial amount
of free tokens is released to attract new community members, identity-related informa-
tion is used to prevent malicious users from exploiting these airdrops through Sybil-
attacks [4], i.e., repeatedly requesting free tokens using different blockchain accounts.
Another example is provided by voting DApps, where voters are required to prove their
eligibility through identity-related information, e.g., they need to be over age or live
within a certain address range.

2 Robert Muth, Tarek Galal, Jonathan Heiss, and Florian Tschorsch

Unfortunately, in current practices, verification is often realized off-chain using cen-
tralized services. For example, during the Stellar airdrop1, users were required to prove
that they have a valid GitHub2 account with a past registration date to prevent attack-
ers from creating multiple GitHub accounts as their Sybils. The account validity has
not been verified on-chain but through an allegedly trusted off-chain verifier. Similarly,
in the Open Voting Network implementation for Ethereum [5], the voting initiator ap-
proves voters’ eligibility off-chain and publishes an acceptance list of eligible voters
to the smart contract. In both examples, a dishonest verifier can cheat without being
noticed, e.g., by unjustifiably denying access to tokens or the voting.

In order to preserve decentralization and censorship-resistance of such DApps, the
verification must be executed on-chain. This, however, introduces two new challenges:
runtime isolation of DApps and privacy. Verifying identity-related information typically
requires a trusted third party that vouches for the correctness of the information. In
the airdrop example, it is not sufficient for the user to claim possession of a GitHub
account, but instead GitHub itself must attest to it. Similarly, in the voting example,
the required identity information could be attested to by a public institution. However,
smart contracts run in an isolated execution environment and can, hence, only access
information existent in the same runtime. To access off-chain information, they require
an oracle that, however, implies trust [6].

Furthermore, verifying identity-related information typically reveals personal iden-
tifiable information to the verifier. This already presents a problem for off-chain usage.
However, if the verification happens on-chain, sensitive information becomes accessible
to unauthorized blockchain nodes and immutably anchored on-chain for an unknown
period of time. Consequently, identity information cannot naively be verified on-chain
to protect the users’ privacy rights and comply with prevailing privacy regulations.

One approach towards privacy-preserving verification of identity information are
anonymous credentials. They can be implemented by using zero-knowledge proofs
to enable credential verification without revealing sensitive identity attributes to the
verifier. While anonymous credentials already existed for long [7], they have increas-
ingly gained attention. For example, they are part of Hyperledger Indy [8] a decen-
tralized credential management system where they are realized based on Camenisch-
Lysyanskaya (CL) signatures [7].

Anonymous credentials present a promising solution to overcome the blockchain’s
privacy limitations and enable non-revealing verification of identity-related informa-
tion. But anonymous credentials verification happens as part of an interactive procedure
among the identity issuer, holder, and verifier. This clashes with a smart contract’s lim-
ited communication capabilities with off-chain resources. Furthermore, smart contracts
are constrained by technical peculiarities that originate from the underlying execution
environment, e.g., the Ethereum Virtual Machine [9], and must be considered when im-
plementing the verification of anonymous credentials. To date, no smart contract-based
implementation exists for verifying CL signature-based anonymous credentials.

1 https://www.coindesk.com/business/2019/12/13/stellar-tried-to-give-away-2b-xlm-tokens-on-
keybase-then-the-spammers-came/

2 https://github.com

Towards Smart Contract-based Verification of Anonymous Credentials 3

In this paper, we propose a mechanism for smart contract-based verification of
anonymous credentials that are issued as part of the Hyperledger Indy credential man-
agement routine and, thereby, make the following contributions:

– We propose a procedure for integrating smart contract-based credential verification
into Hyperledger Indy. The procedure connects two previously disconnected worlds
and, thereby, allows blockchain-enabled DApps to verify anonymous credentials
originating from Hyperledger Indy-based systems.

– We present a technical specification that explains the verification of CL-signature-
based anonymous credentials in a developer-friendly way. The specification is based
on formal descriptions [10] on the one hand, and insights gained from an analysis
of the Hyperledger Indy code repository3 on the other hand.

– We provide a proof-of-concept implementation for verifying CL signatures-based
anonymous credentials on Ethereum in Solidity, and we document technical chal-
lenges that we encountered during implementation. Our evaluation demonstrates
the technical feasibility of smart contract-based verification of anonymous creden-
tials, but it also reveals technical barriers for its real-world usage.

The remainder of this paper is structured as follows: In Section 2, we give an
overview of anonymous credentials in Hyperledger Indy and show how smart contract-
based credential verification can be integrated with the Hyperledger Indy procedure.
In Section 3, we take a look at the verification of CL signature-based anonymous cre-
dentials. Our proof-of-concept implementation is described and evaluated in Section 4,
and open issues are discussed in Section 5. In Section 6, we present related work and
conclude the paper in Section 7.

2 Anonymous Credentials

To set the scene, we first introduce concepts and roles related to anonymous creden-
tials in Hyperledger Indy. Based on this overview, we propose a procedure for integrat-
ing smart contract-based verification of anonymous credentials into Hyperledger Indy’s
standard credential management routine [11].

