
Fast Diffusion Block for Secret Key Cryptography

Vlastimil Kĺıma 1

April 26, 2022

Abstract. We present a diffusion block (DB), which is extraordinarily fast.
After one round, it reaches complete diffusion, which means only 16 memory
reads and 15 ⊕ operations. It uses only the most common operations available
in any microprocessor. The diffusion and speed are based on a large key, about
64 kB for encryption and 34 kB for decryption, expanded from the classical
key size of 128, 256, or more bits. The basic block length is 128 bits and
could be expanded to 192, 256, or more. DB uses the same core idea as uses
AES, DES, and others, which has been studied for more than 50 years by many
cryptanalysts.

Keywords: diffusion, design principles, secret key cryptography.

1 Introduction

We hope that the idea of the proposed diffusion block is new2. For example,
DB uses different procedures and tables for encryption and decryption. One
diffusion block (one round) reaches complete diffusion, and every new round
fundamentally improves the cryptographic, statistical, algebraical, and com-
plexity properties. Every block increases the degree of underlying polynomials
by 8. In the paper, we will concentrate on DB with block length 128.

2 Notation

The scheme works with bytes, vectors, and matrices. We will identify bytes
with the elements of the Galois field GF (28). All details of computing in
GF (28) are well described in the numerous literature on AES [AES01]. We
use just the same Galois field GF (28), operations ⊕, •, and the irreducible poly-
nomial m(x) = x8 ⊕ x4 ⊕ x3 ⊕ x ⊕ 1. The byte a = (a7, a6 . . . a0), where a7
is the highest bit and a0 is the lowest bit, is identified with the polynomial
a = a7x

7 ⊕ a6x
6 ⊕ . . .⊕ a0x

0. The multiplication of two bytes a • b is defined as
the multiplication of the corresponding polynomials modulo m(x). Recall that

1Independent cryptologist, Prague, v.klima@volny.cz, http://cryptography.hyperlink.cz
2if not, let us know please, and we will update the references accordingly

1

except for zero, each byte x ∈ GF (28) has its inverse element x−1 ∈ GF (28)
such that x • x−1 = 1. We will also use row and column vectors of bytes. We
mark their coordinates by lower indexes, for instance, C = (C0, C1 . . . C15). The
transposition of a row vector C into a column vector is referred to as CT . We
denote the matrix of 16x16 bytes by M = (Mi,j), i = 0 . . . 15, j = 0 . . . 15. The
column i of M could be written shortly as Mi. Multiplying the vector C by
byte b is defined as C • b = (C0, C1 . . . C15) • b = (C0 • b, C1 • b . . . C15 • b),
multiplication matrix by a vector is written as
M •CT = (

∑15
j=0 M0,j •Cj ,

∑15
j=0 M1,j •Cj . . .

∑15
j=0 M15,j •Cj)

T and multipli-
cation of two matrices gives the matrix D = A •B = A0−15,0−15 •B0−15,0−15 =

D0−15,0−15, where Di,j =
∑15

k=0 Ai,k • Bk,j for every i, j = 0 . . . 15. Every
non-singular matrix M has its inverse M−1, such that M • M−1 = I, where
I is the identity matrix. For a short notation we denote m ≡ M−1 and
we will also omit • in some products. We will also use substitution boxes
Si,j , i = 0 . . . 15, j = 0 . . . 15 over GF (28). When we ought to index the bit of
variable already indexed, we will use the last index, for instance the bit r of Sk,n

is denoted as Sk,n,r. We denote C = EncDB(P) encryption of the plaintext P
and P = DecDB(C) decryption of the ciphertext C.

3 Definition of DB

We will use the terms Encryption Key and Decryption Key because different
tables form them.

3.1 Definition of the Decryption Key

We define S as a set of 256 S-boxes Si,j , i = 0 . . . 15, j = 0 . . . 15. They are
mappings GF (28) → GF (28) : x → Si,j(x) with the following properties:

• 120 S-boxes above the diagonal, Si,j , i < j, are random mappings

• 16 S boxes on the diagonal, Si,j , i = j, are random bijections

• 120 S-boxes under the diagonal, Si,j , i > j, are constant zero

We define M = M0−15,0−15 as non-singular matrix 16x16 over GF (28) with
nonzero elements Mi,j . Decryption Key is (S, M).