2.1 Anonymous Credentials in Hyperledger Indy

Credentials can be understood as a set of claims about its holder’s identity [12], i.e.,
statements about specific identity attributes such as the holder’s name, address, or date
of birth. Hyperledger Indy [8] provides a decentralized system for managing such cre-
dentials that is built upon principles of the self-sovereign identity paradigm [13] where,
instead of letting third parties control a holder’s identity claims, the holder is in control.
To independently verify a credential, additional evidence is required. The evidence is
typically attached to the credential by a trusted third party that is able to attest to the
holder’s attributes, e.g., in form of a cryptographic signature. This makes them verifi-
able credentials [14].

3 https://github.com/hyperledger/indy-sdk

4 Robert Muth, Tarek Galal, Jonathan Heiss, and Florian Tschorsch

Holder

Issuer Verifier

Ledger

Issues verifiable credentials Presents proof

Trusts

Fig. 1. SSI Model adopted from [12].

However, a naive verification of signatures constructed on identity attributes could
reveal potentially sensitive identity attributes to the verifier which may violate the
holder’s privacy rights. The concept of anonymous credentials [10] addresses this prob-
lem by enabling selective disclosure for credential verification, i.e., verifying predicates
on sensitive identity attributes without revealing them to the verifier. Therefor, Hyper-
ledger Indy utilizes Camenisch-Lysyanskaya signatures (CL) [15], a signature scheme
with zero-knowledge properties.

As depicted in Figure 1, credential verification requires three roles: the identity
holder who owns an identity, the issuer that issues and attests to identity attributes
through verifiable identity claims, and the verifier that verifies the identity claims. In
Hyperledger Indy, additionally, a public, permissioned blockchain, the ledger, is applied
as a public and decentralized storage system to make public artifacts accessible to all
involved parties. Private credentials of holders are stored in personal wallets that keep
them protected from unauthorized access.

2.2 Smart Contract-based Integration of Anonymous Credentials Verification

In the following, we show how anonymous credentials of Hyperledger Indy can be used
for smart contract-based verification, i.e., Ethereum smart contracts. In order to estab-
lish compatibility between Hyperledger Indy and Ethereum we define the following
requirements:

– No infrastructure modifications: Smart contract developers should be able to draw
on existing Hyperledger Indy systems for credential verification. Therefore, on-
chain verification should integrate without any modification to the native Hyper-
ledger Indy system.

– No further trust assumption: In Hyperledger Indy, issuers are trusted by the verifier
to truthfully attest to a holder’s credentials, and no further trust assumption should
be introduced. More precisely, integration should work without trusted oracles [6].

The integration procedure builds upon the native Hyperledger Indy credential veri-
fication flow described in [11]. As an extension, we propose a new verifier role, i.e., the
verifier contract, and introduce the developer that is responsible for implementing and
deploying the smart contract. As depicted in Figure 2, the complete proof verification
procedure can be divided in three phases: setup, proving, and verification.

Towards Smart Contract-based Verification of Anonymous Credentials 5

Issuer Developer Ledger Holder Verifier Contract
Credential Schema

a) Generate

Credential Definition Credential Definition

Credential Definition

Credential Request

b) Create

Verifiable Credential Verifiable Credential
Pre-requisite

Credential Definition

c) Create

Smart Contract Smart Contract
1. Setup

Proof Request

d) Generate

Anonym. Credentials Anonymous Credentials
2. Proving

e) Verify

Anonym. Credentials 3. Verification

Fig. 2. Adopted proof verification flow of the Hyperledger Indy proof verification procedures
with a smart contract verifier.

Pre-requisite: As a pre-requisite, we assume that a credential schema exists that de-
fines a set of identity attributes. From that, the issuer has generated a credential defini-
tion and registered it on the Hyperledger Indy ledger (Step a). The credential definition
is a public artifact that is typically specified by the issuer and accessible on the ledger.
Among others, it contains the set of attributes to be verified, the issuer’s public key, and
a reference to the applicable signature algorithm which, in our case, is the CL-signature
scheme.

Furthermore, we assume that the holder is already in possession of the verifiable
credential that is required by the smart contract. In Hyperledger Indy, this is done in
the form of a credential request [11] submitted from the holder to the issuer. On receiv-
ing the request, the issuer creates the evidence, here the CL-signature, and returns the
verifiable credential to the holder where it is stored in her wallet (Step b).

1. Setup: During the initial one-time setup, the developer determines the set of at-
tributes and predicates to be verified on-chain and the attesting issuer in the form of
a proof request, which in Hyperledger Indy is typically created by the verifier. Cor-
respondingly, she selects an appropriate credential definition from the ledger. For
simplicity, we assume that the determined proof request matches a single credential
definition. Based on the issuer’s public key, attributes, predicates, and a reference
to the credential definition, the developer creates the smart contract (Step c). In Hy-
perledger Indy, these information are contained in the credential definition and the
proof request. Then, the developer deploys the smart contract to the blockchain.

6 Robert Muth, Tarek Galal, Jonathan Heiss, and Florian Tschorsch

2. Proving: The holder obtains the proof request from the smart contract which also
includes a reference to the credential definition on the ledger. Based on the cre-
dential definition and schema obtained from the ledger as public information, and
the verifiable credential taken from the wallet as private information, the holder
constructs a zero-knowledge proof based on her CL-signature (Step d) to obtain
anonymized credentials. Finally, the holder submits the resulting anonymous cre-
dentials to the smart contract.

3. Verification: On reception, the smart contract (i.e., DApp) verifies the proof using
the on-chain credential definition (Step e).

Successfully verified credentials can then be used as part of the DApp’s logic. As
shown by the motivating examples, the credential verification can represent a pre-
condition for using specific functionality provided by the DApp, e.g., a voting or an
airdrop.

3 Proof Verification

Given the high level description of integrating smart contract-based anonymous cre-
dential verification into the native Hyperledger Indy credential management routine,
we can now focus on the details of proof verification. Therefore, we first introduce
the basics of CL-signature verification that, in Hyperledger Indy, are used to construct
Zero-Knowledge Proofs (ZKP). Based on this, we describe the actual anonymous cre-
dentials proofs, i.e., a primary proof that builds on equality proofs and inequality pred-
icate proofs.

3.1 Signature Proof of Knowledge

Conceptually, ZKPs in anonymous credentials prove knowledge of some discrete loga-
rithms modulo a composite [10], and are referred to as Signature Proofs of Knowledge.
They enable a credential holder to prove possession of a CL-signature over certain at-
tribute values without revealing other attributes, as well as, to prove that an attribute
value lies within a certain range without revealing it. In order to understand how this is
accomplished in anonymous credentials, we give an overview of what a CL-signature
looks like, and show how a signature proof of knowledge is generated for it. We do this
by referencing corresponding steps in the procedure presented in Section 2.2.

As part of the pre-requisites, the credential issuer creates the credential defini-
tion (Step a). Therefore, she generates a CL-signature key pair based on a credential
schema which contains a set of predefined attributes (e.g., attributes of a driver’s li-
cense). The CL-signature scheme [15] defines the public key in this key pair as the
quadruple (Z, S , {Ri}i∈AC , n) where AC is the set of indices of attributes in the credential
schema, n is a Special RSA Modulus [15], and Z, S , {Ri} are random quadratic residues
modulo n. Then, on receiving a credential request from the holder, the issuer attests to
the attribute values {mi}, and, for creating a verifiable credential (Step b), generates a
CL-signature as explained in [15], such that the following holds:

Towards Smart Contract-based Verification of Anonymous Credentials 7

Z = A e
·

∏
i∈AC

Ri
mi

 · S v mod n (1)

Public Key

Signature

Attributes

While the public key information Z, {Ri}, S and n are publicly available on the
ledger, the signature (A, e, v) can only be calculated by the issuer, who owns the pri-
vate key, in order to keep the whole equation true. Together with the values of the at-
tributes {mi}i∈AC , the holder is now able to prove possession of the credential. Therefore,
she generates a ZKP (Step d) which proves knowledge of the exponents e, {mi}i∈AC , v but
keeps them secret when presenting the proof to a verifier. By doing that, the verifier can
still verify that the prover knows those exponents, and thereby, is in possession of a
valid signature (Step e).

Additionally, a holder can prove that a credential contains an attribute with a specific
value that she reveals. For this, we say AC = Ar ∪ Ar such that Ar contains revealed
attributes and Ar contains unrevealed attributes which are kept secret. Since Ar and Ar

are mutually exclusive, we can adjust Equation 1 as follows

Z = Ae

∏
i∈Ar

Rmi
i

∏

i∈Ar

Rmi
i

 S v mod n (2)

Z(∏
i∈Ar

Rmi
i

) = Ae

∏
i∈Ar

Rmi
i

 S v mod n (3)

This allows us to prove that a credential contains a set of attributes with the revealed
values {mi}i∈Ar , by proving knowledge of the exponents (e, {mi}i∈Ar , v) in Equation 3. We
use these insights as a basis for the following proof descriptions.

3.2 Primary Proof Verification

Anonymous credentials, as explained in [16], are based on the previously introduced
CL-signature proofs of knowledge. Those proofs are similar to the Schnorr Proto-
col [17], and are made non-interactive (i.e., only one round instead of commitment,
challenge, and response) by implementing the Fiat-Shamir Heuristic [18]. Anonymous
credentials structures a proof as a combination of different sub-proofs belonging to a
primary proof that is used for verifying them altogether. To this end, a primary proof
consists of a set of equality sub-proofs {PrC} and a set of inequality predicate sub-
proofs {PrP}:

– An Equality proof proves that a credential contains expected values
– An Inequality predicate proof proves that a credential contains a value that lies

within a certain range (e.g., zip code between a given range)

8 Robert Muth, Tarek Galal, Jonathan Heiss, and Florian Tschorsch

Additionally, a primary proof also contains a set C with necessary information for
the non-interactive ZKP execution, and a ZKP challenge c to verify the correct execu-
tion. Along that, the verifier requires the proof generator (i.e., the holder) to include a
given nonce η, so that the verifier can make sure that the proof corresponds to a particu-
lar proof request. During verification, sub-proofs are processed one after the other, and
their results are appended to a set T̂ which is shared across all the sub-proofs. At the
end, the ZKP responses in each sub-proof are individually processed and the results are
aggregated into T̂ . Once T̂ is complete, the verifier hashes the final result of T̂ , C, and
the nonce η. The proof verification succeeds if c equals H(T̂ || C || η).

3.3 Equality Proof Verification

In the following, we introduce equality proof verification. We therefore present the
cryptographical procedure, as we did for the signature proof of knowledge introduction
in Section 3.1. In fact, equality proof verification is based on the same technique, but is
implemented over a randomized version of the CL-signature [10]. However, we do not
intend to recap all proof details, as they are explained in [10].