3.2 Definition of the Encryption Key

Let us denote T = (T0, T1 . . . T15) 16 tables Tk : GF (28) → GF (28)16, k =
0 . . . 15, which maps a byte to 16 bytes. In the following definition, every table
uses the same matrix M, but a unique set of 16 S-boxes, different from the
others. For each x ∈ GF (28) and k = 0 . . . 15 we define:

Tk(x) = M0 • Sk,0(x)⊕M1 • Sk,1(x)⊕ . . .⊕M15 • Sk,15(x) (1)

Encryption Key is (T).

2

3.3 Encryption

On the side of encryption, it suffices to have only the Encryption Key T, while S-
boxes and matrix M are unnecessary. The encryption takes a block of plaintext
P = (P0, P1 . . . P15)

T , P ∈ GF (28)16 and outputs a block of ciphertext C =
(C0, C1 . . . C15)

T , C ∈ GF (28)16, where

C =


C0

C1

...
C15

 = T0(P0)⊕ T1(P1)⊕ . . .⊕ T15(P15) =

15∑
k=0

Tk(Pk) (2)

The equation (2) says that for each position k = 0 . . . 15 of the plaintext byte,
we use a different table Tk, which maps it to a 16-byte pseudo-random vector.
The ciphertext is the sum of these vectors. From (2) follows that encryption
uses only 16 memory reads and 15 ⊕ operations.

Figure 1: The scheme of encryption

In Figure 1, every singular byte of P goes through 16 unique S-boxes giving
a vector, which is then multiplied by the matrix M. This is a contribution of one
plaintext byte to the ciphertext. A single table lookup realizes this idea.
The ciphertext is the sum of all these contributions. It creates fast diffusion,
not perfect, but the diffusion of all plaintext bytes into all ciphertext bytes.
Underline that this is the core idea of the paper. We forward that two or more
consecutive rounds of DB will give better and better diffusion from a statistical,
complexity, algebraic, and cryptographic point of view while still very fast.

3

3.4 Decryption

Here we know the Decryption Key M(m) and S. At first, we introduce tempo-

rary variables CS0 = S0,0(P0), CS1 = S0,1(P0)⊕S1,1(P1), . . . , CS15 =
∑15

k=0 Sk,15(Pk),
generally

CSn =

n∑
k=0

Sk,n(Pk), n = 0 . . . 15 (3)

According to (1) C =
∑15

k=0 Tk(Pk) =
∑15

k=0 M•(Sk,0(Pk), Sk,1(Pk) . . . Sk,15(Pk))
T =

M • (
∑15

k=0 Sk,0(Pk),
∑15

k=0 Sk,1(Pk) . . .
∑15

k=0 Sk,15(Pk))
T . So we have C = M •

(CS0, CS1, . . . , CS15)
T and from it we compute the values CS0, CS1 . . . CS15:

(CS0, CS1 . . . CS15)
T = m • C. (4)

Then from the values

CS0 = S0,0(P0)
CS1 = S0,1(P0)⊕ S1,1(P1)
CS2 = S0,2(P0)⊕ S1,2(P1)⊕ S2,2(P2)
. .
CS13 = S0,13(P0)⊕ S1,13(P1)⊕ . . .⊕ S13,13(P13)
CS14 = S0,14(P0)⊕ S1,14(P1)⊕ S2,14(P2)⊕ . . .⊕ S14,14(P14)
CS15 = S0,15(P0)⊕ S1,15(P1)⊕ S2,15(P2)⊕ . . .⊕ S14,15(P14)⊕ S15,15(P15)

we will compute P0, P1 . . . P15, what finishes the decryption.

4 Semi-linearity in GF (28)

We are working over GF (28), which means that the formula

Tk(x) = M0 • Sk,0(x)⊕M1 • Sk,1(x)⊕ . . .⊕M15 • Sk,15(x)

is linear over GF (28) when M is fixed, or when S is fixed. Because the ci-
phertext is a sum of Tk(x), it is semi-linear also.

5 Variants and Parameters

5.1 Key Generation

The tables T are computed from M and S. We have two methods of their gen-
eration. The first consists of the generation of the matrix and S-boxes directly
from the random source. The second one is the key expansion. In this case, we
generate only a random secret seed (the real KEY). Then we use this seed and
well-known techniques of key expansion to generate a pseudo-random sequence

4

as long as we need. We derive the matrix M and all S-boxes with the requested
properties from it. Note that the pseudo-random sequence has to be generated
so that it would be impossible to derive a part of the sequence from any other
part. For instance, for this purpose, AES key expansion isn’t good, because
we can derive other round keys and the seed itself from one round key. The
sequence SHA-256(seed ∥ counter) for counter= 1, 2, 3, ... is a simple example
of good key expansion.