In a nutshell, an equality proof attests the possession of a CL-signature (i.e., cre-
dential) over a set of expected attributes, but without revealing any other information.
Still, Ar contains the indices of revealed attributes and Ar contains the unrevealed at-
tributes. The difference is, a verifier receives PrC = (̂e, v̂, {m̂ j} j∈r, A′) and the revealed
attribute values {m j} j∈Ar from a prover, but the original values A, e, v (cf., Equation 1)
are kept secret. Therefore, A′ belongs to a randomized CL-Signature (A′, e′, v′) [10]
where e′, v′ are exponents in that signature. The prover generates this randomized sig-
nature based on the original CL-signature she possesses by following the procedure
described in [10] to guarantee unlinkability across different proofs.

For completeness, we present the equality proof equation which calculates the sub-
proof results T̂ . For the sake of simplicity and easy recognition of relevant components,
we highlighted the parts in the equality proof equation that belong together:

Attributes Signature Public Key Zero-Knowledge Proof

T̂ ←

Z∏ j ∈ Ar

R j
m j

)
(A′)

2596

−c

· (A′)
ê
·

∏

j ∈ Ar

R j
m̂ j

 · (S v̂) (mod n)

In the end, computing T̂ is a pre-verification step for the given ZKP parameters,
and is completed as part of the primary proof verification. At this point, we want to
underline that the same c is used for exponentiation as for the final hash comparison in
the primary proof.

Towards Smart Contract-based Verification of Anonymous Credentials 9

3.4 Inequality Predicate Proof Verification

An inequality predicate consists of an attribute, one of >,≥,<,≤ as a comparison oper-
ator, and a constant value to compare to. Once again, the credential holder proves that
a specified inequality is satisfied without revealing the actual value of the attribute. In
order to do that, the prover constructs a zero knowledge proof that the inequality predi-
cate is satisfied. Additionally, the prover attests that the attribute indeed belongs to her,
by constructing another zero knowledge proof. This zero knowledge proof is in fact just
an equality proof that does not reveal the attribute’s value.

Verifying an inequality proof requires processing the associated equality proof first
where the index of the attribute in the predicate belongs to Ar (unrevealed attributes).
Afterwards, predicate-specific zero knowledge proofs are processed, each extending T̂
in the primary proof verification. As the computations performed for processing an
inequality predicate proof closely resemble those of an equality proof, we leave them
out of this section and refer to the anonymous credentials specification [16].

4 Implementation

In this section, we introduce our proof-of-concept implementation for on-chain anony-
mous credential verification. We therefore present our smart contract implementation
and give an overview of its technical design. In reference to Section 2, we show how
the complex proof verification can be implemented and executed with limited and iso-
lated EVM resources. At the end, we evaluate the transaction costs for proof verification
with our implementation.

4.1 Proof-of-Concept

As part of our implementation for anonymous credentials verification, we provide a
Truffle Suite project with a single smart contract implementation for the proof veri-
fication. In addition to that, we include Mocha (Node.js) test cases for single proof
verifications and full proofs with combined equality and predicate proofs. We consider
our implementation a proof-of-concept, since we limit it to verification only and fo-
cus on the technical feasibility. We also stress, that our implementation should not be
considered production ready, yet. The code is available on Github4.

We use the Hyperledger Ursa cryptography library5 as a reference implementation
and we replicate relevant parts of their test cases to ensure our implementation generates
the same results. We also provide additional test cases which are used for our evaluation.

For the smart contract development, we face several challenges regarding the CL-
signatures’ key size. Firstly, proof verification requires arithmetic operations (+,−, ·),
exponentiation, and multiplicative inversion modulo a large number. As explained in
Section 3.3, n is defined by the public key as the modulus. In our case, anonymous cre-
dentials and the implemented test cases use n of size 2050 bits6, which exceeds the size

4 https://github.com/robmuth/eth-ac-verifier
5 https://github.com/hyperledger/ursa/blob/34ef392/libursa/src/cl/prover.rs#L2532
6 n is 3074 bits in anonymous credentials [16], but HyperLedger Ursa sets n to 2050 bits.

10 Robert Muth, Tarek Galal, Jonathan Heiss, and Florian Tschorsch

of the EVM’s largest data type for numbers (max. 256 bits for unsigned integer). To this
end, we integrate a big number library7 for on-chain computations which ports parts of
the OpenSSL big number implementation to Solidity and YAL (inline assembly). The
library receives numeric inputs as byte arrays and executes computations in the EVM
memory space. With EIP-198 [19] the EVM offers a precompiled contract for comput-
ing ab mod n where a, b and n can be 256-bit unsigned integers. It is noteworthy that
the big number library takes full advantage of this precompiled contract, as it also uses
it for efficient multiplication.

Additionally, the big number library and the precompiled contract do not support
computing modular multiplicative inverses. However, given a, b, n, it is possible to
check if a is the inverse of b modulo n by utilizing the available exponentiation. Our im-
plementation therefore computes the required modular multiplicative inverses off-chain
and passes them together with the proof. For this reason, we use another big number
library for off-chain computations in JavaScript8 which pre-computes intermediary re-
sults (i.e., modular multiplicative inverses) for a proof verification. As explained above,
our implementation verifies that the passed values are correct and aborts the execution
otherwise.

Lastly, the number of variables necessary for proof calculations leads to capacity
shortages for the Solidity compiler. The EVM is designed as a stack machine [9] with a
maximum size of 1 024 words (each 256 bits), which is just enough to pass a complete
proof in a transaction. Unfortunately, the limit of 16 parameters and local variables per
function call renders all proof calculations difficult, since our required parameters and
calculations (mainly big integer computations) cause stack overflow exceptions during
compilation. Therefore, and for better code readability, we utilize pre-defined struct
data structures to pack multiple parameters, and split computations into multiple func-
tions which allocate and release local variables from the stack for interim calculations.

The Truffle project provides basic migration scripts for the verification contract and
the linked big number library. The test cases provide unit tests for the verification pro-
cedures, as well as, exemplary credentials. Once passed, they return the corresponding
transaction costs for each verification in gas, which we evaluate in the following.

4.2 Evaluation

We evaluate the costs for the deployment of the smart contracts and for transactions cre-
ated by test cases with exemplary credentials. We therefore compile the smart contracts
with Solidity 0.5.16 (enabled optimizer with 200 runs), and analyze the transactions
with Ganache 2.5.4. We implement the Hyperledger Ursa cryptography library unit
tests into our PoC test cases and additionally generate our own exemplary anonymous
credentials, issued with Hyperledger Indy.

Table 1 shows gas costs for the deployment of the smart contracts and function calls
of our test cases. While the deployment of a verification contract only puts the compiled
byte code on the blockchain storage, executing a proof verification requires passing a
full proof to the smart contract and executing the anonymous credentials verification

7 https://github.com/firoorg/solidity-BigNumber
8 https://github.com/indutny/bn.js

Towards Smart Contract-based Verification of Anonymous Credentials 11

Table 1. Transaction costs in Gas for smart contract deployments and different proof verification
test cases in Ethereum.

Transaction Gas ·103

Verifier contract deployment 6 711
Big number library deployment 77
1. Test credential: Primary proof verification with an equality sub-proof 32 001
2. Test credential: Primary proof verification with an inequality predicate sub-proof 84 823
3. Test credential: Primary proof verification with combined sub-proofs 84 031

process as explained in Section 3.2. In our first test, the credential contains a set of
14 identity-related attributes (e.g., name, date of birth, address, etc.) and reveals the
first name with a primary proof and an equality sub-proof. Our second test contains the
same attributes and an inequality predicate (i.e., date of birth has to be before a specified
date), which is realized as a combination of an equality sub-proof and an inequality
predicate sub-proof in the primary proof. By looking at the difference between the gas
cost for the first and second test credentials, one can see that the gas costs increase with
the number of sub-proofs, especially with inequality predicate proofs. This explains
why the gas costs of the third test, which reveals the first name and verifies the date of
birth together, is not significantly different from the second test case.

Since gas represents the resource consumption per EVM command [9], proof verifi-
cation becomes expensive for three reasons: First, the passed arguments (i.e., the proofs)
contain large byte arrays, e.g., for each attribute and the corresponding zero-knowledge
proof parameters. Second, the complex data structures for handling big numbers re-
quire allocation of EVM memory space, which consumes extra gas [9]. Third, calling
the precompiled contract for exponentiation and modulo operations [19] allows cheaper
computations than an on-chain implementation; but due to the involvement of a large
number of these operations in a proof verification, the gas cost add up quickly. We also
point out, that the number of attributes influences the proof size and therefore has an
impact on the transaction costs, as well.

In the end, our evaluations show that the gas costs are very high, so the resulting
transaction fees (i.e., gas multiplied by the demand-regulated gas price) render it diffi-
cult for most DApp use cases. Considering a current exemplary gas price of 100 Gwei,
the full proof verification of our test case would cost approx. 8.4 Ether. However, we
stress that our proof-of-concept implementation is not optimized for reduced gas costs
and there is certainly great potential for optimization (e.g., more efficient memory al-
locations). Furthermore, gas costs cannot be translated directly to transaction fees in
Ethereum, since a transaction sender specifies how much Ether she is willing to pay
per gas. This means, the actual transaction costs depend on the blockchain’s current
transaction load.

5 Discussion

In this section, we discuss remaining open issues that should be considered for practical
usages of our proposed solution. To this end, we put the evaluated transaction costs into

12 Robert Muth, Tarek Galal, Jonathan Heiss, and Florian Tschorsch

context and present further options to implement our solution. For completeness, we
also take a look at revocability of credentials and explain how it could be integrated
into our smart contract implementation. At the end, we briefly discuss our considera-
tions regarding Sybil resistance and unlinkability.

5.1 Transaction Costs

As the evaluation in Section 4.2 shows, our proof-of-concept demonstrates the general
ability to verify anonymous credentials in a smart contract on Ethereum, and therefore
enables compatibility with Hyperledger Indy-based identity platforms. However, the
expected transaction costs are too high for current DApp implementations.

Nevertheless, blockchain technologies continue adopting new techniques to ad-
dress rising transaction costs, scalability limits, and performance issues of execution
engines, respectively [20]–[22]; Especially since hype-driven blockchain applications
(e.g., Cryptokitties or ICOs) caused fees to skyrocket [23] multiple times, in the past.
The constantly increasing block size limit in Ethereum also suggests that the overall
demand will continuously increase. However, since our implementation is EVM-based
but not limited to the Ethereum Mainnet, we envisage other blockchains that are com-
patible with our Solidity implementation. For example, Polygon/Matic9 enables second
execution environments which has the potential to decrease the cost of our verification
implementation. As well as, Polkadot10 which is a based on a past EVM fork and uses
proof-of-stake as consensus algorithm with a fundamental different transaction pricing.