5.2 The Block Length

We can define DB variants for the block lengths 16 + 4*B bytes (B = 1, 2 . . .),
i.e. 128, 160, 192, 256,... bits analogously as for 128 bits. Let us describe
DB-256. The formulas are the same as for DB-128, with the following changes.
The matrix M is of type 32x32, and the vectors have 32 bytes, there are 32
tables Tk for k = 0 . . . 31, the values Tk(x), x ∈ GF (28) are 32-bytes vectors,
and the plaintexts and the ciphertexts are 32 bytes long. S is a set of 1024 S-
boxes Si,j , i = 0 . . . 31, j = 0 . . . 31. The encryption and decryption use the same
formulas and procedures.

5.3 The Number of Rounds

The number of rounds is a tool for better diffusion from statistical, complexity,
algebraic, and cryptographic points of view. We define NR rounds DB simply
as a composition of NR functions DB: ciphertext = DBNR(plaintext). Note
that in the second round we can use the same or another key (T, M, S), etc.

6 Cryptanalysis

6.1 Algebraic analysis in GF (28)

Let us express the ciphertext according to (2) and (1): Cn =
∑15

k=0(Tk(Pk))n =

(
∑15

k=0

∑15
q=0 Mq • Sk,q(Pk))n. So the byte Cn is equal to

Cn =
15∑
k=0

15∑
q=0

Mn,q • Sk,q(Pk), n = 0 . . . 15. (5)

We can define 16*16*16*256 new variables Yn,q,k,x = Mn,q • Sk,q(x), n, q, k =
0 . . . 15, x = 0 . . . 255. Every pair of plaintext and ciphertext creates 16 equa-
tions in GF (28) for these variables:

Cn =
∑15

k=0

∑15
q=0 Yn,q,k,Pk

, n = 0 . . . 15.

So, we need only 16*16*16*256/16 = 65536 pairs of (P, C) to determine all
unknowns Yn,q,k,x.

5

Another way is using (4): We have CSn = (m • C)n =
∑15

q=0 mn,q • Cq, where

on the other hand CSn =
∑n

k=0 Sk,n(Pk), n = 0 . . . 15. So we have 16 equations

15∑
q=0

mn,q • Cq =

n∑
k=0

Sk,n(Pk), n = 0 . . . 15. (6)

For different known P and C, the variables Cq and Pk become known coefficients,
and the quadratic equation (6) becomes linear with varying coefficients for 256
unknowns mn,q and 136*256 = 34816 unknowns Sk,n(Pk). To determine m and
all S, we need only (34816+256)/16 = 2192 known pairs (P, C).

Knowing the input and output of one round DB enables us to de-
termine its insider secrets. It is the property following semi-linearity.

6.2 Algebraic analysis of more DB rounds in GF (28)

If we know the plaintext and ciphertext of one round DB, we can substitute them
into P, C, M, and S relations. These variables are then changed into coefficients
and ”disappear”. Only linear relations remain. If we use two rounds, the inter-
mediate ciphertext is unknown, so the relations have quadratic members, which
don’t disappear now. Moreover, the unknown variables (not constants) now in-
dex other unknown variables (S-boxes), which creates the main obstacle for com-
posing simple equations, as we did before. Let us denote C(1) = Enc(P), C(2) =

Enc(C(1)). For the first round we have C
(1)
k =

∑15
l=0 Mk,l •

∑l
t=0 St,l(Pt) and

for the second round (backwards) (m • C(2))q = CSq(C
(1)) =

∑q
k=0 Sk,q(C

(1)
k),

what together gives a relation between the plaintext P and the final ciphertext
C(2):

(m • C(2))q =

q∑
k=0

Sk,q(

15∑
l=0

Mk,l •
l∑

t=0

St,l(Pt)) (7)

Now, we can see what an obstacle in the equation (7) is. It is the sum of ex-
pressions, which enters S-boxes Sk,q on the right side. S-boxes are not linear, so
we must use their arguments as new unknowns. As a maximum, we can express
C(1) as a sum of new variables:

C
(1)
k =

∑15
l=0 Mk,l •

∑l
t=0 St,l(Pt) =

∑15
l=0

∑l
t=0 Mk,l • St,l(Pt)

Let us denote Yk,l,t = Mk,l • St,l(Pt),then

C
(1)
k =

∑15
l=0

∑l
t=0 Yk,l,t

So we have expressed C(1) as a sum of unknowns, but this sum now enters
the S-box in the second round:

(m • C(2))q =
∑q

k=0 Sk,q(C
(1)
k)

When we express Sk,q(x) as Lagrange polynomial of a variable x ∈ GF (28), it

6

will have a degree of 255:

Sk,q(x) =

255∑
i=0

ai • xi

and will contain the variable C
(1)
k in degrees up to 255. More rounds will, of

course, increase the degree of polynomials. We see the same situation as in
the second round of AES, where a linear combination of S-boxes outputs enters
S-boxes in the next round. So far, no simple solution to this problem has been
found.

6.3 Algebraic analysis in GF (2)

Let us work in GF (2). In GF(2), we will understand S-box as 8 functions
determined by the i-th bit of the output S(x)i. An argument (byte) x we
understand as 8 variables, which are bits of x. Then for every i = 0, 1 . . . 7, S(x)i
is a polynomial of the degree 8 in variables x0, x1 . . . x7:

S(x)i =

1∑
α0,α1...α7=0

(x0 ⊕ α0 ⊕ 1)(x1 ⊕ α1 ⊕ 1) . . . (x7 ⊕ α7 ⊕ 1)S(α0, α1 . . . α7)i.

Recall that DB uses multiplications in GF (28), so we need to express these
products in bits. Let a = (a7, a6 . . . a0), b = (b7, b6 . . . b0), then the product
c = a • b is in GF (28) defined as the multiplication of the corresponding poly-
nomials modulo m(x) = x8 ⊕ x4 ⊕ x3 ⊕ x⊕ 1:
c = a • b = ((a7x

7 ⊕ a6x
6 ⊕ ... ⊕ a0x

0) ∗ (b7x7 ⊕ b6x
6 ⊕ . . . ⊕ b0x

0) mod m(x)
= (a7b7)x

14 ⊕ (a7b6 ⊕ a6b7)x
13 ⊕ (a7b5 ⊕ a6b6 ⊕ a5b7)x

12 ⊕ . . .⊕ (a0b0)x
0) mod

m(x) = (c7x
7 ⊕ c6x

6 ⊕ . . .⊕ c0x
0).

At first we will prepare reductions:
x8 = x4 ⊕ x3 ⊕ x1 ⊕ 1
x9 = x5 ⊕ x4 ⊕ x2 ⊕ x1

x10 = x6 ⊕ x5 ⊕ x3 ⊕ x2

x11 = x7 ⊕ x6 ⊕ x4 ⊕ x3

x12 = x8⊕x7⊕x5⊕x4 = x4⊕x3⊕x1⊕1⊕x7⊕x5⊕x4 = x7⊕x5⊕x3⊕x1⊕1
x13 = x8⊕x6⊕x4⊕x2⊕x1 = x4⊕x3⊕x1⊕1⊕x6⊕x4⊕x2⊕x1 = x6⊕x3⊕x2⊕1
x14 = x7 ⊕ x4 ⊕ x3 ⊕ x1