In the meantime, we consider two possible ways to implement anonymous creden-
tials verification on-chain: First, the computationally expensive big number operations
could be implemented as precompiled contracts into the EVM, i.e., implementing big
number data types. Doing so, the overall transaction costs of our implementation could
significantly decrease in the same way, as EIP-198 [19] decreases costs for big inte-
ger modulo operations. Second, in the same manner, the whole verification procedure
could be implemented as a precompiled contract. The latter, we at least consider reason-
able for instantiating new EVM-based blockchains with anonymous credentials capa-
bilities, since implementing precompiled contracts is common practice for new private
networks.

5.2 Non-Revocation Proof

Our solution works for credentials that are generally valid, that is, credentials over at-
tributes that neither have an expiry date nor are revocable by their issuer (e.g., date of
birth). In contrast, an issuer can create revocable credentials for attributes that are sub-
ject to change (e.g., address). In this case, it is possible that a revocable credential could
have already been revoked by its issuer, by the time a verifier receives a proof based on

9 https://polygon.technology
10 https://polkadot.network

Towards Smart Contract-based Verification of Anonymous Credentials 13

it. Therefore, a verifier must be able determine a credential’s revocation status in order
to accordingly decide whether to accept or reject the given primary proof.

Anonymous credentials in [16] allow a holder to prove that the credentials which
were used during the primary proof construction have not been revoked. To this end,
tracking of the revocation status utilizes CKS accumulators [24] which is based on
cryptographic primitives different from the ones used by credential attestation proofs.
Namely, it makes use of weak Boneh and Boyen signatures [25], [26], and is based on
BN-254 curves [27] and type-3 pairing. The process of checking the revocation status
takes place as part of the proof verification process. Thus, in addition to the primary
proof, a credential holder also sends a non-revocation proof, which is a zero-knowledge
proof constructed over accumulator parameters. In order to incorporate verification of
non-revocation proofs into our implementation, the verifier would need to add a so-
called accumulator value, which is explained in [24].

5.3 Sybil Resistance and Unlinkability

In our system, Sybils are re-submissions of already verified anonymous credentials by
different holders. Since Sybil attacks can effectively be defeated by a trusted party that
guarantees uniqueness [4] we can instrument the only trusted party for that purpose: the
issuer. If the issuer provides a unique identifier as an identity attribute, it can be verified
on-chain as part of the proof. Thereby, a verifiable one-to-one mapping of proof and
holder is established. The unique identifier could be represented as a revealed attribute
that is part of the proof construction and verifiable on-chain.

An alternative solution that does not require cooperation from issuers is described
in [16]. A verifier can require provers to turn off unlinkability in their proofs. We have
shown in Section 3.3 that this is possible if a holder does not generate a randomized
CL-signature and instead, constructs proofs based on her original CL-signature. Thus,
the smart contract keeps track of all proof identifiers and, hence, can identify Sybils.

However, while storing unique identifiers of proof-holder mappings helps to defeat
Sybil attacks, it also introduces linkability. Linkability is a privacy-related characteristic
and applies in this context if the linkage of anonymous credentials allows unauthorized
third parties to derive private information of the holder. In smart contract-based appli-
cations, linkability is critical since the history of blockchain transactions is available to
all blockchain nodes.

While holders can protect against linkability by using different blockchain accounts
each time they interact with the blockchain, this protection becomes ineffective if unique
identifiers of holders are stored on-chain. They should, consequently, not naively be
used for Sybil resistance but require further considerations to keep holders protected
from linkability.

6 Related Work

Smart contract-based verification of anonymous credentials can be regarded as an in-
stantiation of Verifiable Off-chain Computations (VOC) [28], where an on-chain com-
putation, here the credential verifications, is delegated to an off-chain node, here the

14 Robert Muth, Tarek Galal, Jonathan Heiss, and Florian Tschorsch

holder, and only the computational result and a cryptographic proof attesting the com-
putation’s correctness are published to the blockchain for verification. In the context of
VOCs, the CL-signature-based approach complements other applicable non-interactive
zero-knowledge technologies, e.g., zkSNARKs, Bulletproofs, or zkSTARKs [28].

In literature, various papers can be found where zkSNARKs are applied for pri-
vacy preserving authentication in DApps, e.g., through ZoKrates [29], a toolkit for
zkSNARKs-based VOC. Examples are provided in the context of smart electric ve-
hicle authentication at charging stations [30], patient authentication in health care [31],
or consent-based access control [32]. However, these works focus on a particular use
case where a particular claim of a particular issuer is verified on-chain. In contrast,
our approach enables smart contracts to verify Hyperledger Indy-based credentials and,
thereby, to reach multiple issuers.

Hyperledger Indy has become one of the most popular SSI management technolo-
gies [33] and is adopted in multiple SSI management projects. IDUnion11, for example,
is a German consortium of public and private organizations that uses Hyperledger Indy
to implement a SSI management system. Similarly, the Verifiable Organizations Net-
work12 is an initiative that leverages Hyperledger Indy to realize SSI and enable digiti-
zation of identities in a secure, user-centric manner. With our proposed solution, smart
contracts can now verify credentials of any issuer that is part of these projects.