c = (a7b7)x
14 ⊕ (a7b6 ⊕ a6b7)x

13 ⊕ (a7b5 ⊕ a6b6 ⊕ a5b7)x
12 ⊕ (a7b4 ⊕ a6b5 ⊕

a5b6 ⊕ a4b7)x
11 ⊕ (a7b3 ⊕ a6b4 ⊕ a5b5 ⊕ a4b6 ⊕ a3b7)x

10 ⊕ (a7b2 ⊕ a6b3 ⊕ a5b4 ⊕
a4b5 ⊕ a3b6 ⊕ a2b7)x

9 ⊕ (a7b1 ⊕ a6b2 ⊕ a5b3 ⊕ a4b4 ⊕ a3b5 ⊕ a2b6 ⊕ a1b7)x
8 ⊕

(a7b0⊕ a6b1⊕ a5b2⊕ a4b3⊕ a3b4⊕ a2b5⊕ a1b6⊕ a0b7)x
7⊕ (a6b0⊕ a5b1⊕ a4b2⊕

a3b3 ⊕ a2b4 ⊕ a1b5 ⊕ a0b6)x
6 ⊕ (a5b0 ⊕ a4b1 ⊕ a3b2 ⊕ a2b3 ⊕ a1b4 ⊕ a0b5)x

5 ⊕
(a4b0 ⊕ a3b1 ⊕ a2b2 ⊕ a1b3 ⊕ a0b4)x

4 ⊕ (a3b0 ⊕ a2b1 ⊕ a1b2 ⊕ a0b3)x
3 ⊕ (a2b0 ⊕

a1b1 ⊕ a0b2)x
2 ⊕ (a1b0 ⊕ a0b1)x

1 ⊕ a0b0

7

= (a7b7)(x
7 ⊕ x4 ⊕ x3 ⊕ x1)⊕ (a7b6 ⊕ a6b7)(x

6 ⊕ x3 ⊕ x2 ⊕ 1)⊕ (a7b5 ⊕ a6b6 ⊕
a5b7)(x

7 ⊕ x5 ⊕ x3 ⊕ x1 ⊕ 1)⊕ (a7b4 ⊕ a6b5 ⊕ a5b6 ⊕ a4b7)(x
7 ⊕ x6 ⊕ x4 ⊕ x3)⊕

(a7b3 ⊕ a6b4 ⊕ a5b5 ⊕ a4b6 ⊕ a3b7)(x
6 ⊕ x5 ⊕ x3 ⊕ x2) ⊕ (a7b2 ⊕ a6b3 ⊕ a5b4 ⊕

a4b5 ⊕ a3b6 ⊕ a2b7)(x
5 ⊕ x4 ⊕ x2 ⊕ x1) ⊕ (a7b1 ⊕ a6b2 ⊕ a5b3 ⊕ a4b4 ⊕ a3b5 ⊕

a2b6⊕a1b7)(x
4⊕x3⊕x1⊕1)⊕ (a7b0⊕a6b1⊕a5b2⊕a4b3⊕a3b4⊕a2b5⊕a1b6⊕

a0b7)x
7 ⊕ (a6b0 ⊕ a5b1 ⊕ a4b2 ⊕ a3b3 ⊕ a2b4 ⊕ a1b5 ⊕ a0b6)x

6 ⊕ (a5b0 ⊕ a4b1 ⊕
a3b2 ⊕ a2b3 ⊕ a1b4 ⊕ a0b5)x

5 ⊕ (a4b0 ⊕ a3b1 ⊕ a2b2 ⊕ a1b3 ⊕ a0b4)x
4 ⊕ (a3b0 ⊕

a2b1 ⊕ a1b2 ⊕ a0b3)x
3 ⊕ (a2b0 ⊕ a1b1 ⊕ a0b2)x

2 ⊕ (a1b0 ⊕ a0b1)x
1 ⊕ a0b0

= (a7b7)x
7⊕(a7b7)x

4⊕(a7b7)x
3⊕(a7b7)x

1⊕(a7b6⊕a6b7)x
6⊕(a7b6⊕a6b7)x

3⊕
(a7b6⊕a6b7)x

2⊕(a7b6⊕a6b7)x
0⊕(a7b5⊕a6b6⊕a5b7)x

7⊕(a7b5⊕a6b6⊕a5b7)x
5⊕

(a7b5⊕a6b6⊕a5b7)x
3⊕ (a7b5⊕a6b6⊕a5b7)x

1⊕ (a7b5⊕a6b6⊕a5b7)x
0⊕ (a7b4⊕

a6b5 ⊕ a5b6 ⊕ a4b7)x
7 ⊕ (a7b4 ⊕ a6b5 ⊕ a5b6 ⊕ a4b7)x

6 ⊕ (a7b4 ⊕ a6b5 ⊕ a5b6 ⊕
a4b7)x

4 ⊕ (a7b4 ⊕ a6b5 ⊕ a5b6 ⊕ a4b7)x
3 ⊕ (a7b3 ⊕ a6b4 ⊕ a5b5 ⊕ a4b6 ⊕ a3b7)x

6 ⊕
(a7b3 ⊕ a6b4 ⊕ a5b5 ⊕ a4b6 ⊕ a3b7)x

5 ⊕ (a7b3 ⊕ a6b4 ⊕ a5b5 ⊕ a4b6 ⊕ a3b7)x
3 ⊕

(a7b3 ⊕ a6b4 ⊕ a5b5 ⊕ a4b6 ⊕ a3b7)x
2 ⊕ (a7b2 ⊕ a6b3 ⊕ a5b4 ⊕ a4b5 ⊕ a3b6 ⊕

a2b7)x
5 ⊕ (a7b2 ⊕ a6b3 ⊕ a5b4 ⊕ a4b5 ⊕ a3b6 ⊕ a2b7)x

4 ⊕ (a7b2 ⊕ a6b3 ⊕ a5b4 ⊕
a4b5 ⊕ a3b6 ⊕ a2b7)x

2 ⊕ (a7b2 ⊕ a6b3 ⊕ a5b4 ⊕ a4b5 ⊕ a3b6 ⊕ a2b7)x
1 ⊕ (a7b1 ⊕

a6b2 ⊕ a5b3 ⊕ a4b4 ⊕ a3b5 ⊕ a2b6 ⊕ a1b7)x
4 ⊕ (a7b1 ⊕ a6b2 ⊕ a5b3 ⊕ a4b4 ⊕ a3b5 ⊕

a2b6 ⊕ a1b7)x
3 ⊕ (a7b1 ⊕ a6b2 ⊕ a5b3 ⊕ a4b4 ⊕ a3b5 ⊕ a2b6 ⊕ a1b7)x

1 ⊕ (a7b1 ⊕
a6b2 ⊕ a5b3 ⊕ a4b4 ⊕ a3b5 ⊕ a2b6 ⊕ a1b7)x

0 ⊕ (a7b0 ⊕ a6b1 ⊕ a5b2 ⊕ a4b3 ⊕ a3b4 ⊕
a2b5 ⊕ a1b6 ⊕ a0b7)x

7 ⊕ (a6b0 ⊕ a5b1 ⊕ a4b2 ⊕ a3b3 ⊕ a2b4 ⊕ a1b5 ⊕ a0b6)x
6 ⊕

(a5b0⊕a4b1⊕a3b2⊕a2b3⊕a1b4⊕a0b5)x
5⊕(a4b0⊕a3b1⊕a2b2⊕a1b3⊕a0b4)x

4⊕
(a3b0⊕a2b1⊕a1b2⊕a0b3)x

3⊕(a2b0⊕a1b1⊕a0b2)x
2⊕(a1b0⊕a0b1)x

1⊕(a0b0)x
0

= (a7b7 ⊕ a7b5 ⊕ a7b4 ⊕ a7b0 ⊕ a6b6 ⊕ a6b5 ⊕ a6b1 ⊕ a5b7 ⊕ a5b6 ⊕ a5b2 ⊕ a4b7 ⊕
a4b3 ⊕ a3b4 ⊕ a2b5 ⊕ a1b6 ⊕ a0b7)x

7⊕
(a7b4 ⊕ a6b5 ⊕ a5b6 ⊕ a4b7 ⊕ a7b6 ⊕ a7b3 ⊕ a6b7 ⊕ a6b4 ⊕ a6b0 ⊕ a5b5 ⊕ a5b1 ⊕

a4b6 ⊕ a4b2 ⊕ a3b7 ⊕ a3b3 ⊕ a2b4 ⊕ a1b5 ⊕ a0b6)x
6⊕

(a7b5 ⊕ a7b3 ⊕ a7b2 ⊕ a6b6 ⊕ a6b4 ⊕ a6b3 ⊕ a5b7 ⊕ a5b5 ⊕ a5b4 ⊕ a5b0 ⊕ a4b6 ⊕
a4b5 ⊕ a4b1 ⊕ a3b7 ⊕ a3b6 ⊕ a3b2 ⊕ a2b7 ⊕ a2b3 ⊕ a1b4 ⊕ a0b5)x

5⊕
(a7b7⊕a7b4⊕a7b2⊕a7b1⊕a6b5⊕a6b3⊕a6b2⊕a5b3⊕a5b4⊕a5b6⊕a4b7⊕a4b5⊕

a4b0 ⊕ a4b4 ⊕ a3b5 ⊕ a3b6 ⊕ a3b1 ⊕ a2b7 ⊕ a2b2 ⊕ a2b6 ⊕ a1b7 ⊕ a1b3 ⊕ a0b4⊕)x4⊕
(a7b7 ⊕ a7b6 ⊕ a7b5 ⊕ a7b4 ⊕ a7b3 ⊕ a7b1 ⊕ a6b5 ⊕ a6b7 ⊕ a6b6 ⊕ a6b4 ⊕ a6b2 ⊕

a5b3 ⊕ a5b5 ⊕ a5b7 ⊕ a5b6 ⊕ a4b7 ⊕ a4b6 ⊕ a4b4 ⊕ a3b5 ⊕ a3b7 ⊕ a3b0 ⊕ a2b1 ⊕
a2b6 ⊕ a1b7 ⊕ a1b2 ⊕ a0b3)x

3⊕
(a7b6 ⊕ a7b3 ⊕ a7b2 ⊕ a6b7 ⊕ a6b4 ⊕ a6b3 ⊕ a5b5 ⊕ a5b4 ⊕ a4b6 ⊕ a4b5 ⊕ a3b7 ⊕

a3b6 ⊕ a2b0 ⊕ a2b7 ⊕ a1b1 ⊕ a0b2)x
2⊕

(a7b7 ⊕ a7b5 ⊕ a7b2 ⊕ a7b1 ⊕ a6b3 ⊕ a6b6 ⊕ a6b2 ⊕ a5b7 ⊕ a5b4 ⊕ a5b3 ⊕ a4b4 ⊕
a4b5 ⊕ a3b6 ⊕ a3b5 ⊕ a2b6 ⊕ a2b7 ⊕ a1b7 ⊕ a1b0 ⊕ a0b1)x