Beyond Hyperledger Indy, other blockchain-based credential management systems
exist. In the context of SSI, uPort [34] and Jolocom [35] are two approaches that,
instead of building upon a public, permissioned blockchain, leverage Ethereum as a
public, permissionless blockchain. These approaches, however, currently only store
non-revealing identity information on-chain but do not provide anonymous credential
verification. Given the privacy requirement, this makes them not applicable for smart
contract-based credential verification. However, recent improvement proposals (e.g.,
EIP-725 [36] and EIP-735 [37]) show that there is an interest in establishing Ethereum-
based SSI-Systems, which has even yielded the formation of a self-proclaimed SSI
alliance13.

Furthermore, Public Key Infrastructures (PKI) exist as centralized credential man-
agement systems, and are traditionally used for managing identity card infrastructures.
For example, PKIs are used by universities to manage digital student IDs. On a national
scale, the German Identity Cards are managed based on PKIs14, and on an international
scale, the ICAO uses PKIs to manage the global passport infrastructure15. However, in
contrast to a Hyperledger Indy, in centralized credential management systems identity
attributes are limited and can only be attested by a single issuer.

11 https://idunion.org
12 https://vonx.io
13 https://erc725alliance.org
14 https://www.bsi.bund.de/EN/Topics/ElectrIDDocuments/securPKI/pki node.html
15 https://www.icao.int/Security/FAL/PKD/Pages/default.aspx

Towards Smart Contract-based Verification of Anonymous Credentials 15

7 Conclusion

Motivated by prevailing limitations observed in different DApp contexts, in this pa-
per, we have made a first step towards verifying identity-related information in DApps
in a privacy-preserving and trustless manner. Using the example of Hyperledger Indy
as a popular credential management system, we have shown how CL signature-based
anonymous credentials can be verified by Ethereum-based smart contracts without in-
troducing further trust assumptions.

With our approach, DApps can verify identity-related information entirely on-chain
and, thereby, preserve transparency and censorship resistance as desirable characteris-
tics of DApps. In the airdrop example, account ownership claims issued by GitHub as
anonymous credentials could be fully verifiable on-chain and used to mitigate illegiti-
mate token spendings. Similarly, in the voting example, a public authority could issue
eligibility claims as anonymous credentials which are on-chain verifiable and, thereby,
help voting DApps yield more reliable results.

However, we also revealed aspects that stand between our prototype and a
production-ready system. As seen in our technical evaluation, gas costs are currently
impractically high due to high verification costs of CL signature-based zero-knowledge
proofs. Furthermore, for verifying revocable identity attributes, a revocation system
must be integrated into our solution. We also point out that security- and privacy-related
aspects as Sybil-resilience and linkability must still be considered for real-world de-
ployments.

The active research and ongoing developments in the field of verifiable creden-
tials and smart contracts, however, let us expect technological advances to emerge from
which smart contract-based credential verification may benefit. As one example, a new
anonymous credential design, called Anonymous Credentials 2.0, has been proposed
in [38] that might be adopted in Hyperledger Indy in the future. However, while it
promises more efficient zero-knowledge proofs and, hence, cheaper on-chain verifica-
tion, we were not able to find public information about the current development state
or release dates. In the end, we have shown that CL-signature-based anonymous cre-
dentials can be verified in smart contracts and, at the same time, paved the way for the
integration of further identity infrastructures and technologies.

References

[1] K. Qin, L. Zhou, Y. Afonin, L. Lazzaretti, and A. Gervais, “Cefi vs. defi - com-
paring centralized to decentralized finance,” CoRR, vol. abs/2106.08157, 2021.

[2] C. Jentzsch, “Decentralized autonomous organization to automate governance,”
White paper, 2016.

[3] M. S. Ali, M. Vecchio, M. Pincheira, K. Dolui, F. Antonelli, and M. H. Rehmani,
“Applications of blockchains in the internet of things: A comprehensive survey,”
IEEE Communications Surveys Tutorials, vol. 21, no. 2, pp. 1676–1717, 2019.

[4] J. R. Douceur, “The sybil attack,” in IPTPS, ser. Lecture Notes in Computer
Science, vol. 2429, Springer, 2002.

16 Robert Muth, Tarek Galal, Jonathan Heiss, and Florian Tschorsch

[5] P. McCorry, S. F. Shahandashti, and F. Hao, “A smart contract for boardroom
voting with maximum voter privacy,” in Financial Cryptography, ser. Lecture
Notes in Computer Science, vol. 10322, Springer, 2017, pp. 357–375.

[6] J. Heiss, J. Eberhardt, and S. Tai, “From oracles to trustworthy data on-chaining
systems,” in IEEE International Conference on Blockchain, 2019.

[7] J. Camenisch and A. Lysyanskaya, “An efficient system for non-transferable
anonymous credentials with optional anonymity revocation,” in EUROCRYPT,
ser. Lecture Notes in Computer Science, 2001, pp. 93–118.

[8] Hyperledger White Paper Working Group, An introduction to hyperledger, ht
tps://www.hyperledger.org/wp- content/uploads/2018/07/HL_

Whitepaper_IntroductiontoHyperledger.pdf, 2018.
[9] G. Wood, “Ethereum: A secure decentralised generalised transaction ledger,

berlin version fabef25,” 2021.
[10] J. Camenisch and T. Gross, “Efficient attributes for anonymous credentials,”

2008, pp. 345–356.
[11] H. I.-s. Repository, Indy walkthrough - a developer guide for building indy clients

using libindy, https : / / github . com / hyperledger / indy - sdk / blob /
master/docs/getting-started/indy-walkthrough.md, 2018.

[12] A. Mühle, A. Grüner, T. Gayvoronskaya, and C. Meinel, “A survey on essential
components of a self-sovereign identity,” Comput. Sci. Rev., vol. 30, 2018.

[13] Christopher Allen, The path to self-sovereign identity, http://www.lifewith
alacrity.com/2016/04/the-path-to-self-soverereign-identity.

html, 2016.
[14] World Wide Web Consortium (W3C), Verifiable credentials data model v1.1 -

expressing verifiable information on the web, https://www.w3.org/TR/vc-
data-model/, 2021.

[15] J. Camenisch and A. Lysyanskaya, “A signature scheme with efficient protocols,”
Jan. 2002, pp. 268–289.

[16] D. Khovratovich and M. Lodder, Anonymous credentials with type-3 revocation,
https://github.com/hyperledger/ursa-docs/blob/62bc87b/specs/

anoncreds1/anoncreds.tex, 2018.
[17] C. Schnorr, “Efficient signature generation by smart cards,” Journal of Cryptol-

ogy, vol. 4, pp. 161–174, Jan. 1991.
[18] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to identi-

fication and signature problems,” in Advances in Cryptology, Springer, 1987,
pp. 186–194.

[19] V. Buterin, Big integer modular exponentiation, https://github.com/ether
eum/EIPs/blob/master/EIPS/eip-198.md), 2017.

[20] S. Popov, “IOTA: Feeless and free,” Blockchain Technical Briefs, 2019.
[21] T. Roughgarden, “Transaction fee mechanism design for the ethereum

blockchain: An economic analysis of EIP-1559,” CoRR, vol. abs/2012.00854,
2020.

[22] A. Busse, J. Eberhardt, and S. Tai, “EVM-Perf: High-precision EVM perfor-
mance analysis,” in IEEE International Conference on Blockchain and Cryp-
tocurrency, 2021, pp. 1–8.

Towards Smart Contract-based Verification of Anonymous Credentials 17

[23] M. Spain, S. Foley, and V. Gramoli, “The impact of ethereum throughput and
fees on transaction latency during icos,” in Tokenomics, ser. OASIcs, Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[24] J. Camenisch, M. Kohlweiss, and C. Soriente, “An accumulator based on bilin-
ear maps and efficient revocation for anonymous credentials.,” IACR Cryptology
ePrint Archive, vol. 2008, p. 539, Jan. 2008.

[25] D. Boneh and X. Boyen, “Short signatures without random oracles and the SDH
assumption in bilinear groups,” 2, vol. 21, 2008, pp. 149–177.

[26] D. Boneh, X. Boyen, and H. Shacham, “Short group signatures,” in CRYPTO,
ser. Lecture Notes in Computer Science, vol. 3152, Springer, 2004, pp. 41–55.

[27] P. Barreto and M. Naehrig, “Pairing-friendly elliptic curves of prime order,”
vol. 3897, Aug. 2005, pp. 319–331.

[28] J. Eberhardt and J. Heiss, “Off-chaining models and approaches to off-chain com-
putations,” in Proceedings of the 2Nd Workshop on Scalable and Resilient Infras-
tructures for Distributed Ledgers, ser. SERIAL’18, ACM, 2018.

[29] J. Eberhardt and S. Tai, “Zokrates - scalable privacy-preserving off-chain com-
putations,” in IEEE International Conference on Internet of Things (iThings)
and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber,
Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData),
2018, pp. 1084–1091.

[30] D. Gabay, K. Akkaya, and M. Cebe, “A privacy framework for charging con-
nected electric vehicles using blockchain and zero knowledge proofs,” in IEEE
44th LCN Symposium on Emerging Topics in Networking, 2019, pp. 66–73.

[31] B. Sharma, R. Halder, and J. Singh, “Blockchain-based interoperable healthcare
using zero-knowledge proofs and proxy re-encryption,” 2020 International Con-
ference on COMmunication Systems & NETworkS (COMSNETS), pp. 1–6, 2020.

[32] J. Heiss, M.-R. Ulbricht, and J. Eberhardt, “Put your money where your mouth is
– towards blockchain-based consent violation detection,” in IEEE International
Conference on Blockchain and Cryptocurrency (ICBC), 2020, pp. 1–9.

[33] R. Soltani, U. T. Nguyen, and A. An, “A survey of self-sovereign identity ecosys-
tem,” CoRR, vol. abs/2111.02003, 2021.

[34] N. Naik and P. Jenkins, “uPort open-source identity management system: An as-
sessment of self-sovereign identity and user-centric data platform built on block-
chain,” in ISSE, 2020.

[35] JOLOCOM, A decentralized, open source solution for digital identity and access
management (whitepaper), https://jolocom.io/wp-content/uploads/
2019/12/Jolocom-Whitepaper-v2.1-A-Decentralized-Open-Source-

Solution-for-Digital-Identity-and-Access-Management.pdf, 2019.
[36] F. Vogelsteller and T. Yasaka, Erc-725 smart contract based account, https:

//github.com/ethereum/EIPs/issues/725), 2020.
[37] F. Vogelsteller, Claim holder, https://github.com/ethereum/EIPs/issue

s/735), 2019.
[38] D. K. Michael Lodder, Anonymous credentials 2.0, https://wiki.hyperled

ger.org/download/attachments/6426712/Anoncreds2.1.pdf, 2019.