1⊕
(a0b07b1 ⊕ a7b6 ⊕ a7b5 ⊕ a6b7 ⊕ a6b6 ⊕ a6b2 ⊕ a5b7 ⊕ a5b3 ⊕ a4b4 ⊕ a3b5 ⊕

a2b6 ⊕ a1b7)x
0

So, the bits of the product c = a • b are

8

c7 = a7b7 ⊕ a7b5 ⊕ a7b4 ⊕ a7b0 ⊕ a6b6 ⊕ a6b5 ⊕ a6b1 ⊕ a5b7 ⊕ a5b6 ⊕ a5b2 ⊕
a4b7 ⊕ a4b3 ⊕ a3b4 ⊕ a2b5 ⊕ a1b6 ⊕ a0b7
c6 = a7b4⊕a6b5⊕a5b6⊕a4b7⊕a7b6⊕a7b3⊕a6b7⊕a6b4⊕a6b0⊕a5b5⊕a5b1⊕
a4b6 ⊕ a4b2 ⊕ a3b7 ⊕ a3b3 ⊕ a2b4 ⊕ a1b5 ⊕ a0b6
c5 = a7b5⊕a7b3⊕a7b2⊕a6b6⊕a6b4⊕a6b3⊕a5b7⊕a5b5⊕a5b4⊕a5b0⊕a4b6⊕
a4b5 ⊕ a4b1 ⊕ a3b7 ⊕ a3b6 ⊕ a3b2 ⊕ a2b7 ⊕ a2b3 ⊕ a1b4 ⊕ a0b5
c4 = a7b7⊕a7b4⊕a7b2⊕a7b1⊕a6b5⊕a6b3⊕a6b2⊕a5b3⊕a5b4⊕a5b6⊕a4b7⊕
a4b5⊕a4b0⊕a4b4⊕a3b5⊕a3b6⊕a3b1⊕a2b7⊕a2b2⊕a2b6⊕a1b7⊕a1b3⊕a0b4⊕
c3 = a7b7⊕a7b6⊕a7b5⊕a7b4⊕a7b3⊕a7b1⊕a6b5⊕a6b7⊕a6b6⊕a6b4⊕a6b2⊕
a5b3 ⊕ a5b5 ⊕ a5b7 ⊕ a5b6 ⊕ a4b7 ⊕ a4b6 ⊕ a4b4 ⊕ a3b5 ⊕ a3b7 ⊕ a3b0 ⊕ a2b1 ⊕
a2b6 ⊕ a1b7 ⊕ a1b2 ⊕ a0b3
c2 = a7b6⊕a7b3⊕a7b2⊕a6b7⊕a6b4⊕a6b3⊕a5b5⊕a5b4⊕a4b6⊕a4b5⊕a3b7⊕
a3b6 ⊕ a2b0 ⊕ a2b7 ⊕ a1b1 ⊕ a0b2
c1 = a7b7⊕a7b5⊕a7b2⊕a7b1⊕a6b3⊕a6b6⊕a6b2⊕a5b7⊕a5b4⊕a5b3⊕a4b4⊕
a4b5 ⊕ a3b6 ⊕ a3b5 ⊕ a2b6 ⊕ a2b7 ⊕ a1b7 ⊕ a1b0 ⊕ a0b1
c0 = a7b6⊕a7b5⊕a7b1⊕a6b7⊕a6b6⊕a6b2⊕a5b7⊕a5b3⊕a4b4⊕a3b5⊕a2b6⊕
a1b7 ⊕ a0b0

These equations define constants αs,t,r ∈ {0, 1}, which tell us if the element
asbt is present in the equation for cr. So we have

cr =

7∑
s,t=0

αs,t,rasbt (8)

Note that there are 512 constants αs,t,r, but only 151 are ones. For a known
pair (P,C), from (4), we have m • C = (CS0, CS1 . . . CS15)

T , so CSn = (m •
C)n =

∑15
q=0(mn,q • Cq), n = 0 . . . 15 and for the bit r of it we have: CSn,r =∑15

q=0(mn,q • Cq)r =
∑15

q=0

∑7
s,t=0 αr,s,tmn,q,sCq,t. On the other hand from the

definition of CS (3) we have: CSn,r =
∑n

k=0 Sk,n,r(Pk), n = 0 . . . 15, r = 0 . . . 7.
Together we have:

15∑
q=0

7∑
s,t=0

αr,s,tmn,q,sCq,t =

n∑
k=0

Sk,n,r(Pk) n = 0 . . . 15, r = 0 . . . 7. (9)

Note that Sk,n,r(Pk) is bit r of the byte Sk,n(Pk). For S-box Sk,n we usually
have a table, which is indexed by an argument x, and the table value is a byte
S(x). Equivalently we can write the byte S(x) per bit in 8 tables, indexed by
x and the bit r. So we will have tables of bits Sk,n,r,x for r = 0 . . . 7, and
x = 0 . . . 255. Then we can write Sk,n,r(Pk) as Sk,n,r,Pk

and the equation (9)
will be:

15∑
q=0

7∑
s,t=0

αr,s,tmn,q,sCq,t =

n∑
k=0

Sk,n,r,Pk
n = 0 . . . 15, r = 0 . . . 7. (10)

When we look at the left side of (10), there is only a sum of unknown bits mn,q,s,
and on the right side there is only a sum of unknown bits Sk,n,r,Pk

. For known

9

plaintext P and ciphertext C it constitutes 128 simple linear equations, contain-
ing 16*16*8 = 2048 unknown bits of m and 136*8*256 = 278528 unknown bits
of S-boxes. The coefficients are changing with (P, C). Thus we are obtaining
different linear equations. We need only (278528+2048)/128 = 280576/128 =
2192 pairs of (P, C) to solve this simple linear system of 280576 unknowns. We
can suppose that the equations aren’t linearly dependent so that we will deter-
mine the private key (m,S). So, when we know input (P) and output (C) bits
of one round, we can express linear relations between bits of m and S in GF (2)
and determine them. We have obtained the same result as on a byte level.

6.4 Algebraic analysis of more rounds DB in GF(2)

According to (10) we will have for two rounds these relations:

15∑
q=0

7∑
s,t=0

αr,s,tmn,q,sC
(2)
q,t =

n∑
k=0

S
k,n,r,C

(1)
k

, n = 0 . . . 15, r = 0 . . . 7 (11)

and
15∑
q=0

7∑
s,t=0

αr,s,tmn,q,sC
(1)
q,t =

n∑
k=0

Sk,n,r,Pk
, n = 0 . . . 15, r = 0 . . . 7. (12)

The plaintext P and the ciphertext C(2) are changing on the left side of
the equation (11) and the right side of the equation (12). But on the right
side of the equation (11) we cannot say which variable S

k,n,r,C
(1)
k

is used. We

need to use the concrete index, but we don’t have it. Therefore, it is not
a linear expression. It is a polynomial of the degree 8, where variables are

unknown bits C
(1)
k,t , t = 0 . . . 7 of C

(1)
k . These variables are used in products

with bits of m on the left side of the equation (12). Together we have nonlinear
equations of the degree 8 + 1. More rounds will quickly increase the degree of
polynomials. Again, we encountered a major barrier where a nonlinear S-box
has to process the sum of some expressions. This problem has been studied for
decades because it is the core idea of modern block ciphers. Up to now, there
are no known techniques for effectively bypassing this obstacle, so we believe
this construction isn’t breakable.

7 Conclusion

We presented Diffusion Block, which is very fast. It uses a large key, different
for encryption and decryption. Its cryptographic security is based on the same
core idea as uses AES, DES, and others, which has been studied for more than
50 years by many cryptanalysts.

8 Post-quantum Cryptography

DB is resistant to attack by a quantum computer.

10

9 Acknowledgements

I would like to thank Danilo Gligoroski, Martin Stanek, Jozef Vyskoc, Pavel
Vondruska, and Tomas Rosa for their helpful comments. Special thanks to
Viktor Dohnal.

References

[AES01] AES-NIST. “Specification for the Advanced Encryption Standard
(AES)”. In: Federal Information Processing Standards Publication
197 (2001).

11

	Introduction
	Notation
	Definition of DB
	Definition of the Decryption Key
	Definition of the Encryption Key
	Encryption
	Decryption

	Semi-linearity in GF(28)
	Variants and Parameters
	Key Generation
	The Block Length
	The Number of Rounds

	Cryptanalysis
	Algebraic analysis in GF(28)
	Algebraic analysis of more DB rounds in GF(28)
	Algebraic analysis in GF(2)
	Algebraic analysis of more rounds DB in GF(2)

	Conclusion
	Post-quantum Cryptography
	Acknowledgements

